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Abstract

Many distributed databases provide only weak consistency

guarantees to reduce synchronization overhead and remain

available under network partitions. However, this leads to

behaviors not possible under stronger guarantees. Such be-

haviors can easily defy programmer intuition and lead to

errors that are notoriously hard to detect.

In this paper, we propose a static analysis for detecting

non-serializable behaviors of applications running on top of

causally-consistent databases. Our technique is based on a

novel, local serializability criterion and combines a general-

ization of graph-based techniques from the database litera-

ture with another, complementary analysis technique that

encodes our serializability criterion into first-order logic for-

mulas to be checked by an SMT solver. This analysis is more

expensive yet more precise and produces concrete counter-

examples.

We implemented our methods and evaluated them on a

number of applications from two different domains: cloud-

backed mobile applications and clients of a distributed data-

base. Our experiments demonstrate that our analysis is able

to detect harmful serializability violations while producing

only a small number of false alarms.

CCS Concepts · Software and its engineering → Soft-

ware verification and validation; · Information systems

→ Parallel and distributed DBMSs;
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1 Introduction

Data stores that ensure strong consistency provide an intu-

itive guarantee to their client applications: if an application is

correct in serial executions, it will remain correct in concur-

rent executions. However, following the CAP theorem [23],

it is impossible for a data store to guarantee consistency and

at the same time remain available under network partitions.

The latter is required in many domains such as mobile ap-

plications, which may lose connection at any point, or in

low-latency distributed databases that are replicated across

continents. Many modern data stores therefore prioritize

availability and partition-tolerance over consistency, that is,

support only weak consistency models [2, 16, 19, 28].

Among weak consistency models, causal consistency has

received increasing attention in terms of both theoretical

analysis and practical implementations [2, 8, 18, 29, 30]. One

reason behind this surge of interest is that causal consistency

is the strongest model that can be guaranteed by the data

store while remaining available under network partitions [6].

Causal consistency guarantees that if a query observes an

update to the data store, then it also observes all causal pre-

decessors of the update, that is, all updates that potentially

may have caused the update in the first place. However, two

causally unrelated events may be executed completely obliv-

iously to each other, which frequently leads to surprising

and non-serializable behaviors. Like many concurrency er-

rors, these behaviors can be hard to trigger because their

occurrence often depends on brittle timing effects.

ThisWork. We propose an end-to-end static analysis frame-

work for client applications of causally-consistent databases.

The analysis either proves the application is serializable or
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detects a non-serializable behavior. Our framework is based

on the following technical contributions.

Main Contributions.

• We propose a new serializability criterion inspired by

our previous work [11]. Our criterion is equally precise

in practice, but is more tailored to the static analysis

setting (Section 4).

• Based on our criterion, we present an efficient serializ-

ability analysis that handles high-level data types and

is more precise than prior characterizations for causal

consistency (Section 6).

• We develop a logic-based analysis that is more precise

than the above but also more expensive. It encodes our

serializability criterion for a bounded number of ses-

sions into decidable first-order formulas to be checked

by an SMT solver. We provide a sufficient condition

under which the analysis generalizes to an unbounded

number of sessions (Section 7).

• We implemented1 both analysis methods as well as a

range of optimizations into a reusable back end frame-

work called C4. Our framework is designed to be in-

dependent of the data store (API) or programming

language and can serve as a basis for analyzing appli-

cations in various domains.

• We provide an extensive evaluation of C4 on applica-

tions from two different domains: a distributed data-

base and amobile framework.We show experimentally

that C4 effectively detects harmful serializability vio-

lations while producing only a small number of false

alarms. Some of the violations are inherently difficult

to detect via testing methods and are missed by a state-

of-the-art dynamic analyzer (Section 9).

In our presentation, we focus on explaining the core re-

sults. The extended version of the paper [12] provides proofs,

implementation details on C4, and a classification of the bugs

we found during our evaluation.

2 Overview

This section provides an informal overview of our technique

and illustrates it on an example. Formal details are presented

in subsequent sections.

Figure 1a shows two transactions operating on map M in a

distributed data store: transaction P inserts value v at key u

into M while transaction G retrieves the value at key u. Con-

sider two concurrent runs of the program P(x,y); G(z)

(for some arguments x, y, z). Figure 1c1 shows a possible be-

havior of these runs (called sessions) on a weakly consistent

data store. The diagram depicts sessions by outer gray boxes

and transactions by inner boxes. The order of transactions

inside a session is represented by so-edges (session order).

In this execution, the left session writes value 1 at key "A"

1Source code available at: http://ecracer.inf.ethz.ch/

and then reads the initial value 0 from key "B". Similarly, the

right session inserts value 2 at key "B" and then reads the

initial value 0 from key "A". This execution is not serializable

because, in any serial execution, one of the get operations

would read the value written by a previous put operation in-

stead of the initial value. This violation can arise under weak

consistency when the sessions access different copies of the

map (e.g., because they are connected to different replicas of

the data store or operate on local caches).

Dependency SerializationGraphs. Serializability violations

in an execution can be detected by constructing a so-called

dependency serialization graph (DSG) from the execution and

checking if it contains cycles [1]. The nodes of a DSG are

(executed) transactions which are connected by edges that

reflect session order, dependencies ⊕ (a query depends on an

update if the update affects the value returned by the query),

anti-dependencies ⊖ (a query anti-depends on an update if

the update is not visible to the query, but would affect its

result if it were), and conflict-dependencies ⊗ (indicating the

order in which conflicts are eventually resolved by the data

store). We lift relations between operations to relations on

transactions (e.g., ⊕ becomes ⊕̂), which is what we show in

the figure. The graph in Figure 1c1 is in fact a DSG; the cycle

indicates that this execution is not serializable. The other

three graphs in Figure 1c show three other possible DSGs

of our example program. These DSGs do not contain cycles,

that is, the represented executions are serializable.

Local Serializability Criterion. Our goal is to devise an

analyzer that proves a DSG is acyclic for any possible ex-

ecution of a given program, thus proving the program is

serializable. Towards this, we compute an abstraction of all

possible (potentially unboundedly many) concrete DSGs and

then check a specific criterion on this abstraction.

To define this criterion, we build on our previous work

[11], which supports high-level datatypes by leveraging al-

gebraic properties of operations (e.g., commutativity and

absorption) to define dependencies. However, our earlier cri-

terion requires checking an entire DSG, which is problematic

for static analysis as the graphs can be of unbounded size.

We address this problem by proposing a novel criterion that

is local in the following sense: removing a node which is

not part of a cycle (together with its adjacent edges) can-

not make the cycle infeasible. Our local criterion allows the

analysis to consider only those subsets of events in which

a minimal violation could be found. If their DSG does not

contain cycles, no DSG of the program will contain cycles.

Static Serialization Graphs. A well-known approach to

static serializability checking in the database literature [22]

is to summarize all possible (concrete) DSGs for a program

in a static serialization graph (SSG). An SSG contains one

node for every syntactic transaction in the program; there is

an edge between two nodes in the SSG if there may be an
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txn P(x,y):

M.put(x,y);

txn G(z):

return M.get(z);

(a) Example code.

put(?,?) get(?):?⊗̂
ŝo

⊕̂

⊖̂

(b) The corresponding SSG.

put("A",1)

get("B"):0

put("B",2)

get("A"):0

ŝo ŝo
⊖̂

(c1)

put("A",1)

get("A"):1

put("A",2)

get("A"):2

⊕̂ ⊕̂ŝo ŝo
⊖̂

⊗̂

(c2)

put("A",1)

get("A"):1

put("A",2)

get("A"):2

⊕̂ ⊕̂ŝo ŝo
⊖̂

⊗̂

(c3)

put("A",1)

get("A"):1

put("B",2)

get("B"):2

⊕̂ ⊕̂ŝo ŝo

(c4)

(c) Possible DSGs of our program.

Figure 1. Figure 1a shows a simple program, which is not serializable in general. However, it is serializable if x in P and z
in G are the same in the same session. Figures 1c1 to 1c4 show four possible dependency serialization graphs (DSGs) for the

program. Figure 1b shows a static serializability graph (SSG), which summarizes all possible DSGs of the program.

Program Abstract history (ğ5) k -unfoldings Filtered k -unfoldings Counter-examples Output

Abstract inter-
preter (ğ9.1)

Unfolder,
k = 2 (ğ7)

SSG-based
analysis (ğ6) SMT encoding

Subsume all
violations (ğ7.2)

Do not subsume all violations (ğ7.2)
Unfolder, k = k + 1

Figure 2. Flow overview of the C4 analysis framework.

edge between the corresponding transactions in any DSG. A

program is serializable if its SSG is acyclic. The cycles in the

SSG of our program, shown in Figure 1b, correctly indicate

that it is not serializable.

However, cycle detection in SSGs can be imprecise and

lead to many false alarms as SSGs do not capture relevant se-

mantic properties of the programs they abstract. Assume for

instance the keys in all runs of our program are always the

same. Then the program is serializable as all possible execu-

tions have a DSG as in Figure 1c2 or Figure 1c3. However, the

SSG in Figure 1b cannot capture this semantic information

and will contain infeasible cycles.

To recover precision, we propose a novel characterization

of cycles in SSGs that exploits the semantics of arbitrary data

types. For example, we can use the insight that any cycle in

a DSG (under certain restrictions) must contain two updates

that do not overwrite each other.We lift this criterion to SSGs

in order to determine whether cycles in SSGs are feasible.

Under the assumption that all keys used as an argument to

put are the same, the SSG from Figure 1b does not contain

problematic cycles since any two updates do overwrite each

other. Consequently, our analysis will not report a false alarm

for this example. Our characterization of cycles in the SSG is

the first to handle high-level operations and is more precise

than previous characterizations for causal consistency.

Logical Serializability Checking. Cycle detection in SSGs

is practically useful because it tends to be very efficient. How-

ever, even with our new characterization of cycles, it can

produce false alarms in common scenarios. For instance, as-

sume the keys in our example are always the samewithin one

session but may vary between sessions. Then the program

only produces serializable behaviors: Figures 1c2 to 1c4 are

possible, but Figure 1c1 is not. In this scenario, our character-

ization of cycles in SSGs does not prevent infeasible cycles;

it is now possible to have cycles with two updates that do

not overwrite each other because they use different keys.

To capture more semantic information than SSGs, we en-

code a precise abstraction of a program’s DSGs into logical

formulas to be checked by SMT solvers. In contrast to the

SSG approach, this encoding lets us determine whether edges

can coexist in the same execution; for instance, the ⊖̂-edge

in Figure 1c2 can never appear in the same DSG as the ⊖̂-

edge in Figure 1c3 and, thus, cycles including both edges

are infeasible. Such an encoding also lets us precisely reflect

control-flow between operations to eliminate cycles that

arise only with infeasible control-flow paths, and model data

store operations that create records with guaranteed unique

identities. Both properties are important in practice.

Small-Model Property and Generalization. The logical

encoding is feasible only because we split the problem into a

series of sub-problems that satisfy a small-model property: if
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the logical encoding of each of the sub-problems has a model

then this model is of bounded size, making each sub-problem

efficiently checkable. We show that a bounded number of

such sub-problems, called the k-unfoldings, is sufficient to

model the serializability problem for a fixed number of ses-

sions k . We generalize our technique to an arbitrary number

of sessions by providing a sufficient condition that guaran-

tees that any serializability violation in a program can be

detected by considering at most k sessions.

Static Analysis Framework. We integrated all components

described above into an end-to-end static analysis framework

called C4, illustrated in Figure 2. C4 infers the abstract history

of the program, which represents all possible ways it may

interact with the data store. C4 then checks the abstract

history iteratively for serializability violations that involve

at most k sessions. For each k , it computes all k-unfoldings of

the abstract history and applies the fast SSG-based analysis

to each of them. To reduce the number of false alarms, C4

applies the precise SMT-based analysis to those k-unfoldings

whose SSG indicates a potential serializability violation. The

SMT-based analysis produces a counter-example for each

detected serializability violation. This process is repeated for

increasing values of k until either we can generalize from

k to an arbitrary number of sessions as explained above (in

this case we have found all serializability violations) or until

a time-out occurs (in this case we have found all violations

that span up to k sessions).

C4 is a back end that can be used by various front ends. We

implemented two such analyses, one for TouchDevelop [16,

34] and one for Cassandra/Java [28] (discussed later).

3 Formal Model

We begin with the data store model that we use to frame our

analysis. The model is fairly standard (see, e.g., [10, 17]) and

closest in exposition to [11]. We consider a store accessed

via a fixed set of update and query operations:

1. Updates modify the store but have neither preconditions

nor return values; examples include storing a value in a

record, adding an element to a set, or incrementing a counter.

2. Queries do not modify the store but return a value to the

client, e.g., the value of a record, the size of a set, or the value

of a counter.

An execution of a single operation is called an event: formally,

a tuplem(a1, . . . an−1) : an tagged with a unique identifier.

Here,m is an operation, a1, ...,an−1 are concrete arguments,

andan is an optional return value. Analogously to operations,

events come as either updates u ∈ U or queries q ∈ Q . As

standard, we build upon the operations’ sequential semantics,

which we assume is specified as a prefix-closed set of event

sequences. We call these sequences legal, and we say that an

event e in a sequence αeβ is legal if the prefix αe is legal.

We model concurrent executions as histories (Figure 3a).

A history H = (Ev, so, Tx) consists of: a finite set of events

inc(a,1)

get(a):1

put(a,2)

get(a):2

ar

so sovı vı
vı

(a) A history with a schedule.

We omit superfluous ar-edges.

inc(a,1)

get(a):1

put(a,2)

get(a):2

⊗

so so⊕ ⊕⊖

(b) Dependency serialization

graph for the given schedule.

Figure 3. An example history and schedule and its DSG.

Ev; a session order so ⊆ Ev × Ev whose connected compo-

nents are all chains, called sessions; a partition Tx ⊆ P(Ev)
of the sessions into contiguous blocks, called transactions. In

order to provide sensible guarantees, the store does not per-

mit arbitrary histories but only those that possess a suitable

schedule. A schedule S = (vı, ar), consists of: a strict total

order ar ⊆ Ev × Ev, called the arbitration order, which indi-

cates the logical execution order of events; a relation vı ⊆ ar,
called the visibility order, which indicates the events visible

to any given other event (thus, determining the outcome of

that event).

In this work, we require that a legal schedule satisfies three

properties. First, it must ensure that each query’s outcome

is consistent with the updates it observes:

(S1) For every event e ∈ Ev, ar restricted to vı−1(e) ∪ {e}
forms a legal sequence according to the sequential semantics.

Second, it must respect causal consistency [14]. Visibility

must be transitively closed, and moreover, each event must

be visible to all subsequent events in the same session:

(S2) vı = (so ∪ vı)+

Third, it must ensure atomic visibility [7], stating that events

on the same transaction never interleave with events from

other transactions in the vı and ar orders:

(S3) For every pair of distinct transactions s , t ∈ Tx, and
for all events {e, f } ⊆ s and {e ′, f ′} ⊆ t :

e vı
→ e ′ ⇐⇒ f vı

→ f ′ e ar
→ e ′ ⇐⇒ f ar

→ f ′.

A schedule is serial iff vı = ar. A history is serializable iff it

possesses at least one serial schedule.

Algebraic Reasoning. When analyzing serializability we

need to reason about legality (S1). As common in the pres-

ence of high-level operations [37], our reasoning about legal-

ity is based on algebraic properties of events that can be used

to show equivalences between sequences of events. We will

employ two such properties: commutativity and absorption.

Formally, sequences α and β are equivalent (α ≡ β) if substi-

tuting one for the other in any sequence leaves its legality

unchanged. Then, for any pair of events e , f

e and f commute ⇐⇒ e f ≡ f e

f absorbs e ⇐⇒ e f ≡ f .

E.g., the update put(a, 2) and the query get(b):1 commute;

put(a, 2) absorbs the update inc(a, 1) but not vice versa.
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4 A Local Serializability Criterion

We now describe a new serializability criterion for weakly

consistent data stores. Our criterion is inspired by our earlier

work [11], but is local: removing a node from a DSG that is

not part of a cycle (together with its adjacent edges) cannot

make the cycle infeasible. Locality allows the analysis to

consider only those subsets of events in which a minimal

violation could be found. If their DSG does not contain cy-

cles, no DSG of the program will contain cycles. Locality

is implicit in earlier static analysis approaches, e.g. [9, 22],

which focus on low-level reads and writes. Our work is the

first local criterion that supports high-level operations.

4.1 Far Commutativity and Absorption

The serializability criterion of [11] is non-local due to its use

of commutativity and absorption as defined in the previous

section. These properties apply only to adjacent events and

thus, inserting or removing unrelated events between two

events potentially affects whether they commute or absorb

each other and, as a result, whether the serializability crite-

rion holds. We remove this non-locality by defining far ver-

sions of commutativity and absorption that apply to events

far apart and, thus, are not affected by adding or removing

unrelated intermediate events.

We first define the far-absorption relation ▷ on updates. In

the plain (as opposed to far) version, a given update absorbs

all the effects of the update immediately before it. The far

version allows the absorbed update to be arbitrarily far away:

(R1) ▷ ⊆ U × U, and u ▷ v iff uβv ≡ βv for all β ⊆ U;

Now, we define the far-commutativity relation↷º from up-

dates to queries. Our goal is to generalize the following use

of plain commutativity: if a query q is legal and commutes

with an update u immediately before it then the query re-

mains legal if we remove u. To be able to remove u even if it

is far away from q, we strengthen commutativity as follows:

(R2) ↷º ⊆ U ×Q , and u ↷º q iff uq ≡ qu and for all v ∈ U,

uv ≡ vu or v ↷º q or u ▷ v .

Here, the right-hand side use of↷º is coinductive: we seek

the largest relation satisfying (R2). We prove that this has the

required effect in [12]. We extend the definition of↷º to all

events by treating query-update pairs symmetrically, letting

queries always far-commute, and using plain commutativity

for updates.

Comparison to the Plain Versions. The plain and far ver-

sions of absorption and commutativity coincide for the promi-

nent replicated data stores in use today. Differences can occur

in the presence of some not widely supported operations

such as cp(a, b), which copies the value of record a to record

b. Now put(a, 2) no longer far-absorbs inc(a, 1) since:

inc(a, 1) cp(a, b) put(a, 2) . cp(a, b) put(a,2).

Similarly, put(a,2) no longer far-commutes with get(b):2,
since cp(a,b) commutes with or absorbs neither of them.

4.2 Serializability Criterion

Our serializability criterion takes as input a history and a

schedule and determines whether the history is serializable.

The criterion belongs to a broad class of criteria based on

dependence graphs [1]. The general idea is to compute a

digraph of dependencies between the events (Figure 3b), and

then interpret its arcs as ordering constraints. Any permu-

tation of the events that satisfies these constraints is a legal

schedule. To prove serializability, one lifts the constraints

from events to transactions and checks whether these lifted

constraints are satisfiable. That is, one collapses the events of

each transaction to a single node, and then checks whether

the resulting digraph is acyclic.

Given a history and a schedule, we build that digraph from

a triple of relations, which in turn are built with the help of

far-commutativity, far-absorption, and plain commutativity.

We say that a query does not depend on a visible update if

the update far-commutes with the query, or if the update is

far-absorbed by some intermediate visible update:

(D1) ⊕ ⊆ U×Q , and if u vı
→q and (u,q) < ⊕, then u ↷º q or

there exists some v such that u ▷ v and u ar
→v vı
→ q.

The dependencies of a query are those visible updates for

which the not-depends property does not hold. Intuitively,

hiding a dependency from a query might affect the query out-

come. For example, get(a):2 in Figure 3 depends on put(a, 2),
but not on inc(a,1), which is absorbed by put.

Anti-dependencies are analogous for invisible updates:

(D2) ⊖ ⊆ Q × U, and if u vı
↛ q and (q,u) < ⊖ then u ↷º q or

there exists some v such that u ▷ v and u ar
→v vı
→ q.

Intuitively, making a given anti-dependency visible might

affect the query outcome. In Figure 3, the query get(a):1
anti-depends on the invisible update put(a, 2).
Finally, an update does not conflict-depend on an update

arbitrated before it if the two commute plainly:

(D3) ⊗ ⊆ U ×U, and if u ar
→v and (u,v) < ⊗ then uv ≡ vu.

Intuitively, arbitrating a conflict-dependency after the update

might change the store state observed by a later query.

We now lift each of the relations R ∈ {so, vı, ar, ⊕, ⊖, ⊗}

to a relation R̂ on transactions in the following way:

(s, t) ∈ R̂ ⇐⇒ s , t and (e, f ) ∈ R for some e ∈ s, f ∈ t .

The dependency serialization graph (DSG) is themulti-digraph

that has the given history’s transactions as nodes, and has

an arc (s, t) labeled R̂ for any pair (s, t) ∈ R̂ ∈ {ŝo, ⊕̂, ⊖̂, ⊗̂}.
As mentioned, each arc represents an ordering constraint on

the transactions:

Theorem 1. If a schedule of a history induces an acyclic DSG

then the history is serializable.

We prove the theorem in [12].
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txn P(k,v): txn I(k,v):

M.put(k,v) if M.get(k) < 10: M.inc(k,v)

Figure 4.A programwith a put and a conditional increment.

Locality. We can now state precisely the locality property

of our criterion: if we restrict a history and its schedule to

any subset of events E and build the DSG anew, then none

of the old dependencies in E disappear:

Theorem 2. For any schedule (vı, ar) with dependence triple

(⊕, ⊖, ⊗), the restriction (vı ↾ E, ar ↾ E) of the schedule to a

subset E ⊆ Ev has a dependence triple (⊕′, ⊖′, ⊗′) such that:

⊕′ ⊇ ⊕ ↾ E ⊖′ ⊇ ⊖ ↾ E ⊗′ ⊇ ⊗ ↾ E.

The theorem follows by simple case analysis. Importantly,

if the DSG of the original schedule contains a cycle (that is,

a serializability violation) then this cycle is also present in

the DSG of the schedule restricted to that cycle’s events.

5 Abstraction for Serializability

Our objective is to detect the presence of DSG cycles stat-

ically. The first step is to define an abstraction of all the

histories that a given data store client may have. Later, we

will analyze this abstraction to soundly detect cycles.

Abstract Events and Transactions. Given a client pro-

gram, we abstract its concrete histories into one abstract

history H . Figure 4 shows an example program, and Fig-

ure 5 illustrates the abstract history of the program together

with one of its concrete histories. Each syntactic invocation

in the program corresponds to an abstract event e ∈ Ev of
the abstract history. The abstract event abstracts all events

produced by that invocation. Thus, each program history

comes with a mapping of its events into the abstract events

of the abstract history. The abstract history also contains

a partition of the abstract events into abstract transactions

t ∈ Tx according to the syntactic transactions that the events
originate from.

Ordering betweenAbstract Elements. We track the control-

flowwithin each transaction to over-approximate the session

order so inside transactions. This materializes in the form

of abstract event order eo, a binary relation between the ab-

stract events. Figure 5 shows eo as arcs inside the abstract
transactions. Moreover, we over-approximate the session

order outside transactions with the abstract session order so,
a transitive relation between abstract transactions.

Invariants. To make the abstraction more precise, we infer

simple invariants between pairs of abstract events related by

the abstract event order eo. For example, in the I transaction

in Figure 4, the get query and the inc update always use

the same key. We express this as the logical formula argsrc0 =

arg
tgt
0 attached to the eo arc between the two abstract events.

put(?,?)

get(?):?

inc(?,?)

exit

argsrc0 = arg
tgt
0

argsrc1 < 10

argsrc1 ≥ 10

put(B,5)

get(A):8

exit

so

put(A,7)

get(A):7

inc(A,1)

exit

so

so

so

so

soso so so

Figure 5.An abstract history (left) of the program in Figure 4,

and a concretization (right). Dashed edges show the mapping

from concrete transactions to abstract transactions.

The formula states that the 0th argument of the arc source

equals the 0th argument of the arc target. More generally,

the abstract history includes a map Inv from eo to logical

formulas over the variables in argsrc ∪ argtgt.

Local andGlobal Constants. Wealso allow invariants over

certain immutable data shared across concrete transactions.

Web applications, for example, store a session identifier in

the state of the web browser and transmit it with every re-

quest. We consider two types of data: session-local constants

and global constants. We model these with corresponding

sets VarL and VarG of variables that invariants can refer to.

Altogether. We gather the above in the following definition,

where Φ(X ) is a fragment of formulas over the variables X :

Definition 1. An abstract history is a tuple H consisting of

1. Ev = U ∪Q : a set of abstract events (updates and queries);

2. Tx: the set of abstract transactions;
3. eo ⊆ Ev × Ev: the abstract event order;
4. so ⊆ Tx × Tx: the abstract session order;

5. VarL , VarG : sets of session-local and global variables;

6. Inv: a mapping eo→ Φ(argsrc ∪ argtgt ∪ VarG ∪ VarL).

We assume that every transaction t ∈ Tx has unique entry
and exit events entry[t], exit[t]: the lone events in t having

no predecessors and successors in eo, respectively.

Concretization. An abstract history H over-approximates

the concrete histories of a given program, but it is consistent

with a larger set of histories, namely, the concretizations

H ∈ γ (H ). A history belongs to γ (H ) if it has a concretiza-

tion model: a mapping from events to abstract events, and

valuations of the VarL and VarG vars such that: (1) so-arcs
map respectively to eo-arcs inside transactions and so arcs
outside transactions; (2) each invariant is satisfied by the

corresponding pairs of concrete events. Note that a history

in γ (H ) need not possess a schedule but it always possesses a

pre-schedule: a schedule that may violate (S1). Wewill also re-

fer to these as the pre-schedules of the given abstract history

itself. See [12] for a formal definition of concretizations.
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put(k ′,v ′) get(k ′):v ′ size():n′

put(k,v) k , k ′ or v = v ′ k , k ′ false

get(k):v k , k ′ true true

size():n false true false

(a) Commutativity specification.

put(k ′,v ′)

put(k,v) k = k ′

(b) Absorption specification.

Figure 6. Rewrite specification for a dictionary.

Rewrite Specification. To check serializability, one needs

to have some knowledge about the operations available in

the data store. We assume a rewrite specification, logical for-

mulas that give sufficient conditions for commutativity and

absorption between events:

Definition 2. An rewrite specification is a pair (com, abs)
of families of logical formulas over argsrc and argtgt, each
indexed by pairs of operations, such that for all events e, f :

com(op[e], op[f ])(arg[e], arg[f ]) =⇒ e ↷º f

abs(op[e], op[f ])(arg[e], arg[f ]) =⇒ e ▷ f .

Figure 6 shows a rewrite specification for a dictionary. We

write ¬com(e, f ) if ¬com(op[e], op[f ]) is satisfiable, where
e , f are abstract events, and similarly for absorption abs.

6 A Fast Serializability Analysis

In this section, we present an efficient serializability ana-

lyzer based on abstract histories. As shown in Section 4, a

history is serializable if it has at least one schedule with an

acyclic DSG. In the following, we will instead check whether

all schedules have an acyclic DSG (or equivalently, if there

exists any schedule with a cyclic DSG). This simplifies the

problem, as it is easier to find a cyclic DSG than to prove

the absence of acyclic DSGs. Further, we are only aware of

artificial examples where the answers to the two questions

differ. The same approach was also implicitly followed by

prior work [3, 9, 22]. Even then, the problem remains chal-

lenging because there are infinitely many histories in the

concretization of most abstract histories.

The basic idea of the analysis introduced in this section

is to lift the definition of DSG to abstract histories and de-

tect cycles in this lifting. More precisely, we build a graph

whose nodes are abstract transactions and where nodes are

connected by an edge if there are two concrete transactions

in any history in the concretization such that the two trans-

actions are connected by an edge in any DSG of the history.

We call this graph a static serialization graph (SSG).

Definition 3. Given an rewrite specification (com, abs), the
static dependence serialization graph of an abstract history is

an edge-labeled directed multigraph with vertices Tx and

1. an edge (s, t) labeled so for every (s, t) ∈ so;

2. an edge (s, t) if ∃e ∈ s , f ∈ t such that ¬com(e, f )
• labeled ⊕ if e ∈ U and f ∈ Q
• labeled ⊖ if e ∈ Q and f ∈ U
• labeled ⊗ if e ∈ U and f ∈ U

Intuitively, the satisfiability of ¬com(op[e], op[f ]) is used
here as a necessary condition for the existence of a depen-

dency, anti-dependency, or conflict-dependency between any

two concrete events, which are summarized by e and f , re-

spectively. In previous work based on reads and writes, this

condition was given by "e and f access the same location".

Here, we use the locality of our criterion to avoid having to

reason about intermediate events between e and f , which

may introduce extra (anti-)dependencies.

The absence of cycles in an SSG is a sufficient condition

for the absence of cycles in all DSGs, and thereby a sufficient

condition for serializability. However, this condition alone is

very imprecise, as most SSGs contain trivial cycles, such as

the one we have seen in Figure 1b. Therefore, we show the

following, stronger condition:

Theorem 3. Let H be an abstract history and G be the DSG

of a history in γ (H ). If there is a cycle in G then there is a

closed walk in the SSG of H with the following properties:

(SC1) It contains at least two ⊖̂-edges, or at least one ⊖̂-edge

and one ⊗̂-edge.

(SC2) At least one of the following conditions hold:

(SC2a) It contains u,v ∈ U such that ¬abs(u,v).

(SC2b) It contains q ∈ Q,u,v ∈ U , e ∈ Ev with q
eo+

→u and

both ¬com(u, e) and ¬com(q,v).

We explain the soundness of our algorithm and prove the

theorem in [12]. The theorem lets us check serializability

of abstract histories by (1) pre-computing which pairs of

abstract events satisfy plain commutativity and plain absorp-

tion, (2) detecting strongly-connected components in the

SSG, and (3) checking whether (SC1) and (SC2) hold for

each component.

For example, consider the abstract history in Figure 7a,

and assume for now that u ∈ VarG , i.e., both sessions are

guaranteed to use the same key. Then we can use (SC2) to

decide that the program is completely serializable: put ab-
stract events will always absorb each other (since they write

the same key u), and there is no transaction that executes

a query before an update, so both (SC2a) and (SC2b) are

not satisfied for the only connected component. However, if

instead, the sessions may use different keys (that is,u ∈ VarL
as in the original abstract history) then we fail to show se-

rializability of the program, as the two put abstract events
may not absorb each other.

Since SSG-based cycle detection is efficient, but not always

sufficiently precise, we employ it in a staged fashion. First,

we find potential violations using the SSG-based analysis and

then apply a more expensive algorithm on these potential

violations (developed in the next section).
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entry

put(?,?)

arg
tgt
0 = u

entry

get(?):?

arg
tgt
0 = u

so

so

soso

(a) Abstract history,

where u ∈ VarL .

entry

put(?,?)

arg
tgt
0 = u1

entry

get(?):?

arg
tgt
0 = u1

so

entry

put(?,?)

arg
tgt
0 = u2

entry

get(?):?

arg
tgt
0 = u2

so

(b) One of the two-session unfoldings,

where u1,u2 ∈ VarG .

Figure 7. An abstract history for the program in Figure 1a

and one of its unfoldings. The history includes the invariant

that within a session, all transactions access the same key u.

7 Serializability Analysis by Unfolding

SSGs offer a very fast serializability analysis but, as discussed

in the overview, their precision is limited because they com-

pletely ignore the invariants in the given abstract history.

Consequently, one also cannot use SSGs to find concrete vio-

lations of our criterion, i.e., concrete DSG cycles, and report

these counter-examples back to the user. In this section, we

will address these two important shortcomings.

The basic idea is to let an SMT solver reason about the

pre-schedules of a given abstract history directly. We do that

in a sequence of SMT queries that encode our serializability

criterion together with some of the invariants present in the

abstract history. Each query is designed so that its models

describe concrete DSG cycles in pre-schedules that satisfy

the encoded invariants. In this way, we report both, concrete

violations and improve precision by ruling out false positives

that do not satisfy the given invariants.

Managing Complexity. In order to manage the complexity

of our SMT queries, we design them to have a small-model

property: a reasonable bound on the size of the models that

the solver needs to explore. However, even the smallest con-

crete DSG cycles may be larger than the abstract history

because a single abstract event might abstract many events

on the cycle. Therefore, there is in general no bound on the

model size that holds across the whole serializability analy-

sis. We solve this problem by subdividing the serializability

check into smaller problems of more manageable complexity

such that a small-model property holds for each of them.

For each k = 2 . . .∞, we consider the problem of finding

concrete DSG cycles that span at most k sessions. We embed

the set of these cycles in a finite sequenceUk of particularly

nice abstract histories, which we call unfoldings:

(U1) Any minimal DSG cycle that spans at most k sessions

maps one-to-one into a cycle C of the unfolding for at most

k sessions.

With this property, we can simply detect cycles in each of

the unfoldings. A key virtue of our unfoldings is that we can

Algorithm 1 Serializability checking by unfolding.

1: function CheckBounded(H ,k,V )

2: for H ′ ∈ Unfoldings(H ,k) do

3: if CyclePossible(H ′) ∧ ¬Subsumed(H ′,V ) then

4: if ∃m.m |= ϕcyclic(H
′) then

5: V ← V ∪ {m}

6: return V

7: function Check(H )

8: V ← ∅, k ← 2

9: repeat

10: V ← V ∪ CheckBounded(H ,k,V )

11: k ← k + 1

12: until SubsumptionGeneralizes(H ,k,V )

13: return V

restrict our attention to concretizations for which a single

abstract event abstracts a single concrete event:

(U2) Each cycle C in (U1) is realized by a schedule of some

concretization that maps one-to-one into the unfolding.

This is our small-model property: the size of a minimal

DSG cycle for at most k sessions is at most that of the unfold-

ing. We prove properties (U1) and (U2) in [12]. The locality

of our criterion plays a crucial role in the proof.

Example. Consider again the program in Figure 1a under

the assumption that all accesses within a session operate on

the same key. Figure 7 shows an abstract history for that

program, together with one of its unfoldings. The unfolding

arranges copies of abstract transactions from the original

abstract history into chains that represent abstract sessions.

Figure 1 shows a sample of concrete histories that map one-

to-one into the unfolding. The first one is unserializable, but

it is not a concretization of the unfolding, and therefore, it

would not be reported as a violation. The other three histories

are serializable, and so, they also would not be reported.

Algorithm. We sketch the complete serializability check in

Algorithm 1. The function CheckBounded(H ,k,V ) detects

concrete DSG cycles that span k sessions. It iterates through

all the k-session unfoldings of the given abstract history

and accumulates the detected cycles in the set V . To reduce

the calls to the SMT solver, the procedure makes two other

checks as a pre-filter. First, it calls the fast SSG check to see if

any cycles are possible at all. If so, it tests whether the cycles

of the current unfolding are subsumed by cycles discovered

previously. We consider one cycle to subsume another if its

syntactic transactions are a subset of the other’s ones. If no

subsumption happens, the SMT solver is asked to find a new

cycle as a model of the query ϕcyclic.

Function Check iteratively calls CheckBounded to detect

cycles up to k sessions. To obtain a soundness guarantee for

an unbounded number of sessions, we introduce a check

that attempts to prove that we actually detected all cycles

up to subsumption. That is, we attempt to prove via an SMT
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entry e f exit
ϕ1

ϕ2

ϕ3

ϕ4

(a) Transaction.

entry e1 f1

e2 f2 exit

ϕ2

ϕ2

(b) Unfolding.

Figure 8. Unfolding an abstract transaction.

query that each cycle on more than k sessions is subsumed

by some cycle on at most k sessions. If this check succeeds,

the iteration terminates. The algorithm can be combined

with a time-out to ensure that it will terminate eventually,

but that was never necessary in our experiments.

In the rest of the section, we describe in more details

the unfolding procedure and the subsumption check. We

describe the actual cycle query ϕcyclic in [12].

7.1 Unfolding Abstract Histories

Unfolding is founded on two properties. First, due to the

locality of our criterion, DSG cycles are preserved under

removal of events not lying on the cycle. That is, if C is a

DSG cycle in a concrete history H then C remains a cycle

in any restriction of H that includes the events in C . This

property lets us remove events from the concrete histories

that the unfoldings must abstract and remain sound. Second,

each minimal DSG cycle is induced by at most two events

per session. This property allows us to abstract events from

at most two transactions per session. A similar property has

been observed in the analysis of sequential consistency [31].

General Structure. The k-session unfoldings H ′ ∈ Uk [H ]

of a given abstract history H are acyclic abstract histories

organized into k abstract sessions. Each abstract session

is constructed by selecting one abstract transaction or a

pair of abstract transactions linked by so from the original

abstract history. The unfolding places unfolded copies of

these abstract transactions in their corresponding sessions

and links them with so′ in the indicated order. Transactions

with an acyclic abstract event order eo unfold to themselves,

just like in Figure 7b.

Unfolding of Transactions. Unfolding of transactions is

necessary to ensure that the DSG cycles ofH can be detected

in the small one-to-one concretizations of its unfoldings as

postulated in condition (U2). We unfold each non-trivial

strongly connected component (SCC) of the abstract event

order eo independently of the rest. An example of unfolding

a single component is shown in Figure 8. The goal is to make

the SCC acyclic while keeping it an abstraction of each pair

of events that might be part of a minimal cycle. To do that,

we copy the events in the SCC twice and then reinsert back

as much of the control-flow and the invariants as possible.

Definition 4. The unfolding of an SCCV ⊆ t of an abstract

transaction t involves two disjoint copies V1, V2 of V with

T1

S1

U ∼ S2

ŝo?

ŝo

T2

S2

ŝo?

T3

S3

ŝo?
⊙̂ ⊖̂

⊖̂

Figure 9. Short-cutting for k = 2. Here, ⊙̂ = ⊕̂ ∪ ⊖̂ ∪ ⊗̂.

corresponding inclusion maps i1 : V ֒→ V1, i2 : V ֒→ V2 as

well as the set E of edges incident to vertices inV . It is defined

as follows, where h1 × h2 is the map (x ,y) 7→ (h1(x),h2(y)):

Edge types:

I ⊆ E Ð incoming edges (Ev \V → V )

O ⊆ E Ð outgoing edges (V → Ev \V )

B ⊆ E Ð back edges in any DFS of V

R ⊆ E Ð the remaining edges in E.

Unfolding: Here 1 denotes the identity V → V and As ,At

denote source and target vertex sets of any edge set A:

Ev′ = (Ev \V ) ∪V1 ∪V2

eo′ = (eo \ E) ∪ I ′ ∪O ′ ∪ B′ ∪ R′

I ′ = (1 × i1)[I ∪ Is × Bt ]

B′ = (i1 × i2)[Bs × Bt ]

O ′ = (i1 × 1)[O] ∪ (i2 × 1)[O ∪ (Bs ×Ot )]

R′ = (i1 × i1)[R] ∪ (i2 × i2)[R].

Invariants:

Inv′ ↾ (I ′ ∪O ′ ∪ B′) = ⊤

Inv′ ↾ R′ = (Inv ↾ R) ◦
[
(i1 × i1) ∪ (i2 × i2)]

−1
.

7.2 From K to Any: Generalizing Results

After each iteration of CheckBounded, we have inferred a

set V of DSG cycles that subsume all DSG cycles that span

at most k sessions. To generalize this result to an arbitrary

number of sessions, we check whether this set V subsumes

all DSG cycles spanning any number of sessions. This is

implied if each cycleC that spans l > k sessions is subsumed

by (a) a cycle in V or (b) a cycle that spans < l sessions.

We sketch the check briefly. Instead of checking (a) and (b)

for all cyclesC , which may be of unbounded size, we check a

sufficient condition for all possible DSG paths P containing

an anti-dependency and spanning exactly k + 1 sessions:

every cycleC must contain such a segment. P is schematically

shown for the case k = 2 in Figure 9. If some cycle in V

subsumes the segment P , it also subsumes C , fulfilling (a).

Otherwise, we try to show that (b) by checking whether

every history that admits P transforms into a history that

admits a segment that short-cuts P , skipping some sessions.
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To show the existence of such a short-cut, we use the fact

that most abstract transactions can be instantiated on any

session. For example, for the segment in Figure 9, we try

to instantiate the abstract transaction of S2 at the end of

session 1, in such a way that it forms an anti-dependency

with T3 to create a new segment Q that short-cuts session 2.

This way,C − P +Q is a cycle that subsumes the cycleC and

spans l − 1 sessions as required.

We can automate this check for all possible segments P

again based on unfoldings: every segment on k + 1 sessions

is a model of the logical encoding of a (k + 1)-unfolding.

After filtering all (k + 1)-unfoldings for which all models are

subsumed by a cycle inV , the above check can be formulated

as a with a suitable SMT-query. If we manage to show that

all path segments spanning k + 1 are either subsumed or can

be cut short, we can conclude that V is a complete set of

violations, subsuming all possible DSG cycles. We give more

details about the query and the procedure in [12].

8 Reducing False Positives for Real-World
Scenarios

In the previous sections, we provided a general formalmethod

to statically check for serializability of a given application. In

the first part of this section, we show how to instantiate our

method in order to achieve precision on real-world examples

(equality of arguments and control-flow). In the second part,

we extend our method with asymmetric commutativity and

uniqueness information to further increase precision. More

details and further optimizations are described in [12]. All

examples in this section are fragments of real applications

and false alarms that we encountered; we omit many details

and simplify the violations to help the exposition.

Using Equality of Arguments. In Figure 10a, transactions

updateQuestion and getQuestion access two fields of a given
row x, one writing to them, and the other reading from them.

The important invariant here is that, inside a transaction,

both accesses happen on the same row, even though rows

might differ from one transaction to another. If we do not

infer that both set-operations and both get-operations access
the same row,wewill detect the false alarm seen in Figure 10c.

Here, updateQuestion
1
conflicts with updateQuestion

2
but

does not completely absorb its effect, which leads to an anti-

dependency from getQuestion to updateQuestion
2
, and in

turn, to a cycle. To avoid such false alarms we track equalities

between local variables, and add them to the invariants for

the SMT-based check from Section 7 (see also [12]). Here, the

inferred equalities shown in red in Figure 10b are sufficient

to prevent the false alarm.

Control-Flow. Figure 11a shows a fragment of a Twitter-like

application that uses a contains query to check the existence
of a key, a get query to retrieve a record at a key, and an

add update to add a value to a set-valued field of a record.

txn updateQuestion(x,q,a) {

Quiz.at(x).question.set(q)

Quiz.at(x).answer.set(a)

}

txn getQuestion(x) {

return (

Quiz.at(x).question.get(),

Quiz.at(x).answer.get()

);

}

(a) Example program.

updateQuestion

Quiz.at(?).question.set(?)

Quiz.at(?).answer.set(?)

argsrc
0
= arg

tgt
0

getQuestion

Quiz.at(?).question.get():?

Quiz.at(?).answer.get():?

argsrc
0
= arg

tgt
0

soso

(b) Abstract History.

updateQuestion1
Quiz.at(1).question.set("A")

Quiz.at(1).answer.set("A")

getQuestion

Quiz.at(1).question.get():"A"

Quiz.at(2).answer.get():""

updateQuestion2
Quiz.at(1).question.set("B")

Quiz.at(2).answer.set("B")

⊕̂ ŝo
⊖̂

⊗̂

(c) False Alarm.

Figure 10. An example of a false alarm caused by missing

equalities.

The addFollower transaction adds a follower n2 to a given

user. Data stores typically create a record upon modification

if the record does not exists. That is why the transaction

guards against implicit creation by checking for existence

before adding the follower. Since add updates commute, the

transaction is serializable under the assumption of atomic

visibility. However, if we ignore the control-flow between

events, then we cannot rule out the false alarm in Figure 11c.

There, two instances of addFollowers implicitly create the

same user Awhile first observing that such a record does not

yet exist. Since the contains query does not (far-)commute

with creation, two anti-dependencies lead to a cycle. We

therefore instantiate our static analysis to infer constraints

on the control flow between abstract events (more details

in [12]). For example, we infer the constraints shown in red

in Figure 11b. With these extra constraints, the history in

Figure 11c is not a concretization of the abstract history to

the left, and our analysis will not report the false alarm.

Asymmetric Commutativity. Control-flow constraints did

eliminate the false alarm in Figure 11a, but the static analysis

can still report another one, which is a feasible serializable

execution. Consider a variation where both contains queries
return true. Because of the implicit record creation seman-

tics, the contains and the add operations do not commute,

e.g., Users.at(łAž).flwrs.add(łAž) Users.contains(łAž):true is
legal but becomes illegal when swapped in case the record

łAž was inserted earlier. This leads to anti-dependency edges

similar to the ones in Figure 11c. To address this fundamental
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txn addFollower(n1,n2) {

if (Users.contains(n1))

Users.at(n1).

flwrs.add(n2);

}

(a) Example program.

addFollower
Users.contains(?):?

Users.at(?).flwrs.add(?) skip

argsrc
0
= arg

tgt
0

∧ argsrc
1
= true

argsrc
1
=

false

(b) Abstract History.

addFollower1
Users.contains("A"):false

Users.at("A").flwrs.add("B")

addFollower2
Users.contains("A"):false

Users.at("A").flwrs.add("C")

⊖̂

⊖̂

(c) False Alarm.

Figure 11. An example of a false alarm caused by missing

control-flow constraints.

limitation of commutativity, we use an asymmetric version

where contains(łAž):true can always be moved to the right

of an implicit creation operation. That is, in the paradoxical

situation where the record łAž existed before its creation,

it will also exist after the creation. We do not need an anti-

dependency edge here since swapping the two operations

does not affect the query result. In our experiments, we com-

puted anti-dependencies using this asymmetric notion. We

have not proved the soundness of this approach but con-

firmed manually that all eliminated alarms were indeed false

alarms. We consider it important future work to extend our

formal model to asymmetric commutativity.

Fresh Unique Values. Weakly-consistent data stores typ-

ically do not provide an efficient way to atomically check

whether a record exists before inserting a record. Therefore,

creating a record with a combined create/write operation

as discussed in the previous subsection might accidentally

overwrite an already existing record. To avoid this problem,

most data stores provide a way to generate new records,

which are guaranteed to have a fresh identity. This is akin

to dynamic memory allocation in shared memory environ-

ments. For example, TouchDevelop provides the operation

add_row, which adds a fresh row with a unique identity to a

table; Cassandra can be instructed to generate a fresh key

using the uuid() value.
Figure 12a contains three transactions, one creating a new

row in a table, one setting a field of a row, and one reading

the value of the row. Figure 12b shows the corresponding

abstract history . Our baseline analysis will report the vio-

lations shown in Figure 12c. A row is created and accessed

in the left session, while the same row is accessed twice in

the right session. The assumption that the identity of the

row is fresh and unique implies that the only way (assum-

ing no side-channels) for the right session to learn about

the existence of the row is to observe its creation. However,

getQuestion
2
reads the created row without observing its

creation, which shows that this is a false alarm.

txn addQuestion () {

return Quiz.add_row ();

}

txn updateQuestion(x,q) {

Quiz.at(x).question.set(q);

}

txn getQuestion(x,q) {

return

Quiz.at(x).question.get();

}

(a) Example program.

addQuestion

Quiz.add_row(?)

updateQuestion

Quiz.at(?).question.set(?)

getQuestion

Quiz.at(?).question.get():?

soso

soso

(b) Abstract History.

addQuestion

Quiz.add_row(1)

getQuestion1
Quiz.at(1).question.get():""

updateQuestion

Quiz.at(1).question.set("A")

getQuestion2
Quiz.at(1).question.get():"A"

⊕̂ ⊕̂ŝo ŝo
⊖̂

(c) False Alarm.

Figure 12. An example of a false alarm caused by ignoring

fresh unique values.

We add an encoding of unique values into our SMT-based

check (more details in [12]). Using this extension, we learn

that the updateQuestion transaction in Figure 12c either

accesses a row that is not equal to the unique row created in

addQuestion or that it must have observed the insertion of

the row in addQuestion. In both cases, no cycle is created,

and the example is correctly shown to be serializable.

9 Implementation and Experiments

We implemented the concepts introduced in this paper in a

static analysis back end called C4. In this section, we present

experimental results when using this tool as the basis of two

static analyzers. Our evaluation demonstrates the effective-

ness of our technique: the analyses have a low false alarm

rate of 10% and, after filtering, 43% of all reported serializ-

ability violations point to actual bugs (the remaining alarms

indicate harmless serializability violations). Our experiments

also show that all four core features of the analyzer (commu-

tativity, absorption, control-flow, and constraints between

events) are essential to achieving these results.

9.1 Implementation

C
4 is independent of the data store, its API, and the program-

ming language, and thus serves as a basis for the analysis

of any kind of system that satisfies our assumptions from

Section 4: atomic visibility and causal consistency. Our tool

can therefore be used as a back end for a broad range of static

analyses, e.g., for weakly consistent mobile synchronization

frameworks like TouchDevelop and distributed databases

like Antidote [2], Walter [32], COPS [29], and Eiger [30].
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C4 is interfaced by static analysis front ends, which are

responsible for inferring a sound abstract history from appli-

cation source code and providing a precise rewrite specifica-

tion. We have implemented two front ends based on standard

static analysis techniques, which we briefly describe in this

subsection; more details can be found in [12].

TouchDevelop. Our first front end targets the mobile envi-

ronment TouchDevelop and is based on an existing static

analyzer for that language [13]. TouchDevelop includes a

weakly consistent framework for replicating data between

devices based on the global sequence protocol [18]. The data

store provides atomic visibility and a consistency model

slightly stronger than causal consistency and can therefore

be directly used with our back end. We statically analyzed

17 TouchDevelop benchmarks; these were also analyzed

dynamically in our previous work [11].

Cassandra. Our second front end supports Java programs

accessing the distributed database Cassandra through its

standard API. It is based on the static analyzer Soot [35].

Plain Cassandra supports only eventual consistency and

no transactional guarantees; however, versions that provide

causal consistency as well as the necessary means to support

weak transactions with atomic visibility and arbitration have

been proposed [8, 30]. For the purpose of our experiments,

we assume the analyzed open-source applications are run

on an implementation providing such stronger guarantees,

and that each web-request corresponds to one transaction.

The violations we detected also occur when the applications

are run on plain Cassandra. Our analysis still provides a

strong guarantee in that setting: it will find all bugs in a well-

defined class (all serializability violations in which causal

consistency and atomic visibility are not violated).

Using our Cassandra front end, we analyzed 11 open-

source projects from GitHub of varying complexity. The

projects include three libraries for distributed locks and

queues (cassieq, cassandra-lock, dstax-queueing), three sam-

ple implementations of a Twitter-like service (cassatwitter,

cassandra-twitter, twissandra), a trade service (curr-exchange),

a chat room logging service (roomstore), an example imple-

mentation of a chatting platform (killrchat), and a service

for managing music playlists (playlist). We analyze a core

fragment of the cassieq framework, which we refer to as

cassieq-core.

FilteringHarmless Violations. Requiring serializability on

all events in a history is too strong for some applications;

many histories involve some permitted non-serializable be-

haviors. As is standard in the concurrent programming lit-

erature, serializability analysis of larger applications is best

applied in a targeted way. In our experiments, we adopt

two previously employed approaches to this problem to our

setting. First, we focus the analysis on logically-related sub-

sets of the data in the application called atomic sets [36], for

Table 1.An overview of the analysis results. T, E denote the

number of abstract transactions and abstract events before

unfolding, resp., FE, BE, Σ denote the time spent in seconds

in the front end, the back end, and in total, resp., and E, H,

F, Σ denote the number of violations detected, split up into

harmful violations (errors), harmless violations, false alarms,

and the total number. We provide the number of violations

both unfiltered and filtered (with heuristics enabled).

#Violations

Size Time [s] Unfiltered Filtered

Program T / E FE / BE / Σ E /H / F / Σ E /H /F /Σ

Cloud List 4 / 7 4.8 / 1.0 / 5.8 0 / 3 / 0 / 3 0 / 0 / 0 / 0

Super Chat 8 /28 10.8 / 2.3 /13.1 0 / 7 / 0 / 7 0 / 3 / 0 / 3

Save Passwords 7 /13 1.5 / 5.6 / 7.2 0 /11 / 2 /13 0 / 1 / 0 / 1

EC2 Demo Chat 2 / 4 0.5 / 0.4 / 0.9 0 / 1 / 0 / 1 0 / 0 / 0 / 0

Contest Voting 2 / 3 1.7 / 0.6 / 2.3 0 / 1 / 0 / 1 0 / 0 / 0 / 0

Chatter Box 5 /19 8.2 / 8.8 /17.0 0 / 5 / 4 / 9 0 / 0 / 0 / 0

Tetris 3 /12 77.1 / 1.0 /78.1 3 / 0 / 0 / 3 3 / 0 / 0 / 3

NuvolaList 2 5 / 9 0.5 / 6.5 / 7.0 0 / 8 / 0 / 8 0 / 0 / 0 / 0

FieldGPS 4 / 5 4.1 / 4.5 / 8.7 0 / 0 / 0 / 0 0 / 0 / 0 / 0

Instant Poll 4 / 6 2.2 / 3.9 / 6.0 0 / 2 / 0 / 2 0 / 0 / 0 / 0

Expense Rec. 5 / 9 2.4 / 3.0 / 5.4 0 / 1 / 1 / 2 0 / 0 / 0 / 0

Sky Locale 12 /32 17.0 /10.6 /27.6 1 /34 / 0 /35 1 / 4 / 0 / 5

Events 4 /29 3.1 / 1.7 / 4.8 1 / 1 / 0 / 2 1 / 0 / 0 / 1

Cloud Card 9 /25 11.1 / 7.5 /18.6 1 / 5 / 0 / 6 1 / 0 / 0 / 1

Relatd 14 /69 15.7 /28.0 /43.7 1 /18 / 0 /19 1 / 3 / 0 / 4

Color Line 3 /10 21.4 / 1.0 /22.4 3 / 0 / 0 / 3 3 / 0 / 0 / 3

Unique Poll 4 / 4 0.6 / 1.5 / 2.1 0 / 4 / 0 / 4 0 / 0 / 0 / 0

cassandra-lock 3 / 3 6.6 / 0.3 / 6.9 0 / 0 / 0 / 0 0 / 0 / 0 / 0

cassandra-twitter 5 /26 7.3 / 3.3 /10.5 1 / 5 / 0 / 6 1 / 1 / 0 / 2

cassatwitter 6 /19 7.2 / 3.7 /10.8 1 / 6 / 0 / 7 1 / 1 / 0 / 2

cassieq-core 7 /10 57.3 / 3.8 /61.1 2 / 2 / 0 / 4 2 / 1 / 0 / 3

curr-exchange 2 / 2 7.6 / 0.8 / 8.3 0 / 1 / 0 / 1 0 / 0 / 0 / 0

dstax-queueing 2 / 8 6.2 / 0.8 / 7.0 2 / 0 / 0 / 2 2 / 0 / 0 / 2

killrchat 11 /20 10.1 /15.3 /25.4 0 /31 /13 /44 0 / 0 / 4 / 4

playlist 11 /34 8.5 /24.1 /32.6 0 /13 / 0 /13 0 / 2 / 0 / 2

roomstore 5 /13 7.2 / 1.5 / 8.8 0 / 4 / 0 / 4 0 / 0 / 0 / 0

shopping-cart 4 / 5 2.9 / 0.1 / 3.0 0 / 0 / 0 / 0 0 / 0 / 0 / 0

twissandra 7 /20 7.5 / 4.9 /12.3 0 / 7 / 0 / 7 0 / 1 / 0 / 1

which serializability is checked independently. More details

are described in [12]. Atomic sets are currently only imple-

mented for TouchDevelop. Second, we employ the display

code heuristic [11]: queries whose results are never used in

the business logic but only displayed to the user are excluded

from the serializability analysis.

9.2 Quantitative Results and Manual Inspection

Table 1 shows the results of executing the analysis on all 27

benchmarks. The analysis was run on a Fedora 25 system

with an Intel Core i7-4600U and 12GB RAM. All benchmarks

except for cassieq-core and Tetris can be analyzed in less than

a minute, with the front end (FE) usually taking the majority

of the analysis time. The four benchmarks with the highest

back end analysis time (BE) are also the benchmarks with
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the highest number of violations. In both, large numbers of

potential violations (i.e., cycles in the SSG) have to be checked

using the SMT-based approach, because neither is the SSG-

check precise enough to rule them out nor is there a smaller

serializability violation that subsumes the potential violation.

For all benchmarks, the algorithm in Section 7.2 terminated

for k = 2, that is, we found a set of violations using 2 sessions

that subsumed all possible violations with any number of

sessions. The SSG-based check reported 31 violations for

TouchDevelop and 139 violations for Cassandra that were

then ruled out as infeasible by the SMT-based check. We give

more details on the effectiveness of the various features of

the SMT-based check below.

The filters reduce the number of violations to be inspected

by the developer significantly in almost all cases (compare Σ

in the "Unfiltered" and "Filtered" columns). On average, 7.3

violations have to be inspected per project before filtering

and 1.3 violations after filtering.

Manual Inspection. When filtering is enabled, 43% of all

reported violations point towards clearly harmful behavior

in the program. Note, however, that not every harmful vio-

lation points to a unique bug since a single bug can cause

several violations. 45% of the violations were harmless, and

10% were false alarms. With no filtering, the false alarm rate

is even lower, with 7%, since the number of true but harm-

less violations increases. For Cassandra, virtually all false

alarms appear in one challenging example (killrchat).

9.3 Interplay of Analysis Features

To determine which features of our analyzer increase preci-

sion most effectively, we selectively disabled precision fea-

tures and observed which additional false alarms were re-

ported by the analysis. The results are shown in the Venn-

diagram in Figure 13a. We analyze four features:

Commutativity In the SMT-encoding, replace ¬com(e, f )
by true if it is satisfiable, false if unsatisfiable.

Absorption In the SMT-encoding, replace abs(e, f ) by false.

Constraints Let Inv be a constant function true.

Control-Flow Let eo relate all events of a transaction.

If we disable all four features, the precision of the SMT-

based check cannot exceed that of the SSG-based check. We

can clearly see that all four features are essential for the pre-

cision of the analysis. Commutativity plays a much greater

role for Cassandra, due to its more complex SQL-like op-

erations, while absorption is more important for TouchDe-

velop, likely because apps often use the data store to repli-

cate user-private data between devices, making patterns such

as the example in Section 2 common, while the open-source

projects using Cassandra are of more collaborative nature.

Interestingly, there are 7 false alarms for Cassandra that

require all four features to be eliminated.

7

15

1 6

2

(a1) TouchDevelop.

18

1 16

6

7

(a2) Cassandra.

(a) The effect of various features on the pre-
cision of the analysis.
The numbers represent false alarms that are reported
by the SSG-based approach, but eliminated by SMT-
based encoding. The colored fields represent the fea-
tures that need to be enabled to eliminate a false alarm,
in overlapping areas several features are required.

Absorption

Commutativity

Constraints

Control-Flow

10

10

18

43

30

(b1) TouchDevelop.

6

6

63

(b2) Cassandra.

(b) The relation of heuristics to harmless
and harmful violations
The numbers represent reported violations. The red
and blue fields represent subsets that are filtered by
heuristics; the overlapping area are warnings that are
filtered by both. The green and yellow areas denote our
classification into harmful and harmless violations.

Atomic Sets

Display Code

Harmful

Harmless

Figure 13. Interplay of analysis features.

9.4 Harmful and Harmless Violations

In a similar experiment, we compare the sets of violations

that (1) were classified as harmful resp. harmless by man-

ual inspection and (2) were filtered by the atomic-sets and

display-code heuristics. The results are shown in Figure 13b.

No harmful violations are filtered out, and only a low number

of harmless violations are not filtered. For TouchDevelop,

we can observe that while atomic sets and display code over-

lap significantly, omitting one of them would significantly

increase the number of harmless violations shown to devel-

opers. Figure 13b2 shows why we did not implement atomic

sets for Cassandra: in our experiments, the display code

heuristic was very effective in filtering out harmless viola-

tions (91%) while preserving all harmful violations.

9.5 Discovered Bugs

We describe the discovered bugs in detail in [12]. As expected

due to the soundness of our approach, C4 found all violations

for TouchDevelop that were detected by our dynamic anal-

ysis [11]. Moreover, our approach found three new bugs that

were missed by the dynamic analysis. All three additional

bugs are unlikely to be triggered by dynamic analysis. For

Cassandra, we found clearly harmful violations in 4 out of

10 applications.
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In general, most harmful violations belong to one of the

following four categories: (1) they try to establish unique-

ness of user-provided values such as user-names without

using proper synchronization; (2) they read, modify, and

write high-level data types such as sets without using ap-

propriate high-level operations; (3) they modify data that is

concurrently deleted, often resulting in partial revival of the

deleted data; (4) they add data to an entity that is concur-

rently deleted, thereby creating garbage data and sometimes

breaking implicit foreign-key constraints.

10 Related Work

Our model of weakly consistent executions is based on Bur-

ckhardt [14] and our serializability criterion is inspired by

our previous work [11]. We extend these concepts to static

analysis.

Databases. Fekete et al. [22] were the first to propose static

serializability checking when the database provides only

weak guarantees based on an SSG similar to the one de-

scribed in this paper. The technique they propose is entirely

manual, but it is shown in [25] that some steps of the analysis

can be automated. Both works handle only the consistency

model of snapshot isolation, which is stronger than the causal

consistency considered in our paper. In particular, snapshot

isolation ensures that for each pair of concurrent transac-

tions that write to the same entity of the data store, one will

abort. These additional guarantees remove the need to rea-

son about commutativity and absorption between updates,

which are two of the major technical difficulties addressed by

our work (see the example in Section 2). Conflict-detection

also enables them to work around the imprecisions of the

SSG-based approach [25] by eliminating false cycles with

conflicting updates. We cannot make this assumption in

our work. Furthermore, their analysis approach is neither

sound (in their experiments, they extract the operations from

database logs), nor fully automatic (they perform manual

splitting of transactions to handle control flow).

Bernardi and Gotsman [9] describe a static serializability

criterion for a fixed set of transactions with concrete inputs,

but without a fixed schedule. They also briefly sketch how to

extend their approach to arbitrary sequences of transactions

and lift a definition of critical cycles to a graph representing

all possible transaction sequences. Our cycle-based criterion

in Section 6 is inspired by that work; however, we generalize

the criterion to arbitrary data types using commutativity and

absorption and make it more precise by taking absorption

into account. Further, we show that an approach based on

a summarizing graph is useful as an efficient pre-filter, but

not precise enough for many examples.

Weak Memory Models. Many publications have addressed

the problem of static analysis to determine whether all exe-

cutions of a program executed under a weak memory model

are equivalent to a sequentially consistent execution [3, 20,

26, 27, 31, 33]. The closest one to our approach is the work

by Alglave et al. [3]. Their construction of the abstract event

graph is similar to our logical encoding, since both use the

fact that cycles in a dependency graph only ever contain

two nodes per session to obtain a sound bounded unrolling

of loops. However, the memory guarantees (TSO/Power),

available operations (reads, writes, and fences), and refer-

ence model (sequential consistency instead of serializability)

considered in their work differ significantly from our model.

Some of the works on weak memory models use encod-

ings of axiomatic execution models into a logical formula [4,

15, 38], similar to our encoding. These approaches bound

the number of loop iterations. We only need to bound the

number of sessions, and we give a sufficient condition for

the generalization to an arbitrary number of sessions.

Concurrent Programming. Our bounded encoding of se-

rializability checking in Section 7 has similarities with work

on atomicity checking based on conflict-serializability [5, 21].

However, we operate under a substantially different abstrac-

tion: we do not require a finite data abstraction, a finite

number of objects, or a boolean abstraction of the program.

Verification. Gotsman et al. [24] propose a proof rule for

showing that applications accessing a causally consistent

data store preserves a given integrity invariant. They require

the user to supply such an invariant, while our correctness

condition requires no annotations.

11 Conclusion

We presented a static serializability analysis for applications

running on top of causally consistent data stores. Based on a

novel, local consistency criterion, our analysis first performs

cycle detection on static serialization graphs as a pre-filter

and then uses SMT-based logical analysis to obtain precise

results. Both techniques are fully automatic and use commu-

tativity and absorption to handle high-level replicated data

types. We implemented both analyzers in a reusable back

end and evaluated it for reasoning about two distributed sys-

tems, TouchDevelop and Cassandra/Java, demonstrating

the effectiveness of our method.
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