
DISS. ETH NO. 18622

Reasoning About Data Abstraction

in Contract Languages

A dissertation submitted to the
Swiss Federal Institute of Technology Zurich

(ETH Zurich)

for the degree of
Doctor of Sciences

presented by

�Ad�am P�eter Darvas
Dipl. Technical Informatics

Budapest University of Technology and Economics

born February 18, 1979
citizen of Hungary

accepted on the recommendation of

Prof. Peter Müller, examiner
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Abstract

Due to the large and ever increasing complexity of software systems, ab-
straction plays an important role in the process of software development.
Abstraction is also essential in the formal specification of programs because
it allows one to write specifications in an implementation-independent way,
which is indispensable for information hiding and facilitates readability and
maintainability of specifications.

State-of-the-art specification languages provide powerful means of ab-
straction that are natural to use for programmers. However, previous work
provided only partial solutions for reasoning about specifications that make
use of these means. This thesis presents techniques that allow one to reason
about two means of abstraction that are commonly used in object-oriented
specification languages: pure methods and model classes.

Pure methods are side-effect free methods of a program. As such, spec-
ification languages allow them to be called in specification expressions. In
order to reason about calls to pure methods, the methods have to be en-
coded and axiomatized in the underlying logic of the verification environ-
ment. The encoding is non-trivial if pure methods are considered to be
weakly-pure, that is, if they are not completely side-effect free and are al-
lowed to allocate, initialize, and return new objects. Such state changes are
observable in specification expressions, thus an encoding has to take them
into account. The axiomatization of pure methods has to be done with care
because unsatisfiable, contradicting, or ill-founded specifications can lead to
an inconsistent axiom system if specifications are blindly turned into axioms.

This thesis proposes a practical encoding of weakly-pure methods as well
as an axiomatization technique that poses proof obligations on specifications
that guarantee the consistency of the axiom system that is extracted from
the specifications.

Model classes are classes that are used only for specification purposes
and provide object-oriented interfaces for essential mathematical concepts,
such as sets or relations. Specifications can be written in an abstract way
by expressing properties in terms of model classes and their operations. A
promising approach to reason about specifications that make use of model
classes is to map the classes and their operations to the built-in structures
and functions of the underlying theorem prover of the verification environ-
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ment. However, this can lead to unsound reasoning if there is a mismatch
between the properties of a model class and the properties of the structure
to which the class is mapped.

This thesis presents a technique that formally checks if there is semantic
correspondence between a model class and the structure it is mapped to.
The approach not only enables reasoning about programs specified in terms
of model classes but also helps in writing better specifications for model
classes and in identifying and checking redundant specifications.

The contributions of this thesis are independent of any particular spec-
ification language, verification technique, and theorem prover. Thus, the
results are applicable for a wide range of program-verification tools.

ii



Zusammenfassung

Aufgrund der erheblichen und stetig anwachsenden Komplexität von Soft-
ware-Systemen spielt Abstraktion im Prozess der Software-Entwicklung eine
bedeutende Rolle. Abstraktion ist auch für die formale Spezifikation von
Programmen zentral, weil dadurch Spezifikationen auf eine implementier-
ungs-unabhängige Art und Weise geschrieben werden können. Dies ist für
das Geheimnisprinzip unabdingbar und erhöht die Lesbarkeit sowie die Wart-
barkeit der Spezifikationen.

Moderne Spezifikationssprachen bieten ausdruckstarke Mittel für die Ab-
straktion und erlauben dem Programmierer einen unkomplizierten Gebrauch
dieser Mittel. Bis anhin vorliegende Arbeiten brachten nur Teillösungen für
die Beweisführung über Spezifikationen, die von diesen Mitteln Gebrauch
machen, hervor. Die vorliegende Arbeit zeigt Techniken auf, welche die Be-
weisführung über zwei Mittel der Abstraktion erlauben, welche in objektori-
entierten Spezifikationssprachen häufig gebraucht werden: pure Methoden
und Modell-Klassen.

Pure Methoden sind nebeneffektfreie Methoden eines Programmes. Auf-
grund der Nebeneffektfreiheit der Methoden erlauben Spezifikationssprachen
Aufrufe solcher Methoden in Spezifikationen. Damit ein Beweis über solche
Methoden geführt werden kann, müssen die Methoden in der zugrundelie-
genden Logik der Beweisführung kodiert sowie axiomatisiert werden. Die
Kodierung ist jedoch nicht trivial, wenn pure Methoden schwach pur sind.
Das heisst, diese sind nicht vollständig nebeneffektfrei sondern erlauben das
Erzeugen, Initialisieren sowie Zurückgeben von neuen Objekten. Weil Zu-
standsänderungen in der Spezifikation beobachtbar sind, müssen diese bei
der Kodierung beachtet werden. Die Axiomatisierung von puren Methoden
muss vorsichtig vollzogen werden, weil Spezifikationen, die widersprüchlich,
nicht erfüllbar oder nicht wohldefiniert sind, zu inkonsistenten Axiomations-
systemen führen können.

Die vorliegende Doktorarbeit schlägt sowohl eine praktisch zu hand-
habende Kodierung von schwach puren Methoden als auch eine Technik
der Axiomatisierung vor. Diese Technik formuliert Beweisobligationen für
Spezifikationen, welche die Konsistenz des Axiomsystems garantiert, das aus
den Spezifikation extrahiert wird.

Modell-Klassen sind Klassen, welche ausschliesslich für Spezifikationen
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gebraucht werden und objektorientierte Schnittstellen für grundlegende ma-
themathische Konzepte, wie beispielsweise Mengen und Relationen, darstel-
len. Spezifikationen können auf eine abstrakte Art und Weise geschrieben
werden, indem Eigenschaften in Form von Modell-Klassen und deren Ope-
rationen formuliert werden. Ein vielversprechender Lösungsansatz für die
Beweisführung über Spezifikationen, welche Modell-Klassen gebrauchen, ist
die Zuordnung von Klassen und Operationen zu bereits bestehende Struk-
turen und Funktionen. Dies kann jedoch zu falschen Beweisen führen, wenn
eine Diskrepanz zwischen den Eigenschaften einer Modell-Klasse und der
Struktur, der die Klasse zugeordnet ist, vorliegt.

Die vorliegende Doktorarbeit zeigt eine Technik auf, welche überprüft, ob
eine semantische Übereinstimmung zwischen einer Modell-Klasse und einer
Struktur, der die Klasse zugeordnet ist, vorliegt. Dieser Ansatz erlaubt nicht
nur die Beweisführung über Programme, die in Form von Modell-Klassen
spezifiziert sind, sondern hilft auch bei der Verbesserung der Spezifikation
von Modell-Klassen sowie bei der Identifizierung und Prüfung von redun-
danten Spezifikationen.

Der Beitrag dieser Doktorarbeit ist unabhängig von einer spezifischen
Spezifikationssprache, der Überprüfungstechnik sowie dem Theorem-Beweis-
er und die Ergebnisse sind für eine Vielzahl an Programm-Beweisern an-
wendbar.
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Chapter 1

Introduction

Software rules our world and, thus, our daily life. No matter whether buy-
ing a cup of coffee, listening to music, looking at a monthly bank-account
statement, or driving a car; in some way, some kind of software is most likely
involved. As a consequence, the quality of software that surrounds us has a
great impact on our lives.

The impact may be different though. Getting a green tee instead of the
desired espresso might make you loose 2 Franks and say a few informal words,
but after all, your day is not ruined (unless you are allergic to green tee and
did not notice the mistake in time). On the other hand, a faulty braking
system may cause severe damage to the car, and injury to the passengers
and others.

Thus, the software of systems that may cause significant economic loss or
may endanger human lives, have to be of outstanding quality. Since the size
and complexity of such systems can be enormous, it is typically impossible
to assure their high quality by means of traditional software engineering,
such as testing or code reviewing. Therefore, in areas where the importance
of software quality is beyond the importance of all other objectives, the use
of formal program verification is gaining more and more attention.

Formal program verification shows by mathematical means that the pro-
gram at hand does what it is supposed to do. To achieve this goal, the pro-
gram first needs to be specified in a formal way to give a precise description
of its expected behavior. Once equipped with specifications, the program
needs to be formally verified to show that the implementation corresponds
to the specification.

In order to make formal program verification successful on programs
developed in the industry, many different techniques and tools need to be
developed and combined. For instance, techniques to express alias control,
methodologies to handle concurrent programs, and automated as well as
interactive theorem provers that work well in different domains, such as
first-order logic or Presburger arithmetic.
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2 CHAPTER 1. INTRODUCTION

This thesis focuses on one particular aspect of formal program verifi-
cation, namely, on the development of techniques that support the verifica-
tion of common means of abstraction used in state-of-the-art object-oriented
specification languages.

1.1 Abstraction in Program Specifications

The word abstraction comes from the Latin ab (away from) and trahere (to
draw). Abstraction is the process of hiding certain characteristics of some
concept or object in order to keep only its essential characteristics. What
characteristics get hidden and what kept, depends on the particular purpose
of the abstraction. The goal is to reduce complexity of the domain at hand
in order to enable focusing on the relevant details.

Abstraction proved to be an important notion in Computer Science and
is present in several different areas and levels. As stated by Guttag [51],
abstraction plays an important role in the building of complex and large
software systems, too:

[...] the amount of complexity that the human mind can cope
with at any instant in time is considerably less than that embodied
in much of the software that one might wish to build. Thus the
key problem in the design and implementation of large software
systems is reducing the amount of complexity or detail that must
be considered at any one time. One way to do this is via the
process of abstraction.

Note that the quote is from 1977. Today, the size and complexity of
software systems is typically several magnitudes larger than back in the
seventies. And this growing tendency is expected to continue in the years
to come. Thus, abstraction plays an ever increasing role in the process of
software development.

Abstraction also plays an important role in the formal specification of
programs. Abstraction allows one to write specifications in an implemen-
tation independent way, which is indispensable for information hiding, and
promotes readability and maintainability of specifications.

1.1.1 Abstraction in Design Specifications

Several specification languages and approaches have been developed for the
design and modeling of computing systems. Some of the most well-known
are VDM-SL [68], Z [129], RAISE/RSL [113], the B-Method [1], Event-
B [2, 3], and UML/OCL [131, 109]. Specifications written in such languages
are typically high-level abstractions of the actual realizations of the systems.
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Still, specifications written on this level can already reveal, for instance, mis-
understandings, contradicting assumptions, or uncovered cases. To reduce
the gap between the abstract design and the actual realization, approaches
such as the B-Method [1] have been developed to support refinement of
specifications.

Common to these design specification languages is that they come with
a mathematical vocabulary that allows one to specify properties of the main
functionalities of programs. For instance, VDM-SL provides a number of
built-in types such as integers and booleans, and simple data types such
as sets, lists, and mappings, together with operations on these data types.
Z, the B-Method, and Event-B are based on set theory from which a rich
mathematical vocabulary is derived, containing structures such as trees and
sequences. OCL provides built-in primitive types as well as types that model
mathematical structures such as sets, bags, and sequences.

Equipped with such mathematical means, one can specify properties
of computer programs in a programming language and implementation in-
dependent way. For example, a specification of a banking software could
maintain a set of accounts and a mapping from accounts to the set of hold-
ers of a given account. Operations could then, for instance, extend the set
of accounts by new ones or update the mapping to include a new relation
between an account and a holder.

In the course of verification, the relation between the abstract description
and the concrete implementation is given by abstraction functions, as pro-
posed by Hoare [62]. For instance, an abstraction function defined over an
array used in the implementation may yield a mathematical set containing
the elements of the array. Alternatively, if the order of the elements matter
for the purpose of the abstraction, the function could yield a sequence.

1.1.2 Abstraction in BISLs

Behavioral interface specification languages (BISLs) specify both the in-
terfaces and the behavior of programs. Interface specifications provide in-
formation on the interfaces between program components [135, 52]. For
instance, in an object-oriented language this may be information on the
name of methods available in a given type, the arity of those methods, the
types of the arguments and the return value, and the types of exceptions
the method may throw. Behavior specifications provide information on the
expected behavior of types and their methods, expressed by invariants and
method specifications. Method specifications typically consist of pre- and
postconditions and frame properties.

BISLs can be divided into two groups: two-tiered BISLs use two different
languages for the specification of programs. One language is specifically
tailored to a programming language and the other language is independent
of any programming language [52]. On the other hand, one-tiered BISLs
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use only one language for the specification of programs, and that language
is designed for a particular target programming language.

1.1.2.1 Abstraction in Two-tiered Specification Languages

The term “two-tiered specification language” first appeared in Wing’s thesis
in 1983 [134], and the approach was pioneered by Larch [52]. Larch inter-
face languages are specifically designed for the underlying programming lan-
guage. Several Larch interface languages have been developed, such as LCL
for Standard C, LM3 for Modula-3, and Larch/Smalltalk for Smalltalk. The
Larch Shared Language (LSL) is independent of the underlying programming
language and defines the vocabulary that is to be used for the specification
of behavior.

The basic building blocks of the LSL are traits. Traits introduce new
sorts and operators, and define them by axioms. Even elementary symbols
like /\ and + for logical conjunction and mathematical addition are intro-
duced by traits. Traits may also introduce abstract data types such as lists,
maps, and relations.

In the specification of behavior, abstraction is achieved by the use of op-
erators and data types introduced by the traits. Users may extend the set of
traits provided by the LSL, which facilitates the building of domain-specific
abstractions. Similar to design languages, the connection between abstract
specifications and actual implementations is established by (implicit) ab-
straction functions.

Using the elements of LSL for abstraction has great advantages. (1) Since
the semantics of LSL is typically simpler than that of the underlying pro-
gramming languages, the chance of making mistakes in specifications is
smaller. (2) Since the semantic gap between LSL and logic is smaller than
the semantic gap between programming languages and logic, formal reason-
ing becomes simpler.

On the other hand, the disadvantage of using Larch, and two-tiered spec-
ification languages in general, is that users need to get acquainted with the
mathematical vocabulary of the specification language. This may be prob-
lematic for programmers who have little or no experience with mathematical
formalisms. In fact, one of the common reasons why programmers reject the
use of formal methods is that they are not willing to learn a separate lan-
guage just for specifying their programs, in particular, if that language is
fundamentally different from that of the programming language.

1.1.2.2 Abstraction in One-tiered Specification Languages

A one-tiered specification language merges the two tiers by specifying both
the interface and the behavior of programs using one language, which is
based on the target programming language. Thereby, the syntax of spec-
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ification expressions becomes nearly identical to that of the programming
language, allowing programmers to learn the specification language within a
few hours or days. This possibly makes programmers more willing to write
specifications and accept formal methods.

The first one-tiered specification language was the Java Modeling Lan-
guage (JML) [73, 74, 77], which was designed for the specification of Java
programs. In JML, the programming-language independent component
(i.e., LSL in Larch) is substituted with a collection of Java types that model
mathematical structures. Thereby, this collection gives the mathematical
vocabulary of JML.

Remark. Languages that follow the idea of Design by Contract (DbC) pro-
posed by Meyer [94, 95] also use one single language for the specification
of programs. Still, we only consider such languages to be one-tiered if they
provide a mathematical vocabulary to facilitate abstraction. For instance,
in our view, Eiffel [96, 97], the first language that implemented DbC, became
a one-tiered language when a mathematical vocabulary was developed for it
in 2006 [123].

While one-tiered specification languages are simpler to learn and use for
programmers than two-tiered languages, they pose challenges for program
specification and verification. The specification of programs becomes more
difficult because the semantics of the underlying programming language has
to be taken into account, too. Verification becomes harder because the
semantic gap between specification expressions and the logic used for formal
reasoning gets larger, and this gap has to be bridged in a way that preserves
both the original semantics of specification expressions and the soundness
of reasoning.

In one-tiered specification languages, even the means of abstraction has
to be expressed on the level of the underlying programming language. There-
fore, the approach of using mathematical vocabularies, such as the LSL, is
not directly applicable. This lead to the introduction of other means of
abstraction. Three of the most important means are pure methods, model
classes, and model fields [31].

Pure Methods. The concept of procedures is one of the crucial elements
of Structured Programming [40]. David Gries defines its main use as fol-
lows [49]:

The main use of the procedure is in abstraction. [...] The main
property that we single out, once a procedure is written, is what it
does; the main property that we omit from consideration is how
it does it.
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That is, the caller of a procedure need not have any knowledge about
the implementation details of the procedure. The only thing that matters
for the caller is the functionality of the procedure. Furthermore, procedures
are a unit of reuse: using procedure calls avoids the duplication of code.

One-tiered languages carry this idea and advantage over to method calls
that appear in specification expressions [31, 32]. The meaning of a method
call is given by the method’s specification and thus the specification does
not have to be repeated. This avoids duplication of the specification and
provides means to specify behavior without mentioning implementation de-
tails.

The use of method calls in specifications can be thought of as a re-
placement for the application of functions and predicates that mathemati-
cal vocabularies of two-tiered specification languages provide. Accordingly,
methods that are called in specifications are required to behave like functions
and predicates do: they have to be deterministic and side-effect free [77].

Model Classes. Model classes provide the interfaces, specification, and
often the implementation of data types such as sets and sequences. Model
classes can be thought of as direct replacements for the mathematical struc-
tures that two-tiered specification languages provide. Accordingly, model
classes have to behave like mathematical structures do: they have to be
immutable and contain only side-effect free operations [77].

Model Fields. Model fields are similar to ordinary fields except that they
are to be used only for specification purposes. Thus, they may not occur in
implementations. Model fields provide a means of abstraction: their values
are determined by the values of non-model fields as specified by user-defined
relations. In particular, these relations may involve model classes, which
allows one to express program states in terms of mathematical structures.

Remark. In the sequel, we do not discuss other means of abstraction (for
instance, data groups [80] for the modular specification of frame conditions)
as the main focus of the thesis is on pure methods and model classes.

Example 1.1. Figure 1.1 demonstrates the use of the three means of ab-
straction through a class that represents a bank account. The example is
written in JML, thus specifications are embedded in Java comments that
start with an at-sign (@). Implementations are omitted.

Class Account declares two private fields, holders and balance, in order
to keep track of the holders of an account and the current balance, respec-
tively. Class Person represents the clients of the bank, and thus the holders
of accounts. Person’s interface and implementation are omitted.
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import java.util.*;
//@ import org.jmlspecs.models.JMLObjectSet;

public class Account {
private ArrayList holders;
private long balance;

//@ public model JMLObjectSet _set;
//@ private represents _set <-
//@ new JMLObjectSet { Person h | holders.contains(h) && true };
//@ public invariant !_set.isEmpty();
//@ public invariant getBalance() >= 0;

/*@ private normal_behavior

@ ensures \result == balance;
@*/

public /*@ pure @*/ long getBalance() { ... }

/*@ public normal_behavior

@ ensures \result == _set.int_size();
@*/

public /*@ pure @*/ int numOfHolders() { ... }

/*@ public normal_behavior

@ ensures \result <==>
@ (getBalance() >= 100000 && _set.int_size() <= 2);
@*/

public /*@ pure @*/ boolean isPremium() { ... }

/*@ public normal_behavior

@ requires !_set.has(h);
@ ensures (\forall Person o;
@ _set.has(o) <==>
@ (\old(_set.has(o)) || o.equals(h)));
@*/

public void addHolder(Person h) { ... }

/*@ public normal_behavior

@ requires isPremium();
@ ensures getBalance() == \old(getBalance()) * 1.02;
@*/

public void addBonus() { ... }

// other fields, invariants, constructors, and methods are omitted
}

Figure 1.1: An abstract specification of class Account
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Class Account declares three query methods: getBalance returns the
balance of the account, numOfHolders yields the number of holders of an
account, and isPremium queries whether the account is a premium account
or not. These methods are side-effect free, which is specified by the keyword
pure in their signatures. Specification expressions may contain calls (only)
to pure methods.

The class declares two mutating methods: addHolder adds a new holder
to an account and addBonus increases the balance of an account by some
amount.

The specification of the class declares a public model field set, which
represents the holders in an abstract way, in the form of a mathematical
set. This is done by using a pre-defined model class of JML, JMLObjectSet.
The model class represents a set of objects. The abstraction function that
determines the value of the model field is given by the represents clause. It
is private, as it mentions the private field holders. The abstraction function
uses a set comprehension to collect all Person-instances that the array list
of the concrete representation contains.

The class contains two invariants. The first invariant expresses that an
account must have at least one holder. This is expressed through the public
model field, and thus the invariant can be declared as public, too. Note that
pure method isEmpty is called on the model field, that is, the method is
called on an instance of model class JMLObjectSet. The second invariant
expresses that the balance of an account may not be negative. The invariant
is expressed by the use of the public pure method getBalance, thus the
invariant can also be declared as public.

Method getBalance has a private specification because it refers to the
private balance field. All other methods have implementation independent
specifications as they make use of the public pure methods and the public
model field. Therefore, these specifications can be declared as public. For
instance, the precondition of method addHolder expresses that the Person-
instance passed as parameter is not in the set of account holders yet, and the
postcondition expresses that the set of account holders has been extended
by the instance, leaving all other holders intact.

As the example demonstrates, the use of pure methods (both that of
the model class and that of Account) in specifications is just as natural and
powerful as in program text. The use of pure methods provides a means
of information hiding, and makes specifications more concise and compre-
hensible. Furthermore, the use of pure methods increases maintainability of
specifications because even if the meaning (that is, specification and imple-
mentation) of a pure method changes over time, the specification of methods
that use such pure-method calls need not be modified. For instance, the cri-
teria of an account being premium or not might change over time. Still, the
specification of method addBonus can remain unchanged.



1.2. PROBLEMS AND CONTRIBUTIONS 9

1.2 Problems and Contributions

As mentioned above, the main advantage of a one-tiered specification lan-
guage is that programmers can easily learn its use since the syntax and
semantics of the specification language is close to that of the programming
language. However, this causes difficulties for formal verification because
the semantic gap increases between the specification language and the logic
used for reasoning.

The main contribution of this thesis is the development of techniques
that fill this gap. In this section, we highlight the issues that such tech-
niques have to cope with and summarize the main contributions of the the-
sis. The highlighted issues are of concern for every approach that supports
a one-tiered specification language, such as Eiffel, JML, and Spec# [9, 10].
The developed techniques can be adopted by verification techniques or tools
that use first-order logic in their prover back-end, such as ESC/Java2 [70],
Jack [26], Jive [98], Krakatoa [91], the Spark Toolset [7], and Spec#.

Encoding of Specification Expressions

In order to reason about programs, user-specified specification expressions
have to be encoded in the language of the underlying logic. As expressed by
the misgivings of Leavens in [72] while arguing against C++ expressions to
appear in Larch/C++ specifications, such an encoding is non-trivial:

To ensure that the assertions are well-defined, they can’t call
C++ code. (If an assertion used C++ code, one couldn’t eas-
ily interpret expressions used in assertions as abstract values,
because C++ code doesn’t deal with mathematical entities.)

Below we refine these issues into three categories and point out some of
the fundamental problems that the design of an encoding has to face.

Well-definedness of Expressions. Programs may contain expressions whose
execution possibly results in a program crash or in throwing an exception.
Typical examples include the dereferencing of null and division by zero.
Clearly, such expressions indicate programming mistakes.

In one-tiered specification languages such expressions may occur in spec-
ifications, too. However, if we think of formal specifications as mathematical
text, then such expressions are mathematically unreasonable.

One way to overcome this problem is to filter out such specifications
before further analyzing the program at hand. However, it is not straight-
forward how this can be done. In particular, it is not obvious what has to
be shown and what information may be used during the filtering process.
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Handling Object Allocation. Specifications may only contain side-effect free
expressions. Therefore, method calls are only allowed to occur in spec-
ification expressions if the corresponding callees are declared to be pure.
The literature proposes to encode pure methods by uninterpreted function
symbols, and pure-method calls by applications of the corresponding func-
tions [32, 35, 65, 33]. The approach seems to be justified since pure methods
have to be side-effect free (and deterministic, as discussed later), just like
mathematical functions.

However, pure methods are not completely free of side effects. It proved
to be useful to allow pure methods to allocate, initialize, and return new
objects [103, 118]. Therefore, either an encoding of pure methods has to
take into account state changes that are potentially observable or restric-
tions must be made on specification expressions such that the state changes
become non-observable. No matter which option is taken, the solution has
to be carefully worked out in order to prevent semantical mismatches and
unsoundness.

Preserving Semantics. Modern programming languages come with well-
defined semantics. A natural requirement for an encoding is to preserve the
semantics prescribed by the language at hand. Otherwise, the verification
process would attempt to prove properties that are different from the speci-
fied properties [27]. This would undermine the whole purpose of verification
by possibly leading to unexpected or unsound results. Results that would
also differ from the outcome of runtime assertion checking.

As a simple example, consider the commonly used “short-circuit” op-
erator ||. Although it expresses logical disjunction, its semantics is not
identical to logical disjunction that we know from classical logic.

Contributions. We propose an encoding of specification expressions in
classical two-valued first-order logic.

We address the issue of ill-defined expressions by formally proving that
each assertion can be evaluated to either true or false. The technique
filters out bogus specification expressions, which will be rejected. Thereby,
the technique is capable of catching errors in specifications. Furthermore, in
contrast to other techniques (e.g., underspecification), it leads to a semantics
that is close to that of runtime assertion checking. The technique is well-
studied for first-order logic. We adapt it to one-tiered specification languages
and prove that the adapted variant is an instance of the one developed for
first-order logic.

We demonstrate through examples that state changes made by pure
methods are observable. We present an encoding that takes state changes
into account by explicitly modeling them. We illustrate the drawbacks of
such an explicit modeling and propose an encoding that yields significantly
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simpler formulas. The simplified encoding considers pure methods to be
completely side-effect free. We precisely define the conditions under which
the simplified encoding preserves the original semantics, and we define means
that ensure that the conditions hold.

The proposed encoding together with the elimination of ill-defined ex-
pressions guarantees that the semantics of specification expressions is pre-
served by the encoding.

Axiomatization of Pure Methods

As mentioned above, pure-method calls are encoded by applications of un-
interpreted functions. In order to reason about formulas that contain such
function applications, meaning has to be assigned to these function symbols.
This is typically done by stating axioms over the function symbols based on
the specifications of the corresponding pure methods.

However, it would be dangerous to blindly turn user-defined specifica-
tions into axioms. Postconditions may be infeasible, the specification of
multiple pure methods may contradict each other, or (mutually) recursive
specifications may be ill-founded. An axiom system that is extracted from
such specifications may be inconsistent, thereby potentially leading to un-
sound reasoning.

Therefore, proper checks must be performed on specifications before ax-
ioms are emitted. However, it is not trivial what these checks should be
and what information may be assumed when performing these checks, in
particular, when specifications contain (possibly mutually recursive) calls to
pure methods.

Contributions. We propose a technique that guarantees the consistency
of the axiom system that is extracted from user-defined specifications. The
technique poses proof obligations to ensure the feasibility of pure-method
specifications as well as well-foundedness for recursive specifications.

The technique deals with dependencies between method calls. That is,
if the specification of some pure method n contains a call to another pure
method m, then the consistency of m is attempted to be proven first, and,
in case of success, the properties of m can be used when attempting to prove
the consistency of n. This way the tracking of dependencies gives a means to
precisely define which parts of the specifications may be used at what points
of the axiomatization process. Furthermore, the development of the tech-
nique reveals that certain dependencies should be forbidden, that is, calls to
pure methods should not be allowed in certain specification constructs.

We demonstrate that well-definedness checking and consistency checking
are closely related and should not be divided into two independent tasks.
The proposed technique combines the two in a natural way.
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Handling of Model Classes

Model classes only contain pure methods, thus the encoding and axiomati-
zation techniques described above apply to the methods of model classes.
However, applying the same techniques for model classes may not be desir-
able. Several theorem provers come with a set of built-in theories containing
essential mathematical structures. The tactics of theorem provers are opti-
mized for such built-in theories rather than encodings of model classes via
newly introduced function symbols.

Therefore, the literature proposes to map model classes and their meth-
ods directly to the built-in theories and symbols of the theorem prover at
hand [29, 75, 76]. This way, methods of model classes need not be axiom-
atized. Instead, calls to such methods are encoded as applications of the
corresponding predicate and function symbols.

Obviously, crucial to the soundness of this technique is to ensure that
the mapping is correct. That is, the semantics of related model classes and
mathematical structures, and related methods and symbols have to match.
Otherwise, static program verifiers might produce results that come unex-
pected for programmers who rely on the model-class specification. Further-
more, the results may also vary between different theorem provers, which
define certain operations slightly differently. Moreover, if model classes are
implemented and the implementation is based on the model-class specifica-
tion, then the outcome of runtime assertion checking might differ from that
of static verification.

Clearly, mappings between model classes and built-in theories should not
be merely based on the names of operations, as pointed out by Guttag [51]:

To rely on one’s intuition about the meaning of names can be
dangerous even when dealing with familiar types.

A technique that maps model classes to theories of theorem provers must
provide a systematic approach, which guarantees that semantic mismatches
are prevented. Coming up with such an approach might be tricky when, for
instance, the universes or provided operations of related structures do not
match.

Contributions. We propose an approach for the faithful mapping of
model classes to mathematical structures. Faithfulness means that a given
model class semantically corresponds to the mathematical structure it is
mapped to. Our approach takes the specifications of model classes into
account and poses proof obligations to ensure semantic correspondence of
related entities.

The approach enables sound reasoning about programs specified in terms
of model classes and helps in improving the quality of model class specifica-
tions by making them consistent and complete.
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We discuss the consequences of imperfect mappings on the verification
process, that is, the consequences of mappings that relate model classes with
structures whose sets of operations do not exactly match.

1.3 Outline

Chapter 2 introduces Jml--, the language we consider in the thesis, the logic
and store model that is used throughout the thesis, and a number of defini-
tions and theorems of mathematical logic that are referred to in the thesis.
That preliminary chapter is followed by two parts.

Part I presents the techniques we developed for the encoding of specification
expressions, for the checking of their well-definedness, and for the sound
axiomatization of pure methods.

Chapter 3 motivates the need for and describes the difficulties of the
three techniques through examples. Then, through Chapters 4 to 6, the
details of the three techniques are developed. Chapter 7 describes our im-
plementation of the techniques in the Spec# verification system.

Part II presents the technique that we developed for the faithful mapping
of model classes to mathematical structures provided by theory libraries of
theorem provers.

Chapter 8 motivates our work and introduces a model class and a struc-
ture that are used for demonstration purposes in latter chapters. Chapter 9
describes the formal details of our approach, Chapter 10 discusses different
aspects of the proposed technique, and Chapter 11 reports on a case study.
Chapter 12 extends the technique to the handling of inductively defined data
types. Part II is closed by a summary of related work in Chapter 13.

Finally, in Chapter 14 we conclude the thesis by summarizing the main
contributions and pointing out areas of further work.
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Chapter 2

Preliminaries

2.1 Syntax and Semantics of Jml--

In this section, we define the concrete syntax and the semantics of Jml--,
the language that we consider in this thesis. Jml-- is essentially a subset
of JML (which is a superset of Java), however, it contains a few additional
elements introduced for the purposes of the thesis.

Jml-- contains the most important object-oriented features, such as sub-
typing, inheritance, and dynamic method binding; and the most important
features of interface specifications, namely, object invariants and method
specifications.

Jml-- is minimal in the sense that it contains only those constructs that
are needed for the purpose of the thesis. For instance, the language does
not contain visibility modifiers because these modifiers play no role in the
techniques presented in the sequel. During the introduction of the grammar,
we will point out the most important deviations from Java and JML.

The syntax and semantics of the language elements borrowed from Java
are left unchanged. We assume basic knowledge of Java, and thus do not
go into details of the syntax and semantics of the different constructs and
modifiers. The syntax and semantics of Jml--’s specification constructs are
similar but not identical to that of JML. The precise syntax and semantics
of the constructs is given below.

The grammar of Jml-- is given in Figure 2.1 using the Backus-Naur Form
(BNF). Terminals are (1) keywords such as class and new, typeset in bold

typewriter font, (2) symbols such as , and ==>, typeset in typewriter
font, and (3) identifiers such as ClassId and FieldId, typeset in sans-serif font.
Nonterminals are typeset in italic font. As common in BNF, a ? means a
occurring zero or one time, a+ means a occurring one or more times, and
a* means a occurring zero or more times. Parentheses in roman font “(...)”
are used for grouping.

15
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Program ::= Type-decl+

Type-decl ::= Type-map* Modifier* (Class-decl | Iface-decl ) { Member* }

Type-map ::= mapped to("String","String","String");
Modifier ::= abstract | pure | model | immutable | helper

| resultNotNewlyAllocated | noReferenceComparison
| constructing

Class-decl ::= class ClassId (extends ClassId)? (implements IfaceId-list)?

Iface-decl ::= interface IfaceId (extends IfaceId-list) ?

IfaceId-list ::= IfaceId (, IfaceId)*

Member ::= Field-decl | Method-decl | Invar-decl
Field-decl ::= Type FieldId;

Method-decl ::= Method-sign Method-spec ? (Method-body | ;)
Method-sign ::= Method-map* Modifier* Type ? MethodId( Param-list ? )

Method-map ::= mapped to("String","String");
Param-list ::= Param-decl (, Param-decl )*
Param-decl ::= Type ParamId

Invar-decl ::= redundantly ? invariant Expr ;

Method-spec ::= redundantly ? (requires Expr ; | ensures Expr ;)+

(measured by Expr ;) ?

Expr ::= Expr � Expr
| ! Expr
| Expr . FieldId

| Expr . MethodId ( Expr-list ? )

| new ClassId ( Expr-list ? )

| ParamId

| Literal
| \old ( Expr )

| \fresh ( Expr )

| Quantification
� ::= && | || | ==> | == | != | < | <= | + | - | * | / | %
Literal ::= this | null | \result | true | false | -1 | 0 | 1 | . . .
Expr-list ::= Expr (, Expr )*
Quantification ::= ( Quantor BVar-decl . Expr )

Quantor ::= \forall | \exists
BVar-decl ::= Type BVarId

Type ::= int | boolean | void | nullable ? Ref-type
Ref-type ::= ClassId | IfaceId

String ::= string of characters

Figure 2.1: Grammar of Jml--
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Programs. A Jml-- program consists of a number of type declarations. A
type is either a class or an interface. We assume a set of identifiers for classes
and interfaces, ClassId and IfaceId, respectively. Types may be mapped to
abstract data types using mapped to clauses. The details on the use and
semantics of the clause are given in Part II.

A class may be declared to be a subtype of at most one other class and
of any number of interfaces. An interface may be declared to be a subtype
of any number of other interfaces. The subtype relation must be acyclic.

A class can be declared to be abstract. A class or interface can be de-
clared to be pure, meaning that all its methods are pure, that is, free of
side-effects. A class or interface can be declared to be a model type, mean-
ing that the class or interface is only used for specification purposes. A type
may be declared to be immutable, meaning that the state of an instance
of the type may not be altered after initialization of the instance. Other
modifiers must not be used for types.

Remark. Type declarations in Jml-- have no visibility modifiers (such as
public), and types may not be organized into packages. We assume that
there is one package in which every type resides and types are mutually
visible to each other. These restrictions are made for the sake of simplicity
since the techniques proposed in the thesis are orthogonal to the concepts of
visibility and packages. An extension to include these concepts is straight-
forward.

Members. Classes and interfaces have an arbitrary number of field dec-
larations, method declarations, and invariant declarations.

A field declaration consists of a type and an identifier from FieldId. A
method declaration declares a method or a constructor, and consists of a
method signature, an optional method specification, and a possibly missing
method body.

A method signature consists of an optional mapping, the return type,
an identifier from MethodId, and a possibly empty list of formal parameters.
For constructors, no return type is declared.

A method or constructor of a model type may be mapped to a function
symbol of some theory specified by mapped to clauses, and may be declared
to be constructing. The details on the use and semantics of these constructs
are given in Part II. A method may be declared to be abstract. A method or
constructor may be declared to be helper, meaning that declared invariants
do not apply to the method or constructor (see below).

Remark. For simplicity, Jml-- does not support static methods. An exten-
sion to include static methods is mostly straightforward since their encoding
and axiomatization is analogous to that of non-static methods.
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Remark. In most aspects that are relevant for this thesis, constructors and
methods are analogous. Therefore, from now on, we will refer to both meth-
ods and constructors by methods, and will explicitly distinguish between the
two only if necessary.

A method may be declared to be pure, which marks it to be side-effect
free. Due to their side-effect freeness, pure methods may be invoked in spec-
ification expressions. Throughout the thesis, we use the following definition
for purity:

Definition 2.1. (Purity) A method is pure if it does not alter the state of
objects that existed before its execution. The same applies for constructors,
except that they are allowed to modify the state of the object that is being
initialized.

Note that this definition allows pure methods to allocate and initialize
new objects. This notion of purity is commonly referred to as weak pu-
rity [11, 103].

Modifier resultNotNewlyAllocated for a reference-type pure method
means that the returned object is not newly allocated, that is, it was already
allocated in the prestate of the method. Constructors may not be marked
with this attribute. Modifier noReferenceComparison for a pure method
means that the specification and implementation of the method does not use
operators == and != on operands of reference type. The purpose of these
modifiers and the way their semantics is enforced is explained in Chapter 4.

Based on the JML Reference Manual [77], we make the assumptions that
pure methods terminate and that they are deterministic.

Assumption 2.1. (Pure methods terminate) Pure methods and con-
structors always terminate. They either terminate normally or throw an
exception.

Regarding determinism, we make different assumptions based on the
return values of pure methods:

Assumption 2.2. (Pure methods are deterministic) Pure methods and
constructors are deterministic. (1) A pure method with primitive return-type
returns the same value when called in a given state. (2) A pure method that
is marked with modifier resultNotNewlyAllocated returns objects that
are equal in terms of reference equality when called in a given state. (3) A
pure constructor or a method not marked with that modifier returns objects
that are equal in terms of the equals method when called in a given state.

This means that methods whose behavior depend, for instance, on some
random-number generator or the system time, cannot be declared as pure.
However, we allow, for instance, method hashCode declared in class Object
to be marked as pure because in a given state it returns the same “address”.
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The fact that two consecutive executions of the same expression (for exam-
ple, new C().hashCode()) yield different results does not mean that the
method is non-deterministic because the method is called in two different
states.

Remark. Although languages may provide means other than just hashCode
to get hold of values that are related to object identities,1 in the sequel, we
will only mention hashCode to refer to these means.

It is out of the scope of this thesis to develop techniques that would justify
that these assumptions are valid for given pure-method implementations.
Here we just briefly refer the reader to approaches that can be applied to
justify these assumptions.

Termination is typically proven by the use of logics that ensure total
correctness. Such logics not only show that if the program terminates then
its behavior is correct (partial correctness), but also that it does terminate.
Such logics are developed in standard textbooks, for instance, in that of
Nielson and Nielson [105].

A technique capable to determine whether a pure method is deterministic
or not is that of equivalent-results methods by Leino and Müller [85]. The
technique uses self-composition to simulate two executions of the method
body. Results of the two “runs” are compared against a user-defined equiv-
alence relation to see if the method is deterministic modulo the defined
relation.

Note that the nonterminal Method-body is not defined. This is because
throughout the thesis we will not be concerned with implementations, and
thus the syntax of statements is irrelevant. In the sequel, examples with
implementations will use Java’s statement-syntax.

Remark. Method and constructor declarations in Jml-- have no visibility
modifiers. Again, the concept of visibility is orthogonal to the topic of the
thesis and an extension to include it is straightforward. Throughout the
thesis we consider every method to be visible for every type.

Interface Specifications. We consider two kinds of interface specifica-
tions: object invariants and method specifications. The invariant of an object
is the conjunction of expressions specified in invariant declarations. If no
invariant is declared then the object invariant defaults to true. An object
invariant specifies the consistent states of objects that are instances of the
enclosing type. The literature defines different invariant semantics, that is,
different definitions when and which invariants must hold during program

1The hashCode method defined by class Object returns distinct integers for distinct
objects; typically by converting internal addresses into integers [66].
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execution [100, 9, 115, 102]. The invariant semantics used in the thesis is the
visible-state semantics, which is the invariant semantics used by JML [77].
In order to give its definition, we first define visible states based on Müller
et al. [102]:

Definition 2.2. (Visible states) A program execution state is called visible
if it is the prestate or the poststate of a non-helper method execution. The
prestate of a method execution is the state immediately before the execution
of the method body, that is, after the actual parameter values of the call
have been assigned to the formal parameters of the method and control has
been transferred to the method. The poststate of a method execution is the
state immediately after the execution of the method body before control is
transferred back to the caller.

The visible-state semantic is defined as follows [77]:

Definition 2.3. (Visible-state semantics) The object invariants of all
allocated objects must hold in all visible states of a program, except in the
prestate of constructors where the invariant of the object that is being ini-
tialized need not hold.

A method specification prescribes the expected functional behavior of a
method. A method specification consists of at least one requires or ensures
clause. Requires clauses specify the precondition of the method at hand,
and ensures clauses the postcondition. The measured by clause is used in
termination arguments for recursively specified methods. The argument of
the clause has to be of type int.

If a method has no method specification or its method specification does
not contain a requires clause, then the precondition of the method defaults
to true. If multiple requires clauses are given in a method specification,
then the precondition of the method is the conjunction of the expressions in
the clauses. The rules are analogous for ensures clauses.

The semantics of pre- and postconditions is the following:

Definition 2.4. (Semantics of pre- and postconditions) If a method
is called in a prestate where all required object invariants and the method’s
precondition hold, then the method must terminate normally in a poststate
where all required object invariants and the method’s postcondition hold.

Remark. The above semantics requires normal termination, that is, meth-
ods may not diverge and may not throw exceptions. In JML, this type of
method specification is called normal behavior specification case. Jml-- only
supports this kind of specification case. As explained in Section 6.1, method
behavior that may throw an exception is orthogonal to the techniques de-
scribed in the thesis. Therefore, an extension to other specification cases is
straightforward.
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Remark. Jml-- allows one to specify a given method only by one specifi-
cation case, that is, only by one pre- and postcondition pair (via a set of
requires and ensures clauses). This restriction is made to simplify formaliza-
tions throughout the thesis, in particular, in Chapter 6. We refer the reader
to [112] for a detailed account on how multiple method specification cases
can be desugared into a single one while retaining semantical equivalence.

Remark. Jml-- specifications do not contain means to specify frame proper-
ties (specified by assignable clauses in JML). This is because the focus of
the thesis is on pure methods. As expressed by Definition 2.1, pure meth-
ods have an implicit frame property expressing that they may not modify
pre-existing state (specified by the implicit assignable \nothing clause
for such pure methods in JML). An extension to include frame properties is
straightforward.

An invariant or method specification may be declared to be redundant,
meaning that the property expressed by the specification is derivable from
other, non-redundant specifications.

Behavioral Subtyping. In the realm of verification of object-oriented pro-
grams, a crucial property is behavioral subtyping defined by Liskov and
Wing [89]:

Definition 2.5. (Behavioral subtyping) Let φ(o) be a property about
objects o of type T such that φ(o) is provable by the specification of type T .
Then φ(o′) should be true for objects o′ of type S, where S is a subtype of T .

Behavioral subtyping can be enforced in different ways. The most com-
monly used techniques are the ones proposed by Liskov and Wing [89], and
Dhara and Leavens [39]. The former requires a certain logical relation be-
tween the specifications of supertypes and subtypes. The latter achieves
these logical relations by defining a specification semantics where subtypes
inherit the specifications of supertypes. The semantics of JML prescribes
the latter approach [39].

We do not prescribe how behavioral subtyping is guaranteed, but simply
make the assumption that:

Assumption 2.3. Subtypes are behavioral subtypes.

Expressions. Expressions may contain the binary operators listed under
�. All operators except ==> are present in Java, and their semantics is
also the same as in Java. The operator ==> denotes “short-circuit” logical
implication.

Expressions may contain the unary logical negation.
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Expressions may contain field reads and calls to pure methods. Expres-
sions may also contain formal parameters as well as the literals this, null,
true, false, and integer literals.

Postconditions may contain three constructs that are not part of Java,
but are typically part of modern specification languages. The \old construct
yields the value of its argument in the prestate of the specified method. The
keyword \result refers to the return value of the non-void method being
specified. In constructors, this refers to the object being initialized. The
\fresh construct expresses that its reference-type argument gets allocated
by the specified method. That is, the object referenced by the argument was
not allocated in the prestate and is non-null in the poststate of the method.

Following the semantics of JML, if a formal parameter appears in a
postcondition then it denotes the value of the parameter in the prestate—
even if the parameter occurs outside an old-expression. For instance, if p
is a formal parameter then p and \old(p) denote the same value in every
pre- and poststates. However, note that p.f and \old(p.f) may denote
different values as location p.f (or \old(p).f) may have different values in
given pre- and poststates.

In contrast to formal parameters, \result is always bound to the post-
state, even if it occurs in an old-expression. In order to rule out expressions
that do not denote any value (such as \old(\result.f) if \result denotes
a newly-allocated object), we make the following restriction: Specifications
of methods that are not marked with modifier resultNotNewlyAllocated
must not mention keyword \result in old-expressions.

As we will see in Section 4.1, our encoding of constructors unifies the (se-
mantically separate) steps of allocating and initializing the new object. Due
to this encoding, the state after the allocation and before the initialization
is not observable by our approach. Thus, keyword this in the specifica-
tion of constructors is analogous to keyword \result in the specification of
methods. Therefore, in the specification of constructors we forbid keyword
this to be mentioned in preconditions and old-expressions. Forbidding such
specifications does not seem to cause any limitation in practice.

Finally, expressions may contain universal and existential quantification
over variables of integer, boolean, and reference type. Quantification over
variables of reference type ranges over allocated objects of the correspond-
ing type. Due to the way constructors are encoded, the range excludes the
object denote by this in the prestate of constructors.

Remark. The semantics defined above for quantifiers differs from the se-
mantics defined by JML. In JML, quantification over variables of reference
type ranges over all objects, even non-allocated ones. The reason for this
deviation in the semantics will be explained in latter chapters.
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Types. Jml-- has two primitive types: int and boolean. Reference types
represent references to objects. Following the semantics of JML, by default,
declared fields, method parameters, and return values of reference type may
not be null. To allow them to take the null value, one has to use the
nullable modifier in field declarations and method signatures.

2.2 Logic and Store Model

In this section, we describe the logic and the model of the object store that
is used throughout the thesis.

Logic. The logic that is used in Part I is two-valued first-order logic. The
choice of first-order logic is a direct consequence of the specification language
being first order. Two-valued logic was chosen because it is simpler and
better understood than many-valued logic, moreover, two-valued logic is
more widely used and has better automated tool support than many-valued
logic [55].

Part II uses two-valued higher-order logic. Although the presented tech-
nique is not bound to any particular logic, the provided examples and case
studies map model classes to Isabelle/HOL theories.
Store Model. To formalize properties of the object store, we use the store
model of Poetzsch-Heffter and Müller’s program logic [111]. It is formalized
in multi-sorted first-order logic with recursive data types.

Types and Values. Java’s types and values are modeled by the sorts Type
and Value, respectively. Sort Type contains primitive types, the type of
the null reference, and class types. The reflexive, transitive subtype re-
lation is denoted by �. A Value is a value of a primitive type, the null

reference, or a reference to an object. The function typeof : Value→ Type
yields the type of a value.

Object States. Object states are modeled via locations (instance variables).
For each field of its class, an object has a location. The sort FieldId is the
sort of unique field identifiers of a program. The function loc(X, f) either
yields the location for field f of the object referenced by X or undefined ,
denoted by ⊥, if the object does not have a location for f . Conversely,
obj (L) yields a reference to the object a location L belongs to. For brevity,
we will often write X.f for loc(X, f) in the following.

loc : Value× FieldId → Location ∪ {⊥}
obj : Location → Value

Since the properties of these functions are not needed in this paper, we
refer the reader to [111] for their axiomatization.
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Object Stores. Object stores are modeled by an abstract data type with
main sort Store and operations to read and update locations, to create new
objects, and to test whether an object is allocated. Poetzsch-Heffter and
Müller present these functions and their axiomatization [111].

In this thesis, we need the following store operations: OS〈T 〉 yields the
object store that is obtained from OS by allocating a new object of class T .
new(OS , T ) yields a reference to this object. The lookup function OS(L)
denotes the value held by location L in store OS. alive(X,OS) yields true
if and only if (1) X is of primitive type, (2) X is the null reference, or (3)
X denotes an object that is allocated in OS. The sort ClassId is the sort of
unique class identifiers of a program.

〈 〉 : Store× ClassId → Store
new : Store× ClassId → Value
( ) : Store× Location → Value

alive : Value× Store → Bool

The logic uses the special program variable resV to represent the return
value of a non-void method.

In order to make formulas more readable, we introduce two additional
functions with the following signatures and definitions:

alloc : Value× Store → Bool
allocT : Value× Store×Type → Bool

alloc(o,OS ) , typeof (o) � Object ∧ alive(o,OS ) ∧ o 6= null

allocT (o,OS , T ) , alloc(o,OS ) ∧ typeof (o) � T

We will say that “an object o is allocated in store OS” to mean that
alloc(o,OS ) holds.

Remark. While allocatedness is only meaningful when talking about ob-
jects, aliveness is meaningful whenever talking about values. For instance,
according to the definitions of alive and alloc, null and 5 are always alive
but never allocated.

Remark. Once an object is allocated in store OS , it remains alive (and
therefore also allocated) in every successor store of OS . Thereby, the pro-
gram logic is not sensitive to garbage collection.

2.3 Bit of Mathematical Logic

This section summarizes standard notions of mathematical logic that will be
used in the thesis. We assume basic knowledge of these notions and results,
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and do not go into explanations. Interested readers are referred to standard
textbooks, such as [125, 41].

Syntax. The syntax of first-order logic is defined as follows. The language
signature Σ is defined by a set V of variable symbols, a set F of function
symbols, and a set P of predicate symbols. First-order terms and formulas
over Σ are defined by the following syntax:

Term ::= V ar
| f(t1, . . . , tn)

Formula ::= P (t1, . . . , tn)
| true | false
| ¬φ | φ1 ⇒ φ2

| φ1 ∧ φ2 | φ1 ∨ φ2

| ∀x. φ | ∃x. φ

where V ar ∈ V, f ∈ F, P ∈ P, ti are terms, and φ, φi are formulas.
The first-order language L′ is an extension of the first-order language L

if every symbol in the signature of L is a symbol in the signature of L′.

Structures. Let A be a non-empty set that does not contain ⊥. We
define A⊥ as A ∪ {⊥}. Let I be a mapping from F to the set of func-
tions from An to A⊥, and from P to the set of predicates from An to
Bool3 , {true, false,⊥}, where n is the arity of the corresponding func-
tion or predicate symbol.

We say that M = 〈A, I〉 is a structure for our language with carrier set
A and interpretation I. We call a structure total if the interpretation of
every function f ∈ F and predicate P ∈ P is total, which means f(. . .) 6= ⊥
and P (. . .) 6= ⊥. We call the structure partial otherwise. A partial structure
M can be extended to a total structure M̂ by having functions evaluated
outside their domains yield arbitrary values.

Interpretation. For some total structure M and variable assignment θ,
we denote the interpretation of term t in two-valued logic as [t]2Mθ, and the
interpretation of formula ϕ as [ϕ]2Mθ. Variable assignment θ maps the free
variables of t and ϕ to values. The two-valued interpretation is the standard
one [125, 41].

For some structure M and variable assignment θ, we denote the inter-
pretation of term t and formula ϕ in three-valued logic as [t]3Mθ and [ϕ]3Mθ,
respectively. The three-valued interpretation of terms and formulas can be
defined in different ways. For instance, logical connectives can be interpreted
according to Kleene’s or McCarthy’s semantics, and the interpretation of
functions and predicates may or may not be “strict”.2

2In a strict interpretation, functions and predicates yield ⊥ in case any of their argu-
ments is interpreted as ⊥.
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The actual three-valued interpretation of terms and formulas used in the
thesis will be given later.

Models. The truth of formula ϕ for structure M and variable assignment
θ is denoted by (M, θ) |= ϕ. Structure M is a model of formula ϕ, denoted
as M |= ϕ, if (M, θ) |= ϕ for all variable assignments θ. A formula ϕ is
valid, denoted as |= ϕ, if for every structure M and variable assignment θ:
(M, θ) |= ϕ. A theory T consists of a set of formulas that contain no free
variables: T = {ϕ1, . . . , ϕn}. We will often refer to these formulas as axioms.
A formula ϕ is a theorem of theory T if ϕ is a consequence of the axioms of
T . A theory T is called inconsistent if every formula ψ is a theorem of T .
A theory is called consistent otherwise. Structure M is a model of theory
T , denoted as M |= T , if M |= ϕi for all ϕi ∈ T . An important property for
our purposes is the following theorem.

Theorem 2.1. A theory T is consistent if and only if it has a model.

Remark. In the definitions above, it was not specified, for instance, whether
structure M was partial or total, and whether two- or three-valued interpre-
tation was meant. This means that we will “overload” notations, however
the context in which they appear will make the exact meaning clear.

A theory T ′ is an extension of a theory T if the language of T ′ is an
extension of the language of T and every theorem of T is a theorem of T ′. A
conservative extension of T is an extension T ′ of T such that every formula
of T that is a theorem of T ′ is also a theorem of T .

Well-definedness. For total structures, the interpretation maps a for-
mula to a value in Bool , {true, false}. For partial structures, the inter-
pretation maps a formula to a value in Bool3 , {true, false,⊥}. To check
whether or not a value in Bool3 is ⊥, we use function wd:

wd : Bool3 → Bool

wd(x) ,

{
true , if x ∈ {true, false}
false , if x = ⊥

Theory Interpretation. Different authors present the notion of theory
interpretation differently. Below, we follow the presentation of Farmer [42].

An n-ary term function is a λ-expression λ{x1, . . . , xn. E}, where E is
a term. Analogously, if E is a formula, then the λ-expression is called an
n-ary formula function.
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Let T and T ′ be two first-order theories. A standard translation from T
to T ′ is a pair (U , ν) where U is a closed unary predicate and ν is a function
from the nonlogical symbols of T to the nonlogical symbols and terms of T ′

such that:

1. if f is an n-ary function symbol of T , then ν(f) is either an n-ary
function symbol or a closed n-ary term function;

2. if P is an n-ary predicate symbol of T other than =, then ν(P ) is
either an n-ary predicate symbol or a closed n-ary formula function;

3. ν(=) , = .

Let Φ = (U, ν) be a standard translation from T to T ′. For a term
[formula] E of T , the translation of E via Φ, written Φ(E), is the term
[formula, respectively] of T ′ defined inductively as follows:

1. Φ(x) , x, if x is a variable;
2. Φ(S(t1, . . . , tn)) , ν(S)(Φ(t1), . . . ,Φ(tn)), if S is an n-ary function

or predicate symbol;
3. Φ(true) , true and Φ(false) , false;
4. Φ(¬φ) , ¬Φ(φ);
5. Φ(φ ◦ ψ) , Φ(φ) ◦ Φ(ψ), if ◦ ∈ {∧,∨,⇒};
6. Φ(∀x. φ) , ∀x. U(x)⇒ Φ(φ);
7. Φ(∃x. φ) , ∃x. U(x) ∧ Φ(φ).

A standard translation associates the universe of its source theory with
a closed unary predicate of the target theory. In the sequel, we will refer
to this predicate as the universe predicate. The translation associates the
nonlogical symbols of the source theory with closed terms and formulas of
the target theory, and variables and logical connectives with themselves.
The quantifiers are relativized to the universe predicate.

Φ is a standard interpretation of T in T ′ if Φ(φ) is a theorem of T ′ for
each theorem φ of T . A sufficient condition for a standard translation Φ
from T to T ′ to be a standard interpretation is that the following formulas,
called obligations, are theorems of T ′:

1. Φ(φ) for each axiom φ of T ; (axiom obligation)
2. ∃x. U(x) ; (universe nonemptiness obligation)
3. ∀x1, . . . , xn. U(x1)⇒ . . .⇒ U(xn)⇒ U(Φ(f(x1, . . . , xn)))

for each function symbol f of T .3 (function symbol obligation)

The intuition behind the axiom and universe nonemptiness obligations
is straightforward. The function symbol obligation expresses that the in-
terpretation of a function f is a function whose restriction to the universe
takes values in the universe.

3Farmer [42] presents the property in a different, less intuitive form. Thus, the form
used by Shoenfield [125] is used instead.
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If the universe of the source and the target theory is identical, then
U(x) , (x = x). Consequently, (1) the relativization of quantifiers can be
omitted in translations and (2) the second and third obligations trivially
hold.

An important property for our purposes is the following theorem.

Theorem 2.2. If there is a standard interpretation of T in T ′, and T ′ is
consistent, then T is consistent.

The following example, presented by Farmer [42], shows a simple example
of a standard first-order interpretation.

Example 2.1. Let T be the theory consisting of the following three axioms
of a binary relation symbol ≤:

1. Reflexivity: ∀x. x ≤ x
2. Transitivity: ∀x, y, z. x ≤ y ∧ y ≤ z ⇒ x ≤ z
3. Antisymmetry: ∀x, y. x ≤ y ∧ y ≤ x ⇒ x = y

T specifies ≤ to be a nonstrict partial order.
Let T ′ be the theory consisting of the following three axioms of a binary

relation symbol <:

1. Irreflexivity: ∀x. ¬(x < x)
2. Transitivity: ∀x, y, z. x < y ∧ y < z ⇒ x < z

3. Trichotomy: ∀x, y. x < y ∨ y < x ∨ x = y

T ′ specifies < to be a strict total order.
Let Φ = (U, ν) be the standard translation from T to T ′ where

U(x) = (x = x) and ν(≤) = λ{x, y. x < y ∨ x = y}

It can be easily proven that Φ is a standard interpretation: the axiom
obligation can be shown by a few proof steps and, due to the defined universe
predicate, the second and third obligations trivially hold.
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Chapter 3

Motivation

The use of one-tiered specification languages allows programmers to write
specifications in a syntax that is nearly identical to the one they use for writ-
ing programs. For instance, the syntax of Jml-- expressions allows specifiers
to use the logical operator &&, to refer to the this-object, to access fields of
objects, and to call pure methods.

This flexibility comes at the price that the semantic gap between the
constructs of Jml-- expressions and first-order logic has to be bridged in
order to reason about specifications. In Part I of the thesis we show three
means that provide a solution for filling this semantic gap: (1) an encoding
of specification expressions in first-order logic, (2) a technique that ensures
well-definedness of specification expressions by posing proof obligations, and
(3) a technique for the sound axiomatization of pure methods.

In this chapter, we motivate the need for and the difficulties of these
techniques through examples. Furthermore, we explain the relation between
the three techniques.

3.1 Encoding of Specification Expressions

The static verification of programs specified with a one-tiered specification
language requires an encoding of specification expressions in the underlying
logic of the verification environment at hand. Such an encoding is indispens-
able as the domain of the specification language is considerably different
from that of the logic. For instance, the expression \fresh(this.f) does
not have a meaning in first-order logic.

One of the typical usages of such an encoding is the generation of proof
obligations for verifying the correctness of implementations. For instance,
our previous work describes the way Hoare-triples are generated for a subset
of JML in the Jive verification system [34]. In this thesis, the encoding
will serve two other purposes: checking the well-definedness of specification
expressions and extracting axioms from the specifications of pure methods.

Next, we show the issues that the design of such an encoding faces.

31
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3.1.1 Preserving Semantics of Expressions

As mentioned earlier, a crucial requirement for an encoding is that it pre-
serves the original semantics of specification expressions. However, such an
encoding is non-trivial. For instance, Jml-- expressions implicitly refer to
state (e.g., via field accesses, method calls, and the \fresh construct), while
state is not a first-class citizen in logic and thus has to be modeled somehow.

The encoding that we propose in Chapter 4 interprets Jml-- constructs
in terms of the store-operations that were presented in Section 2.2. These
operations provide a rather straightforward encoding of most store-related
expressions. The only exception is the case of method calls. Calls are
not covered by the store-formalization of Poetzsch-Heffter and Müller [111]
because it was developed in a two-tiered setting. The main issues raised by
calls in specification expressions are discussed in the next section.

Another difference between the semantics of Jml-- expressions and clas-
sical two-valued logic is the interpretation of logical operators. In particular,
the interpretation of “short-circuit” operators, as illustrated by the following
example.

Example 3.1. Assume a method with two integer parameters p1 and p2,
and the precondition “p1/p2 > 0 || true”. If an encoding would sim-
ply translate operator || to logical disjunction, then the resulting formula
would be “div(p1, p2) > 0 ∨ true”, where function div denotes division in
the underlying logic. However, this encoding might not preserve the orig-
inal semantics: On the one hand, due to the left-to-right evaluation, the
expression does not denote a value if p2 is 0; on the other hand, classical
two-valued logic does not have a notion of evaluation order, and thus the
formula always evaluates to true.

Our solution to such discrepancies, presented in Chapter 5, is a require-
ment that every specification expression must be well-defined. Under this
requirement, we get a matching semantics among Jml-- operators and logical
connectives that the encoding relates. The challenges of actually enforcing
the requirement are discussed in Section 3.2.

3.1.2 Object Allocation

Allowing pure methods to allocate and initialize new objects is important
for expressiveness [103, 118]. Object-oriented languages represent almost all
data as objects. Therefore, methods that return strings, tuples, sequences,
sets, etc. often create objects. Moreover, methods often create and manip-
ulate auxiliary objects, for instance, iterators. Such methods do not modify
objects that exist in the prestate, but they are not entirely free from side-
effects.
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The following three examples demonstrate that ignoring the side-effects
possibly made by pure methods in the encoding may lead to unexpected
results during verification.

Example 3.2. Class Unsound in Figure 3.1 has a field f and an invariant
that requires f to be non-zero. Unsound’s constructor is declared to be pure
and helper, which allows it to return an object that does not satisfy its
invariant. In fact, the f field of the new object is initialized to zero, as
stated in the constructor’s ensures clause. The constructor is pure since it
modifies only the new object.

The constructor is called in the requires clause of method divide. Ac-
cording to the visible state semantics, one can assume that all objects that
are allocated and initialized satisfy their invariants in the prestore of divide.
If an encoding neglects the side-effects of a pure constructor, then one can
conclude that after the constructor call still the invariants of all allocated
and initialized objects hold (since the store is assumed to be unchanged)
and, therefore, (new Unsound()).f evaluates to a non-zero value. By this
reasoning, one can conclude that v is different from zero, which allows one
to verify that divide does not terminate abruptly.

On the other hand, one can prove that the precondition of the call
divide(0) in method showIt is satisfied because, by the postcondition of
the constructor, (new Unsound()).f evaluates to zero. Therefore, method
showIt verifies although it leads to a runtime exception.

The source of the problem is that the specification extends the set of
allocated objects, in particular, with an object that violates the invariant.
And, this extension is not reflected in the store argument used for the en-
coding, thus the violation is unnoticed. Note that the example is not bound
to constructors: the same issue would arise with a pure helper method that
returned a newly-allocated object initialized to f being 0.

Example 3.3. Class Alloc in Figure 3.2 declares a pure method alloc,
which is used in the specification of method foo. If an encoding did not con-
sider the possible state changes made by alloc, then foo’s ensures clause
alloc()==alloc() would be encoded in a single state. Thus, a uniform
handling of pure methods would encode the clause by an equality with two
identical operands (concretely, âlloc(this,OS ) = âlloc(this,OS ) when en-
coded in state OS ). Such an equality is trivially provable.

However, alloc returns a fresh object, as expressed by its postcondition.
That is, the returned object does not exist in the prestate of the method.
Since the poststate of the first call to alloc is the same as the prestate of
the second call, the two objects returned by the two calls cannot be equal
in terms of reference equality. That is, the postcondition should always
evaluate to false. In particular, that is the value a runtime assertion checker
would yield.
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class Unsound {
int f;
invariant f != 0;

pure helper Unsound()
ensures this.f == 0;

{ f = 0; }

int divide(int v)
requires v ==
(new Unsound()).f;

{ return 5 / v; }

int showIt()
{ return divide(0); }

}

Figure 3.1: Pure helper constructor
violates invariant of new object

class Alloc {

pure Alloc()
{ ... }

pure Alloc alloc()
ensures \fresh(\result);

{ return new Alloc(); }

void foo()
ensures alloc() == alloc();

{ ... }
}

Figure 3.2: Pure method alloc
returns a fresh object

The source of the problem is that the faithful modeling of the allocation
mechanism requires the encoding to take into account that alloc possibly
changed the state. Note that the problem would not occur if alloc returned
a non-fresh object or if reference equality was not tested.

Example 3.4. Consider the specification of method alloc in Figure 3.2.
The postcondition expresses that the method’s return value is fresh, that is,
the value was not allocated in the prestore and is non-null in the poststore.
This means that if the pre- and poststore was considered to be identical
then the postcondition would always yield false. However, in the case of
method alloc the return value denotes a newly-allocated object, thus the
postcondition should always yield true.

The source of the problem is that if the return value is a newly-allocated
object then that value is an obvious evidence for the pre- and poststore not
being identical.

In Chapter 4, we show how to explicitly model store changes in order to
resolve the examples shown above. Furthermore, we show how the modeling
can be significantly simplified making it practical for program verification.

3.2 Well-definedness of Specification Expressions

The expression syntax of Jml-- allows one to apply partial operators, such as
field access and the division operator. Applications of such operators outside
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their domains lead to ill-defined expressions. For instance, expressions o.f
and x/y are ill-defined if o is null and y is 0, respectively.

At runtime, the execution of such expressions typically results in an
exception. However, this behavior is usually not desired to be explicitly
modeled by an encoding of specification expressions. Therefore, different
solutions were proposed for the handling of ill-definedness. For reasons ex-
plained in Chapter 5, the solution we adapt in this thesis is the elimination
of ill-defined expressions. Before the actual verification process, each specifi-
cation element is checked for well-definedness. Checks are realized by posing
proof obligations on the elements.

In the presence of calls to pure methods, determining whether an expres-
sion is well-defined or not may require proving arbitrarily complex proper-
ties. When a call occurs in an implementation, one has to prove that all
object invariants and the precondition of the callee hold. The situation is
analogous for calls that occur in specifications. Therefore, to show that a
call-expression is well-defined one has to prove that the invariants and the
precondition hold.

A further complication is that specification elements may depend on each
other. That is, the well-definedness of some specification element may only
be provable if some information provided by some other specification element
is available. We illustrate such dependencies by the following example [116].

Example 3.5. Consider the abstract class Sequence, presented in Fig-
ure 3.3. The class contains pure methods to query whether the sequence
is empty, and to get the first element and the rest of the sequence. Method
count returns the number of occurrences of its parameter in the sequence.
The class contains field length, which represents the length of the sequence.
The class contains method specifications and invariants specifying length.

Consider the postcondition of method count. It contains calls to four
different methods, three of which have declared preconditions. For each call,
we have to prove, among other things, that the precondition of the callee
holds. Let us take a look at expression rest().count(c) in the fourth
and fifth ensures clauses of method count. To show that preconditions
are not violated, we need to prove that method isEmpty yields false both
when called on the this-object and when called on the object that rest
returns; and we need to prove that rest returns a non-null value. The former
requirement stems from the declared preconditions of rest and count, the
latter from the implicit precondition of the call to count that the receiver
must be non-null. The former requirement can be proven by the precondition
of count and the guarding condition !rest().isEmpty(), the latter by the
precondition of count and the specification of rest.

As we can see, in order to prove the well-definedness of the specification
of method count, we need certain pieces of count’s specification as well as
the specification of other pure methods.
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abstract class Sequence {
int length;

invariant length >= 0;
invariant isEmpty() ==> length == 0;
invariant !isEmpty() ==> length == rest().length + 1;

pure abstract int count(Object c)
requires !isEmpty();
ensures \result >= 0;
ensures (!getFirst() == c && rest().isEmpty()) ==> \result == 0;
ensures ( getFirst() == c && rest().isEmpty()) ==> \result == 1;
ensures (!getFirst() == c && !rest().isEmpty()) ==>

\result == rest().count(c);
ensures ( getFirst() == c && !rest().isEmpty()) ==>

\result == rest().count(c) + 1;
measured_by length;

pure abstract boolean isEmpty();

pure abstract Object getFirst()
requires !isEmpty();

pure abstract Sequence rest()
requires !isEmpty();
ensures \result != null;

// other methods and specifications omitted
}

Figure 3.3: Specification of abstract class Sequence

Our solution, presented in Chapters 5 and 6, is to emit well-definedness
conditions for each specification element of the program at hand, and to
prove these conditions using as much information as possible without the
danger of reasoning in an unsound way. To achieve this, we will explicitly
track dependencies between specification elements by a dependency graph.
The traversal of this graph will determine the order in which specification
elements are checked and the pieces of information that can be used for
proving a given well-definedness condition.

3.3 Axiomatization of Pure Methods

Function symbols that encode pure methods are defined by axioms that
reflect the behavior of the methods as expressed by their interface specifi-
cations. Generating these axioms is difficult because the axiomatization of
the functions has to be consistent to avoid unsound reasoning.
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Example 3.6. Consider the following two methods with infeasible specifi-
cations:

pure abstract int wrong(); pure int direct()
ensures \result == 0; ensures \result == direct() +1;
ensures \result == 1; { return 5; }

The specification of method wrong expresses that its return value is 0
and 1. If this property was turned into an axiom, then we could derive that
the value of the uninterpreted function introduced for the method is both 0
and 1. From this, we could immediately derive that 0 = 1, thus false.

Method direct is specified in terms of itself. The specification is clearly
not satisfiable by a pure method, and the recursive call is clearly ill-founded.
Again, if this property was turned into an axiom then we could derive the
value of the uninterpreted function introduced for the method is the value
plus 1. From this, 0 = 1 and thus false follows.

In practice, unsatisfiable specifications are far less obvious than in the
above examples because typically multiple specification elements are in-
volved. The main difficulty of checking feasibility and well-foundedness of
specifications lies again in the subtle dependencies between the specification
elements, as illustrated by the following example.

Example 3.7. In order to show the feasibility of method count of class
Sequence in Figure 3.3, one has to show that there actually is a result value
for each call to method count. This would not be the case, for instance, if
the first ensures clause required \result to be strictly positive because it
would contradict the second and possibly the fourth ensures clauses. Since
the fourth and fifth ensures clauses of count are recursive, proving the
existence of a result value relies on the specification of count. Using this
specification is sound since the recursion in count’s specification is well-
founded: (1) the first and third invariant, and the precondition of count
guarantee that the sequence is finite, and (2) the guarding condition together
with the precondition of count and the third invariant guarantees that we
recurse on a shorter sequence. Again, we have a subtle interaction between
specifications: proving the consistency of a pure method makes use of the
specification of this method as well as invariants and the specification of the
methods mentioned in these invariants.

This example demonstrates that generating the appropriate proof obli-
gations to ensure the feasibility of specifications is non-trivial. In Chapter 6,
we present our solution, which considers the dependencies of specification
elements and which handles (mutual) recursive specifications.
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Well−definedness

Axiomatization

Encoding

1. preserve semantics

2. condition generation

3. prove conditions

4. meaningful axioms5. capture properties

Figure 3.4: Dependencies between the techniques

3.4 Dependencies Between the Techniques

The encoding, well-definedness checking, and axiomatization of specifica-
tions are tightly coupled. The dependencies between the techniques are
depicted in Figure 3.4, where an arrow from technique A to technique B
means that A relies on B. The cyclic dependency between the three tech-
niques indicate that they should be used simultaneously in order to get
a semantics-preserving encoding of specification expressions, and a sound
axiomatization of pure methods. In the following, we describe the five de-
pendencies depicted in the figure:

1. The semantics of Jml-- constructs are only preserved by our encod-
ing if the well-definedness of specification expressions is guaranteed.
Therefore, before the encoding of a specification expression, its well-
definedness needs to be checked.

2. The well-definedness condition generated for an expression is typically
only provable by the use of information contained by sub-expressions.
For instance, the well-definedness of “o != null ==> o.val > 0” is
ensured if o is non-null. This is only provable if the premise of the
implication can be used. Thus, well-definedness checking relies on the
use of the encoding.

3. If a specification expression contains calls to pure methods, as in
“foo() != null ==> foo().val > 0”, then the well-definedness con-
dition of the expression will contain applications of the corresponding
uninterpreted function symbols. Such conditions are only provable if
the meaning of such symbols is known. Therefore, the axioms over
pure methods have to be available when proving the well-definedness
of specifications.

4. Axioms that are generated over pure methods should not contain
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mathematically unreasonable formulas. Thus, only well-defined ex-
pressions should be axiomatized. Therefore, the well-definedness of an
expression should be checked before it would get axiomatized.

5. Axioms over pure methods capture the specifications of the methods.
Therefore, axioms contain formulas that are encodings of specification
expressions. This means that the axiomatization technique relies on
the encoding of specification expressions.

Outline. Part I is structured as follows. The next chapter introduces our
encoding of specification expressions, as the well-definedness checking and
axiomatization techniques rely on it.

In Chapter 5, we show how well-definedness conditions are generated for
Jml-- expressions. At this point, we can already argue that if the conditions
are valid then the semantics of Jml-- expressions is preserved by our encod-
ing.

In Chapter 6, we present our technique for the axiomatization of pure meth-
ods. The technique resolves dependencies between specification elements by
applying an incremental processing of the elements based on a dependency
graph. The proposed technique also includes well-definedness checking, that
is, feasibility and well-definedness of specifications is proven at the same
time.

Finally, in Chapter 7, we describe how the three techniques were imple-
mented and adapted in the Spec# verification system.
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Chapter 4

Encoding of Jml--

Specification Expressions

In this chapter, we define the encoding of Jml-- expressions in first-order
logic. As discussed in Section 3.1, the main difficulty in defining such an
encoding is that the semantics of logical operators has to be preserved, and
that state changes made by pure methods have to be handled. This chapter
proposes solutions only for the latter problem. The former problem will be
resolved in the next chapter, where we present a technique to ensure the
well-definedness of specification expressions.

We present two encodings. The first encoding, presented in Section 4.2,
takes all possible store changes into account. Although the resulting en-
coding yields complicated formulas, it can handle Jml-- expressions without
any restriction. The second encoding, presented in Section 4.4, treats pure
methods as if they were strongly pure. That is, as if pure methods were not
allowed to change the state in any way, not even by the allocation of new
objects. This encoding yields significantly simpler formulas than the first
one, but it does not come for free: certain admissibility and semantic rules
have to be enforced on Jml-- specifications.

Finally, in Section 4.5, we show that one consequence of the simplified
encoding is that the pre- and poststore of a pure method has to be thought
of as being identical. This requires further rules to be defined in order to
prevent semantic mismatches.

4.1 Encoding of Pure Methods

The Encoding Function. Expressions in programs are always evaluated
in terms of a given state, the current program state. Since this state is
left implicit in the notation, the same expression, for instance this.f, may
evaluate to different values at different points of the program execution.

The situation is similar with specification expressions in one-tiered spec-

41
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ification languages. Since there is no notion of current state in first-order
logic, state has to be an explicit parameter of an encoding of Jml-- ex-
pressions. In postconditions, Jml-- expressions may contain the \old and
\fresh constructs, which allow one to refer to values in the prestate of the
specified method. This means that the encoding of postconditions needs
two explicit state parameters.

The only part of the state that is relevant for the encoding of specification
expressions is the object store. Therefore, we model the state by the Store
data type introduced in Section 2.2. The signature of our encoding function
γ is the following:1

γ : Expr × Store× Store→ Term

The first store argument denotes the “current” store, that is, the store in
which the expression is to be evaluated. The second store argument is used
only for the encoding of postconditions, and denotes the store of the prestate.

Remark. In the sequel, we will use the convention that if both the “current”
store and the prestore needs to be denoted, then the former is denoted by
OS ′ and the latter by OS . If only one store needs to be denoted, then OS
will be used. In applications of function γ, we will make it explicit when
the second store argument is not used (e.g., in encodings of preconditions)
by writing at that position, as in γ(this.f,OS , ).

Encoding of Pure Methods. Function symbols that model pure meth-
ods take one argument for each parameter of the method, and the object
store in which they are evaluated; and yield the result of the method. As
a convention, the name of the function symbol that models a pure method
in type T will be the name of the method with subscript T , and an addi-
tional “hat” symbol (̂ ) on top. In case of overloading, name clashes must
be resolved. For constructors, the subscript denoting the enclosing type is
dropped.

For example, an instance method m in type T with one implicit param-
eter (the receiver) and one explicit parameter is modeled by the following
function:

m̂T : Value×Value× Store→ Value

In some subtype S of T , the method is modeled by function m̂S that
(apart from the name) has the same signature as m̂T .

The modeling of constructors differs only in that the function takes no
parameter for the receiver object and the function yields the newly allo-

1The encoding of an expression may yield a Formula, too. For brevity, we do not
distinguish the two cases in the signature.
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cated and initialized object. For instance, a constructor C with one explicit
parameter is modeled by the function:

Ĉ : Value× Store→ Value

Remark. Note that this modeling of constructors does not directly follow
the semantics of Java, where the new keyword first allocates a fresh object
and then the constructor is called on that object. Our modeling of construc-
tors unifies these two steps. This modeling is justified by the fact that the
intermediate state after allocation and before initialization is not observable
in specifications given the restrictions and quantifier semantics defined for
constructors on page 22.2

Remark. Since there is a one-to-one mapping between pure methods and
the corresponding uninterpreted function symbols, we will often use them
as synonyms in the sequel to abbreviate text. For instance, we say “the
specification of a function f” to abbreviate “the specification of the pure
method encoded by function f”.

Determinism. Encoding pure methods by mathematical functions seems
to be justified: according to Assumption 2.2 on page 18, pure methods are
deterministic. If this property did not hold then the encoding could possibly
lead to unsound reasoning, as theorem provers rely, for instance, on Leibniz’s
equality: for every values x and y, and function f , if x = y then f(x) = f(y).
This would not hold for some pure method that was non-deterministic.

For constructors and methods that return newly-allocated objects, de-
terminism assumes an allocation mechanism that yields objects with the
same object identity when called in the same state.

This assumption is valid for Java. Furthermore, the assumption is in
line with the underlying programming logic, which models allocation by a
function, too—for instance, OS 〈T 〉 denotes the store that we obtain after
allocating a T-object in store OS .

Object Allocation. In Section 3.1.2, we have seen three examples that
demonstrate that state changes made by pure methods may be observable
by subsequent specification expressions. These examples show that either
such state changes have to be modeled by the encoding or specifications
have to be restricted such that state changes become non-observable.

2That is, keyword this may not be mentioned in preconditions and old-expressions,
and the range of quantification over allocated objects in the prestate of constructors ex-
cludes the object denoted by this.
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4.2 Explicit Modeling of Store Changes

In this section, we will explore the solution that makes the potential store
changes of pure methods explicit. For each pure methodm of type T , besides
function m̂T , we introduce another uninterpreted function m̂ST that yields
the store after calling m. The function takes the same arguments as m̂T . If
m has one explicit parameter then m̂ST has the signature:

m̂ST : Value×Value× Store→ Store

Analogously, for a constructor C with one explicit parameter, the signa-
ture of the function is:

ĈS : Value× Store→ Store

In the following, we will refer to these functions as store functions.

By the use of store functions, expressions can be encoded such that each
sub-expression refers to the store resulting from the evaluation of the previ-
ous sub-expression. After each method call, the corresponding store function
has to be applied and used for the encoding of the succeeding sub-expression.

Remark. In the sequel, we will drop the subscripts in the names of uninter-
preted function symbols whenever they are not relevant. For instance, we
will use m̂ and m̂S instead of m̂T and m̂ST , respectively.

Let us revisit the three examples from Section 3.1.2 (pages 33 and 34)
to see how the problems get solved by this explicit modeling.

Example 3.2 Revisited. Recall that the example illustrated that if an en-
coding neglected store changes made by pure methods, then invariants were
assumed to hold for objects that were allocated by pure methods. However,
this assumption is invalid if allocation was made by a helper method.

Assume divide’s precondition, “v == (new Unsound()).f”, is encoded
in store OS . This store is passed to the encoding of the first operand of the
== operator, as well as for the encoding of the call to constructor Unsound
in the second operand. This is because the store parameter does not change
by the encoding of the parameter name v. However, field f is not read
in OS , but in the store that the store function of method Unsound yields:

̂UnsoundS(OS ).
The fact that all object invariants hold in prestore OS of divide does

not imply that the invariant of the new object holds in the modified store.
This prevents the invalid assumption, and, thus the soundness problem.
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Example 3.3 Revisited. Recall that the example highlighted the issue of
reference comparison being applied on the same operands, which yield fresh
objects. If an encoding neglects state changes then static verification and
runtime assertion checking yield different results.

Assuming that the encoding begins in store OS , the ensures clause of
method foo is encoded by the following formula:

âlloc(this,OS ) = âlloc(this, âllocS(this,OS ))

This equality is not trivially true, and whether it holds or not depends on
the actual behavior of method alloc. In our example, the specification of
alloc implies that the equality does not hold.

Example 3.4 Revisited. Recall that the issue with the example was that
if the pre- and poststore of method alloc was considered to be identical,
then its ensures clause \fresh(\result) would lead to a contradiction.

By denoting the prestore of method alloc by OS , the poststore is de-
noted by store âllocS(this,OS ). Stating that the return value is not al-
located in the former and is allocated in the latter is not a contradiction.
Whether the statement holds or not depends on the behavior of the method.

The Resulting Encoding. To formalize store changes explicitly, the en-
coding relies on function ω that accumulates store changes made by some
expression E. More specifically, ω yields two stores that correspond to the
poststore and the prestore after the evaluation of expression E:

ω : Expr × Store× Store→ Store× Store

The arguments of ω are the same as that of γ. We will write ω1 and ω2 to
refer to the first (the poststore) and the second (the prestore) components
of the result of ω, respectively.

We do not present the definition of encoding function γ for the complete
syntax of Jml-- expressions. Instead, we refer the reader to [35], and here
only present two of the more involved cases in order to demonstrate that
the encoding leads to complicated and hard-to-read formulas.

Expressions with Binary Operator. The first operand of a binary operator is
encoded with the two stores that are passed to γ as arguments. The second
operand is encoded in the stores that the encoding of the first operand
yields. For instance, the encoding and successor stores of an expression
with operator && are the following:

γ(E &&F,OS ′,OS ) , γ(E,OS ′,OS ) ∧ γ(F, ω(E,OS ′,OS ))

ω(E &&F,OS ′,OS ) , ω(F, ω(E,OS ′,OS ))
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Method Calls. A call to some pure method m of type T is encoded as a
function application of m̂T . According to the left-to-right evaluation order
of Java, the expression that denotes the receiver object is encoded first.
Thus, the expression that denotes the first explicit parameter of the method
is encoded in the poststore of the encoding of the receiver object. Anal-
ogously, the second explicit parameter is encoded in the poststore of the
encoding of the first parameter, and so on. Accordingly, the store argument
of the application of symbol m̂T is the poststore of the encoding of the last
parameter.

The successor stores of a method call are expressed using the store
function m̂ST . Its arguments are determined the same way as for func-
tion m̂T . The evaluation of \old constructs in the actual parameters of
the call to m potentially modifies the method’s prestore (for instance, in
obj.m(\old(obj.n())) ). The ω function for method calls changes the
second store component of its result accordingly, using the ω2 function to
acquire the second component, the prestore.

For simplicity, we present the encoding and successor stores for a method
with one explicit parameter:

γ(E.m(F),OS ′,OS ) ,
m̂T ( γ(E,OS ′,OS ), γ(F, ω(E,OS ′,OS )), ω1(F, ω(E,OS ′,OS )) )

ω(E.m(F),OS ′,OS ) ,

( m̂ST ( γ(E,OS ′,OS ), γ(F, ω(E,OS ′,OS )), ω1(F, ω(E,OS ′,OS )) ),
ω2(F, ω(E,OS ′,OS )) )

where T is the static type of expression E.

Example 4.1. Figure 4.1 shows the final and intermediate pre- and post-
stores that ω(obj.m(p) && obj.m(\old(obj.n())),OS ′,OS ) yields. For
simplicity, we assume that obj and p are parameter names.

OS

OS’

Prestores

Poststores

nS(obj,OS)

mS(obj,p,OS’) mS(obj, n(obj,OS), mS(obj,p,OS’))

\oldobj.m(p)  &&  obj.m(       (obj.n()))

Figure 4.1: Stores yielded by the explicit modeling of store changes

Remark. We do not prove the correctness of the encoding function γ. Such
an argument would require, for instance, an equivalence proof against an
operational semantics, which would go beyond the objectives of this thesis.
Therefore, the encoding function γ can be thought of as our “interpretation”
of specification expressions.
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4.3 Drawbacks of the Explicit Modeling

The explicit modeling of store changes by the use of store functions elimi-
nated the problems of the encoding for the three examples. However, this
modeling has several disadvantages. One direct consequence of applying the
store functions is that the encoding clutters up resulting formulas.

Example 4.2. To demonstrate how complex formulas can get, we revisit
class Sequence in Figure 3.3 on page 36, and partially encode the second
ensures clause of method count:

γ(!getFirst() == c && rest().isEmpty(),OS ′,OS ) ≡
¬ ̂getF irst(this,OS ′) = c ∧ ̂isEmpty(r̂est(this,G), r̂estS(this,G))

where G abbreviates store-function application ̂getF irstS(this,OS ′).
The resulting formula contains three applications of store functions, two

of which form a nested application. The situation gets much worse when
the whole postcondition of count gets encoded: the method has five en-
sures clauses and the expressions contained by those clauses get conjoined
to form one expression to be encoded. The encoding of that expressions
yields a complex and unreadable formula, which makes both automated and
interactive verification difficult.

Besides cluttering up resulting formulas, the use of store functions leads
to several other drawbacks.

More Difficult Reasoning Over Stores. Since the encoding yields formulas
that contain applications of store functions, we need means to deduce prop-
erties of stores that are denoted by store functions.

Since a pure method is assumed not to modify existing objects, we know
that every value that is alive in prestore OS of a pure method is alive and
unchanged in poststore OS ′ of the method. We express this property by the
predicate OS E OS ′, and define it as follows:

OS E OS ′ , ∀X. alive(X,OS ) ⇒ alive(X,OS ′) ∧
∀L. alive(obj(L),OS ) ⇒ OS (L) = OS ′(L)

(4.1)

The predicate allows one to relate store functions and their store argu-
ments: for every store function m̂S, store OS , and parameters p1, . . . , pn,
we know that OS E m̂S(p1, . . . , pn,OS ) holds.

Although such relations between stores and store functions allow one
to reason about objects that existed before calling a pure method, it makes
reasoning more difficult. In particular, interactive verification becomes more
tedious, and fully automated verification may fail if provers do not find the
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proper arguments (among the possibly numerous store parameters) for the
predicate.

More Difficult Reasoning for Clients. Store functions make it difficult to
match specifications. For instance, clients of method count may be inter-
ested in the specification expression contained by the third ensures clause,
but not in the first or second one. Still, they have to deal with the store
changes potentially made by the expressions in the first and second clauses
because the corresponding store functions appear in the encoding of the
third clause.

Store Changes of Quantifiers. For universal and existential quantification
no encoding can be given in the program logic introduced in Section 2.2 that
takes all store changes explicitly into account. Consider the following two
expressions:

(\forall int x. new C(x).b) and (\exists int x. new C(x).b)

In the first case, there is an infinite number of object allocations3 and
the order in which they take place is unknown. In the second case, we may
not know how the store changes as it depends on the actual instantiation.

Losing Commutativity of Operators. Due to the store functions, commuta-
tivity of operators is harder to establish because, for instance, expressions
m()==n() and n()==m() are encoded by different formulas.

4.4 Simplified Encoding of Store Changes

To overcome the drawbacks of the explicit modeling of store changes, we
propose a simplified encoding of pure methods. The simplified encoding
omits the use of store functions, that is, store changes that pure methods
possibly make are not taken into account. The main effect of this simpli-
fication is that in the encoding of specification expressions, the pre- and
poststore of a call to a pure method is not distinguished by the use of store
functions, but is considered to be identical. Therefore, application of the ω
function (used for accumulating store changes made by sub-expressions) is
not needed anymore in the definition of γ.

As a consequence, for every precondition P the resulting formula of
γ(P,OS , ) only contains OS as store argument. The same holds for the en-
coding of invariants. And, for every postcondition Q, formula γ(Q,OS ′,OS )
only contains OS ′ and OS as store arguments.

3Or a large number of allocations in case Java’s semantics of integers is modeled.
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OS OS

OS

obj.m(p)

mS(obj,p,OS)Explicit modeling of store changes

No modeling of store changes

Figure 4.2: Stores with and without the modeling of object allocation

The difference between the explicit and this simplified modeling is illus-
trated in Figure 4.2, which depicts the pre- and poststores of the encoding
of a method call in store OS .

Example 4.3. We revisit Example 4.2 on page 47 and encode the same
expression that was shown there:

γ((!getFirst() == c && rest().isEmpty()),OS ′,OS ) ≡
¬ ̂getF irst(this,OS ′) = c ∧ ̂isEmpty(r̂est(this,OS ′),OS ′)

Note that the store arguments in the resulting formula always remain OS ′.

The definition of the simplified encoding is presented in Figure 4.3. Func-
tion FOL, defined in Figure 4.4, gives the encoding of the operators, formal
parameters, and literals of Jml-- in first-order logic. We assume that the
syntax of the underlying logic contains all symbols that appear in the right
columns, except of variable names param, this, resV , and the constant sym-
bol null.

The simplified encoding eliminates the drawbacks of the explicit encod-
ing. Since the encoding does not use store functions anymore, there is no
need to relate stores by the E predicate, and to use the definition of the
predicate to reason about values in poststores of pure methods.

The simplified encoding uses the same prestore and poststore throughout
the encoding of an expression, thus the matching of specifications is no longer
a problem. For instance, if a client wanted to use the third ensures clause
of method count, then the encoding of the expression in that clause was
not influenced by store changes made by expressions in other clauses. This
makes it simpler to match the third clause with other assertions.

As the simplified encoding omits the store functions, commutativity is
preserved: for instance, the expressions m()==n() and n()==m() are now
encoded by equivalent formulas.

As demonstrated by the examples in Section 3.1.2, such a simplified en-
coding, without restrictions, would lead to reasoning that is either unsound



50 CHAPTER 4. ENCODING OF JML-- SPECIFICATION EXPRESSIONS

γ(E � F,OS ′,OS ) , γ(E,OS ′,OS ) FOL(�) γ(F,OS ′,OS )
γ(!E,OS ′,OS ) , ¬ γ(E,OS ′,OS )
γ(E.f,OS ′,OS ) , OS ′(loc(γ(E,OS ′,OS ), f))
γ(E.m(F),OS ′,OS ) , m̂T ( γ(E,OS ′,OS ), γ(F,OS ′,OS ),OS ′ )

where T is the static type of E
γ(new C(E),OS ′,OS ) , Ĉ( γ(E,OS ′,OS ), OS ′ )
γ(v,OS ′,OS ) , FOL(v)
γ(\old(E),OS ′,OS ) , γ(E,OS ,OS )
γ(\fresh(E),OS ′,OS ) ,

¬ alive(γ(E,OS ′,OS ),OS ) ∧ γ(E,OS ′,OS ) 6= null

γ((\forall T x. E),OS ′,OS ) ,

∀ x. allocT (x,OS ′, T ) ⇒ γ(E,OS ′,OS )
γ((\exists T x. E),OS ′,OS ) ,

∃ x. allocT (x,OS ′, T ) ∧ γ(E,OS ′,OS )

where the shaded parts are added only if the quantified variable is of
reference type.

Figure 4.3: Definition of the simplified encoding function γ

or yields results that are not in line with Java’s semantics. In order to
prevent that, we take a systematic look at the constructs of Jml-- expres-
sions to find those that are “sensitive” to the omission of store changes. We
revise the constructs to see if and how our assumption on pure methods
being deterministic is effected, and to see if and how our handling of pure
methods that allocate objects is effected. Once we have an answer to these
points, we can define means to make these effects unobservable in specifi-
cation expressions, thereby, making the explicit and the simplified encoding
equivalent.

4.4.1 Revising Determinism

As we have seen in Example 3.3 on page 33, by omitting the possible store
changes of pure methods, the encoding of two consecutive calls to a pure
method with the same parameters will result in the same term. Unfortu-
nately, this encoding is not faithful to the semantics of Java: values may
depend on object identities and object identities are assigned in a state-
dependent way by the allocation mechanism. By omitting state changes in
our encoding, we cannot model this allocation mechanism faithfully. Thus,
our encoding may lead to unexpected evaluations whenever values that de-
pend on the identity of newly-allocated objects are involved.
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Figure 4.4: Definition of function FOL

Therefore, we need to find ways to make the evaluation of specification
expressions independent of object identities of newly-allocated objects. To
do so, we need to inspect the structure of Jml-- expressions to determine
which constructs make such identities observable. There are three such
constructs:

• reference comparison (i.e., operators == and != with reference-type
operands), if both operands refer to a newly-allocated object. This
case was demonstrated by Example 3.3.

• field access, if the value of the field depends on the identity of a newly-
allocated object. As some pure method foo is allowed to initialize the
fields of newly-allocated objects, expression “foo().f” may yield the
hash code of a newly-allocated object.

• method call, if the return value depends on the identity of a newly-
allocated object, such as “new Object().hashCode()”.

Next, we propose ways to eliminate these cases. We begin with the sim-
pler case of field access and method call.

Proposed Solution for Field Access and Method Call

The problem with field access and method call is caused by the possibility to
save or return values that depend on the identity of newly-allocated objects.
Therefore, we need a way to ensure that the state of fresh objects is indepen-
dent of its or other fresh objects’ identities after initialization. To achieve
this, we forbid to call the hashCode method on newly-allocated objects in
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implementations of pure methods (including the object being initialized for
constructors) and in specification expressions.

One way to check whether this requirement is fulfilled is to apply the
equivalence-results methods approach of Leino and Müller [85]. As men-
tioned earlier, the approach uses self-composition to simulate two executions
of the method body, and compares the results against a user-defined equiv-
alence relation. Thus, by defining an equivalence relation that compares
return values or performs deep comparison on fields that potentially store
object identities, the approach allows one to detect if the use of hashCode
interferes with the evaluation of specification expressions or the initialization
of objects.

If purity checking is realized in a conservative way and calls to non-pure
methods are forbidden in implementations of pure methods, then a simple
alternative is to consider method hashCode to be non-pure. A drawback
of this solution is that types such as Hashtable cannot be specified since
its behavior relies on method hashCode, which may not be mentioned in
specifications.

Proposed Solution for Reference Comparison

The problem with reference comparison occurs if both operands of operators
== and != are references to newly-allocated objects. Therefore, a simple way
to resolve the problem would be to disallow pure methods to return newly-
allocated objects—while still permitting the allocation and modification of
new objects. Another solution would be to forbid reference comparison in
specification expressions. However, both these solutions are too restrictive
in many practical cases.

Therefore, we propose a more liberal approach that is based on simple
syntactic checks. The checks allow pure methods to return newly-allocated
objects as long as they do not lead to the illustrated discrepancy between
runtime assertion checking and static verification.

Modifiers. The checks require the use of two modifiers for pure methods,
introduced in Section 2.1:

• Modifier resultNotNewlyAllocated means for a reference-type pure
method that the returned object is not newly allocated, that is, it was
already allocated in the prestate of the method. Constructors may not
be marked with the attribute.

• Modifier noReferenceComparison means for a pure method or con-
structor that its specification and implementation does not use oper-
ators == and != on operands of reference type.

To ensure that the modifiers are applied correctly, the following obli-
gations are posed on pure methods. For methods that are marked with
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resultNotNewlyAllocated, the implicit postcondition alloc(resV,OS ) is
added, where OS corresponds to the prestore of the method. Methods and
constructors marked with modifier noReferenceComparison (1) may use
reference comparison only if one of the operands is the literal null and (2)
may call methods and constructors in their implementations only if those
are marked with modifier noReferenceComparison. This can be checked
at compile-time.

If the modifier is not present in the signature of a pure method, then it
may return fresh objects and may compare references, respectively.

Next, we introduce the notion of an allocating expression to describe
an expression that may yield a newly-allocated object. Our definition of
allocating expressions over-approximates the set of expressions that yield
newly-allocated objects; this keeps the analysis sound and simple.

Definition 4.1. (Allocating expression) An expression e is considered
to be allocating if and only if e is of reference type and is either (a) a
constructor call; (b) a method call where the callee is not marked with
resultNotNewlyAllocated; or (c) a composite expression with an allo-
cating sub-expression.

The rationale behind (a) and (b) is self-evident. To see the need for
(c), consider a field access this.m().f where method m is allocating, that
is, not marked with resultNotNewlyAllocated. Then m might return a
newly-allocated object whose field f refers to a newly-allocated object, too.

Checks on Specifications. The restrictions our checks enforce on specification
expressions are the following: (1) operators == and != may have at most
one operand that is allocating; (2) if two or more parameters (possibly the
receiver) of a method call are allocating, then the callee must be one that
is marked with noReferenceComparison. The latter requirement rules
out indirect reference comparisons “hidden” by the implementations of pure
methods.

To ensure soundness of the checks in the presence of subtyping, we re-
quire an overriding method to be at least as restricted in what its imple-
mentation is allowed to do as the overridden counterpart. That is, if an
overridden method is marked with one of the attributes then the overriding
method must be marked with that attribute, too.

Limitations. There are two main limitations of our design: methods need
to be annotated manually by users, and the syntactic nature of our analysis
leads to over-approximation. A more accurate analysis that goes beyond
syntactic checks, for instance, a points-to analysis could lessen these lim-
itations. Most annotations could be inferred and more methods could be
annotated with noReferenceComparison.
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4.4.2 Revising Object Allocation

After having analyzed and resolved the issues with determinism, we now
look at the possible issues with object allocation. As seen in Section 2.2,
the store can only be observed by two operations: the lookup function ( )
and function alive. Thus, we go through the structure of Jml-- expressions
to find all constructs whose encoding uses any of these two functions. Such
constructs possibly invalidate the desired equivalence of the encoding that
takes all store changes into account and the simplified encoding. In such
cases, certain restrictions have to be made in order to establish the equiva-
lence of the two encodings.

Remark. The analysis implicitly assumes that allocation made by a sub-
expression of primitive type does not have an effect on the evaluation of a
succeeding sub-expression E, provided that E does not contain quantifica-
tion.4 For instance, in expression new C().value == foo()+10, the allocation
made by the constructor is not observable by the expression on the right-
hand side of the equality.

Intuitively, the validity of the assumption follows (1) from the syn-
tax of Jml-- expressions, which does not contain constructs (e.g., the let-
expression) to store references to newly-allocated objects for later use; and
(2) from the restriction we make on the use of hash code, proposed above.
We do not argue for the validity of the assumption: a formal proof would
require the introduction of additional formalizations that are not needed in
the rest of the thesis, while an informal argument, based on the two points
above, is straightforward.

Base case: In the base case we have parameter identifiers and literals. Since
their encoding does not contain an application of the lookup function or
function alive, the omission of object allocation is not observable.

Step case: Next we look at compound expressions and assume that store
changes are not observable in sub-expressions.

• Binary operators, negation, and old-expression: the encoding of
these constructs does not contain functions that observe the store, thus by
the assumption on sub-expressions we can conclude that omission of object
allocation is not observable for these constructs.

•Method and constructor call: a call to a pure method or constructor is
encoded by an application of an uninterpreted function symbol. Although
the function application neither explicitly uses the lookup nor the alive

4If E contains quantification, then the objects allocated by the preceding sub-expression
are in the scope of the quantifier and thereby may have an effect on the evaluation of E.
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function, the actual meaning of the function application is given by the
axiom that is generated over the symbol.

The precise form of generated axioms is presented in Chapter 6, here we
just give the intuition behind the axioms. An axiom over a pure method
essentially expresses the semantics of invariants and pre- and postconditions,
as defined in Section 2.1. Moreover, an axiom contains properties that the
semantics of the underlying programming language guarantees, such as the
allocatedness of the receiver object and the aliveness of the return value.5

The general form of an axiom generated over some pure method m with one
explicit parameter is the following:6

for every prestore OSpre and poststore OSpost, and
for every receiver object o allocated in OSpre and parameter alive in OSpre,

if all invariants for all objects allocated in OSpre hold and
the precondition holds for o in OSpre,

then the return value is alive in OSpost, and
all invariants for all objects allocated in OSpost hold, and
the postcondition holds in OSpost

(4.2)

The lookup function is not directly used in (4.2). Still, the function
may be applied in the encodings of invariants or pre- and postconditions.
However, by the time axioms are generated, problematic specification ex-
pressions are eliminated by the restrictions that our analysis imposes on
specification expressions. Therefore, we can say that store changes are not
observable due to the use of the lookup function.

In the formalized version of (4.2), the alive function is used wherever
allocatedness and aliveness is mentioned above. Therefore, this is a case we
need to consider.

As explained above, a precondition is entirely encoded using a single
store. Regarding (4.2), this means that even if the precondition of m allo-
cated an object, the store would remain OSpre, thereby extending the scope
of invariants over the fresh object. The same applies for postconditions and
invariants, too.

This “unnoticed” extension of the scope of invariants may cause trouble
if the fresh object violated the invariant. An example for this situation was
Example 3.2 on page 33 where the scope of invariants was extended over the
(violating) newly allocated object.

This can only happen if the violating allocation was made by a pure
helper method, which are the only methods that are not required to establish
the invariants.

5Recall from Section 2.2, only objects may be allocated, while any value may be alive.
6For constructors, the object being initialized is excluded from the scope of invariants

in OSpre. For helper methods, all objects are excluded both in OSpre and in OSpost.



56 CHAPTER 4. ENCODING OF JML-- SPECIFICATION EXPRESSIONS

Proposed Solution. To prevent the issue with helper methods, we for-
bid the use of helper constructors and helper methods that are not marked
as resultNotNewlyAllocated in the specification of non-helper methods.
Simple static checks can enforce this requirement.

Remark. Methods that are not marked as helper but violate invariants (ac-
cording to their postconditions) are caught by the axiomatization technique
that we propose in Chapter 6: One of the requirements of the technique is
that for each pure method a witness has to be exhibited for the satisfiability
of the postcondition under the assumption that the invariants hold.

Remark. Another consequence of considering the pre- and poststore of a call
to some pure method identical is that in (4.2), stores OSpre and OSpost are
considered to be identical when the axiom is used for reasoning about the
call. This means that if the simplified encoding is applied, then special care
has to be taken when writing specifications for pure methods. We postpone
the discussion of this situation until Section 4.5, where the consequences are
analyzed in detail.

• Fresh-expression: a fresh-expression specifies in postconditions that a
given object was not allocated in the prestore. Therefore, whether allocation
in the poststore is modeled or not does not have an effect on the evaluation
of fresh-expressions.

• Field access: a field access is encoded by an application of the lookup
function. When store changes are explicitly modeled, the encoding looks as
follows:

γ(E.f,OS ′,OS ) , ω1(E,OS ′,OS )(γ(E,OS ′,OS ).f)

where ω1(E,OS ′,OS ) denotes the poststore of the encoding of E.
In the simplified encoding store changes are not modeled, thus the post-

store of E is always OS ′. Intuitively this would be wrong if E denoted
a newly allocated object, because the object (i.e., the value denoted by
γ(E,OS ′,OS )) would not be alive in OS ′. In such cases, for instance, a
field access on E would not be meaningful.

However, by the fifth line of (4.2), one can deduce that the return value
of a pure method is alive in the poststore. Therefore, if expression E is a call
to a method that yields a newly allocated object, we can deduce by (4.2)
that the object is alive in OS ′. Therefore, a field access on E is meaningful.

Although this way of reasoning with (4.2) might seem counter-intuitive,
it can be thought of as the modeling of an allocation mechanism in which
(1) the store contains all objects that the program at hand is ever going to
allocate, (2) unallocated objects are already in an initialized state, and (3)
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the role of a constructor call is merely to select one of these pre-fabricated
objects and make it “alive”.

Using this kind of allocation mechanism for our analysis is justified by
the following argument. There is no way specification expressions can ob-
serve the intermediate state of the (usual) object allocation mechanism in
which the new object is created but not yet initialized. Thus, the only ob-
servable difference between the two allocation models is that in our model
yet non-allocated objects are present in the store and are already initial-
ized. However, in both models such objects are non-alive. And this is the
key point, as the evaluation of formulas that result from the encoding only
depends on objects that are alive. As a consequence, whether a non-alive
object is initialized or not does not influence the evaluation of formulas.

Remark. A consequence of the allocation mechanism discussed above is that
one of the axioms that Poetzsch-Heffter and Müller [111] define for the store
operations introduced in Section 2.2 is invalidated. The axiom states that
each field of a non-allocated object has the zero-equivalent value of its type
(i.e., null, 0, or false). Therefore, this axiom should not be used together
with the encoding of pure methods that we propose.

• Quantification: according to the semantics given in Section 2.1, quan-
tification over variables of reference type ranges over allocated objects. In
case the quantified expression allocates new objects for some instantiation,
conceptually, the set of allocated objects gets larger. On the other hand,
the simplified encoding omits store changes made by specification expres-
sions, therefore, the set of allocated objects remains the same throughout
the evaluation of a given quantification. We resolve this conflict by precisely
specifying the store in which quantification is evaluated.
Proposed Solution. As discussed in Section 4.3, store changes made by
quantified expressions cannot be explicitly modeled; not even if we wanted
to. Therefore, we define the semantics of quantification such that every
instantiation of the quantified expression is evaluated in the same state,
namely, in the state in which the evaluation of the quantification began.
That is, the interpretation of quantification does not take into account ob-
jects that are allocated by the quantified expression.

4.5 Encoding of Pure-Method Specifications

Thanks to the simplified encoding, for every expression and store arguments,
γ(E,OS ′,OS ) yields a formula that only contains OS and OS ′ as heap
arguments. We have seen earlier that this has several advantages.

As mentioned above, a consequence of the simplified encoding is that
the pre- and poststores of pure methods are considered to be identical when
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reasoning about calls to them in specifications. In this section, we show
that this “merging” of pre- and poststores has to be taken into account
when writing specifications for pure methods. The reason is that not only
potential allocation made by specification expressions is omitted, but also
potential allocation made by the implementation of the method at hand.
This is depicted in Figure 4.5 in terms of a Hoare-triple with precondition
P and postcondition Q.

P   {  ...  }   Q

OS OS OSOS

OS’ OS’OS OS

Merging pre− and poststores

Separating pre− and poststores

Figure 4.5: Merging the pre- and poststore of a pure method

In this section, we analyze the constructs of Jml-- expressions to see if
there are undesired effects of “merging” the pre- and poststores. And, if
there are any, we propose solutions to eliminate the undesired effects.

Remark. The pre- and poststore of a pure method is only considered to be
identical when reasoning about calls to the method in specification expres-
sions. When reasoning about the source code of the pure method, the pre-
and poststore is not considered to be identical. For instance, consider a pure
method that allocates and initializes a new object o. In order to prove the
implicit “assignable \nothing” clause of the method that permits only
the mutation of newly allocated objects, one has to prove that o is indeed
fresh. This would not be possible if store changes made by the method were
not taken into account.

Remark. It is important to note that considering the pre- and poststores of
a pure method to be the same has great advantages, too. Axioms generated
over pure methods only need to quantify over one store variable; instead of
two, as indicated by (4.2). As a consequence, axioms do not need to relate
pre- and poststores by the E predicate.7 Clearly, such axioms lead to sim-
pler reasoning over pure methods.

Revising Determinism. As seen in Section 4.4.1, problems only occur if
the identity of two fresh objects are compared and the two expressions that
denote these objects are encoded by the same term in the underlying logic.
An example was expression alloc()==alloc() in Figure 3.2 on page 34.

If pre- and poststores are considered to be identical, then the main dif-
ference interesting for this case is that the \old construct does not have any

7For simplicity, this relation is not included in (4.2). Our previous work shows how the
relation can be formally integrated into axioms [35].



4.5. ENCODING OF PURE-METHOD SPECIFICATIONS 59

effect. Consequently, the encoding of expression \old(alloc())==alloc()
would also yield an undesired formula. However, the checks proposed in
Section 4.4.1 eliminate such specifications, too. Therefore, regarding deter-
minism, we need not take further measures.

Revising Object Allocation. As seen in Section 4.4.2, the only cases
where allocation may lead to problems are method calls, fresh-expressions,
and quantification. Therefore, we only need to consider these cases.

• Fresh-expression: if pre- and poststores are considered to be identical,
say OS , then for every expression E the encoding of the \fresh construct
(see Figure 4.3 on page 50) yields the following:

¬ alive(γ(E,OS ,OS ),OS ) ∧ γ(E,OS ,OS ) 6= null

This formula always evaluates to false: the object denoted by E should
be non-alive and non-null at the same time in store OS , however, there is
no reference-type Jml-- expression that could denote such an object.

This is not faithful to the semantics of the construct as pure methods
may allocate new objects that can be referred to in fresh-expressions. In
such cases the construct is expected to yield true. Example 3.4 on page 34
demonstrated such a situation.
Proposed Solution. The only way to resolve this semantical mismatch is
to forbid the use of fresh-expressions in the specifications of pure methods.

This restriction rules out, for instance, postcondition \fresh(\result)
of method alloc in Figure 3.2 on page 34. This leads to incompleteness is
certain cases, for example, expression \fresh(alloc()) cannot be proven.

In the specification of pure methods, the only useful argument of \fresh
is this in postconditions of constructors, \result in postconditions of
methods, and expressions that denote fresh objects reachable through these
keywords, such as \result.f. These are the only expressions that may de-
note objects that are both newly-allocated and observable in specifications.
Therefore, the only consequence of forbidding \fresh in pure-method spec-
ifications is that clients cannot deduce whether objects denoted by such
expressions are fresh or not, and thereby different from every other objects.
Such knowledge may be useful, for instance, to reason about the effects of a
field update on the object returned by a pure method.

• Quantification: The scope of quantifiers with bound variables of refer-
ence type spans over allocated objects. Therefore, if a pure method allocates
new objects in its implementation, the scope of a quantifier gets larger in the
postcondition. However, by considering pre- and poststores identical, these
fresh objects “disappear” from the scope of quantifiers in postconditions.
To illustrate that this may be observable, consider the class in Figure 4.6.
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class C {
int val;

pure C singlePositive()
requires (\forall C c. c.val == 0);
ensures (\exists C c. c.val > 0);

{
C temp = new C();
temp.val = 5;
return temp;

}
}

Figure 4.6: Limited quantifier expressivity in pure-method specifications

Clearly, the postcondition of method singlePositive holds because the
method returns a fresh object that satisfies the existential quantifier. How-
ever, if the pre- and poststore of singlePositive is considered to be the
same, then from the precondition one would expect the postcondition to
always evaluate to false.
Proposed Solution. To “resolve” this issue, we define the semantics of
quantifiers for pure methods so that the store in which they are evaluated is
always the prestore of the method being specified. As a consequence, newly-
allocated objects are not taken into account by the evaluation of quantifiers
in postconditions. Obviously, this semantics does not resolve the problem
but at least eliminates the semantical mismatch by precisely defining the
scope of quantifiers.

As the example above illustrates, this quantifier semantics limits expres-
sivity: the intuitively correct specification and implementation of method
singlePositive is deemed incorrect.

Remark. Generating an axiom from a contradicting pair of pre- and postcon-
dition (such as that of method singlePositive in the proposed quantifier
semantics) would lead to inconsistency. The approach presented in Chap-
ter 6 rules out such cases, thus, there is no need to define any restriction here.

• Method Call: As mentioned in Section 4.4.2, we need to consider the
consequences of stores OSpre and OSpost being identical in (4.2). To do
so, we have to consider the three properties that are stated over poststore
OSpost and analyze their meaning in prestore OSpre:

1. The return value is alive in the prestore, OSpre. Clearly, the statement
is not true if the return value is a reference to a newly-allocated object.
However, the statement could only lead to a contradiction if there was a way
to specify that the return value was not allocated in the prestore. By having
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forbidden the use of \fresh in pure-method specifications, this property
cannot be specified with the syntax of Jml--.

2. All invariants hold in prestore, OSpre. As invariants quantify over
all allocated objects, it seems that by using store OSpre we lose the infor-
mation that invariants hold for objects that are allocated by specification
expressions and by the method at hand. However, for the former set of
objects the loss of information is not a problem in practice as these objects
are not used when reasoning about source code—there is even no way to
refer to them. For the latter set of objects the information can be restored
as follows. By 1., we know that the return value is alive in OSpre. Thus,
if we can additionally derive (for instance, from the postcondition) that the
value is of reference type and non-null, then we can deduce that the object
is allocated in OSpre. Therefore, the scope of invariants spans over that ob-
ject. Aliveness of values reachable from the alive result value can be deduced
by one of the axioms of Poetzsch-Heffter and Müller’s program logic [111].
Allocatedness of reachable objects can be deduced the same way as for the
return value described above.

3. The postcondition holds in the prestore, OSpre. We already went
through the structure of Jml-- constructs to see and fix the undesired con-
sequences of merging pre- and poststores. Therefore, we can assume that
no sub-expression of postconditions can cause trouble.

Since none of the three cases lead to discrepancy with the expected se-
mantics or to contradiction, there are no measures to take for method calls.

This concludes the analysis for object allocation.

4.6 Summary

To sum up the results of this chapter, a quick overview of the consequences of
the proposed simplified encoding is given. We list the necessary restrictions,
how they can be enforced, and alternatives to the restrictions, if any.

• Method hashCode may not be called on newly-allocated objects in the
specification and implementation of pure methods.
Enforce: either by proof obligations (e.g., approach of equivalent-results
methods [85]) or by considering hashCode to be non-pure and forbidding
non-pure calls in the implementation of pure methods. The latter solution
is an over-approximation and rules out many “harmless” implementations,
because non-pure methods may be called in implementations of pure meth-
ods as long as they only alter the state of newly allocated objects.

• References to fresh objects may not be compared in specifications.
Enforce: by restricting operators == and != to have at most one allocating
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operand, and requiring every pure method that is ever called with two or
more allocating parameters to be marked with noReferenceComparison.
Alternative: a crude over-approximation is to forbid pure methods to return
fresh objects (while allowing allocation).

• Specifications of non-helper methods may not call helper constructors and
helper methods that are not marked as resultNotNewlyAllocated. En-
force: by simple syntactic checks.

• The semantics of quantifiers needs to be defined such that the store in
which they are evaluated is the prestore in preconditions and inside old-
expressions, and the poststore otherwise. That is, store changes possibly
made by preceding sub-expressions and the quantified expression are not
taken into account.

Consequences for Pure-Method Specifications

• Freshness of objects allocated by pure methods may not be specified.
Enforce: by forbidding fresh-expressions in specifications of pure methods.

• The semantics of quantifiers needs to be defined such that they are always
evaluated in the prestore, even if the quantification occurs in a postcondition.

Note that different semantics was proposed for quantification depending
on whether it appears in the specification of a mutating method or a pure
method. This might be confusing and undesired. However, for the reason
explained above, the semantics for pure methods cannot be relaxed if the
simplified encoding is used. Therefore, there are only two ways to make the
quantifier semantics uniform for mutating and pure methods.

1. One can forego using the simplified encoding. This makes the quan-
tifier semantics more expressive for pure methods (cf. the specification of
method singlePositive in Figure 4.6). On the other hand, formulas that
correspond to encoded specification expressions as well as reasoning about
pure methods gets more complex.

2. One can define the quantifier semantics for mutating methods the
same way as it is defined above for pure methods. While this makes speci-
fications of mutating methods less expressive, reasoning over pure methods
becomes significantly simpler due to the simplified encoding.

Alternatively, new syntax and semantics could be introduced for quan-
tifiers as follows:8

3. One could introduce two different kinds of quantifiers to represent the
two kinds of semantics described above.

8These alternatives were proposed by Gary T. Leavens in private discussions.
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4. One could introduce quantifiers with an explicit parameter that spec-
ifies the store in which the evaluation of the quantifier is meant. Due to the
simplified encoding of pure methods, the parameter would be restricted to
be the prestore in specifications of pure methods.

4.7 Related Work

Encodings of one-tiered specification languages commonly model pure meth-
ods as uninterpreted function symbols [32, 91, 65, 122]. However, according
to our knowledge, our work is the first encoding that explicitly addresses
the issues of weakly-pure methods. In the following, we summarize the way
encoding of pure methods is done in program-verification techniques and
tools that use one-tiered specification languages. We briefly introduce each
of these techniques and tools as they will be referred to in latter chapters,
too.

Program Verifiers. ESC/Java [47] was a tool developed for the cost-
effective extended static checking of Java programs. ESC/Java used a spec-
ification language similar to JML, and was designed to catch bugs within a
few seconds. The tool was designed to be unsound in certain well-defined
domains, for instance, in the handling of loops. ESC/Java did not allow
method calls to occur in specification expressions, thus the issues discussed
in this chapter were trivially eliminated.

Its successor, ESC/Java2 [70] supports JML as specification language,
thus allows the use of pure methods in specification expressions. The tool
implements Cok’s formalization [32] for their handling. However, the for-
malization does not handle the aspect of object allocation, therefore, the un-
soundness and discrepancy illustrated by the three examples in Section 3.1.2
are not prevented by his approach, and thus, ESC/Java2.

Why [43, 46] is a verification platform that provides an intermediate
programming and specification language, and a verification condition gener-
ator that interfaces several theorems provers, both automatic and interactive
(e.g., Simplify, Z3 and PVS, Isabelle). Krakatoa [91] and Caduceus [45] are
tools that utilize the Why platform for the verification of annotated Java
and C programs, respectively.

The specification languages used by Krakatoa and Caduceus are derived
from JML, but some constructs are removed while others are added. The
main restriction interesting for us is that methods may not be called in spec-
ifications. For the purpose of abstraction, users can introduce new logical
sorts, function and predicate symbols, and axioms to define the meaning of
the symbols [90]. The axiomatization can be directly done in the theorem
prover used for formal reasoning. This may be useful in cases when some-
thing is not expressible on the JML level or is more convenient to express
in the theorem prover.
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Applications of such logical function and predicate symbols may occur
in specifications, and since they are purely logical, the issues with object
allocation are prevented.

The KeY System [15] is a formal approach to the development of Java
and Java Card programs. It aims to integrate the phases of design, im-
plementation, formal specification, and formal verification. In the design
phase, users can make use of UML diagrams formally specified by the Ob-
ject Constraint Language (OCL) [109], a standardized specification language
specifically tailored to UML. Actual implementations can be verified against
the UML/OCL specification as well as against specification written in JML.
The underlying logic of the KeY System is first-order Dynamic Logic [58, 59],
and the tool provides its own theorem prover based on taclets [14].

The KeY System considers pure methods to be strongly-pure (both in
OCL and JML specifications), which is enforced by proof obligations. Al-
though this makes sure that the problems discussed in this chapter are
eliminated in KeY, it also makes the expressivity of pure methods lim-
ited [103, 118]. This is true for encodings of OCL specifications in general
(e.g., that of HOL–OCL [24]) as purity in OCL means strong purity.

Jack [26] is a program verifier for JML annotated Java and Java Card
programs. Jack uses a weakest precondition calculus to generate proof obli-
gations. The proof obligations are represented in an intermediate language,
in the Java Proof Obligation Language (JPOL). JPOL is a mixture of Java
and JML constructs, constructs of set theory, and a number of “ad-hoc”
constructs. From the JPOL representation Jack can generate input for a
number of fully automatic and interactive theorem provers in order to dis-
charge proof obligations.

Although Jack does not explicitly model store changes made by pure
methods, postcondition alloc() == alloc() in Example 3.3 on page 33
is correctly not provable by Jack. The reason is that the encoding of the
two calls yields two different logical variables, therefore the postcondition
cannot be trivially proven as the terms on the two sides of the equality
operator are different. Reasoning about the equality requires the use of the
axioms generated for method alloc. Therefore, this approach of introducing
separate logical variables for the calls resolves the issue of reference equality
over fresh objects.

Jack does not support the helper modifier and the \fresh construct,
thus the issues of the other two examples presented in Section 3.1.2 cannot
occur in Jack.

The Spec# system (described in detail in Chapter 7) supports weakly-
pure methods in contracts. Spec# applies the simplifications proposed in
this chapter for the encoding of specification expressions and for the axiom-
atization of pure methods.

The issue with reference comparison is resolved by the checks described
in Section 4.4.1 [33]. Spec# considers method GetHashCode to be pure, and
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does not ensure that the method is not called on newly-allocated objects.
Therefore, it is possible to prove that the hash code of two newly-allocated
objects are equal. However, this is due to the fact that the technique of
equivalent-results methods is not yet implemented in the tool.

Spec# does not have the notion of helper methods and it is not possible
to initialize a fresh object such that its invariant is broken at the end of
the initialization. This is because the invariant of the initialized object
is always checked at the end of the constructor (even if it is marked as
[NoDefaultContract]). Therefore the problem of assuming a postcondition
that contradicts invariants cannot occur.

In contrast to our proposal, specifications of pure methods in Spec#
may specify the freshness of objects. However, consistency checks ensure
that no axiom is extracted from such specifications (recall from Section 4.5
that such axioms would lead to semantical mismatches). Finally, the issues
with quantification over objects is prevented by only allowing quantification
over the elements of some collection. Since a pure method may not modify
a collection that existed in the prestore, the scope of quantifiers is always
the same in the pre- and poststore of a pure method.

Jacobs and Piessens [65] introduce inspector methods. Inspector meth-
ods are essentially pure methods with defined read effects: an inspector
method may read the state of the receiver object and parameters marked
with state, and the state of objects that are owned by the receiver ob-
ject or state-parameters. Inspector methods may not have postconditions
and their method bodies must be of the form { return E; }, where E is a
side-effect free expressions, which may not contain object and array creation.
Thereby, the issues with allocation is prevented.

Dynamic Frames. In order to reason about programs, a method speci-
fication has to define the frame property of the method: which part of the
state is potentially modified, and which is left unchanged by the method [21].
The specification of frame properties is difficult in programming languages
that support modular development and information hiding because the set
of all program variables are not known at the time of developing a mod-
ule, and specifications may not reveal variables used by implementations.
Therefore, different techniques were developed to express frame properties
in an abstract way, for instance in [80, 86, 100, 114].

A recent approach is the use of dynamic frames proposed by Kassios [69].
Dynamic frames provide a more flexible solution than previous approaches
in that they come with no restrictions on object structures such as alias
control [101]. In the following we list approaches that use pure methods to
express dynamic frames.

Smans et al. [128] developed a verification technique that extends method
specifications with explicit reads clauses for pure methods and writes

clauses for mutating methods. The clauses are used to specify read and write
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effects, and are given in terms of special pure methods, dynamic frames,
that return sets of locations. In [127], Smans et al. improve the technique
by inferring read and write effects. The approach of dynamic frames is
applied in VeriCool [126], a verification technique and tool developed for
the handling of concurrent programs. Common in all three approaches,
and relevant for the discussion, is that expressions that get encoded to the
underlying logic are strongly-pure.

Dafny [81] is an object-based language with specifications that are based
on dynamic frames. Dafny does not allow specifications to contain calls
to methods, but supports abstraction via specification-only functions. The
meaning of such functions is given by strongly-pure expression, thus the
problems of object allocation in specifications are eliminated.

Ballet [122] is a verification tool for Eiffel programs. It translates Eiffel
programs and their specifications to the intermediate language of Spec#.
Similarly to the work of Smans et al. [128], Ballet expresses dynamic frames
in terms of pure methods. Ballet allows specifications to contain pure meth-
ods but the encoding does not take object allocation into account, therefore,
the tool does not resolve the problematic cases presented in this chapter.

Model Fields. Model fields are similar to parameterless pure methods in
that their values are not looked up in the store, but depend on the state of
objects. In JML, the relation between the value of a model field and the
current state is specified by a represents clause. In general, such relations
may contain calls to pure methods, thus the encoding of model fields raises
similar issues to the ones the encoding of pure methods raises.

Breunesse and Poll [22] describe a way to encode model fields as pure
methods. The encoding replaces every model field by a pure method whose
postcondition corresponds to the represents clause of the model field.
The issues with weakly-pure expressions in represents clauses are not
addressed.

Work by Leino and Nelson [79, 86], and Müller [100] provides a sound
and modular handling of model fields using different techniques. However,
neither of the two approaches allow representation functions for model fields
to include method calls, thus preventing the need for handling side-effects.

Work by Leino and Müller [84] extends the Boogie methodology [83] to
handle model fields in a sound, modular, and practical way. One of the main
novelties of the approach is that the values of model fields are computed and
saved in the store, just like the values of ordinary fields. Therefore, reading
a model field does not have side-effects because the (possibly weakly-pure)
representation relation is not applied. For instance, for a model field m,
m == m yields true, even if the representation for m allocates a new object.
Leino and Müller’s approach handles weak purity for model fields, but not
for method and constructor calls, in general.



Chapter 5

Well-definedness of
Specification Expressions

Programming errors often lead to runtime exceptions. Typical errors include
division by zero or dereferencing null. In specification languages, the same
mistakes may occur in specification expressions, too. When such bogus spec-
ification expressions are executed during runtime assertion checking, then
exceptions are thrown just as if the expressions would appear in program
code. However, during static verification, specifications are not executed
but encoded in logical formulas. Thus, the question arises how an encod-
ing should handle such bogus expressions—the encoding function γ did not
address this issue at all.

In this chapter, we answer this question by discussing the different al-
ternatives and by giving our preferred solution for the expression syntax
of Jml--. We propose an operator that generates verification conditions
for Jml-- expressions. The validity of such conditions guarantees that the
corresponding expressions are free of the kind of mistakes mentioned above.

At the end of the chapter, we explain the difficulty of proving such
conditions in a setting like ours, where the presence of pure-method calls
in specification expressions make specification elements dependent on each
other. The technique we propose to overcome this difficulty is then presented
in Chapter 6. That is, the purpose of this chapter is to introduce the operator
that is used in the sequel for the well-definedness checking of specifications.

5.1 Background

Formally, the problem with the bogus expressions mentioned above is that
they contain partial operations that are, by mistake, applied outside their
domains. In such cases the expressions are said to be ill-defined. The treat-
ment of ill-defined expressions is a well-studied topic in the literature as
most formal approaches allow the use of partial operations in specifications.

67
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5.1.1 Various Approaches to the Handling of Ill-definedness

We briefly summarize three mainstream approaches to the handling of ill-
definedness. For detailed accounts, the reader is referred to the work of
Abrial and Mussat [4, Section 1.7], which discusses further approaches; to
Arthan’s paper [6], which classifies the different approaches to undefinedness;
and to Hähnle’s survey [55] on the use of many-valued logic for the modeling
of partiality in different specification languages.

Three-valued Logics. One of the standard approaches to handle ill-
defined expressions is to define a three-valued semantics [71] by considering
ill-defined expressions to have a special value, undefined, denoted by ⊥. For
instance, expressions null.f and x/0 are both considered to evaluate to ⊥.
In order to reason about specifications with a three-valued semantics, un-
definedness is lifted to formulas by extending their denoted truth values to
{true, false,⊥}. This leads to the development of three-valued logics, which
thus fully integrate ill-defined expressions into the formal logic. This ap-
proach is attributed to Kleene [71]. A well-known three-valued logic is LPF
[13, 30] developed by Jones et al. in the context of VDM [68]. Other speci-
fication languages that follow this approach include Z [129] and OCL [109].

A well-known drawback of three-valued logics is that they may seem un-
natural to proof engineers. For instance, in LPF, the law of the excluded
middle and the deduction rule (a.k.a. ImpI) do not hold. Furthermore, a
second notion of equality (called “weak equality”) is required to avoid prov-
ing, for instance, that formula x/0 = y/0 holds. Another major drawback
is that there is significantly less tool support for three-valued logics than
there is for two-valued logics.

Underspecification. The approach of underspecification assigns to an
ill-defined expression a definite, but unknown value from the type of the
expression [50]. Thus, the resulting interpretation is two-valued, however,
in certain cases the truth value of formulas cannot be determined due to
the unknown values. For instance, the truth value of x/0 = y/0 is known
to be either true or false, but there is no way to deduce which of the two,
since the actual values of x/0 and y/0 are unknown. However, for instance,
x/0 = x/0 is trivially provable. This might not be a desired behavior. For
instance, the survey by Chalin [27] argues that this is against the intuition
of programmers, who would rather expect some kind of error to occur in
the above cases, which would also be the behavior of a runtime assertion
checker.

Underspecification is applied, among others, in the Isabelle theorem
prover [106], the Larch family of specification languages, and in the KeY
System. The semantics of JML used underspecification until 2007.
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Eliminating Ill-definedness. A common technique to reason about spec-
ifications with a three-valued semantics is to eliminate ill-defined expressions
before starting the actual proof [16, 78, 4, 17]. Well-definedness conditions
are generated, whose validity ensures that all formulas at hand can be eval-
uated to either true or false. That is, once all well-definedness conditions
have been discharged, ⊥ is guaranteed to never be encountered.

The advantage of the technique is that both the well-definedness condi-
tions and the actual proof obligations are to be proven in classical two-valued
logic, which is simpler, better understood, more widely used, and has better
automated tool support [130] than three-valued logics.

The technique of eliminating ill-defined expressions in specifications by
generating well-definedness conditions is used in several approaches, for
instance, in Event-B, PVS [110], CVC Lite [12], and ESC/Java2. Since
2007 the semantics of JML also requires specification expressions to be well-
defined [77].

Our Choice of Technique

The approach we follow in this thesis to cope with the problem of partiality
is the technique of eliminating ill-defined expressions. That is, before further
analysis or processing of some specification element, we first generate a well-
definedness condition for it, and if the condition is not provable, then the
specification element gets rejected.

Our preference for this technique is due to the main drawbacks of the
other two techniques:
(1) General-purpose theorem provers commonly used for the automatic and
interactive verification of programs typically use two-valued logics. For in-
stance, Simplify [38], Z3 [36], Isabelle [106], or Coq [20]. These provers could
not be applied in case one decided for the use of three-valued logics.
(2) As pointed out by Chalin [27], the assertion semantics that the technique
of underspecification yields goes against the expectations of programmers.
Furthermore, it also leads to discrepancy between runtime assertion check-
ing and static verification.

In the following section, we summarize the most relevant work on the
technique of eliminating ill-definedness.

5.1.2 The Approach of Eliminating Ill-definedness

The first approach for the elimination of ill-definedness is attributed to
Hoogewijs, who introduced the ∆ operator in the form of a logical con-
nective in [63], and proposed a first-order calculus, which included this con-
nective. Later, ∆ was reformulated as a formula transformer D, for instance,
in [16, 4, 17]. D takes a (possibly open) formula ϕ and domain restriction
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δ, and produces another formula D(ϕ).1 The interpretation of D(ϕ) in two-
valued logic is true if and only if the interpretation of ϕ in three-valued
logic is different from ⊥.

Domain Restrictions. Domain restriction δ is a mapping from a set of
function symbols F to formulas. For each function f ∈ F, formula δ(f)
characterizes the domain of function f and may contain k free variables
where k is the arity of f . For instance, for the division operator, the domain
restriction δ requires the divisor to be non-zero. In text, we will refer to
such formulas as the domain restrictions of the corresponding symbols, for
instance, the “domain restriction of the division operator”.

Besides properly characterizing the domains of functions, another im-
portant requirement on domain restriction δ is that for each f ∈ F formula
δ(f) is well-defined. That is, δ(f) does not evaluate to ⊥ itself.

These two main properties of domain restrictions can be defined as fol-
lows in terms of structures and the semantical operation wd [17].2

Definition 5.1. Domain restriction δ characterizes structure M and is well-
defined for variable assignment θ, denoted by (M, θ)δ, if and only if:

1. δ characterizes the domains of function interpretations for M. That
is, for each f ∈ F and l1, . . . , ln ∈ A:

[δ(f)]3Mθ′ = true if and only if 〈l1, . . . , ln〉 ∈ dom(I(f))

where θ′ = [v1 → l1, . . . , vn → ln] and {v1, . . . , vn} are the parameter
names of f .

2. The domain formulas of δ are well-defined for variable assignment θ.
That is, for each f ∈ F: wd([δ(f)]3Mθ) = true.

Remark. Note that the definition only mentions functions in F, and does
not mention predicates in P. This is because approaches in the literature
assume that predicates are total on well-defined arguments.

The D operator was developed for the standard syntax of first-order
logic, and the interpretation of logical connectives follows the interpretation
of Strong Kleene [71]. For instance, as the truth table in Figure 5.1(a) shows,
a conjunction is well-defined if and only if either (1) both conjuncts are well-
defined, or (2) if one of the conjuncts is well-defined and evaluates to false.
Intuitively, in case (1) the classical two-valued evaluation can be applied,
while in case (2) the truth value of the conjunction is false independently of
the well-definedness and value of the other conjunct. The interpretation of
universal quantification is the generalization of conjunction: it is well-defined

1The literature leaves domain restriction δ an implicit argument of the operator. We
keep that notation, too.

2Function wd was defined in Section 2.3 on page 26.
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∧ true false ⊥
true true false ⊥
false false false false
⊥ ⊥ false ⊥

(a) Strong Kleene

∧ true false ⊥
true true false ⊥
false false false false
⊥ ⊥ ⊥ ⊥

(b) McCarthy

Figure 5.1: Kleene’s and McCarthy’s interpretation of conjunction

if and only if either (1) the quantified expression is well-defined for every
instantiation of the quantified variable, or (2) the quantified expression is
well-defined and yields false for some instantiation of the quantified variable.

The D operator proved to be impractical: the size of well-definedness
conditions it generates is exponential with respect to the size of the in-
put formula [117, 4]. Thus, instead of D, another formula transformer L
was proposed, which generates much smaller conditions with linear growth,
but which is incomplete. That is, the L operator is stronger than D:
L(ϕ)⇒ D(ϕ) holds, but D(ϕ)⇒ L(ϕ) does not necessarily hold [16]. This
means that the L operator may generate unprovable well-definedness con-
ditions for well-defined formulas. Despite this drawback, due to the signifi-
cantly smaller well-definedness conditions that L generates, many tools use
the L operator [117, 16].

Remark. Work on the proof theory of many-valued logics lead to the devel-
opment of operators that are equivalent to the D operator and do not cause
the exponential explosion of well-definedness conditions [53, 54]. However,
these results were mostly not picked up by the communities working on de-
sign languages and software verification.

The main difference between the D and L operators is that they use
slightly different interpretations of connectives and quantifiers. For the in-
terpretation of connectives, the interpretation of McCarthy is used [92]. As
an example, the truth table in Figure 5.1(b) presents McCarthy’s interpre-
tation of conjunction. The only difference from Kleene’s interpretation is
in the interpretation of ⊥ ∧ false, which yields ⊥. This reveals the most
important difference between the two interpretations: in McCarthy’s inter-
pretation conjunction and disjunction are not commutative. This is be-
cause McCarthy’s interpretation is sequential [55], that is, the order of the
operands might make a difference in the definedness of an expression.

The difference in the interpretation of quantifiers is that L considers
a quantification to be defined if and only if the quantified expression is
well-defined for all possible instantiations of the quantified variable. This
interpretation of quantifiers is commonly referred to as the strict interpre-
tation [55].
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In the rest of the thesis, the L operator will be used for the well-
definedness checking of logical formulas. Therefore, the formal details of the
L operator are summarized in Appendix A. Figure A.2 on page 184 presents
the three-valued interpretation of first-order terms and formulas to which
the well-definedness conditions that L yields correspond. The definition of
L is given in Figure A.1.

An important result for our purposes is the following theorem, which
expresses that for McCarthy’s interpretation (presented in Figure A.2) L is
a syntactical characterization of the semantical operation wd [16, 17].3

Theorem 5.1. For every structure M, domain restriction δ, formula ϕ,
and variable assignment θ, the following holds:

(M, θ)δ ⇒ ( [L(ϕ)]2cMθ = wd([ϕ]3Mθ) )

Recall that M̂ is a total structure, the extension of structure M. Conse-
quently, the theorem expresses that the L operator allows one to check the
well-definedness of three-valued formulas in two-valued logic.

Remark. As mentioned above, for Kleene’s interpretation D characterizes
operation wd, while L is stronger than D. Thus, for Kleene’s interpretation
the relation between L and wd is: (M, θ)δ ⇒ ( [L(ϕ)]2cMθ ⇒ wd([ϕ]3Mθ) ).

5.2 Well-definedness of Jml-- Expressions

The operators described above are applicable to first-order formulas. In this
section, we show how these results can be lifted to specification expressions.
In particular, we introduce operator Df that generates well-definedness con-
ditions for Jml-- expressions.

The main decision to make when designing Df is what the interpretation
of logical operators should be. The interpretation imposed by operator D,
operator L, a mixture of the two, or something completely different?

Since Java’s evaluation of expressions is sequential and is from left to
right, the semantics of the conditional boolean operators coincides with Mc-
Carthy’s interpretation of logical connectives. For instance, McCarthy’s
interpretation of conjunction in Figure 5.1(b) is in line with Java’s && oper-
ator.

The semantics of JML does not explicitly specify the conditions under
which a quantification is considered to be well-defined. That is, it is not
clear whether quantifiers have a strict interpretation or not. Therefore,
we are free to choose one or the other. We prefer a strict interpretation
because if a quantified expression is well-defined for all instantiations, then

3Behm et al. [16] assume domain restrictions to contain only total operators, therefore
premise (M, θ)δ is left out in their formalization as it is always trivially true.
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the interpretation of the quantification and the result of runtime assertion
checking surely match.

These considerations indicate that not only generates operator L smaller
well-definedness conditions than D, the interpretation that L leads to is also
closer to the expectations of programmers than the interpretation resulting
from the use of D. Thus, we build on the L operator and lift it to the syntax
of Jml-- expressions to obtain the Df operator.

Remark. The definition of both D and L corresponds to a strict interpre-
tation of function and predicate symbols. That is, an undefined argument
makes their interpretation to be undefined. This coincides with the se-
mantics of operators and method calls in Java where the evaluation of all
operands or actual parameters has to succeed in order to evaluate an oper-
ator or call, respectively.

Definition of Df and its Relation to L. Next, we define the Df op-
erator and show that it is an instance of operator L with a domain restric-
tion that directly corresponds to the semantics of the partial operations of
Jml--expressions.

The signature of the Df operator is similar to that of the encoding func-
tion γ, except that Df always yields a first-order formula:

Df : Expr × Store× Store→ Formula

The two store arguments denote the post- and prestore, respectively.
The definition of the Df operator is given in Figure 5.2. Well-definedness

of conjunction, disjunction, and implication is defined according to the se-
quential evaluation described above. That is, they are well-defined if and
only if either both operands are well-defined or the first operand is defined
and the second operand does not need to be evaluated for the evaluation of
the whole expression.

The symbol ⊕ denotes any of the Jml-- operators ==,!=, <, <=, +, -, and
*. These operators are total on well-defined operands, thus they are well-
defined if and only if both operands are well-defined. The symbol ⊗ denotes
any of the operators / and %. These operators are partial since their domains
exclude 0 being the second argument. Thus, they are well-defined if and only
if both operands are well-defined and the second operand is different from
0. Negation is well-defined if and only if the operand is well-defined.

A field access is well-defined if and only if the expression that denotes
the target object is well-defined and evaluates to a value other than null.
A call to some pure method m in type T with formal parameters p1, . . . , pn

is well-defined if and only if (1) the expression that denotes the receiver
object is well-defined and evaluates to some value other than null; (2) all
parameters are well-defined; and (3) the precondition preTm of the method
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Df (E &&F,OS ′,OS ) , Df (E,OS ′,OS ) ∧ (γ(E,OS ′,OS )⇒ Df (F,OS ′,OS ))
Df (E ||F,OS ′,OS ) , Df (E,OS ′,OS ) ∧ (¬γ(E,OS ′,OS )⇒ Df (F,OS ′,OS ))
Df (E ==>F,OS ′,OS ) , Df (E,OS ′,OS ) ∧ (γ(E,OS ′,OS )⇒ Df (F,OS ′,OS ))
Df (E ⊕ F,OS ′,OS ) , Df (E,OS ′,OS ) ∧ Df (F,OS ′,OS )
Df (E ⊗ F,OS ′,OS ) , Df (E,OS ′,OS ) ∧Df (F,OS ′,OS ) ∧ γ(F,OS ′,OS ) 6= 0
Df (!E,OS ′,OS ) , Df (E,OS ′,OS )
Df (E.f,OS ′,OS ) , Df (E,OS ′,OS ) ∧ γ(E,OS ′,OS ) 6= null

Df (E.m(e1, ..., en),OS ′,OS ) ,

Df (E,OS ′,OS ) ∧
n∧

i=1

Df (ei,OS ′,OS ) ∧ γ(E,OS ′,OS ) 6= null ∧

Df (preTm[E/this, e1/p1, ..., en/pn],OS ′,OS ) ∧

γ(preTm[E/this, e1/p1, ..., en/pn],OS ′, )
Df (new C(e1, ..., en),OS ′,OS ) ,

n∧
i=1

Df (ei,OS ′,OS ) ∧ Df (preC[e1/p1, ..., en/pn],OS ′,OS ) ∧

γ(preC[e1/p1, ..., en/pn],OS ′, )

Df (v,OS ′,OS ) , true
Df (\old(E),OS ′,OS ) , Df (E,OS , )
Df (\fresh(E),OS ′,OS ) , Df (E,OS ′,OS )
Df ((\forall T x. E),OS ′,OS ) , ∀x. (allocT (x,OS ′, T ) ⇒ Df (E,OS ′,OS )

Df ((\exists T x. E),OS ′,OS ) , ∀x. (allocT (x,OS ′, T ) ⇒ Df (E,OS ′,OS )

Figure 5.2: Definition of the Df operator

is well-defined and holds. The well-definedness of constructors is defined
analogously.

Parameter names and literals are always well-defined. A fresh-expression
is well-defined if and only if its argument is well-defined. An old-expression
is well-defined if and only if its argument is well-defined in the prestore.

Quantifiers are well-defined if and only if the quantified expression is
well-defined for every instantiation of the quantified variable. As defined in
Section 2.1, quantification over reference-type variables ranges over allocated
objects of the proper type. Thus, the quantified expression has to be well-
defined over this range of objects. In Figure 5.2, the shaded sub-formula is
only added for quantifiers over reference types.

Note that, for instance, a field access or a method call on a non-allocated
object yields an ill-defined expression. This is one of the reasons why the se-
mantics of Jml-- restricts the scope of quantifiers with reference-type bound
variables to range over allocated objects only.

Remark. Note that the aliveness of accessed variables and locations does not
have to be shown when proving the well-definedness of an expression. This
is because, for most cases, the language ensures that this property holds.
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The only two exceptional cases are \result and quantified variables. For
\result, the property holds due to the restriction we made on its usage in
old-expressions (see Section 2.1 on page 22). For quantified variables, the
property follows from the semantics defined for variables of reference types.

Relating Df and L. We show that Df is an instance of L by formally
proving the following theorem.

Theorem 5.2. For every Jml-- expression E, and stores OS ′ and OS, the
following equation holds: Df (E,OS ′,OS ) ≡ L(γ(E,OS ′,OS )).

Before the proof could be presented, there are two points to consider.

Relating Syntax. On the right-hand side of the equation, L is applied on
terms and formulas that γ yields. In order to know how L is to be applied,
we need to relate the syntactic elements that appear in such terms and
formulas with the syntactic elements of first-order logic. For instance, to
determine which rule of L is to be applied on formula L(x ≤ y), we need to
know that symbol ≤ corresponds to a predicate.

To find all syntactic elements that may appear in encodings of Jml--

expressions, the definition of γ in Figure 4.3 on page 50 has to be inspected.
The relation, presented in Figure 5.3(a), is obtained in a straightforward
manner. Note that if function loc is considered to be partial then the lookup
function ( ) is total. Symbols m̂T and Ĉ represent the function symbols
that are introduced for pure methods and constructors, respectively. Con-
stants true and false, as well as the logical connectives are omitted as they
are part of the syntax of first-order logic themselves.

Domain Restriction. Although implicit in the notation, some domain restric-
tion is always an argument of L. Of course, not an arbitrary one: in this
case, one that reflects the semantics of Java and JML. Therefore, we have to
define the domain restrictions of the five partial function symbols identified
in Figure 5.3(a). The domain restrictions, presented in Figure 5.3(b),4 are
rather straightforward, and will be denoted by δγ in the sequel.

The proof of Theorem 5.2 is presented in Appendix B.

Preserving Semantics of Expressions. One of the concerns with the
encoding of specification expressions was that the original semantics of ex-
pressions should be preserved (see Section 3.1.1). Based on (1) the inter-
pretation presented in Figure A.2 on page 184, which coincides with the
semantics of Java and which is the basis of the definition of operator L, and
(2) Theorem 5.2 that expresses the relation between L, γ, and Df ; we can

4For simplicity, we assume that o and p are literals or parameter names. Otherwise,
the substitutions would require a more complicated formula.
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symbols in γ-encodings FOL counterparts
=, 6=, <, ≤ predicates

+, −, ∗ total functions
div, mod, loc, m̂T , Ĉ partial functions

( ) (lookup), alive, alloc, allocT total functions
null, −1, 0, 1, . . . total (constant) functions

this, resV , param, f (field), OS (store), variables
T (type), x (bound variable)

(a)

partial functions domain restrictions
div(x, y) y 6= 0
mod(x, y) y 6= 0
loc(o, f) o 6= null

m̂T (o, p,OS ′) o 6= null ∧ Df (preTm[o/this, p/param],OS ′,OS ) ∧
γ(preTm[o/this, p/param],OS ′, )

Ĉ(p,OS ′) Df (preC[p/param],OS ′,OS ) ∧
γ(preC[p/param],OS ′, )
(b)

Figure 5.3: Relating symbols and defining their domain restrictions

now conclude that the use of Df and γ together ensure that the semantics
of expressions is preserved.

Proving Well-definedness Conditions. The definition of Df provides
a means to generate conditions for Jml-- expressions whose validity ensures
that the expressions are well-defined. However, it is not yet clarified what
may be assumed when attempting to prove given well-definedness conditions.

Recall from Example 3.5 on page 35 that specification elements may
depend on each other. For instance, the well-definedness of a specification
element may only be provable if other specification elements and axioms
generated over certain function symbols can be used. On the other hand,
to prevent using mathematically unreasonable specifications and axioms in
proofs, only well-defined specifications should be assumed and axiomatized.

This suggests that (1) dependencies between specification elements have
to be taken into account, and that (2) the well-definedness checking of spec-
ifications and the axiomatization of pure methods mutually depend on each
other, and hence, are to be done simultaneously.

The development of a technique that provides solutions to these two
points is the topic of the next chapter.

Remark. Related work on the well-definedness checking of specification ex-
pressions is discussed in the next chapter, where our technique of proving
well-definedness conditions is presented.



Chapter 6

Axiomatization of Pure
Methods

In the previous chapters, we have seen how specification expressions can be
encoded by function γ in the programming logic presented in Section 2.2,
and how well-definedness conditions for such specification expressions can
be generated by operator Df . And, we have seen that encodings of specifi-
cation elements and well-definedness conditions may contain applications of
uninterpreted function symbols.

Reasoning about such formulas is only possible if meaning is assigned to
these function symbols. The standard way to do so, is to axiomatize them
based on user-defined method specifications and invariants [32, 35, 33]. The
main challenge of axiomatizing specifications is to ensure consistency of the
resulting axiom system. Clearly, this is crucial to every formal approach;
otherwise unsound reasoning may occur.

This chapter is based on our previous work [116]. We describe a tech-
nique for the axiomatization of pure methods. The technique ensures well-
formedness of the specification on which the axiomatization is based. A
specification is called well-formed if it is both well-defined and consistent.

A specification is considered well-defined if all its specification elements
are well-defined in the sense described in the previous chapter. A specifica-
tion is considered consistent if the axiom system that is extracted from it
for pure methods is free of contradictions.

The basis of the presented technique is a set of criteria that precisely
define when a specification is well-formed. These criteria are enforced by
imposing proof obligations on specification elements that ensure: (1) their
well-definedness, (2) the existence of a possible result value for each pure
method, and (3) that recursive specifications are well-founded. Our sound-
ness result states that if all proof obligations are provable, then the specifi-
cation fulfills the criteria.

In order to deal with dependencies between pure methods, we determine

77
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a dependency graph, which we process bottom-up. Thereby, one can use the
properties of a method m to prove the proof obligations for the methods
using m.

The proposed technique checks the well-formedness of specifications inde-
pendently of implementations, because an inconsistent method specification
is not necessarily detected during source-code verification for the following
reasons [35]: (1) methods may not have implementations (because of being
abstract or being declared in an interface); (2) partial correctness logics allow
one to verify non-terminating implementations with respect to unsatisfiable
specifications; (3) any implementation could be trivially verified based on
inconsistent axioms stemming from inconsistent pure-method specifications;
this is especially true for recursive implementations, where the specification
of the method is needed to verify the implementation.

Remark. The axioms that the presented technique captures reflect the be-
havior of pure methods as described by their specifications. Our technique
does not cover other kind of axioms, in particular, axioms that describe
on which parts of the heap does the return value of a pure method po-
tentially depend. We refer the reader for axioms of that kind to the ap-
proaches of inspector methods [65], confined methods in Spec# [33], dy-
namic frames [128, 127], equivalent-results methods [85], and the use of
location descriptors [25]. These papers argue for the soundness of addition-
ally introduced axioms.

6.1 Formalization of Specification Elements

We assume a set of function symbols F , {f1, f2, , . . . , fn}, which corre-
sponds to the set of pure methods of a program.1 For simplicity, we assume
that pure methods have exactly one explicit parameter p. Thus, all func-
tions in F are ternary with parameters for the receiver object (this), the
explicit parameter (p), and the store (OS ).

Remark. The simplifying assumption above rules out pure constructors,
which do not have a receiver object in our formalization. However, their
handling is analogous to instance pure methods.

We define a specification of F as Spec , 〈Pre,Post, INV〉, where:

• Pre maps each f ∈ F to a formula. Pre(f) is the encoding of precondition
pref of method f :

Pre(f) , o 6= null ∧ γ(pref [o/this],OS , )

1For simplicity, even pure methods of boolean type are treated as functions and not as
predicates.
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Due to the definition and the syntactic structure of preconditions, the
only free variables in Pre(f) are OS , o, and p.

The first conjunct expresses that the receiver object is different from
null. This property does not need to be added to user-declared precondi-
tions as the semantics of the programming language ensures that the object
referred to by this is never null. Still, we conjoin the property to Pre(f)
because this will allow us to use Pre as domain restriction as explained in
Section 6.4.2.

Remark. For simplicity, we assume that the use of identifiers o, p, and OS
in the definitions does not lead to the confusion and capturing of variable
and field names.

• Post maps each f ∈ F to a formula. Post(f) is the encoding of postcon-
dition postf of method f :

Post(f) , γ(postf [o/this],OS ,OS )

Due to the above definition and the syntactic structure of postconditions,
the only free variables in Post(f) are OS , o, p, and the result variable resV .
Due to the simplified encoding of pure-method specifications, the same store
variable is used to denote the pre- and poststore of pure methods.

• INV is a set of formulas {Inv1, Inv2, . . . , Invm}, where Invi is the en-
coding of the i-th invariant Invi of the program. Assuming that Invi is
declared in type T , Invi is defined as:

Invi , typeof (o) � T ⇒ γ(Invi[o/this],OS , )

The left-hand side of the implication makes sure that invariant Invi

is only related with objects of the appropriate type. Due to the above
definition and the syntactic structure of invariants, the only free variables
in Invi ∈ INV are OS and o.

In order to simplify formulas in the sequel, we use SysInv to denote the
conjunction of all invariants for all allocated objects:

SysInv , ∀ o. alloc(o,OS ) ⇒
m∧

i=1

Invi

Note that SysInv is an open formula with free variable OS , and that pred-
icate alloc “filters out” the null value.

Normal Behavior. As described in Section 2.1, a method specification
in Jml-- only describes normal behavior, that is, behavior in which the
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corresponding method does not throw exceptions. Therefore, Pre and Post
only contains formulas extracted from normal-behavior specifications.

Specifications that prescribe behavior when methods must or may throw
exceptions (exceptional behavior and behavior specification cases in JML)
are not of concern for our approach because the kind of axioms we are
interested in capture information on the return values of pure methods.
Pure methods that throw exceptions have no return values.

In fact, our approach considers calls that lead to exceptions to be ill-
defined: generated well-definedness conditions require that preconditions of
the (implicitly) normal behavior method specifications hold.

6.2 Well-formedness Criteria

In this section, we define the four criteria that a program specification has
to fulfill to be considered well-formed.

Recall that one of the two components of well-formedness is consistency.
The literature (e.g., [125, 41, 106]) proposes two main approaches to en-
sure that a specification is consistent: (1) the exclusive use of conservative
extensions, and (2) the exhibition of a model for the specification.

Conservative extensions are commonly used in theorem provers where
syntactic restrictions guarantee that definitions are indeed conservative ex-
tensions [106]. Unfortunately, this approach is not an option in our setting
because interface specifications are typically axiomatic, and therefore not
conservative extensions.

The approach of exhibiting a model for the specification fits well with
the axiomatic nature of interface specifications, and is the approach that
we apply to show consistency of specifications. Consequently, the criteria of
well-formedness below are expressed in terms of structures.

Structures and Interpretation. To define the interpretation of speci-
fications, we use a structure M , 〈Value,Store, I〉, where I is an inter-
pretation function for the functions in F. For some function f ∈ F, the
arguments of I(f) are the same as the arguments of f :

I(f) : Value×Value× Store→ Value

Well-formedness Criteria. The criteria of well-formedness are expressed
in terms of (partial) structures, function wd (defined in Section 2.3 on
page 26), and the specification elements of the program at hand. The four
criteria are presented on the next page.
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1. Invariants are never interpreted as ⊥, that is, for each store ∈ Store:

wd([SysInv]3Mθ) holds

where θ , [OS → store] is a variable assignment.

2. Preconditions are never interpreted as ⊥ in stores that satisfy the
invariants of all allocated objects, that is, for each f ∈ F, store ∈
Store, this ∈ Value, and par ∈ Value:

if [SysInv]3Mθ holds, and
this is an allocated object of type T and par is alive in store,

then wd([Pre(f)]3Mθ) holds

where θ , [OS → store, o → this, p → par], and T is the type in
which the method that corresponds to f is declared.

3. The values of the parameters belong to the domain of the interpreta-
tion of function symbols, provided that the store satisfies the invariants
and the precondition holds. That is, for each f ∈ F, store ∈ Store,
this ∈ Value, and par ∈ Value:

if [SysInv]3Mθ holds, and
this is an allocated object of type T and par is alive in store,
and [Pre(f)]3Mθ holds,

then 〈this,par, store〉 ∈ dom(I(f)) holds

where θ , [OS → store, o → this, p → par], and T is the type in
which the method that corresponds to f is declared.

4. Postconditions are never interpreted as ⊥ for any result, and the in-
terpretation of function f as result value satisfies the postcondition,
provided that the store satisfies the invariants and the precondition
holds. That is, for each f ∈ F, store ∈ Store, this ∈ Value, and
par ∈ Value:

if [SysInv]3Mθ holds, and
this is an allocated object of type T and par is alive in store,
and [Pre(f)]3Mθ holds,

then
for each result∈Value alive in store:wd([Post(f)]3Mθ′) holds,
and [Post(f)]3Mθ holds

where θ′ , [OS → store, o→ this, p→ par, resV → result] and
θ , [OS → store, o→ this, p→ par, resV → I(f)(this,par, store)],
and T is the type in which the method that corresponds to f is de-
clared.

Note that in θ, variable resV is assigned the value of the interpretation
of function f with parameters this, par, and store.
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Based on the four criteria, we can define partial models for and well-
formedness of specifications as follows.

Definition 6.1. (Partial model for specification) A structure M is a
partial model for specification Spec, denoted by wf (Spec,M), if it satisfies
all four criteria.

Definition 6.2. (Well-formed specification) A specification Spec is
well-formed, denoted by wf (Spec), if there exists a partial model M for the
specification.

6.3 Axiomatization

Before showing how our approach ensures that a specification fulfills the four
criteria, we present the axioms that are extracted from the specification in
case it is well-formed.

The axiom extracted for symbol fT that corresponds to pure method f
in type T is denoted by AxfT

and is defined as follows:

AxfT
, ∀ OS , o, p.

SysInv ∧ allocT (o,OS , T ) ∧ alive(p,OS ) ∧ Pre(fT ) ⇒
alive(fT (o, p,OS ),OS ) ∧ Post(fT )[fT (o, p,OS )/resV ]

(6.1)
Remark. According to the visible-state invariant semantics, SysInv should
be conjoined to the consequence of the implication, too. However, that
would just be a tautology in the consequence: the same store OS is used on
both sides of the implication, SysInv’s only free variable is OS , and SysInv
is present in the premise.

To simplify formalizations, we define AxfT
, true if type T inherits

method f and therefore does not contain a method specification for f .

Recall that function γ encodes a method call according to the static type
of the receiver object. For instance, a call to method f with a receiver of
static type T is encoded by an application of function symbol fT .

In order to model inheritance and dynamic method binding, we need to
make the connection between the uninterpreted function symbol that models
method f in type T and the symbol that models f in T ’s direct subtype S.
For this purpose, the following axiom is extracted if f is inherited by S or
if f is an overriding method in S:

AxfS� , ∀ OS , o, p. typeof (o) � S ⇒ fS(o, p,OS ) = fT (o, p,OS )
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To simplify formalizations, we define AxfS� , true if method f is intro-
duced by S.

The axiom AxfS� helps in two ways when reasoning about pure method
calls. First, assume that the γ-encoding of a specification expression contains
an application of symbol fT and the dynamic type of the receiver is known
to be S, which overrides method f . Then the axiom tells that the result of
function fT is the same as that of fS , thereby the properties expressed by
axiom AxfS

can also be used to reason about the application of symbol fT .
Second, assume that the γ-encoding of a specification expression con-

tains an application of symbol fS and method f is inherited by S from T .
Since S contains no method specification for f , there is no axiom AxfS

ex-
tracted for symbol fS . However, AxfS� tells that the result of function fT

is the same as that of fS , thereby the properties expressed by axiom AxfT

can also be used to reason about the application of symbol fS .

We denote the axioms for all function symbols in F by AxSpec. Formally:

AxSpec ,
∧

fT∈F

AxfT
∧ AxfT�

Crucial for our approach is that the axiom system AxSpec is consistent.
The following theorem states that this is the case if the specification from
which AxSpec was extracted is well-formed.

Theorem 6.1. (Consistency of axioms) If specification Spec is well-
formed then AxSpec is consistent.

Proof. We prove the consistency of AxSpec by showing that there is a struc-
ture that is a model for AxSpec. From the definition of AxSpec, we can see
that this can be shown by proving that there is a structure that is a model for
axiom AxfT

and axiom AxfT� for all function symbols fT in F. We prove
the existence of such a structure for the two kinds of axiom separately, and
begin with AxfT

.
By assumption, Spec is well-formed. Therefore, by definition (Defini-

tions 6.2 and 6.1), we know that there exists some structure M that is a
partial model for Spec and that fulfills all four criteria presented in the
previous section.

Axiom AxfT
captures the semantic property expressed in Criterion 4

over function f in type T by the means of the programming logic. Therefore,
we can deduce that M is also a partial model for axiom AxfT

. The same
argument holds for all other function symbols in F.

This concludes the proof for the first kind of axiom. It remains to prove
that M is also a model for axiom AxfT� for all function symbols fT in F.
This follows from behavioral subtyping (see Assumption 2.3 on page 21),
which ensures that the axiom for an overriding method is stronger than the
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axiom for the overridden method. Thus, if M is a partial model for axiom
AxfT

for all symbols fT ∈ F, then M is also a partial model for axiom
AxfT� for all symbols fT ∈ F.

Thereby, we have proved that M is a partial model for AxSpec, which
concludes the proof.

Important to note is that this property does not hold in the other di-
rection, that is, it is not necessarily true that if AxSpec is consistent then
specification Spec is well-formed. For example, consider a method with
precondition 1/0 == 1/0 and postcondition true. In two-valued logic, the
resulting axiom would be trivially consistent, but the specification is not
well-formed (Criterion 2). This demonstrates that our well-formedness cri-
teria require more than just consistency, namely also satisfaction of partiality
constraints.

Remark. The same way as with symbol names, we will drop the subscripts
denoting types in the names of axioms whenever they are not relevant. For
instance, we will use Axf instead of AxfT

.

6.3.1 Feasibility of Invariants

Note that the four criteria only required the well-definedness of invariants,
but not their feasibility. Therefore, for instance, the infeasible invariant
“this.f > 0 && this.f < 0” satisfies the criteria, in particular Crite-
rion 1), because the expression is well-defined.

We permit infeasible invariants for two reasons. First, axiom system
AxSpec remains sound even in the presence of infeasible invariants. This is
due to the shape of generated axioms: SysInv is always conjoined to the
premise of implications (see formula (6.1) above). Thus, infeasible invariants
make SysInv to evaluate to false, thereby making the axioms void.

Second, in the presence of infeasible invariants, it is not possible to con-
struct valid objects. This problem is caught when verifying the implemen-
tations of constructors—unless a partial correctness logic is used and the
constructor does not terminate.

With additional proof effort the feasibility of invariants could be checked,
too. We do not check this property because it is orthogonal to our aim of
generating consistent axiom systems.

6.3.2 Method Calls in Invariants

The use of pure-method calls is just as natural in invariants as in method
specifications. For instance, in Figure 3.3 on page 36, two of the three
invariants contained method calls. However, such calls lead to serious in-
completeness issues as illustrated by the following example.
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class Incomplete {
int f=1;
invariant positive();
// constraint \old(this.f) <= this.f;

int increment()
ensures this.f == \old(this.f) + 1;
// assignable this.f;

{ this.f++; }

pure boolean positive()
ensures result == this.f > 0;
// reads this.f;

{ return this.f > 0; }
}

Figure 6.1: Incompleteness due to method call in invariant

Example 6.1. Class Incomplete in Figure 6.1 contains an integer field f,
a mutating method that increments the value of the field by 1, and a pure
method that returns true if and only if the value of the field is greater than
0.2 The invariant of the class contains a method call expressing that in every
visible state method positive should return true.

It is easy to see that the specification of the class is well-formed. Axiom
Ax ̂positive

that is generated for pure method positive is the following:

∀ OS , o.
(∀ o. alloc(o,OS ) ⇒ typeof (o) � Incomplete ⇒ ̂positive(o,OS )) ∧
allocT (o,OS , Incomplete) ⇒
alive( ̂positive(o,OS ),OS ) ∧ ̂positive(o,OS ) = OS (o, f) > 0

Consider the verification of the implementation of method increment.
For simplicity, let us assume that the this-object is the only allocated
object. Then, in the prestate, we can assume that the invariant holds for the
object, and in the poststate we need to show that increment’s postcondition
holds and that the invariant holds for this. With OS denoting the prestore
and OS ′ the poststore, the corresponding Hoare-triple looks as follows:

{ ̂positive(this,OS ) }
this.f++

{ OS ′(this, f) = OS (this, f) + 1 ∧ ̂positive(this,OS ′) }

In order to prove that ̂positive(this,OS ′) holds, we need to use the axiom
over positive because OS and OS ′ are not identical, thus the fact that

2For simplicity, we ignore the issue of integer overflow in the example.
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̂positive(this,OS ) holds is not sufficient. However, the premise of Ax ̂positive

contains an application of ̂positive, and in order to utilize the axiom and
derive its consequence for term ̂positive(this,OS ′), we would first need to
show that ̂positive(this,OS ′) holds. And to show that, we would need to
use the axiom, which contains symbol ̂positive in its premise...

This means that we ran into an unresolvable cycle, which is due to the
appearance of the uninterpreted function symbol in the premise of the axiom.

Note that even declared read and write effects (given in comments) would
not help to solve the problem. The write effect of method increment over-
laps with the read effect of positive, thus approaches that make use of
effects specifications or dependencies cannot deduce the validity of predi-
cate ̂positive(this,OS ′) from ̂positive(this,OS ).

Similarly, history constraints (also given in comment) cannot solve the
problem either. A history constraint is similar to an invariant in that it
has to hold in all visible states. However, a history constraint is different in
that it contains a predicate that relates two consecutive visible states. The
previous visible state is accessible by the use of the \old construct.

The specified history constraint does not help because it does not provide
enough information to make the use of axiom Ax ̂positive

dispensable.

As the example demonstrates, if invariants may contain method calls
then the proposed axiomatization of pure methods leads to a verification
system that is incapable of proving the correctness of methods that modify
the store. In order to prevent this, we forbid invariants to contain calls to
pure methods.

Remark. Model fields can be seen as parameterless pure methods [100, 22]
and, therefore, can be axiomatized the same way as pure methods. Conse-
quently, we also forbid invariants to mention model fields.

Example 6.2. For class Sequence in Figure 3.3, the restriction means that
the second and third invariants are illegal:

invariant isEmpty() ==> length == 0;
invariant !isEmpty() ==> length == rest().length + 1;

In order to preserve the properties expressed by these invariants, they have
to be reformulated as postconditions.

6.3.3 Non-recursive Preconditions

In general, our approach allows recursive specifications. However, there is
one restriction that we make: preconditions may not be recursive—even if
the recursion is well-founded. The two main reasons for this restriction are
the following.
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First, recursive preconditions would require fix-point computations to
define the domains of the corresponding function symbols. This is indicated
by Criterion 3, which requires 〈this,par, store〉 ∈ dom(I(f)) to hold under
the assumption that [Pre(f)]3Mθ holds. However, if Pre(f) contained an ap-
plication of symbol f , then it possibly further constrained 〈this,par, store〉.

Second, recursive preconditions would lead to a situation similar to in-
variants that contain method calls. The resulting axioms would contain
applications of the symbols that are being defined in their premises.

Checking whether preconditions are recursive or not can be done in a
modular way since the declaration of new types leads to the introduction of
new function symbols.

We note that requiring preconditions to be non-recursive is not a limi-
tation for practical examples.

6.4 Checking Well-formedness

In this section, we present the proof obligations that are posed on the specifi-
cation at hand. Our soundness theorem will state that if all proof obligations
are valid, then there exist a model for the specification. Consequently, the
specification is well-formed.

6.4.1 Incremental Construction of Model

In general, showing the existence of a model requires one to prove the exis-
tence of all its functions. To be able to work with first-order logic theorem
provers, we approximate this second-order property in first-order logic. We
generate proof obligations whose validity in two-valued first-order logic guar-
antees the existence of a model. However, if we fail to prove them then we
do not know whether a model exists or not. That is, the procedure is sound
but not complete.

The basic idea of our procedure is to construct a model incrementally.
The incremental construction is based on a dependency graph.

Definition 6.3. (Dependency graph) The nodes of a dependency graph
correspond to function symbols and invariants. There is an edge from node
ni to node nj if and only if the specification of function symbol ni or invariant
ni applies function nj.

In order to capture dynamic method binding, the following rule applies
in case of subtyping: If S � T and there is an edge from node ni to node nj

that corresponds to symbol fT , and there is a node nk that corresponds to
symbol fS , then there is also an edge from node ni to node nk.

The dependency graph may be cyclic. However, as discussed above, we
disallow cycles that are introduced by preconditions.
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Inv1

Inv3

Inv2

isEmpty

rest

count

getFirst

Figure 6.2: Dependency graph for abstract class Sequence

Example 6.3. The dependency graph of class Sequence introduced in Fig-
ure 3.3 is presented in Figure 6.2. The two illegal invariants that contain
method calls are marked with darker circles.

The model is constructed by traversing the dependency graph bottom-
up. The starting point is the empty specification Spec0 , 〈∅, ∅, ∅〉, for
which trivially there is a model M0. In each step j, a set of nodes Gj ,
{g1, g2, . . . , gk} is selected such that if there is an edge from gi to a node
n then either n has already been visited in some previous step (i.e., n ∈
G1 ∪ ... ∪ Gj−1) or n ∈ Gj . Moreover, Gj is chosen such that it has one of
the following forms:

1. Gj contains exactly one invariant Invl ∈ INV.

2. Gj contains exactly one function symbol fl ∈ F and the specification
of fl is not recursive.

3. Gj is a set of function symbols, and the nodes in Gj form a cycle in
the dependency graph, that is, they are specified recursively in terms
of each other.

Note that in the third form, Gj might contain only one node in case of
direct recursion.

The pre- and postconditions and invariants of Gj are called the specifi-
cation fragment of step j, denoted by sj . In step j, specification Specj−1

is extended with sj resulting in Specj . To ensure that the model Mj−1 for
Specj−1 can be extended to a model Mj for Specj , proof obligations are
posed on sj . Since this construction is inductive, one may assume that all
specification fragments processed up to step j − 1 are well-formed.

It is easy to see that an order in which one can traverse the dependency
graph always exists. However, the dependency graph only determines a



6.4. CHECKING WELL-FORMEDNESS 89

partial order between nodes. Thus, there might be multiple specification
fragments that could be chosen in a given step. In particular, nodes that
correspond to invariants do not have dependencies, because invariants may
not contain calls. Therefore, invariants may and should be processed before
method specifications, as they might provide information that is useful in
later steps.

Note, however, that the well-definedness of an invariant may depend on
another invariant. Consider the two invariants:

invariant this.o != null;
invariant this.o.value > 0;

Well-definedness of the second invariant is only provable if the property
expressed by the first invariant can be assumed. Such dependencies between
invariants are not traced by the dependency graph. Similarly to other ap-
proaches, such as Event-B, we use a user-defined ordering on invariants to
resolve this kind of dependency.

At the end of Section 6.4, we will argue that the incremental model
construction can be done in a modular way.

6.4.2 Notations for Incremental Construction

Due to the incremental construction of the model, we need to refine the
previously introduced notations of specification elements before we could
present the proof obligations for the specification fragment of a given step.
The refined notations are the following:

• The specification elements processed up to step j are denoted by Specj .
The three components of Specj are denoted by Prej , Postj , and INVj .
After the last step z of the model construction, we have Specz ≡ Spec.

• SysInvj is the conjunction of invariants processed up to step j. Formally:

SysInvj , ∀ o. alloc(o,OS ) ⇒
∧

Inv ∈ INVj

Inv

After the last step z of the model construction, we have SysInvz ≡ SysInv.

• Fj denotes the set of function symbols whose pre- and postconditions have
been processed up to step j. After the last step z of the model construction,
we have Fz ≡ F.

• We denote the axioms for Specj as follows:
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Axj
fT

, ∀ OS , o, p.
SysInvj ∧ allocT (o,OS , T ) ∧ alive(p,OS ) ∧ Pre(fT ) ⇒
alive(fT (o, p,OS ),OS ) ∧ Post(fT )[fT (o, p,OS )/resV ]

(6.2)

AxSpecj ,
∧

fT∈Fj

Axj
fT
∧ AxfT�

Axj
fT

is the definition of the axiom for a method f declared in type

T according to specification Specj . Note that the axiom Axj
fT

may be
different for different j since SysInvj gets gradually strengthened during
the construction of the model. Therefore, axiom Axj

fT
becomes gradually

weaker. This is an important observation for the soundness of our approach.
In particular, this is the reason why contradicting invariants do not lead to
inconsistent axioms, as noted in Section 6.3.1.

After the last step z of the model construction, we have Axz
fT
≡ AxfT

and AxSpecz ≡ AxSpec.

Well-definedness Operator and Domain Restriction

Although operator Df was introduced to generate well-definedness condi-
tions for Jml-- expressions, the proof obligations that will be posed on the
specification fragments use the L operator. The reason is the shape of the
Invi formulas, which encode user-defined invariants. Recall from Section 6.1
that Invi was defined as follows:

Invi , typeof (o) � T ⇒ γ(Invi[o/this],OS , )

Since function typeof and operator � are not part of the syntax of Jml--,
the left-hand side of the implication could not be handled by operator Df .
Although one could extend Jml-- and Df to include these constructs, we
believe it is cleaner to express semantics (in this case, the scope of invariants)
with means of the programming logic. Therefore, based on Theorem 5.2
on page 75, operator L is used to generate well-definedness conditions for
specification fragments.

The domain restriction used by L in step j will be Prej−1, that is, the
domain restrictions of the symbols processed up to step j. This is justified
by the fact that in step j, for each f ∈ Fj−1 we have:3

Prej−1(f) ≡ δγ(f) ≡ o 6= null ∧ γ(pref [o/this],OS , )

3Note that the condition in δγ contained the additional substitution p/param. The
substitution is void here as we assume that the explicit parameter of a pure method is p.
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Note that invariants are excluded from the domain restrictions, although
invariants also restrict the state in which pure methods may be called. The
reason for the exclusion is that invariants are assumed to hold in the pre-
and poststates, therefore adding invariants to domain restrictions would be
superfluous.

Remark. In order to have a uniform handling of symbols, the definition
of Pre does not contain mappings for the functions of the programming
logic (such as alive and loc) and for the symbols we assumed in the under-
lying logic (such as div and mod). However, since Pre is used as domain
restriction, the mapping of these symbols should be added to Pre.

Adding the corresponding mappings is trivial: for functions loc, div,
and mod the mappings are presented in Figure 5.3(b) on page 76, all other
functions are total and thus mapped to true. These mappings can be added
to Pre0 as all domain restrictions are known to be well-defined.

In order to simplify formalizations and examples, in the sequel we omit
these mappings from Pre.

Since domain restrictions typically do not change, the literature makes
them an implicit parameter of L. In our case Prej is used as domain restric-
tion, which may be different in the different steps of the model construction.
Therefore, we make domain restrictions an explicit parameter of L in the
sequel.

6.4.3 Proof Obligations

Now we are ready to see the proof obligations that are posed on the three
different kinds of specification fragments in step j of the model construction.

6.4.3.1 Invariant Invl

In the first case, the specification fragment is some invariant Invl. The
proof obligation posed on the invariant checks that it is well-defined for all
allocated objects in all stores that satisfy the previously processed invariants:

∀ OS . (SysInvj−1 ⇒ L(∀ o. alloc(o,OS )⇒ Invl,Prej−1)) (6.3)

Example 6.4. We instantiate the proof obligation for a specification frag-
ment from class Sequence presented in Figure 3.3. The corresponding de-
pendency graph was presented in Figure 6.2. In the first step of the traversal
of the dependency graph, we visit the first (and only admissible) invariant of
the class since it has no dependencies. The invariant specifies that length
>= 0. For this specification fragment, the following proof obligation is posed:
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∀ OS . L(∀ o. alloc(o,OS )⇒ typeof (o) � Sequence⇒
OS (loc(o, length)) ≥ 0, { })

Note that SysInv0 has been omitted since it is equivalent to true. Further-
more, the set of domain restrictions Pre0 is empty, because no user-defined
methods have been processed yet.4

After the application of the L operator and trivial simplifications, we get
the following formula:

∀OS , o. alloc(o,OS )⇒ typeof (o) � Sequence⇒ o 6= null

Essentially, we need to prove that the domain restriction of function loc
is not violated, that is, o 6= null. This trivially follows from alloc(o,OS ).

6.4.3.2 Pre- and Postcondition of a Single Function fl

In the second case, the specification fragment to process is the non-recursive
pre- and postcondition of a single function. There are two proof obligations
posed on the specification fragment.

Precondition. The first proof obligation checks that the precondition of fl

is well-defined for all allocated receiver objects and alive parameters in all
stores that satisfy the processed invariants. Assuming that fl is declared in
type T , the proof obligation looks as follows:

AxSpecj−1 ⇒
∀ OS . (SysInvj−1 ⇒

∀ o, p. allocT (o,OS , T ) ∧ alive(p,OS )⇒ L(Pre(fl),Prej−1))
(6.4)

Note that AxSpecj−1, the axiom system over symbols in Fj−1, can be used
to discharge the proof obligation. This is necessary because Pre(fl) may
contain applications of symbols in Fj−1.

Example 6.5. In the second step of the traversal of the dependency graph
of class Sequence, method isEmpty is picked because it has no dependen-
cies. The method is processed trivially as it has no specification. Assume
the specification of method rest is selected as third specification fragment.
The precondition of the method is !isEmpty(). The corresponding proof
obligation is the following:

4As noted above, technically Pre0 contains the mappings for symbols such as alive
and loc. Here, we omit them for simplicity.
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∀ OS .
(∀ o. alloc(o,OS )⇒ (typeof (o) � Sequence⇒ OS (loc(o, length)) ≥ 0))
⇒

(∀ o. allocT (o,OS , Sequence)⇒ L(¬isEmpty(o, h), {〈isEmpty , o 6= null〉}))

AxSpec2 has been omitted since it is equivalent to true. Since method rest
does not take any parameter, the quantification over p and predicate alive
is omitted. Note that Pre2 consists of the mapping for symbol isEmpty ,
which has already been processed.

After the application of the L operator, one needs to prove that the
domain restriction of isEmpty is not violated, that is, o 6= null. This follows
from allocT (o,OS , Sequence).

Postcondition. The second proof obligation checks that the postcondition of
fl is never interpreted as ⊥ for any result, and that there exists a value which
satisfies the postcondition. The property has to be proven for all allocated
receiver objects and alive parameters that satisfy the precondition, and in
all stores that satisfy the processed invariants:

AxSpecj−1 ⇒
∀ OS , o, p.

(SysInvj−1 ∧ allocT (o,OS , T ) ∧ alive(p,OS ) ∧ Pre(fl))
⇒

( (∀ resV. alive(resV,OS )⇒ L(Post(fl),Prej−1)) ∧
(∃ resV. alive(resV,OS ) ∧Post(fl)) )

(6.5)

Example 6.6. Postcondition \result != null of method rest leads to
the following proof obligation:

∀ OS , o.
( (∀ o. alloc(o,OS )⇒ (typeof (o) � Sequence⇒ OS (loc(o, length)) ≥ 0))
∧ allocT (o,OS , Sequence) ∧ ¬isEmpty(o,OS ) )
⇒

( (∀ resV. alive(resV,OS )⇒ L(resV 6= null, {〈isEmpty , o 6= null〉})) ∧
(∃ resV. alive(resV,OS ) ∧ resV 6= null) )

As before, AxSpec2 is equivalent to true. The first conjunct is proved triv-
ially since formula resV 6= null does not contain partial operations. To
satisfy the second conjunct, we instantiate resV with o for which we can
deduce that allocT (o,OS , Sequence) holds, and thus, both alive(o,OS ) and
o 6= null hold.
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6.4.3.3 Pre- and Postconditions of a Set of Recursively-specified
Functions

The third case handles both direct and mutual recursion. The specifica-
tion fragment to process consists of the pre- and postconditions of a set of
functions Gj , {g1, g2, . . . , gk} with k ≥ 1.

Besides the properties of the previous case, we need to prove that the
recursion in the specification fragment is well-founded. To do so, we use
measure functions, assumed to be provided by the user for each recursive
function gi in Gj with signature:

‖ · ‖gi : Value×Value× Store→ N

Jml-- provides the measured by clause to specify the measure function
of a method. We require that there is no recursion via measure functions,
that is, the definition of measure function ‖ · ‖gi may only contain function
symbols from G1 ∪ . . . ∪ Gj−1, but not from Gj .

Since preconditions must not be recursively specified (see Section 6.3.3),
the proof obligation for the precondition of each gi is identical to proof
obligation (6.4) for the non-recursive case.

In order to prove well-formedness of postconditions, we first need to
show that user-specified measures are well-defined and non-negative. For
a function gi with measure clause “measured by µgi”, we introduce a new
pure method Mgi with precondition Pre(gi) and postcondition µgi ≥ 0. The
dependency graph is extended with a node for Mgi and an edge from gi to
Mgi . Node Mgi is processed like any other node. This allows measures to
rely on invariants and to contain calls to pure methods.

Proof obligation (6.6) below for postconditions is similar to proof obli-
gation (6.5), but differs in two ways:

• We have to prove that the recursive specification is well-founded. Due
to the extension of the dependency graph mentioned above, we can assume
that user-specified measures are well-defined and yield non-negative num-
bers. Thus, it suffices to show that the measure decreases for each recursive
application. We achieve this by using a domain restriction that additionally
requires the measure for recursive applications to be lower than the measure
ind of the function being specified. If the measure ind is 0, the domain
restriction becomes false, which prevents further recursion. Note that the
occurrence of ind seems to violate the condition that domain restrictions do
not contain free variables other than the parameters of the function whose
domain they characterize. However, since ind is universally quantified, we
may consider ind to be a constant for each particular application of the
domain restriction. One could think of the universal quantification as an
unbounded conjunction, where ind is a constant in each of the conjuncts.
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• For the proof of well-formedness of the specification of a function gi, we
may assume the properties of the functions recursively applied in this specifi-
cation. This is an induction scheme over the measure ind, which is expressed
by the assumption in lines 4 and 5 of the proof obligation.

The proof obligation must be discharged for each function symbol gi ∈ Gj :

AxSpecj−1 ⇒
∀ ind ∈ N,OS , o, p.
(SysInvj−1 ∧ allocT (o,OS , T ) ∧ alive(p,OS ) ∧Pre(gi) ∧ ‖〈o, p,OS 〉‖gi=ind ∧

(
k∧

l=1

∀ o′, p′. allocT (o′,OS , Tgl
) ∧ alive(p′,OS ) ∧Pre(gl)[o′/o, p′/p] ∧

‖〈o′, p′,OS 〉‖gl
<ind⇒ Post(gl)[o′/o, p′/p, gl(o′, p′,OS )/resV ] ) )

⇒
( (∀ resV. alive(resV,OS )⇒

L(Post(gi),Prej−1 ∪ {〈gl,Pre(gl) ∧ ‖〈o, p,OS 〉‖gl
<ind〉 | l ∈ 1..k})) ∧

(∃ resV. alive(resV,OS ) ∧Post(gi)) )
(6.6)

where Tgl
is the type in which function gl was declared in.

Example 6.7. Since proof obligation (6.6) for the postcondition of method
count (the only recursive specification in the example) is rather large and
unreadable, we use a considerably smaller example here, which better high-
lights how the proof obligation works. We exemplify the proof obligation on
the factorial function with the following specification:

pure int fact(int p)
requires p >= 0;
ensures p == 0 ==> \result == 1;
ensures p > 0 ==> \result == fact(p-1)*p;
measured_by p;

To simplify the example, we omit the variables for store OS and receiver
object o. Method fact is independent of state anyway.

First, we need to prove that measure p is well-defined and non-negative.
As mentioned above, this is proved by the introduction of a new pure method
with specification derived from the precondition and measure of fact:

pure int Mfact(int p)
requires p >= 0;
ensures p >= 0;

Proof obligations 6.4 and 6.5 apply to the method, both of which are triv-
ially proven: the conditions are well-defined as they do not contain partial
operators, and the precondition implies the postcondition.
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Next, we need to show proof obligation (6.6). For brevity, we only show
it for the second postcondition, which is the interesting case containing
recursion:

∀ ind ∈ N, p.
( p ≥ 0 ∧ p = ind ∧

(∀ p′. p′ ≥ 0 ∧ p′ < ind ⇒
((p′ = 0⇒ f̂act(p′) = 1 ) ∧ (p′ > 0⇒ f̂act(p′) = f̂act(p′−1) ∗ p′)) ) )
⇒

( (∀ resV. alive(resV,OS )⇒
L( p > 0⇒ resV = f̂act(p−1) ∗ p, {〈f̂act, p ≥ 0 ∧ p < ind〉})) ∧

(∃ resV. alive(resV,OS ) ∧ (p > 0⇒ resV = f̂act(p−1) ∗ p)) )

We need to show that the two quantified conjuncts on the right-hand
side of the main implication hold. Proving that the existential holds is
straightforward due to the equality and to the fact that values of primitive
types are always alive. The other conjunct is more interesting. The only
partial operator is f̂act and after applying the L operator, the sub-formula
simplifies to:

∀ resV. alive(resV,OS )⇒ (p > 0⇒ p−1 ≥ 0 ∧ p−1 < ind)

The formula is provable since p−1 ≥ 0 follows from p > 0, and p−1 < ind
follows from p = ind in the premise of the proof obligation.

Soundness

For the presented approach to be sound, the proposed proof obligations have
to be shown sufficient to guarantee the well-formedness of specifications.
This is stated by our main soundness theorem.

Theorem 6.2. If a specification Spec does not contain recursive precon-
ditions and all of the above proof obligations for Spec hold, then Spec is
well-formed, that is, wf (Spec).

The proof of the theorem runs by induction on the order in which specifi-
cation fragments are processed, as (partially) prescribed by the dependency
graph. For each recursive specification fragment, the proof uses a nested in-
duction on the recursion depth ind. The proof is presented in Appendix C.

Modularity

In the realm of object-oriented program verification, modularity is an im-
portant aspect of verification techniques. The presented well-formedness
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checking and axiomatization technique is modular. That is, adding new
types to a program does not invalidate the proofs for the well-formedness
criteria of existing methods and invariants. This is due to the following two
points.

First, behavioral subtyping ensures that the axiom for an overriding
method is stronger than the axiom for the overridden method. Although
new types can introduce cycles in the dependency graph that involve existing
methods, proofs remain valid since we introduce new function symbols for
overriding methods, which thus do not interfere with existing proofs.

Second, the invariants of additional types strengthen SysInv, which
appears in the premises of proof obligations. Thus, these invariants do not
strengthen the proof obligations.

6.5 Related Work

In this section, we discuss related work on the well-definedness checking of
specification expressions and the axiomatization of pure methods.

As already seen in Section 5.1, there is a large amount of work in the
area of handling partiality in specifications. We listed the three main-stream
techniques that are used by different approaches and tools, and summarized
the most commonly applied techniques for the elimination of ill-definedness.
Since our work applies the elimination technique, we restrict the discussion
of related work on well-definedness checking to that technique.

Protective Specifications. Leavens and Wing [78] propose two tech-
niques for the handling of ill-defined specification expressions. One of the
techniques is applicable by approaches that use two-valued interpretation
and underspecification. The technique poses proof obligations over specifi-
cation expressions to check if they rely on underspecified values. As noted in
Section 5.1.1, relying on such values may be undesired. The other technique
is applicable by approaches that use three-valued interpretation. In the se-
quel, we only look at the latter technique as that is more closely related to
our approach.

Leavens and Wing call a procedure specification partiality-protective if
(1) the precondition is well-defined, and (2) under the assumption that the
precondition holds, the postcondition is well-defined. Similar to our ap-
proach is that a “definedness predicate” is used with the same semantics as
function wd (see page 26), and that proof obligations are posed to check if
a given specification expression possibly evaluates to ⊥. In fact, the proof
obligations are similar to those parts of formulas (6.4) and (6.5) that are
concerned with well-definedness.

The main difference is that the approach of Leavens and Wing is pre-
sented in a two-tiered setting, hence, dependencies between procedures need
not be handled.
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Specification languages often provide means to protect specification ex-
pressions from being ill-defined or underspecified. For instance, traits of the
Larch Shared Language introduce predicates such as isValid and between,
the OCL Standard Library contains a built-in operator isDefined, and the
specification language of Caduceus has a predefined predicate \valid range.
Furthermore, the use of conditional operators (such as && in Java or and

then in Eiffel) also facilitate the protection of specification expressions.

Theorem Provers

Well-Definedness. As mentioned earlier, PVS and CVC Lite are two theo-
rem provers that generate well-definedness conditions to eliminate ill-defined
terms and formulas. In PVS, well-definedness checking is combined with
type checking. A partial function is modeled as a total function whose do-
main is a predicate subtype [117]. This makes the type system undecidable
requiring Type Correctness Conditions to be proven. PVS uses the L op-
erator for the generation of these conditions because D was found to be
inefficient [117].

Recall that the use of the L operator has the consequence that the inter-
pretation of commutative logical operators become non-commutative. Thus,
well-defined formulas may get rejected. Although the manual re-ordering of
sub-formulas can resolve such cases, Cheng and Jones [30], and Rushby
et al. [117] give examples for which even manual re-ordering does not help,
and well-defined formulas are inevitably rejected by L.

CVC Lite [12] uses the D operator for the well-definedness checking of
formulas. This decision eliminates the above mentioned problem, further-
more, Berezin et al. [17] reckon that if formulas are represented as DAGs,
then the worst-case size of D(φ) as a DAG is linear with respect to the
size of φ. Therefore, the exponential blow up does not cause a problem for
CVC Lite.

Schieder and Broy [120] propose a different approach to the checking of
well-definedness of formulas. They define a formula under a three-valued
interpretation to be well-defined if and only if its interpretation yields true
both if ⊥ is interpreted as true, and if ⊥ is interpreted as false. Although
checking well-definedness of formulas becomes relatively simple, the inter-
pretation may be unintuitive for users. For example, formula ⊥ ∨ ¬⊥ is
considered to be well-defined.

In theorem provers, dependencies typically have to be resolved by the
user. For instance, a definition may only refer to a function symbol if it has
already been declared and defined before. Therefore, it is rather straight-
forward what pieces of information may be used to prove well-definedness
conditions.



6.5. RELATED WORK 99

Consistency. Theorem provers typically ensure consistency of theories by
restricting definitions to form conservative extensions. On the other hand,
user-declared axioms are typically not checked, which are therefore a known
source of inconsistency. Moreover, theorem provers typically require users
to resolve dependencies themselves by ordering the elements of a theory
appropriately. Recursion (both direct and mutual) is usually supported,
and well-foundedness is enforced by posing proof obligations that are based
on user-defined measure functions.

Theorem provers that ensure consistency this way include LCF and re-
lated systems such as HOL, Isabelle, and ACL2.

Our approach differs in that specifications are not restricted to conser-
vative extensions, which would not fit for program specifications. Instead,
we allow arbitrary specifications and reject those for which the existence of
a model cannot be proven. Furthermore, dependencies are resolved by the
automatic construction of dependency graphs, which lessens the efforts of
writing specifications.

Design Languages. Different design languages apply different approaches
to the handling of partial functions. For instance, Z and Larch uses under-
specification, VDM uses a three-valued logic, and Event-B generates proof
obligations to eliminate ill-defined terms.

Design languages typically do not restrict specifications to conservative
extensions. Instead, similarly to our approach, consistency is guaranteed by
posing proof obligations over specifications.

In his introductory book on Z [129], Spivey does not discuss the issue
of Z specifications being possibly infeasible. However, infeasible specifica-
tions may cause inconsistent reasoning in Z [132]. Hall et al. [56] present
a method for showing the existence of a model for Z specifications. The
idea is similar to ours in that proof obligations are posed that require the
satisfiability of specifications. The case of recursive specifications are not
discussed. Valentine [132] proposes a similar idea, and notes that the ex-
istential quantification can be removed in non-recursive cases when result
values of functions are defined by equality. In such cases, the expression on
the right-hand side of the equality is a witness for satisfiability. Valentine
discusses recursive specifications but does not give a systematic technique
for their handling.

VDM also poses proof obligations on specifications to ensure their sat-
isfiability [68]. However, it is not clear whether and how dependencies be-
tween specification elements influence satisfiability checking. Furthermore,
no proof obligation is presented to ensure well-foundedness of recursive spec-
ifications. However, this might be a consequence of VDM using a three-
valued logic, and thus not having to eliminate ill-defined function specifica-
tions. VDM also allows the use of unchecked and thus possibly inconsistent
axioms.
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Event-B requires that every user-defined specification element (e.g., in-
variant, guard, action, and variant) is well-defined. Tools that implement
the methodology of Event-B use the L operator because the D operator
proved to be inefficient in practice [16, 4]. In Event-B, the well-definedness
of an invariant may depend on other invariants. Such dependencies have
to be resolved by their manual re-ordering. The well-definedness of other
parts of a specification may also depend on invariants, but not the other
way around. Therefore, the well-definedness of invariants can be checked
first, and if indeed found well-defined, assumed in latter steps. The well-
definedness of the specification of an event does not depend on other events,
thus dependencies between events need not be considered when checking
their well-definedness.

In Event-B, satisfiability of specifications has to be proven. That is, in
contrast to our approach, the satisfiability of invariants has to be proven,
too. Proof obligations ensure that initialization events satisfy the invariants
and that other events preserve them. Although the actions of events con-
sist of assignments, they can be seen as postconditions. In fact, generated
proof obligations reflect actions as so-called before-after predicates, which
correspond to postconditions that relate values using old-expressions. The
satisfiability of before-after predicates is ensured by requiring witnesses to
be exhibited. For an event that is supposed to converge, it has to be proven
that the event decreases a user-defined variant and that the variant is a
natural number.

The checks on before-after predicates and variants are similar to the
checks that our approach performs on postconditions. The main difference
is that the language of Event-B does not allow dependencies between events,
guards, and actions. Hence, there is no need for an incremental checking
and for a complicated proof obligation for convergent events.

While invariants and event specifications are checked, users can add ar-
bitrary axioms whose consistency is not.

LSL, the language-independent algebraic specification language of the
Larch family, is checked for certain semantic properties, including consis-
tency. However, the check is not sound and is mainly used for automatically
finding inconsistencies [52]. Running the check for some time without being
warned of an inconsistency increases one’s confidence in the correctness of
a library.

As mentioned earlier, OCL has a three-valued interpretation. HOL–
OCL [24, 23], a proof environment for the analysis of UML/OCL specifica-
tions, embeds OCL into Isabelle/HOL [106]. HOL–OCL does not eliminate
ill-defined specifications but preserves OCL’s three-valued interpretation and
defines a “weak definedness” operator (similar to D), which is built into the
calculi of the proof environment.

To consider a UML/OCL specification to be consistent, HOL–OCL poses
three consistency requirements on OCL specifications [24]. The requirement
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on postconditions expresses the same property that proof obligation (6.5) en-
forces. The other two proof obligations ensure that invariants are satisfiable
and that preconditions are satisfiable under the assumption that invariants
hold. Although both requirements can catch bogus specifications, our ap-
proach does not enforce these two properties. As discussed above, infeasible
invariants make generated axioms void and thus do not jeopardize sound-
ness of our approach. The same holds for infeasible preconditions. There
are no special checks defined for recursive specifications, thus it is not clear
whether and how the three requirements ensure well-foundedness of such
specifications.

Program Verifiers. ESC/Java did not check well-definedness of specifi-
cation expressions, and since it did not allow pure-method calls in specifica-
tions, there was no need to axiomatize method specifications.

Well-definedness checks were added to ESC/Java2 as described by Chalin
in [28]. The proposed well-definedness operator is based on the L oper-
ator for logical connectives. Although ESC/Java2 allows specifications to
contain calls to pure methods, Chalin does not describe how dependencies
among specification elements are handled. Thus, it is not clear whether
his approach is capable of discharging conditions that contain uninterpreted
function symbols.

ESC/Java2 axiomatizes method specifications according to the formal-
ization of Cok [32]. Consistency of the axiom system is not ensured, which
can lead to unsound reasoning. For instance, a program that contains one
of the two methods wrong or direct from Example 3.6 on page 37 turns
the axiom system of ESC/Java2 inconsistent.

As mentioned in Chapter 4, Krakatoa and Caduceus do not allow the
use of pure methods. The function and predicate symbols that one can
introduce on the source level are considered to be total. The same applies
for operators of the programming language, such as field and array accesses.
The technique of underspecification is used on “improper” applications of
these symbols an operators.

The consistency of axioms that one can introduce are not guaranteed in
Caduceus and Krakatoa [90]. Marché lists four different ideas to overcome
this problem. The idea closest to our solution is to extract Coq templates
out of stated axioms, and then manually fill in the templates by providing
concrete definitions for the newly introduced function and predicate sym-
bols. Thereby one would give an actual model for the axiom system, which
guarantees consistency. The other three ideas also aim to find models, in
particular, by the construction of new inductive data types or by the re-use
of pre-defined data types. These four ideas are not worked out in detail and
are considered future work [90].

The KeY System applies the technique of underspecification and there-
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fore does not check well-definedness of specifications. KeY does not gen-
erate axioms to encode properties of pure methods. Instead, its calculus
contains a rule that replaces an invocation to some pure method m by its
postcondition provided that the precondition of m holds in the state of the
invocation. This solution prevents problems with ill-founded specifications.
For instance, method direct in Example 3.6 on page 37 does not lead to
unsound reasoning, instead, the rule that replaces invocations to direct be-
comes applicable infinitely many times. On the other hand, KeY does not
check feasibility of method specifications before enabling the rule to replace
invocations. Therefore, the KeY System becomes unsound if method wrong
from Example 3.6 is used in specifications.

Jack also applies the technique of underspecification. The tool axioma-
tizes pre- and postconditions of pure methods separately. This separation
ensures that axioms are only instantiated when a pure-method call occurs
in a given verification condition—as opposed to being available to the the-
orem prover at any time. However, since Jack does not check consistency,
unsoundness can still occur by the use of axioms. Jack does not support
recursive specifications.

At the time of writing, Spec# only checks the well-definedness of in-
variants. The applied well-definedness operator is similar to Df [87]. For
the checks, the axioms that are generated over pure methods may be used.
Since the well-definedness of pure-method specifications is not checked, such
axioms encode potentially ill-defined expressions. However, this does not
jeopardize soundness as such expressions will only be underspecified. For
instance, consider a method m with an integer parameter p and a specifica-
tion that requires p to be non-negative and specifies the return value to be
10. Spec# does not filter out ill-defined calls to m in specification expres-
sions like m(-1). However, one will not be able to deduce anything about
the result of the call, because the premise of the extracted axiom is false,
making the axiom void.

Since Spec# uses fully automated theorem provers, it does not generate
proof obligations with existential quantifiers to ensure the existence of pos-
sible result values for method specifications. Instead, based on a heuristics
that inspects the shape of postconditions, it tries to guess proper values and
attempts to prove that at least one of the guessed values indeed satisfy the
method specification at hand [82].

Spec# ensures well-foundedness of specifications by defining an ordering
and proving that every call in a method specification is ordered below the
method being specified [82]. The ordering has two components. First, the
topology of object structures is taken into account based on the acyclic
ownership relation. If the specification of some method contains a call with
receiver object o, then the call is ordered below the method being specified
if o has more owners than the this-object. That is, o is “deeper” in the
ownership structure, which, due to the acyclicity of the ownership relation
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ensures well-foundedness. The second component of the ordering is based
on user-defined measures, similar to our approach.

Spec# does not check the consistency of method specifications incre-
mentally, thus, no knowledge about the properties of pure methods can be
used during the checking process. This is a source of incompleteness.

Jacobs and Piessens [65] do not address the issue of well-definedness of
expressions that are used in the axiomatization of inspector methods. The
consistency of axioms generated over inspector methods is ensured by sim-
ple syntactic means. Satisfiability is guaranteed by requiring that method
bodies of inspector methods are of the form return E. The axiomatization
technique then extracts expression E to specify the value of the correspond-
ing function symbol. Recursive specifications are forbidden.

Dynamic Frames. In VeriCool [126], the well-definedness of method spec-
ifications is checked. For each method, a proof obligation is stated that
requires the precondition to be well-defined, and the postcondition to be
well-defined provided that the precondition holds. These are similar to the
requirements our approach poses too (cf. Criteria 2 and 4 in Section 6.2).
However, Smans et al. do not address the issue of dependencies: it is not
clear exactly what information (such as invariants and axioms over other
methods) can be used to discharge the well-definedness conditions. Further-
more, recursive specifications are forbidden.

VeriCool uses the same idea to ensure satisfiability of dynamic frames as
the inspector-methods approach.

Recall that Dafny [81] does not support pure methods, instead, functions
are introduced for the purpose of abstraction. However, the issues raised
by their well-definedness checking are the same as for pure methods. The
well-definedness operator of Dafny is defined the same way as Df for all
constructs that are common in the expression syntax of Jml-- and Dafny.
There are two main differences between the way Dafny and we check the
well-definedness of specifications.

First, in Dafny, the well-definedness of the specification of some function
m has to be proven whenever the axiom generated over symbol m̂ is to be
used. In contrast, our approach requires one to prove the well-definedness
of m’s specification once and for all. Consequently, our approach requires
specifications to be well-defined in all possible states, while Dafny requires
specifications to be well-defined only in states in which they are actually
used for reasoning. For instance, while our approach rejects expression a/b
if we cannot deduce that b is non-zero, Dafny allows one to use the enclosing
specification as long as it is used in states where b is non-zero. This reflects
different design decisions: Dafny does not try to catch possibly ill-defined
specifications as we do, instead, uses specifications for reasoning as long as
they are well-defined.

Second, in contrast to our approach, the well-definedness checking of
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Dafny does not take dependencies into account. Hence, the well-definedness
of specifications that contain function applications cannot be proven.

In Dafny, the functions are defined by strongly-pure expressions. These
expressions also serve as witnesses for the satisfiability of the functions. Well-
foundedness of the expressions is ensured by defining the set of locations
that the function possibly reads as the measure. Since Dafny does not take
dependencies into account, proof obligations that ensure well-foundedness
have to be proved without knowledge about the properties of the functions.

Smans et al. [128] do not address the issue of well-definedness of expres-
sions that are used in the axiomatization of dynamic frames. This situation
is improved for implicit dynamic frames [127] by posing proof obligations
similar to ours on the specifications of pure methods and dynamic frames.

In both approaches, satisfiability of dynamic frames is ensured in a sim-
ilar way as in the inspector-methods approach. Recursive specifications are
forbidden in the approach presented in [128]. The approach of implicit dy-
namic frames admits recursive specifications, and to show well-foundedness,
the required access set of dynamic frames is used as measure [127]. The
required access set of a dynamic frame is an upper bound on the set of
locations possibly accessed by a frame.

Ballet does not attempt to ensure the well-definedness of Eiffel contracts.
This is because Eiffel follows the approach of “blame assignment” in this
respect, too. For instance, the caller of a feature has to make sure that the
precondition of the callee is well-defined [122]. It is not clear how Ballet
handles situations where this assumption is violated.

Ballet does not address the issues of consistent axiomatization of speci-
fications [122, p.164].

Model Fields. The value of a model field is not looked up in the store,
but is determined by the represents clause of the field, which specifies its
possible values by a relation to other locations. A bogus specification might
be unsatisfiable for any value, thus an improper encoding of model fields
may lead to inconsistency.

The work of Leino and Nelson [79, 86], and that of Müller [100] do
not tackle the issue of well-definedness and inconsistency. Therefore, bogus
specifications may result in an inconsistent axiom system.

Breunesse and Poll [22] address the consistency problem for model fields.
They propose two solutions. Their first solution uses existential quantifica-
tion to ensure that the representation relation of a model field is satisfiable.
However, the resulting encoding yields false for every JML expression E
that contains a model field whose representation cannot be satisfied, even if
E is a tautology. This may not be desired. The second solution transforms
model fields into pure methods. This solution requires a sound encoding of
pure methods, which is not addressed. Breunesse and Poll do not consider
recursive representation relations.
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Leino and Müller [84] generate axioms over model fields by extracting
specified representation relations. Consistency of the axioms is ensured
by requiring the existence of a value that satisfies the specified relations.
Well-foundedness of represents clauses is guaranteed by allowing recur-
sive accesses to model fields only along the acyclic ownership relation. Well-
definedness is not checked.
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Chapter 7

Implementation

We have implemented the techniques presented in the previous chapters in
order to evaluate them [33, 133]. Our implementation extends the Spec#
language and verification system. This decision was mainly due to (1) the
features of C# that provide means to “mimic” language extensions in a sim-
ple way; (2) Spec#’s rich infrastructure that one can easily get hold of (e.g.,
interfacing different back-end provers); and (3) the amount of experience we
already had had with Spec#. However, in general, we could have chosen
other verification tools as well, for instance, ESC/Java2 or Krakatoa.

The Spec# System in a Nutshell

The Spec# system consists of three main components [10, 8]: the Spec# lan-
guage, the Spec# compiler, and the static verification component, Boogie.
The pipeline of the tool (containing our extensions) is sketched in Figure 7.1.

The Spec# language is an extension of C#. The most important ex-
tensions are method specifications, invariants, a non-null type system, and
an ownership model. Just as C# programs do, Spec# programs compile to
CIL bytecode, the bytecode format of the .NET Platform.

The compiler analyzes the Spec# source code and generates bytecode
that (1) contains inlined code for method specifications and invariants; and
(2) preserves all specifications, including non-nullness and ownership infor-
mation. The inlined code is used for runtime assertion checking, while the
preserved specification is used by Boogie.

Boogie translates the bytecode into an intermediate language, BoogiePL.
BoogiePL [37] is a simple imperative language with procedures whose im-
plementations consist of a few kinds of statements. BoogiePL code may
also contain function declarations and axioms. In fact, Boogie encodes pure
methods by uninterpreted function symbols and axioms over these symbols
on the level of BoogiePL. A BoogiePL program goes through different trans-
lation steps to yield verification conditions in first-order logic, which are fed
to a fully automated theorem prover.
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Figure 7.1: The extended pipeline of the Spec# system

Extensions to the System

Our implementation extends all three main components of the Spec# sys-
tem. The three parts of the system that our implementation modified or
added are drawn in dark gray in Figure 7.1.

Language. For the extension of the Spec# language we used attributes. In
C#, attributes allow one to associate some data with program elements such
as classes, methods, or fields. Therefore, attributes provide a simple means
to mimic new modifiers and specification clauses. The effort of adding a
new attribute is significantly smaller than adding a new modifier or clause,
because the grammar of the language remains the same.

Our implementation extends the Spec# language with the following four
attributes:

• ResultNotNewlyAllocated and NoReferenceComparison directly
correspond to the modifiers introduced in Section 4.4.1 for eliminating
the problems with reference comparison.

• attributes Measure and MeasureRep are introduced to specify mea-
sure functions for recursive specifications. The Measure attribute cor-
responds to the measured by clause discussed in Section 6.4.3. The
argument of the attribute must be of type int. Attribute MeasureRep
specifies that the measure of recursive calls is based on the acyclic own-
ership relation, and the receiver of recursive calls must be referenced
through a rep-field.
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Compiler. The compiler was modified in two ways. First, the four attributes
were added and the information on user-defined measures were made to get
preserved in generated bytecodes. Second, the simple static checks described
in Section 4.4.1 were added. A warning message is reported if the checks fail.

Verifier. Boogie uses one store for the encoding of pure methods. This
corresponds to our simplified encoding presented in Section 4.4. Therefore,
the encoding of Boogie was left unchanged.

Boogie has been modified such that the technique described in Chapter 6
is applied before bytecode would get translated to BoogiePL. That is, we
build the dependency graph of the program at hand, and traverse it to check
the well-formedness of invariants and method specifications.

Proof obligations are directly sent to the theorem prover, and if a proof
obligation fails then an error message gets reported. Failed proof obligations
can be queried for further analysis. If all proof obligations are discharged
for the specification of some method, then the corresponding axiom (see
formula (6.2) on page 90) is added to the theorem prover.

After a successful traversal of the dependency graph, axioms of the form
of (6.1) on page 82 are passed on to the bytecode translator. The translator
turns them into axioms in BoogiePL, thereby making them available for the
verification of the source code.

All checks performed by the compiler and the verifier can be turned off
by a command-line option.

Remark. Our implementation does not adapt the axioms generated over pure
methods to the invariant semantics of Spec# [83]. This is so because the
main purpose of our implementation was to evaluate the technique described
in Chapter 6. An adaptation to Spec#’s invariant semantics is also possible.

Adaptation for Automatic Theorem Provers

The proof obligations presented in the previous chapter are sufficient to show
the well-formedness of a specification. However, they are not well-suited for
automatic theorem provers for two reasons. First, the proof obligations that
ensure consistency of postconditions (proof obligations (6.5) and (6.6)) con-
tain existential quantifiers, for which automatic theorem provers often do
not find suitable instantiations. Second, the proof obligations that ensure
well-foundedness of recursive specifications (proof obligation (6.6)) is in gen-
eral proved by induction over ind, but induction is not supported well by
automatic theorem provers.

Our implementation adapts these proof obligations the following ways to
make well-formedness checking practical with automatic theorem provers.
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Consistency. Similar to the heuristics of Spec# proposed by Leino and
Middelkoop in [82], we inspect postconditions of pure methods to identify
witness expressions. A witness expression is an expression that satisfies the
postcondition of the pure method at hand. In contrast to the approach of
Spec#, a witness expression surely satisfies the corresponding postcondition,
thus there is no need to verify that. This also means that our checks are
more conservative.

Our implementation considers an expression E to be a witness expres-
sion if (1) the method has exactly one ensures clause and it has the form
“\result � E” or “E � \result”, where � is one of the reflexive operators
==, >=, <=, ==>, or <==>, and (2) E is an expression that does not contain
the literal \result [33].

In order to admit more complex specifications, the syntactic checks are
extended to allow multiple postconditions of the form “ensures Pi ==>
Ei”, provided that: (1) in no state do two premises hold simultaneously
and (2) every consequence contains a witness expression. The first property
is enforced by proof obligations. This extension makes, for instance, the
postcondition of method count admissible in Figure 3.3 on page 36.

By automatically discovering witness expressions, the existential quan-
tifier can be eliminated from proof obligations (6.5) and (6.6).

Well-foundedness. Proof obligation (6.6) in general requires induction. How-
ever, induction is only needed if a pure method is specified recursively and
the recursive call occurs as an argument to a partial operation, such as di-
vision or a method call. Therefore, we syntactically forbid recursive calls to
occur as arguments of partial operations.

Furthermore, our implementation forbids mutual recursion, which can be
easily detected by the inspection of the dependency graph. This restriction
further simplifies the form of the proof obligation: lines 4 and 5 can be omit-
ted because one function can be processed at a time. Although forbidding
mutual recursion is conceptually a major restriction, in practice, the use of
mutual recursion (that is both useful and well-founded) is not common.

Our implementation automatically discovers and admits recursion over
the acyclic ownership relation: if the receiver of a recursive call is directly
owned by the this-object, then the recursion is considered to be well-
founded [33]. This further simplifies proof obligation (6.6) as the decrease
of the measure does not have to be proven.

Evaluation

Novelty. To the best of our knowledge, our tool was the first one that
performed well-formedness checks on invariants and method specifications
for an object-oriented specification language. In particular, the incremental
way of checking specification constructs was novel in the realm of program
verifiers.
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In the meantime, the checking mechanism of the implicit dynamic frames
approach by Smans et al. [127] has been adapted to perform an incremental
model construction, too. Since our technique is not bound to a particular
logic or theorem prover, other program verifiers could adapt it as well.

Implementation. As Figure 7.1 indicates, our technique is mostly indepen-
dent of the rest of Boogie’s pipeline. Therefore, our implementation only
modifies existing Spec# code in a few points, and mostly consists of newly
introduced classes. This makes our well-formedness checking easily “plu-
gable” into new releases of the Spec# system.

Annotation Overhead. Besides measure specifications for recursive specifica-
tions, users manually have to add attributes ResultNotNewlyAllocated

and NoReferenceComparison. We believe that more accurate analyses
that go beyond our syntactic checks could lessen this burden. For instance, a
points-to analysis could help to infer attribute ResultNotNewlyAllocated.
Still, based on our experience, the annotation overhead seems to be accept-
able.

After the implementation of the admissibility checks, we used the source
code of Boogie itself as one of the benchmarks [33]. At that time in 2006,
Boogie comprised some 45K lines of Spec# code. Although the specifi-
cation of the Boogie source code was far from being complete and ex-
pressed mainly simple properties, all uses of pure methods in the source
code passed the admissibility checks. We only had to mark two methods
with ResultNotNewlyAllocated (one in Boogie and one in mscorlib) and
none with NoReferenceComparison. Furthermore, we did not encounter
specifications that were rejected because of the over-approximative nature
of the analysis presented in Section 4.4.1.

Proving Capabilities. As discussed in the related work section of the pre-
vious chapter, there are only a few tools that check the well-formedness of
specifications. Among those few tools, in our opinion, Spec# is the one that
provides the best support for the checks. Therefore, we briefly compare our
implementation to the current version of Spec#.1

As mentioned before, Spec# checks well-definedness only for invariants,
and the checks may assume the axioms that are generated over pure meth-
ods. Consequently, in contrast to our approach, Spec# does not need to
use a dependency graph for well-definedness checking. On the other hand,
axioms generated over pure methods may contain expressions that are ill-
defined. However, such axioms do not lead to inconsistency.

The main difference between Spec#’s and our approach to the check-

1At the time of writing, the latest public release was v1.0.21125 from November 2008.
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ing of well-definedness is that our approach warns users about possibly ill-
defined specifications before the actual proving process would begin, while
Spec# encodes such specifications and considers them underspecified when
used for reasoning. We have decided for our design because we think that
“debugging” specifications as early as possible is beneficial for users.

As mentioned above, Spec# uses heuristics to guess potential witnesses
for method specifications [82]. These heuristics are more powerful than our
approach to consistency checking, described above.

Recall that our implementation considers a method specification consis-
tent either if it has exactly one ensures clause that has a witness or if it has
multiple conditional ensures clauses where the conditions are disjoint and
each clause has a witness.

The heuristics of Spec# are not limited to conditional ensures clauses
but are defined over all logical connectives, thereby providing a more flexible
solution. As future work, we plan to adapt our implementation to use the
heuristics of Leino and Middelkoop.

Spec# currently does not implement the measure clause described in [82].
Therefore, recursion in specifications is only allowed along the acyclic own-
ership relation. This means that our implementation is more powerful re-
garding recursive specifications.

It is important to note that in the presence of measure clauses, most
probably Spec# would also need to track dependencies among pure meth-
ods: (1) In order to prove that specified measures are non-negative and
decrease by every recursive call, the axioms over pure methods might be
needed. The lack of these axioms would be a source of incompleteness. (2)
However, because of the possibility of cyclic reasoning, it would be unsound
to use the axioms before having checked that the specifications from which
the axioms were extracted are well-founded.

Experience. Although our implementation works well for smaller programs,
at the time of writing, it has not yet been tested by larger examples or case
studies. It remains future work to develop challenging examples to see the
usability and practicality of our implementation.
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Chapter 8

Motivation

In Part I, we have seen how the pure methods of a program can be used to
write abstract specifications. For instance, in Figure 1.1 on page 7, method
isPremium of class Account was used to specify method addBonus of the
class. Another common way of writing abstract specifications is to specify
implementations in terms of well-known mathematical structures, such as
sets and relations. This technique is applied, for instance, in VDM, Larch,
and OCL. While these approaches describe the mathematical structures in
a language that is different from the underlying programming language, the
one-tiered JML simplifies the development of specifications by describing
the structures in an object-oriented manner through model classes [31].

A model class is immutable and contains only pure methods, which pro-
vide an interface to the mathematical structure that the class represents.
While model classes are useful for specification purposes, they pose the same
problem for verification as the pure methods of programs: verifiers have to
encode model classes in the underlying theorem prover.

Although the technique described in Part I could be applied for the en-
coding of model classes, it would not be optimal, mainly for the following
three reasons. (1) The tactics of a theorem prover are optimized for theories
that are part of the prover’s theory-library, and not for the axiomatization
of model-class specifications. (2) As seen in Part I, it is difficult to ensure
consistency of such encodings, in particular, in the presence of recursive
specifications. (3) The encoding technique can ensure consistency of specifi-
cations, but not their semantical correctness. While we cannot do better for
pure methods that are written for a given domain (e.g., method isPremium
in class Account), the situation is different for model classes. For instance,
we have a good understanding about the semantics of method union in the
model class that represents mathematical sets.

Therefore, previous work [29, 75, 76] proposes to map model classes and
their pure methods directly to theories of the underlying theorem prover.
This is possible because model classes are in fact very similar to mathemat-
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class SingletonSet {
Object value;
model JMLObjectSet _set;
represents _set <- new JMLObjectSet(value);

void setValue(nullable Object o)
ensures _set.has(o);
assignable value;

{ value = o; }

// other constructors and methods omitted
}

Figure 8.1: Specifying SingletonSet using model class JMLObjectSet

ical structures. Their objects are immutable, their operations are side-effect
free, and equality is based on their state rather than object identity. There-
fore, instances of model classes behave like mathematical values rather than
heap-allocated objects. This view greatly simplifies reasoning about model
classes.

Example 8.1. Figure 8.1 shows the use of model class JMLObjectSet for
the specification of class SingletonSet. Model class JMLObjectSet is a
prefabricated class that encodes a mathematical set of objects through its
pure methods. In order to use the model class in the specification of
class SingletonSet, model field set is declared. The field represents
the abstraction of an instance of type SingletonSet as specified by the
represents clause:1 a singleton set containing the object referenced by
field value. Method setValue is specified in terms of the model field and
JMLObjectSet’s pure method has, which checks for set membership.

Let us see how one would prove the postcondition of method setValue
in store OS . Due to our semantical understanding of method has, expres-
sion set.has(o) can be mapped to o ∈ OS (this. set). To determine the
value of location this. set in store OS , we map the represent clause
of field set to the singleton set, yielding term {OS (this.value)}. Given
the assignment in the body of the method, we obtain the following proof
obligation for setValue: o ∈ {o}, which is trivial to prove.

The proof obligation above is considerably better suited for verification
than the proof obligation ĥas( ̂JMLObjectSet(o,OS ), o,OS ) that one would
obtain by encoding the expression with function γ, introduced in Chapter 4.

1Note that the syntax of Jml-- does not contain the represents clause. It is used here
for demonstration purposes only. The same holds for the assignable clause of method
setValue.
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Previous work discusses only the mapping of method signatures, but ig-
nores their contracts. With this approach, the meaning of has is given by
the definition of symbol ’∈’ of the underlying theorem prover, and not by
the contract of has. This is problematic if there is a mismatch between the
contract and the semantics of the operation given by the theorem prover.
Static program verifiers might produce results that come unexpected for pro-
grammers who rely on the model class contract. The results may also vary
between different theorem provers, which define certain operations slightly
differently (for instance, division by zero yields 0 in Isabelle, while it is not
admissible in PVS). Moreover, the result of runtime assertion checking might
differ from that of static verification if the model class implementation used
by the runtime assertion checker is based on the model class contract.

Example 8.2. To illustrate the possible discrepancies between static veri-
fication and runtime assertion checking, suppose that we had the following
hypothetical specification for one of the constructors of JMLObjectSet:

JMLObjectSet(nullable Object e)
ensures (e == null ==> \result.isEmpty()) &&

(e != null ==> \result.has(e));

That is, the constructor returns an empty set if the argument is null, and
a set that contains e otherwise.

With this behavior of the constructor, the runtime assertion checker
would report an error for the call mySingletonSet.setValue(null) be-
cause in the poststate of setValue, the set set would be empty and, thus,
would not actually contain null. That is, set.has(null) yields false.
However, as we have argued above, the proof obligation obtained by apply-
ing the mapping can be trivially proven. This discrepancy would be due to
the mapping of the one-argument constructor to the term {e}, which would
alter the semantics of the specification in the case when e is null.

8.1 Contributions

In Part II of the thesis, we show how model classes can be mapped to
theorem provers without semantic mismatches. The main contribution of
our work is a technique for proving that the mapping of a model class to
a mathematical structure defined by the theorem prover is faithful, that is,
the model class and the structure indeed correspond to each other in their
properties.

To prove faithfulness of a mapping, we apply in two steps the technique
of theory interpretation, introduced in Section 2.3.

In the first step, we attempt to formally prove that the specified map-
ping of a model class defines a standard interpretation of the theory formed
by the specification of the model class in the theory of the corresponding
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structure. The proof is based on showing that the three sufficient obligations
presented on page 27 hold. If the proof attempt succeeds then, according
to Theorem 2.2 on page 28, consistency of the model-class specification is
guaranteed. Consistency is only relative to the consistency of the target
theory. However, theory-libraries of theorem provers are unlikely to contain
inconsistencies.

In the second step, we attempt to “reverse” the specified mapping and
attempt to prove that the resulting mapping defines a standard interpreta-
tion of the target theory in the specification of the model class. If the proof
attempt succeeds then, according to the definition of standard interpreta-
tion, completeness of the model-class specification is guaranteed. Again,
completeness is only relative to the corresponding theory. However, theories
of theorem provers typically define a rich set of properties.

We show that the backwards mapping that is used in the second step
must not be an arbitrary one, but has to be one that is indeed the reverse
of the specified mapping. We define a condition that ensures the existence
of such a backwards mapping.

In the sequel, we will refer to these two steps of the faithfulness proof as
the consistency proof and the completeness proof.

In practice, often consistency and completeness cannot be proven be-
cause the related model class and structure does not perfectly match and
no mapping can be given for a model-class method or a symbol of the struc-
ture. In Chapter 10, we introduce the notion of observational faithfulness,
which admits a relaxed version of the completeness proof in that it does not
require all symbols of a structure to have a corresponding functionality in
the model class. As discussed in Chapter 10, observational faithfulness is a
sufficient result for the sound use of mapped to clauses.

Once (observational) faithfulness of the mapping of a model class has
been proven, the mapping can be used for program verification without
worrying about semantic discrepancies. In particular, the hypothetical dis-
crepancy between the static verification of setValue and runtime assertion
checking shown in Example 8.2 would be detected during the consistency
proof for JMLObjectSet.

Our approach leads to important results beyond semantical correspon-
dence and simplified reasoning. Model class contracts are complex and can
easily become inconsistent, which can lead to unsound reasoning. Showing
that a model class can be mapped consistently to a mathematical structure
proves that the model class contract itself is (relatively) consistent. In fact,
as will be shown in Chapter 11, one of our case studies discovered an incon-
sistent specification in class JMLObjectSet, which is one of the most basic
model classes of JML’s model library.

Proving that the specification of a model class is complete relatively
to a theory gives some level of confidence that the model class contains
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all important properties. Failing to prove completeness is typically a sign
that some properties are missing. Our case studies discovered such missing
specifications. Examples will be given in Chapter 11.

These points show that proving faithfulness of mappings helps in writ-
ing better specifications for model classes by making them consistent and
complete. Our approach can also be used to identify redundant parts of spec-
ifications as well as to check whether specifications marked as redundant are
indeed derivable from non-redundant specifications. These capabilities fur-
ther improve the quality of model-class specifications.

Remark. In the sequel, we use Jml-- as specification language and Isabelle
as the target theorem prover. However, the presented approach is applica-
ble to any combination of specification language and theorem prover, for
instance, Eiffel and Coq.

Outline. The rest of Part II is structured as follows. The remainder of this
chapter introduces two running examples through which the main concepts
of our approach will be presented: a JML model class and an Isabelle theory.

Chapter 9 presents the technical details of the proposed approach. In partic-
ular, the way translations are derived from specified mappings is presented
as well as the proof obligations that are to be proven to complete the con-
sistency and completeness proofs for a given mapping.

Chapter 10 discusses various aspects of our approach, such as its shortcom-
ings and its potential for automation. Chapter 11 presents the case study
we performed on model class JMLObjectSet.

Chapter 12 extends the approach with the handling of model classes that
are mapped to inductive data types. Inductive data types come with a va-
riety of properties such as the induction principle that can typically not be
derived from first-order invariants and method specifications. Therefore, a
different proof technique is required to show completeness of a model class
with respect to an inductive data type. The chapter contains a second case
study: the mapping of model class JMLObjectSequence to the inductively
defined type HOL/List.

Finally, Chapter 13 gives an overview of related work.
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mapped_to("Isabelle", "HOL/Set", "α set");

immutable pure model class JMLObjectSet {

invariant (\forall JMLObjectSet s2. s2 != null ==>

(\forall Object e1. (\forall Object e2.

equational_theory(this, s2, e1, e2))));

static pure boolean

equational_theory(JMLObjectSet s, JMLObjectSet s2,

nullable Object e1, nullable Object e2)

ensures \result ==

(s.union(s2)).has(e1) == (s.has(e1) || s2.has(e1));

// other postconditions omitted

}

Figure 8.2: A snippet of the equational theory of JMLObjectSet

8.2 Running Examples

8.2.1 Model Class JMLObjectSet

Model class JMLObjectSet is part of JML’s model library [67]. The class
encodes sets of objects: it provides the usual operations of mathematical
sets; equality over the set-elements is based on Java’s reference equality
(“==”). Figure 8.2 presents a small part of the equational theory of the
class, explained below. Figure 8.3 presents those methods of the class and
their specifications that are discussed in the sequel. Other methods and
specification elements are omitted for brevity.2

Beside the two constructors presented in Figure 8.3, the class has a third
one, too: JML provides a special construct to express set comprehension.
For example, the following expression yields a set of Integer objects that
are contained by collection s and whose integer values are greater than 0 [77]:

new JMLObjectSet { Integer i | s.has(i) && 0 < i.intValue() }

The syntax of JML requires that the predicate of the set comprehension
is a conjunction, and the first conjunct is a method call that checks if the
bound variable is a member of a collection or a model class that represents a
set (i.e., JMLObjectSet or JMLValueSet). Thus, model class JMLObjectSet
represents a finite set.

Class JMLObjectSet is specified to be pure, thus, all its instance methods
are pure. Furthermore, the class is specified to be immutable. Methods that
return JMLObjectSets (e.g., method union) do not mutate their receiver
objects but return new instances.

2The presented parts of the class are split over two figures because otherwise they
would not fit on one page.
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mapped_to("Isabelle", "HOL/Set", "α set");

immutable pure model class JMLObjectSet {

mapped_to("Isabelle", "{}");

JMLObjectSet();

mapped_to("Isabelle", "insert e {}");

JMLObjectSet(nullable Object e);

mapped_to("Isabelle", "elem : this");

boolean has(nullable Object elem);

mapped_to("Isabelle", "this = s2");

boolean equals(Object s2);

mapped_to("Isabelle", "this = {}");

boolean isEmpty();

int int_size();

mapped_to("Isabelle", "this <= s2");

boolean isSubset(JMLObjectSet s2);

mapped_to("Isabelle", "this < s2");

boolean isProperSubset(JMLObjectSet s2);

mapped_to("Isabelle", "SOME x. x : this");

nullable Object choose();

mapped_to("Isabelle", "insert elem this");

JMLObjectSet insert(nullable Object elem)

ensures (\forall Object e. \result.has(e) ==

(this.has(e) || e == elem));

mapped_to("Isabelle", "this - (insert elem {})");

JMLObjectSet remove(nullable Object elem);

mapped_to("Isabelle", "this Un s2");

JMLObjectSet union(JMLObjectSet s2)

ensures (\forall Object e. \result.has(e) ==

(this.has(e) || s2.has(e)));

mapped_to("Isabelle", "this - s2");

JMLObjectSet difference(JMLObjectSet s2);

mapped_to("Isabelle", "Pow this");

JMLObjectSet powerSet();

// other methods omitted

}

Figure 8.3: Signatures and mappings of JMLObjectSet’s methods
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The class is specified by method specifications and an invariant. Two
sample method specifications are given in Figure 8.3 for methods insert
and union. The proposed mapping of the class and its methods to one of
Isabelle’s set structures is given by mapped to clauses that we explain in
Chapter 9.

In Figure 8.2, the invariant expresses that method equational theory
has to return true in every visible state for all non-null JMLObjectSet in-
stances this and s2, and objects e1 and e2. Method equational theory
is a static pure method and has a large method specification that contains
equations written in the style of algebraic laws. As a result, the invariant of
the model class prescribes that all equations specified by the method specifi-
cation of equational theory have to hold in all visible states. For brevity,
Figure 8.2 shows only a sample equation defining method union.

This way of writing invariants is typical for model classes and such in-
variants are commonly referred to as the equational theory of the class. We
will use this terminology in the sequel, too. Furthermore, we will use the
term “invariant” when referring to an equation prescribed by the specifi-
cation of method equational theory, for instance, to the equation that
defines method union.

We follow the proposal of Leavens et al. [75] and Charles [29], and con-
sider model classes to be (implicitly) final and unrelated to Java’s type
hierarchy rooted in class Object. This prevents problems related to inher-
itance, method overriding, and dynamic dispatch. In the realm of model
classes, these restrictions seem acceptable since model classes are supposed
to describe elementary mathematical concepts and to be used only for spec-
ification purposes.

On the other hand, the restrictions result in the limitation that, for
instance, a set of sets or a list of lists cannot be represented. Consider
expression powerSet(s).remove(s) and powerSet(s).choose() for some
JMLObjectSet-instance s. According to our understanding of set theory, the
expressions are meaningful. However, if model class JMLObjectSet is not a
subtype of Object, then the expressions do not typecheck: method remove
takes an Object and choose returns an Object, which is not compatible with
the JMLObjectSet-instance that the methods take and return, respectively.

A solution for this problem would be to follow the approach that the-
orem provers typically apply, namely, to use a type variable to denote the
type of elements of a structure (e.g., α in Isabelle). This could be realized
by the use of generics with type parameters whose upper bound is not fixed
in type Object. Given such a type system, methods like powerSet could be
mapped to theorem provers that support type variables.

In the sequel, we make the following assumption, which can be checked by
the approach described in Chapter 6, and which will allow us to concentrate
on the normal behavior specification cases of methods.
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Assumption 8.1. Model specifications and specifications that rely on model
classes are well-defined.

The well-definedness of such specifications can be checked by the tech-
nique presented in Part I.

8.2.2 Isabelle/HOL and Theory HOL/Set

Isabelle [106] is a generic interactive LCF-style theorem prover. It is generic
in that it provides a meta-logic, which allows one to implement different
logical formalisms, for instance, FOL (first-order logic) and ZF (Zermelo-
Fraenkel set theory). In the sequel, we use Isabelle/HOL [106, 107], which
is the specialization of Isabelle for the logical system of higher-order logic. In
what follows, we will interchangeably use the term “Isabelle” to refer both
to Isabelle, the theorem prover, and to Isabelle/HOL, the logical system.

Isabelle is interactive, that is, users have full control over the process
of proving theorems. However, several automatic decision procedures and
tableaux provers (collectively called tactics) are available, which significantly
simplify and accelerate the proof process. Two of the often used tactics are
simp, which is based on term rewriting; and auto, which is a tableaux prover.

Isabelle is an LCF-style theorem prover, that is, it is based on a small
logical core [48]. Everything else is supposed to be defined on top of this core
by conservative extensions, which ensure its logical consistency. Although
Isabelle allows users to state axioms, it is strongly discouraged due to the
risk of making the specification inconsistent.

When working with Isabelle, users write theories. Theories typically
consist of type and function-symbol declarations, and of definitions and the-
orems over these types and symbols.

In order to introduce the Isabelle constructs that are necessary for the
understanding of the subsequent chapters, we briefly present a tiny part of
theory HOL/Set. The relevant parts of the theory are shown in Figure 8.4.

Remark. The presented theory is not part of the latest Isabelle 2008 distri-
bution, but of the previous, Isabelle 2005 distribution. The reason is that
the former introduces several dependencies to other theories of the library,
which improves the theory library, but which would make the presentation
of theory HOL/Set more difficult.

The theory begins by importing another theory HOL/LOrder, the theory
of lattice orders. Thereby, all symbols, definitions, axioms, and theorems
that are available in theory HOL/LOrder are also available in HOL/Set. Next,
the new type α set is introduced, where α is a type variable that gives rise
to polymorphic types [106].
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theory Set
imports LOrder
begin

typedecl α set

consts

"{}" :: "α set"
insert :: "α ⇒ α set ⇒ α set"
Collect :: "(α ⇒ bool) ⇒ α set"
Un :: "α set ⇒ α set ⇒ α set"
":" :: "α ⇒ α set ⇒ bool"

translations

"{x. P}" == "Collect (λ x. P)"

axioms

mem_Collect_eq: "(a : {x. P(x)}) = P(a)"
Collect_mem_eq: "{x. x:A} = A"

defs (overloaded)
subset_def: "A <= B == ∀ x. x:A ⇒ x:B"
psubset_def: "A < B == A <= B & ~A=B"
set_diff_def: "A - B == {x. x:A & ~x:B}"

defs

Un_def: "A Un B == {x. x:A | x:B}"
empty_def: "{} == {x. False}"
insert_def: "insert a B == {x. x=a} Un B"

lemma subsetI: "(∀ x. x:A ⇒ x:B) ⇒ A <= B"
by (simp add: subset_def)

end

Figure 8.4: A snippet of Isabelle’s HOL/Set theory
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Keyword consts declares five new function symbols for the empty set,
element insertion, set comprehension, union (Un), and set membership, re-
spectively. Union and set membership are defined to be infix operators—not
shown in the figure to avoid unnecessary syntactic clutter.3

The constant declaration is followed by the definition of syntactic sugar
for set comprehension and the axiomatization of set comprehension. The
axioms are followed by definitions; the first group defines the semantics of
symbols that are not introduced by theory HOL/Set but are already available
in the imported theory HOL/LOrder. These are subset, proper subset, and
set difference. The second group defines the newly introduced symbols—
except of set membership and set comprehension.

Finally, a theorem is stated (introduced by keyword lemma) and proven
using the simp tactic, which uses a pre-defined set of axioms, definitions, and
theorems. For the proof of the theorem, this set is extended by definition
subset def, the definition of subset given in the theory.

3We also omitted other, rather cryptic parts to ease understanding. As a result, the
presented specification does not parse with Isabelle.
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Chapter 9

Faithful Mapping

In this chapter, we present our approach for proving that the mapping of
a model class M to a mathematical structure S is faithful. That is, we
show that there is a standard interpretation of the theory formed by the
specification of M in the theory of S; and vice versa.

The process of proving this correspondence consists of three stages. In
the first stage, we specify the mapping of M to S using mapped to clauses.
In the second stage, we deduce a standard translation from the theories of
M and S based on the specified mappings, and attempt to prove that the
translation yields a standard interpretation. In the third stage, we attempt
to do the same in the reverse direction. In this chapter, we assume that
the definition of structure S is non-inductive. The handling of inductive
structures is described in Chapter 12.

Remark. The approach presented in this thesis does not handle ghost fields
of model classes. Ghost fields can be handled by mapping a model class M
with n ghost fields to an n+ 1-tuple, where the first component represents
the structure for M and the other components represent the state of the
ghost fields [99]. Omitting ghost fields allows us to map a model class M
directly to some structure S and to avoid cluttering up the proof obligations
with projections of tuples.

Contexts and Function γ. In the second and third stages of the faithfulness
proof, proofs are carried out in two different contexts. In the second stage,
the context is that of S. In the third stage, the context is conceptually that
of M , however, that context (essentially Jml--) is not adequate for formal
proof. Therefore, another context, denoted by M̂ , is used that encodes the
specification of M in a theorem prover, thereby allowing one to carry out
the proofs of the third stage using a formal system, like Isabelle or Coq.

The way context M̂ is generated will be described in Section 9.3.3. How-
ever, before that, we will make use of function γ that encodes specification

127
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expressions in context M̂ . The function takes a Jml-- expression and yields
a first-order term or formula:1

γ : Expr→ TermcM
The function is defined the same way as γ in Figure 4.3 on page 50, except
that γ : (1) does not take heap arguments, (2) does not handle field accesses,
and (3) does not restrict the scope of quantification to allocated objects:

γ((\forall T x. E)) , ∀ x. γ(E) and
γ((\exists T x. E)) , ∃ x. γ(E).

Note that for method calls, function γ yields the uninterpreted “hat”-
functions that were introduced in Part I, just with no heap argument. That
is, γ(E.m(F)) , m̂(γ(E), γ(F )).

9.1 Specifying the Mapping

In the first stage, one has to decide how to map model class M . That is,
one has to specify: (1) to what structure S is the model class mapped, and
(2) to which symbols of S are the methods of the model class mapped.

9.1.1 Specifying the Mapping of Classes and Methods

The mapping of a model class is specified by a mapped to clause attached
to the class. The first argument of the clause specifies the target theorem
prover, the second the target theory, and the third the specific type (if any)
in the theory to which the model class is mapped. Only one clause per
target theorem prover may be specified.

Figure 8.3 on page 121 shows a possible mapping of class JMLObjectSet:
it is mapped to type α set in the HOL/Set theory of Isabelle.

The mapping of a method is specified by a mapped to clause attached
to it. The first argument of the clause is again the target prover, the second
specifies the term to which the method is mapped in the target theory. The
term may only mention logical and nonlogical symbols of the target theory
and parameters (including the explicit receiver) of the specified method. The
argument must contain a term that is well-typed, otherwise the translation
of specification expressions fails. Only one clause per target theorem prover
may be specified.

In Figure 8.3, JMLObjectSet’s has method is mapped to the term elem :
this, meaning that the method corresponds to Isabelle’s set membership
operator “:”.

1The function may yield a Formula, too. For brevity, we do not distinguish the two
cases in the signature of γ and other functions introduced in the rest of this chapter.



9.1. SPECIFYING THE MAPPING 129

We permit one to write arbitrarily complex terms, which allows our ap-
proach to support method with functionality that is not directly supported
by the target prover. This flexibility is necessary to handle, for example,
JMLObjectSet’s remove method, which removes a single element of a set.
Theory HOL/Set does not provide a corresponding operation but provides
set difference, which allows one to express the meaning of method remove.
Thus, if our approach allowed only direct correspondence between methods
and function symbols, then this simple operation could not be handled with
the chosen mapping for class JMLObjectSet.

Remark. Note that mapped to clauses are used only for the purpose of static
verification. For runtime assertion checking, the clause has no meaning and
can be ignored.

Remark. In Section 2.3, the concept of theory interpretation was presented
for first-order languages. This seems to be reasonable since Jml-- specifica-
tions are first-order. However, above, class JMLObjectSet was proposed to
be mapped to a theory of higher-order logic. Thus, applying the theory over
first-order languages does not seem adequate for the faithfulness proof and,
in particular for the completeness proof, where the source of the translation
is a higher-order context.

As we will see in later chapters, our approach is to apply first-order
translation and, whenever needed, approximate the translation of higher-
order properties with first-order formulas. The reason for this approach is
that the interpretation of higher-order theories is significantly more difficult
than that of first-order theories [42], and would be mostly an overkill for the
handling of model classes.

Supporting Multiple Provers. One might want to provide mappings for a
model class to different theorem provers at the same time. For example, be-
sides Isabelle, one might want to specify the mapping of class JMLObjectSet
to PVS and Coq, too. Therefore, multiple mapped to clauses may be at-
tached to the model class and its methods. For example, model class
JMLObjectSet and its has method could be mapped to Coq as follows:

mapped_to("Coq", "Coq.Sets.Classical_sets", "Ensemble");

mapped_to("Coq", "In this elem");

Allowing mappings to different theorem provers is needed since different
provers provide different theories with different symbols and corresponding
semantics. As a consequence, the faithfulness proof has to be carried out in
every target prover specified in mapped to clauses.
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Remark. Mappings need not be specified by programmers who are typi-
cally not familiar with theorem provers and their theories. Mappings can be
specified by the author of a model class or by the team that performs the
verification. The same applies to the proof of faithfulness, which typically
requires experience in theorem proving.

Function ν. Following the notation of Farmer [42], we use function ν to map
methods to term and formula functions of the target theory. As mapped to
clauses contain exactly that information, function ν essentially captures the
content of the clauses. For instance, for model class JMLObjectSet we have:

ν(has) ≡ λ{this, elem. elem : this}
ν(remove) ≡ λ{this, elem. this− (insert elem {})}

Remark. As a second argument, ν should take the name of the target theo-
rem prover as the mapping of a method may be different for different provers.
For simplicity, we omit this argument as the target prover is always going
to be Isabelle in the sequel.

9.1.2 Defining the Universe

Recall from Section 2.3 that a standard translation Φ has two components,
a map ν and the universe predicate U . U is a closed unary predicate of
the target theory that takes a value that denotes an element of the target
structure. The predicate is defined such that it yields true if and only if its
argument is in the scope of translation Φ. We will denote the universe used
during the consistency proof by US and the one used during the completeness
proof by UcM . When proving the faithfulness of a given mapping, predicates
US and UcM correspond to the same universe, just the contexts in which
they are expressed differ.

The main use of the universe predicate is to “relativize” the scope of
quantifiers (see translation of E via Φ on page 27). The need for relativiza-
tion is demonstrated by the following example.

Example 9.1. Consider model class SmallSet in Figure 9.1. The class
represents a set that is either the empty set or a singleton set. The class
has methods for creating such sets, for removing an element from the set,
and for determining set membership. The class is specified to be mapped
to Isabelle’s HOL/Set theory. For brevity, only one specification element is
presented, others are omitted.

The specification of method remove expresses that removing an element
of the set yields the empty set. Clearly, this property holds for instances
of SmallSet; however, it does not hold for sets in general. Thus, if the
specification element was translated to Isabelle without taking into account
the special universe of SmallSet-instances, then the specification of remove
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mapped_to("Isabelle", "HOL/Set", "α set");

immutable pure model class SmallSet {

mapped_to("Isabelle","{}");

constructing

SmallSet();

mapped_to("Isabelle","insert e {}");

constructing

SmallSet(nullable Object e);

mapped_to("Isabelle","this - (insert e {})");

SmallSet remove(nullable Object e)

ensures this.has(e) ==> \result.equals(SmallSet());

mapped_to("Isabelle","e : this");

boolean has(nullable Object e);

// other specifications omitted

}

Figure 9.1: Model class SmallSet, a set with a limited universe

would get rejected while proving consistency of the mapping. Similarly,
when proving completeness of the mapping, certain definitions of the target
theory would probably not be provable.

As a consequence, the faithfulness of mapping class SmallSet to Is-
abelle’s set theory would not be provable. However, SmallSet does represent
a proper set, just with a limited universe.

The problem can be resolved by defining a proper predicate for the class
that restricts the universe of SmallSet-instances. Namely, the predicate
(shown in Example 9.2) has to express that every instance of the class is
equivalent to the value that one of the two constructors possibly yield. Con-
sequently, the property expressed by the postcondition of remove becomes
provable in the target theory; and while proving completeness, set-properties
only need to be proven with respect to the limited universe, too. Thereby,
the rejection of the actually faithful mapping is prevented.

To allow users to specify the set of methods that should form the universe
predicate of a model class, we introduce the constructing modifier for
model-class methods. For instance, in Figure 9.1, the two constructors are
marked as constructing.

Given a model class with l methods marked as constructing, the re-
sulting universe predicate will consist of a disjunction with l disjuncts. As-
suming, for simplicity, that parameters of the enclosing type appear before
the parameters of other types in the signatures of methods, the effect of
marking method m with one implicit and n explicit parameters, and pre-
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condition P is that the universe predicate UcM (x) will contain a disjunct of
the form:

∃ s, e1, . . . , en. UcM (s) ∧ UcM (e1) ∧ . . . ∧ UcM (ek) ∧
γ(P ) ∧ êquals(x, m̂(s, e1, . . . , en))

where k ≤ n and parameters e1, . . . , ek are of the enclosing type, while the
others, if any, are not.

The construction of predicate US is analogous. The only difference is
that the property is expressed in the context of the target theory:

∃ s, e1, . . . , en. US (s) ∧ US (e1) ∧ . . . ∧ US (ek) ∧
ΦM (P ) ∧ ΦM (x.equals(s.m(e1, . . . , en)))

where ΦM is the translation function between Jml-- expressions and the
target context. The function is precisely defined in the next section.

Example 9.2. Having specified the two constructors of class SmallSet be-
ing constructing in Figure 9.1, we get the following universe predicates
in the context of the model class and the target theory, respectively:

UcM (x) , êquals(x, ̂SmallSet()) ∨ (∃ e. êquals(x, ̂SmallSet(e)))

US (x) , x = {} ∨ (∃ e. x = (insert e {})) (9.1)

Note that the universe predicate is defined inductively, which can make
faithfulness proofs difficult. The properties that need to be shown during the
consistency proof have to be proven by induction over the structure of terms
that denote instances of the target structure. Analogously, when proving
completeness, the induction goes over the Jml-- expressions that denote
instances of the model class. For instance, given the following universe
predicate for class JMLObjectSet:

US (x) , x = {} ∨ (∃ s, e. US (s) ∧ x = (insert e s))

one would need to use an induction hypothesis that states that the prop-
erty at hand holds for some instance y from which x can be yielded by an
application of insert .

If no method is marked as constructing then the default value of the
universe predicate is true and can be omitted in the translation. As men-
tioned on page 27, this is the case when the source and the target universe
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is the same. Therefore, when a model class has the standard universe of the
structure that it represents, then the constructing modifier is typically
not needed. This often happens in practice, for instance, this is the case for
class JMLObjectSet, as discussed in Chapter 11.

Remark. Since the soundness of theory interpretations does not depend on
predicate U , there is no need to check that the set of methods marked as
constructing is minimal, or that indeed the whole universe of the en-
closing class can be constructed by the marked methods. Of course, a bad
choice of the predicate may lead to a failing faithfulness proof of two seman-
tically equivalent structures, as would be the case for class SmallSet, if the
constructing modifier was omitted from Figure 9.1.

9.2 Proving Consistency of a Model Class

In the second stage of the faithfulness proof, we prove consistency of the
mapping, that is, we show that there is a standard interpretation of M ’s
theory in S’s theory. Therefore, we need to translate the method specifi-
cations and invariants of M in the context of S based on the mapped to
clauses, and prove the resulting formulas using the properties of S. To do
so, first the translation function Φ (presented on page 27) has to be adapted
to the context of Jml-- specifications. The resulting translation function
will be denoted by ΦM .

Definition of ΦM . The function takes a Jml-- expression and yields a
term or formula in the target theory S:

ΦM : Expr → TermS

The definition of the function is presented in Figure 9.2. Note that the defi-
nition is similar to that of γ in Figure 4.3 on page 50, except that (1) it does
not take heap arguments, (2) method calls, \result, and this in postcon-
ditions of constructors are translated according to the specified mapped to
clauses, and (3) quantifiers are relativized by the universe predicate.

The definition of ΦM is rather straightforward. For simplicity, the defini-
tion for method and constructor calls, for keyword \result, and for keyword
this in the postcondition of constructors is presented for methods and con-
structors with one explicit parameter p. Note that terms ν(m)(this, p) and
ν(C)(p) denote the terms that are defined by the mapped to clause of the
corresponding method and constructor. The old-construct is “ignored” by
the translation since the construct is not meaningful in pure-method speci-
fications.
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ΦM (E � F ) , ΦM (E) FOL(�) ΦM (F ), where � and FOL
are defined in Figure 2.1 and 4.4, resp.

ΦM (!E) , ¬ΦM (E)
ΦM (E.m(F)) , ν(m)(ΦM (E),ΦM (F ))
ΦM (new C(E)) , ν(C)(ΦM (E))
ΦM (\result) , ν(m)(this, p),where m is the enclosing method
ΦM (this) , ν(C)(p) , if this occurs in the post-

condition of constructor C
ΦM (v) , v , if v is a parameter or literal

other than \result and this in
postconditions of constructors

ΦM (\old(E)) , ΦM (E)

ΦM ((\forallT x. E)) , ∀ x. US (x) ⇒ ΦM (E)

ΦM ((\existsT x. E)) , ∃ x. US (x) ∧ ΦM (E)

where the shaded parts are added only if the quantified variable is of a
model type.

Figure 9.2: Definition of translation ΦM

9.2.1 Proving that ΦM is a Standard Interpretation

It remains to prove that the standard translation ΦM is a standard interpre-
tation of M ’s theory in S’s theory. To do so, we need to prove that the three
obligations presented on page 27 hold. In the remainder of this section, we
show how these obligations are to be enforced.

Axiom Obligation. Recall that the axiom obligation requires that the
translation of every axiom of M is a theorem of S. The “axioms” of a
model class are its invariants and method specifications. Their translation
is straightforward, only the free variables have to be bound by universal
quantifiers since these quantifications are implicit in invariants and method
specifications:

• an invariant Inv of some class C is translated to the formula:

ΦM ((\forall C this. Inv))

or equivalently to:

∀ this. US (this)⇒ ΦM (Inv).

• the specification of a method of class C with one explicit parameter p
of type T , precondition P , and postcondition Q is translated to:
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ΦM ((\forall C this. (\forall T p. P ==> Q)))

which is equivalent to:

∀ this, p. US (this)⇒ US (p)⇒ ΦM (P ==> Q).

where the shaded part is only added if p is of a model type.

These formulas are turned into lemmas and have to be proved in the target
theory.

Remark. Note that invariants are not conjoined to pre- and postconditions.
This is because invariants of model classes do not restrict the state space
of their instances, but rather give equational laws about their operations.
These laws are dealt with separately when they are turned into lemmas.

Remark. Similarly to the encoding of pure methods described in Part I, the
translation of model specifications considers only method specifications that
prescribe normal behavior. This is justified by Assumption 8.1 on page 123,
namely, that model and client specifications are well-defined.

Example 9.3. Consider the specification of method insert in model class
JMLObjectSet, given in Figure 8.3 on page 121. The resulting formula is:

∀ this, elem. US (this) ⇒ ΦM (P ==> Q)

where P is true and Q is:

(\forall Object e. (\result.has(e) == (this.has(e) || e == elem)))

The most interesting part of the application of function ΦM is that it
translates \result to term insert elem this, and that it translates the two
calls to method has to applications of the set membership operator, as pre-
scribed by the mapped to clause of the method. The resulting formula is
the following:

∀ this, elem. US (this) ⇒
(∀e. (e : (insert elem this)) = ((e : this) ∨ (e = elem)))

The formula is turned into a lemma in Isabelle’s HOL/Set theory. The
lemma can be proved automatically by the auto tactic, which is not sur-
prising as theorem provers like Isabelle are typically well-equipped with
theorems over their built-in structures. Note that it does not matter how
predicate US is defined, because the consequence of the implication holds in
the chosen Isabelle theory.
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Universe Nonemptiness Obligation. Recall that the obligation re-
quires that the universe of the translation is nonempty: ∃x. US (x). This is
usually a trivial proof obligation. For instance, in Example 9.1 on page 130,
picking {} for x trivially discharges the obligation. Despite the existential
quantification, the proof obligation is automatically proved by Isabelle’s auto
tactic.

Note also that the obligation trivially holds if the universe predicate is
defined to be the trivial US (x) , (x = x).

Function Symbol Obligation. Recall that the obligation requires that
for each symbol f of theory T , an application of f with arguments from the
universe is translated to a term that denotes a value of the universe.

When applying the obligation for model-class methods, the only differ-
ence is that specified preconditions have to be taken into account as well.
Assuming, for simplicity, that parameters of model types appear before the
parameters of other types in the signatures of model classes, we have to prove
for each model method m with n explicit parameters and precondition P
that the following holds in the target theory:

∀ t, x1, . . . , xn. US (t)⇒ US (x1)⇒ . . .⇒ US (xk)⇒
ΦM (P (t, x1, . . . , xn))⇒ US (ΦM (t.m(x1, . . . , xn)))

(9.2)

where k ≤ n and parameters x1, . . . , xk are of model types, while the others,
if any, are not. The proof obligations for the constructors of a model class
are constructed analogously.

Example 9.4. We present a non-trivial instance of the function symbol
obligation. The property to show for SmallSet’s remove method is:

∀ t, x.US (t)⇒ US (ΦM (t.remove(x))) ≡
∀ t, x.US (t)⇒ US (t− (insert x {}))

where US is the predicate defined by (9.1) on page 132. The formula can
be proven by Isabelle’s auto tactic after unfolding both occurrences of US .

The second stage of the faithfulness proof is successfully completed if
all three obligations can be proven. Based on Theorem 2.2 (presented on
page 28), we can then conclude that the specification of the model class at
hand is consistent provided that the target theory is consistent.

9.2.2 Consistency and Sound Verification

Having proved consistency of the specification of a model class guarantees
that the specification is free from contradictions. Consequently, it can be
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safely used for reasoning about client code. However, having proved consis-
tency of the specification is not sufficient for the use of mapped to clauses
for verification purposes, because the symbol to which a method is mapped
to may be specified to possess properties that the method does not, thereby
leading to unexpected results during the verification of client code.

Example 9.5. Suppose class JMLObjectSet had a method bogusUnion that
was mapped to Isabelle’s set union operation and was specified as follows:

mapped_to("Isabelle", "this Un s2");
JMLObjectSet bogusUnion(JMLObjectSet s2)
ensures !this.isEmpty() ==> !\result.isEmpty();

The axiom obligation can be proved trivially for the specification since
the specified property holds for Isabelle’s union operator Un, too:2

ΦM (!this.isEmpty() ==> !\result.isEmpty()) ≡
¬(this = {}) ⇒ ¬((this Un s2) = {}) ≡
true

However, consider the following boolean expression:

new JMLObjectSet().bogusUnion(new JMLObjectSet(e)).has(e)

The specification of bogusUnion would not allow us to determine whether
the expression holds or not, however, the translation of the expression yields
the formula e : ({} Un (insert e {})) , which is trivially provable in Isabelle.
Thus, it would be unsound for a program verifier to map method bogusUnion
to Isabelle’s Un symbol, since we would allow more properties to be proven
after the mapping than we could prove before the mapping, using only the
model-class specifications.

Furthermore, the symbols to which method bogusUnion is mapped in
other theorem provers might be defined differently. Thus, the outcome of
verification attempts might be theorem-prover dependent. Runtime asser-
tion checking might also lead to unexpected results, because the specification
of the method allows, for instance, the implementation return this, which
clearly violates the properties of set union.

Intuitively, the problem is that the specification of bogusUnion would
describe only one particular property of mathematical union of sets. How-
ever, after having mapped bogusUnion to Isabelle’s Un symbol, the method
would be endowed with all the additional properties that symbol Un has.
For the faithful mapping of bogusUnion, we would need to show that the
method indeed possesses these endowed properties.

This example demonstrates that proving completeness of a model class
with respect to a theory does not just show that the specification of the class

2For brevity, quantification and the universe predicate are omitted from the translation.



138 CHAPTER 9. FAITHFUL MAPPING

is strong enough relative to the theory, but is crucial for the sound use of
mapped to clauses during the verification of client code.

9.3 Proving Completeness of a Model Class

In the third stage of the faithfulness proof, we prove completeness of the
mapping, that is, we show that there is a standard interpretation of S’s
theory in M ’s theory. Therefore, we need to translate the specifications of
S (typically axioms and definitions) in the context of M . As before, we first
need to define a translation function, denoted by ΦS , and then prove the
three obligations.

9.3.1 Issues of the Reverse Mappings

It is crucial to note that the completeness proof should not only show that
the model class provides all the functionality that the Isabelle structure
provides. It should also show that related model-class methods and func-
tions indeed correspond to each other. For instance, it is not sufficient to
prove that the specification of method union is complete with respect to the
properties of function Un: One additionally needs to prove that the spec-
ification of a method such as bogusUnion is also complete with respect to
Un, because calls to bogusUnion in specifications would also be translated
to applications of Un.

This means that translation ΦS may not be an arbitrary standard trans-
lation for which we can show that it is a standard interpretation. Instead,
ΦS should be one that is derived from the mapping that is specified by the
mapped to clauses. That is, we need a way to reverse specified mappings.
In the following, we show that this is not trivial because symbols of S might
be mapped to by multiple methods, and some of the reverse mappings are
only valid under certain conditions.

Consider symbol insert of theory HOL/Set, which is mapped to both by
method insert and by constructor JMLObjectSet(e):3

ν(insert)(this, e) ≡ insert e this
ν(JMLObjectSet(e))(e) ≡ insert e {}

Therefore, as argued above, the translation of a formula that contains
an application of the symbol should consider mapping the symbol both to
the method and to the constructor. Although this seems to be doable by
defining translation ΦS such that all possible reverse mappings of a symbol
must be taken into account by a case split, clearly, such a translation would
not be standard anymore (cf. Section 2.3).

3In the sequel, we will write JMLObjectSet(e) to refer to the constructor with one
parameter even when only a method or constructor name is expected, like the argument
of function ν.
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Furthermore, the translation of the general term insert x Y to the
constructor is only valid under the condition that Y corresponds to the
empty set. This condition would need to be added to the translated formula,
which again shows that the translation would not be standard.

In the sequel, we demonstrate through an example that the problem is
not merely that the resulting reverse translation would not be standard. We
show that the conditions under which certain mappings are valid may alter
the semantics and satisfiability of the original formula.

Example 9.6. It is well-known that a condition over a universally bound
variable has to be added as the premise of an implication, otherwise the
condition has to be added as a conjunct. But what if a condition contains
both existentially and universally quantified variables?

Consider the following theorem of Isabelle’s HOL/Set theory:

∀A, x.∃ B. (insert x (A Un B)) = (insert x A) Un B

Let us look at the translation when the first application of insert is
mapped to constructor JMLObjectSet(e). As discussed above, the trans-
lation of the term insert x Y to the constructor yields the condition that
Y corresponds to the empty set. Therefore, the translation of the term
insert x (A Un B) yields the condition that the union of A and B corre-
sponds to the empty set. The condition contains both a universally and an
existentially quantified variable, thus we can add the condition neither as a
premise, nor as a conjunct.

In the first case, the shape of the resulting formula would be:

∀A, x.∃ B. êquals(ûnion(A,B), ̂JMLObjectSet()) ⇒ . . .

The problem is that one could pick a non-empty B (e.g., JMLObjectSet(x)),
thereby making the premise false, and the whole implication true. Thus, the
resulting formula would be trivially provable and we would not ensure that
the contracts of the model class are strong enough to express the property
encoded by the theorem.

In the second case, the shape of the resulting formula would be:

∀A, x.∃ B. êquals(ûnion(A,B), ̂JMLObjectSet()) ∧ . . .

The formula is unprovable, as the conjunct does not hold for every A.

These considerations point out that defining the general reverse transla-
tion of ΦM is rather complex. In particular, due to multiple and conditional
translations: (1) the translation would not be standard anymore and (2) the
translation would considerably change the structure of translated formulas.
Therefore, it would be difficult to reason that the resulting translation is
indeed the one we are looking for.
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9.3.2 Our Pragmatic Approach

To resolve the problem, we take a pragmatic approach and pose a require-
ment on the user-defined mappings. In practice, the requirement typically
does not constrain the way model classes may be written and mapped, but
it ensures that the reverse translation of ΦM is a standard translation and
can be easily derived from ΦM .

However, just as there is no free lunch, there is no free standard reverse
translation: besides the requirement, a number of proof obligations are posed
on the methods of the model class at hand.

In the remainder of this section, we formalize the requirement, the reverse
translation ΦS , and the necessary proof obligations.

Requirement. The requirement we pose on specified mapped to clauses
is that each symbol of S should be mapped to by at least one method
unconditionally. Formally:

For each n-ary function and predicate symbol f of S and variables
x1, . . . , xn there is at least one method m or constructor C of M ,
and expressions e1, . . . , ek with free variables x1, . . . , xn such that
either ΦM (e1.m(e2, . . . , ek)) = f(x1, . . . , xn) or

ΦM (new C(e1, e2, . . . , ek)) = f(x1, . . . , xn) holds. (9.3)

Although the requirement does not hold for arbitrary translations, it
typically holds for model classes. Conditional mappings are typically needed
when a model class offers methods that are redundant in the sense that they
are equivalent to some compound expression consisting of calls to more basic
methods. For instance, JMLObjectSet(e) is equivalent to creating an empty
set and inserting element e into it. Similarly, method remove is equivalent
to set difference with a singleton set as second argument. Such methods
make the use of model classes more convenient, but their functionalities are
usually not directly available in the corresponding structures.

The requirement would not hold, for instance, if class JMLObjectSet
provided method remove, but not method difference. However, since
set difference is a more fundamental set operation than removing a single
element, the requirement is likely to hold when designing a model class that
represents a set.

Definition of ΦS. Given the above requirement, the reverse translation
can be easily defined. It is a transformer between terms and formulas of S
and M̂ :

ΦS : TermS → TermcM
The definition of translation ΦS is presented in Figure 9.3. Note that

it is almost identical to Farmer’s translation function Φ (see page 27). The
main difference is in the translation of function and predicate symbols, which
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ΦS(V ar) , V ar

ΦS(f(t1, . . . , tn)) ,



γ(e1.m(e2, . . . , ek)),
if there is a method m and
expressions e1, . . . , ek such that:
ΦM (e1.m(e2, . . . , ek)) = f(t1, . . . , tn)

γ(new C(e1, e2, . . . , ek)),
if there is a constructor C and
expressions e1, . . . , ek such that:
ΦM (new C(e1, e2, . . . , ek)) = f(t1, . . . , tn)

ΦS(t1 = t2)) , ΦS(t1) = ΦS(t2), if t1 and t2 are not of model type
otherwise handled the same way as

predicate symbols (previous case)
ΦS(¬φ) , ¬ΦS(φ)
ΦS(true) , true
ΦS(false) , false
ΦS(φ1 ◦ φ2) , ΦS(φ1) ◦ ΦS(φ2), if ◦ ∈ {∧,∨,⇒}
ΦS(∀x. φ) , ∀x. UcM (x) ⇒ ΦS(φ)

ΦS(∃x. φ) , ∃x. UcM (x) ∧ ΦS(φ)

where the shaded parts are added only if the quantified
variable is of the type to which the model class was mapped.

Figure 9.3: Definition of translation ΦS

reverses translation ΦM as expressed by the condition—modulo the appli-
cation of function γ.

In fact, there might be multiple methods that satisfy the condition—
think of method union and bogusUnion. If so, any of those methods can
be selected since their equivalence has to be formally proven, as we will see
below.

Note that the translation of operator “=” is different if the operands are
of model types and if they are of some other type. In the former case, the
definition over function and predicate symbols apply: to which model-class
method the operator is mapped depends on the user-specified mapping. In
practice, it is typically (but not necessarily) the equals method.

If the operands are not of model type, then “=” is translated to “=”
(or the equivalent symbol of the target prover). Although this is in line
with the definition of function Φ, it might not be the desired translation. In
particular, one might want to define equality over the elements of a model
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class by the equals method of the specific element type at hand, and not
by reference equality. This issue is discussed in Chapter 10.

Example 9.7. Consider the translation of term A Un {} to the context
of model class JMLObjectSet. Both of the two nonlogical symbols of the
term, Un and {}, can be unconditionally mapped to a method of the model
class. The former to method union and the latter to the parameterless
constructor. Thus, the whole term can be translated unconditionally, too.
More specifically, we have:

ΦM (A.union(JMLObjectSet())) ≡ A Un {}
From which we get that:

ΦS(A Un {}) ≡ γ(A.union(JMLObjectSet()))
≡ ûnion(A, ̂JMLObjectSet())

Proof Obligations. The requirement on mappings prescribes that there
should be at least one unconditional mapping for each symbol of S. How-
ever, it does not rule out methods with mappings that can only be reversed
under a certain condition. Therefore, what remains to be shown is that the
functionalities of methods that are mapped to the same symbol of S are
equivalent provided that the condition (if any) under which their mapping
can be reversed holds.

For instance, we need to prove that the functionality of a call to construc-
tor JMLObjectSet(e) is equivalent with that of method insert provided
that the receiver object of the method denotes the empty set.

This kind of proof obligations can be formalized as follows. Assume that
for some symbol f , methodm fulfills the requirement. Then for each method
n that is also mapped to symbol f (even if n also fulfills the requirement),
we have to show that the following is a theorem in the context of M̂ :

∀x1, . . . , xp, y1, . . . , yq.

ΦS(t1m = t1n) ∧ . . . ∧ ΦS(tkm = tkn) ⇒ m̂(x1, . . . , xp)
eq
= n̂(y1, . . . , yq)

(9.4)
where
• the tim = tin equalities are derived by applying translation function ΦM

on methods m and n, and taking pairwise the i-th arguments of the
resulting function applications. Formally:

ΦM (x1.m(x2, . . . , xp)) = f(t1m, . . . , t
k
m)

ΦM (y1.n(y2, . . . , yq)) = f(t1n, . . . , t
k
n)

• symbol
eq
= denotes operator “=” if the operands are not of model type,

otherwise an application of the hat-function to which symbol “=” is
translated by ΦS (i.e., typically function êquals).
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Example 9.8. According to Figure 8.3 on page 121, there are three symbols
of Isabelle’s HOL/Set theory that are mapped to by multiple methods of
model class JMLObjectSet: insert , “=”, and “−”. The corresponding proof
obligations are the following:

∀x1, x2, y1. x2 = y1 ∧ êquals(x1, ̂JMLObjectSet()) ⇒
êquals(însert(x1, x2), ̂JMLObjectSet(y1))

∀x1, x2, y1. êquals(x1, y1) ∧ êquals(x2, ̂JMLObjectSet()) ⇒
êquals(x1, x2) = ̂isEmpty(y1)

∀x1, x2, y1, y2. êquals(x1, y1) ∧ êquals(x2, însert( ̂JMLObjectSet(), y2))
⇒

êquals( ̂difference(x1, x2), ̂remove(y1, y2))

These proof obligations have to be shown in the theory that is derived
from the specification of the model class. The derivation procedure is pre-
sented in the next section.

We show in detail how the first proof obligation is derived. Both method
insert and constructor JMLObjectSet(e) are mapped to symbol insert .
The premise of the proof obligation is derived from the following equalities:4

ΦM (x1.insert(x2)) = insert x2 x1

ΦM (new JMLObjectSet(y1)) = insert y1 {}

This leads to the premise:

ΦS(x2 = y1) ∧ ΦS(x1 = {}) ≡ x2 = y1 ∧ êquals(x1, ̂JMLObjectSet())

Note that the “=” symbol is mapped to “=” in the first conjunct because
the arguments are not of model type. In the second conjunct the symbol is
mapped to an application of symbol êquals because the arguments are of
model type.

The consequence of the proof obligation consists of an application of
function symbol êquals because the method and the constructor yield values
of a model type. The arguments of the function application correspond to
the encoding of the method call x1.insert(x2) and the constructor call
new JMLObjectSet(y1): însert(x1, x2) and ̂JMLObjectSet(y1), respectively.

Revisiting Example 9.5. Recall that Example 9.5 highlighted the neces-
sity of proving that method bogusUnion possessed the properties of symbol

4Note that symbol insert fulfills requirement (9.3) as it is mapped to by method insert

unconditionally.
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Un, the symbol to which the method is mapped. Our approach enforces this
by posing the following proof obligation:

∀x1, x2, y1, y2. êquals(x1, y1) ∧ êquals(x2, y2) ⇒
êquals(ûnion(x1, x2), ̂bogusUnion(y1, y2))

That is, essentially we need to prove that method union and bogusUnion
are equivalent. Given the weak specification of method bogusUnion, this
cannot be proven.

9.3.3 Proving that ΦS is a Standard Interpretation

It remains to prove that ΦS is a standard interpretation. The procedure is
the same as for translation ΦM : we have to show that the three sufficient
obligations hold for the standard translation ΦS .

Model Theory. As a first step, the context and theory in which the obli-
gations are to be proven needs to be constructed. As noted above, the
context is denoted by M̂ , and the theory is formed by the axiom system
that is extracted from the specifications of model class M . In the sequel, we
will call this theory the model theory and assume that method signatures
in M only refer to the enclosing type and type Object. In practice, this
is typically the case for methods that correspond to the operations of the
mathematical structure that M represents.

The model theory is obtained in three simple steps for a model class M :
1. Two new types are declared: Object and M .
2. Each method m of M is turned into a function symbol m̂ and its signa-

ture is declared based on m’s signature using the two newly declared
types.

3. Each invariant and method specification of M is turned into an axiom.
For an invariant Inv, the resulting axiom is:

∀ this. γ(Inv)
For the specification of method m with one explicit parameter p, pre-
condition P , and postcondition Q, the resulting axiom is:5

∀ this, p. γ(P ==> Q[this.m(p)/\result])

Example 9.9. Consider method isProperSubset of class JMLObjectSet.
In the first step, types Object and JMLObjectSet are declared. Next, the
signature of ̂isProperSubset is declared. The only explicit parameter of the
method is of type JMLObjectSet, and the method yields a boolean value.
Thus, the signature to generate is the following:

5For the specification of constructor C, the substitution to perform on Q is C(p)/this.



9.3. PROVING COMPLETENESS OF A MODEL CLASS 145

̂isProperSubset : JMLObjectSet × JMLObjectSet ⇒ bool

In the third step, axioms over isProperSubset are stated. For instance, the
equational theory (i.e., the specification of method equational theory) of
JMLObjectSet contains the following equation:

s.isProperSubset(s2) == (s.isSubset(s2) && !s.equals(s2))

The equation is part of the specification of method equational theory,
which has 4 parameters: s, s2, e1, and e2 (the method has no implicit pa-
rameter as it is static). Thus, in the third step, the equation is turned into
an axiom that quantifies over these variables. The “body” of the axiom is
yielded by the application of function γ on the specification: (1) the calls on
methods isProperSubset, isSubset, and equals are encoded by the func-
tion applications ̂isProperSubset(s, s2), ̂isSubset(s, s2), and êquals(s, s2),
respectively; and (2) the logical operators are encoded. This results in the
following axiom of the model theory:

∀ s, s2, e1, e2.
̂isProperSubset(s, s2) = ( ̂isSubset(s, s2) ∧ ¬êquals(s, s2))

(9.5)

Remark. As mentioned earlier, declaring and using type Object in function
signatures does not allow one to handle, for instance, sets of sets. A more
flexible solution, provided the target theorem prover supports type variables,
is to declare M as a polymorphic type (e.g., “α JMLObjectSet” in Isabelle).
Thereby, the declaration of type Object is not needed and in signatures of
function symbols it is to be replaced by α.

Once the model theory is created, we have to show that the formulas
that correspond to the three obligations for translation ΦS are theorems of
the model theory.

Axiom Obligation. To prove the axiom obligation, we have to show that
every axiom and definition φ of S is a theorem of M̂ . That is, formula ΦS(φ)
is a theorem of the model theory.

Example 9.10. Consider definition psubset def of the HOL/Set theory:6

∀A,B. A < B = A <= B ∧ ¬A=B

6The formula is equivalent with definition psubset def on page 124, only the syntax
is adapted and the binding of the implicitly bound variables is made explicit.
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Applying ΦS on the definition, we get the following formula to prove:

∀ A,B. UcM (A) ⇒ UcM (B) ⇒
̂isProperSubset(A,B) = ( ̂isSubset(A,B) ∧ ¬ êquals(A,B))

The formula can be trivially proven by axiom (9.5).

Implicit Axiom Obligations. It is important to note that not only the axioms
and definitions of S have to be translated, but also those rules of the target
theorem-prover that are applicable to instances of S and, thereby, express
properties of structure S. For instance, Isabelle’s higher-order logic is based
on a few axioms that (among others) express reflexivity of equality and
Leibniz-equality [107]. Although these axioms are not specific to a given
structure S, they express properties of the symbols of every structure S.
Therefore, these two axioms also have to be translated to and proved by the
model theory to make sure that the corresponding properties hold in the
model class, too.

For model class JMLObjectSet, reflexivity of equality yields the axiom
obligation ∀ t. êquals(t, t) , which can be trivially proven by the specification
of method equals.

The difficulty with the translation of Leibniz-equality is that it is higher
order: the property is defined for every function symbol or predicate f .
Therefore, we need to “approximate” the axiom by posing a separate proof
obligation for each function and predicate symbol of S. Then, the resulting
formulas can be translated to and proven by the model theory.

For instance, the formula to prove for symbol “<=” in Isabelle’s HOL/Set
theory is the following:

∀x1, x2, y1, y2.

êquals(x1, y1) ∧ êquals(x2, y2) ⇒ ̂isSubset(x1, x2) = ̂isSubset(y1, y2)

Given proper model-class specifications, this kind of proof obligation is
trivially provable.

Universe Nonemptiness Obligation. The obligation requires one to
prove that universe UcM is nonempty: ∃x. UcM (x). As for the consistency
proof, the obligation is typically trivially provable.

Example 9.11. The universe predicate to use for class SmallSet during
the completeness proof can be derived from (9.1) on page 132 by translating
it with ΦS . The resulting predicate is:

UcM (x) , êquals(x, ̂JMLObjectSet()) ∨
(∃ e. êquals(x, însert( ̂JMLObjectSet(), e)))

To prove the obligation, one can pick x to be ̂JMLObjectSet().
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Function Symbol Obligation. The obligation is analogous to obligation
(9.2) on page 136 for the consistency proof. Predicate P corresponds to the
domain restriction of the function at hand, provided it is partial.

9.4 The Last Hurdle

Once the faithfulness of a mapping has been proven, the encoding of client
specifications can make use of it by translating calls to model-class meth-
ods according to the specified mapped to clauses. Therefore, the encoding
function γ introduced in Chapter 4 has to be adapted accordingly.

For the sound use of specified mappings, there is a last hurdle to over-
come: we need to make sure that model fields in client specifications take
values from the specified universe. Therefore, we pose the following proof
obligation on a model field m of type M declared in type T :

∀ o,OS . allocT (o,OS , T )⇒ UcM (OS (o.m)) (9.6)

For the proof, one might use the represents clause of the field, which is
axiomatized as follows. For simplicity, we assume that represents clauses
are of the form:

represents m <- (P ?E1 :E2 )

where P is a non-recursive boolean expression (i.e., it must not mention
model field m), and E1 and E2 yield values of m’s type M . The clause is
handled as if it was the declaration and specification of a pure method m:

pure M m()
ensures P ==> \result.equals(E1) &&

!P ==> \result.equals(E2);

The well-formedness checking and axiomatization of the specification is
done the same way as described in Chapter 6 for pure methods, except that
aliveness of the model value is not stated in the resulting axiom. Note that
the value of a model field may depend on the value of other model fields and
on the result of pure-method calls. That is, there might be dependencies
between model fields and between pure methods and model fields. The han-
dling of such dependencies is also analogous to the handling of dependencies
between pure methods.

Example 9.12. Consider the class in Figure 9.4, which represents a node
of a linked list with a value field that references an object. Model field
set is specified to be the set that contains all objects that are referenced
by the value field of one of the nodes that is reachable from this through
the next field.

We omit proving the well-formedness of the represents clause as well
as the specifications that are needed for the proof. The only non-trivial
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class Node {
nullable Node next;
Object value;
model JMLObjectSet _set;
represents _set <- (next == null ? new JMLObjectSet(value) :

next._set.insert(value));
// other specifications and methods omitted

}

Figure 9.4: Recursive represents clause of a model field

property to prove is well-foundedness, which can be shown by introducing
a ghost field to class Node that indicates the length of the list starting from
the node.

Let us see how formula (9.6) can be proven for field set of class Node.
Consider the universe predicate of model class JMLObjectSet to be com-
posed by its two constructors and method insert:

UcM (x) , êquals(x, ̂JMLObjectSet()) ∨
(∃ e. êquals(x, ̂JMLObjectSet(e))) ∨
(∃ s, e. UcM (s) ∧ êquals(x, însert(s, e)))

The axiom that is extracted from the represents clause looks as follows:

∀ this,OS . allocT (this,OS , Node) ⇒
(OS (this.next) = null ⇒
êquals(OS (this. set), ̂JMLObjectSet(OS (this.value)))) ∧

(OS (this.next) 6= null ⇒
êquals(OS (this. set), însert(OS (OS (this.next). set),OS (this.value))))

Since the represents clause of set is defined recursively, we need to
prove formula (9.6) by induction, more specifically, by induction over the
length of the list.

In the base case, the length is 1. Consequently, this.next is null,
which allows us to deduce the formula on the third line of the axiom. Since
the formula is an instance of the second disjunct of UcM (OS (this. set)), the
base case is proven.

In the step case, the length is greater than 1. Consequently, this.next is
non-null, which allows us to deduce the formula on the last line of the axiom.
The formula is an instance of the second conjunct in the third disjunct of
UcM (OS (this. set)), leaving us with formula UcM (OS (OS (this.next). set))
to prove. This follows from the induction hypothesis, which can be applied
because the length of the list starting from the node denoted by this.next
is smaller than that of this.



Chapter 10

Discussion

This chapter discusses various aspects of our approach to the faithful map-
ping of model classes, in particular, cases when the faithfulness of a mapping
cannot be proven, the potential for automating certain parts of faithfulness
proofs, a subsidiary application of our approach, issues with the handling of
equality, and guidelines for writing model classes.

10.1 Mismatches Between Model Classes and
Mathematical Structures

The interface of a model class is typically developed independently from
the structures that it may potentially be mapped to. This is justified by
the fact that model classes are used by different program verifiers equipped
with different back-end theorem provers. Different theorem provers provide
different mathematical structures and functions; thus, typically it is not pos-
sible to develop model classes that can be faithfully mapped to all seemingly
suitable structures. Consequently, there might be a mismatch between the
model class and the theorem prover’s structure.

In the previous chapter, we assumed that every model method can be
mapped to some symbol of the target context, and that every symbol can
be mapped back unconditionally to some method. We have seen that in this
case a standard translation can be derived, and the theory interpretation
can be performed both for the consistency and for the completeness proof.

According to our experience, often there is no such perfect match be-
tween methods and symbols, and no mapping can be given for a model
method or a symbol of the structure. In such cases, there is a mismatch
that cannot be bridged: equivalence of the theories of M and S cannot be
shown. However, the “direction” of the mismatch makes a difference in the
consequences.

If a method of M cannot be mapped to S then we cannot be sure if
Jml-- specifications that contain calls to the method are consistent, and
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if the method semantically corresponds to some mathematical operation.
In such situations, one needs to pick a richer target structure where the
mapping is possible.

The situation is better if a symbol of S cannot be translated to M .
Although the theory of S cannot be fully interpreted in the theory of M ,
the theory of M can still be fully interpreted in the theory of S. Thus, the
correspondence can still be shown between all methods that are defined by
the interface ofM and the symbols of S to which the methods are mapped to.
We call this situation observational faithfulness, which seems to be sufficient
for the use of mapped to clauses for the verification of client code, because
clients of a model class can only call methods that are available in the model
class, and the consistency and completeness of those methods are still shown.

However, the following example demonstrates that observationally faith-
ful mappings should only be used under certain conditions.

Example 10.1. Assume class C and theory T are specified as follows.1

mapped_to("T");
class C {

mapped_to("T","f(p)");
static int m(int p)
ensures \result >= 10;

{ ... }
}

theory T:

axiom: ∀x. f(x) ≥ 10
axiom: ∀x. f(x) = g(x)
axiom: ∀x. g(x) = 42

Observational faithfulness of class C and theory T can be trivially proven
since (1) the postcondition and the first specification of T are equivalent and
(2) the other two specifications cannot be translated to the language of C
since symbol g is not mapped to by methods of C.

Now, assume a client code contained the specification m(a) == 42 for
some integer a. Although based on the specification of the method we cannot
deduce whether the expression holds or not, the translation of the formula,
f(a) = 42, is trivially provable in theory T . That is, we can prove more
properties about m after the translation than before.

To prevent such situations, we pose the following requirement on obser-
vationally faithful mappings:

Theory TS of structure S must be a conservative extension of
theory TM

S that we get from TS by removing all symbols that are
not mapped to by M together with all axioms that contain such
symbols. (10.1)

In the previous example, TS would consist of the three axioms above,
while TM

S would consist of the first axiom only. As we can see, TS is not a
1The mapped to clauses only contain information that is necessary for the example.
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conservative extension of TM
S , because ∀x. f(x) = 42 is a formula but not

a theorem of TM
S , while it is a theorem of TS .

Note that if only observational faithfulness can be shown between M and
S, then requirement (9.3) on page 140 obviously does not hold, because there
are symbols f for which the prescribed condition does not hold. Therefore,
a more liberal requirement is needed:

For each n-ary function and predicate symbol f of S that is
mapped to by a method or constructor of M , and for variables
x1, . . . , xn there is at least one method m or constructor C of
M , and expressions e1, . . . , ek with free variables x1, . . . , xn such
that either ΦM (e1.m(e2, . . . , ek)) = f(x1, . . . , xn) or
ΦM (C(e1, e2, . . . , ek)) = f(x1, . . . , xn) holds. (10.2)

When proving observational faithfulness of a mapping, all proof obliga-
tions remain the same as presented in the previous chapter. In particular,
due to requirement (10.1), one can use the specified target theory when per-
forming the consistency proof (i.e., TS instead of TM

S ).

Observational faithfulness is important in practice as typically there are
many operations in S that cannot be mapped to M . For instance, a theorem
prover with a higher-order logic typically supports operations like filter or
map, which are not expressible in Jml--, which is first order.

10.2 Automation of Faithfulness Proofs

In the previous chapter, we have seen how proof obligations and the context
in which they have to be proven are extracted from the specifications of M
and S. At the time of writing, our approach does not have tool support and
proof scripts have to be written manually. In this section, we briefly discuss
which parts of our technique could be automated.

Consistency Proof. As Example 9.3 on page 135 suggests, proving consis-
tency may be fully automated. (1) The translation of model specifications is
performed by the application of translation function ΦM , which mainly per-
forms syntactic substitutions based on mapped to clauses. (2) The lemma
was proved without any user interaction using a powerful tactic of Isabelle.

For more complicated properties the mere use of tactics might not suffice
and one might need to help the prover by giving hints at which theorems of
S to use. Still, the basic proof skeleton can be generated.

As mentioned before, if the universe predicate is defined inductively, the
lemmas that correspond to the axiom and the function symbol obligations
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have to be proven by structural induction. In such cases, even the gener-
ation of the proper lemmas is non-trivial, let alone the generation of proof
scripts. The same holds for the completeness proof, too. However, apart
from artificial examples, we have not yet seen the need for an inductive uni-
verse predicate.

Completeness Proof. As shown in Section 9.3.3, the first step of the com-
pleteness proof is the generation of the model theory, which is extracted
from model specifications using the γ function. As Example 9.9 on page 144
suggests, this step can be fully automated.

The next step of the completeness proof is the generation of lemmas. To
do so, one needs to find the proper reverse translation of symbols, that is,
for each symbol a method and a number of expressions have to be found
that satisfy requirement (9.3). In general, this is difficult to fully automate
because finding the proper expressions for e1, . . . , ek is non-trivial. However,
in many cases the task is rather straightforward since the expressions often
correspond to single variables. For instance, when translating the general
term A Un B for set union, the expressions that have to be found are A and
B. Therefore, it seems that large portions of the reverse translation can be
automated.

Once lemmas have been generated, they have to be proven. This step is
also less trivial than for the consistency proof. First, even the application
of automated tactics typically requires one to manually select the set of
axioms to be used for proving a given lemma, because selecting all axioms
(or applying heuristics that select all axioms that mention symbols that
appear in the lemma) might cause the tactic to loop. Second, beyond trivial
cases, tactics often fail to find the proper instantiations of extracted axioms.
In such cases, further hints need to be given to the prover, for instance, by
the insertion of simple helper lemmas. Third, the specification of the model
class may be too weak to verify some axioms or definitions of the structure.
If so, the missing specifications need to be identified, which requires manual
intervention.

Thus, it seems that the automation of the completeness proof can only
be partial and manual intervention is needed. However, the effort is justified
by the increased quality of the model class specification.

Applying Mappings. Once consistency and completeness have been proven,
calls to model-class methods that occur in client specifications can be di-
rectly mapped to terms of the target theory. The mapping is based on
specified mapped to clauses and can be performed automatically by a veri-
fication tool.

Remark. Our experience regarding automation is based on using Isabelle
and its HOL/Set theory. However, we expect similar results with other theo-
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rem provers and theories that provide built-in tactics: (1) the translation of
formulas is mainly a syntactic operation, thus its automation is independent
of the underlying prover and logic; (2) the automation in the proof effort is
mainly based on the tactics of the underlying theorem prover.

10.3 Discovering and Checking Redundancy

An interesting side-effect of proving completeness of model-class specifica-
tions is that redundant methods and specifications can be discovered in the
model class, and one can check if specification elements marked as redundant
are indeed implied by other specification elements.

• Proof obligation (9.4) on page 142 allows one to prove that certain
methods are “redundant” in the model class, that is, expressible by
other methods. Although such methods and their specifications could
be removed without altering the capabilities of the model class, they
are part of model-class interfaces in order to make specifications more
comprehensible.

• A specification element is redundant if (1) the axiom that is extracted
from it is never used in the completeness proof and (2) the specification
element does not mention “redundant” methods (see previous point).
To illustrate the intuition behind (2), consider the following equation
of the equational theory:

new JMLObjectSet(e1).equals(new JMLObjectSet().insert(e1))

The axiom extracted from the equation is not needed in the complete-
ness proof, because there is no function symbol that corresponds to the
“redundant” one-argument constructor. However, the specification is
not redundant because it defines the “redundant” constructor, which
is part of the model-class interface.

• To check if specification elements marked as redundant are indeed re-
dundant, we just have to state the extracted formulas of such specifi-
cations as lemmas (and not axioms) when proving completeness of the
model class. Lemmas that are provable using the axioms (extracted
from specification elements not marked as redundant) confirm that the
corresponding specification elements are indeed redundant.

As we will see in the next chapter, this approach allows us to compare
the strength of the equational theory and the method specifications of
a model class.

The identification and checking of redundant specifications further im-
prove the quality of model-class specifications.



154 CHAPTER 10. DISCUSSION

10.4 Equality of Model Classes and Their Elements

An important issue of the mapping of model classes is the handling of equal-
ity. In particular, the handling of equality over model-class instances has to
be distinguished from the handling of equality over the elements of collec-
tions that model classes represent.

Model-Class Instances. Since model-class instances are treated as mathe-
matical objects, their equality is always determined by the equals method
of the class. Therefore, it is incorrect to apply operator “==” on instances
of model classes. In such cases, we replace it by a call to equals.

The equals method of a given model class may have a mapped to clause
just like any other method of the class. Typically, but not necessarily, the
clause prescribes a mapping to the “=” operator (or equivalent) of the math-
ematical structure, which is “overloaded” in the target context to mean
equality of the given structure. For instance, in Isabelle, the “=” operator
has the following meaning when applied over instances of α set:

∀A,B. (A = B) = (∀x. (x : A) = (x : B)) (10.3)

During the consistency and completeness proofs, one has to show that
this meaning of equality is indeed in line with the semantics of the equals
method of the model class.

Elements of an Instance. The elements of model-class instances are typically
objects, therefore, the question arises whether their equality should be de-
termined by reference equality or by the application of the equals method
of the corresponding type.

There is no good answer to this question, because the desired meaning of
equality depends on the client code one wants to specify. Therefore, the JML
model library provides multiple model classes for the same mathematical
structure, and the model classes only differ in the handling of equality over
the elements. For instance, besides class JMLObjectSet, the library contains
class JMLValueSet, which considers elements to be values. That is, the
elements are still objects, but their equality is determined by the equals
method of the element type.

If the equality of elements is reference equality, the translation is usu-
ally straightforward because Java’s “==” operator corresponds to Leibniz-
equality [29]. Thus, the operator can be translated to the “=” symbol (or
equivalent) of the target theory.

However, if the equality of elements is deep equality (i.e., with the
equals method), then this translation does not work. The main issue is that
the target theory typically contains definitions and lemmas that use the “=”
symbol over elements of the structure. For instance, lemma singletonD in
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theory HOL/Set states that for every element a and b the following holds:
b : {a} ==> b = a. In order to carry over the “value semantics” of the ele-
ments of class JMLValueSet, the semantics of the “=” symbol would need
to be re-defined according to the semantics of the equals method of the
corresponding element type.

This seems to be feasible at first sight: as seen above, the meaning of
the symbol could be “overloaded” for type α set. However, the situation is
different for objects that are not purely mathematical, but are objects with
state: The results of equals methods (typically) depend on the heap, thus
their semantics cannot be expressed by the “=” operator, which takes no
argument for the heap.

Therefore, we follow the approach of JML and use a “copy” of a given
theory in which all usages of the “=” operator applied on elements are
replaced by applications of the uninterpreted function symbol êquals, which
encodes the specification of the corresponding equals method.

Note that the resulting theory remains consistent provided that the orig-
inal theory was consistent and the equals method defines an equivalence
relation (as it is supposed to).

10.5 Guidelines for Writing Model Classes

We close this chapter on discussion by providing a number of guidelines for
the writing of model classes. The guidelines apply to the methods, universes,
and specifications of model classes. Based on our experience, we believe that
(observational) faithfulness proofs get considerably simpler if these guide-
lines are taken into account.

Methods. The main idea behind model classes is that they represent well-
known mathematical structures. This should also apply to the methods of a
model class: one should refrain from adding “exotic” features and, instead,
should focus on the elementary ones.

Providing a rich interface for a model class may seem appealing, because
it helps to specify client code in a simpler and more compact way. However,
there are a few points that speak against large model-interfaces. First, it is
difficult to predict what “non-standard” operations would actually be useful
to include in the interface, because for different specific domains different
operations are useful.

Second, finding a mathematical theory to which the class can be mapped
becomes more difficult, or even impossible. Recall from Section 10.1 that
if a method cannot be mapped, then no guarantee can be given on the
consistency and semantic meaning of specifications that use that method.
Therefore, one should be careful when using such methods in client specifi-
cations, if at all.
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Note also that requirement (10.2) on page 151 does not hold if a model
class provides an operation that is just a special case of a more fundamental
operation, which is not provided by the class. For instance, the requirement
would not hold if model class JMLObjectSet provided method remove but
not method difference. Thus, when designing a model class, one should
first think of basic operations of the structure represented by the class.

Universes. The above consideration applies for universes as for methods:
model classes are meant to represent standard structures, thus one should
aim for constructing model classes with “standard” universes. That is, for
instance, a model class that represents mathematical sets should not provide
a universe with instances representing only the empty set and the singleton
set, like SmallSet in Figure 9.1 on page 131. Instead, the class should
represent finite or infinite sets for which it is more likely that a matching
theory exist in state-of-the-art theorem provers.

Recall that two of the three sufficient obligations of standard interpre-
tations trivially hold if the source and the target universes match. This is a
particularly large gain for the function symbol obligation, which otherwise
requires numerous non-trivial properties to be proven.

The remaining obligation, the axiom obligation also becomes simpler to
prove, because one does not need to make use of the universe predicate.

Specifications. In the course of our case study on model class JMLObjectSet,
we noticed that the class contains specification elements that express certain
properties of a given operation (typically relating the operation to another
one), and not its definition.2 Such specifications make both the consistency
and the completeness proof more tedious. During the consistency proof,
multiple specifications have to be translated and proved for a given opera-
tion, instead of just one or a few. And, if an operation is specified through
several specification elements, then it is more likely that eventually one ends
up with an incomplete specification for the operation.

Therefore, writing specifications that correspond to definitions is prefer-
able. Other specifications that describe certain relations of model methods
(and might be helpful for clients of the model class) should be marked as
redundant. This is facilitated by specific constructs in JML.

2A concrete example will be given in the next chapter.



Chapter 11

Case Study: Mapping
JMLObjectSet to HOL/Set

In this chapter, we demonstrate the proposed technique through a case
study: we map model class JMLObjectSet to Isabelle’s HOL/Set theory, and
prove that the mapping is faithful. Overall, we considered 17 operations of
the model class: 2 constructors, 9 query methods, and 6 methods that yield
JMLObjectSet instances. These were all the constructors and methods that
remained after the simplification step that we discuss below.

All proofs were carried out in Isabelle. The proof scripts contained a total
of ca. 420 lines of code (LOC) without comments and empty lines. Consis-
tency of the mapping was proven in ca. 100, completeness in ca. 155 LOC.
The model theory of the class consisted of ca. 75 LOC. Equivalence of the
equational theory and the method specifications (described in Section 11.2)
was proven in ca. 90 LOC. As mentioned above, our technique does not yet
have tool support, thus all steps of the case study were performed manually.

All proofs of the case study and the full mapping of the class are available
online [136].

11.1 Simplification and Division of Specifications

Since we were interested in the mapping of JMLObjectSet and its methods
to an Isabelle theory, we first removed all methods that provided object-
oriented features irrelevant for the mapping of the model class. These meth-
ods included, for instance, clone, hashCode, and toString. In our opinion,
such methods need not be part of model classes if one thinks of them as
mathematical structures. As mentioned already, conceptually we do not
consider model classes to inherit from class Object.

Next, we removed all implementation details, including non-public meth-
ods and specifications, since our approach is merely based on the public
specification of model classes. Additionally, we removed public methods
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that only provide syntactic sugar, for instance, the constant field EMPTY
that represents the empty set and is equivalent with the result of constructor
JMLObjectSet(). As mentioned in Section 9.2, only method specifications
that describe normal behavior need to be treated by our approach. Thus,
we removed all other method specification cases.

As mentioned before, we do not consider the handling of ghost fields.
Thus, in the case study we removed them from the model class together
with all specification expressions that referred to them. The removal of the
ghost fields did not change the important characteristics of the model class
since they were not used in a way that would have altered the underlying
semantics of the class.

The class has four ghost fields, two of which are inherited from Object
and are not related to the model class in any way. The other two ghost fields
are containsNull and elementType. The former has value true if and only
if the represented set contains the null value. After removing the ghost
field, this information can be queried by the call this.has(null).

The ghost field elementType is of type \TYPE, which is a type introduced
by JML and represents the kind of all Java types [77]. The field gives an
upper bound on the types of the set-elements, that is, all elements must be a
subtype of elementType. By dropping the field, the information about this
upper bound is lost. However, this does not change the main characteristics
of the model class that we are interested in.

To focus on the main ideas of our approach, we decided not to han-
dle methods that referred to non-primitive types other than Object and
JMLObjectSet. For instance, methods that convert JMLObjectSets to other
model and non-model types, such as Object[]. The handling of these kinds
of methods is possible once one has provided mappings for all types that are
mentioned in their signatures.

What remained was 17 methods with method specifications describing
normal behavior, and a large equational theory describing the relations be-
tween the methods.

Division of Specifications. We analyzed the specification of JMLObjectSet
and found that method specifications and the equational theory were highly
redundant. We illustrate this redundancy by method union. The equation
defining the method in the equational theory and the specification of the
method is given in Figure 8.2 and 8.3 on pages 120–121, respectively. It is
easy to see that, after proper substitutions, the two specifications express
the same property.

Thus, we decided to split specifications into two parts: one containing
only the equational theory and the other containing only the method speci-
fications. This allowed us to analyze their relation, discussed in Section 11.2.
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Remark. It is not always the case that the equational theory of a model class
and its method specifications are redundant. For instance, model classes
JMLObjectToObjectRelation and JMLValueValuePair specify the behav-
ior of the class in great majority by method specifications. One could as
well specify a model class mainly or entirely by an equational theory. Thus,
in general, faithfulness should be proven using both the equational theory
and the method specifications together.

11.2 Proving Faithfulness of Mapping

Specifying the Mapping. The next step was to specify the mapping of
the model class and its methods. The resulting mapping of the methods
that we consider in this chapter was shown in Figure 8.3 on page 121.

The mapping of the methods was mostly straightforward, we briefly
mention three non-trivial cases. Method choose yields an arbitrary element
of the set in case it is not empty. Although Isabelle’s set theory has no
equivalent function, the method directly corresponds to Hilbert’s ε-operator,
written as “SOME x. P (x)” in Isabelle, denoting some x for which P (x) is
true, provided one exists [106]. In our case, P simply needs to express set
membership of x as follows: ν(choose) ≡ λ{this. SOME x. x : this}.

Another non-trivial case was the mapping of method remove. As dis-
cussed in Chapter 9, theory HOL/Set does not contain a corresponding func-
tion, thus the method is mapped to term this − (insert elem {}), which
contains 3 function symbols of the target theory.

The handling of equality was rather straightforward. As discussed in
Section 10.4, equality of model-class instances is determined by the equals
method of the class. The method is mapped to the “=” operator, which ex-
presses set equality when applied over instances of α set (see formula (10.3)
on page 154). Since JMLObjectSet represents a set of objects, equality over
the elements of sets means reference equality. Since Isabelle’s “=” operator
on some element of type α corresponds to reference equality of objects, we
simply map Java’s == operator to operator “=” when applied to elements
stored in a JMLObjectSet.

The Universe Predicate. Although HOL/Set is a theory of infinite sets and
model class JMLObjectSet represents a finite set of objects, the universe
predicate can be defined to be the trivial one, because faithfulness1 of the
mapping can be proven without the relativization of quantifiers. This is due
to the fact that both the model class and the data type is equipped with
set comprehension, and that the model class corresponds to a finite set only
because JML syntactically restricts the predicate of set comprehensions to

1In fact, only observational faithfulness can be proven, as discussed below.
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describe a finite set of objects (see page 120). However, this restriction does
not effect the properties of the usual set operations that the class provides.

Consistency Proof. In the next step, we proved consistency of the model
class. That is, we proved that the translation defined by the specified map-
pings yields a standard interpretation to Isabelle’s HOL/Set theory.

We found one inconsistent equation in the equational theory. This equa-
tion intended to describe a relation between method remove and insert as
follows:

s.insert(e1).remove(e2).
equals(e1 == e2 ? s : s.remove(e2).insert(e1))

where s is a JMLObjectSet instance, and e1 and e2 are two objects. The
specification expresses that if e1 and e2 refer to the same object then in-
serting and removing the object into and from set s yields a set equal to s;
otherwise, the order of performing the two operations is interchangeable.

Although this might look correct at first sight, the attempt to formally
prove its correctness reveals that it is incorrect in case s contains e2, and e1
and e2 refer to the same object. In this case, the insertion yields some set
s′ that contains the same objects as s and the remove operation yields some
set s′′ that contains the same objects as s′ except the object referenced by
e2 (and e1). Thus, this set cannot be equal to s.

This problem was directly pointed out by Isabelle via the open goal that
remained after applying the automatic tactic auto on the corresponding
lemma. The open goal was: e2 : s ⇒ False, expressing that the property
does not hold in case s contains e2.

The buggy equation could be easily fixed after the problem was caught
and all specifications of the equational theory and the method specifications
could be proven trivially using the auto tactic of Isabelle. As a consequence,
we proved that the (corrected) specification of the model class is consistent.

In general, the axiomatic JML specifications seem to be more error-
prone than the conservative Isabelle specifications. Therefore, we expect
other model classes to contain similar bugs, which our technique can reveal.

Equational Theory vs. Method Specifications. While it was easy
to notice the large overlap of properties specified by the equational theory
and the method specifications, it was not trivial to see whether they are
equivalent. Thus, after having proved that the specifications are consistent,
we proved their equivalence formally using Isabelle.

The procedure of proving the equivalence was the following. First, we
declared the signatures of symbols in the model theory the same way as
described in Section 9.3.3. Then, when proving that the equational theory
implies the method specifications, we stated axioms based on the equational
theory and generated lemmas based on the method specifications. Finally,
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we attempted to prove the lemmas using the axioms. The other direction
was proved analogously.

We found that the equational theory and the method specifications were
not equivalent, and none of them contained stronger specifications than the
other. That is, while proving either direction, some lemmas could not be
proven without strengthening some of the axioms or adding new ones. Four
additional equations had to be added to the equational theory and one
postcondition had to be strengthened in the method specifications in order
to prove their equivalence. We give an example for both directions.

Example 11.1. The equational theory defines method isEmpty in terms of
method int size, which is excluded from our case study (see Section 11.3).
Therefore, we relied on the two specifications that are marked as redundant
in the equational theory and that mention method isEmpty:

new JMLObjectSet().isEmpty() and !s.insert(e1).isEmpty()

These express that a newly-allocated set is empty and that a set into which
an element is inserted is not empty. These specifications do not imply the
property stated in the postcondition of method isEmpty:2

\result == (\forall Object e. !this.has(e))

That is, isEmpty returns true if and only if the set does not contain any
object. The postcondition could not be proven using the two equations
because those just express properties of isEmpty (after construction and
insertion) while the postcondition gives the definition of isEmpty. Adding
this definition to the equational theory (and thus to the set of axioms used
in the proofs) trivially solved the problem.

Remark. We could not derive the postcondition of method isEmpty from the
equational theory even if the equations over method int size were taken
into account. Therefore, we believe that the definition has to be added to the
equational theory in order to make the theory equivalent with the method
specifications.

Example 11.2. The specification of constructor JMLObjectSet(e) had to
be strengthened because the original postcondition this.has(e) was not
sufficient to prove two specifications from the equational theory, for instance,
the equation that relates the two constructors of the class:

new JMLObjectSet(e1).
equals(new JMLObjectSet().insert(e1))

The weakness of the constructor’s postcondition was again revealed by the
open goal while attempting to prove the above expression, and suggested to
strengthen the postcondition to express that object e is the one and only
object contained by the set after construction:

2The original JML syntax of quantification has been adapted to that of Jml--.
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(\forall Object e1. this.has(e1) <==> (e == e1))

The strengthened postcondition allowed us to prove the two remaining
specifications in the equational theory.

To make sure that the added and strengthened specifications did not
introduce unsoundness, we proved their consistency.

The result of having proved the equivalence of the equational theory and
the method specifications is that one can use one or the other. For instance,
one only needs to consider the method specifications for the faithfulness
proof, while the equational theory can be marked as redundant.

Completeness Proof. As the last step, we proved completeness of the
model class—using the corrected and strengthened specification of class
JMLObjectSet. As noted above, it would have sufficed to prove complete-
ness either against the equational theory or against the method specifica-
tions. Still, in order to gain more experience with our approach, we carried
out the proof against both of them.

There were two non-trivial issues with the translation of Isabelle def-
initions to the model theory. The main issue was that many of the defi-
nitions in Isabelle’s HOL/Set theory use set comprehension (see Figure 8.4
on page 124). Set comprehension can be expressed in JML only by the
“implicit” constructor of JMLObjectSet, introduced in Section 8.2.1.

The JML Reference Manual [77] does not give a concrete definition for
the semantics of the construct, thus we used the meaning that Isabelle de-
fines via the axioms of theory HOL/Set. This (1) ensured that we did not
introduce unsoundness (provided that Isabelle’s axiom is sound), and (2)
gave a connection between mathematical set comprehension and the meth-
ods of JMLObjectSet since the Isabelle axiom refers to set membership,
which corresponds to the has method of the model class.

The other issue with the translation concerned method choose. Recall
that the method is mapped to the Hilbert-operator, with a specific predi-
cate expressing set membership. However, no definition or axiom uses the
operator with that particular predicate and, as we have seen in Example 9.5,
it might lead to unsoundness if we only proved consistency of the method’s
specification.

Therefore, we translated Isabelle’s introduction rule for the operator
P (x)⇒ P (SOME y. P (y)) with the appropriate predicate, resulting in the
proof obligation:

∀ this, x. ĥas(this, x)⇒ ĥas(this, ĉhoose(this))

After having resolved these two issues, the Isabelle definitions could be
easily translated to the model theory of the class.
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The corresponding lemmas could be proven both by the corrected and
strengthened equational theory and by the strengthened method specifica-
tions. This means that JMLObjectSet’s specification indeed captures the
elementary properties of sets.

Most proofs were trivially discharged by giving hints to Isabelle’s auto
and simp tactics which axioms to use. When giving such hints, a first
approximation is typically to include all axioms that refer to the function
symbols that appear in a given proof obligation. However, this might make
the tactics loop, requiring one to remove some of the axioms. To decide
which ones to remove, one needs to analyze the proof obligation to see
which properties may not be needed to complete the proof.

11.3 Mismatching Methods and Functions

Finally, we mention cases where the model class and the Isabelle structure
cannot be related to each other.

As one can see in Figure 8.3 on page 121, there is no mapped to clause
attached to method int size, which yields the number of elements the set
contains. The method cannot be mapped to any term in the target theory
since the theory does not define set cardinality and it cannot be expressed by
the combination of other functions either. This is because theory HOL/Set
represents infinite sets.

As discussed in Section 10.1, this mismatch means that our approach can
neither guarantee consistency of specifications that mention the method nor
that the semantic meaning of the method is indeed set cardinality. Thus, a
better choice would be to map the model class to Isabelle’s HOL/Finite Set
theory, which provides the corresponding function, card.

Not surprisingly, due to the higher-order nature of the theory to which
the class was mapped, there were definitions that could not be mapped back
to the model class. An example is function image which takes a function f
and a set A as parameters, and yields the image of A under f. The model
class does not provide such functionality and it cannot be expressed by other
methods of the class. As discussed in Section 10.1, this means that at most
observational faithfulness can be shown between the model class and the
structure, which is sufficient for the use of the mapping during verification.
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Chapter 12

Handling Inductive
Structures

Many theorem provers allow one to introduce data types and sets inductively.
For instance, data type list is typically introduced inductively by two type
constructors: Nil, which creates the empty list; and Cons e ls, which creates
a list by adding element e to list ls. The set of natural numbers nat is defined
inductively by two introduction rules: 0 belongs to the set; and, if n belongs
to the set then Suc n belongs to the set, too.

Inductive definitions are natural to write and convenient to use because
behind the scenes, theorem provers automatically generate proper defini-
tions, which ensure that the introduction of the data type is a conservative
extension [93]. Furthermore, numerous theorems are derived from the defi-
nitions available for the user and for the tactics [20, 93, 19].

As explained in Section 9.3.3, when proving completeness, all definitions
and axioms of the mathematical structure have to be translated to the con-
text of the corresponding model class, and have to be proved using the
specification of the model class. The set of definitions and axioms should
also include those that are implicitly generated for inductive structures by
the theorem prover. However, the correctness of the implicit definitions and
axioms follows from meta-theoretical results [93, 19] and are typically not
derivable from the specification of the model class.

For instance, in Isabelle new functions are introduced and axiomatized
for every inductive data type [19, 18]. These functions and axioms allow
the automatic derivation of essential theorems, for instance, the induction
principle. However, these implicit axioms are impossible to derive from the
specification of model classes, since the functions that Isabelle implicitly
introduces do not even exist in the model classes.

Furthermore, the most important implicitly derived theorems are not
deducible from model-class specifications. Consider the induction principle
for data type list, which states that for every property P the following holds:
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(P Nil ∧ (∀xs, x. P xs⇒ P (Cons x xs)) ) ⇔ ∀xs. P xs

The induction principle cannot be expressed in Jml--, which is based on
first-order logic and, thus, does not allow one to quantify over predicate P .
Therefore, the principle cannot be directly derived from model-class speci-
fications.

These problems indicate that the technique presented in Section 9.3 to
show completeness is not sufficient to handle inductively defined types, be-
cause the proof would always fail for the implicitly generated definitions and
axioms. In this chapter, we address this problem in two steps:

1. We capture the characteristic properties of inductive structures from
which all implicitly generated definitions and axioms follow.

2. We pose proof obligations and constraints on specified mappings to en-
sure that the characteristic properties carry over to the corresponding
model class.

The proof obligations are to be proven beside those prescribed by the
technique presented in Chapter 9. In fact, these additional proof obligations
can be seen as implicit axiom obligations that stem from the inductive nature
of the target structure.

In the sequel, we focus on the handling of inductive data types. Inductive
sets can be handled in a similar manner.

Model Class JMLObjectSequence. Throughout this chapter, we will
demonstrate our handling of inductive data types by the mapping of model
class JMLObjectSequence to Isabelle’s inductive data type (α)list, which
is defined in the HOL/List theory. The mapping of the class and a num-
ber of methods is presented in Figure 12.1. Note that the parameterless
constructor and method insertFront are specified to be constructing.

The class is specified by an equational theory and method specifications.
Figure 12.1 presents an example equation and a method specification. Other
specifications and the implementations of methods are omitted.

Proving the faithfulness of the specified mapping is to be performed the
same way as described in Chapter 9. In the sequel, we only focus on the
additional obligations that one has to prove for the model class due to the
inductively defined target structure, (α)list. The proofs of the additional
obligations are available online [136].

Characteristic Properties

In the sequel, we only consider non-nested, non-mutually-recursive type def-
initions, which are sufficient to cover the mapping of many practically useful
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mapped_to("Isabelle", "HOL/List", "α list");
immutable pure model class JMLObjectSequence {

invariant (\forall JMLObjectSequence s2. s2 != null ==>
(\forall Object e1. (\forall Object e2.
equational_theory(this, s2, e1, e2))));

static pure boolean

equational_theory(JMLObjectSequence s, JMLObjectSequence s2,
nullable Object e1, nullable Object e2)

ensures \result <==> s.insertFront(e1).concat(s2).equals(
s.concat(s2).insertFront(e1));

mapped_to("Isabelle", "Nil");
constructing

JMLObjectSequence();

mapped_to("Isabelle", "Cons e Nil");
JMLObjectSequence(nullable Object e);

mapped_to("Isabelle", "nth this i");
nullable Object itemAt(int i);

mapped_to("Isabelle", "size this");
int int_size();

mapped_to("Isabelle", "elem mem this");
boolean has(nullable Object elem);

mapped_to("Isabelle", "this = obj");
boolean equals(Object obj);

mapped_to("Isabelle", "null this");
boolean isEmpty()
ensures \result == (int_size() == 0);

mapped_to("Isabelle", "Cons item this");
constructing

JMLObjectSequence insertFront(nullable Object item);

mapped_to("Isabelle", "this @ s2");
JMLObjectSequence concat(JMLObjectSequence s2);

// other specifications and methods omitted
}

Figure 12.1: Mapping and equational theory of JMLObjectSequence
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model classes, in particular, they cover all model classes of the JML model
library. An extension to nested, mutually-recursive definitions is possible
by posing more complex proof obligations than the ones presented in this
chapter.

The general form of a non-nested, non-mutually-recursive inductive data-
type definition is [93]:

(α1, . . . , αn)rty ::= C1 ty
1
1 . . . tyk1

1 | . . . | Cm ty1
m . . . tykm

m (12.1)

which defines type (α1, . . . , αn)rty with n type variables α1, . . . , αn where
n ≥ 0. The type has m constructors C1, . . ., Cm where m ≥ 1. Each
constructor Ci takes ki arguments where ki ≥ 0, and type expression tyj

i for
1 ≤ j ≤ ki either does not contain rty (i.e., is non-nested) or is equal to
(α1, . . . , αn)rty (i.e., is recursive).

For example, the formal definition of type list is typically given as
(α)list ::= Nil | Cons α (α)list, where Nil takes no argument, the
first argument of Cons is non-nested, and the second is recursive.

The data type defined in the form of (12.1) denotes the minimal set of all
values that can be finitely generated using the constructors C1, . . ., Cm, where
the constructors possess the so-called freeness properties: each constructor
is injective, and two different constructors yield distinct values [93].

In the sequel, we show how the minimality of the denoted set and the
freeness properties can be enforced on a model class.

Minimal Set of Finitely Constructable Values. Given an inductively
defined data type S, we know that all values of the type are finitely con-
structable by the constructors of S. To make sure that this property also
holds for model class M that is mapped to S, we require that there is a
direct correspondence between the methods that are mentioned in the uni-
verse predicate of M and the constructors of S. More specifically, if method
n is marked as constructing and the method takes one implicit and k
explicit parameters, then we require that for all t, x1, . . . , xk:
(1) ΦM (t.n(x1, . . . , xk)) yields an application of Ci for some 1 ≤ i ≤ m; and
(2) ΦS(ΦM (t.n(x1, . . . , xk))) = n̂(t, x1, . . . , xk).

Note that the requirement ensures that the “reverse” translation of type
constructors is standard.

Example 12.1. The above requirement holds for both operations of class
JMLObjectSequence that are marked as constructing. For instance, for
method insertFront we have:

ΦM (t.insertFront(x)) ≡ Cons x t

ΦS(ΦM (t.insertFront(x))) ≡ ̂insertFront(t, x)
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Note, however, that the requirement does not hold for the constructor
that takes one argument, because the second condition does not hold:

ΦS(ΦM (JMLObjectSequence(x))) ≡
̂insertFront( ̂JMLObjectSequence(), x)

Therefore, this (redundant) constructor may not be marked. As one
would expect, the inductively defined universe predicate UcM looks as follows:

UcM (x) , êquals(x, ̂JMLObjectSequence()) ∨
(∃ s, e. UcM (s) ∧ êquals(x, ̂insertFront(s, e)))

(12.2)

Note that we do not require that every constructor of the data type
is mapped to. That is, the data type might contain values that do not
have counterparts in the model class—more precisely, in the set of values
defined by the universe predicate. This apparent mismatch does not lead
to unsoundness, because the properties that are implicitly derived from an
inductive definition hold even if values constructable by some of the type
constructors are never actually encountered.

Similarly, we do not require that all constructable model instances can be
constructed by one of the methods that form the universe predicate. That
is, the model class might contain instances that do not have counterparts
in the data type. Again, this mismatch does not lead to unsoundness, be-
cause (1) the universe predicate determines the set of model instances over
which the translation is defined, and (2) proof obligation (9.6) on page 147
ensures that model fields take values only from the defined universe of the
corresponding model class.

No Loops Requirement. Despite our attempt to make a close relationship
between the universe predicate and the type constructors, we cannot yet
guarantee that the construction of every model instance denoted by the uni-
verse predicate is finite. In order to ensure that, we need to prove a property
for the model class that corresponds to the so-called no loops property of
inductive types. Namely, for every non-empty sequence of nested type-
constructor applications and value s of the data type, the following holds:

s 6= Ci(. . . , Cj(. . . , s, . . .), . . .) (12.3)

Note that the term on the right-hand side of the inequality is an arbitrary
sequence of constructor applications. Thus, proving the property directly for
model classes would lead to an infinite set of proof obligations. Therefore,
we identify some measure µ in the data type for which the following three
properties hold.
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First, any two values of the type with different measures are distinct:

∀ s1, s2. µ(s1) 6= µ(s2) ⇒ s1 6= s2 (12.4)

Second, for every constructor Ci that has at least one recursive argument,
an application of the constructor increases the measure. For simplicity, the
property is formally given for a constructor with one recursive and one non-
recursive argument:

∀ s, e. µ(s) < µ(Ci(s, e)) (12.5)

By a simple inductive argument on the number of constructor applica-
tions on the right-hand side of (12.3), one can trivially show that these two
properties together imply the absence of loops.

Third, the measure must be such that it can be unconditionally trans-
lated to the context of the model class. That is, translation function ΦS

must be applicable on the measure for all arguments it may take. This re-
quirement is necessary to make sure that the translation of properties (12.4)
and (12.5) is standard.

Given a measure that fulfills these three properties, the no loops prop-
erty has to be proven by stating proof obligations in the model theory that
correspond to the ΦS-translation of properties (12.4) and (12.5).

Example 12.2. In data type (α)list (and in every other inductively defined
data type in Isabelle [107]), a proper measure is function size, which yields
the size of a given list. It can be trivially proven that properties (12.4) and
(12.5) hold for the function, and, according to the specified mappings in
Figure 12.1, the function directly maps back to method int size of class
JMLObjectSequence.

The proof obligations stemming from the instantiation and translation
of properties (12.4) and (12.5) are the following, respectively:

∀ s1, s2. UcM (s1)⇒ UcM (s2)⇒
̂int size(s1) 6= ̂int size(s2) ⇒ ¬êquals(s1, s2)

∀ s, e. UcM (s)⇒ ̂int size(s) < ̂int size( ̂insertFront(s, e))

Note that there is only one proof obligation that corresponds to property
(12.5), because Nil and the corresponding parameterless model constructor
do not take recursive arguments.

In our case study, both proof obligations were proven by auto that we
provided with hints on which axioms of the model theory to use.
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Given the no loops requirement and the requirements that ensure the
close correspondence of universe predicates and type constructors, we have
achieved our first main goal: the translation between the model class and the
data type is defined over model instances that have a one-to-one correspon-
dence to values that can be finitely constructed by the type constructors.
The finiteness of the construction and the absence of values not constructable
by type constructors (so-called junk elements) is guaranteed for the model
class by the inductive nature of the universe predicate and the no loops re-
quirement.

It remains to show that the freeness properties of type constructors carry
over to the model class.

Injectivity of Constructors. For a type defined in the form of (12.1),
the property expresses that for every constructor Ci and their parameters,
the following holds:

Ci x
1
i . . . xki

i = Ci y
1
i . . . yki

i ⇔ x1
i = y1

i ∧ . . . ∧ xki
i = yki

i

The property can be enforced on model classes by instantiating the for-
mula for each type constructor that participates in the translation, and
by translating the resulting formula instances by function ΦS . Finally, the
translated formulas have to be stated as lemmas in and proven by the model
theory.

Example 12.3. When proving the property for class JMLObjectSequence,
we need to consider the injectivity of the two constructors of type (α)list.
Proving the injectivity property associated with Nil is trivial since the type
constructor does not take any parameter. Since the corresponding construc-
tor JMLObjectSequence() does not take parameters either and is assumed
to be deterministic, the property also trivially holds for the constructor.

The property for Cons is the following:

∀ s1, s2, e1, e2. Cons e1 s1 = Cons e2 s2 ⇔ e1 = e2 ∧ s1 = s2

The translation of the formula yields the proof obligation:

∀ s1, s2, e1, e2. UcM (s1)⇒ UcM (s2)⇒
( êquals( ̂insertFront(s1, e1), ̂insertFront(s2, e2)) ⇔
e1 = e2 ∧ êquals(s1, s2) )

The proof obligation was discharged by giving hints to the auto tactic
on which axioms of the model theory to use, by a quantifier instantiation,
and by a case split.
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Distinctness of Constructors. For a type defined in the form of (12.1),
the property expresses that for every pair of constructors Ci and Cj , where
i 6= j, and for all parameters of Ci and Cj , the following holds:

Ci x
1
i . . . xki

i 6= Cj y
1
j . . . y

kj

j

The property can be enforced on model classes by instantiating the for-
mula for each pair of constructors that participate in the mapping. The
translation and proof method of the formula instances is the same as for
injectivity.

Example 12.4. Type (α)list has two constructors, thus it has only one
distinctness property: for every list s and element e, Nil 6= Cons e s holds.
The ΦS-translation of the formula yields the proof obligation:

∀ s, e. UcM (s)⇒ ¬ êquals( ̂JMLObjectSequence(), ̂insertFront(s, e))

The proof obligation was discharged by giving hints to the auto tactic
on which axioms of the model theory to use.

Guideline. As mentioned earlier, if the source and the target universes do
not match and the universe predicate is defined inductively, then faithfulness
proofs become rather difficult.

The situation is even worse when the target structure is inductively de-
fined: according to the requirement on the relationship between the universe
predicate and the type constructors (see page 168), the universe predicate
cannot be defined to be the trivial one, even if the source and the target
universes match. This leads to superfluous proof efforts.

Therefore, we define conditions, which guarantee that the universe of the
model class and the related structure match. If the conditions hold, then the
universe predicate can be defined to be true, otherwise it has to be defined
as before.

The conditions are the following: (1) every type constructor Ci is related
to a constructor of the model class such that the requirement presented on
page 168 holds; and (2) every other constructor of the model class, if any,
is redundant: it yields values that can be constructed by the constructors
that are related to type constructors. The latter condition is to be proven
by proof obligations of the form of formula (9.4) presented on page 142.

Example 12.5. For model class JMLObjectSequence, the universe predi-
cate can be considered to be true if (1) its interface is modified such that
method insertFront is turned into a constructor, and (2) one can prove the
following formula for the “redundant” constructor JMLObjectSequence(e):
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∀x1, y1, y2. x1 = y2 ∧ êquals(y1, ̂JMLObjectSequence()) ⇒
êquals( ̂JMLObjectSequence(x1), ̂JMLObjectSequence(y1, y2))

where term ̂JMLObjectSequence(y1, y2) corresponds to a call to the construc-
tor that replaces method insertFront.

Note that proving the above formula is significantly simpler than, for in-
stance, proving the function symbol obligation with universe predicate (12.2)
given on page 169.

The Fruit of Our Labor. The additional requirements and proof obligations
presented in this chapter allow us to map model classes to inductively defined
types in a sound way, that is, without the danger of endowing the class with
properties that it does not actually possess.

In fact, properties of inductively defined types (in particular, the in-
duction principle) may be added to the model theory after the additional
requirements and proof obligations have been shown for the model class.
These properties may assist in accomplishing the rest of the completeness
proof.

Note that adding, for instance, the induction principle to the model
theory makes the theory stronger than the specification of the model class.
This might seem undesired, however, the model theory is only used for the
completeness proof, and the theory that is used for the consistency proof
and eventually for the verification of client code is the target theory S, which
does contain the induction principle.



174 CHAPTER 12. HANDLING INDUCTIVE STRUCTURES



Chapter 13

Related Work

Theory Interpretation. The interpretation of first-order theories is a well-
established technique and has been described in several textbooks on math-
ematical logic. The technique has already been used for formal program
development. For instance, Levy applied theory interpretation to formally
show the correctness of compiler implementations [88]. Ergo, the theorem
prover of the Cogito system [104] applies theory interpretation to maximize
theory reuse [57]. A concrete instance of the interpretation in Ergo is the
development of real numbers by Shield et al. [124].

We are not aware of applications of the theory in the realm of one- and
two-tiered specification languages.

Theorem-Prover Specific Symbols. The idea of using function symbols that
are understood by the back-end theorem prover directly on the specifica-
tion level was already present in ESC/Java [47]. The special specification
construct \dttfsa (Damn The Torpedos, Full Speed Ahead! ) allows users
to apply function symbols that are defined directly in Simplify, the theorem
prover of ESC/Java. While the construct is a powerful means for specifica-
tion, one has to be careful with its usage since the meaning of the symbols
are hidden on the specification level. In particular, the verification system
does not give support for showing that the definitions are consistent.

Similarly, for specification and verification purposes, the Caduceus tool
[44] allows one to declare types and predicates as well as to define or axioma-
tize these predicates on the source level. One can also define “hybrid” pred-
icates, predicates that refer both to elements of the program and elements
of these specification-only types and predicates. Definitions of predicates
can also be postponed on the source level and given directly in Coq, the
back-end prover of the tool. This concept eases the task of specifying and
verifying programs since, for instance, it prevents the use of method calls in
specifications and leads to definitions that are more suitable for provers than
JML specifications. Case studies demonstrate the power of this approach

175



176 CHAPTER 13. RELATED WORK

[45, 64]. The drawback of the approach is the absence of a consistency proof
for definitions and axioms given on the source or prover level [90]. This
might lead to soundness issues.

Model Classes. Schoeller introduces model classes to Eiffel as a solution
for writing more complete and abstract contracts [121]. He roughly sketches
the idea of the faithful mapping of model classes to mathematical structures,
however, no formal or semi-formal details are given on how one would prove
faithfulness.

Schoeller et al. developed a model library for Eiffel [123, 122]. They
address the faithfulness issue by equipping methods of model classes with
specifications that directly correspond to axioms and theorems taken from
mathematical textbooks. A shortcoming of this approach is that the result-
ing model library has to follow exactly the structure of the mimicked theory.
This limits the design decisions one can make when composing the model li-
brary and it is unclear how one can support multiple theorem provers. Our
approach allows more flexibility in the construction of model classes and
libraries by using mapped to clauses that can go beyond direct mappings
since arbitrary terms of the target context can be specified. In turn, our
approach requires one to prove faithfulness of the mapping.

Charles [29] proposes the introduction of the native keyword to JML in
the context of work on the program verifier Jack [26]. The keyword can be
attached to methods with a similar meaning to ESC/Java’s \dttfsa con-
struct: methods marked as native introduce uninterpreted function sym-
bols, and their definitions can be directly given on the level of Coq, the
back-end prover of Jack. Charles carries the idea over to model classes: the
native keyword may also be attached to types with the meaning that such
types get mapped to corresponding Coq data types.

This approach differs from ours in two ways. First, our approach ensures
faithfulness of the mapping. There is no attempt to do so in the work of
Charles. Second, the mapped to clause we propose in this thesis allows one
to specify the mapping on the specification language level. Furthermore,
properties of model classes are specified in JML, which typically provides
easier understanding (for programmers) of the semantics than definitions
given directly on the level of a theorem prover.

Leavens et al. [76] identify the problem of specifying model classes as a
research challenge. They propose four possible solution approaches and sum-
marize the open problems for each of them. The first and second solution ap-
proaches advocate the use of equational theories and method specifications,
respectively. The issues regarding the verification of the implementations of
model-class methods are highlighted for both approaches. These issues are
not considered in this thesis since our approach focuses on the consistency
and completeness of the specification of model classes.

The third solution of Leavens et al. considers automatic translations be-
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tween model classes and mathematical structures, and the authors argue why
such translations are difficult. We deal with these problems by specifying
the mapping manually and proving faithfulness of the mapping. One of the
problems mentioned by Leavens et al. is how to deal with model class speci-
fications that invoke methods of the program, in particular, Object.equals.
As discussed in Section 10.4, handling equality of elements can be solved by
the duplication of target theories. The fourth solution approach of Leavens
et al. is similar to the work by Schoeller and Charles, discussed above.

Runtime Approaches. There is a large body of work on the runtime dis-
covery and checking of algebraic specifications. We give an incomplete list
of references and refer the reader to [60] for a more detailed account on
previous work. Sankar [119], Antoy and Hamlet [5], and Nunes et al. [108]
developed systems that allow one to test the implementation of algebraic
data types against their implementations. Henkel and Diwan [60, 61] de-
veloped an approach for the discovery of algebraic specifications as well as
for their debugging. These approaches are orthogonal to ours. First, they
inspect the relation between the specification and implementation of data
types. Our approach inspects the relation between the specifications of two
mathematical structures. Second, the listed approaches are dynamic, that
is, based on executions of the inspected data types. Thus, these approaches
cannot guarantee that the result of the specification discovery and checking
is sound. Our approach is based on static verification techniques.
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Chapter 14

Conclusion

We conclude the thesis with a brief summary of the main contributions and
a brief discussion of areas where the presented techniques could be further
improved.

14.1 Contributions

Abstraction techniques are not only indispensable in state-of-the-art pro-
gramming languages, but also in state-of-the-art specification languages.
Abstraction techniques used in specification languages facilitate information
hiding as well as the readability and maintainability of specifications.

This thesis focused on two commonly used means of abstraction: pure
methods and model classes. Although the use of these means were well-
understood for the purpose of specification, there was little support for their
sound translation to theorem provers, which is crucial for the verification of
programs.

Pure Methods. The contribution of our work on the encoding and ax-
iomatization of pure methods is two-fold:

First, we demonstrated that the state changes pure methods potentially
make are observable in specification expressions. Therefore, encodings of
pure methods either have to model such state changes explicitly or have to
find ways to make them non-observable.

We sketched the formal details of an encoding with explicit modeling of
state changes, and argued that such an encoding is impractical for program
verification. Therefore, we proposed a more practical encoding that han-
dles weakly-pure methods as if they were strongly pure. We argued for the
correctness of the encoding by performing a rigorous analysis of the conse-
quences of omitting heap changes for the small, but expressive specification
language Jml--.
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Second, we proposed a technique for the axiomatization of pure-method
specifications. The technique applies existing approaches for checking sat-
isfiability, well-definedness, and well-foundedness of specifications, as well
as for handling dependencies between specification elements. However, to
the best of our knowledge, our approach is the first one that puts all these
approaches together to yield a satisfying solution for a one-tiered object-
oriented specification language.

The feasibility of the technique was demonstrated by an implementation
in the Spec# verification system. The implementation required practical
considerations in order to work with a fully automated back-end theorem
prover.

Model Classes. Our contribution is a technique that allows one to for-
mally prove that the specified mapping of a model class to a mathematical
structure is semantically faithful. The technique is based on the theory
of theory interpretation and takes the specifications of model classes into
account.

The mapping of model classes to existing theories of theorem provers
is not a novel idea of ours. However, previous approaches did not take
specifications into account, thereby, did not ensure that there was a semantic
relationship between the mapped entities. Therefore, such approaches could
not guarantee that the specified and the actually verified properties indeed
corresponded to each other.

Our approach leads to better specifications for model classes by ensuring
their (relative) consistency and completeness. The identification and check-
ing of redundant specifications further improves the quality of the specifica-
tions.

The usefulness of the approach was demonstrated by a case study on two
of the most basic model classes of the JML library. In one of the two model
classes, the case study revealed an incorrect specification and identified a
precise relation between the equational theory and the method specifica-
tions of the model class.

The techniques developed both for the handling of pure methods and for
the mapping of model classes are independent of the specific specification
language and theorem prover to which they are applied. Therefore, the
techniques can be readily adapted by program provers that build upon state-
of-the-art specification languages and theorem provers, such as Eiffel, JML,
or Spec#, and Isabelle, PVS, or Coq, respectively.

14.2 Future Work

Theory. The correctness of the simplified encoding function has not been
formally proven in Chapter 4. Such a proof is far from trivial. It requires
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the formalization of two evaluation functions over Jml-- expressions: one
that takes heap changes into account and one that does not. Correctness of
the simplified encoding would be justified if the equivalence of the two eval-
uation functions could be proven under the assumption that the prescribed
restrictions on Jml-- specifications are not violated.

A serious limitation posed by our axiomatization technique is that in-
variants may not contain pure-method calls. A solution to this problem is
highly desirable since the use of method calls in invariants is just as common
and natural as in method specifications.

Further research is needed to see how recursion measures for pure meth-
ods that traverse object structures can be conveniently specified, and how
the well-foundedness of such measures can be proven. Recent research re-
sults on the verification of common data structures may provide hints or
answers.

Our technique for the faithful mapping of model classes could be ex-
tended in different ways. For instance, as mentioned in Chapter 10, the
handling of ghost fields is not worked out in this thesis. Furthermore, our
technique is based on standard translations, which do not allow a method
to be mapped in different ways under different conditions. Such conditional
mappings may be useful in practice, for instance, in Example 8.2 on page 117,
where depending on whether the value of parameter e is null or not, con-
structor JMLObjectSet(e) should be mapped either to the empty set or to
the singleton set, respectively. Such extensions would make our approach
more flexible, thereby capable of covering specification elements that refer
to ghost fields, and to cover model classes with more complex behavior.

Another issue for which this thesis did not give a particularly satisfying
solution is the handling of equality of elements of model classes. A solu-
tion that did not require the duplication of theories would be much more
favorable.

Tools. The implementation of our axiomatization technique in the Spec#
system is rather prototypical. More development efforts should be spent on
it to make it ready for public use.

Future work remains to provide tool support for the technique proposed
for the faithful mapping of model classes. Tools could support the type-
checking of mapped to clauses, the (partial) generation of proof scripts for
the faithfulness proofs, the checking and identification of redundant specifi-
cations, and the actual translation of model-method calls during the static
verification of programs.

Experience. In order to give a fair judgement on the usability and prac-
ticality of the presented techniques, more examples and case studies should
be developed. Our implementation of the pure-method axiomatization tech-
nique has not yet been put to the test by larger examples. Although it works
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well for smaller programs, an extensive case study could reveal the rough
edges of our technique and implementation.

Although we have done case studies on our approach to the faithful map-
ping of model classes, further case studies would be needed (1) to provide a
small but powerful library with model classes whose mapping to a number
of commonly used theorem provers has been proven faithful, and (2) to see if
the approach is necessary to extend, for instance, with conditional mappings.

The field of specification and verification of object-oriented programs has
seen an immense progress in the last two decades. Still, there remains much
research and engineering to be done in the field to provide programmers
with methodologies and tools that adequately support them in developing
correct programs. Our hope is that this thesis brings the field one step closer
to that level.



Appendix A

Interpretation and
Well-definedness of FOL

The three-valued interpretation of first-order terms and formulas is defined
in Figure A.2. The well-definedness conditions that L yields corresponds to
this interpretation.

The interpretation of functions and predicates is strict : an undefined ar-
gument makes their interpretation to be undefined. dom yields the domain
of the interpretation of functions. Predicates are considered to be total on
well-defined arguments. The interpretation of conjunction and disjunction
is according to McCarthy’s semantics (see Section 5.1.2). The interpretation
of quantifiers is strict : they are defined if and only if quantified expressions
are defined for all instantiations.

The definition of operator L over terms and formulas is the following,
where V ar is a variable, f is a function symbol, P is a predicate, ei are
terms, and φ, φ1, and φ2 are formulas.

L(V ar) , true

L(f(e1, . . . , en)) ,
n∧

i=1

L(ei) ∧ δ(f)(e1, . . . , en)

L(P (e1, . . . , en)) ,
n∧

i=1

L(ei)

L(true) , true
L(false) , true
L(¬φ) , L(φ)
L(φ1 ⇒ φ2) , L(φ1) ∧ (φ1 ⇒ L(φ2))
L(φ1 ∧ φ2) , L(φ1) ∧ (φ1 ⇒ L(φ2))
L(φ1 ∨ φ2) , L(φ1) ∧ (¬φ1 ⇒ L(φ2))
L(∀x. φ) , ∀x.L(φ)
L(∃x. φ) , ∀x.L(φ)

Figure A.1: Definition of the L operator over terms and formulas.
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[v ]3Mθ , θ(v) where v is a variable

[ f(t1, . . . , tn) ]3Mθ ,


I(f)([t1]3Mθ, . . . , [tn]3Mθ),

if [t1]3Mθ 6= ⊥, . . . , [tn]3Mθ 6= ⊥ and
〈[t1]3Mθ, . . . , [tn]3Mθ〉 ∈ dom(I(f))

⊥, otherwise

[P (t1, . . . , tn) ]3Mθ ,



true, if [t1]3Mθ 6= ⊥, . . . , [tn]3Mθ 6= ⊥ and
I(P )([t1]3Mθ, . . . , [tn]3Mθ) = true

false, if [t1]3Mθ 6= ⊥, . . . , [tn]3Mθ 6= ⊥ and
I(P )([t1]3Mθ, . . . , [tn]3Mθ) = false

⊥, otherwise
[ true ]3Mθ , true
[ false ]3Mθ , false

[¬ϕ ]3Mθ ,


true, if [ϕ]3Mθ = false
false, if [ϕ]3Mθ = true
⊥, otherwise

[ϕ⇒ φ ]3Mθ ,


true, if [ϕ]3Mθ = [φ]3Mθ = true, or [ϕ]3Mθ = false
false, if [ϕ]3Mθ = true and [φ]3Mθ = false
⊥, otherwise

[ϕ ∧ φ ]3Mθ ,


true, if [ϕ]3Mθ = [φ]3Mθ = true
false, if [ϕ]3Mθ = false or

[ϕ]3Mθ 6= ⊥ and [φ]3Mθ = false
⊥, otherwise

[ϕ ∨ φ ]3Mθ ,


true, if [ϕ]3Mθ = true or

[ϕ]3Mθ 6= ⊥ and [φ]3Mθ = true
false, if [ϕ]3Mθ = [φ]3Mθ = false
⊥, otherwise

[∀x. ϕ ]3Mθ ,


true, if for all l ∈ A, [ϕ]3Mθ[x← l] = true
false, if for all l ∈ A, [ϕ]3Mθ[x← l] 6= ⊥ and there

exists l ∈ A such that[ϕ]3Mθ[x← l] = false
⊥, otherwise

[∃x. ϕ ]3Mθ ,


true, if for all l ∈ A, [ϕ]3Mθ[x← l] 6= ⊥ and there

exists l ∈ A such that[ϕ]3Mθ[x← l] = true
false, if for all l ∈ A, [ϕ]3Mθ[x← l] = false
⊥, otherwise

Figure A.2: McCarthy’s interpretation of FOL terms and formulas.
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Proof of Theorem 5.2

Theorem 5.2. For any Jml-- expression E, and stores OS ′ and OS, the
following equation holds:

Df (E,OS ′,OS ) ≡ L(γ(E,OS ′,OS ))

Proof. The proof runs by induction on the structure of Jml-- expressions.
For the proof, we may assume the induction hypothesis: for every sub-
expression F of E and stores OS′ and OS, the following holds:

Df (F,OS′, OS) ≡ L(γ(F,OS′, OS))

Base case. In the base case, E is some parameter name or literal.
From the definition of Df in Figure 5.2 on page 74, we know that:

Df (E,OS ′,OS ) ≡ true
By the definition of γ in Figure 4.3 on page 50, we get that:
L(γ(E,OS ′,OS )) ≡ L(FOL(E))

From the definition of function FOL in Figure 4.4 on page 51, we can deduce
that parameter names and literals are encoded by variables (e.g., param),
total (constant) function symbols (e.g., null), and symbols true and false.
For all these cases, the definition of L yields true (see Figure A.1). Hence,
L(FOL(E)) ≡ true.

Induction step. We consider the compound expressions of Jml--.

• E is expression F && G.
By definition,

Df (F && G,OS ′,OS ) ≡
Df (F,OS ′,OS ) ∧ (γ(F,OS ′,OS )⇒ Df (G,OS ′,OS )).

By the definition of γ and L, we can deduce that
L(γ(F && G,OS ′,OS )) ≡ L(γ(F,OS ′,OS ) ∧ γ(G,OS ′,OS )) ≡
L(γ(F,OS ′,OS )) ∧ (γ(F,OS ′,OS )⇒ L(γ(G,OS ′,OS )))
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By the induction hypothesis on F and G, we get the desired property.

• The cases of logical operators ||, ==>, and !, as well as the cases of total
operators ==, !=, <, <=, +, -, and * are analogous to the previous case.

• E is expression F ⊗ G, where ⊗ is one of the partial operators / or %.
By definition,

Df (F ⊗G,OS ′,OS ) ≡
Df (F,OS ′,OS ) ∧Df (G,OS ′,OS ) ∧ γ(G,OS ′,OS ) 6= 0.

By the definition of γ, we can derive that
L(γ(F ⊗G,OS ′,OS )) ≡ L(γ(F,OS ′,OS ) FOL(⊗) γ(G,OS ′,OS ))

Operator FOL(⊗) corresponds to the partial function symbol div or mod.
Applying the definition of L with the defined domain restriction δγ in Fig-
ure 5.3 on page 76, we can further deduce that
L(γ(F,OS ′,OS ) FOL(⊗) γ(G,OS ′,OS )) ≡
L(γ(F,OS ′,OS )) ∧ L(γ(G,OS ′,OS )) ∧ γ(G,OS ′,OS ) 6= 0

By the induction hypothesis on F and G, we get the desired property.

• E is expression F.g.
By definition, Df (F.g,OS ′,OS ) ≡ Df (F,OS ′,OS ) ∧ γ(F,OS ′,OS ) 6= null.
By the definition of γ we get that
L(γ(F.g,OS ′,OS )) ≡ L( OS ′(loc(γ(F,OS ′,OS ), g)) )

Applying L on the total lookup function and on the partial loc function with
its defined domain restriction in δγ , we get that
L( OS ′(loc(γ(F,OS ′,OS ), g)) ) ≡ L( loc(γ(F,OS ′,OS ), g) ) ≡
L(γ(F,OS ′,OS )) ∧ L(g) ∧ γ(F,OS ′,OS ) 6= null ≡
L(γ(F,OS ′,OS )) ∧ γ(F,OS ′,OS ) 6= null

By the induction hypothesis on F , we get the desired property .

• E is expression F.m(G). For simplicity m has one formal parameter param.
By definition,

Df (F.m(G),OS ′,OS ) ≡
Df (F,OS ′,OS ) ∧ Df (G,OS ′,OS ) ∧ γ(F,OS ′,OS ) 6= null ∧
Df (preTm[F/this, G/param],OS ′,OS ) ∧
γ(preTm[F/this, G/param],OS ′, )

By the definition of γ on method calls and L with domain restriction δγ on
function applications, we get that
L(γ(F.m(G),OS ′,OS )) ≡
L(m̂(γ(F,OS ′,OS ), γ(G,OS ′,OS ),OS ′)) ≡
L(γ(F,OS ′,OS )) ∧ L(γ(G,OS ′,OS )) ∧ L(OS ′) ∧
γ(F,OS ′,OS ) 6= null ∧ Df (preTm[F/this, G/param],OS ′,OS ) ∧
γ(preTm[F/this, G/param],OS ′, ) ≡
L(γ(F,OS ′,OS )) ∧ L(γ(G,OS ′,OS )) ∧ γ(F,OS ′,OS ) 6= null ∧
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Df (preTm[F/this, G/param],OS ′,OS ) ∧ γ(preTm[F/this, G/param],OS ′, )

By the induction hypothesis on F and G, we get the desired property.

• The case of constructor call new C(F) is analogous to the previous case.

• E is expression \old(F).
By definition, Df (\old(F),OS ′,OS ) ≡ Df (F,OS ,OS ) and

L(γ(\old(F),OS ′,OS )) ≡ L(γ(F,OS ,OS ))
By the induction hypothesis on F with OS = OS ′, we get the property.

• E is expression \fresh(F).
By definition, Df (\fresh(F),OS ′,OS ) ≡ Df (F,OS ′,OS ).
By the definition of γ, we get that
L(γ(\fresh(F),OS ′,OS )) ≡
L( ¬ alive(γ(F,OS ′,OS ),OS ) ∧ γ(F,OS ′,OS ) 6= null )

Applying the definition of L on the conjunct, we get the following after
trivial simplifications:
L(γ(F,OS ′,OS )) ∧ (¬ alive(γ(F,OS ′,OS ),OS ′) ⇒ L(γ(F,OS ′,OS )))

which is equivalent to L(γ(F,OS ′,OS )) as for any proposition A and B
equivalence A ∧ (B ⇒ A) ≡ A holds.
Thus, by the induction hypothesis on F , we get the desired property.

• E is expression (\forall T x. F).
The proof is trivial for quantification over primitive types. We show the
proof for the more complicated case when T is of reference type.
By definition,

Df ((\forall T x. F),OS ′,OS ) ≡
∀ x. allocT (x,OS ′, T ) ⇒ Df (F,OS ′,OS )

By the definition of γ and L, we can deduce that
L(γ((\forall T x. F),OS ′,OS )) ≡
L( ∀ x. allocT (x,OS ′, T ) ⇒ γ(F,OS ′,OS ) ) ≡
∀ x. L( allocT (x,OS ′, T ) ⇒ γ(F,OS ′,OS ) ) ≡
∀ x. L(allocT (x,OS ′, T )) ∧ ( allocT (x,OS ′, T )⇒ L(γ(F,OS ′,OS )) ) ≡
∀ x. allocT (x,OS ′, T ) ⇒ L(γ(F,OS ′,OS ))

By the induction hypothesis on F , we get the desired property.

• E is expression (\exists T x. F).
The proof is analogous to the previous case. Note that γ yields a conjunc-
tion between allocT and the encoding of F for existential quantification
over reference types, while for universal quantification it yields an implica-
tion. Still, the above proof remains the same for existential quantification
as well, because the L operator is defined the same way for conjunction and
implication.
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Appendix C

Proof of Theorem 6.2

Theorem 6.2. If a specification Spec does not contain recursive precondi-
tions and all of the prescribed proof obligations for Spec hold, then Spec is
well-formed, that is, wf (Spec).

We prove a lemma that gives a stronger property than the theorem.
From this lemma we trivially get the theorem by Definition 6.2 on page 82.

Lemma. If a specification Spec does not contain recursive preconditions
and all of the prescribed proof obligations for Spec hold, then there is a
model M such that wf (Spec,M), and such that if [SysInv]3Mθ holds for a
variable assignment θ then (M, θ)Pre holds.

Proof. The proof runs by induction on the order in which specification frag-
ments are added. The order is induced by the traversal of the dependency
graph. For the proof, we may assume the induction hypothesis, that is,
we may assume that the property holds for specification fragments already
processed. Formally, we may assume that, there is a model M such that
wf (Specj−1,M) and such that if [SysInvj−1]3Mθ holds for some θ, then
(M, θ)Prej−1 holds.

Base case. As base case, we need to prove that there is a structure M0 such
that wf (Spec0,M0) and such that if [SysInv0]3M0

θ holds for some θ, then
(M0, θ)Pre0 holds. Since Spec0 , 〈∅, ∅, ∅〉, any structure M0 with interpre-
tation I0 , ∅ is a model for Spec0 and Pre0. Thus, wf (Spec0,M0) and
(M0, θ)Pre0 trivially holds for every θ.

Induction step. In step j, we pick a set of nodes Gj . We need to prove
that there is a structure Mj such that wf (Specj ,Mj), and such that if
[SysInvj ]3Mj

θ holds for some θ, then (Mj , θ)Prej holds. To prove the former,
we need to show that structure Mj fulfills the four criteria presented in
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Section 6.2. To prove the latter, we need to show that structure Mj fulfills
the two properties presented in Definition 5.1 under the assumption that
[SysInvj ]3Mj

θ holds.
To prove these properties, we consider three cases, one for each kind of

set of nodes we might process in a step of the model construction. That is, Gj

may contain: (1) exactly one invariant, (2) exactly one non-recursively spec-
ified function, or (3) a set of recursively specified functions. For the proof, we
may assume that the prescribed proof obligations over the specification frag-
ment of Gj hold in all models. Furthermore, we can assume the induction
hypothesis: there exists some structure Mj−1 such that wf (Specj−1,Mj−1),
and such that if [SysInvj−1]3Mj−1

θ holds for some θ, then (Mj−1, θ)Prej−1

holds.

Case 1. Gj contains exactly one invariant Invl ∈ INV.

In this case we do not process any function symbol, thus in the newly con-
structed structure Mj , the interpretation of function symbols remain the
same as in Mj−1. This means that the model of the previous step is left
unchanged: Mj , Mj−1.

First we prove wf (Specj ,Mj), by showing that Mj has the desired criteria.

Criterion 1. We need to show wd([SysInvj ]3Mj
θ). From the induction

hypothesis (Criterion 1), we know that wd([SysInvj−1]3Mj−1
θ). That is,

SysInvj−1 is well-defined in model Mj−1, and therefore it evaluates either
to true or to false. We proceed by a case distinction.

Case i: [SysInvj−1]3Mj−1
θ evaluates to false.

Since Mj , Mj−1, [SysInvj−1]3Mj
θ evaluates to false, too. Furthermore,

by definition we know that:

SysInvj ≡ SysInvj−1 ∧ (∀ o. alloc(o,OS ) ⇒ Invl) (C.1)

As SysInvj−1 evaluates to false in Mj , SysInvj also evaluates to false in
Mj . Thus, it is well-defined in model Mj : wd([SysInvj ]3Mj

θ).

Case ii: [SysInvj−1]3Mj−1
θ evaluates to true.

From the induction hypothesis, we know that if [SysInvj−1]3Mj−1
θ holds,

then (Mj−1, θ)Prej−1 holds. Thus, we can derive (Mj−1, θ)Prej−1 . Since
Mj , Mj−1 and Prej ≡ Prej−1, we can also derive that (Mj , θ)Prej holds.
This allows us to apply Theorem 5.1 for model Mj to obtain:

[L(SysInvj ,Prej)]2cMj
θ = wd([SysInvj ]

3
Mj
θ)
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Thus, it suffices to show that M̂j is model for L(SysInvj ,Prej). We proceed
in three steps:

1. We derive that for any store OS , M̂j is model for L(SysInvj−1,Prej).
We know that wd([SysInvj−1]3Mj−1

θ) from the induction hypothesis
(Criterion 1). As argued above, (Mj−1, θ)Prej−1 holds and thus we
may apply Theorem 5.1, from which we may conclude that M̂j−1 is
model for L(SysInvj−1,Prej−1). Since Mj , Mj−1, we know that
M̂j ≡ M̂j−1, too. Furthermore, we know that Prej ≡ Prej−1. Thus,
we can deduce that M̂j is a model for L(SysInvj−1,Prej).

2. We derive that for any store OS , M̂j is a model for the formula:

SysInvj−1 ⇒ L(∀ o. alloc(o,OS )⇒ Invl,Prej)

We can assume that proof obligation (6.3) has been proven. Therefore,

(∀ OS . SysInvj−1 ⇒ L(∀ o. alloc(o,OS )⇒ Invl,Prej−1))

is known to hold for any total structure. Thus, M̂j is a model for it.

Since Prej ≡ Prej−1, we get the property we wanted to derive.

3. We put together the results of the first two steps to derive that M̂j is
a model for L(SysInvj ,Prej):

L(SysInvj−1,Prej) ∧
(SysInvj−1 ⇒ L(∀ o. alloc(o,OS )⇒ Invl,Prej)) ≡

L(SysInvj−1 ∧ (∀ o. alloc(o,OS )⇒ Invl),Prej) ≡
L(SysInvj ,Prej)

In the first two steps we have shown that M̂j is a model for the two
conjuncts of the first line.
The second line is derived by the application of L’s definition on con-
junction: L(φ1 ∧ φ2) , L(φ1) ∧ (φ1 ⇒ L(φ2)), with φ1 = SysInvj−1,
φ2 = ∀ o. alloc(o,OS )⇒ Invl, and domain restriction Prej .
The third line is derived by equation (C.1), and concludes that M̂j is
a model for L(SysInvj ,Prej).

This completes Case ii, and the proof of Criterion 1.

Criteria 2, 3, and 4. The three criteria contain [SysInvj ]3Mj
θ as guard-

ing condition. Therefore, if we can show that [SysInvj ]3Mj
θ is stronger than

[SysInvj−1]3Mj−1
θ, then we trivially get the three criteria by Mj , Mj−1,

and by the induction hypothesis (Criteria 2, 3, and 4).
From Criterion 1 we know that wd([SysInvj ]3Mj

θ), and from the induc-
tion hypothesis (Criterion 1) that wd([SysInvj−1]3Mj−1

θ). That is, both
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formulas evaluate to either true or false. From this fact, and equality (C.1)
we can deduce that [SysInvj ]3Mj

θ is stronger than [SysInvj−1]3Mj−1
θ.

This completes the proof of wf (Specj ,Mj) for Case 1.

It remains to prove that if [SysInvj ]3Mj
θ holds for some θ, then (Mj , θ)Prej

holds. We derive this property as follows:

In Case ii for Criterion 1 above, we have already proved that
if [SysInvj−1]3Mj−1

θ holds, then (Mj , θ)Prej holds
As shown above, [SysInvj ]3Mj

θ is stronger than [SysInvj−1]3Mj−1
θ. Thus,

we can derive the property we wanted:
if [SysInvj ]3Mj

θ holds for some θ, then (Mj , θ)Prej holds.

Case 2. Gj contains exactly one non-recursively specified function
fl ∈ F.

We construct structure Mj from Mj−1 by adding an interpretation for func-
tion fl. We define the domain of the interpretation of fl as the set for which
the store satisfies the invariants, and the interpretation of Pre(fl) in Mj−1 is
true. We define the value of the interpretation of function fl to be the value
of witness resV which satisfies the second conjunct of proof obligation (6.5).

First, we prove wf (Specj ,Mj) by showing that structure Mj fulfills the
four desired criteria.

Criterion 1. We need to show wd([SysInvj ]3Mj
θ). From the induction

hypothesis (Criterion 1), we know that wd([SysInvj−1]3Mj−1
θ) holds. Since

INVj ≡ INVj−1, we know that wd([SysInvj ]3Mj−1
θ) holds as well. Fur-

thermore, structure Mj is constructed such that the interpretation of func-
tions on which invariants of INVj depend is left unchanged. Thus, we can
derive that wd([SysInvj ]3Mj

θ) holds.

Criterion 2. We need to show that for each f ∈ Fj , if [SysInvj ]3Mj
θ holds,

and this is allocated and par is alive in store, then wd([Pre(f)]3Mj
θ) holds.

First, we deduce that the criterion holds for all functions in Fj−1 =
Fj \ {fl}. From the induction hypothesis (Criterion 2), we know that for
each f ∈ Fj−1, if [SysInvj−1]3Mj−1

θ holds, then wd([Pre(f)]3Mj−1
θ) holds.

Since INVj ≡ INVj−1, and structure Mj is built from Mj−1 so that the
interpretation of all functions in Fj−1 is left unchanged, we can derive that
[SysInvj ]3Mj

θ = [SysInvj−1]3Mj−1
θ. Furthermore, we know that Prej ≡

Prej−1 ∪ { 〈fl,Pre(fl)〉 }, that is, the domain restrictions of functions in
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Fj−1 did not change. Thus, wd([Pre(f)]3Mj
θ) = wd([Pre(f)]3Mj−1

θ), for
each f ∈ Fj−1. Therefore, the criterion holds in Mj for all functions in
Fj−1.

It remains to show that the criterion holds for function fl. We proceed
by case distinction.

Case i: [SysInvj ]3Mj
θ does not hold. The property trivially holds.

Case ii: [SysInvj ]3Mj
θ holds. We need to prove that wd([Pre(f)]3Mj

θ)
holds, which we do in two steps.

1. We derive wd([Pre(fl)]3Mj
θ) = [L(Pre(fl),Prej−1)]2cMj−1

θ.

Above we have seen that [SysInvj ]3Mj
θ = [SysInvj−1]3Mj−1

θ, thus
we know that [SysInvj−1]3Mj−1

θ holds. By the induction hypothesis,
we know that if [SysInvj−1]3Mj−1

θ holds then (Mj−1, θ)Prej−1 holds.
Thus, we can deduce that (Mj−1, θ)Prej−1 holds. This allows us to
apply Theorem 5.1 and get

[L(Pre(fl),Prej−1)]2cMj−1
θ = wd([Pre(fl)]3Mj−1

θ)

Since the precondition of fl does not contain recursive occurrences,
Pre(fl) does not depend on fl. Consequently:

wd([Pre(fl)]3Mj−1
θ) = wd([Pre(fl)]3Mj

θ)

Putting together the two equalities above, we get the desired property.

2. We show that [L(Pre(fl),Prej−1)]2cMj−1
θ holds.

We can assume that proof obligation (6.4) is proven, and thereby that
the formula holds for any total structure. Thus, M̂j−1 is a model for it.
By the induction hypothesis, we know that wf (Specj−1,Mj−1), from
which we can deduce that Mj−1 |= AxSpecj−1. If partial structure
Mj−1 is a model for AxSpecj−1, then the same holds for its extension:

M̂j−1 |= AxSpecj−1. Thus, by modus ponens with AxSpecj−1 and

formula (6.4), we get that M̂j−1 is a model for:

∀ OS . (SysInvj−1 ⇒
∀ o, p. allocT (o,OS , T ) ∧ alive(p,OS )⇒ L(Pre(fl),Prej−1))

(C.2)

As shown above, [SysInvj−1]3Mj−1
θ holds. As SysInvj−1 holds for

partial structure Mj−1, it also holds for M̂j−1, the total counter-
part of Mj−1. Therefore, [SysInvj−1]2cMj−1

θ holds. From this and

the assumptions on the receiver object and the parameter, we can
deduce from (C.2) that L(Pre(fl),Prej−1) holds in M̂j−1. That is,
[L(Pre(fl),Prej−1)]2cMj−1

θ holds, and that is what we wanted to prove.



194 APPENDIX C. PROOF OF THEOREM 6.2

Putting together the results of these two steps, we can deduce that pred-
icate wd([Pre(fl)]3Mj

θ) holds, which completes Case ii, and the proof of
Criterion 2.

Criterion 3. We need to prove that for each f ∈ Fj , if [SysInvj ]3Mj
θ

holds, and this is allocated and par is alive in store, and [Pre(f)]3Mj
θ

holds, then 〈store, this,par〉 ∈ dom(I(f)) holds.
Since for all f ∈ Fj−1 formula Pre(f) is unchanged, the proof for func-

tions in Fj−1 is analogous to the previous case. For function fl, we get the
criterion from the way Mj is constructed.

Criterion 4. We need to prove that for each f ∈ Fj , if [SysInvj ]3Mj
θ

holds, and this is allocated and par is alive in store, and [Pre(f)]3Mj
θ

holds, then (A) for each result that is alive in store: wd([Post(f)]3Mj
θ′)

holds, and (B) [Post(f)]3Mj
θ holds.

Since for all f ∈ Fj−1 formula Post(f) is unchanged, the proof for
functions in Fj−1 is analogous to that of Criterion 2.

It remains to prove that the criterion holds for fl. We begin by showing
that M̂j−1 and M̂j are models for formula (C.3) below.

We can assume that proof obligation (6.5) has been proven. Thus, we
know that it holds in all total structures, in particular, in M̂j−1. By the
induction hypothesis, we know that wf (Specj−1,Mj−1) holds, from which
we can deduce Mj−1 |= AxSpecj−1. If partial structure Mj−1 is a model for

AxSpecj−1, then the same holds for its extension too: M̂j−1 |= AxSpecj−1.
Thus, by modus ponens on AxSpecj−1 and proof obligation (6.5), we can

derive that M̂j−1 is a model for the formula:

∀ OS , o, p.
(SysInvj−1 ∧ allocT (o,OS , T ) ∧ alive(p,OS ) ∧ Pre(fl))
⇒

( (∀ resV. alive(resV,OS )⇒ L(Post(fl),Prej−1)) ∧
(∃ resV. alive(resV,OS ) ∧Post(fl)) )

(C.3)

Next, we show that M̂j is a model for (C.3). As proof obligation (6.5)
is assumed to be proven, it holds for any total model, in particular, for M̂j .
As seen above, Mj−1 is a model for AxSpecj−1. Since AxSpecj−1 does not
depend on fl, Mj is also a model for it. Thus, as before, by modus ponens,
we can deduce that (C.3) holds in model M̂j .

We prove (A) and (B) separately, and begin with the proof of (A).

We make a case split on the value of [SysInvj−1]3Mj−1
θ:
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Case i: [SysInvj−1]3Mj−1
θ is false. In this case, [SysInvj ]3Mj

θ is also false,
as shown above in the proof of Criterion 2. Thus, the criterion trivially
holds.

Case ii: [SysInvj−1]3Mj−1
θ is true. We proceed in three steps:

1. We derive that [SysInvj−1]2cMj−1
θ and [Pre(fl)]2cMj−1

θ holds.

Since [SysInvj−1]3Mj−1
θ is true, formula SysInvj−1 is well-defined in

model Mj−1, and thus we have

[SysInvj−1]3Mj−1
θ = [SysInvj−1]2cMj−1

θ = true

The criterion only has to hold under the assumption that [Pre(fl)]3Mj
θ

holds, thus we can assume that formula Pre(fl) is well-defined in
model Mj . Thus, we have

[Pre(fl)]3Mj
θ = [Pre(fl)]2cMj

θ = true

Since the precondition of fl does not contain recursive occurrences,
the evaluation of the precondition does not depend on fl. Therefore:

[Pre(fl)]3Mj
θ = [Pre(fl)]3Mj−1

θ = true

This means that Pre(fl) is well-defined in model Mj−1, too. Conse-
quently, [Pre(fl)]2cMj−1

θ holds.

2. We derive that [L(Post(fl),Prej−1)]2cMj−1
θ′ = wd([Post(fl)]3Mj

θ′)

By assumption, [SysInvj−1]3Mj−1
θ is true. Since SysInvj−1 must not

mention resV , [SysInvj−1]3Mj−1
θ′ is true, too. Therefore, we may

apply the induction hypothesis with variables assignment θ′ to derive
that (Mj−1, θ

′)Prej−1 holds. This allows us to apply Theorem 5.1 for
model Mj−1, predicate L(Post(fl),Prej−1) from (C.3), and θ′ to get

[L(Post(fl),Prej−1)]2cMj−1
θ′ = wd([Post(fl)]3Mj−1

θ′).

Since the first conjunct in the consequence of (C.3) holds for all resV ,
in the instantiation of Theorem 5.1 we can use θ′ with any result that
is alive in OS .

Since the postcondition of fl does not contain recursive occurrences,
the well-definedness of the postcondition does not depend on fl. Thus,
we can deduce

wd([Post(fl)]3Mj
θ′) = wd([Post(fl)]3Mj−1

θ′)

From the two equalities above, we get the desired property.

3. We derive (A) using the results of the previous steps and (C.3).
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We have already shown that M̂j−1 is a model for formula (C.3). By
the results of the first step and the assumptions on this and par, we
can deduce that M̂j−1 is also a model for the formula:

∀ OS , o, p. (∀ resV. alive(resV,OS )⇒ L(Post(fl),Prej−1))

From this and the equality derived in the second step, we can deduce
that wd([Post(fl)]3Mj

θ′) holds for every result that is alive in OS .
This is property (A) we wanted to prove.

Next, we prove property (B).

We have seen above that M̂j is a model for formula (C.3). By the assump-
tions of the criterion on [SysInvj ]3Mj

θ, this, par, and [Pre(f)]3Mj
θ, we

deduce from (C.3) that for any OS , o, p, structure M̂j is a model for:
∃ resV. alive(resV,OS ) ∧Post(fl)

For Property (A), we have shown that Post(fl) is well-defined for any re-
sult values in model Mj . Therefore, Mj is also a model for the above
formula. From this and the way we construct the interpretation for fl (i.e.,
picking resV as the value that satisfies the existential quantifier), we get
property (B).

This completes the proof of wf (Specj ,Mj) for Case 2.

It remains to prove that if [SysInvj ]3Mj
θ holds for some θ, then (Mj , θ)Prej

holds. Based on Definition 5.1, we need to prove that the following two
properties hold:

1. if [SysInvj ]3Mj
θ holds, then for each f ∈ Fj , wd([Prej(f)]3Mj

θ) holds.

First, we show that the property holds for all symbols Fj−1 = Fj \ {fl}.
We have shown above that [SysInvj ]3Mj

θ = [SysInvj−1]3Mj−1
θ and

that wd([Pre(f)]3Mj
θ) = wd([Pre(f)]3Mj−1

θ) for each f ∈ Fj−1.
Thus, from the induction hypothesis we can derive that the property
holds for all functions in Fj−1.

It remains to prove the property for function fl: if [SysInvj ]3Mj
θ holds

then wd([Pre(fl)]3Mj
θ). This follows from Criterion 2 we have proven

above.

2. if [SysInvj ]3Mj
θ holds, then for each f ∈ Fj and val1, . . . ,valk ∈

Value, [Prej(f)]3Mθ holds if and only if 〈val1, . . . ,valk〉 ∈ dom(I(f)),
where θ , [v1 → val1, . . . , vk → valk] and {v1, . . . , vk} are the param-
eter names of f .

Analogously to the previous case, it suffices to show that the property
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holds for fl. For function fl, the property directly follows from the
way the interpretation of fl is defined.

Case 3. Gj is a set of recursively specified functions {g1, g2, . . . , gk}.

We construct Mj from Mj−1 by adding interpretations for the functions in
Gj . We build the desired model recursively. We define depth s of the recur-
sion as the set of input vectors (〈store, this,par〉) for which the measure
function is equal to s. We denote the model for which the recursion depth
is smaller than s for functions in Fj−1 ∪ Gj as Ms

j−1. Ms
j−1 is a model for

the following specification:

Specs
j−1 , 〈Prej−1 ∪ {〈gl,Pre(gl) ∧ ‖〈h, o, p〉‖gl

< s〉 | l ∈ 1..k},Postj , INVj〉

Note that the preconditions of the functions in Gj , which act as domain
restrictions, prevent the postconditions of functions in Ms

j−1 from containing
function applications with measures greater or equal to s.

Note also that the sets of processed postconditions and invariants do
not change along the depth of the recursion. Thus, as in the definition of
Specs

j−1 above, we use Postj and INVj to refer to these sets along all
recursion depths. We apply the same convention for SysInvj and Fj . The
first component of Specs

j−1 will be denote by Pres
j−1.

We define model Mj as follows: Mj , M∞
j−1. We prove the existence of

a model Mj such that wf (Specj ,Mj) by showing that for any s there is a
model Ms+1

j−1 such that wf (Specs+1
j−1,M

s+1
j−1). Analogously, we prove that if

[SysInvj ]3Mj
θ holds for some θ, then (Mj , θ)Prej holds by showing that for

any s if [SysInvj ]3Ms+1
j−1

θ holds, then (Ms+1
j−1, θ)

Pres+1
j−1 holds. The proof runs

by (nested) induction on s.

Base case. In the base case s = 0. Since measures are non-negative,
‖h, o, p‖gi < 0 is false for any gi ∈ Gj . Thus, the precondition of gi at
Spec0

j−1, which we use as domain restriction, is always false. Therefore, we
select the following interpretation to extend Mj−1:

I0
j−1 , Ij−1 ∪ {〈gl, ∅〉 | l ∈ 1..k}

This ensures that wf (Spec0
j−1,M

0
j−1) and (M0

j−1, θ)
Pre0

j−1 holds for every θ.

Induction step. For the induction step, we may assume the induction hy-
pothesis: there is a model Ms

j−1 such that wf (Specs
j−1,M

s
j−1) and such

that if [SysInvj ]3Ms
j−1
θ holds for some θ, then (Ms

j−1, θ)
Pres

j−1 holds.
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We construct Ms+1
j−1 from Ms

j−1 by adding interpretations for the func-
tions gi ∈ Gj for depth s. To do so, we first construct a new function g′i
that is only defined for s. Then we merge the interpretation of g′i with the
interpretation of function gi defined in model Ms

j−1 (that is, defined up to
depth s−1). The merged function yields function gi defined in model Ms+1

j−1

(that is, defined up to depth s). The merge can be done since the merged
functions are defined on disjoint domains.

The interpretation of function gi in model Ms+1
j−1 is defined as follows.

The domain of the interpretation is defined to be the domain of the inter-
pretation of gi in model Ms

j−1, extended with the domain of g′i (i.e., the
union of the two domains). The domain of g′i is defined to be the set of
input parameters (〈store, this,par〉) for which (i) the heap satisfies invari-
ants INVj , (ii) the interpretation of Pre(gi) in Ms

j−1 is true, and (iii) the
measure function is equal to s.

We define the value of the interpretation for function gi in Ms+1
j−1 to be

witness resV that satisfies the existential quantifier in proof obligation (6.6).

First we prove wf (Specs+1
j−1,M

s+1
j−1), by showing that structure Ms+1

j−1 fulfills
the four desired criteria.

Criterion 1. We need to show wd([SysInvj ]3Ms+1
j−1

θ). As the set of invari-

ants remains the same, the proof is analogous to the proof of Criterion 1 for
Case 2.

Criterion 2. We need to show that for each f ∈ Fj , if [SysInvj ]3Ms+1
j−1

θ

holds, then wd([Pres+1
j−1(f)]3

Ms+1
j−1

θ) holds.

First, we deduce that the criterion holds for all functions in Fj−1 =
Fj \Gj . The proof is analogous to the corresponding proof of Criterion 2
for Case 2.

It remains to prove that the criterion holds for all functions gi ∈ Gj .
From the way Specs+1

j−1 is constructed, we know for all functions gi ∈ Gj :
Pres+1

j−1(gi) ≡ Pre(gi) ∧ ‖〈h, o, p〉‖gi < s+ 1
Thus, we have to prove that the conjunct is well-defined in structure Ms+1

j−1.
Pre(gi) is required to be non-recursive, thus the proof of wd([Pre(gi)]3Ms+1

j−1

θ)

is analogous to the corresponding proof of Criterion 2 for Case 2.
From wd([Pre(gi)]3Ms+1

j−1

θ) we know that Pre(gi) is well-defined in struc-

ture Ms+1
j−1. Therefore, we can deduce that it evaluates either to true or to

false. We make a case distinction on the evaluation.

Case i: Pre(gi) evaluates to false. In this case, Pres+1
j−1(gi) also evaluates

to false, therefore it is well-defined.
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Case ii: Pre(gi) evaluates to true. In this case, we can apply the induc-
tion hypothesis (Criterion 4) and deduce that the measure function of gi

is well-defined. This follows from the way the dependency graph is built
in the presence of measure functions (see Page 94). Thus, we can deduce
that ‖〈h, o, p〉‖gi is well-defined in structure Ms+1

j−1. Since < and + are total
operators and s is a natural number, we can deduce that ‖〈h, o, p〉‖gi < s+1
is also well-defined. Since both operands of the conjunct are well-defined in
structure Ms+1

j−1, we can conclude that their conjunction is also well-defined
in the structure.

Criterion 3. We need to prove that for each f ∈ Fj , if [SysInvj ]3Ms+1
j−1

θ

holds, and this is allocated and par is alive in store, and [Pres+1
j−1(f)]3

Ms+1
j−1

θ

holds, then 〈store, this,par〉 ∈ dom(I(f)) holds.
For all functions in Fj−1 = Fj \Gj , the proof is analogous to the corre-

sponding proof of Criterion 3 for Case 2. For functions in Gj , we trivially
get the criterion from the way structure Ms+1

j−1 is constructed.

Criterion 4. We need to prove that for each f ∈ Fj , if [SysInvj ]3Ms+1
j−1

θ

and [Pres+1
j−1(f)]3

Ms+1
j−1

θ hold, then (A) for each result that is alive in store:

wd([Post(f)]3
Ms+1

j−1

θ′) holds, and (B) [Post(f)]3
Ms+1

j−1

θ holds.

Since for all f ∈ Fj−1 formula Post(f) is unchanged, the proof is anal-
ogous to the corresponding proof of Criterion 4 for Case 2.

It remains to prove that the criterion holds for functions in Gj . In proof
obligation (6.6), the depth of the recursion is determined by the value of
variable ind. We can assume that the proof obligation holds for all ind.

Let us consider the instantiation for ind = s:

AxSpecj−1 ⇒
∀ OS , o, p.
(SysInvj−1 ∧ allocT (o,OS , T ) ∧ alive(p,OS ) ∧Pre(gi) ∧ ‖〈o, p,OS 〉‖gi=s ∧

(
k∧

l=1

∀ o′, p′. allocT (o′,OS , Tgl
) ∧ alive(p′,OS ) ∧Pre(gl)[o′/o, p′/p] ∧

‖〈o′, p′,OS 〉‖gl
<s⇒ Post(gl)[o′/o, p′/p, gl(o′, p′,OS )/resV ] ) )

⇒
( (∀ resV. alive(resV,OS )⇒

L(Post(gi),Prej−1 ∪ {〈gl,Pre(gl) ∧ ‖〈o, p,OS 〉‖gl
< s〉 | l ∈ 1..k})) ∧

(∃ resV. alive(resV,OS ) ∧Post(gi)) )
(C.4)

The formula holds in all models, in particular, in M̂s
j−1. From the in-

duction hypothesis running over j, we know that AxSpecj−1 holds for the
model. From the induction hypothesis running over s, we know that all
functions gi ∈ Gj are well-formed for recursion depth smaller than s. This
means that Criterion 4 holds for Ms

j−1 for functions gi defined up to depth
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smaller than s. From this we can conclude1 that lines 4 and 5 of the above
formula hold for M̂s

j−1. Furthermore, from the definition of the recursion
depth, we know that conjunct ‖〈h, o, p〉‖gi = s holds in induction step s.
These facts allow us to reduce the above formula to a formula similar in
form to that of (C.3) in the proof of Criterion 4 for Case 2.

We also know that the precondition does not contain recursive occur-
rences. Furthermore, we know that the postcondition does not contain re-
cursive occurrences, since we are constructing a new function g′i. Thus, we
can apply analogous reasoning to what we applied to show Criterion 4 in
Case 2. The only difference in the reasoning is that in this case it is applied
over s and not j. That is, it is applied over the nested induction hypothesis.

This allows us to deduce that Criterion 4 carries over from model Ms
j−1

to model Ms+1
j−1.

This completes the proof of wf (Specs+1
j−1,M

s+1
j−1) as well as the proof of

wf (Specj ,Mj) for the non-nested induction step.

It remains to prove that if [SysInvj ]3Ms+1
j−1

θ holds, then predicate

(Ms+1
j−1, θ)

Pres+1
j−1 holds. We need to prove that the following two properties

hold:

1. if [SysInvj ]3Ms+1
j−1

θ holds then for each f ∈ Fj , wd([Pres+1
j−1(f)]3

Ms+1
j−1

θ)

holds.
Analogously to Case 2, we can derive that the criterion holds for all
functions Fj−1 = Fj \Gj .

It remains to prove that if [SysInvj ]3Ms+1
j−1

θ holds, then for each gi ∈ Gj ,

wd([Pres+1
j−1(gi)]3Ms+1

j−1

θ) holds. This follows from Criterion 2 we have

proven above.

2. if [SysInvj ]3Ms+1
j−1

θ holds then for each function symbol f ∈ Fj and

val1, . . . ,valk ∈ Value, [Pres+1
j−1(f)]3

Ms+1
j−1

θ holds if and only if

〈val1, . . . ,valk〉 ∈ dom(I(f)), where e , [v1 → val1, . . . , vk → valk]
and {v1, . . . , vk} are the parameter names of f .
Analogously to the previous case, it suffices to show that the criterion
holds for all functions gi ∈ Gj . For functions in Gj , the criterion
directly follows from the way the interpretations of the functions are
defined.

1Note that the form of lines 4 and 5 is slightly different than the form of Criterion 4.
However, the two forms are equivalent since SysInvj−1 is present in the antecedent (on
line 3) of proof obligation (C.4).
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Department of Computer Science, Chair of Programming Methodology
Doctoral Student, Research and Teaching Assistant

6/2006 – 9/2006: Microsoft Research, Redmond, WA, USA
Summer Intern at the Group of Programming Languages and Methods

11/2002 – 6/2003: Chalmers University of Technology, Gothenburg, Sweden
Department of Computer Science and Engineering
Research and Teaching Assistant

9/1997 – 7/2002:BudapestUniversity of Technology andEconomics, Hungary
Department of Electrical Engineering and Informatics
Diploma in Technical Informatics

Selected Publications
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