
SHAMDROID: Gracefully Degrading Functionality
in the Presence of Limited Resource Access

Lucas Brutschy
Department of Computer

Science
ETH Zurich

lucas.brutschy@inf.ethz.ch

Pietro Ferrara
IBM Thomas J. Watson

Research Center
pietroferrara@us.ibm.com

Omer Tripp
IBM Thomas J. Watson

Research Center
otripp@us.ibm.com

Marco Pistoia
IBM Thomas J. Watson

Research Center
pistoia@us.ibm.com

Abstract
Given a program whose functionality depends on access to
certain external resources, we investigate the question of how
to gracefully degrade functionality when a subset of those
resources is unavailable.

The concrete setting motivating this problem statement is
mobile applications, which rely on contextual data (e.g., de-
vice identifiers, user location and contacts, etc.) to fulfill their
functionality. In particular, we focus on the Android platform,
which mediates access to resources via an installation-time
permission model. On the one hand, granting an app the
permission to access a resource (e.g., the device ID) entails
privacy threats (e.g., releasing the device ID to advertising
servers). On the other hand, denying access to a resource
could render the app useless (e.g., if inability to read the de-
vice ID is treated as an error state). Our goal is to specialize
an existing Android app in such a way that it is disabled from
accessing certain sensitive resources (or contextual data) as
specified by the user, while still being able to execute func-
tionality that does not depend on those resources.

We present SHAMDROID, a program transformation algo-
rithm, based on specialized forms of program slicing, back-
wards static analysis and constraint solving, that enables the
use of Android apps with partial permissions. We rigorously
state the guarantees provided by SHAMDROID w.r.t. function-
ality maximization. We provide an evaluation over the top
500 Google Play apps and report on an extensive comparative
evaluation of SHAMDROID against three other state-of-the-
art solutions (APM, XPrivacy, and Google App Ops) that
mediate resource access at the system (rather than app) level.
SHAMDROID performs better than all of these tools by a
significant margin, leading to abnormal behavior in only 1
out of 27 apps we manually investigated, compared to the
other solutions, which cause crashes and abnormalities in 9
or more of the apps. This demonstrates the importance of
performing app-sensitive mocking.

1. Introduction
Software systems often rely on external resources to achieve
their functionality. Though access-control policies normally
govern access to sensitive resources [26], once an applica-
tion is granted access to a given resource, it may utilize that
resource in unintended ways. A notable example is mobile
applications, which are often found to release sensitive in-
formation about the user (e.g., the user’s location or date of
birth) or the mobile device (e.g., the device ID) to advertising
and analytics servers without the user’s awareness [15, 21].

Problem Statement We assume that the behavior (or exe-
cution) of an application is parameterized by the resources
(or inputs) it depends on. If two runs of the program read
exactly the same input values, then they are identical. We also
assume that executions are comparable, forming an order ac-
cording to the degree to which they exercise the application’s
intended functionality. As an example, a run that aborts due to
an error condition exercises less functionality than a normal
run through the business logic of the application. Given these
assumptions, our goal is to simultaneously (i) disable access
by the application to sensitive resources, as specified by the
user, and (ii) retain, as best as possible, the application’s func-
tionality that depends on non-sensitive resources. Together,
these two requirements amount to substituting the sensitive
inputs with mock values that exhibit maximal utility, meaning
that they can drive execution along a maximal path.

A concrete instantiation of this problem statement, serving
as the motivation for this paper as well as the focus of its
experimental part, is Android applications. Android is the
most widespread mobile platform. Access by an Android
app to sensitive resources, such as the GPS sensor or device
state, is mediated by a permission system [7]. Permissions are
requested, and granted, at install time. The user either grants
the app all the permissions it asks for, or installation fails.
This forces the user into the choice between (i) not using the
app or (ii) being exposed to privacy threats.

Existing Solutions One approach to the problem of ensur-
ing user privacy is to monitor the behavior of the app and

1 2015/7/20

1 String deviceID = null;
2 if (telephonyManager != null)
3 deviceID = telephonyManager.getDeviceId();
4 boolean invalidDeviceID = false;
5 if (deviceID == null ||
6 deviceID.length() == 0 ||
7 deviceID.equals(”000000000000000”) ||
8 deviceID.equals(”0”)) {
9 TapjoyLog.e(TAPJOY CONNECT,

10 ”Device id is null , empty or an emulator.”);
11 invalidDeviceID = true; }
12 else // Valid device id
13 deviceID = deviceID.toLowerCase();
14 if (invalidDeviceID) {
15 // Creates, stores and reuses a random id
16 }

Figure 1: Code snippet from method init() of class
com.tapjoy.TapjoyConnectCore in the Tapjoy library

prompt the user in the event of a suspicious event. Research
along this direction has led to privacy enforcement solutions
based on information-flow-security analysis [15, 33], and
more recently also to a classification-based approach [32]
that compares between sensitive values and values arising
at release points. In both cases, the monitoring system can
easily be bypassed [28]. Approaches based on information-
flow-security analysis also demand extensive engineering to
constrain run-time overhead, which limits their accuracy and
applicability.

An alternative approach, different from monitoring the
behavior of the app, consists of replacing sensitive values
with mock values. This overcomes both the overhead and
soundness problems that online monitoring suffers from.
Current realizations of this approach operate at the system
level, rather than the app level [1–3, 8]. That is, the mock
value is decided globally, without considering how the app
depends on the given resource and what it assumes about it,
which may cause the app to crash or to continue to run with
unnecessarily reduced functionality.

Tapjoy As an illustration, we refer the reader to Figure 1.
This code snippet is part of the Tapjoy library,1 a widely
used mobile advertising and publishing platform. When
initializing its core connection component, Tapjoy reads the
device identifier and performs some checks to determine if
the identifier is genuine. If not, then Tapjoy creates an ad-hoc
random identifier, stores it permanently, and tracks the device
through it for the future executions as well.

The device identifier is important to Tapjoy, as it consti-
tutes a persistent identity of the device/user across different
apps and sessions. For this reason, Tapjoy explicitly checks
whether an invalid value — in particular, null, the empty

1 http://www.tapjoy.com

string, "0" or "000000000000000" — has been read. A
system-wide mocking approach that is not aware of these
checks, is likely to return a well-formed yet invalid device
ID that would be rejected by Tapjoy. For instance, XPri-
vacy returns "000000000000000", and this is rejected
by Tapjoy. In that case, the device is tracked via a random
ID, which is not persistent through software updates (e.g.,
version upgrades, cache reset, etc) and thus suboptimal.

Our Approach We pursue a mocking approach to ensure
user privacy. Unlike existing mocking solutions, however,
we propose an app sensitive mocking algorithm, such that
mock synthesis is governed by the particular behaviors of the
subject app as well as the assumptions made by the app itself.

We focus on benign rather than malicious application. We
assume the developer of the app to be largely oblivious to
privacy concerns, and reflect convenient (rather than inten-
tionally malicious) coding practices. However, even if the
developer is mindful of privacy issues, developing applica-
tions such that any subset of permissions can be revoked
by any user, demands prohibitive engineering effort. Our
transformation algorithm proposed in this paper addresses
precisely this need.

Adopting an application-specific rather than system-wide
view allows us to explore the notion of maximal input
utility outlined above. This translates into several challenges.
First, we need to select a desirable execution path (e.g., the
one skipping the invalidDeviceId branch in Figure
1). Second, we need to extract path conditions that depend
on the input (e.g., the length and equality checks in the
example). Last, we need to synthesize a mock value that
meets the respective path constraints (e.g., the value "1" in
the example). These challenges are, of course, interconnected.
For example, a desirable path is tractable only if it yields path
conditions that can be modeled and solved.

We present SHAMDROID, a transformation algorithm that
rewrites an Android app to eliminate dependencies on sensi-
tive resources. If successful, SHAMDROID guarantees normal
execution with a built-in bias toward functionality maximiza-
tion. Otherwise, the transformation fails. SHAMDROID is
based on (i) a combined forward/backward slicing algorithm,
(ii) a constraint inference based on the weakest-precondition
calculus, (iii) a specialized iterative algorithm for constraint
solving, and (iv) a rewriting module equipped with parametric
mock libraries.

We report on extensive evaluation of SHAMDROID over
the top 500 free Google Play apps in the United States. In our
experiments, we compare SHAMDROID against three other
approaches (APM, XPrivacy and Google APP OPS) that me-
diate access to permission-guarded functionality at the system
level, and report on manual inspection of a systematically
selected subset of 27 applications. SHAMDROID compares
favorably to the three other approaches: It causes an abnormal
behavior only in one out of 27 apps we manually investigated,

2 2015/7/20

while APM crashed in 17 cases, XPrivacy exposes abnormal
behaviors in 14 cases, and App Ops in 9 cases.

Contributions This paper makes the following principal
contributions:
• Functionality maximization. We pose the problem of

maximizing residual functionality while preventing a pro-
gram from accessing certain external resources it depends
on (Sections 4.1 and 4.2). A concrete challenge that in-
forms this problem definition is privacy enforcement on
a mobile device. An app having the permission to access
sensitive user, device or context information may manipu-
late or release that information in unauthorized ways. This
calls for a solution whereby functionality is gracefully
degraded as the app is blocked from accessing sensitive
resources.
• Algorithmic framework. We provide a general formal-

ization of the problem above, as well as a general algo-
rithmic framework to address it (Sections 4.3 and 5). We
state and prove properties of our framework, and discuss
its theoretical guarantees and limitations.
• Implementation and evaluation. We describe the imple-

mentation and evaluation of SHAMDROID, a transforma-
tion algorithm that replaces sensitive-resource accesses in
Android apps with mock values according to a specifica-
tion (Section 6). The results of our experiments, compar-
ing both quantitatively and qualitatively between SHAM-
DROID and three state-of-the-art permission mediation
solutions, are highly encouraging.

2. Application-Specific Constraints
We proceed by showing a series of examples which show how
applications make specific and potentially mutually exclusive
assumptions about restricted resources. These examples moti-
vate the need for an app-sensitive solution instead of existing
system-level mocking approaches.

1 switch (telephonyManager.getPhoneType()) {
2 case 1:
3 riskBlob. location = (GsmCellLocation)
4 telephonyManager.getCellLocation();
5 case 2:
6 riskBlob. location = (CdmaCellLocation)
7 telephonyManager.getCellLocation();
8 }

Figure 2: Simplified, deobfuscated code snipped from Pay-
Pals RiskComponent

Consistency of observations As a first example, consider
the component com.paypal.android.lib.riskcomponent,
which is included in various very popular applications (such
as the eBay mobile app). The purpose of the component is
to generate a ”Risk Blob”, i.e. a collection of user data (IP

address, phone numbers, location etc.) to be sent to the server
to evaluate fraud risk. It is thereby a big threat to the users
privacy and at the same time not essential to the functionality
of the application.

Figure 2 displays a simplified and deobfuscated piece of
code from this component. The application uses the harmless
and unrestricted API TelephonyManager.getPhoneType()
to determine the type of the phone first. Then, it uses the
restricted API TelephonyManager.getCellLocation() to
extract privacy-critical information from the phone. A mock-
ing approach oblivious to the internal behavior of the ap-
plication will fail to provide suitable mock values here, as
it will crash when the return value is being cast to either
CdmaCellLocation or GsmCellLocation (which are in-
comparable subtypes).

This problem is a simple representative of a variety of
often complex interactions between observable properties
and properties established by the mock, which may not be
inconsistent to ensure correct program behavior. System-level
mocking fails in these situations, while app-level mocking
can adapt to the expectations of the application.

1 String str = telephonyManager.getLine1Number();
2 if (str != null) {
3 if (str .startsWith(”1”) && str.length() == 11) {
4 this . thisPhonesNumber = str.substring(1);
5 }
6 }

Figure 3: com.PrankRiot requires an international format
phone number

1 String str1 = telephonyManager.getLine1Number();
2 if (str1 != null && str1.length() == 10) {
3 String prefix = str1 .substring(0, 3);
4 // initialize the DataManager class
5 }

Figure 4: Code snippet from the method that initializes
DataManager objects

Region and formatting properties Apps are often targeted
at a specific region or language and therefore rely on assump-
tions that are specific to that region. Consider for instance the
method TelephonyManager.getLine1Number(), which re-
turns the phone number of the device as a string and is
guarded by the READ PHONE STATE permission. The format
of the returned string depends on (1) the format of phone
numbers in the target region of the app and (2) the exact
representation that the device choses convert that number into
a string (e.g. double-zero-prefix, plus-prefix etc.). Consider
now the snippet of code in Figure 3 from app com.PrankRiot

3 2015/7/20

in class com.TapFury.Activities.CreatePrank. The app
checks if the phone number string consists of 11 characters
and starts with a 1 (the international prefix for U.S. num-
bers). In contrast, the app com.webascender.callerid as-
sumes that the phone number is made by 10 digits, and it
assumes that the first three digits represent the local prefix
(see Figure 4) to enable the main functionality of the app.
Both these apps assumes an U.S. phone number, but they
expect different formats. Therefore, when SHAMDROID re-
vokes the READ PHONE STATE permission, we need to create
app specific values, and a system solution might enable the
functionality of only one of the two apps.

Cross-application interaction Using the GET TASKS per-
mission, and a call to ActivityManager.getRunningTasks
an application reveals all activities currently running on the
users device - which is a common and well-known security
and privacy threat [10]. However, some applications make
specific requirements about the return value of this API,
making system-level mocking hard. For example, com.oovoo
checks whether a certain activity of its video chat application
is the top activity (currently displayed activity) through the
above method call. A mocking approach that preserves the
functionality of the application, must include the required ac-
tivities class name as the top activity of the currently running
tasks. For this, the an app-level mocking solution must ana-
lyze the application and observer this specific requirement.

Persistent storage Using the permissions GET ACCOUNTS

and AUTHENTICATE ACCOUNTS, applications can list ac-
counts and add their own accounts. Several applications
require the mocking approach to present an existing ”mock”
account to the application to work correctly. A mock account
object provided by a system-level mocking approach will
not satisfy the invariants established by the account initial-
ization code of the application. For example, the application
com.forshared requires the account to contain two fields
totalSpace and freeSpace, which are string values which
must be parsable as a Long, for the application not to crash, as
seen in Figure 5. SHAMDROID will infer these requirements
and create corresponding mocks.

1 this .mTotalSpace =
2 Long.valueOf(this.mAccountManager.getUserData
3 (this .mAccount, ”totalSpace”)).longValue();
4 this .mFreeSpace =
5 Long.valueOf(this.mAccountManager.getUserData
6 (this .mAccount, ”freeSpace”)).longValue();

Figure 5: Code snippet from the method that initializes
DataManager objects

External resources When restricting the connection to the
network, apps shall not be allowed to create connections
using java.net.URL.openConnection(...). However, many

applications require the execution to simple HTTP protocols
to work correctly, even if these are not essential to the func-
tionality. Following the REST-principle, applications often
verify the correctness of their operations by observing the
status code returned by the connection. While most oper-
ations expect the 200 HTTP status code, other operations
require other status codes - For example, whatsapp requires
the result of certain calls to be 204 (successful operation, no
content). Similarly, de.gmx.mobile.android.mail requires
the response of a HTTP request to be 201 (successful oper-
ation, content created). This also applies to other properties
of HTTP responses. For example, com.evernote.android
requires the response of an HTTP call to be produced by
Apache Thrift - It checks that the content type of the response
is ”application/x− thrift”.

Postcondition strengthening In addition to the previous
examples, many apps make assumptions on the values re-
turned by APIs methods which are not guaranteed by the
postcondition of the method. While such assumptions are not
necessarily mutually exclusive, they show that system-level
solutions require a lot of manual investigation, as well as
maintenance, to provide values that work with most appli-
cations. Instead, SHAMDROID investigates assumptions and
generates mock values fully automatically.

We investigated various bug reports in the GitHub reposi-
tory of the system-level mocking approach XPrivacy,2 and
found various reports that exposed crashes because of such
assumptions on Android APIs. For example, WhatsApp as-
sumes that a nonempty list of email accounts is returned
by AccountManager.getAccounts, and it crashes when
XPrivacy returns an empty list.3 Analogously IM+ crashes if
AccountManager.getAccountsByType(String) (guarded
by GET ACCOUNTS) returns an empty list of accounts.4 Finally,
certain value formats change across Android versions. For in-
stance, the format of WifiSsid has changed across versions
4.1 and 4.2. Therefore, XPrivacy caused the crash of many
apps, because, when TelephonyManager.getNetwork-
Operator() was called, it returned a mocked value that
was not consistent with this new format.5

3. Technical Overview
In this section, we walk the reader through the main steps of
our approach.

3.1 Running Examples
In addition to the Tapjoy example of Figure 1, we describe
here another real-world running example. We shall refer to
these two running examples throughout this paper to illustrate
technical discussion points.

2 https://github.com/M66B/XPrivacy
3 https://github.com/M66B/XPrivacy/issues/164
4 https://github.com/M66B/XPrivacy/issues/1604
5 https://github.com/M66B/XPrivacy/issues/116

4 2015/7/20

https://github.com/M66B/XPrivacy
https://github.com/M66B/XPrivacy/issues/164
https://github.com/M66B/XPrivacy/issues/1604
https://github.com/M66B/XPrivacy/issues/116

White Pages Current Caller ID & Block Consider now
the code in Figure 4 from the Current Caller ID & Block
application (com.webascender.callerid), one of the most
popular free applications in the United States with 5M to
10M installs. This application uses the READ PHONE STATE

permission to acquire the telephone number of the user and
validates that it has exactly ten digits (which is true only
for US numbers). In this case, it extracts the prefix of the
phone number (that is, the first three digits). Only then the
DataManager class is initialized and the application provides
its functionality, blocking and identifying incoming calls.

Though it accesses private data, there is no strict need
for that data for the core functionality of Current Caller ID
& Block. In fact, even with a mock phone number it would
be possible to identify and block incoming calls. However,
the mock number has to satisfy the constraints set by the
application. Also note that the 10-digit constraint on the
phone number is specific to the US market. An application
from a different country may enforce different restrictions on
the phone number. This comes to highlight the need for an
app-sensitive mocking solution.

3.2 Step I: Constraints Inference
The first step is to characterize how the app accesses re-
sources. In theory, the app may perform full validation of
the values it obtains, thereby complicating attempts to mock
the actual value. In practice, however, the check is limited
to certain specific local tests as illustrated in Section 3.1 on
real-world examples. It should also be observed that vali-
dation tests often vary across applications. As an example,
one app may verify that it is not running atop an emulated
environment by ascertaining that the IMEI is not a string of
0’s, as in the Tapjoy example, while another app may use the
IMEI to validate manufacturer information, which is encoded
in the IMEI prefix. In light of this observation, which we
confirm experimentally in Section 6, there is the need for
application-specific mock synthesis.

The first goal is to collect sufficient constraints to avoid
bad executions, wherein the application crashes or error-
handling code (such as writing to the error log) is executed
in place of the core functionality. Concretely, SHAMDROID
considers a code path as being bad if it leads to a bad program
point: a program point where (i) an exception is thrown, or (ii)
a well known error-handling method is invoked. In Figure 1,
TapjoyLog.e(. . .) is called, which in turn invokes the built-
in android.util.Log.e(. . .) error-logging method, thereby
rendering the constraints listed above — of synthesizing a
mock value that is neither null, nor empty, nor a 0, nor a
sequence of fifteen 0’s — necessary. This leads to infer the
boxed constraints in the left part of Figure 6.

Beyond avoiding bad constraints, which is essential,
SHAMDROID further attempts to synthesize a mock value
that maximizes the core functionality; that is, while there
are different possible values that guide execution away from
error handling or crashing, in practice these values may have

different grades of utility. Some lead to a more complete
execution of the application’s business logic than others.

As an illustration, we refer to Figure 4 where the phone
number is retrieved via the getLine1Number() call. This
code is solid, and there is no bad constraint since it checks
if str1 is not null before accessing it. However, executing
lines 3-5 is noticeably preferable as discussed in Section
3.1. A concrete way of capturing this, which SHAMDROID
applies, is to consider uses of the resource value along
different code paths. Intuitively, given two paths that both
execute normally, if one of the paths makes more use of
the obtained value, then it is more likely to perform the
actual logic that depends on that value. In Section 6.3, we
demonstrate that this heuristic is highly effective. In Figure
4, str1 is used at line 3, and so executing this branch of the
if statement at line 2 is preferable, which implies that str1
should not be null and made by ten digits.

3.3 Step II: Constraint Solving
The goal of our constraint solving is to satisfy as many as pos-
sible of the usage constraints (which capture the conditions
that drive execution along a desirable path), while simulta-
neously refraining from violating any of the bad constraints
(which ensure that bad execution paths are avoided). SHAM-
DROID partitions the constraints into clusters according to a
relation detecting possible conflicts between constraints. A
given cluster ideally contains constraints that are mutually
consistent. In practice, SHAMDROID deliberately underap-
proximates the conflict relation to improve the performance,
making it possible for a given cluster to contain contradictory
constraints.

However, since the conflict relation is an underapproxima-
tion, if it states that two constraints are conflicting, then they
cannot belong to the same solvable cluster. On the other hand,
this relation might fail to prove conflict in some cases. There-
fore, it may yield a cluster that is larger than the maximal
cluster of satisfiable constraints. However, if the constraints
in the cluster are consistent and a solution is obtained, this
means that a maximal set of mutually consistent constraints
has been discovered and solved. In this case, the mocking
solution computed by the constraint solver simultaneously
avoids all the bad constraints while maximizing functionality
per the usage constraints (see Theorems 1 and 2). Our experi-
mental findings, listed in Section 6, show that in over 90% of
the cases SHAMDROID is indeed able to converge on a fully
optimal mock implementation.

In the minority of other cases, the second-largest cluster
is tried, and so on, until we obtain suboptimal (yet anomaly-
avoiding) mock data.

The concrete values obtained as a solution to the constraint
system usually avoids the bad program points (i.e., exception-
raising and error-handling code). Back to our examples, a
solution for Tapjoy that avoids the bad constraints is "1" as
device ID (as shown in the central part of Figure 6), while

5 2015/7/20

1 deviceId = getDeviceId();

2 if (deviceId == null ||
3 deviceId.length() == 0 ||

4 deviceID.equals(”0..0”) ||

5 deviceId.equals(”0”)) { ... }

deviceId 7→ ”1”

1 deviceId = ”1”;
2 if (deviceId == null ||
3 deviceId.length() == 0 ||
4 deviceID.equals(”0..0”) ||
5 deviceId.equals(”0”)) { ... }

Step I: Constraint Inference −→ Step II: Constraint Solving −→ Step III: Code Rewriting

Figure 6: High-level flow of the SHAMDROID System

for the example in Figure 4 a possible solution is a phone
number made by ten 0 digits.

3.4 Step III: Code Rewriting
After collecting the constraints and finding a solution that is
consistent with at least the constraints necessary to avoid bad
program points, the third and final step is for SHAMDROID to
impose the mock implementation on the original code. This is
achieved via app-level code rewriting in the form of bytecode
editing.

SHAMDROID replaces the source expression (i.e., the
resource read) with another expression evaluating to a
mock object based on the type of the actual value re-
turned by the original expression. Hereby our solution
is not restricted to primitive data but can handle objects
and complex data structures as well. For instance, the call
to telephonyManager.getDeviceId() at line 3 of the
Tapjoy example is replaced with "1" (see right side of
Figure 6), while telephonyManager.getLine1Number()
at line 2 of Figure 4 is replaced by the string constant
”0000000000”. Example sof complex data structures SHAM-
DROID needs to mock are (i) the list of LocationManager
objects returned by TelephonyManager.getProviders(),
(ii) the CellLocation subtype (either GsmCellLocation
or CdmaCellLocation) returned by TelephonyManager.
getCellLocation, and (iii) the list of NeighboringCell-
Info objects returned by TelephonyManager.getNeigh-
boringCellInfo().

4. Formal Setting
The concrete domain Σ is made out of an environment,
Env : Var → Val, which relates variables to their values,
and an input valuation function, InpEnv : Inp→ Val, which
relates each input identifier to a value. We thus have: Σ =
Env× InpEnv. Note that certain inputs (or resources) change
their value over time. For example, the GPS sensor potentially
returns different location reads when sampled at different
points. This could potentially complicate our formal setting.
Pleasingly, however, we can soundly assume that, as long
as the program has not sampled the input, the value of
that input has not changed. If, for instance, the program
processes a location read at a given state, then a subsequent

location change will have no effect on the processing done
by the program, until/unless the location is read again. This
observation yields a persistent notion of InpEnv.

Since in our model the only source of nondeterminism
is the external input environment, our concrete semantics
is a function from programs p ∈ St and input valuations
in ∈ InpEnv to (single) traces (rather than sets of traces).
A trace, as is standard, is a sequence of states τ ∈ Σ~+,
where Σ~+ denotes the set of all concrete traces. Formally,
SStJp, inK = τ .

Note that our theoretical model only requires deterministic
per-input execution, which enables modeling nondetermin-
ism as an external input. Further, the underlying call-graph
representation is sound, accounting for all possible orders of
asynchronous/concurrent execution.

4.1 Bad Executions and Functionality
The purpose of our analysis is to produce input valuations
such that we (i) avoid bad executions (e.g., executions with
erroneous states), and (ii) maximize the program functionality
(e.g., the execution exercises the core business logic).

First of all, we suppose that an isBad(τ) predicate is
provided. Given an execution trace τ ∈ Σ~+, it holds iff the
execution is bad. We lift this predicate to input valuations by
defining isBadp(in)⇔ isBad(SStJp, inK).

Then, we need to represent the utility of a given execu-
tion. For instance, we consider an execution that immedi-
ately quits the program (e.g., because it discovered that the
device identifier it received is bogus) less useful than one
going through all the main components. Given a program
p, utp : InpEnv → Ut returns the utility level of the input
valuation in. We suppose that Ut is equipped with a total
order ≤Ut. In our model, u1 ≤Ut u2 represents that level u2
is considered more useful than level u1.

Note that our approach is parametric in both isBad and
utp. Section 4.3 will present the specific instances we adopt
in SHAMDROID.

4.2 Property of Interest
Input-dependent bad executions We define a bad execu-
tion to be dependent on a particular input if there is another
execution of the same program with a different input that

6 2015/7/20

is not bad. For a program p, this is modeled by predicate
badInDepp, that, given an input identifier, holds iff the bad
execution depends on the given input identifier, that is, if
there exists a different value for the given input identifier that
produces an execution that is not bad. Formally,

badInDepp(id)
m

∃in ∈ InpEnv : isBadp(in)
∃v ∈ Val : ¬isBadp(in[id 7→ v])

Input-dependent utility Different input valuations may en-
joy different utility. Our approach is aimed at maximizing the
functionality of the app; that is, we aim at an input valuation
that maximizes utility.

First of all, we define a function that returns the maximal
utility level of a program p w.r.t. the total order≤Ut. Formally,

maxUtil(p) = max
in∈InpEnv

utp(in)

We then define how much the utility depends on a given
input identifier id. Since≤Ut is a total order, we suppose that
function diff : (Ut×Ut)→ Q returns the difference in terms
of utility between the two levels. In particular, diff (u1, u2)
returns how many elements of Ut are between u1 and u2
if u1 is above u2. If u1 is equal to or below u2, it returns
zero. Relying on diff , we define utilDepp : Inp → Q that,
given an input identifier, returns how many utility levels can
be gained by choosing the right value for the given input
identifier. Formally,

utilDepp(id) = max
in ∈ InpEnv
v1, v2 ∈ Val

diff

(
utp(in[id 7→ v1]),
utp(in[id 7→ v2])

)

Since we suppose that inputs are independent, an input
valuation that maximizes the utility gain for each input
identifier is also a valuation that maximizes the utility of
the program. This is proved in the following lemma.

Lemma 1. Let p be a program and in ∈ InpEnv an input
valuation, such that ∀id ∈ Inp :

utilDepp(id) = max
v∈Val

diff (utp(in), utp(in[id 7→ v])) (1)

Then utp(in) = maxUtil(p)

Goal To summarize in terms of our formal notation, given
a program p, our approach aims at finding an input valuation
in ∈ InpEnv such that (i) it does not produce a bad execution
if it is input dependent (∀id ∈ dom(in) : badInDepp(id)⇒
¬isBadp(in)), and (ii) it maximizes functionality; that is, it
produces an execution with a maximal utility level (utp(in) =
maxUtil(p)).

4.3 Model
Until this point, we have not yet specified how bad execu-
tions and functionality are decided. Our framework may be
instantiated in different ways, enabling different choices how
to fix these judgments.

Bad executions In the SHAMDROID instantiation, exe-
cutions are considered bad if they contain a bad program
statement. That is, an execution is considered bad if it ei-
ther (i) throws an exception or an error (i.e., throws a
Throwable); or (ii) invokes standard error-logging APIs
(Log.w(. . .), Log.e(. . .) or Log.wtf(. . .)). There-
fore, given a set of bad program points badPP, we have that:

isBad(τ)⇔ ∃l ∈ badPP : l ∈ τ (2)

We consider executions such that ¬isBad(τ). In our model,
this means that ∀l ∈ badPP : l /∈ τ by negating Equation 2.

As defined in Section 4.2, the foremost goal of SHAM-
DROID is to build up an input valuation such that input-
dependent bad executions are avoided. Therefore, we want to
compute an in ∈ InpEnv such that ∀id ∈ dom(in) :

badInDepp(id)⇒ ∀l ∈ badPP : l /∈ SStJp, inK (3)
Running Example: In the Tapjoy code (Figure 1), the
bad program point is the statement at line 9 that invokes
Log.e(. . .). SHAMDROID seeks to avoid it by finding an
input that directs execution toward the else branch.

Functionality To quantify (or compare) functionality
across different executions (or due to different inputs), SHAM-
DROID adopts the heuristic of statically counting usage
points. A usage point is a statement that consumes — either
directly or transitively — the value of a resource. The utility
we associate with an input is then proportional to the number
of usage points that the input’s respective execution trace
goes through. Intuitively, this means that the application has
maximized its usage of the resource value (along a normal
execution path), and so the likelihood that our choice of mock
value has blocked any dependent functionality is minimal.

We represent by utPP the set of usage points, and a
utility level by a set of usage points (Ut = ℘(utPP)). The
utility level of an input valuation is defined by the usage
points its execution contains. Formally, utp(in) = {l : l ∈
SStJp, inK ∧ l ∈ utPP}. A weak total order is then formed
by comparing cardinalities: u1 ≤Ut u2 ⇔ |u1| ≤ |u2|.

As defined in Section 4.2, the goal of SHAMDROID is to
build up an input valuation that produces an execution that
maximizes functionality w.r.t. all input identifiers. Therefore,
we want to compute a in ∈ InpEnv such that ∀id ∈ dom(in)
we have that utp(in) is equal to utilDepp(id).
Running Example: The usage points in the White Pages
example (Figure 4) are lines 2 (twice), and 3, since these
program points (transitively) access the input returned by
getLine1Number(). Indeed, the execution switching into
the then branch is more desirable, as it involves all three of
these usage points.

5. Constraint Inference and Solving
In this Section, we present how our system computes an
input value that (1) does not expose any input-dependent bad
executions, and (2) exposes as many usage points as possible.

7 2015/7/20

5.1 Parameters
To compute the mock value, the SHAMDROID algorithm has
to collect constraints along different execution paths. This
necessitates (i) a model of the heap, such that aliasing queries
can be answered to track data flow through object fields
and arrays, as well as (ii) a model of the software system’s
lifecycle.

SHAMDROID is parametric in the choice of heap and
lifecycle models. Both are factored into the call-graph repre-
sentation of the target program [19]. As such, SHAMDROID
is parametric in the choice of supporting call graph.

5.2 Slicing
Since in Android inputs are read via designated method calls
(e.g., getDeviceId()), we have well-defined slicing criteria.
We compute a forward slice starting from each program point
requiring a permission. From the resulting slice, we collect
all program points that are marked as either bad or usage.

We then compute a backward slice starting from these
points. In this way, we obtain a slice of the program that
represents how a specific input may influence the execution
of a bad/usage point. Given a program p, an input identifier
id and a program point pp, we represent by slice(p, id, pp)
the function that returns this slice.

5.3 Constraint Inference
Our analysis aims at inferring constraints that are strong
enough to avoid a bad program point or reach a given usage
point. Therefore, given a program p and a program point l,
we apply a standard weakest-precondition calculus to infer
the constraint c that has to be satisfied by the input of p to
reach l. We denote this by wp(p, l) = c.

Given an input identifier id ∈ Inp, a program p and a
program point l, SHAMDROID computes

c = wp(slice(p, id, l), l) (4)
Since the weakest-precondition calculus [12, 14, 20] infers

the weakest constraint that is sufficient in order to reach l,
we have that ∀in ∈ InpEnv:

evalC (c, in)⇔ l ∈ SStJp, inK (5)
where evalC is a function that, given a constraint over the
input and an input valuation, returns true iff the given input
valuation satisfies the given constraint.

Note that the input flowing into the program might be not
only a primitive (e.g., numerical or string) value, but also
a structured object (e.g., a Location containing latitude,
longitude and altitude values). The values stored in the
object might be retrieved by field accesses and method calls.
Therefore, SHAMDROID adopts a symbolic approximation
of the object that is later used to mock it.

Further, observe that constraints need not be collected
directly for heap locations, which simplifies our weakest-
precondition reasoning. The reason is that inputs stored into
the heap must be read into the local state of the executing
process (or thread) before being accessed (tested or used). As

such, the only requirement with regard to the heap is to track
flow of input values via the supporting pointer analysis, where
constraints refer to environment values (i.e., local variables).

The weakest-precondition calculus is necessarily incom-
plete to ensure the convergence of the analysis, since the do-
main is possibly infinite. Therefore, when we impose bounds
on the domain, we infer a constraint c′, such that

evalC (c′, in)⇒ l ∈ SStJp, inK (6)
That is, a constraint c′ computed for the bounded domain
is stronger than the weakest constraint c, and thus strong
enough to reach the given program point. On the other hand,
there could exist an input valuation that leads to the given
program point, but it is not covered by the inferred constraint
[11].

For a bad program point, we are interested in constraints
that ensure that, if satisfied, the bad program point is never
executed. Dually, for a usage point, we are interested in
proving that, given a constraint, we expose executions that
contain that program point.

Therefore, given a program p and a program point l,
through our weakest-precondition calculus we obtain a con-
straint c that satisfies the soundness requirement of reaching
usage program points as stated below.

Lemma 2. Given program p and constraint c′ computed by
SHAMDROID for arriving at a program point l through an
input id, c′ guarantees that l will always be executed.

Beyond the soundness requirement asserted above, we
state below a stronger result, guaranteeing that a bad point is
not visited under the assumption that the constraint produced
by the weakest-precondition calculus is complete.

Lemma 3. Given program p and constraint c computed by
SHAMDROID for arriving at a program point l through an
input id, ¬c guarantees that l will not be executed.

According to our experiments, described in Section 6,
the weakest-precondition calculus we formulated is rarely
incomplete in practice for bad program points. The reason is
that typically sanity checks on inputs are performed within
if statements rather than in loops or in recursive methods
(cf. Figure 1), and the same applies to implicit exceptions.
In this common scenario, the weakest-precondition calculus
achieves completeness.
Running Example: Consider the Tapjoy example in Fig-
ure 1. The bad program point at line 9 is reached if id =
null ∨ id.length = 0 ∨ id = ”0 · · · 0” ∨ id = ”0”,
where id represents the device identifier retrieved through
getDeviceId at line 3. Negation of this constraint leads to
id 6= null ∧ id.length 6= 0 ∧ id 6= ”0 · · · 0” ∧ id 6= ”0”

Switching to Figure 4, the first usage point at line 2
(str1! = null) is unconstrained. Instead, the second usage
(str1.length() == 10) is guarded by ph 6= null (that
is, the first part of the conjunct), where ph represents the
phone number retrieved by getLine1Number() at line 1.
Finally, the usage point at line 3 is guarded by ph 6= null ∧

8 2015/7/20

ph.length = 10 (that is, the Boolean condition of the if

statement).

5.4 Iterative Constraint Solving
Constraint solving simultaneously addresses the two goals of
avoiding bad points and maximizing usage points.

Bad constraints Given an input identifier id, SHAMDROID
computes the conjunction of all the constraints obtained to
avoid bad program points that are input dependent on id.
Formally, badc =

∧
l∈badPP ¬wp(slice(p, id, l), l). Then,

if we find an in ∈ Inp such that evalC (badc, in) holds, and
if the weakest precondition calculus is complete on all the
slices of bad program points, we have that ∀l ∈ badPP :
l /∈ SStJp, inK by Lemma 3, that meets the goal defined in
Equation 3.

Usage constraints In order to achieve the second goal,
given an input identifier id, for each usage point l ∈ utPP
in our model defined in Section 4.3 we collect the constraint
clid = wp(slice(p, id, l), l). For each clid satisfied by an
input valuation in, we know that a usage point will be
executed by Lemma 2. This means that the execution is higher
relatively to ≤Ut than an execution that does not satisfy it.

However, the conjunction
∧

l∈utPP c
l
id may not be sat-

isfiable, since it potentially contains contradictory clauses.
Following our goal of reaching as many usage points as pos-
sible, we try to find an assignment to the variables in our
constraint systems, such that badc is satisfied and as many as
possible of the constraints clid are satisfied.

Though this problem is reducible to a Max-SMT instance
[25], in our practical experience (and as we will discuss in
Section 7), this solution does not scale up to the number of
constraints we obtain from real-world apps. Therefore, in our
solution, we leverage the particular structure of the inferred
constraints to derive a faster, though approximate, solution
that is often also optimal in practice. The guiding intuition is
that in many cases contradictions between usage constraints
can be detected straightforwardly at the syntactic level. For
example, given the program

if (c) then [...]
g1 else [...]

g2

and usage points g1, g2, we obtain the constraints c and ¬c,
which are visibly contradictory.

Our algorithm, which exploits this property, is based on
the idea of computing a syntactic underapproximation, ./, of
the conflict relation over constraints:

c1 ./ c2 =⇒6 ∃σ.σ |= c1 ∧ c2
That is, the constraints are derived directly from the syntactic
checks in the program. Using ./, we define an algorithm
that clusters a set of constraints accordingly, as specified in
Figure 7. For instance, suppose that UsageConstraints =
{c,¬c, c′}, and that the for loop at line 2 iterates the
constraint in this order. Then, at the first iteration we obtain
{∅, {c}}, at the second {∅, {c}, {¬c}}, and at the third
{∅, {c}, {¬c}, {c′}, {c, c′}, {¬c, c′}}.

1 LastClusters = {∅}
2 for (c1 ∈ UsageConstraints):
3 NextClusters = ∅
4 for (cl ∈ LastClusters):
5 NextClusters = NextClusters
6 ∪{{c2 ∈ cl|c1 ./ c2} , {c2 ∈ cl|c1 6./ c2} ∪ {c1}}
7 LastClusters = NextClusters
8 return LastClusters

Figure 7: Constraint clustering algorithm

Iterative Solving Our iterative constraint solving algorithm
starts from the conjunction of badc with the biggest cluster
returned by the algorithm in Figure 7. If it succeeds, it returns
an input valuation in ∈ InpEnv that satisfies this constraint.
Otherwise, it tries with a smaller cluster, and so on.

Theorem 1. If our iterative constraint solving algorithm
returns a solution in, and the weakest-precondition calculus is
complete on all the slices of bad points, then input-dependent
bad executions are avoided.

Theorem 2. If our iterative constraint solving algorithm
returns a solution in at the first iteration, then in produces an
execution with maximal functional level.

Running Example: Given the constraints we described in Sec-
tion 5.3 for the example in Figure 4, our syntactic conflict re-
lation ./ soundly detects that there is no conflict between the
inferred constraints. Therefore, we obtain a cluster containing
all the usage constraints. These are solved by SHAMDROID
as the constant string ”0000000000”.

6. Experimental Evaluation
In this section, we present and discuss first a quantita-
tive and then a qualitative evaluation of SHAMDROID.
We focus in particular on the READ DEVICE STATE per-
mission (that mediates access to device/user identifiers,
in particular the IMEI) and the two location permissions
ACCESS COARSE LOCATION and ACCESS FINE LOC-
ATION (that mediate access to the GPS sensor), which figure
most prominently (by a far margin) in privacy violations
[15, 21]. We compare SHAMDROID against the three main
implementations of permission mediation in use in the An-
droid community.

First of all, as a baseline for our evaluation, we perform
simple revocation of permissions by rewriting the manifest
file of an application. In our experiments, we used APM [2]
for this purpose. At runtime, the Android system will emit
a SecurityException whenever a restricted resource is
used. To resume functionality, an application must handle
this exception properly.

Then we compare against Google’s APP OPS [3], which
allows the revocation of certain permissions by returning
fixed mock values. APP OPS was introduced as an hidden

9 2015/7/20

Figure 8: The architecture of SHAMDROID

feature in Android 4.3, but then removed starting from
Android 4.4 KitKat. In addition, APP OPS allows to revoke
only few permissions, and in particular it does not allow the
user to restrict accesses to the IMEI. Therefore, we can only
partially compare it with SHAMDROID.

Finally, we study XPrivacy [1], which — to the best of
our knowledge — is the most popular and mature Android
fixed mocking solution. In fact, the free version of XPrivacy
in the Android marketplace has between 100K and 500K
installs and more than 4.6K evaluations, even though it
requires rooting of the device. In addition, XPrivacy won the
BlackDuck “2013 Open Source Rookie of the Year” award.

Unfortunately, further comparison of SHAMDROID against
recently published solutions [21] could not be performed
because we were unable to retrieve the corresponding experi-
mental data6.

In Section 6.2, we show that SHAMDROID finds solutions
to both bad and usage constraints in most cases, and that
XPrivacy fails to satisfy these constraints in many cases. In
Section 6.3 we show that these properties result in a better
experience for the user through more functional applications
in a permission restricted setting.

6.1 Implementation
Figure 8 summarizes the key implementation details of the
SHAMDROID system. SHAMDROID receives as input (i) an
Android application as Dalvik bytecode and (ii) a permission
to be revoked. The output is a transformed version of the
input application that does not require the input permission.
Our system consists of four pieces of functionality.

In our code implementation, we have instantiated the pa-
rameters described in Section 5.1 as follows: For the call
graph and pointer analysis, we utilize the type-based con-
struction algorithm [31], which is conservative and scalable.

6 [21] support only apps compatible with Android 2.1, while the apps
we analyzed are compatible with Android 4.3. In addition, we were not
successful in communicating with the authors to obtain the benchmarks they
used.

For lifecycle modeling, we utilize the same lifecycle model as
[16], which essentially treats the different event handlers (e.g.,
onStart, onResume, etc) as control-flow entry points.

1. Preprocessing Given the compiled Android application,
SHAMDROID retargets the Dalvik bytecode to JVM bytecode
with the help of the dex2jar tool. The resulting JAR file is
then loaded into WALA [4] together with an unimplemented
version of the Android API. This JAR is used during Android
Development. SHAMDROID generates intra-procedural con-
trol flow graphs, and atop these a global call graph. We then
use built-in WALA facilities to generate an interprocedural
program dependence graph [22], which serves for slicing. Re-
lying on the permission/API mapping provided by PScout [7],
we identify the program points requiring a given permission.

2. Slicing and Inference As described in Section 5.2,
SHAMDROID applies WALA context-sensitive forward thin
[29] and backward slicing algorithms. Each of the usage
and bad program points ` serves as the seed of a backward
analysis that computes the set of constraints that must be
satisfied by the values returned by the method requiring the
permission in order to reach `. This is mostly an application
of the assignment rule of weakest-precondition calculus, as
described in Section 5.3. The backward analysis is path sen-
sitive, and is defined as an IFDS problem [27]. In practice,
SHAMDROID computes an interprocedural slice up to a fix-
point over a 0-CFA call-graph representation without any
depth bound [31]. SHAMDROID records when the backward
analysis has to give up in terms of completeness to ensure
convergence. In this case, the user might be notified that the
solution of the bad constraints might not ensure that a bad
point is avoided as discussed in Section 5.3.

For improved accuracy, our backward analysis utilizes
built-in models for certain Android APIs. This approach is
commonly adopted when analyzing Android applications [6]
since the direct analysis of these APIs is infeasible given the
state of the art in static analysis, because of the intricacies of
the Android implementation, in particular the frequent use of
native method calls.

3. Constraint Solving SHAMDROID applies the iterative
constraint solving approach described in Section 5.4. The
constraints are all encoded into SMT-LIB form and fed into
a constraint solver. Specifically, SHAMDROID makes use of
the Z3 string theory [13, 35]. It can handle (i) numerical con-
straints, (ii) string constraints (string equality, numerical con-
straints over the string length and the predicates StartsWith
and EndsWith), and (iii) subtyping constraints (and in partic-
ular, checking if a given object is of a given type).

4. Postprocessing The solution of these constraints pro-
vides us with the values that can be used to replace the method
calls requiring the permission. Therefore, we modify the byte-
code (through WALA’s SHRIKE) and consequently obtain a
new JAR file. To simplify synthesis of mock values, SHAM-
DROID has available factory methods for different types of

10 2015/7/20

Apps 500
Apps perm. 310
Bad constr. 126
Use constr. 2170
Sat. use constr. 1146
Apps w. bad constr. 60
Apps w. use constr. 156

Sol. bad. apps 58
Sol. use apps 141
Sol. bad. constr. 122
Sol. use const. 1117
XPrivacy sol. bad. apps 45
XPrivacy sol. use constr. 41

Table 1: Quantitative analysis, reporting the number of ana-
lyzed apps, bad and usage constraints, and solved constraints
by SHAMDROID and XPrivacy.

private values, including for instance Location. The factory
methods expose parameters per the constraints the solver may
compute (e.g., setting a particular value for the Location

object’s longitude or latitude fields). Finally, the instru-
mented Java bytecode is converted back to Dalvik (again,
using jar2dex), and then injected into the original APK.
We then overwrite the APK’s manifest file, removing the
revoked permission from the list of requested permissions.
Last, SHAMDROID signs the resulting APK to enable its
installation and deployment.

6.2 Quantitative Comparison
We conducted our experiments on a computer with 4 Octa-
core Intel Xeon E5-4627 3.30 GHz CPUs and 256GB RAM
atop version 14.04 of Ubuntu Linux and the Oracle 1.7.0 59
JDK. In the experiments, we applied SHAMDROID to the top
500 free Android apps in the United States as of June 2014.
We ran 32 instances of SHAMDROID in parallel.

The whole process took roughly 46 minutes in total, and
71.43 seconds per app on average. This measurement reflects
the complete workflow (that is, from the initial dex2jar
translation to the final repacking of the mocked app). We set
a 30-minute timeout that was triggered only by 2 apps.

Table 1 reports the results of the analysis. Out of 500 apps,
310 apps (row apps perm.) require permission to access the
location or the IMEI. We infer 126 constraints about bad
program points (row bad constr., 0.4 per app). SHAMDROID
was always complete in inferring them. This ensures that
if we are able to solve the constraints, the bad point is not
executed as proved in Lemma 3.

The experimental data confirms our hypothesis that in
practice, bad points are often governed by a small, finite
set of integrity checks expressed as a (nested) conditional
structure, and not inside loops or recursive calls. Therefore,
applying a bounded weakest precondition calculus should
have little overall effect on the precision of our approach in
practice.

In addition, we infer 2170 usage constraints (row use
constr., 7.0 per app), out of which 1146 constraints (row
sat. use constr., 3.6 per app) form a part of a maximal
cluster of satisfiable usage constraints. Many usages of the
resources protected by a permission were unconstrained
(e.g., they do not return a value), and therefore we obtained

60 apps with bad constraints (row apps w. bad. constr.),
and 156 with usage constraints (row apps w. use constr.).
SHAMDROID was able to successfully find a solution for 58
apps producing bad constraints (96.7%) solving 122 (row
sol. bad. constr.) out of 126 bad constraints (96.8%), and
an optimal mocked value for 141 apps producing usage
constraints (90.4%) solving 1117 (row sol. use constr.) out
of 1146 usage constraints (97.4%).

On average, SHAMDROID produces 4.54 different mock
return values for each method guarded by a permission.
For example, it generates 11 different mock device driver
IDs, 10 mock phone numbers, and 7 different results for
getLastKnownLocation().These all point to the need for a
specialized mocking approach (as opposed to system-wide
mocking). In some other cases, fewer mock values are needed.
For example, the getCellLocation() method call yields
only two mock return values. These satisfy the mutually
exclusive constraints shown in Figure 2. Even in this case,
where only two mock values are generated, a system-wide
approach is insufficient as is clear from Figure 2.

In order to compare SHAMDROID and XPrivacy, we ex-
tracted the mock values by inspecting the XPrivacy imple-
mentation 7.

We check if these values satisfy the bad constraints as
well as the maximal cluster of usage constraints. As we
demonstrate below, in the qualitative discussion (Section 6.3),
violations of bad constraints often translate into abnormal
runtime behavior, if not a crash, and so this comparison is
instructive. The fixed mock values produced by XPrivacy
satisfy the bad constraints posed by 45 apps (row XPrivacy
sol. bad. aps., 75.0% vs 96.7% by SHAMDROID) and the
maximal cluster of usage constraints posed by 41 apps (row
XPrivacy sol. use constr., 26.3% vs 90.4% by SHAMDROID).
Finally, based on the performance results, we conclude that
SHAMDROID is able to scale up to industrial apps.

6.3 In-depth Analysis
In our second set of experiments, we validate whether solv-
ing more constraints indeed leads to preservation of more
functionality in practice. Therefore, we manually exercised
a subset of the applications to detect what runtime behav-
iors SHAMDROID and the other permission management
approaches lead to. We ran this experiment on an Asus Trans-
former Prime TF201 tablet.

Table 2 reports the results of this qualitative investigation.
We have divided the table into two sections. The 13 apps
in the upper section are those out of the top 500 Android
apps in the United States for which (i) the values produced
by XPrivacy do not satisfy the bad constraints inferred by
SHAMDROID, and (ii) the solution produced by SHAMDROID

7 https://github.com/M66B/XPrivacy/blob/master/src/
biz/bokhorst/xprivacy/PrivacyManager.java Note that
we did not rely on the values reported in the homepage of this GitHub
repository, since these are incomplete, and sometimes not consistent with
the standard values produced by the implementation

11 2015/7/20

https://github.com/M66B/XPrivacy/blob/master/src/biz/bokhorst/xprivacy/PrivacyManager.java
https://github.com/M66B/XPrivacy/blob/master/src/biz/bokhorst/xprivacy/PrivacyManager.java

Android application Loc IMEI B A X S
com.yelp.android X - C L C X
com.ijinshan.kbatterydoctor en - X C* - X X*
com.pof.android X (X) C L X X N
com.paypal.android.p2pmobile X (X) C X X X
com.myyearbook.m X (X) C X X X
com.mapquest.android.ace X (X) C L L X
com.qihoo.security (X) X C S X X N
com.xfinity.playnow - X C - X X N
com.google.android.stardroid X - X L C X
com.kayak.android X (X) C S C X
com.att.android.uverse X (X) X X X X N
com.activision.callofduty.mobile X - X X X X N
com.disney.blankvinyl.goo X† - X X S X
com.whatsapp (X) X C X S X N
net.zedge.android X† - X X X X
com.clearchannel.iheartradio.controller (X) X C S L X
com.yahoo.mobile.client.android.mail X (X) C X X X N
com.sgiggle.production (X) X C X C X N
com.groupon X (X) C X S B
com.viber.voip (X) X C X C X
com.jb.gokeyboard - X† X - X X
com.jb.gosms (X) X X X X X
com.wf.wellsfargomobile X - X X L X
com.dianxinos.dxbs - X X - S X
net.flixster.android X (X) C L L X
com.utorrent.client X† - X X X X
com.fandango (X) X C S L X

Table 2: Manual inspection and comparison

satisfies all the bad constraints. The lower section consists
of the top 100 Android applications selected with the same
criteria for usage constraints, of which there are 14 in total.

Columns Loc and IMEI denote whether the application
makes use of a location or the phone state permission, respec-
tively. Here, Xdenotes that the application uses the permis-
sion in a way that triggered the inclusion of the application
in this table according to the rules in the previous paragraph,
while (X) denotes all other uses of a permission. Cells marked
with † use a permission in the code that is not declared in the
manifest. In these cases, the permission is usually used in a li-
brary that is included in the application, and the code is either
robust with respect to the unavailability of the permission or
the corresponding portion of the application is dead code.

Columns B, A, X and S report the observations made with
APM, APP OPS, XPrivacy, and SHAMDROID, respectively.
In particular, we detect if an app does not expose any (visible)
abnormal behavior (X), it crashes (C), it is blocked (B), it
slows down (S), or it leaks private information (L).

Altogether, we inspected 27 apps. In 6 of these cases
(marked with N), however, we were not able to test the app
comprehensively as it requires a paying account (e.g., Yahoo
or AT&T) to access certain services.

Among these apps, com.ijinshan.kbatterydoctor en

checks the signature of the app at startup. Since both APM

and SHAMDROID unpack and repack the app, it utilizes
a different key to sign the final app. This app notices the
signature mismatch and refuses to proceed. This issue is
orthogonal to our mocking strategy. It could be fixed if we
had owned the original key, or the check may be automatically
removed by means of static analysis. We manually modified
the app removing this check, and marked this app in Table 2
with an asterisk.

Since neither APM (which is not a mocking approach)
nor AppOps (which is not able to mock the IMEI) are fully
comparable with SHAMDROID, we only briefly comment on
the results due to these two tools while focusing our main
comparison on XPrivacy.

Comparison with APM and App Ops Almost all applica-
tions that declare one of the relevant permissions in its mani-
fest crash after being modified by APM. Only three applica-
tions implemented correct code to handle the unavailability
of a declared permission. This shows the correctness of initial
claim, that most applications do not implement such code
and motivates mocking approaches.

APPOPS can perform mocking of only the location. Over
the 23 applications that use the location permission, 5 appli-
cations leak the location during execution, even when access
to the location is restricted by APP OPS. In 4 different cases,

12 2015/7/20

execution slowed down significantly due to the application
being stuck for a while in a loop, waiting for a location fix.

Comparison with XPrivacy The only tools in this evalua-
tion that may revoke both the location and the phone state
permissions and allow mocking of corresponding values are
SHAMDROID and XPrivacy, so the rest of this section will
compare in detail these two approaches.

We have then 5 cases where XPrivacy crashes, 5 cases
where it leaks the location, and 3 cases where it clearly slows
down execution. In all of these cases, the app produced by
SHAMDROID works correctly. The only case in which the app
produced by SHAMDROID exposes limited functionalities is
com.groupon. Under SHAMDROID, this app idles at startup,
whereas XPrivacy merely slows it down. Since SHAMDROID
enforces partial correctness, it may produce values that
cause the application not to terminate. This is an orthogonal
problem compared to our specific approach, and we plan to
extend SHAMDROID to avoid these cases.

In summary, in 13 cases both SHAMDROID and XPrivacy
work correctly; in 13 cases SHAMDROID achieves a better re-
sult than XPrivacy (that crashes, causes slowdown or leaks the
location); and in one case both XPrivacy and SHAMDROID
introduce abnormal behaviors (slowdown vs the app hanging,
respectively). The overall conclusion is that SHAMDROID is
clearly more effective than XPrivacy in practice on real apps
leading to a better user experience.

We discuss three cases in detail: (i) one case where the
value produced by XPrivacy did not satisfy the bad con-
straints, leading the app to crash (com.kayak.android), and
(ii) two cases that involve usage points: one where XPrivacy
creates a slowdown (com.whatsapp) and another one where
the location is still leaked (com.wf.wellsfargomobile).

KAYAK Flights, Hotels & Cars When we revoke access to
the location and the IMEI through XPrivacy by com.kayak.
android, this app crashes when we look for flights. In partic-
ular, when the user attempts to retrieve nearby airports (there-
fore accessing the location), the mock value produced by
XPrivacy triggers a crash (Figure 9a). In fact, this app extracts
the best location provider by calling getBestProvider, and
XPrivacy returns null since it mocks available providers
with an empty list. Then the app dereference the provider to
check if it is equal to ”passive”, and this causes the app
to crash. Instead, the value injected by SHAMDROID allows
the app first to look for flights near the mock location, and
then it displays an alert saying that it was unable to start the
search (Figure 9b). This degradation of the functionality is
unavoidable since the location is not available for contextual
airport search. Still, the app does not crash, and all other
functionality is retained.

WhatsApp Messenger Another behavior we noticed is a
slowdown in the execution of some apps when using XPri-
vacy. com.whatsapp is one of these cases. When logging
in for the first time, whatsapp authenticates the user as the

device owner. This can be done through an SMS or — if
SMS identification fails — via a phone call. When we re-
voke the READ PHONE STATE permission with XPrivacy,
whatsapp’s server sends the SMS to the phone number used
to log in, but then it waits for 5 minutes before giving up
on SMS authentication (Figure 10a). In particular, this app
asks for the subscriber ID, and XPrivacy returns null. This
causes the app to manage an exceptional situation, making
other attempts to send the SMS and idling until the time limit
is reached. On the other hand, the app produced by SHAM-
DROID prevents whatsapp from sending the SMS repeatedly,
since it creates a mock subscriber identifier, which immedi-
ately directs whatsapp to phone authentication (Figure 10b).

Wells Fargo Mobile Finally, in some cases we have noticed
that XPrivacy leaks the exact location, while SHAMDROID
does not. One of these cases is com.wf.wellsfargomobile.
When looking for ATMs near us, XPrivacy leaks our location,
which enables the result in Figure 11a. Instead, the trans-
formed app due to SHAMDROID pops up a dialog asking to
switch on the GPS capabilities. Therefore, we cannot see the
ATMs that are near our position, but this is unavoidable when
we revoke the location permission.

7. Related Work
A large body of work in the context of Test Case Generation
has adopted solutions that are similar to ours (that is, con-
straint inference and solving) to synthesize an input value
that exercises a code path that was not covered by previous
test runs. These approaches usually adopt symbolic execu-
tion [24] statically [34] or dynamically [17, 30]. Similarly,
Snugglebug [11] introduced a demand-driven backward sym-
bolic analysis to find a precondition such that a goal state
is reached. While our analysis can be seen as an instance of
bounded static symbolic execution, our main contribution is
in maximizing the functionality of the program.

Groce et al. [18], given a counterexample trace exposing
an error in a program, produced an execution as similar as
possible to the counterexample. Similarly to our approach, it
applied constraint solving to produce an optimal input.

Our iterative constraint solving is reducible to a Max-
SMT problem [25], where the constraints about bad locations
have the weight∞, and each usage constraints has weight 1.
Max-SMT then encodes this system into SMT, computing an
upper bound on the sum of weights of non-satisfied clauses.
This upper bound is iteratively strengthened until an optimal
solution is determined. However, our practical experience
shows that this approach does not scale up to the number of
constraints inferred by SHAMDROID.

As discussed in Section 1, many approaches based on
information-flow ensure user privacy statically [6, 33] or
dynamically [15, 32]. Instead of monitoring the flow of sensi-
tive data inside the program, we replace sensitive values with
mock values. In this context, many recent works proposed
various solutions for Android apps. Like SHAMDROID, they

13 2015/7/20

(a) XPrivacy

(b) SHAMDROID

Figure 9: Kayak

(a) XPrivacy

(b) SHAMDROID

Figure 10: WhatsApp

(a) XPrivacy

(b) SHAMDROID

Figure 11: Wells Fargo

usually replace the data coming from some APIs requiring
permissions (e.g., Location) with some mock values. How-
ever, these tools adopt a system level mocking strategy like
XPrivacy, rather than an app specific approach like SHAM-
DROID. Our experimental results in Section 6 showed that an
app specific solution is more effective in practice than system
level solutions.

MockDroid [9] was the first tool introduced in this area.
When a denied resource is accessed, this tool returns a
fixed value (e.g., a constant value for the device identifier),
or simulates that the resource is not available (e.g., by
always time outing Internet sockets). Similarly, AppFence
[21] applies a fixed mocking strategy and blocks network
communications, while TISSA [5] supports various mocking
strategies that can be manually chosen by the user. The
authors observed that it is not possible to define an effective
fixed mocking strategy for any app. This motivates the need
of the app specific mocking strategy of SHAMDROID.

Finally, Dr. Android and Mr. Hide [23] and AppGuard
[8] are two tools that rewrite the app to produce fixed
mock values instead of modifying the operating system like
SHAMDROID. For this reason, they do not require to jailbreak
the device.

8. Conclusion
In this paper, we introduced a novel approach to create mock
data when a resource is denied such that (i) bad executions
(e.g., runtime errors) are avoided, and (ii) functionality is
preserved as much as possible. We first infer the constraints
aimed at avoiding bad executions and maximizing function-
ality, and then we apply an iterative constraint solving algo-
rithm producing an input valuation satisfying the constraints.

This theoretical approach has been instantiated to Android
applications to revoke the access to some sensitive resources
(e.g., device identifier and location). This app-sensitive mock-
ing strategy has been implemented in SHAMDROID. Our
experimental results show that it substantially improves the
app’s functionality with respect to state-of-the-art tools that
apply a fixed mock strategy.

References
[1] XPrivacy. http://www.xprivacy.eu/.

[2] Advanced permission manager. https://play.
google.com/store/apps/details?id=com.
gmail.heagoo.pmaster.

[3] App ops brings granular permissions control to an-
droid 4.3. http://www.xda-developers.com/
app-ops-brings-granular-permissions-contr
ol-to-android-4-3.

[4] Watson libraries for analysis (wala). https://github.
com/wala/WALA.

[5] Taming information-stealing smartphone applications (on an-
droid). In J. McCune, B. Balacheff, A. Perrig, A.-R. Sadeghi,
A. Sasse, and Y. Beres, editors, Proceedings of TRUST ’11,
pages 93–107. Springer, 2011. .

[6] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. L. Traon, D. Octeau, and P. McDaniel. Flowdroid: precise
context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. In Proceedings of PLDI ’14, pages
259–269, 2014. .

[7] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie. PScout:
Analyzing the android permission specification. In Proceedings
of CCS ’12, pages 217–228. ACM, 2012. .

14 2015/7/20

http://www.xprivacy.eu/
https://play.google.com/store/apps/details?id=com.gmail.heagoo.pmaster
https://play.google.com/store/apps/details?id=com.gmail.heagoo.pmaster
https://play.google.com/store/apps/details?id=com.gmail.heagoo.pmaster
http://www.xda-developers.com/app-ops-brings-granular-permissions-contr
http://www.xda-developers.com/app-ops-brings-granular-permissions-contr
ol-to-android-4-3
https://github.com/wala/WALA
https://github.com/wala/WALA

[8] M. Backes, S. Gerling, C. Hammer, M. Maffei, and P. von
Styp-Rekowsky. Appguard–enforcing user requirements on
android apps. In Proceedings of TACAS ’13, pages 543–548.
Springer, 2013. .

[9] A. R. Beresford, A. Rice, N. Skehin, and R. Sohan. Mockdroid:
trading privacy for application functionality on smartphones.
In Proceedings of HotMobile ’11, pages 49–54. ACM, 2011. .

[10] A. Bianchi, J. Corbetta, L. Invernizzi, Y. Fratantonio,
C. Kruegel, and G. Vigna. What the App is That? Decep-
tion and Countermeasures in the Android User Interface. In
Proceedings of the IEEE Symposium on Security and Privacy
(S&P), 2015.

[11] S. Chandra, S. J. Fink, and M. Sridharan. Snugglebug: a
powerful approach to weakest preconditions. In Proceedings
of PLDI ’09, pages 363–374. ACM, 2009. .

[12] P. Cousot. Constructive design of a hierarchy of semantics
of a transition system by abstract interpretation. Theoretical
Computer Science, 277(1–2):47–103, 2002. .

[13] L. De Moura and N. Bjørner. Z3: An efficient smt solver. In
Proceedings of TACAS ’08, pages 337–340. Springer, 2008. .

[14] E. W. Dijkstra. Guarded commands, nondeterminacy and
formal derivation of programs. Commun. ACM, 18(8):453–
457, 1975. .

[15] W. Enck, P. Gilbert, B. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth. Taintdroid: an information-flow tracking
system for realtime privacy monitoring on smartphones. In
Proceedings of OSDI ’10, pages 393–407. USENIX, 2010.

[16] A. P. Fuchs, A. Chaudhuri, and J. S. Foster. SCanDroid: Auto-
mated Security Certification of Android Applications. Tech-
nical report, CS-TR-4991, Department of Computer Science,
University of Maryland, 20o9.

[17] P. Godefroid, N. Klarlund, and K. Sen. Dart: Directed auto-
mated random testing. In Proceedings of PLDI ’05, pages
213–223. ACM, 2005. .

[18] A. Groce, S. Chaki, D. Kroening, and O. Strichman. Error
explanation with distance metrics. International Journal on
Software Tools for Technology Transfer, 8(3):229–247, 2006. .

[19] D. Grove and C. Chambers. A framework for call graph
construction algorithms. ACM Trans. Program. Lang. Syst.,
(6), Nov. 2001. ISSN 0164-0925.

[20] C. A. R. Hoare. An axiomatic basis for computer programming.
Commun. ACM, 12(10):576–580, 1969. .

[21] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall.
These aren’t the droids you’re looking for: retrofitting android
to protect data from imperious applications. In Proceedings of
CCS ’11, pages 639–652. ACM, 2011. .

[22] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing
using dependence graphs. In Proceedings of PLDI ’88, pages
35–46. ACM, 1988. .

[23] J. Jeon, K. K. Micinski, J. A. Vaughan, A. Fogel, N. Reddy,
J. S. Foster, and T. Millstein. Dr. Android and Mr. Hide: Fine-
grained permissions in android applications. In Proceedings of
SPSM ’12, pages 3–14. ACM, 2012. .

[24] J. C. King. Symbolic execution and program testing. Commun.
ACM, 19(7):385–394, July 1976. .

[25] R. Nieuwenhuis and A. Oliveras. On SAT modulo theories
and optimization problems. In Proceedings of SAT ’06, pages
156–169. Springer, 2006. .

[26] M. Pistoia, A. Banerjee, and D. A. Naumann. Beyond stack
inspection: A unified access-control and information-flow
security model. In Proceedings of the Symposium on Security
and Privacy ’07, pages 149–163. IEEE, 2007.

[27] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural
dataflow analysis via graph reachability. In Proceedings of
POPL ’95, pages 49–61. ACM, 1995. .

[28] G. Sarwar, O. Mehani, R. Boreli, and M. A. Kâafar. On
the effectiveness of dynamic taint analysis for protecting
against private information leaks on android-based devices.
In Proceedings of SECRYPT ’13, pages 461–468, 2013.

[29] M. Sridharan, S. J. Fink, and R. Bodik. Thin slicing. SIGPLAN
Not., 42(6):112–122, June 2007. .

[30] N. Tillmann and J. De Halleux. Pex–white box test generation
for .net. In Proceedings of TAP ’08, pages 134–153. Springer,
2008. .

[31] F. Tip and J. Palsberg. Scalable propagation-based call graph
construction algorithms. In Proceedings of OOPSLA, pages
281–293, 2000.

[32] O. Tripp and J. Rubin. A bayesian approach to privacy
enforcement in smartphones. In Proceedings of USENIX
Security ’14, pages 175–190. USENIX, 2014.

[33] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O. Weis-
man. TAJ: effective taint analysis of web applications. In
Proceedings of PLDI ’09, pages 87–97. ACM, 2009. .

[34] W. Visser, C. S. Pǎsǎreanu, and S. Khurshid. Test input
generation with java pathfinder. In Proceedings of ISSTA ’04,
pages 97–107. ACM, 2004. .

[35] Y. Zheng, X. Zhang, and V. Ganesh. Z3-str: a z3-based string
solver for web application analysis. In Proceedings of FSE ’13,
pages 114–124. ACM, 2013. .

A. Formal proofs
Lemma 4. Let p be a program and in ∈ InpEnv an input
valuation, such that ∀id ∈ Inp :

utilDepp(id) = max
v∈Val

diff (utp(in), utp(in[id 7→ v])) (7)

Then utp(in) = maxUtil(p)

Proof. This is proved by induction on the input identifiers
contained in Inp.

Base Case We assume that |Inp| = 1. So Inp is a singleton,
that is, Inp = {id}. By hypothesis (Equation 7), we have that
in is such that

utilDepp(id) = max
v∈Val

diff (utp(in), utp(in[id 7→ v]))

By definition of diff , this means that in maximizes the
utility w.r.t. id. Since id is the only input identifier, this
means that in maximizes the overall utility of program p, that
is, utp(in) = maxin′∈InpEnv utp(in

′). Then, by definition of
maxUtil , we have that utp(in) = maxUtil(p).

15 2015/7/20

Inductive Step We assume that |Inp| = n, and that the
lemma holds for |Inp′| = n − 1 where Inp′ = Inp \ {id1}.
Therefore, given a in such that ∀id ∈ Inp : utilDepp(id) =
maxv∈Val diff (utp(in), utp(in[id 7→ v])) by inductive hy-
pothesis we have that

utp(in) = maxUtil(p) (8)
when considering all the input identifiers in Inp′, that is, all
the input identifiers in Inp except id1. By Equation 7 we have
then that

utilDepp(id1) = max
v∈Val

diff (utp(in), utp(in[id1 7→ v]))

(9)
By definition of diff , this means that in maximizes the utility
w.r.t. id1 as well. Since by inductive hypothesis (Equation 8)
in maximizes the functionality for all the identifiers except
id1, and by Equation 9 in maximizes the functionality w.r.t.
id1, this means that in maximizes the overall utility of pro-
gram p, that is, utp(in) = maxin′∈InpEnv utp(in

′). Then, by
definition of maxUtil , we have that utp(in) = maxUtil(p).

Lemma 5. Given program p and constraint c′ computed by
SHAMDROID for arriving at a program point l through an
input id, c′ guarantees that l will always be executed.
Proof. Since SHAMDROID computes what is described by
Equation 4, then by Equation 6 we have that

evalC (c′, in)⇐ l ∈ SStJp, inK (10)
By contraposition and Equation 10, we obtain that

¬evalC (c′, in)⇒ l /∈ SStJp, inK (11)
By definition of evalC , we have that

¬evalC (c′, in)⇔ evalC (¬c′, in) (12)
By combining Equations 11 and 12, we obtain

evalC (¬c′, in)⇒ l /∈ SStJp, inK (13)
Therefore, the satisfaction of ¬c′ guarantees that l is not
executed.

Lemma 6. Given program p and constraint c computed by
SHAMDROID for arriving at a program point l through an
input id, ¬c guarantees that l will not be executed.

Proof. By negation of Equation 5, we have that
¬evalC (c, in)⇔ l /∈ SStJp, inK (14)

By definition of evalC , we have that
¬evalC (c, in)⇔ evalC (¬c, in) (15)

By Equations 14 and 15 we have that
evalC (¬c, in)⇔ l /∈ SStJp, inK (16)

That is, ¬c guarantees that l is not executed.

Theorem 3. If our iterative constraint solving algorithm
returns a solution in, and the weakest-precondition calculus is
complete on all the slices of bad points, then input-dependent
bad executions are avoided.

Proof. Our iterative constraint solving algorithm always tries
to solve a constraint c that is the conjunction of badc with
some other constraints produced by the algorithm in Figure
7. Since at each iteration of the constraint solving algorithm
the constraint c is the conjunction of badc with something
else, then by Lemma 3 we know that any bad program
point is not reached if the weakest-precondition calculus
is complete on all the slices. Since these constraints cover all
bad program points, if a solution in is found, this will avoid
input-dependent bad execution.

Theorem 4. If our iterative constraint solving algorithm
returns a solution in at the first iteration, then in produces an
execution with maximal functional level.

Proof. If our iterative constraint solving algorithm succeeds
during the first iteration, the solution in satisfies for any
usage points l all the usage constraints clid that are part of
the biggest cluster that does not contain contradictions. By
Lemma 2 this implies that all the usage points are executed
when starting with input valuation in . Therefore, by Lemma
1 the utility level of the produced execution is maximal.
The fact that ./ is a syntactic underapproximation of the
conflict relations guarantees that the biggest cluster is an
overapproximation of the maximal cluster of satisfiable usage
constraints. Therefore, the solution in produces an execution
with maximal functional level.

16 2015/7/20

	Introduction
	Application-Specific Constraints
	Technical Overview
	Running Examples
	Step I: Constraints Inference
	Step II: Constraint Solving
	Step III: Code Rewriting

	Formal Setting
	Bad Executions and Functionality
	Property of Interest
	Model

	Constraint Inference and Solving
	Parameters
	Slicing
	Constraint Inference
	Iterative Constraint Solving

	Experimental Evaluation
	Implementation
	Quantitative Comparison
	In-depth Analysis

	Related Work
	Conclusion
	Formal proofs

