
Efficient Well-Definedness Checking

Ádám Darvas, Farhad Mehta, and Arsenii Rudich

ETH Zurich, Switzerland,
{adam.darvas,farhad.mehta,arsenii.rudich}@inf.ethz.ch

Abstract. Formal specifications often contain partial functions that
may lead to ill-defined terms. A common technique to eliminate ill-
defined terms is to require well-definedness conditions to be proven. The
main advantage of this technique is that it allows us to reason in a two-
valued logic even if the underlying specification language has a three-
valued semantics. Current approaches generate well-definedness condi-
tions that grow exponentially with respect to the input formula. As a
result, many tools prove shorter, but stronger approximations of these
well-definedness conditions instead.
We present a procedure which generates well-definedness conditions that
grow linearly with respect to the input formula. The procedure has been
implemented in the Spec# verification tool. We also present empirical
results that demonstrate the improvements made.

1 Introduction

Formal specifications often allow terms to contain applications of partial func-
tions, such as division x / y or factorial fact(z). However, it is not clear what
value x / y yields if y is 0, or what value fact(z) yields if z is negative. Specifi-
cation languages need to handle ill-defined terms, that is, either have to define
the semantics of partial-function applications whose arguments fall outside their
domains or have to eliminate such applications.

One of the standard approaches to handle ill-defined terms is to define a
three-valued semantics [22] by considering ill-defined terms to have a special
value, undefined, denoted by ⊥. That is, both x / 0 and fact(−5) are considered
to evaluate to ⊥. In order to reason about specifications with a three-valued
semantics, undefinedness is lifted to formulas by extending their denoted truth
values to {true, false,⊥}.

A common technique to reason about specifications with a three-valued se-
mantics is to eliminate ill-defined terms before starting the actual proof. Well-
definedness conditions are generated, whose validity ensures that all formulas at
hand can be evaluated to either true or false. That is, once the well-definedness
conditions have been discharged, ⊥ is guaranteed to never be encountered.

The advantage of the technique is that both the well-definedness conditions
and the actual proof obligations are to be proven in classical two-valued logic,
which is simpler, better understood, more widely used, and has better automated
tool support [30] than three-valued logics.

The technique of eliminating ill-defined terms in specifications by generating
well-definedness conditions is used in several approaches, for instance, B [2],
PVS [13], CVC Lite [6], and ESC/Java2 [21].

Motivation. A drawback of this approach is that well-definedness conditions
can be very large, causing significant time overhead in the proof process. As an
example, consider the following formula:

x / y = c1 ∧ fact(y) = c2 ∧ y > 5 (1)

where x and y are variables, and c1 and c2 are constants. The formula is well-
defined, that is, it always evaluates to either true or false. This can be justified
by a case split on the third conjunct, which is always well-defined:

1. if the third conjunct evaluates to true, then the division and factorial func-
tions are known to be applied within their domains, and thus, the first and
second conjuncts can be evaluated to true or false. This means that the
whole formula can be evaluated to either true or false.

2. if the third conjunct evaluates to false, then the whole formula evaluates to
false (according to the semantics we use in the paper).

The literature [8, 27, 3, 9] proposes the procedureD to generate well-definedness
conditions. The procedure is complete [8, 9], that is, the well-definedness condi-
tion generated from a formula is provable if and only if the formula is well-
defined. Procedure D would generate the following condition for (1):

(y 6= 0 ∧ (y ≥ 0 ∨ (y ≥ 0 ∧ fact(y) 6= c2) ∨ y ≤ 5)) ∨
(y 6= 0 ∧ x/y 6= c1) ∨
((y ≥ 0 ∨ (y ≥ 0 ∧ fact(y) 6= c2) ∨ y ≤ 5) ∧ ¬(fact(y) 6= c2 ∧ y > 5))

As expected, the condition is provable. However, the size of the condition is
striking, given that the original formula contained only three sub-formulas and
two partial-function applications. In fact, procedure D yields well-formedness
conditions that grow exponentially with respect to the input formula. This is a
major problem for tools that have to prove well-definedness of considerably larger
formulas than (1), for instance, the well-definedness conditions for B models, as
presented in [8].

Due to the exponential blow-up of well-definedness conditions, the D proce-
dure is not used in practice [8, 27, 3]. Instead, another procedure L is used, which
generates much smaller conditions with linear growth, but which is incomplete.
That is, the procedure may generate unprovable well-definedness conditions for
well-defined formulas. This is the case with formula (1), for which the procedure
would yield the following unprovable condition:

y 6= 0 ∧ (x/y = c1 ⇒ y ≥ 0)

Incompleteness of the procedure originates from its “sensitivity” to the order
of sub-formulas. For instance, after proper re-ordering of the sub-formulas of
(1), the procedure would yield a provable condition. This may be tedious for
large formulas and may appear unnatural to users who are familiar with logics
in which the order of sub-formulas is irrelevant for proof. Furthermore, there
are situations (for instance, our example in Section 4) where such a manual
re-ordering cannot be done.

Contributions. Our main contribution is a new procedure Y, which unifies the
advantages of D and L, while eliminating their weaknesses. That is, (1) Y yields
well-definedness conditions that grow linearly with respect to the size of the input
formula, and (2) Y is equivalent to D, and therefore complete and insensitive to
the order of sub-formulas. To our knowledge, this is the first procedure that has
both of these two properties.

The definition of the new procedure is very intuitive and straightforward. We
prove that it is equivalent with D in two ways: (1) in a syntactical manner, as
D was derived in [3], and (2) in a semantical way, as D was introduced in [8].

We have implemented the new procedure in the Spec# verification tool [5]
in the context of the well-formedness checking of method specifications [26].
We have compared our procedure with D and L using two automated theorem
provers. The empirical results clearly show that not only the size of generated
well-definedness conditions are significantly smaller than what D produces, but
the time to prove validity of the conditions is also decreased by the use of Y.
Furthermore, our results show that the performance of Y is also better than that
of L in terms of the size of generated conditions.

Outline. The rest of the paper is structured as follows. Section 2 formally defines
procedures D and L, and highlights their main differences. Section 3 presents
our main contribution: the Y procedure and the proof of its equivalence with
D. Section 4 demonstrates the improvements of our approach through empirical
results. We discuss related work in Section 5 and conclude in Section 6.

2 Eliminating Ill-definedness

The main idea behind the technique of eliminating ill-definedness in specifica-
tions is to reduce the three-valued domain to a two-valued domain by ensuring
that ⊥ is never encountered. D is used for this purpose. Hoogewijs introduced
D in the form of the logical connective ∆ in [19], and proposed a first-order
calculus, which includes this connective. Later, D was reformulated as a formula
transformer, for instance, in [8, 3, 9] for the above syntax. D takes a formula φ
and produces another formula D(φ). The interpretation of the formula D(φ) in
two-valued logic is true if and only if the interpretation of φ in three-valued
logic is different from ⊥.

Term ::= V ar
| f(t1, . . . , fn)

Formula ::= P (t1, . . . , tn)
| true | false
| ¬φ
| φ1 ∧ φ2 | φ1 ∨ φ2

| ∀x. φ | ∃x. φ

Fig. 1. Syntax of terms and formulas we consider in this paper.

δ(V ar) , true

δ(f(e1, . . . , en)) , df (e1, . . . , en) ∧
n̂

i=1

δ(ei)

D(P (e1, . . . , en)) ,
n̂

i=1

δ(ei)

D(true) , true

D(false) , true

D(¬φ) , D(φ)

D(φ1 ∧ φ2) , (D(φ1) ∧ D(φ2)) ∨ (D(φ1) ∧ ¬φ1) ∨ (D(φ2) ∧ ¬φ2)

D(φ1 ∨ φ2) , (D(φ1) ∧ D(φ2)) ∨ (D(φ1) ∧ φ1) ∨ (D(φ2) ∧ φ2)

D(∀x. φ) , ∀x.D(φ) ∨ ∃x. (D(φ) ∧ ¬φ)

D(∃x. φ) , ∀x.D(φ) ∨ ∃x. (D(φ) ∧ φ)

Fig. 2. Definition of the δ and D operators as given by Behm et al. [8].

In order to have a basis for formal definitions, we define the syntax of terms
and formulas that we consider in this paper. We follow the standard syntax-
definition given in Figure 1. Throughout the paper we use true, false, and ⊥
to denote the semantic truth values, and true and false to refer to the syntactic
entities.

2.1 Defining the D Operator

The definition of D is given in Figure 2. Operator δ handles terms and D handles
formulas. A variable is always well-defined. Application of function f is well-
defined if and only if f ’s domain restriction df holds and all parameters ei are
well-defined. Each function is associated with a domain restriction, which is a
predicate that represents the domain of the function. Such predicates should
only contain total-function applications. For instance, the domain restriction of
the factorial function is that the parameter is non-negative.

A predicate is well-defined if and only if all parameters are well-defined.
Note that this definition assumes predicates to be total. Although an extension
to partial predicates is straightforward, we use this definition for simplicity and
to have a direct comparison of our approach to [8]. Constants true and false are
always well-defined. Well-definedness of logical connectives is defined according
to Strong Kleene connectives [22]. For instance, as the truth table in Figure 3(a)

∧ true false ⊥
true true false ⊥
false false false false
⊥ ⊥ false ⊥

∧ true false ⊥
true true false ⊥
false false false false
⊥ ⊥ ⊥ ⊥

(a) Strong Kleene (b) McCarthy

Fig. 3. Kleene’s and McCarthy’s interpretation of conjunction.

shows, a conjunction is well-defined if and only if either (1) both conjuncts are
well-defined, or (2) if one of the conjuncts is well-defined and evaluates to false.
Intuitively, in case (1) the classical two-valued evaluation can be applied, while
in case (2) the truth value of the conjunction is false independently of the well-
definedness and value of the other conjunct.

Well-definedness of universal quantification can be thought of as the general-
ization of the well-definedness of conjunction. Disjunction and existential quan-
tification are the duals of conjunction and universal quantification, respectively.
Soundness and completeness of D was proven in [19, 8, 9].

2.2 An Approximation of the D Operator

As mentioned before in Section 1, the problem with the D operator is that it
yields well-definedness conditions that grow exponentially with respect to the size
of the input formula. This problem has been recognized in several approaches,
for instance, in B [3] and PVS [27]. As a consequence, these approaches use a
simpler, but stricter operator L [8, 3] for computing well-definedness conditions.
The definition of L differs from that of D only for the following connectives:1

L(φ1 ∧ φ2) , L(φ1) ∧ (φ1 ⇒ L(φ2))
L(φ1 ∨ φ2) , L(φ1) ∧ (¬φ1 ⇒ L(φ2))

L(∀x. φ) , ∀x.L(φ)
L(∃x. φ) , ∀x.L(φ)

Looking at the definition, we can see that L yields well-definedness conditions
that grow linearly with respect to the input formula. This is a great advantage
over D. However, the L operator is stronger than D, that is, L(φ) ⇒ D(φ) holds,
but D(φ) ⇒ L(φ) does not necessarily hold, as shown for formula (1) in Section
1. This means that we lose completeness with the use of L.

For quantifiers, L requires that the quantified formula is well-defined for
all instantiations of the quantified variable. As a result, a universal quantifica-
tion may be considered ill-defined although an instance is known to evaluate to
false. Similarly, an existential quantification may also be considered ill-defined
although an instance is known to evaluate to true. The D operator takes these
“short-circuits” into account.
1 Although our formula-syntax does not contain implication, we use it below to keep

the intuition behind the definition.

The other source of incompleteness originates from defining conjunction and
disjunction according to McCarthy’s interpretation [24], which evaluates formu-
las sequentially. That is, if the first operand of a connective is ⊥, then the result
is defined to be ⊥, independently of the second operand. The truth table in Fig-
ure 3(b) presents McCarthy’s interpretation of conjunction. The only difference
from Kleene’s interpretation is in the interpretation of ⊥ ∧ false, which yields
⊥. This reveals the most important difference between the two interpretations:
in McCarthy’s interpretation conjunction and disjunction are not commutative.

As a consequence, for instance, φ1 ∧ φ2 may be considered ill-defined, al-
though φ2 ∧ φ1 is considered well-defined. Such cases might come unexpected
to users who are used to classical logic where conjunction and disjunction are
commutative.

In most cases this incompleteness issue can be resolved by manually re-
ordering sub-formulas. However, as pointed out by Rushby et al. [27], the manual
re-ordering of sub-formulas is not an option when specifications are automati-
cally generated from some other representation. Furthermore, Cheng and Jones
[12], and Rushby et al. [27] give examples for which even manual re-ordering
does not help, and well-defined formulas are inevitably rejected by L.

3 An Efficient Equivalent of the D Operator

In this section we present our main contribution: a new procedure Y that yields
considerably smaller well-definedness conditions than D, and that retains com-
pleteness. We prove equivalence of Y and D in two ways: (1) we syntactically
derive the definition of Y, (2) using three-valued interpretation we prove by
induction that the definition of Y is equivalent to that of D. Both proofs demon-
strate the intuitive and simple nature of Y’s definition.

3.1 Syntactical Derivation of Y
We introduce two new formula transformers T and F , and define them as follows:

T (φ) , D(φ) ∧ φ and F(φ) , D(φ) ∧ ¬φ

That is, T (φ) yields true if and only if φ is well-defined and evaluates to true.
Analogously, F(φ) yields true if and only if φ is well-defined and evaluates to
false. From the definitions the following theorem follows.

Theorem 1. D(φ) ⇔ T (φ) ∨ F(φ)
Proof. D(φ) ⇔ D(φ) ∧ (φ ∨ ¬φ) ⇔ (D(φ) ∧ φ) ∨ (D(φ) ∧ ¬φ) ⇔

T (φ) ∨ F(φ) ut

Intuitively, the theorem expresses that formula φ is well-defined if and only if φ
evaluates either to true or to false. This directly corresponds to the interpreta-
tion of D given by Hoogewijs [19].

From the definitions of T and F , the equivalences presented in Figure 4
can be derived. To demonstrate the simplicity of these derivations, we give the
derivation of T (φ1 ∧ φ2) and F(∀x. φ):

T (φ1 ∧ φ2) ⇔ D(φ1 ∧ φ2) ∧ φ1 ∧ φ2 ⇔
((D(φ1) ∧ D(φ2)) ∨ (D(φ1) ∧ ¬φ1) ∨ (D(φ2) ∧ ¬φ2)) ∧ φ1 ∧ φ2 ⇔
D(φ1) ∧ D(φ2) ∧ φ1 ∧ φ2 ⇔ T (φ1) ∧ T (φ2)

F(∀x. φ) ⇔ D(∀x. φ) ∧ ¬∀x. φ ⇔
(∀x. D(φ) ∨ (∃x. (D(φ) ∧ ¬φ))) ∧ ∃x. ¬φ ⇔
∃x. (D(φ) ∧ ¬φ) ⇔ ∃x. F(φ)

The derived equivalences are very intuitive. Both T and F reflect the stan-
dard two-valued interpretation of formulas. For instance, F essentially realizes
de Morgan’s laws. The handling of terms is the same as before using the δ opera-
tor. Note that T and F are mutually recursive in the equivalences. Termination
of the mutual application of the operators is trivially guaranteed: the size of
formulas yields the measure for termination.

The more involved semantic proof of equivalence is presented in the appendix.
The proof, in particular Lemma 4, highlights the intuition behind Y’s definition.

The definition of our new procedure Y, based on Theorem 1, is the following:

Y(φ) , T (φ) ∨ F(φ)

It is easy to see that (1) our procedure begins by duplicating the size of
the input formula φ, and (2) afterwards applies operators T and F that yield
formulas that are linear in size with respect to their input formulas.

That is, overall our procedure yields well-definedness conditions that grow
linearly with respect to the size of the input formula. This is a significant im-
provement over D which yields formulas that are exponential in size with respect
to the input formula. Intuitively, this improvement can be explained as follows:
D makes case distinctions on the well-definedness of sub-formulas at each step
of its application, whereas Y only performs a single initial case distinction on
the validity of the entire formula. In spite of this difference, our procedure is
equivalent to D, thus it is symmetric, as opposed to L.

4 Implementation and Empirical Results

We have implemented a well-formedness checker in the context of the verification
of object-oriented programs. Our implementation extends the Spec# verification
tool [5] by a new module that performs well-definedness and well-foundedness
checks on specifications using the Y procedure. Details of the technique applied
in the well-formedness checker are described in [26].

T (P (e1, .., en)) ⇔ P (e1, .., en) ∧
n̂

i=1

δ(ei)

T (true) ⇔ true
T (false) ⇔ false
T (¬φ) ⇔ F(φ)
T (φ1 ∧ φ2) ⇔ T (φ1) ∧ T (φ2)
T (φ1 ∨ φ2) ⇔ T (φ1) ∨ T (φ2)
T (∀x. φ) ⇔ ∀x. T (φ)
T (∃x. φ) ⇔ ∃x. T (φ)

F(P (e1, .., en)) ⇔ ¬P (e1, .., en) ∧
n̂

i=1

δ(ei)

F(true) ⇔ false
F(false) ⇔ true
F(¬φ) ⇔ T (φ)
F(φ1 ∧ φ2) ⇔ F(φ1) ∨ F(φ2)
F(φ1 ∨ φ2) ⇔ F(φ1) ∧ F(φ2)
F(∀x. φ) ⇔ ∃x. F(φ)
F(∃x. φ) ⇔ ∀x. F(φ)

Fig. 4. Derived equivalences for T and F .

Additionally, in order to be able to compare the different procedures, we
have built a prototype that implements the D, L, and Y procedures for the
syntax given in Figure 1. We used the two automated theorem provers that are
integrated with Spec#: Simplify [15] and Z3 [14], both of which are used by
several other tools as prover back-ends too. The experiment was performed on
a machine with Intel Pentium M (1.86 GHz) and 2 GB RAM.

The benchmark. We have used the following inductively defined formula, which
allowed us to experiment with formula sizes that grow linearly with respect to
n, and which is well-defined for every natural number n:

φ0 , f(x) = x ∨ f(−x) = −x

φn , φn−1 ∧ (f(x + n) = x + n ∨ f(−x− n) = −x− n)

where the definition and domain restriction of f is as follows:

∀x. x ≥ 0 ⇒ f(x) = x and df : x ≥ 0

Note that formula φn is well-defined for any n. However, its well-definedness
cannot be proven using L for any n, and no re-ordering would help this situation.

Empirical results. Figure 5(a) shows that well-definedness conditions generated
by D grow exponentially, whereas conditions generated by L and Y grow linearly.
This was expected from their definitions. Note that the y axis uses a logarithmic
scale. The figure also shows, that the sizes of conditions generated using Y are
smaller than those generated by L for n > 4.

Figure 5(b) compares the time that Simplify (version 1.5.4) required to prove
the well-definedness conditions generated from our input formula. As required
by its interface, these conditions were given to Simplify as plain text. We see
that the time required to prove formulas generated by D grows exponentially,
whereas with Y the required time grows linearly. Note that the y axis uses a
logarithmic scale. Additionally, for D our prototype was not able to generate the
well-definedness condition for input formulas with n > 16 because it ran out of
memory.

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 50 100 150 200 250 300

N
um

be
r

of
 A

ST
 n

od
es

Value of n in input formula

D

L

Y

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 50 100 150 200 250 300T
im

e
to

 p
ro

ve
 u

si
ng

 S
im

pl
if

y
(m

se
c)

Value of n in input formula

D

Y

(a) (b)

 0

 5000

 10000

 15000

 20000

 25000

 0 50 100 150 200 250 300

T
im

e
to

 p
ro

ve
 u

si
ng

 Z
3

(m
se

c)

Value of n in input formula

D

Y

(c)

Fig. 5. (a) Size of well-definedness conditions generated by procedures D, L, and Y;
(b) Time to prove well-definedness conditions using Simplify; (c) Time to prove well-
definedness conditions using Z3.

Figure 5(c) shows the results of the same experiment using Z3 (version 1.2).
Note that the y axis is linear. From this graph we see that although the times
required to prove well-definedness conditions show the same growth pattern for
both procedure D and Y, the times recorded for Y are approximately 1/3 to
1/2 below that of for D. For instance, with n = 200, Z3 proves the condition
generated byD in 9 seconds, while it takes 3.5 seconds for the condition generated
by Y. For n = 300, these figures are 23.5 and 10.5 seconds, respectively. Note that
we could successfully prove much larger well-definedness conditions generated by
D in Z3 as compared to Simplify. This is because (1) we used the native API
of Z3 in order to construct formulas with maximal sharing, and (2) due to the
use of its API, Z3 may have benefited from sub-formula sharing, which could
have made the size of the resulting formula representation linear. In spite of this,
procedure Y performs better than D.

Note that Figure 5(b) and 5(c) do not plot the results of L. This is because
the L procedure cannot prove well-definedness of the input formulas.

Finally, we note that the whole sequence of formulas were passed to a single
session of Simplify or Z3, respectively.

5 Related Work

The handling of partial functions in formal specifications has been studied ex-
tensively and several different approaches have been proposed. Here we only
mention three mainstream approaches and refer the reader for detailed accounts
to Arthan’s paper [4], which classifies different approaches to undefinedness, to
Abrial and Mussat’s paper [3, Section 1.7], and to Hähnle’s survey [18].

Eliminating undefinedness. As mentioned already in the paper, eliminat-
ing undefinedness by the generation of well-definedness conditions is a common
technique to handle partial functions, and is applied in several approaches, such
as B [8, 3], PVS [27], CVC Lite [9], and ESC/Java2 [11]. The two procedures
proposed in these papers are D and L.

PVS combines proving well-definedness conditions with type checking. In
PVS, partial functions are modeled as total functions whose domain is a predi-
cate subtype [27]. This makes the type system undecidable requiring Type Cor-
rectness Conditions to be proven. PVS uses the L operator because D was found
to be inefficient [27].

CVC Lite uses the D procedure for the well-definedness checking of formulas.
Berezin et al. [9] mention that if formulas are represented as DAGs, then the
worst-case size of D(φ) is linear with respect to the size of φ. However, there
are no empirical results presented to confirm any advantages of using the DAG
representation in terms of proving times.

Recent work on ESC/Java2 by Chalin [11] requires proving the well-definedness
of specifications written in the Java Modeling Language (JML) [23]. Chalin uses
the L procedure, however, as opposed to other approaches, not because of inef-
ficiency issues. The L procedure directly captures the semantics of conditional
boolean operators (e.g. && and || in Java) that many programming languages
contain, and which are often used, for instance, in JML specifications. Chalin’s
survey [10] indicates that the use of L is better suited for program verification
than D, since it yields well-definedness conditions that are closer to the expec-
tations of programmers.

Schieder and Broy [28] propose a different approach to the checking of well-
definedness of formulas. They define a formula under a three-valued interpre-
tation to be well-defined if and only if its interpretation yields true both if
⊥ is interpreted as true, and if ⊥ is interpreted as false. Although checking
well-definedness of formulas becomes relatively simple, the interpretation may
be unintuitive for users. For example, formula ⊥∨ ¬⊥ is considered to be well-
defined. We prefer to eliminate such formulas by using classical Kleene logic.

Three-valued logics. Another standard way to handle partial functions is to
fully integrate ill-defined terms into the formal logic by developing a three-valued
logic. This approach is attributed to Kleene [22]. A well-known three-valued logic
is LPF [7, 12] developed by C.B. Jones et al. in the context of VDM [20]. Other
languages that follow this approach include Z [29] and OCL [1].

A well-known drawback of three-valued logics is that they may seem unnatu-
ral to proof engineers. For instance, in LPF, the law of the excluded middle and
the deduction rule (a.k.a. ImpI) do not hold. Furthermore, a second notion of
equality (called “weak equality”) is required to avoid proving, for instance, that
x / 0 = fact(−5) holds. Another major drawback is that there is significantly less
tool support for three-valued logics than there is for two-valued logics.

Underspecification. The approach of underspecification assigns an ill-defined
term a definite, but unknown value from the type of the term [16]. Thus, the
resulting interpretation is two-valued, however, in certain cases the truth value
of formulas cannot be determined due to the unknown values. For instance,
the truth value of x / 0 = fact(−5) is known to be either true or false, but
there is no way to deduce which of the two. However, for instance, x / 0 = x / 0
is trivially provable. This might not be a desired behavior. For instance, the
survey by Chalin [10] argues that this is against the intuition of programmers,
who would rather expect an error to occur in the above case. Underspecification is
applied, for instance, in the Isabelle theorem prover [25], the Larch specification
language [17], and JML [23].

6 Conclusion

A commonly applied technique to handle partial-function applications in formal
specifications is to pose well-definedness conditions, which guarantee that un-
defined terms and formulas are never encountered. This technique allows one
to use two-valued logic to reason about specifications that have a three-valued
semantics. Previous work proposed two procedures, each having some drawback.
The D procedure yields formulas that are too large to be used in practice. The
L procedure is incomplete, resulting in the rejection of well-defined formulas.

In this paper we proposed a new procedure Y, which eliminates these draw-
backs: Y is complete and yields formulas that grow linearly with respect to the
size of the input formula. Approaches that apply the D or L procedures (for in-
stance, B, PVS, and CVC Lite) could benefit from our procedure. The required
implementation overhead would be minimal.

Our procedure has been implemented in the Spec# verification tool to en-
force well-formedness of invariants and method specifications. Additionally, we
implemented a prototype to allow us to compare the new procedure with D and
L. Beyond the expected benefits of shorter well-definedness conditions, our ex-
periments also show that theorem provers need less time to prove the conditions
generated using Y.

Acknowledgments. We would like to thank Peter Müller and the anonymous
reviewers for their helpful comments. This work was funded in part by the In-
formation Society Technologies program of the European Commission, Future
and Emerging Technologies under the IST-2005-015905 MOBIUS project.

References

1. UML 2.0 OCL Specification. Available at http://www.omg.org/docs/formal/

06-05-01.pdf, May 2006.

2. J.-R. Abrial. The B Book: Assigning Programs to Meanings. Cambridge University
Press, 1996.

3. J.-R. Abrial and L. Mussat. On using conditional definitions in formal theories. In
D. Bert, J. P. Bowen, M. C. Henson, and K. Robinson, editors, ZB 2002, volume
2272 of LNCS, pages 242–269. Springer-Verlag, 2002.

4. R. Arthan. Undefinedness in Z: Issues for specification and proof. Presented at
CADE Workshop on Mechanization of Partial Functions, 1996.

5. M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system: An
overview. In CASSIS, volume 3362 of LNCS, pages 49–69. Springer-Verlag, 2005.

6. C. W. Barrett and S. Berezin. CVC Lite: A new implementation of the cooperating
validity checker category B. In R. Alur and D. Peled, editors, CAV, volume 3114
of LNCS, pages 515–518. Springer-Verlag, 2004.

7. H. Barringer, J. H. Cheng, and C. B. Jones. A logic covering undefinedness in
program proofs. Acta Informatica, 21:251–269, 1984.

8. P. Behm, L. Burdy, and J.-M. Meynadier. Well Defined B. In D. Bert, editor,
International B Conference, volume 1393 of LNCS, pages 29–45. Springer-Verlag,
1998.

9. S. Berezin, C. Barrett, I. Shikanian, M. Chechik, A. Gurfinkel, and D. L. Dill. A
practical approach to partial functions in CVC Lite. In Workshop on Pragmatics
of Decision Procedures in Automated Reasoning, 2004.

10. P. Chalin. Are the logical foundations of verifying compiler prototypes matching
user expectations? Formal Aspects of Computing, 19(2):139–158, 2007.

11. P. Chalin. A sound assertion semantics for the dependable systems evolution
verifying compiler. In ICSE, pages 23–33. IEEE Computer Society, 2007.

12. J. H. Cheng and C. B. Jones. On the usability of logics which handle partial
functions. In Refinement Workshop, pages 51–69, 1991.

13. J. Crow, S. Owre, J. Rushby, N. Shankar, and M. Srivas. A tutorial introduction to
PVS. In Workshop on Industrial-Strength Formal Specification Techniques, 1995.

14. L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In C. R. Ra-
makrishnan and J. Rehof, editors, TACAS, volume 4963 of LNCS, pages 337–340.
Springer-Verlag, 2008.

15. D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A theorem prover for program
checking. Technical Report HPL-2003-148, HP Labs, 2003.

16. D. Gries and F. B. Schneider. Avoiding the undefined by underspecification. In
Computer Science Today, volume 1000 of LNCS, pages 366–373. Springer-Verlag,
1995.

17. J. V. Guttag and J. J. Horning. Larch: Languages and Tools for Formal Specifica-
tion. Texts and Monographs in Computer Science. Springer-Verlag, 1993.

18. R. Hähnle. Many-valued logic, partiality, and abstraction in formal specification
languages. Logic Journal of the IGPL, 13(4):415–433, 2005.

19. A. Hoogewijs. On a formalization of the non-definedness notion. Zeitschrift für
Mathematische Logik und Grundlagen der Mathematik, 25:213–217, 1979.

20. C. B. Jones. Systematic software development using VDM. Prentice Hall, 1986.

21. J. R. Kiniry and D. R. Cok. ESC/Java2: Uniting ESC/Java and JML. In CASSIS,
volume 3362 of LNCS, pages 108–128. Springer-Verlag, 2005.

22. S. C. Kleene. On a notation for ordinal numbers. Journal of Symbolic Logic,
3:150–155, 1938.

23. G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of JML: a behavioral
interface specification language for Java. ACM SIGSOFT Software Engineering
Notes, 31(3):1–38, 2006.

24. J. McCarthy. A basis for a mathematical theory of computation. In P. Braffort
and D. Hirschberg, editors, Computer Programming and Formal Systems, pages
33–70. North-Holland, Amsterdam, 1963.

25. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer-Verlag, 2002.

26. A. Rudich, Á. Darvas, and P. Müller. Checking well-formedness of pure-method
specifications. In J. Cuellar and T. Maibaum, editors, Formal Methods (FM),
volume 5014 of LNCS, pages 68–83. Springer-Verlag, 2008.

27. J. Rushby, S. Owre, and N. Shankar. Subtypes for Specifications: Predicate Sub-
typing in PVS. IEEE Transactions on Software Engineering, 24(9):709–720, 1998.

28. B. Schieder and M. Broy. Adapting calculational logic to the undefined. The
Computer Journal, 42(2):73–81, 1999.

29. J. M. Spivey. Understanding Z: a specification language and its formal semantics.
Cambridge University Press, 1988.

30. G. Sutcliffe, C. B. Suttner, and T. Yemenis. The TPTP Problem Library. In
A. Bundy, editor, CADE, volume 814 of LNCS, pages 252–266. Springer-Verlag,
1994.

A Semantic Proof of Equivalence

Structures. We define structures and interpretations in a way similar to as
Behm et al. [8]. Let A be a set that does not contain ⊥. We define A⊥ as
A ∪ {⊥}. Let F be a set of function symbols, and P a set of predicate symbols.
Let I be a mapping from F to the set of functions from An to A⊥, and from P to
the set of predicates from An to {true, false} (for simplicity, we assume that the
interpretation of predicates is total), where n is the arity of the corresponding
function or predicate symbol. We say that M = 〈A, I〉 is a structure for our
language with carrier set A and interpretation I. We call a structure total if
the interpretation of every function f ∈ F is total, which means f(. . .) 6= ⊥. We
call the structure partial otherwise. A partial structure M can be extended to
a total structure M̂ by having functions evaluated outside their domains return
arbitrary values.

Interpretation. For a term t, structure M, and variable assignment e, we
denote the interpretation of t as [t]eM. Variable assignment e maps the free
variables of t to values. We define the interpretation of terms as given in Figure
6. Interpretation of formula ϕ denoted as [ϕ]eM is given in Figure 7. Dom yields
the domain of the interpretation of function symbols.
To check whether or not a value l is defined, we use function wd:

wd(l) =

{
true, if l ∈ {true, false}
false, if l = ⊥

[v]eM , e(v) where v is a variable

[f(t1, . . . , tn)]eM ,

8
><
>:

I(f)([t1]
e
M, . . . , [tn]eM), if 〈[t1]

e
M, . . . , [tn]eM〉 ∈ Dom(I(f))

and [t1]
e
M 6= ⊥, . . . , [tn]eM 6= ⊥

⊥, otherwise

Fig. 6. Interpretation of terms.

Lemma 1. For every total structure M, formula ϕ, and variable assignment e,
we have wd([ϕ]eM) = true.

Proof. By induction over the structure of ϕ. ut

Lemma 2. For every structure M, if M is extended to total structure M̂, then
wd([ϕ]e

M̂
) = true.

Proof. Trivial consequence of the way M is extended and of Lemma 1. ut

Domain restrictions. Each function f is associated with a domain restriction
df , which is a predicate that represents the domain of function f . A structure
M is a model for domain restrictions of functions in F (denoted by dF(M)) if
and only if:

– The domain formulas are defined. That is, for each f ∈ F and for all e:
wd([df]eM) = true

– Domain restrictions characterize the domains of function interpretations for
M. That is, for each f ∈ F and l1, . . . , ln ∈ A:

[df]eM = true if and only if 〈l1, . . . , ln〉 ∈ Dom(I(f))
where e = [v1 → l1, . . . , vn → ln] and {v1, . . . , vk} are f ’s parameter names.

In the following we prove two lemmas and finally our two main theorems.

Lemma 3. For each structure M, term t, and variable assignment e:
if dF(M) then [t]eM 6= ⊥ if and only if [δ(t)]e

M̂
= true.

Proof. By induction on the structure of t under the assumption that dF(M).
Induction base: t is variable v.
Since [v]eM = e(v) 6= ⊥ and [δ(v)]e

M̂
= true, we have the desired property.

Induction step: t is function application f(t1, . . . , tn).
From definition of interpretation we get that [f(t1, . . . , tn)]eM 6= ⊥ if and only if:

〈[t1]eM, . . . , [tn]eM〉 ∈ Dom(I(f)) ∧ [t1]eM 6= ⊥ ∧ . . . ∧ [tn]eM 6= ⊥

By the definition of dF(M) and the induction hypothesis, it is equivalent to:

[df (t1, . . . , tn)]e
M̂

= true ∧ [δ(t1)]eM̂ = true ∧ . . . ∧ [δ(tn)]e
M̂

= true

[true]eM , true

[false]eM , false

[P (t1, . . . , tn)]eM ,

8
>>>>>><
>>>>>>:

true, if I(P)([t1]
e
M, . . . , [tn]eM) = true and

[t1]
e
M 6= ⊥, . . . , [tn]eM 6= ⊥

false, if I(P)([t1]
e
M, . . . , [tn]eM) = false and

[t1]
e
M 6= ⊥, . . . , [tn]eM 6= ⊥

⊥, otherwise

[¬ϕ]eM ,

8
><
>:

true, if [ϕ]eM = false

false, if [ϕ]eM = true

⊥, otherwise

[ϕ ∧ φ]eM ,

8
><
>:

true, if [ϕ]eM = true and [φ]eM = true

false, if [ϕ]eM = false or [φ]eM = false

⊥, otherwise

[ϕ ∨ φ]eM ,

8
><
>:

true, if [ϕ]eM = true or [φ]eM = true

false, if [ϕ]eM = false and [φ]eM = false

⊥, otherwise

[∀x. ϕ]eM ,

8
><
>:

true, if for all l ∈ A, [ϕ]
e[x←l]
M = true

false, if there exists l ∈ A such that[ϕ]
e[x←l]
M = false

⊥, otherwise

[∃x. ϕ]eM ,

8
><
>:

true, if there exists l ∈ A such that[ϕ]
e[x←l]
M = true

false, if for all l ∈ A, [ϕ]
e[x←l]
M = false

⊥, otherwise

Fig. 7. Interpretation of formulas.

which is, by the definition of δ, equivalent to [δ(f(t1, . . . , tn))]e
M̂

= true. ut

Lemma 4. For each structure M, formula ϕ, and variable assignment e:
if dF(M) then [ϕ]eM = true if and only if [T (ϕ)]e

M̂
= true and

[ϕ]eM = false if and only if [F(ϕ)]e
M̂

= true.
Proof. By induction on the structure of ϕ under the assumption that dF(M).
Induction base: ϕ is predicate P (t1, . . . , tn).
From definition of interpretation we get [P (t1, . . . , tn)]eM = true if and only if:

I(P)([t1]eM, . . . , [tn]eM) = true ∧ [t1]eM 6= ⊥ ∧ . . . ∧ [tn]eM 6= ⊥

which is, by the assumption that the interpretation of predicates is total and by
Lemma 3, equivalent to:

[P (t1, . . . , tn)]e
M̂

= true ∧ [δ(t1)]eM̂ = true ∧ . . . ∧ [δ(tn)]e
M̂

= true

which is, by the definition of T , equivalent to [T (P (t1, . . . , tn))]e
M̂

= true.
The proof is analogous for F .
Induction step: For brevity, we only present the proof of those two cases for
which the syntactic derivation was shown on page 7. The proofs are analogous
for all other cases.

1. We prove that if dF(M) then [γ∧φ]eM = true if and only if [T (γ∧φ)]e
M̂

= true.
From definition of interpretation we get that [γ ∧ φ]eM = true if and only if
[γ]eM = true and [φ]eM = true, which is, by the induction hypothesis, equiva-
lent to [T (γ)]e

M̂
= true and [T (φ)]e

M̂
= true, which is, by the definition of T ,

equivalent to [T (γ ∧ φ)]e
M̂

= true.

2. We prove that if dF(M) then [∀x. φ]eM = false iff [F(∀x. φ)]e
M̂

= true.
From the definition of the interpretation function we get that [∀x. φ]eM = false
if and only if there exists l ∈ A such that [φ]e[x←l]

M = false. By the induction
hypothesis, this is equivalent to the existence of l ∈ A such that [F(φ)]e[x←l]

M̂
=

true, which is, by the definition of F , equivalent to [F(∀x. φ)]e
M̂

= true. ut

Theorem 2. For each structure M, formula ϕ, and variable assignment e:
if dF(M) then wd([ϕ]eM) = [Y(ϕ)]e

M̂
Proof. From the definition of wd we know that wd([ϕ]eM) is defined. Further-
more, from Lemma 2 (with ϕ substituted by Y(ϕ)) we know that [Y(ϕ)]e

M̂
is defined. Thus, it is enough to prove that wd([ϕ]eM) = true if and only if
[Y(ϕ)]e

M̂
= true. Under the assumption that dF(M), we have:

wd([ϕ]eM) = true if and only if [by definition of wd]
[ϕ]eM ∈ {true, false} if and only if [by Lemma 4]
[T (ϕ)]e

M̂
= true or [F(ϕ)]e

M̂
= true if and only if [by definition of Y]

[Y(ϕ)]e
M̂

= true ut

Berezin et al. [6] proved the following characteristic property of D:

if dF(M) then wd([ϕ]eM) = [D(ϕ)]e
M̂

(2)

Theorem 3. For each total structure M, formula ϕ, and variable assignment e:
[D(ϕ) ⇔ Y(ϕ)]eM = true

Proof. For each total structure M there exists a partial structure M′ such that
M = M̂′ and dF(M′). We can build M′ from M by restricting the domain of
partial functions according to the domain restrictions.
By Theorem 2 and (2) we get [D(ϕ)]e

M̂′ = wd([ϕ]eM′) = [Y(ϕ)]e
M̂′ . Which is

equivalent to [D(ϕ) ⇔ Y(ϕ)]e
M̂′ = true. Since M = M̂′ we get the desired

property. ut

