The Effect of Richer Visualizations on Code Comprehension

Dimitar Asenov Otmar Hilliges Peter Miiller
Dept. of Computer Science Dept. of Computer Science Dept. of Computer Science
ETH Zurich ETH Zurich ETH Zurich

dimitar.asenov @inf.ethz.ch

ABSTRACT

Researchers often introduce visual tools to programming en-
vironments in order to facilitate program comprehension, re-
duce navigation times, and help developers answer difficult
questions. Syntax highlighting is the main visual lens through
which developers perceive their code, and yet its effects and
the effects of richer code presentations on code comprehen-
sion have not been evaluated systematically. We present a rig-
orous user study comparing mainstream syntax highlighting
to two visually-enhanced presentations of code. Our results
show that: (1) richer code visualizations reduce the time nec-
essary to answer questions about code features, and (2) con-
trary to the subjective perception of developers, richer code
visualizations do not lead to visual overload. Based on our
results we outline practical recommendations for tool design-
ers.

Author Keywords
syntax highlighting; programming; code editor; visual
programming; code comprehension; user study

ACM Classification Keywords

H.1.2. User/Machine Systems: Human factors; H.5.2. User
Interfaces: Evaluation/methodology; D.2.3. Coding Tools
and Techniques: Program editors; D.2.3. Coding Tools and
Techniques: Structured programming

INTRODUCTION

In order to help developers be more efficient, recent research
in programming environments [3, 6, 14, 16, 18, 19] has ex-
plored novel visualizations of code blocks and their relation-
ships, spatial navigation between code fragments, and aug-
menting code with visual hints and abstractions. However,
all of these enhancements leave the presentation of the ac-
tual code unchanged. Since source code is the core medium
in which programmers work, improving its presentation is at
least as important as enhancing the rest of the programming
environment. Yet, syntax highlighting has rarely been em-
pirically evaluated, and to our knowledge no study compared
different visual code presentations of the same source code.
To investigate improvements to code presentation as a way to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions @acm.org.

CHI’16, May 07 — 12, 2016, San Jose, CA, USA

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3362-7/16/05...$15.00

DOI: http://dx.doi.org/10.1145/2858036.2858372

otmar.hilliges @inf.ethz.ch

peter.mueller @inf.ethz.ch

complement other research on development environments we
pose the following research questions:

RQ1: Do richer code visualizations affect the speed with
which code features can be detected?

RQ2: Do richer code visualizations affect the ability to cor-
rectly answer questions about code structure?

RQ3: Do visually enhanced code constructs impair the read-
ability of unenhanced ones?

Understanding code structure is part of more complex pro-
gramming activities that developers perform regularly. There-
fore, we asked 15 questions about code structure in a con-
trolled study with 33 developers and compared their per-
formance when using traditional syntax highlighting to two
richer code visualizations, which go beyond changing font
properties. The results strongly indicate that richer visual-
izations reduce response times on a wide range of questions
about code structure and do not lead to visual overload, con-
trary to developers’ feedback.

RELATED WORK

Green and Petre [10, 11] show that the usability of notations
varies with the programmer’s task, and neither textual nor vi-
sual notations are generally superior. However, they analyze
notations for distinct programming models, and do not com-
pare different notations for a single programming language.
Hendrix et al. [13] show that a control structure diagram of
the code, embedded in the indentation area to the left of the
text, can improve comprehension. However, the code itself
is presented as plain text without even syntax highlighting.
Feigenspan et al. [9] investigate a specific use of color show-
ing that different backgrounds for the components of a soft-
ware product line help to identify which component some
code belongs to. In the only study of syntax highlighting
that we are aware of, Hakala et al. [12] investigate users’
performance using the default coloring scheme of the Vim
code editor, code without highlighting, and one other color-
ing scheme. Surprisingly, they found no overall difference be-
tween the three schemes. The surprising results and scarcity
of such studies merit more empirical investigation.

Recent work on programming environments [3, 6, 7, 14, 19]
shows that visual enhancements can be beneficial. However,
all of these tools still use standard syntax highlighting for pre-
senting code. Barista [15] and Envision [1, 2] are research
prototypes of structured code editors that allow flexible visu-
alization of code fragments. The effect of their code presen-
tation has not been investigated before. For our study, we use
Envision, available as an open-source project.

(©Dimitar Asenov, Otmar Hilliges, and Peter Miiller 2016. This is the authors’ version of the work. It is
posted here for your personal use. Not for redistribution. The definitive version was published in CHI'16,
http://dx.doi.org/10.1145/2858036.2858372.

String foo(int x, int y, String str)

{

int prod = x*y; int prod « x*y

if (prod <= 0) [if| prod<0
return str;

else if (x>42) { return str
return String.valueOf(y); a2

}

throw new Error("error");

return String.valueOFf(y)

throw new Error("error")

© @
int prod « x*y

b brog=g

(o) G 2@ @

e

<gJ String.valueOF(y)

throw new Error("error") @

) N J

(a) v-low (Eclipse - default settings)

(b) v-med (Envision - alternate settings)

(c) v-high (Envision - default settings)

Figure 1: A Java method rendered using three different levels of visual enhancements. v-low shows Eclipse using default
settings. v-med shows a variant of the Envision structured editor with the following enhancements over v-low: (A) all lists use
alternating white and gray background instead of commas; (B) the names of formal parameters appear above the types; (C) a
dashed line separates the method body from its signature; (D) blocks are visually outlined instead of showing curly braces. v-high
also shows a variant of Envision, with the following additional enhancements over v-med: (E) some constructs, like compound
statements have a background color; (F) many (but not all) keywords are replaced with icons; (G) method and constructor calls
have orange text; (H) some expressions have a specific background color.

Conversy [4] proposed a framework based on the Semiology
of Graphics (SoG) to model the visual perception of code.
SoG recognizes seven visual variables: shape, luminosity,
color, position, size, orientation, and linking marks. In our
work, increasing levels of visual variety correspond to more
extensive use of these visual variables, which Conversy sug-
gests can improve the performance of readers.

VISUALIZATIONS AND EVALUATION METHOD

To determine if enhanced code presentations can help devel-
opers to more quickly comprehend code, we conducted a con-
trolled experiment with three different levels of visual variety
for code presentation: v-low corresponds to the default Java
syntax highlighting in Eclipse, v-med adds additional visual
enhancements, and v-high further increases visual variety.
Both v-med and v-high are produced with the Envision code
editor. Figure 1 illustrates the most important differences be-
tween the three levels. For each level, we took screenshots of
298 methods from the open-source Java text editor jEdit. The
methods were selected so that they are complex (have at least
2 parameters and 3 block statements) but still fit within one
1920x1080 screen. All comments were removed and methods
with features not supported by Envision were filtered out.

For our within-subjects study, we recruited 33 non-color blind
participants with at least 1 year of Java experience (aver-
age=5.5, SD=4.2, max=20). Each participant was presented
with the 15 yes/no questions shown in Table 1 in random or-
der. Within each question, we showed participants 15 method
screenshots for each of the three visual variety levels. The
order of the levels was randomized, but all screenshots from
one level were shown in succession. Thus participants saw
45 screenshots per question, all of which were of randomly
chosen methods from our pool of 298. In total we recorded
15x3x 15 = 675 answers per participant. For each combina-
tion of question and visual variety level, we drop the first three

Id Question

Q1 Does the method throw exceptions directly in its body using a
throw statement?

Q2 Are all local variables immediately initialized (assigned) as part
of their declaration?

Q3 Is subtraction (-) used in an expression? Any use counts, for
example: a-b, -1, —i, x -=3.

Q4 Is the ’this’ identifier used in the method?

Q5 Is there a local variable (not a method parameter) of type String?

Q6 Is there an if statement with an else branch? Both else, and if
else count.

Q7 Is the type of the second method parameter "int’?

Q8 Is there a loop nested inside another loop?

Q9 Does the method have exactly 3 parameters?

Q10 Is there a top-level loop (not nested inside any other statement)
that appears after some code containing an if-statement? The
if-statement may be nested.

Q11 Does the method explicitly create new objects of any type, in-
cluding arrays or exceptions.

Q12 Does the method catch any exceptions?

Q13 Is there a loop that contains two or more method/constructor
calls? The calls can be anywhere inside the loop, including in
nested statements, or arguments.

Q14 Are there multiple points from which the method can return (the
end of the body is usually one such point)? Throwing excep-
tions does not count.

Q15 Does the method use an explicit type cast?

Table 1: The questions about code structure that we asked
in our study. These are divided in three categories based on
which visual variety levels enhance the fragments of code rel-
evant for answering: Q1-QS: all visual variety levels use
the same textual (unenhanced) presentation; Q6-Q10: both
v-med and v-high provide substantial enhancements; Q11-
Q15: only v-high provides a substantial enhancement.

answers and average the rest for each participant in order to
account for the learning curve. We iteratively designed the 15
questions so that they match the following criteria: (i) sim-

unenhanced enhanced by both v—mid and v—high enhanced mainly by v—high

10094708 0oR Oge 0OF ooo | oHE oo soo Doo oso | OO goo HEN HEA OFG
o] o, 0O O + 0 o] ' + , 0 o]
% 60— o] -+ (o] [eNe} (@] + +
\; © ooo ©
o 40_ O o
o
O
Oo 8
15 o o o
o O v—low T
i o O v—med L
19 04 E v—high o :
- ig ° 8 [¢]
o 10 L Lo T
€ : ; ‘
45 %50 1 T 8
§ ° T o TOQ o © .
2 . o ‘ O 8 ‘ T e o VT - o
¢ QO i oo : 8 : 8
57 Do 00 . ® Teo
g 1 Hog QDQ .o BE. B g X! Hg
: fo) o) 5
‘QE E EEE 8 QO H E EQQ Ev ‘E H
+ 1 4.4‘.‘ = Q g QO . + 1
+ B 55 *é% . E
0_

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15

Figure 2: Box plots (n = 33) of response correctness and time per question and tool. The X indicates two out-of-graph outliers
at 19.4s and 17.3s. We observe that increasing the level of visual variety does not affect correctness and lowers response times.
The whiskers represent the lowest/highest data points still within 1.5 X interquartile range (IQR) of the lower/upper quartile.

ple: we ask only questions about method structure that can
be answered within several seconds without complex reason-
ing. This enables us to attribute any differences to the speed
of comprehension even when developers have very different
experience; (ii) matching visual enhancements: to test our
hypotheses we need questions pertaining to constructs that
are either enhanced differently or unenhanced by v-mid and
v-high; (iii) practical and representative: Each question is
a component of a practical programming activity and simi-
lar low-level questions are typical when reading code. They
appear for example as parts of more complex questions that
developers frequently ask during maintenance tasks as ob-
served by Sillito et al. [20]. For instance, imagine a de-
veloper who is inspecting a method in order to improve its
performance. The developer is looking for time-consuming
operations, such as loops, especially nested loops (Q8), and
calls to other methods, especially within loops (Q13). Gener-
ally, questions about code structure occur frequently as sub-
tasks of many programming activities, such as looking up
APIs (Q7, Q9), searching for errors or exceptions (Q1, Q2,
Q3, Q15), tracing local definitions (Q2, QS), understanding
method structure and control flow (Q6, Q8, Q10, Q12, Q13,
Q14), optimizing code (Q8, Q13), and tracking object life-
times and state (Q4, Q11).

Before the study, participants received a brief introduction to
the three code presentations and were given a visual legend
that they could use during the entire study. The study itself is
implemented as an OpenSesame [17] script. To enable repli-
cation or additional analysis, all data and scripts are available
at www.pm.inf.ethz.ch/research/envision.html.

We make the following hypotheses:

H1: Response times are lower in questions pertaining to vi-
sually enhanced constructs (Q6-Q15).

H2: Response times in questions pertaining to unenhanced
constructs (Q1-Q5) are unaffected by richer visualizations of
other constructs.

H3: Correctness is unaffected by richer visualizations.

RESULTS

Figure 2 shows a plot of the raw data we collected, whereas
Figure 3 presents an estimation analysis of response time.
This analysis avoids null-hypothesis significance testing, fol-
lowing Cumming [5] and Dragicevic [8]. As the data is not
normally distributed we use Wilcox’ robust bootstrapped es-
timation with trimmed means (B=2000, y=.2) [21]. Response
times across all visualizations are similar for questions Q1-
QS, as expected, but also for Q6, even though it pertains to
visually enhanced code. This supports H2. For Q7-Q10, we
observe that both v-med and v-high outperform v-low. The
reduction in mean response time is substantial and varies be-
tween 21% and 63%. For Q11-Q15, we observe that v-high
outperforms v-low and, except for Q14, also v-med. Again,
the reduction in mean response time is substantial: between
29% and 75%. Except for Q6 the data supports H1.

Due to a clear ceiling effect, the correctness data is incon-
clusive. H3 seems to hold for the simple questions that we
asked, but this cannot be generalized for more complex ones.

Participant Feedback
Overall, participants preferred v-med, which received the
best average rank (2.4) on a 1 to 3 scale, followed by v-high

www.pm.inf.ethz.ch/research/envision.html

Q]_ ——
Q2 e —
————
Q3 ——
Q4 ——
Sy
Q5 — —
Q6 o
Q7 :+
e - v—low
Q8 -0—_._ - - v—med
Q9 3 = v—high
Q10 ——
=

Q12 " =
Q13 — —_——
Q14 ——
Q]_5 R

1 2 3 4 5 6 7 8 ¢

response time [s]

Figure 3: Estimated mean response times and 95% confi-
dence intervals. A bootstrapped, trimmed means approach
was used (B=2000, y=.2).

(2.0) and v-low (1.7). The participants commented that v-
med was helpful while still feeling more familiar than v-high.
30 out of the 33 participants provided textual feedback. 20
users found some aspects of v-med and v-high helpful. A
clear theme from 23 responses is that v-high can sometimes
feel overwhelming. 9 participants indicated that they would
prefer a version that is a mix between v-med and v-high. 3
participants said they imagine using enhanced visualization
levels but only for viewing code (e.g., code review) and they
would rather write code using a traditional notation.

DISCUSSION

RQ1: In every question we investigated, increasing visual
variety over v-low either had no effect, or substantially re-
duced the time to detect structural features of methods. The
same effect was also observed when switching from v-med
to v-high. The results show a medium to large reduction in
response time (21%-75% or 0.5 - 5 seconds) in Q7-Q15. We
believe that developers will ask similar low-level questions
often, resulting in a tangible benefit. Richer visualizations
can help to more quickly detect method features and we spec-
ulate that this might help developers maintain a state of flow
and improve productivity.

RQ2: For the simple questions that we asked, participants
almost always provided a correct answer, which resulted in
a strong ceiling effect in the correctness data. This suggests
that for such simple questions, traditional and richer visual-
izations are equally able to guide developers to the correct an-
swer. It remains to be further investigated, what effect richer
visualizations might have for more complex questions.

RQ3: The most interesting finding is that richer visualiza-
tions did not cause visual overload, even in Q1-Q5, where

answers pertain to unenhanced constructs. This finding goes
against the participants’ overall preference for v-med and
against the feedback of 23 participants, who reported some
sort of subjective visual overload or confusion. This suggests
that users are reluctant to adopt richer visualizations, even if
they can be helpful. It is worth investigating whether a visu-
alization that is more aesthetically appealing than v-high, but
with a similar visual variety, will be more popular.

Limitations

Our study has several limitations. First, we tested the partic-
ipants’ responses on a limited number of questions in a con-
trolled setting. To increase the applicability of our findings
we picked questions that occur as components of more high-
level regular programming tasks. Second, we draw all our
sample methods from a particular Java code base, and results
might not generalize to other code or other languages. To in-
crease ecological validity we used an established, large, and
actively maintained open-source project. Third, we have used
only two particular code presentations that go beyond syntax
highlighting. We argue that our findings are generalizable,
because our questions predominantly test individual building
blocks (e.g., outlines or colors), which can be combined to
form other, more complex visualizations. Fourth, we measure
only code comprehension. Nevertheless, reading code is an
inherent part in most programming activities including writ-
ing, debugging, and testing, which suggests that improved vi-
sualizations could have an overall productivity benefit.

Recommendations for tool designers

Our results show that v-high outperformed v-med. This is in
line with the SoG theory because SoG suggests that increased
color variety can improve perception, and extensive use of
color is the major difference between v-med and v-high.
Based on these findings we recommend that tool designers
boost the syntax highlighting capabilities of their tools in two
ways: (i) use a wider variety of colors by default and (ii) en-
able the highlighting of more constructs. Our recommenda-
tion is practical since syntax highlighting is universal and im-
proving it requires only marginal effort while being risk-free:
one could simply revert to a classical coloring theme.

CONCLUSION AND FUTURE WORK

We have presented a user study that provides insight into en-
hancing syntax highlighting with richer visualizations. The
results show that using more visual variety when rendering
methods substantially reduces comprehension time of code
features. A further interesting result is that even with the
richest visualization that we evaluated, developers did not ex-
perience visual overload, despite expressing that they found
the visualization overwhelming at times. Going forward, it is
worth evaluating the effects of richer visualizations on pro-
gramming activities other than comprehension, for example
writing and debugging code. Additionally, in order to address
concerns that many participants expressed with the aesthetics
of the enhanced visualizations we used and to gain further un-
derstanding of the role of aesthetics, it is worth experimenting
with systems that have a similar level of visual variety but dif-
ferent levels of visual appeal.

REFERENCES

1.

10.

D. Asenov and P. Miiller. 2013. Customizing the
visualization and interaction for embedded
domain-specific languages in a structured editor. In
Visual Languages and Human-Centric Computing
(VL/HCC), 2013 IEEE Symposium on. 127-130. DOT :
http://dx.doi.org/10.1109/VLHCC.2013.6645255

. D. Asenov and P. Miiller. 2014. Envision: A fast and

flexible visual code editor with fluid interactions
(Overview). In Visual Languages and Human-Centric
Computing (VL/HCC), 2014 IEEE Symposium on. 9—12.
DOTI:
http://dx.doi.org/10.1109/VLHCC.2014.6883014

. A. Bragdon, R. Zeleznik, S. P. Reiss, S. Karumuri, W.

Cheung, J. Kaplan, C. Coleman, F. Adeputra, and
Joseph J. LaViola, Jr. 2010. Code Bubbles: a working
set-based interface for code understanding and
maintenance. In Proceedings of the 28th international
conference on Human factors in computing systems
(CHI ’10). ACM, New York, NY, USA, 2503-2512.
DOI :http://dx.doi.org/10.1145/1753326.1753706

. S. Conversy. 2014. Unifying Textual and Visual: A

Theoretical Account of the Visual Perception of
Programming Languages. In Proceedings of the 2014
ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming & Software
(Onward! 2014). ACM, New York, NY, USA, 201-212.
DOI :http://dx.doi.org/10.1145/2661136.2661138

. G. Cumming. 2014. The New Statistics: Why and How.

Psychological Science 25, 1 (2014), 7-29. DOT :
http://dx.doi.org/10.1177/0956797613504966

. R. DeLine, A. Bragdon, K. Rowan, J. Jacobsen, and

S. P. Reiss. 2012. Debugger Canvas: industrial
experience with the Code Bubbles paradigm. In
Proceedings of the 2012 International Conference on
Software Engineering (ICSE 2012). IEEE Press,
Piscataway, NJ, USA, 1064—1073. nttp:
//dl.acm.org/citation.cfm?id=2337223.2337362

. R. DeLine and K. Rowan. 2010. Code canvas: zooming

towards better development environments. In
Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 2 (ICSE
’10). ACM, New York, NY, USA, 207-210. DOTI :
http://dx.doi.org/10.1145/1810295.1810331

. P. Dragicevic. 2016. Fair Statistical Communication in

HCI. In Modern Statistical Methods for HCI,
J. Robertson and M.C. Kaptein (Eds.). Springer. In press.

. J. Feigenspan, C. Kstner, S. Apel, J. Liebig, M. Schulze,

R. Dachselt, M. Papendieck, T. Leich, and G. Saake.
2013. Do background colors improve program
comprehension in the #ifdef hell? Empirical Software
Engineering 18, 4 (2013), 699-745. DOI :
http://dx.doi.org/10.1007/s10664-012-9208-x

T.R.G. Green and M. Petre. 1992. When visual

Elrograms are harder to read than textual C?rograms. In
uman-Computer Interaction: Tasks and Organisation,

11.

12.

13.

14.

15.

16.

17.

18.

19.

Proceedings ECCE-6 (6th European Conference
Cognitive Ergonomics). 57.

T.R.G. Green and M. Petre. 1996. Usability Analysis of
Visual Programming Environments: A ”Cognitive
Dimensions” Framework. JVLC 7, 2 (1996), 131 — 174.
DOI:http://dx.doi.org/10.1006/3jv1lc.1996.0009

T. Hakala, P. Nykyri, and J. Sajaniemi. 2006. An
Experiment on the Effects of Program Code
Highlighting on Visual Search for Local Patterns.
Psychology of Programming Interest Group (2006),
38-52.

D. Hendrix, IT Cross, J.H., and S. Maghsoodloo. 2002.
The effectiveness of control structure diagrams in source
code comprehension activities. Software Engineering,
IEEFE Transactions on 28, 5 (May 2002), 463-477.

DOI :http://dx.doi.org/10.1109/TSE.2002.1000450

A.Z. Henley and S. D. Fleming. 2014. The Patchworks
Code Editor: Toward Faster Navigation with Less Code
Arranging and Fewer Navigation Mistakes. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI "14). ACM, New
York, NY, USA, 2511-2520. DOI:
http://dx.doi.org/10.1145/2556288.2557073

A.J. Ko and B. A. Myers. 2006. Barista: An
implementation framework for enabling new tools,
interaction techniques and views in code editors. In
Proceedings of the SIGCHI conference on Human
Factors in computing systems (CHI '06). ACM, New
York, NY, USA, 387-396. DOTI :
http://dx.doi.org/10.1145/1124772.1124831

T. Lieber, J. R. Brandt, and R. C. Miller. 2014.
Addressing Misconceptions About Code with
Always-on Programming Visualizations. In Proceedings
of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’14). ACM, New York, NY,
USA, 2481-2490. DOT :
http://dx.doi.org/10.1145/2556288.2557409

S. Matht, D. Schreij, and J. Theeuwes. 2012.
OpenSesame: An open-source, graphical experiment
builder for the social sciences. Behavior Research
Methods 44,2 (2012), 314-324. DOTI :
http://dx.doi.org/10.3758/s13428-011-0168-7

F. Olivero, M. Lanza, M. D’ Ambros, and R. Robbes.
2011. Enabling program comprehension through a
visual object-focused development environment. In
Visual Languages and Human-Centric Computing
(VL/HCC), 2011 IEEE Symposium on. 127 —134. DOT :
http://dx.doi.org/10.1109/VLHCC.2011.6070389

J. Ou, M. Vechev, and O. Hilliges. 2015. An Interactive
System for Data Structure Development. In Proceedings
of the 33rd Annual ACM Conference on Human Factors
in Computing Systems (CHI ’15). ACM, New York, NY,
USA, 3053-3062. DOTI:
http://dx.doi.org/10.1145/2702123.2702319

http://dx.doi.org/10.1109/VLHCC.2013.6645255
http://dx.doi.org/10.1109/VLHCC.2014.6883014
http://dx.doi.org/10.1145/1753326.1753706
http://dx.doi.org/10.1145/2661136.2661138
http://dx.doi.org/10.1177/0956797613504966
http://dl.acm.org/citation.cfm?id=2337223.2337362
http://dl.acm.org/citation.cfm?id=2337223.2337362
http://dx.doi.org/10.1145/1810295.1810331
http://dx.doi.org/10.1007/s10664-012-9208-x
http://dx.doi.org/10.1006/jvlc.1996.0009
http://dx.doi.org/10.1109/TSE.2002.1000450
http://dx.doi.org/10.1145/2556288.2557073
http://dx.doi.org/10.1145/1124772.1124831
http://dx.doi.org/10.1145/2556288.2557409
http://dx.doi.org/10.3758/s13428-011-0168-7
http://dx.doi.org/10.1109/VLHCC.2011.6070389
http://dx.doi.org/10.1145/2702123.2702319

20. J. Sillito, G. C. Murphy, and K. De Volder. 2006.
Questions programmers ask during software evolution
tasks. In Proceedings of the 14th ACM SIGSOFT
international symposium on Foundations of software
engineering (SIGSOFT ’06/FSE-14). ACM, New York,
NY, USA, 23-34.DOI:
http://dx.doi.org/10.1145/1181775.1181779

21.

R. Wilcox. 2012. Chapter 4 - Confidence Intervals in the
One-Sample Case. In Introduction to Robust Estimation
and Hypothesis Testing (Third Edition) (third edition
ed.), R. Wilcox (Ed.). Academic Press, Boston, 103 —
136. DOT :http://dx.doi.org/10.1016/
B978-0-12-386983-8.00004-4

http://dx.doi.org/10.1145/1181775.1181779
http://dx.doi.org/10.1016/B978-0-12-386983-8.00004-4
http://dx.doi.org/10.1016/B978-0-12-386983-8.00004-4

	Introduction
	Related Work
	Visualizations and Evaluation Method
	Results
	Participant Feedback

	Discussion
	Limitations
	Recommendations for tool designers

	Conclusion and Future Work
	REFERENCES

