Precise Version Control of Trees
with Line-based Version Control Systems

Dimitar Asenov', Balz Guenat' Peter Miiller', and Martin Otth?

! Dept. of Computer Science, ETH Zurich, Zurich, Switzerland
dimitar.asenov@inf.ethz.ch, guenatb@student.ethz.ch,
peter.mueller@inf.ethz.ch
2 Ergon Informatik AG, Zurich, Switzerland
martin.otth@ergon.ch

Abstract. Version control of tree structures, ubiquitous in software
engineering, is typically performed on a textual encoding of the trees,
rather than the trees directly. Applying standard line-based diff and
merge algorithms to such encodings leads to inaccurate diffs, unnecessary
conflicts, and incorrect merges. To address these problems, we propose
novel algorithms for computing precise diffs between two versions of a
tree and for three-way merging of trees. Unlike most other approaches
for version control of structured data, our approach integrates with main-
stream version control systems. Our merge algorithm can be customized
for specific application domains to further improve merge results. An
evaluation of our approach on abstract syntax trees from popular Java
projects shows substantially improved merge results compared to Git.

Keywords: version control, trees, structured editor, software evolution

1 Introduction

Tree structures such as XML, JSON, and source code are ubiquitous in software
engineering, but support for precise version control of trees is lacking. Mainstream
version control systems (VCSs) such as Git, Mercurial, and SVN treat all data
as sequences of lines of text. Standard diff and merge algorithms disregard the
structure of the data they manipulate, which has three major drawbacks for
versioning trees. First, standard line-based diff algorithms may lead to inaccurate
and confusing diffs, for instance when differences in formatting (e.g., added
indentation) blend with real changes or when lines are incorrectly matched across
different sub-trees (e.g., across method boundaries in a program). Inaccurate
diffs do not only waste developers’ time, but may also corrupt the result of
subsequent merge operations. Second, standard merge algorithms may lead to
unnecessary conflicts, which occur for incompatible changes to the formatting
(e.g., breaking a line at different places), but also for more substantial changes
such as merging two revisions that each add an element to an un-ordered list
(for instance, a method at the end of the same class). Unnecessary conflicts
could be merged automatically, but instead require manual intervention from the

developer. Third, standard merge algorithms may lead to incorrect merges; for
instance, if two developers move the same tree node to two different places, a
line-based merge might incorrectly duplicate the node. Incorrect merges lead to
errors that developers need to detect and fix manually.

To solve these problems, we propose a novel approach to versioning trees. Our
approach builds on a standard line-based VCS (in our case, Git), but provides
diff and merge algorithms that utilize the tree structure to provide accurate diffs,
conflict detection, and merging. In contrast to VCSs that require a dedicated
backend for trees [14, 15,21, 24, 25|, employing a standard VCS allows developers
to use established infrastructures and workflows (such as GitHub or BitBucket)
and to version trees and text files such as documentation in the same VCS. Our
diff algorithm relies on the optimized line-based diff of the underlying VCS, but
utilizes the tree structure to accurately report changes. Building on the diff
algorithm, we designed a three-way merge algorithm that reduces unnecessary
conflicts and incorrect merges by using the tree structure and, optionally, domain
knowledge such as whether the order of elements in a list is relevant.

Diff and merge algorithms rely on matching different revisions of a tree to
recognize commonalities and changes. One option to obtain such a matching is
to associate each tree node with a unique ID that remains unchanged across
revisions. This approach yields precise matchings and makes it easy to recognize
changed and moved nodes, but requires a custom storage format and support
from an editor such as MPS [30] or Envision [5]. Alternatively, one can use
traditional textual encodings of trees without IDs (e.g., source code to represent
an AST) and compute matchings using an algorithm such as ChangeDistiller [10]
or GumTree [9]. However, such algorithms require significant time and produce
results that are approximate and, thus, lead to less precise diffs and merges. Our
approach supports both options; it benefits from the precise matchings provided
by node IDs when available, but can also utilize the results of matching algorithms
and, thus, be used with standard editors. We will present the approach for a
storage format that includes node IDs, but our evaluation shows that even with
approximate matchings computed on standard Java code, our approach achieves
substantially better results than a standard line-based merge.

The contributions of this paper are:

— A textual encoding of generic trees that enables their precise version control
within standard line-based VCSs such as Git.

— A novel algorithm for computing the difference between two versions of a
tree based on the diff reported by a line-based VCS.

— A novel algorithm for a three-way merge of trees, which allows the customiza-
tion of conflict detection and resolution.

— An implementation of the algorithms in the Envision IDE and an evaluation
on several popular open-source Java code bases.

The rest of this paper is structured as follows. In Sec. 2, we present a textual
encoding of trees and a corresponding diff algorithm, which builds on a line-based
diff. We describe a generic algorithm for merging trees and two customizations
that improve the merge result in Sec. 3. In Sec. 4, we discuss the results of our

evaluation. We discuss related work in Sec. 5 and conclude in Sec. 6. More details
of the algorithms can be found in the PhD thesis of the first author [6].

2 Tree Versioning with a Line-based VCS

The algorithms we designed work on a general tree structure. In order to enable
precise version control of trees, we assume, without loss of generality, that each
tree node is a tuple with the following elements:

— 1id: a globally unique ID. This ID is used to match and compare nodes from
different versions and track node movement. IDs can be randomly generated,
as long as matching nodes from different versions have the same ID, which
can be achieved by using a tree-matching algorithm such as GumTree [9].
We use a standard 128-bit universally unique identifier (UUID).

— parentld: the ID of the parent node. The parent ID of the root node is a
null UUID. All other nodes must have a parentld that matches the ID of an
existing node.

— label: a name that is unique among sibling nodes. The label is essentially
the name of the edge from parent to child node. This could be any string or
number, e.g., 1,2, 3, ... for the children of nodes representing lists.

— type: an arbitrary type name from the target domain. For example, types
of AST nodes could be Method or IntegerLiteral. Types enable additional
customization of the version control algorithms, used to improve conflict
detection and resolution. In domains without different node types, one type
can be used for all nodes.

— walue: an optional value.

A walid tree is a set of nodes which form a tree and meet the requirements above.

2.1 Textual Encoding of Valid Trees

In order to efficiently perform version control of trees within a line-based VCS, we
encode trees in a specific text format, which enables using the existing line-based
diff in the first of two stages for computing the changes between two tree versions.
A valid tree is encoded into text files as illustrated in Fig. 1. The key property of
the encoding is that a single line contains the encoding of exactly one tree node
with all its elements. In Fig. 1, each line encodes a node’s label, type, UUID, the
UUID of the parent node, and the optional value in that order. A reserved node
type External indicates that a subtree is stored in a different file (Fig. 1b).

This encoding allows two versions of a set of files to be efficiently compared
using a standard line-based diff. The different lines reported by such a diff
correspond directly to a set of nodes that is guaranteed to be an overapproximation
of the nodes that have changed between the two versions of the encoded tree.

For efficient parsing, we indent each child node and insert children after their
parents (Fig. 1), enabling simple stack-based parsing. The names of the files that
comprise a single tree is irrelevant, but for quickly finding subtrees, it is advisable
to include the UUID of the root of each file’s subtree in the file name.

2 Method {9c2c.} {eOb6..}

modifiers Modifier {8842.} {9c2c.} 1 12 Class {5414.} {425d.}
name Name {3269..} {9c2c.} foo methods List {eObé6..} {5414.}
body StatementList {1023..} {9c2c.} 0 External {e239..} {eOb6...}
0 If {f3c2.} {1023.} 1 External {5dbil..} {eOb6..}
condition BinOp {b0a0..} {f3c2.} 2 External {9c2c.} {eOb6..}

left Text {£f7c3.} {b0al..} two\nlines
(b)
(a)

Fig. 1. (a) An example encoding of an AST fragment. For brevity, only the first 2 bytes
of UUIDs are shown here. (b) A file that references external files, which contain the
subtrees of a class’s methods. The last line refers to the file from (a). At most two lines
in different files may have the same ID, and one of them must be of type External.

2.2 Diff Algorithm

The diff algorithm computes the delta between two versions of a tree (T4 and
Thew)- The delta is a set of changes, where each change represents the evolution
of one node and is a tuple consisting of:

— oldNode: the node tuple from T4, if it exists (node was not inserted).

— newNode: the node tuple from T},c,, if it exists (node was not deleted).

— kind: the kind of the change — one of Insertion, Deletion, Move (change of
parent and possibly label, type, or value), Stationary (no change of parent,
but change in at least one of label, type, or value).

These elements provide the full information necessary to report precisely how
a node has changed. The encoding from Sec. 2.1 enables an efficient two-stage
algorithm for computing the delta between two versions of a tree. The operation
of the algorithm is illustrated in Fig. 2.

The first stage computes two sets of nodes oldNodes C T,;4 and newNodes C
Thew, which overapproximate the nodes that have changed between 1,4 and
Thew- The sets are computed by comparing the encodings of Tjq and Teqp
using a standard line-based diff [20, 22, 29]. Given two text files, a line-based diff
computes a longest common subsequence (LCS), where each line is treated as
an atomic element. The LCS is a subset of all identical lines between T,;4 and
Thew- The diff outputs the lines that are not in the LCS, thus overapproximating
changes: lines from the “old” file are marked as deleted and lines from the “new’
file are marked as inserted. In the middle of Fig. 2, lines B, E, G, H, and D on
the left are marked as removed and lines B’, E’, G, H, and X on the right are
marked as inserted. The combined diff output for all files is two sets of removed
and inserted lines. The nodes corresponding to these two sets, ignoring nodes of
type External, are the inputs to the second stage of the diff algorithm.

The second stage (Alg. 2.1) filters the overapproximated nodes and computes
the final, precise delta between T,;q and T5,¢,,. The algorithm essentially compares
nodes with the same id from oldNodes and newNodes and if they are different,
adds a corresponding change to the delta. A node from oldNodes might be

)

A A
B C 0 9 C (B, B, Stationary)
(D, -, Deletion)
E F F i
(E, E', Move)
© H e @ (-, X, Insertion)
G H
Ton Thew line-based diff final delta

Fig. 2. A tree modification and the outputs of the two stages of the diff algorithm.

identical to a node from newNodes, for example, if its corresponding line has
moved, but is otherwise unchanged. This is the case for nodes G and H in Fig. 2,
where the final delta consist only of real changes to the nodes B, D, E, an X.
This is in contrast to a line-based diff, which will also report G and H as changed,
even though they have not.

In the absence of unique IDs stored with the tree, it is possible to compute
matching nodes using a tree match algorithm, enabling our diff and merge
algorithms to be used for traditional encodings of trees, such as Java files. To
achieve this, the first stage needs to be replaced so that it parses the input files,
computes a tree matching, and assigns new IDs according to the matching.

The described diff algorithm eliminates (with unique IDs), or greatly reduces
(using a tree matching algorithm) inaccurate diffs. This is because the formatting
of the encoding is irrelevant, changes are expressed in term of tree nodes, and
moved nodes are tracked, even across files. The diff provides a basis for improved
merges, discussed next.

3 Merging Trees and Domain-specific Customizations

Building on the diff algorithm from Sec. 2.2, we designed an algorithm for merging
two tree revisions Ty and T given their common ancestor Tps.. At the core
of the merge is the change graph — a graph of changes performed by the two
revisions, which includes conflicts and dependencies. In this section, we will first
describe the change graph and how it is used to merge files, and then we will
outline additional merge customizations, which use knowledge about the domain
of the tree to improve conflict detection and resolution. Unlike the diff algorithm,
the merge does not build on its line-based analog, which is unaware of the tree
structure and may produce invalid results. For example, if two revisions move
the same node (line) to two different parents, which are located in different parts
of a file or in different files, a line-based algorithm would simply keep both lines,
incorrectly duplicating the subtree, whereas our algorithm will report a conflict.

1: function TREEDIFFSTAGETWO(oldNodes, newNodes)

2 changes +

3 for all {(old, new) € (oldNodes x newNodes) | old.id=new.id A old#new} do
4 if old.parentld = new.parentld then

5: changes < changes U {(old, new, Stationary)}

6 else

7 changes < changes U {(old, new, Move)}

8: end

9: end

10: for all {old € oldNodes | old.id ¢ IDs(newNodes)} do
11: changes « changes U {(old, NIL, Deletion)}

12: end

13: for all {new € newNodes | new.id ¢ IDs(oldNodes)} do
14: changes + changes U {(NIL, new, Insertion)}

15: end

16: return changes

17: end

Algorithm 2.1: The second stage of the TreeDiff algorithm. IDs is the set of all
identifiers of nodes from the input set. A more detailed version of this algorithm
and a proof of correctness can be found in [12].

3.1 Change Graph and Merge Algorithm

The purpose of the change graph (CG) is to bring together changes from two
diverging revisions and facilitate the creation of a merged tree. The nodes of
the CG are changes, similar to the ones reported by the diff. The changes are
connected with two types of edges, which constrain when changes may be applied.
A change may require another change to be applied first, expressed as a directed
dependency edge. For example, a change inserting a node might depend on the
change inserting the parent node. Two changes may be in conflict with each
other, expressed as an undirected conflict edge. For example, if both revisions
change the same node differently, these changes will be in conflict. An example
change graph is illustrated in Fig. 3.

To merge 17’4 and T'g into a tree Tyerged, first an inverse topological ordering of
the CG is computed using the dependency edges. Changes are applied according to
this ordering, if possible. A change is applicable if it does not depend on any other
change and has no conflict edges. Changes that form cycles in the CG may be
applied together, in one atomic step, provided that all changes (i) have no conflict
edges; (ii) are made by the same revision or by both revisions simultaneously; and
(iii) do not depend on any change outside the cycle. Essentially, changes in such
cycles are independent of other changes and are compatible with both revisions,
making them safe to apply. These restrictions ensure that applying changes
preserves the validity of the tree (see Sec. 7.3.1 in [6] for details). Applied changes
are removed from the CG along with any incoming dependency edges. Once all
applicable changes have been applied, any remaining changes represent conflicts
and will be reported to the user. Next, we explain how the CG is constructed.

-

>
>
>

Q: delete B

d3)

cl
9 - & & O & 2> P: move D P: edit B
c2

b

L @ L ©
01 29 E E 20 d2/,,,,
152 X
O 0 0: insert V

revision P base revision Q change graph

!

Fig. 3. A base tree with two modifying revisions and the corresponding CG. Each edge
in the CG is labeled with the dependency or conflict type that the edge represents.

Merge Changes. A merge change is a tuple that extends the change tuple
from the diff algorithm with one new element, revisions, which indicates which
revisions make this change: RevA, RevB, or Both. The nodes of the CG are the
merge changes obtained by running the diff algorithm twice to compute the
delta between Tpqse and T4 and between Tp,se and T'g, respectively. First, each
change from the two deltas is associated with either RevA or RevB to create a
corresponding merge change. Then, we organize the elements of a tree node into
two element groups: (i) parent and label; and (ii) type and value. Each group
contains tuple elements whose modification by different revisions is a conflict. Any
merge changes that modify both element groups are split into two merge changes:
one for each element group. For example, if a node is moved to a new parent and
its value is modified, this will appear as two separate and independent merge
changes within the CG. This separation reduces conflicts and dependencies in the
CG, since the two groups are independent. Finally, any identical changes made by
different revisions are combined into a single merge change with revisions=Both,
which ensures that identical changes are applied only once.

Dependencies between Merge Changes. A dependency X — Y means that
change X cannot be applied before Y, and is the first of two means that restrict
applicable changes. Dependencies prevent three cases of tree structure violations.
(d1) orphan nodes: (a) Before a change IM inserts or moves a node N, N’s
parent destination node P must exist. If P does not already exist in Tpqse, then
there must be an insertion change I, which inserts it. An edge IM — I is added
to indicate that I must be applied before IM can be applied. In Fig. 3, nodes
Y and Z depend on the insertion of X. (b) Before a change D deletes a node
N, all of N’s children must be deleted or moved. An edge D — DM is added
between D and each change DM that moves or deletes a child of N. In both (a)
and (b), the changes I and DM are guaranteed to exist if they are necessary,
because the merge changes were computed from the deltas of valid trees. Note
that dependencies that prevent orphan nodes cannot form cycles on their own.

(d2) clashing labels: Before a change IMR inserts, moves, or relabels (modifies
the label of) a node N, there must be no sibling at the destination of N with the
same label. If a node with the same label as N'’s final label exists in Ty,s. at the
destination parent of N then there must be a change DMR that deletes, moves,
or relabels that sibling. An edge IMR — DMR is added to the CG. In Fig. 3,
node X depends on the relabeling of E. Such dependencies may form cycles. For
example, swapping two elements in a list yields two relabel changes, where each
change depends on the other.

(d3) cycles: If a change My moves a node N, N must not become its own
ancestor. Such a situation occurs, for example, if a revision A moves an if-
statement [F' into an if-statement IF'5, and revision B moves IF5 into IF'{. To
prevent such issues, move changes are applied only if the destination subtree does
not need to be moved. This is enforced using dependencies. If My moves N to a
subtree that needs to be moved, let Mp be the change that moves the subtree.
An edge My — Mp is added to the CG. Move changes from different revisions
may create dependency chains that form a cycle in the CG. For example, the
move of IF; will depend on the move of IFsy, which will itself depend on the
move of IF;. Such a cycle means that the two revisions perform incompatible
moves and the changes from the cycle cannot be applied. Move changes from
different revisions do not always result in a cycle. For example, in Fig. 3, the
move of L depends on the move of D, which is independent.

Conflicting Merge Changes. Conflicts that would result in a node becoming
its own ancestor are indirectly represented in the CG in the form of dependency
cycles described above. Other conflicts cannot be expressed with dependencies
and appear directly as conflict edges, which are the second means for restricting
change application. There are three cases of direct conflicts.

(c1) same node: If two revisions make non-identical changes X and Y to the
same node, these changes may be conflicting. Deletions conflict with all other
changes. Other changes conflict only with changes of the same element group.
Conflicting changes are connected with an undirected edge X ~ Y in the CG.
An example of such a conflict is the modification and deletion of B in Fig. 3.

(c2) label clash: If a change IMR inserts, moves, or relabels a node N, and
another change IMRg inserts, moves, or relabels a node @ such that N and
@ have identical final labels and parent nodes, the two changes are in conflict.
An edge IMRN ~ IMRg is added to the CG. In Fig. 3, such a conflict is the
relabeling of E and the insertion of V.

(c3) deletion clash: If a change Dy deletes a node N, and another change
IM g inserts or moves a node @ as a child of IV, the two are in conflict. An edge
Dy ~ IM g is added to the CG.

In contrast to line-based merges, applying changes using the CG prevents
incorrect merges by considering the tree structure. The algorithm, as described
so far, has no knowledge about the domain of the tree, and misses opportunities
for improved merges and better error reporting. Next, we explain customizations,
that improve the merge results and report potential semantic issues.

3.2 Domain-specific Customizations

Merging two tree revisions without any domain knowledge, as described so far,
can lead to suboptimal merges. Figs. 3 and 4 illustrate one such example, where
revision P inserts a node X in the beginning of list L and revision () inserts
a node V at the end. These two changes conflict, because the label of E in
P is identical to the label of V in Q. Despite this conflict, intuitively these
changes can be merged by relabeling V. To achieve better merge results, we allow
the merge process to be customized by taking domain knowledge into account.
Customizations use domain knowledge, such as the semantics of specific node
types or values, to tweak the CG, eliminating conflicts and dependencies, and
thus, enabling additional changes to be applied. Customizations may also produce
review items, which are messages that inform the user of a potential semantic
issue with the final merge. Review items have two advantages over conflicts.
First, unlike changes in a conflict or their depending changes (even if not in a
conflict), which are not applicable, review items are not part of the CG and do not
prevent the application of changes. Applying more changes is desirable because
the final merge more closely represents both revisions and the user has to review
issues with only a selected group of nodes, instead of manually exploring many
unapplied changes. Second, review items provide semantic information to the
user, making it easier to take corrective action, unlike conflicts, which represent
generic constraints on the tree structure. Similarly, review items are preferable to
conflicts in line-based merges, because review items are more focused and provide
semantic information. Next, we present two examples of customizations, which
we have found useful for achieving high-quality merges.

List-Merge Customization. Data from many domains (e.g., ASTs, UML
models) has list entities. Merging lists is challenging [13, 28], as it is not trivial to
determine the order of the merged elements and to detect and resolve conflicts. In
addition, the CG often contains label clash conflicts in lists (e.g., for nodes E and
V in Fig. 4), which are usually easy to resolve automatically. We developed the

A Q: delete B A Q: delete B

B C - B C -
P: edit B P: edit B
D D
L L
IR P insert Y JRREP: relabel EZ 1 23
E G et 20
merge outcome before customizations customized merge outcome

Fig. 4. The resulting Tnergea and CG after applying all possible changes from Fig. 3
(left) and after additional customizations (right).

10

input lists 3-way LCS 2 x 2-way LCS per chunk final linearization
Ly AXBDYV AXBDYV A X B DV A X B DV
Lpase ABCD ABCD A BC D A BC D
Ly ACYDW ACYDW A CYDW A CYD W
A-X-B-~D~V X-B~ -V v
order A D A-X-B~C~Y+~D A-X-B~C~Y-D-\ll5
A-C~Y~D-W C-Y7 W W re\!tmem

Fig. 5. Computing a total order for the elements of a merged list. Stable chunks have a
light-gray background. At the end, V and W are linearized and added to a review item.
In the merged list, B and C will be removed to reflect changes from revisions.

List-Merge customization, which is crucial for merging list nodes well. Essentially,
the customization computes a total order of all list elements from both revisions.
This total order is used to relabel all elements, giving each element a unique label.
Thus, all conflicts or dependencies due to previously clashing labels are removed
from the CG, allowing many more changes to be merged. Next, we describe the
computation of the total order and how ambiguities are handled.

The total order is computed in three steps as illustrated in Fig. 5. In the first
step, a three-way longest common subsequence (LCS) between Lpgse, La, and
L is computed and used to create an alternating sequence of stable and unstable
chunks. The stable chunks are a partition of the LCS — elements in a single
chunk are adjacent in all lists. There are two stable chunks in Fig. 5: [A] and [D].
An unstable chunk consists of one element span per list, each span containing
elements that are not in the LCS. There are two unstable chunks in Fig. 5:
[XB,BC,CY] and [V, €, W]. Elements from different chunks are totally ordered
using the order of the chunks, e.g., A before X and D. Elements from the same
stable chunk are totally ordered using their order within the chunk. In the second
step, for each unstable chunk C, two two-way LCSs lcs, = LCS(Chase, Co) and
lesy = LCS(Chyse, Cp) are computed. Elements from lcs, are totally ordered
with respect to elements from lcs; using the order in Cpyse. In Fig. 5 these are
B and C'. The remaining elements from C, and C} are ordered with respect to
elements from lcs, and lcsy, respectively. Such elements are totally ordered using
the order from one revision, if there are no elements from the other revision in
the corresponding chunk (X and Y in Fig. 5). Otherwise, the elements are not
totally ordered (V' and W in Fig. 5). In the third step, unordered elements are
linearized in an arbitrary order. If the list represents an ordered collection within
the domain, a review item is created to inform the user of the ambiguity.

The List-Merge customization brings essential domain knowledge about lists
to the merge algorithm. The customization not only resolves many conflicts
automatically, but also reports merge ambiguities on a semantic level. Thus, it
lets developers deal with less conflicts and do so more easily, saving time.

Conflict Unit Customization. Our merge algorithm is able to merge changes
at the very fine-grained level of tree nodes, which is not desirable in some
domains. For example, if < y in an AST is changed to z < y in one revision,

11

P s .
,° ~ @ conflict root

R A conflict unit
S > statements -
' o= mm e e
! 0o — sm===n
size. 0 ¢ * ‘ o
“.. - 1 'Y ’ A
-—-- . ’
L - N = statements |
1 1 ! -’
A} : 1 .' "
\WGizew @ i © .

Fig. 6. A tree with three conflict units.

and to x < y + 1 in another, these two changes can be merged as z < y + 1,
which is not intended. A common case where fine-grained merges might result in
semantic issues is when changes affect nodes that are “very close” according to the
semantics of the tree domain. We designed the Conflict Unit (CU) customization
to detect such situations. In essence, the customization partitions the tree into
small regions called CUs and creates review items for each CU that is changed
by both revisions. The customization does not alter the change graph.

The CU customization is parametrized by a set of node types — the CU types.
The conflict root of a node is its closest reflexive ancestor of a CU type. The tree
root is always a conflict root. The set of nodes that have the same conflict root
constitute a CU (see Fig. 6). If two revisions change nodes from the same CU,
there is a potential for a semantic issue and this is reported with a review item.

With an appropriate choice of CU types, the CU customization can be useful
in identifying potential semantic issues. For example, in ASTs, if statements are
CU types, like in Fig. 6, a change in one statement is semantically independent
from a change in another statement, but two changes in the subtree of the same
statement will result in a review item. In this setting, if a developer changes one
part of the ¢ > 0 expression, while another developer changes another part, these
changes will no longer be silently merged, but a semantic issue will be reported.

Structure- and semantics-based review items are more precise and meaningful
than the line-based conflicts produced by standard algorithms. A line-based con-
flict might incorrectly arise due to compatible changes (e.g., moving a declaration
in one revision and adding a comment in another revision) or it might be due
to formatting (e.g., renaming a method in one revision and moving the opening
brace to a new line in another revision). In contrast, our CU approach is precise,
predictable, and uses domain knowledge to report issues on a semantic level.

4 Evaluation and Discussion

To evaluate our approach, we implemented our version control algorithms in
the Envision IDE [5]. Even though Envision supports unique node IDs, we use

12

Gumtree [9] to evaluate our approach on large existing Java projects to show its
applicability on large trees with a long history. We inspected the default branch
of the most popular (having more than 10000 stars) Java projects on GitHub,
19 in total. Six of the projects did not contain any merges of Java files. In the
remaining 13 projects, we evaluate each merge of a Java file by comparing the
merge results of Git and our implementation. We focus on the merge here since
the merge operation depends on the diff and thus, reflects its quality. The results
are presented in Table 1. All tests were run on an Intel i7-2600K CPU running
at 3.4 GHz, 32GB RAM, and an SSD.

A divergent merge (DM) is one that results in conflicts (C) or one where the
automatically merged file is different from the file committed by the developer.
One exception are successful automatic merges in Envision that only differ from
the developer committed version by the order of methods or import declarations.
Since this order is semantically irrelevant, we do not consider such merges
divergent — they are counted as order difference (OD). For Envision, we also list
the number of files whose merge produced review items due to linearized list
elements (RI}) or changes to the same conflict unit by two revisions (Rl). For
conflict unit types we use all statement and declaration node types. The total
and average merge times are reported for both tools (merge and avg. merge).
Merging Java sources with Envision incurs a significant overhead (ovrhd.) in
addition to the merge time, because (i) the sources have to be parsed, (ii) the
different revisions have to be matched to the base using Gumtree, and (iii) these
two-way matchings are tweaked to enable a three-way merge. Almost all of this
overhead can be avoided by using IDs directly stored on disk.

Tree-based merging results in significantly fewer divergent merges, 717, com-
pared to the standard line-based approach, 1100. The difference in conflicts is
even more substantial, with 362 for the tree-based approach, and 1039 for Git.
Our approach also reports a significant number of files with review items for lists,
222, and conflict units, 662. Unlike textual conflicts, review items describe the
semantic issue they reflect and report the minimal set of nodes that are affected,
which makes it easier for developers to understand and act on review items.

To get more insight, we manually investigated all 46 cases of Envision’s
diverging merges in the RxJava project. All of these merges also diverge when
using Git. There are 34 merges with real conflicts or merges where the developer
made a semantic change, neither of which can be automatically handled. In the
remaining 12 cases, we observed two reasons for divergence in Envision.

First, in six cases the result of a tree merge was, in fact, correct, but the
version committed by the developer was incorrect. This occurred when a Git
merge results in a conflict which the developer resolves incorrectly, even though
the resulting code compiles. For example, a conflict marker (<<<<<<< HEAD)
inserted by Git was forgotten inside a block comment. Another example is the
accidental omission of an @Test annotation which appeared just before a conflict
marker. This omission potentially disabled one of the test cases in the code and
went unnoticed for nearly three years until the RxJava developers accepted our
patch for fixing it. Our approach automatically merges all of these cases correctly.

13

Table 1. Comparison between merges by Git (G) and Envision (E). DM — divergent
merge; C — merge with conflicts; OD — merge where only order differs; RI — review item
(I — due to linearized list elements, cu — due to multiple changes in a CU).

number of files merge|ovrhd.|avg.merge

project all DM C OD RI, Rlc,| [s] | [min] [ms]

mergess G E G E E E E |G E E |G E
ReactiveX /RxJava 354 82 46 T4 12 19 22 38 |3 125| 122 |9 353
Slastie/ o 2677 | 863 547 821 281 29 157 525 |10 276| 266 |4 103
square/retrofit 49 14 13 12 10 0 3 12 |0 3 4 3 53
square/okhttp 163 4 4 4 1 0 1 11 |1 23 22 |4 138
%:13{‘?‘*5‘ 56 |15 10 14 6 0 4 8 |0 2| 4 |5 36
Howatar/jova 59 2 1 0 0 1 110 0 3 5 3
Jakewharton/ 8 |0 0 0 0 0 0 010 1| 2 |6 73
greenrobot/ 10 2 0 0 4 |0 1 1 |7 54
square/picasso 40 0o 0 0 3 (0 3 4 |5 75
PhilTay) Chart 169 |32 35 24 20 0 9 21 |1 13 15 |4 76
square/leakcanary 13 10 1 0 0 0 2|0 O 1 7 31
bumptech/glide 76 69 54 69 29 2 22 32 |0 3 6 3 39
?";vtv/kpg 339 |14 4 14 1 0 3 5|1 2] 19 [3 5
total 4023 (1100 717 1039 362 50 222 662 (16 452| 469 |5 80

Second, six merges diverge due to the suboptimal matchings produced by
GumTree. For example, if a particular Java import declaration is present in the
base version, but is deleted in both revisions, GumTree may match the deleted
import to two different newly inserted imports from the different revisions. Our
merge algorithm detects this as a conflict and fails to merge the file.

In terms of run-time, merging files with Envision is, on average, 16 times
slower compared to Git. Nevertheless, Envision still allows merging at a rate of
12.5 files a second, which is significantly faster than manually resolving conflicts.

However, if the files are not stored using the format we described in Sec. 2.1,
and require parsing and tree-matching, there is significant overhead, which further
slows down Envision by a factor of 60. In this case merging a single file could take
about one minute. To further investigate the effect of the matching on the merge
result, we implemented a simple tree-matching algorithm and used it instead of
Gumtree on the RxJava project. Our tree-matching produces worse matchings
compared to GumTree, but incurs less overhead (81 minutes instead of 122).
The simpler matcher resulted in more divergent merges (70) and more conflicts
(40), compared to using GumTree, but the results are still better than using Git.
These results suggest that our approach is most useful for storage formats that
include unique node IDs such that matching algorithms are avoided altogether.

14

Threats to Validity. We evaluated our implementation on 13 Java repositories.
Our results might not apply to other projects, other languages, or trees that
are not ASTs. Nevertheless, the code bases we used provide a wide variety of
tree-merge situations, and we used popular projects in order to increase the
ecological validity of the results.

The tool we used to convert Java files into files encoded as we described in
Sec. 2.1 omits some rarely-used Java constructs such as multiple type bounds for
generic types. It is possible that a conflict in Git is due to a part of the code,
which is missing in the new encoding. We are not aware of such cases.

We discard the text formatting and some comments. To handle such unstruc-
tured data with our approach the data would have to be encoded as part of the
AST, e.g., by attaching a textual prefix node to each AST node.

5 Related Work

Researches have proposed a number of systems for version control of struc-
tured data. Molhado [24] is a powerful stand-alone framework for versioning
object-oriented data. It is based on an extensible model that could be used to
version arbitrary types of objects. Molhado requires deep integration with the
development environment, making Molhado the “heart of the environment”, in
contrast to our more lightweight approach. OperV [25] is another approach for
versioning of structured tree data with fine granularity, which, unlike our system,
is operation-based, thereby requiring additional data and more complex tool
support. Unlike our approach, both Molhado and OperV introduce a custom
storage backend and do not integrate with an existing VCS.

Altmanninger has surveyed various systems for versioning models [2]. One
of the most popular model repositories is EMFStore [14], part of the Eclipse
Modeling Framework. There is continued interest in the research community in
improving EMFStore, e.g., by formalizing merging for models [31] or performing
semantics-based mering [1]. Odyssey [21, 26] is another model VCS, which targets
UML models and features advanced merge capabilities. EMFStore, Odyssey,
and most systems for versioning models are not often used to version trees,
and unlike our approach, they use a custom backend and do not integrate with
standard line-based VCSs. Our approach may be applied to graph models, e.g.,
by expressing them as containment trees, similar to Mikhaiel et al. [19].

Mens [18] provides an overview of different approaches for merging program
sources. Newer approaches based on the full [3] or partial structure [4] of source
files have been proposed by Apel et al. These approaches improve on the merge
results of Git, and can be fast and practical, but unlike our approach they do not
work with unique IDs stored as part of the files, and thus may be inaccurate. Other
approaches, rely on storing unique IDs, for example, the version control system
of TouchDevelop [27] or MolhadoRef [7]. However, TouchDevelop is designed
for a specific language and automatically resolves conflicts by ignoring one of
the revisions, and MolhadoRef is an operation-based system, in contrast to our
approach. Neither of the two integrate with a standard VCS like our approach.

15

There are also approaches to enhance VCSs for software with additional
knowledge about the semantics of code and refactoring in order to improve
merging [7,8,23]. Our customization mechanism can also be used to provide
similar semantics-based improvements to the merge.

Ghezzi et al. [11] propose that a pluggable framework be built on top of
traditional VCSs in order to provide additional services and analysis capabilities.
Our algorithms can be seen as an instance of their suggestion.

Lorenz and Rosenan [17] propose a JSON format for storing structured data
and integrating it with a traditional VCS. Their proposal however uses the VCS
only for storage and performs versioning on its own — one version of the JSON file
in the VCS stores itself all previous versions of the objects that comprise it. In
contrast, our approach uses the underlying VCS for both storage and versioning.

Lindholm [16] proposes a way to merge XML documents using the XML tree
structure. Their approach focuses on the particular class of document-oriented
XML files, whereas our approach is designed for arbitrary trees.

MPS [30] is a commercial system which stores programs as XML files and
implements custom merge hooks to integrate with traditional VCSs. It relies on
IDs for precise merging, but the system does not seem to be customizable or
easily usable for other data.

Schwigerl et al. have designed a graph-based algorithm [28] for merging
ordered collections. Unlike our List-Merge customization, their algorithm only
works with inserted, deleted, and relabeled elements, and there is no treatment
for elements which are moved in or out of the list to another subtree and possible
conflicts with these operations.

6 Conclusion

We described an approach for accurate version control of tree structures using a
mainstream line-based VCS. Our diff algorithm can work with either stored node
identifiers or tree matching algorithms. It provides accurate deltas with respect
to the input matching, which prevents inaccurate or confusing diffs. Our merge
algorithm and domain-specific customizations eliminate incorrect merges, reduce
unnecessary conflicts, and report semantic issues, improving the merge result.

We evaluated our approach on traditional Java ASTs with the help of the
Gumtree tree-matching algorithm. We observed a substantial reduction in merge
conflicts compared to a line-based approach. It will be worth to experiment with
trees with stored IDs instead of computing node matchings, which would allow
us to further quantify the performance of our approach.

Another promising research direction is the design of additional merge cus-
tomizations that understand trees at a more semantic level. For example, we
have started exploring a customization that can detect renamings of declarations
in an AST in one revision and apply them automatically to another on merge.
Such high-level customizations might help to further reduce conflicts in particular
domains and detect additional semantic incompatibilities between revisions.

16

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

Altmanninger, K., Schwinger, W., Kotsis, G.: Semantics for accurate conflict
detection in SMoVer: Specification, detection and presentation by example. IJEIS
6(1) (2010)

. Altmanninger, K., Seidl, M., Wimmer, M.: A survey on model versioning approaches.

International Journal of Web Information Systems 5(3) (2009)

. Apel, S., Lefenich, O., Lengauer, C.: Structured merge with auto-tuning: Balancing

precision and performance. In: Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering. ASE 2012, ACM (2012)

. Apel, S., Liebig, J., Brandl, B., Lengauer, C., Kastner, C.: Semistructured merge:

Rethinking merge in revision control systems. In: Proceedings of the 19th ACM
SIGSOFT Symposium and the 13th European Conference on Foundations of
Software Engineering. ESEC/FSE 11, ACM (2011)

. Asenov, D., Miiller, P.: Envision: A fast and flexible visual code editor with fluid

interactions (overview). In: Visual Languages and Human-Centric Computing
(VL/HCC), 2014 IEEE Symposium on (July 2014)

. Asenov, D.: Envision: Reinventing the Integrated Development Environment. Ph.D.

thesis, ETH Zurich (2017), to appear

. Dig, D., Manzoor, K., Johnson, R., Nguyen, T.N.: Refactoring-aware configuration

management for object-oriented programs. In: 29th International Conference on
Software Engineering (ICSE’07) (May 2007)

. Ekman, T., Asklund, U.: Refactoring-aware versioning in Eclipse. Electron. Notes

Theor. Comput. Sci. 107 (Dec 2004)

. Falleri, J.R., Morandat, F., Blanc, X., Martinez, M., Montperrus, M.: Fine-grained

and accurate source code differencing. In: Proceedings of the 29th ACM/IEEE
International Conference on Automated Software Engineering. ASE 14, ACM
2014

(Fluri,)B., Wuersch, M., Pinzger, M., Gall, H.: Change distilling: Tree differencing
for fine-grained source code change extraction. IEEE Trans. Softw. Eng. 33(11)
(Nov 2007)

Ghezzi, G., Wiirsch, M., Giger, E., Gall, H.C.: An architectural blueprint for a
pluggable version control system for software (evolution) analysis. In: Proceedings
of the Second International Workshop on Developing Tools As Plug-Ins. TOPI 12,
IEEE Press (2012)

Guenat, B.: Tree-based Version Control in Envision. BSc. Thesis, ETH Zurich
(2015)

Kehrer, T., Kelter, U.: Versioning of ordered model element sets. Tech. Rep. 2,
University of Siegen (2014)

Koegel, M., Helming, J.: EMFStore: A model repository for EMF models. In: Pro-
ceedings of the 32nd ACM/IEEE International Conference on Software Engineering
- Volume 2. ICSE ’10, ACM (2010)

Koegel, M., Herrmannsdoerfer, M., von Wesendonk, O., Helming, J.: Operation-
based conflict detection. In: Proceedings of the 1st International Workshop on
Model Comparison in Practice. IWMCP ’10 (2010)

Lindholm, T.: A three-way merge for XML documents. In: Proceedings of the 2004
ACM Symposium on Document Engineering. DocEng ’04, ACM (2004)

Lorenz, D.H., Rosenan, B.: Source code management for projectional editing.
In: Proceedings of the 2013 Companion Publication for Conference on Systems,
Programming, Languages & Applications: Software for Humanity. SPLASH ’13,
ACM (2013)

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

17

Mens, T.: A state-of-the-art survey on software merging. IEEE Transactions on
Software Engineering 28(5) (May 2002)

Mikhaiel, R., Tsantalis, N., Negara, N., Stroulia, E., Xing, Z.: Differencing UML
models: A domain-specific vs. a domain-agnostic method. In: International Summer
School on Generative and Transformational Techniques in Software Engineering
IV, GTTSE 2011 (2013)

Miller, W., Myers, E-W.: A file comparison program. Software: Practice and Expe-
rience 15(11) (1985)

Murta, L., Corréa, C., Prudéncio, J.a.G., Werner, C.: Towards Odyssey-VCS 2:
Improvements over a UML-based version control system. In: Proceedings of the
2008 International Workshop on Comparison and Versioning of Software Models.
CVSM 08, ACM (2008)

Myers, E.W.: An O(ND) difference algorithm and its variations. Algorithmica 1(1)
(1986)

Nguyen, H.V., Nguyen, M.H., Dang, S.C., Kastner, C., Nguyen, T.N.: Detecting
semantic merge conflicts with variability-aware execution. In: Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering. ESEC/FSE 2015,
ACM (2015)

Nguyen, T., Munson, E., Boyland, J.: An infrastructure for development of object-
oriented, multi-level configuration management services. In: Proceedings of the 27th
International Conference on Software Engineering, (ICSE 2005) (May 2005)
Nguyen, T., Nguyen, H., Pham, N., Nguyen, T.: Operation-based, fine-grained
version control model for tree-based representation. In: Rosenblum, D., Taentzer,
G. (eds.) Fundamental Approaches to Software Engineering, Lecture Notes in
Computer Science, vol. 6013. Springer Berlin Heidelberg (2010)

Oliveira, H., Murta, L., Werner, C.: Odyssey-VCS: A flexible version control system
for UML model elements. In: Proceedings of the 12th International Workshop on
Software Configuration Management. SCM ’05, ACM (2005)

Protzenko, J., Burckhardt, S., Moskal, M., McClurg, J.: Implementing real-time
collaboration in TouchDevelop using AST merges. In: Proceedings of the 3rd
International Workshop on Mobile Development Lifecycle. MobileDeLi 2015, ACM
(2015)

Schwagerl, F., Uhrig, S., Westfechtel, B.: A graph-based algorithm for three-way
merging of ordered collections in EMF models. Science of Computer Programming
113, Part 1 (2015), model Driven Development (Selected & extended papers from
MODELSWARD 2014)

Ukkonen, E.: International conference on foundations of computation theory algo-
rithms for approximate string matching. Information and Control 64(1) (1985)
Voelter, M., Siegmund, J., Berger, T., Kolb, B.: Towards user-friendly projectional
editors. In: Combemale, B., Pearce, D., Barais, O., Vinju, J. (eds.) Software
Language Engineering, Lecture Notes in Computer Science, vol. 8706. Springer
International Publishing (2014)

Westfechtel, B.: A formal approach to three-way merging of EMF models. In:
Proceedings of the 1st International Workshop on Model Comparison in Practice.
IWMCP ’10, ACM (2010)

