
Product Programs in the Wild:
Retrofitting Program Verifiers

to Check Information Flow Security

Marco Eilers, Severin Meier, and Peter Müller

Department of Computer Science, ETH Zurich, Switzerland
marco.eilers@inf.ethz.ch, sev.meier@gmail.com,

peter.mueller@inf.ethz.ch

Abstract. Most existing program verifiers check trace properties such
as functional correctness, but do not support the verification of hyper-
properties, in particular, information flow security. In principle, prod-
uct programs allow one to reduce the verification of hyperproperties to
trace properties and, thus, apply standard verifiers to check them; in
practice, product constructions are usually defined only for simple pro-
gramming languages without features like dynamic method binding or
concurrency and, consequently, cannot be directly applied to verify infor-
mation flow security in a full-fledged language. However, many existing
verifiers encode programs from source languages into simple intermediate
verification languages, which opens up the possibility of constructing a
product program on the intermediate language level, reusing the exist-
ing encoding and drastically reducing the effort required to develop new
verification tools for information flow security.
In this paper, we explore the potential of this approach along three di-
mensions: (1) Soundness: We show that the combination of an encoding
and a product construction that are individually sound can still be un-
sound, and identify a novel condition on the encoding that ensures overall
soundness. (2) Concurrency: We show how sequential product programs
on the intermediate language level can be used to verify information flow
security of concurrent source programs. (3) Performance: We implement
a product construction in Nagini, a Python verifier built upon the Viper
intermediate language, and evaluate it on a number of challenging ex-
amples. We show that the resulting tool offers acceptable performance,
while matching or surpassing existing tools in its combination of language
feature support and expressiveness.

1 Introduction

Since computer programs increasingly handle sensitive user data and commu-
nicate using encryption, it is vital that programs do not leak secret data such
as private keys to attackers, that is, that they are information flow secure. One
way of formalizing information flow security is noninterference, a so-called 2-
hyperproperty, i.e., a property of pairs of executions of the program.

2 Marco Eilers, Severin Meier, and Peter Müller

Noninterference can be checked by type systems [45] and static analyses [23].
However, complex language features (such as concurrency) and noninterference
properties (such as termination sensitivity) generally require the expressiveness
of deductive verification. In recent years, many automated and expressive verifi-
cation tools have been developed for a wide range of programming languages, but
most of these tools are limited to trace properties (properties of single program
traces) and cannot prove hyperproperties such as noninterference.

The problem we address in this paper is how to retrofit existing program
verifiers to check noninterference. Compared to building noninterference veri-
fiers from scratch, which can take years when targeting substantial subsets of
real-world programming languages, this approach would allow us to reuse most
aspects of existing verifiers, such as the semantic representation of language fea-
tures and proof search algorithms. Moreover, it naturally allows one to verify
combinations of correctness and noninterference properties.

In principle, existing program verifiers can be used to verify hyperproperties
by reducing them to trace properties via self-composition [6] or product pro-
grams [4,5]. However, self-composition does not allow modular verification [48],
and product programs have generally been defined only for simple languages
without features like dynamic method binding or concurrency [4, 19]. Applying
product constructions to programs written in complex languages would therefore
require defining and implementing new and complex product constructions for
every new verifier.

We explore a more efficient approach here: We leverage the fact that most au-
tomatic deductive verifiers are organized into a custom frontend, which encodes a
source program into an intermediate verification language (IVL), and a reusable
backend, which verifies the IVL program using generic proof search engines. Boo-
gie [3], Viper [35], and Why3 [22] are examples of such IVLs, which power a large
number of program verifiers; for instance Boogie is used by Dafny [30], VCC [13],
Spec# [31], and GPUVerify [8], Why3 [22] by Frama-C [14] and Krakatoa [21],
and Viper [35] by Vercors [10], Prusti [2], and Nagini [18]. The ubiquitiy of this
architecture offers a chance to retrofit existing verifiers to check noninterference
by performing the product construction on the level of the IVL (an approach
that is already used by SymDiff [28] for the related problem of program equiv-
alence). The resulting architecture, which allows one to reuse both the frontend
and the backend of the existing verifier, is shown in Fig. 1.

Performing the product construction on the IVL-level has three major advan-
tages over a product construction on the source program: (1) It cleanly separates
the encoding of the source language (which tends to be complex for full-fledged
languages) from the product construction. (2) The product construction is much
simpler since IVLs are small, sequential languages. (3) The product construction
can be reused across all verifiers built on the same IVL. Overall, this architecture
therefore has the potential to make existing verifiers information flow aware with
substantially less effort than building a new tool from scratch.

Even though this approach has strong advantages, there are several open
questions that must be addressed to make it useful and widely applicable:

Product Programs in the Wild 3

Frontend

Backend

SMT

Source Errors

Source AST

IVL Product
Error

IVL Product
AST

IVL Errors

(Extendeded)
IVL AST

Product
Transformation

Fig. 1. Proposed architecture for information flow verifiers. The existing encoding from
source to IVL (frontend) as well as the proof search (backend) can be reused. The
product construction needs to support only the (relatively small) IVL and can be
reused across different verifiers.

1. Soundness: Given an IVL encoding and a product construction that are
individually sound, is the resulting combination always sound as well?

2. Concurrency: There is a substantial number of verifiers that verify concurrent
source programs by encoding them into (sequential) IVLs. Can we soundly
verify information flow security of concurrent programs based on the a prod-
uct program of the sequential IVL encoding?

3. Performance: Product constructions cause a performance penalty for veri-
fication. Does this overhead prevent the construction of useful verification
tools in practice?

In this paper, we answer these three questions. We focus our investigation
on modular product programs [19], a kind of product program that allows mod-
ular verification and is well-suited for precise specification and verification of
information flow security. We make the following contributions:

– We show that the combination of sound IVL encodings and sound product
constructions can indeed be unsound in practically-relevant cases. We iden-
tify a novel condition on IVL encodings that ensures the soundness of the
overall workflow. We show how to adjust existing unsound encodings on the
example of a commonly-used encoding for dynamically-bound method calls
(Sec. 3).

– We show for the common case of data race free programs using locks that
it is possible to verify both possibilistic and probabilistic noninterference for
concurrent programs using sequential product programs. Furthermore, we
demonstrate that existing criteria for verifying information flow security are
insufficient in this setting; we provide alternative criteria that are sound and
show how to encode them in a product program (Sec. 4).

– We implement the approach for Nagini [18], an automated, modular verifi-
cation tool for a large subset of Python, built on top of the Viper IVL [35].
We evaluate the performance impact of the product construction and show
that, while worse than a custom-made information flow verifier, performance
is acceptable for real-world use (Sec. 5). Our implementation and evaluation
are available as an artifact [17].

4 Marco Eilers, Severin Meier, and Peter Müller

These results demonstrate that the proposed approach can indeed be used to
retrofit an existing verifier to soundly check information flow security, even for
concurrent programs. The resulting tool, made with only a fraction of the effort
required for the development of a new verifier, can compete with custom-made
tools in its expressiveness at an acceptable performance cost.

2 Preliminaries

In this section, we introduce the necessary background about noninterference
and product programs.

2.1 Noninterference

A common way of formalizing information flow security is noninterference [24].
Informally, noninterference specifies that the secret (or high) inputs of a pro-
gram do not influence the values of its public (or low) outputs. We will not
define a formal semantics here, but just assume that there is a steps-to relation
〈s, σ〉 → 〈s′, σ′〉 that relates program configurations consisting of a store σ and
a statement s.

We formalize noninterference as a property of pairs of program executions
(that is, a 2-hyperproperty [12]) as follows:

Definition 1. A program s with a set of input variables I and output variables
O, of which some subsets Il ⊆ I and Ol ⊆ O are low, satisfies noninterference
iff for all σ1, σ2 and σ′1, σ′2, if ∀x ∈ Il. σ1(x) = σ2(x) and 〈s, σ1〉 →∗ 〈skip, σ′1〉
and 〈s, σ2〉 →∗ 〈skip, σ′2〉 then ∀x ∈ Ol.σ

′
1(x) = σ′2(x).

Note that in this definition (and throughout this paper unless stated other-
wise), we do not consider non-terminating executions, i.e., we focus on verifying
termination-insensitive noninterference.

2.2 Modular Product Programs

Proving hyperproperties requires reasoning about multiple (here, two) execu-
tions of a program. However, hyperproperties can be reduced to properties of a
single execution by using self-composition [6] or product programs [4]. The idea
is to duplicate a program’s state space by creating two renamed copies of all
variables, one for each execution (we write x(i) for the ith renaming of variable
x, and lift this notation to expressions), and to transform each statement so that
it has the effect of the original statement on both copies of the state. Unlike self-
composition, which achieves this effect by simply duplicating every statement,
modular product programs [19] do not duplicate loops and method calls, and in-
stead encode differing control flow through activation variables, which represent,
for each execution, whether or not it is active (i.e., it executes the code) at the
current point in the program. This approach results in a structural alignment

Product Programs in the Wild 5

def bar (z) : . . .

def f oo (x) :
i f x > 0 :

y = 1
e l s e :

y = 2
bar (y > 0)

1 def bar (p1 , p2 , z1 , z2) : . . .
2
3 def f oo (p1 , p2 , x1 , x2) :
4 p1t = p1 and x1 > 0
5 p2t = p2 and x2 > 0
6 p1e = p1 and not (x1 > 0)
7 p2e = p2 and not (x2 > 0)
8 i f p1t : y1 = 1
9 i f p2t : y2 = 1

10 i f p1e : y1 = 2
11 i f p2e : y2 = 2
12 i f p1 or p2 :
13 bar (p1 , p2 , y1 > 0 , y2 > 0)

Fig. 2. A modular product program (on the right) of the program on the left.

of both program executions, which allows one to use method specifications and
loop invariants that relate both executions, as we discuss below. We denote the
product of statement s under activation variables p1 and p2 as JsKp̊.

Fig. 2 shows an example program and the respective product program. For
both functions, the product program duplicates the parameters of the original
function and adds boolean activation variables p1 and p2. Control structures like
conditionals are encoded by creating a set of new activation variables (lines 4-7).
For example, p1t represents whether the first execution is active in the then-
branch of the conditional, which is the case if it was active at the beginning of
the function and the if-condition is true for the first execution. Conversely, p2e
represents whether the second execution is active in the else-branch. Primitive
statements like assignments are then executed under the condition that their
execution is active at the current point in the execution (lines 8-11). Crucially,
the method call to bar is not duplicated; it is executed if at least one execution
is active at the call site, and the values of the current activation variables are
passed to the function, meaning that if an execution is inactive at the call site,
no state changes will be performed for that execution in the called method.

Because a single method call in the product represents the calls from both
executions, one can reason about method calls modularly in terms of relational
specifications, i.e., specifications that relate behavior of two executions of the
method, as opposed to unary specifications that describe only a single execution.
Relational specifications are encoded as ordinary specifications in the product
program that relate parameters from the two different executions.

As an example, assume that bar prints the value of its input z, which must
therefore be low. We can express this as a (relational) precondition low(z), which
can be encoded as the precondition p1 ∧ p2⇒ z1 = z2 in the product of bar.

Events the attacker can observe (such as I/O) must not happen depending on
a secret, to avoid leaking secret data. It is, thus, useful to express in specifications
that the control flow at the current program point is low, i.e., whether the current
statement is executed does not depend on secret data. This property is denoted in
specifications as lowEvent. We generally write dP ep̊ for the encoding of assertion
P under activation variables p1 and p2; dlowEventep̊ is then defined as p1 = p2.

6 Marco Eilers, Severin Meier, and Peter Müller

A unary (that is, non-relational) predicate Q, such as a standard method
pre- or postcondition, is encoded in the product program as applying to each
active execution, i.e., dQep̊ is defined as p1⇒ Q(1) ∧ p2⇒ Q(2).

Compared to type systems and taint analyses, verification based on product
programs allows for much more precise reasoning. Assume for example that foo’s
parameter x is high. Nonetheless, we can show that the example does not leak
information, since the precondition of bar, low(z), will always be fulfilled (y > 0
is true independently of the value of x). In contrast, security type systems would
flag y as high, since it is assigned to under a high guard, leading to imprecision.

In addition to ordinary noninterference, modular product programs can also
be used to encode more advanced security properties, including termination-
sensitive noninterference, value-dependent sensitivity [36], and a form of declas-
sification [19].

3 Sound Products of IVL Encodings

In this section, we address the first question from the introduction, namely,
whether we can soundly combine an existing encoding into an IVL with a product
construction. We first describe the proposed architecture in greater detail. Then
we show a potential soundness issue and define a sufficient criterion on the IVL
encoding for the entire approach to be sound. Finally, we discuss an example of
a common encoding pattern that violates the criterion, show that it is indeed
unsound, and propose an alternative sound encoding.

3.1 Proposed Architecture

The architecture proposed in the introduction (Fig. 1) enables the construction of
information flow aware verifiers with relatively little effort, by reusing most of the
frontend encoding of the source language to an IVL as well as the entire backend
proof search. The only major change that is necessary is that the frontend and
potentially the IVL have to be extended to allow for the use of information flow
assertions in specifications. Crucially, the frontend does not have to know their
meaning; it can treat relational source-level assertions like low(e) like ordinary
unary predicates and simply translate them to their counterparts on the IVL
level. IVL-level relational assertions will then be translated to ordinary assertions
during the product transformation.

In the remainder of this paper, we will generally assume that the existing
IVL encoding is used unchanged, and point out when changes need to be made.

3.2 Soundness Issue

Surprisingly, combining a sound encoding from source language to IVL with
a sound IVL-level product construction may result in a verification technique
that is unsound in the presence of relational specifications. Consider the source
program in Fig. 3 (left), where P is some predicate.

Product Programs in the Wild 7

def f oo (x) :
i f x > 7 :

y = 5
e l s e :

y = 7
a s s e r t P(y)

def f oo (x) :
a s s e r t x > 7 ? P(5) : P(7)

Fig. 3. Example of an encoding that is unsound in our setting. The program on the left
can be encoded into a conditional statement (identical to the source program, modulo
language syntax) or to the program on the right; the latter leads to unsoundness if P
is a relational predicate.

A frontend could encode the body of foo into an identical (modulo syntax)
conditional statement on the IVL level (assuming the IVL provides conditionals,
assignments, and assert statements). Alternatively, it could produce the encoding
shown in Fig. 3 (right), which directly asserts a sufficient precondition of the
source program. If P is a unary predicate, both encodings are sound: If they
verify, the original program is correct. However, if P(y) is a relational predicate,
for instance, low(y), then the encoding on the right is unsound: low(5) and low(7)
are trivially true (since 5 = 5 and 7 = 7), so the assertion in the encoded program
trivially passes, yet the original program is clearly incorrect: If x is greater than
7 in one execution but less in the other, y will have different values in both
executions, and will therefore not be low.

The underlying reason is that the encoding on the right does not encode
the exact behavior of the source program; it encodes a verification condition
computed by the frontend that is sound if assertions are unary, but may not be
sound for relational assertions.

We will now (1) formalize this intuition and derive a sufficient condition for
the soundness of an encoding in this approach, and (2) show an example of this
problem occurring in real frontends, and describe how it can be solved.

3.3 Soundness Criterion

We write Σ and S for states and statements of the source language, and σ and s
for states and statements of the IVL. States may contain, for example, a mutable
heap and a variable store. For simplicity, we assume that both source and IVL
statements contain a statement skip that represents a finished computation. We
also assume that there is a small-step transition relation → for both languages,
and that the standard notion of Hoare triple validity � {P}s{Q} is defined for
the IVL. We let P and Q range over (source and IVL level) assertions from a
standard assertion language extended with low(e) and lowEvent, and assume a
standard definition of assertion validity for pairs of states.

We define an encoding to be a triple 〈α,∼=, β〉, where α : S → s is an encoding
from source statements to statements of the target language (i.e., the IVL), β
similarly encodes assertions to the target language, and∼= relates source language
states to corresponding target language states.

8 Marco Eilers, Severin Meier, and Peter Müller

We first define the desired relational soundness property, which expresses
that if an encoded Hoare triple holds for the encoded program, then the original
property holds for all pairs of executions of the source program:

Definition 2. 〈α,∼=, β〉 is relationally sound iff, for all S,Σ1, Σ2, Σ
′
1, Σ

′
2, P,Q,

if � {dβ(P)ep̊}Jα(S)Kp̊{dβ(Q)ep̊} and Σ1, Σ2 � P and 〈S,Σ1〉 →∗ 〈skip, Σ′1〉
and 〈S,Σ2〉 →∗ 〈skip, Σ′2〉, then Σ′1, Σ′2 � Q.

Product programs represent the operational behavior of two program execu-
tions by the operational behavior of a single product program execution. The
unsoundness shown before is caused by the fact that the encoding into the IVL
does not reflect the operational behavior of the conditional statement (replacing
it by an assertion of a sufficient precondition) and, thus, the resulting product
does not soundly reflect two executions of the source program.

We call an encoding that preserves the operational behavior of the source
program operational: It encodes every step of the source program into some
number of steps of the target program so that c initial states result in matching
end states. Similarly, it encodes specifications from the source level into target-
level specifications that hold in matching states. We can formalize this intuition
by requiring that the source and target programs are connected by the simulation
relation ∼=:

Definition 3. 〈α,∼=, β〉 is an operational encoding if: (1) for all Σ,Σ′, σ, S, S′,
if 〈S,Σ〉 → 〈S′, Σ′〉 and Σ ∼= σ, then 〈α(S), σ〉 →∗ 〈α(S′), σ′〉 for some σ′ s.t.
Σ′ ∼= σ′, and (2) if Σ ∼= σ then Σ � P iff σ � β(P).

Note that this notion allows the encoding to overapproximate the behaviors
of the source program, i.e., admit steps that are not possible on the source level,
but not vice versa.

For the example in Fig. 3, it is easy to see that this criterion is fulfilled by
the left encoding: the source and IVL programs are identical (modulo syntax),
matching states are identical states (modulo state encodings), and the behavior
of both programs is identical. The encoding on the right, however, is not op-
erational: While the left program modifies the state, the right program never
performs any state modification.

We now show that operationality is sufficient for relational soundness:

Theorem 1. If 〈α,∼=, β〉 is operational then it is relationally sound.

Note that operationality is a sufficient but not necessary condition; encodings of
verification conditions may be sound for relational verification as well. The main
advantage of applying the operationality criterion instead of directly reasoning
about relational soundness is that, since operationality represents the simple
notion that the IVL program performs equivalent steps and equivalent state
changes to the source program, it is intuitive and easy to check whether a given
encoding is operational. Additionally, some encodings (like the one Vercors uses
for parallel blocks) are not operational, but can be seen as simplified versions of
a possible operational encoding that generate the same proof obligations; these
can also be quickly identified as relationally sound.

Product Programs in the Wild 9

3.4 Practical Relevance

In most existing frontends, the encoding of virtually all source language con-
structs is operational; the main appeal of IVLs is, after all, that frontends do
not have to compute verification conditions, but can instead “compile” input pro-
grams into an IVL without worrying about the verification process itself. How-
ever, many frontends still use non-operational encodings at least for some lan-
guage constructs. Examples for this are VCC’s encoding of local blocks, Dafny’s
encoding of calls on traits, Prusti’s encoding for loops, and Nagini’s encoding
of dynamically-bound calls, which we will discuss in detail in the next subsec-
tion. Additionally, as we will discuss in Sec. 4, all encodings of concurrent source
languages into sequential IVLs necessarily have some non-operational elements.

Where non-operational encodings are used, this is often intentional to enable
modular verification, since operational encodings for some language constructs
are inherently non-modular (see the example in the next subsection). In prac-
tice, one can therefore use the operationality criterion to quickly check that the
existing encoding is sound for the vast majority of source language statements,
and subsequently check the few remaining ones for relational soundness in detail.

3.5 Example: Dynamically-Bound Calls

In this section, we show a real example of an unsound encoding of dynamically-
bound calls that violates the operationality criterion, and show how to derive a
sound alternative.

Statically-bound method calls, i.e., calls whose exact target is fixed at com-
pile time, can be encoded as procedure calls on the IVL level, which yields an
operational encoding if the operational semantics of the IVL treats calls analo-
gously to the source semantics. The IVL verifier might later reason about calls in
terms of pre- and postconditions instead of actually performing a call, but this
transformation is not relevant here as long as the product program is constructed
before such a desugaring step.

However, the same approach does not work for dynamically-bound calls,
i.e., calls whose target is chosen at runtime based on the type of the call’s
receiver. Since the implementation to be executed is generally not known during
modular verification, it is not possible to encode dynamically-bound calls as
procedure calls with the usual operational semantics (and existing IVLs do not
offer dynamically-bound calls). Therefore, dynamically-bound calls are typically
(e.g., in Dafny and Nagini) directly encoded using the method specification.
Additional, separate proof obligations enforce that all overrides of a method
respect behavioral subtyping [34], i.e., live up to the specification of the overridden
method.

Consider method A.foo in Fig. 4 (left), which returns a constant integer
and guarantees in its postcondition that the result is low. A dynamically-bound
call a.foo(), where a has the static type A, will be encoded as an assertion
of the (here, trivial) precondition of A.foo, followed by an assumption of the
postcondition (we ignore side effects here for simplicity).

10 Marco Eilers, Severin Meier, and Peter Müller

c l a s s A:
def f oo (s e l f) −> i n t :

e n s u r e s low (r e s u l t)
r e t u r n 0

c l a s s B(A) :
def f oo (s e l f) −> i n t :

e n s u r e s low (r e s u l t)
r e t u r n 1

Fig. 4. Example of a problematic method override. B.foo overrides A.foo and has a
compatible specification, but the implementations return different values.

This encoding is sound if foo has a purely unary specification, without any
relational parts. However, it does not fulfill our operationality criterion: The
semantics of the source program performs a call to an implementation of foo
(selected based on the dynamic type of a), whereas the IVL encoding directly
encodes the proof obligations (similarly to the example from Fig. 3).

Since the encoding is not operational, we have to check whether it is still
relationally sound. Method B.foo in Fig. 4 (right), which overrides A.foo, shows
that it is not. B.foo’s contract is identical with that of A.foo, so behavioral
subtyping holds trivially. B.foo’s implementation satisfies the contract because
it also returns a constant (but, importantly, a different one). Now, if a client
calls a.foo() and, depending on a secret, the dynamic type of a is either A or B,
then, depending on the secret, the result will be either 0 or 1. With the standard
encoding of dynamically-bound calls outlined above, however, the client will
assume the postcondition of A.foo and will therefore incorrectly conclude that
the returned result is low.

To avoid this unsoundness while retaining the ability to use relational specifi-
cations1, the problematic encoding must be replaced, either with an operational
one, or with a different non-operational encoding that is sound for relational
specifications. The former option is not applicable here: An operational encod-
ing for dynamically-bound calls would essentially have to case split on the dy-
namic type of the receiver and invoke the appropriate override. Since such an
encoding is inherently non-modular (all possible overrides need to be known),
we follow the alternative option: we give an example of a non-operational, but
sound encoding.

For our new encoding we exploit the fact that the standard encoding is
unsound only if the two executions of the program resolve the dynamically-
bound call to two different implementations, that is, if the dynamic types of the
receiver differ in the two executions. We reflect this observation by adjusting
the encoding of pre- and postconditions as follows: (1) If the postcondition of
a method guarantees that an expression is low, we assume this at the call site
only if the dynamic type of the receiver is also low, that is, the calls in the two
program executions are resolved to the same implementation. (2) Similarly, if a
precondition requires that the call is a low event, we enforce that the receiver
type is low in addition to the usual criterion for low events. Low events typically
perform observable behavior such as I/O; it is therefore important that the same
1 One could, of course, forbid the use of relational specifications in some places to
trivially avoid the unsoundness; this, however, is typically not useful in practice.

Product Programs in the Wild 11

observable behavior is produced, independent of the receiver type. The meaning
of low-assertions in preconditions remains unchanged, because the requirement of
a method to receive low arguments is independent of the invoked implementation
and must, thus, not be weakened. lowEvent-assertions are generally not allowed
in postconditions, where they add no expressiveness.

We encode this adjustment as follows:

dlow(e)ep̊postr
= (p(1) = p(2) ∧ type(r(1)) = type(r(2)))⇒ e(1) = e(2)

dlowEventep̊prer
= p(1) = p(2) ∧ type(r(1)) = type(r(2))

where type(e) represents the dynamic type of expression e, dP ep̊postr
is the encod-

ing of P in the postcondition of a call with receiver r, and dP ep̊prer
represents the

same for the precondition. We leave the remaining encoding untouched, meaning
that we can summarize the resulting encoding as follows:

1. We keep the existing check for behavioral subtyping for all overrides; this
prevents, for example, that A.foo is overridden with a method that simply
returns a secret value and therefore leaks information into the result.

2. We keep the existing encoding of dynamically-bound calls as an assert fol-
lowed by an assume, but interpret low(e) in preconditions and lowEvent in
postconditions as shown above.

In the example above, this encoding lets the caller assume that the result is
low only if it can prove that the dynamic type of a is low.

The adjusted encoding is indeed sound:

Theorem 2. Let Sc be of the form x:=r.m(), where r has static type A, and
let preA.m and postA.m be the pre- and postcondition of A.m. Assume that the
implementation of A.m and its overrides fulfill their specifications and satisfy
behavioral subtyping. Then the described encoding of Sc is relationally sound.

Note that this encoding is incomplete, since it is not aware that two different
receiver types can lead to the same implementation being called (e.g., if one type
inherits from the second and does not override the called method). Alternative
encodings could explicitly represent this possibility. Conversely, one could ap-
proximate further (while remaining sound) by requiring the receiver values to
be low, not just their types, in encodings that do not model dynamic types.

4 Product Programs and Concurrency

Automated verification of information flow security for concurrent programs is
challenging because one needs to reason about a pair of executions that may have
different thread interleavings. In fact, we are aware of only one tool that currently
allows this, SecC, which automates SecCSL, a concurrent separation logic for
information flow security proofs [20]. A product construction applied directly
to concurrent programs would have to faithfully represent all combinations of

12 Marco Eilers, Severin Meier, and Peter Müller

potential thread interleavings, which makes verification infeasible. Consequently,
to the best of our knowledge, no such product construction exists.

For trace properties, many existing verifiers avoid reasoning about all possible
thread interleaving by employing a program logic (such as concurrent separation
logic [38]) that essentially reduces verification to sequential reasoning and allows
concurrent verification problems to be encoded into sequential IVLs. Examples
for such verifiers include Vercors and Nagini (using the Viper IVL), as well as
Chalice [33], VCC, and Spec# (using the Boogie IVL).

In this section, we show how to use IVL-level product programs to extend
such verifiers to handle information flow. We first describe how existing IVL
encodings for concurrent languages work, and subsequently show how we can
use similar principles to apply an IVL-based product construction, and which
additional proof obligations we must fulfill to ensure that no flows exist as a
result of concurrency. We will do this for two different notions of information
flow security for concurrent programs, possibilistic and probabilistic noninterfer-
ence; however, the principles behind the approach may also extend to alternative
notions of information flow security such as observational determinism [49].

Our goal is to describe a technique that applies to a wide range of source
languages, IVLs, proof techniques, and encodings. Therefore, we focus on the
high-level concepts, instead of formalizing them for one specific setting.

4.1 Concurrent IVL Encodings

Since all IVLs we are aware of are sequential languages, encodings from concur-
rent source languages to IVLs do not model the exact behavior of the original
language, in particular, the aforementioned thread interleavings (i.e., these en-
codings are non-operational). Instead, they encode a verification condition that
ensures that the original program is correct for every possible thread interleaving.

While the exact proof techniques differ between frontends, and can be based
for example on Concurrent Separation Logic (CSL) [38] or ownership [13,25,27],
they generally follow a common pattern [32]: They prove that the source program
is data race free, which ensures that thread interactions need to be considered
only at well-defined synchronization points, for instance, upon acquiring or re-
leasing a lock. The code between such interaction points can be considered to
execute without interference from other threads, and thus can be reasoned about
as if it were sequential.

We focus on locks here, but other synchronization primitives are handled
analogously. Program logics based on CSL or ownership systems formally connect
a lock and the heap locations it protects, such that these locations may be
accessed only while holding the respective lock. In addition, they associate locks
with an invariant that constrains the values of the heap locations it protects.
When acquiring a lock, a thread may assume that this lock invariant holds,
and when releasing a lock, it has to prove that the invariant is reestablished. A
frontend can encode this into an IVL as depicted in Fig. 5.

Our solution for information flow verification in concurrent programs follows
the same basic approach: We exploit that code between lock operations can

Product Programs in the Wild 13

enc(l . acquire ()) = // gain access to protected memory;
assume Inv(l)

enc(l . release ()) = assert Inv(l);
// lose access to protected memory

Fig. 5. Standard IVL encoding of lock operations. Inv(l) denotes the invariant con-
straining the memory protected by lock l .

be considered to execute without interference, and that we can therefore use
ordinary sequential product programs to reason about this code. To capture
the thread interactions at synchronization points, we extend lock invariants to
contain relational assertions (which can prescribe that some values protected by
the lock are low), and add additional checks around lock operations to ensure
that they do not give rise to unwanted information flow.

4.2 Possibilistic Noninterference

For concurrent programs, standard noninterference is too strict a property be-
cause concurrent programs are usually non-deterministic. One way of approach-
ing this problem is to instead verify possibilistic noninterference, which enforces
that high information does not influence the possible values of low outputs, i.e.,
if some combination of low output values is reachable from an initial state, then
the same combination of low output values must still be reachable using some
possible thread schedule after arbitrarily changing the high inputs. Possibilistic
noninterference can be defined as follows:

Definition 4. A program s with a set of input variables I and output variables
O, of which some subsets Il ⊆ I and Ol ⊆ O are low, satisfies possibilistic
noninterference iff for all σ1, σ2 and σ′1, if ∀x ∈ Il. σ1(x) = σ2(x) and 〈s, σ1〉 →∗
〈skip, σ′1〉 then 〈s, σ2〉 →∗ 〈skip, σ′2〉 for some σ′2 s.t. ∀x ∈ Ol.σ

′
1(x) = σ′2(x).

Note that this property allows high inputs to influence the probability of
different outputs and may therefore not be desirable in all scenarios; we discuss
a stronger notion of noninterference in the next subsection.

Since we build on a proof technique that ensures data race freedom, we can
see each program trace as a sequence of local operations and lock operations by
specific threads, where (1) every local operation depends only on previous (local
or lock) operations of the same thread, and (2) every lock operation depends
only on the previous local operations of the same thread and all previous lock
operations (of arbitrary threads). As a result, we can (akin to partial order
reduction) rearrange segments freely as long as we retain the overall order of lock
operations and the order of operations of every specific thread; in particular, we
can rearrange a trace so that it consists of a number of segments, such that in
each segment, one thread executes any number of local operations and then one
lock operation.

14 Marco Eilers, Severin Meier, and Peter Müller

poss(l . acquire ()) = assert lowEvent;
assert low(l);
assume Inv(l)

poss(l . release ()) = assert lowEvent;
assert low(l);
assert Inv(l)

poss(while (e) do {s}) = assert low(e);
while (e) do {poss(s); assert low(e)}

Fig. 6. Statement encoding for possibilistic information flow security. For loops, we
check that the loop guard is low, ensuring that termination is also low.

Based on this observation, we impose proof obligations that ensure the fol-
lowing property: For every program trace with some schedule and some low and
high inputs, and for arbitrary different high inputs, there exists a second trace
such that: (1) Both traces include the same lock operations performed by the
same threads, in the same order, and (2) at each lock operation, the lock’s invari-
ant holds; in particular, the relational assertions of the lock invariant correctly
relate the state protected by the lock in both traces.

To enforce this property, we devise four proof obligations that can be checked
thread-locally:

1. Every lock operation o is a low event, i.e., if a thread executes o in the first
execution, it will also execute o in the second execution.

2. Termination of the local code before the lock operation does not depend on
secret data; i.e., if lock operation o is reached in the first trace, it will also
be reached in the second trace.

3. o operates on the same lock in both executions, i.e., the lock is low.
4. If o releases the lock, i.e., makes a new lock state public, this lock state fulfills

the relational invariant, meaning that heap operations meant to be low are
indentical in both executions after the lock operation.

Note that, even though the lock operations of both traces are closely aligned,
their local operations may differ. For instance, a thread may branch on a high
guard as long as no lock operation is performed before the control flow re-joins.

The above checks are sufficient to satisfy Def. 4. The proof goes by induction
on the number of segments of the traces and leverages the soundness of sequential
verification within each segment.

Encoding. The aforementioned checks can simply be checked as part of the
encoding of lock operations. We adjust the encoding from Fig. 5 for possibilistic
noninterference as shown in Fig. 6. For thread acquire and release, the assertions
of lowEvent and low(l) directly ensure properties (1) and (3). Assuming and
asserting the lock invariant works as in the standard IVL encoding for concurrent
programs, but now this invariant can be relational, ensuring property (4). The

Product Programs in the Wild 15

def main (s e c r e t : boo l) −> None :
c = C e l l ()
l = C e l l L o c k (c)
l . a c q u i r e ()
c . v a l = 4
i f s e c r e t :

l . r e l e a s e ()
l . a c q u i r e ()

c . v a l = 5
c . r e l e a s e ()

Fig. 7. Possibilistic information flow violation via a secret-dependent lock release. The
Cell state 4 is visible to other threads only if secret is True.

condition on while loops is used to ensure property (2), which can be done simply
by asserting that the loop condition is low for every loop in the program (we
assume, for simplicity, that there is no infinite recursion).

Discussion. With our verification technique, the product construction on the
IVL level does not need to be aware of concurrency in any way; applying the
standard sequential product construction to the updated encoding is sufficient
to ensure possibilistic noninterference in concurrent programs.

To the best of our knowledge, we are the first to consider possibilistic infor-
mation flow in a setting with locks, and therefore the first to propose that the
order of lock operations must be constrained. The example in Fig. 7 demonstrates
that this requirement is indeed necessary to prevent unwanted information flow:
The CellLock protects the val field of a Cell object, which is intended to be low.
The code unconditionally sets the field to two constants (first to 4, then to 5),
which should be allowed since the constants are low. However, whether the lock
is released while the cell has value 4 depends on a secret. As a result, when a
different thread acquires the lock and sees that the value is 4, this leaks that the
secret must have been true.

Another example that illustrates the requirement to ensure that high data
does not influence which lock a lock operation accesses can be found in Fig. 8.
Here, two locks are created, and thread 1 acquires the first one. Thread 2 ac-
quires, depending on the secret, either the same lock or a different one. This
influences the possible results of the program: If both threads acquire the same
lock, then the print statements of one thread cannot be interleaved with those
of the other, otherwise they can. As a result, if the attacker observes the pattern
1212 (or any other interleaving of 1s and 2s), they know with certainty that the
two threads acquired different locks and secret must therefore be False.

The necessity to prevent termination differences in a concurrent setting has
been recognized before in work on security type systems [45].

16 Marco Eilers, Severin Meier, and Peter Müller

def th r ead1 (l : Lock) −> None :
r e q u i r e s lowEvent
l . a c q u i r e ()
p r i n t (1)
p r i n t (1)
l . r e l e a s e ()

def th r ead2 (l : Lock) −> None :
r e q u i r e s lowEvent
l . a c q u i r e ()
p r i n t (2)
p r i n t (2)
l . r e l e a s e ()

def main (s e c r e t : boo l) −> None :
l 1 = Lock ()
l 2 = Lock ()
i f s e c r e t :

l = l 1
e l s e :

l = l 2
f o r k th r ead1 (l 1)
f o r k th r ead2 (l)

Fig. 8. Possibilistic information flow violation through locks. If secret is true, both
threads acquire the same lock, and their critical sections cannot be interleaved.

def th r ead1 (l : Lock , c : C e l l) :
c t r = 0
f o r i i n range (1 0 0) :

c t r += 1
l . a c q u i r e ()
c . v a l = 1
l . r e l e a s e ()

def th r ead2 (l : Lock , c : C e l l , s e c r e t : i n t) :
c t r = 0
f o r i i n range (s e c r e t) :

c t r += 1
l . a c q u i r e ()
c . v a l = 2
l . r e l e a s e ()

Fig. 9. Example of probabilistic information flow. With a non-deterministic scheduler,
secret does not influence the set of possible outputs, but a greater secret leads to
higher probability of seeing a final cell value of 2.

4.3 Probabilistic Noninterference

Possibilistic noninterference is too imprecise for many applications. Fig. 9 il-
lustrates the problem: The final value of c. val can be either 1 or 2, that is,
possibilistic noninterference holds. However, with most schedulers, a final value
of 2 is much more likely for greater secret values than for lower values because
the assignment of 1 is more likely to happen before the assignment of 2.

A stronger notion of noninterference that forbids such leaks is probabilistic
noninterference, which requires that two executions from low-equivalent initial
states will produce the same low outputs with the same probabilities.

Definition 5. A program s with a set of input variables I and output variables
O, of which some subsets Il ⊆ I and Ol ⊆ O are low, satisfies probabilistic
noninterference iff for all σ1, σ2 and σ′1, if ∀x ∈ Il. σ1(x) = σ2(x) and 〈s, σ1〉 →∗
〈skip, σ′1〉 with probability p then 〈s, σ2〉 →∗ 〈skip, σ′2〉 with probability p for
some σ′2 s.t. ∀x ∈ Ol.σ

′
1(x) = σ′2(x).

The information flow in Fig. 9 is caused by secret data influencing the timing
of thread 2, which in turn may affect the relative order of modifications of shared
variables. To prevent secrets from influencing the timing of operations, we addi-
tionally assert that every branch condition in the program is low, meaning that
the two executions will always follow the same code path, which leads to the
adjusted encoding in Fig. 10. Note that the check that branch conditions are

Product Programs in the Wild 17

prob(l . acquire ()) = assert low(l);
assume Inv(l)

prob(l . release ()) = assert low(l);
assert Inv(l)

prob(while (e) do {s}) = assert low(e);
while (e) do {prob(s); assert low(e)}

prob(if (e) then {s1} else {s2}) = assert low(e);
if (e) then {prob(s1)} else {prob(s2)}

prob(r.m()) = assert low(type(r));
r.m()

Fig. 10. Statement encoding for probabilistic information flow security.

low must also be performed for any implicit branches; e.g., with the encoding of
dynamically-bound calls shown before, we must now assert that the type of the
receiver of every such call is low. Also note that since we enforce that branches
are low, the lowEvent conditions we showed in the possibilistic encoding will
be trivially fulfilled and can be omitted here. However, we still need to assert
that acquired and released lock references are low. This last requirement has not
been discussed in previous work (whereas forbidding high branches is standard
practice in type systems and program logics [36]).

With this adjusted encoding, probabilistic noninterference can be verified us-
ing simple assertions in the IVL encoding and subsequently performing a stan-
dard product construction on the IVL level. So, in summary, this approach lets
us extend existing verifiers for concurrent programs to verify both possibilistic
and probabilistic noninterference with very small changes in the frontend, and
without requiring any changes on the level of the IVL (except the ability to write
relational specifications) and the product construction.

5 Implementation and Evaluation

In this section, we evaluate the performance of the proposed architecture, by
extending the previously information flow unaware Nagini verifier for Python [18]
according to our design. We will first briefly describe Nagini and the adaptations
we needed to make, then evaluate the performance overhead generated by the
product transformation, and subsequently evaluate the implementation on a
number of information flow examples, comparing it to SecC [20] in the process.

5.1 Nagini

Nagini is an automated verifier for statically-typed Python 3 programs. It sup-
ports a large subset of the Python language, comprising features like exception
handling, polymorphism, dynamic field creation, and concurrency. Reasoning
about some of these features is quite intricate even without the overhead of a

18 Marco Eilers, Severin Meier, and Peter Müller

product construction, so we believe that Nagini is a good target to evaluate the
performance of the proposed architecture for verifiers for complex languages.

Nagini encodes Python programs and their specifications into the Viper
IVL [35], and then uses Viper’s backend verifiers to automatically verify those
programs using the Z3 SMT solver [15]. For concurrent programs, Nagini uses an
encoding similar to the one described in Sec. 4, using implicit dynamic frames [44]
(a flavor of separation logic [38, 40]) to prove data race freedom; as a result, we
could modify its existing encoding as shown in Sec. 4 to prove both possibilis-
tic and probabilistic noninterference for concurrent programs. Nagini’s existing
encoding from Python to Viper is almost entirely operational, we only adapted
the encoding of dynamically-bound calls as shown in Sec. 3.5.

We extended Nagini’s existing specification language to include information
flow specifications and implemented the modular product program transforma-
tion for 2-hyperproperties for the existing Viper AST (enriched, again, with new
AST nodes for information flow specifications). For convenience, we also slightly
extended the Viper-based product transformation to directly transform state-
ments that Nagini previously encoded using gotos, such as break and continue
statements. The Viper extension for product programs2 and the extended version
of Nagini3 are open source and available online.

5.2 Performance Overhead of the Product Construction

Our first goal is to evaluate the performance overhead generated by the product
construction. We compared the verification times of Nagini’s entire functional
test suite with and without the product transformation enabled. The test cases
range from small programs targeting specific language or specification constructs,
to realistic code examples taken from programming tutorials. We ran each test
five times on a warmed up JVM with the information flow extension enabled and
disabled, without adding any information flow specifications. Our test system
was a 12 core AMD Ryzen 3900X with 32GB of RAM running Ubuntu 20.04.1.

All tests report the same results with and without the product transforma-
tion, meaning that completeness is not impacted by the extension, and that we
can indeed still reason about the entire language subset supported by Nagini.
Without the product transformation, each test case takes between 3 and 9 sec-
onds, with the majority taking between 3 and 5. For most cases, enabling the
product construction leads to an increase in verification time that is clearly ac-
ceptable (less than 11% for half the tests, less than 30% for three quarters, and
less than 100% for 90% of the tests). For five test cases, the slowdown is a fac-
tor between 5 and 12, and a single outlier (a quicksort implementation) has a
slowdown factor of 17.5 and a resulting verification time of two minutes. We be-
lieve that the main reason for the large slowdown for these particular test cases
is the use of quantifiers in their specifications (e.g., to specify properties of all
elements in a list). Quantifier handling is difficult for automated verification in
2 https://github.com/viperproject/silver-sif-extension
3 https://github.com/marcoeilers/nagini

Product Programs in the Wild 19

LOC Ann. Prop. T
banerjee 77 21 NI 5.19
constanzo 21 12 NI 5.39
darvas 38 18 NI 4.20
example 27 12 NI 5.39
Example-decl 27 12 NI 5.76
Example-term 8 4 TNI 3.59
joana-1-tl 22 7 NI 3.87
joana-2-bl 13 5 NI 3.64
joana-2-t 12 4 NI 3.72
joana-3-bl 36 15 TNI 3.55
joana-3-br 33 14 TNI 4.60
joana-3-tl 23 9 TNI 4.50
joana-3-tr 25 10 TNI 4.19
joana-13-l 11 2 NI 4.54

LOC Ann. Prop. T
kusters 28 12 NI 4.35
naumann 27 17 NI 8.46
product 39 18 NI 11.35
smith 39 21 NI 6.81
terauchi1 10 3 NI 3.59
terauchi3 19 6 NI 3.69
terauchi4 18 8 NI 3.97
Fig. 4 19 6 NI 3.82
loop leak [45] 53 17 PS 4.92
high loop 24 11 PS 4.19
Fig. 7 23 8 PS 4.37
Fig. 8 36 15 PS 4.40
Fig. 9 34 15 PS 4.57

Table 1. Programs evaluated for proving information flow security. We show the total
lines of code (LOC) including implentation and specification but excluding whitespace,
lines of specification and proof annotation (Ann.), the property we proved (Prop., where
NI = noninterference, TNI = termination sensitive noninterference, PS = possibilistic
noninterference) and the verification time in seconds (T), averaged over five runs.

general, because unbounded chains of quantifier instantiations can occur during
the proof search [16], and this problem seems to be exacerbated when using the
product encoding.

We conclude that the performance impact of the product transformation is
acceptable for most examples, but can be significant for programs with complex
functional specifications.

5.3 Expressiveness and Comparison with SecC

In a second step, we evaluated the expressiveness and performance of our im-
plementation on a number of challenging examples from the literature. In par-
ticular, we use the examples from the original paper about modular product
programs [19] (sequential examples collected from various previous papers, trans-
lated to Python) and from this paper, both shown in Table 1, as well as examples
taken from SecC [20], the only other automated verification tool for concurrent
programs we are aware of, shown in Table 2. The latter table includes the CDDC
case study [36], which models an embedded device that interacts simultaneously
with multiple users and classified networks. Our examples represent the state
of the art in automated information flow verification, requiring semantic rea-
soning that would not be possible in a type system, and using complex infor-
mation flow specifications including declassification, termination-sensitive non-
interference, and value-dependent sensitivity [36]. As mentioned before, these
features can be easily encoded into modular product programs using existing
techniques [19].

Nagini was able to verify all examples, which demonstrates that our approach
can handle concurrent implementations and express complex noninterference
properties. For the examples from Table 1, Nagini takes only between 3 and
12 seconds each. As for the tests from SecC, Nagini takes around five seconds

20 Marco Eilers, Severin Meier, and Peter Müller

LOCN AnnN LOCS AnnS Prop. TS TN TNP

SecC CAV 40 13 50 11 PR 1.33 4.21 3.56
SecC CDDC 278 105 214 47 PR 21.20 52.20 8.60
SecC CT 64 35 211 159 PR 1.87 5.41 3.97
SecC DB 100 48 256 167 NI 2.75 182.60 6.23
SecC Encrypt 29 12 49 18 NI 1.45 4.76 3.66

Table 2. Comparison with SecC. We show the total lines of code and lines of speci-
fication for Nagini (LOCN, AnnN) and SecC (LOCS, AnnS), the property we proved
(Prop., where NI = noninterference, PR = probabilistic noninterference) and the veri-
fication time in seconds in both tools (TN and TS) and in Nagini without the product
construction (TNP), averaged over five runs.

for three of them, 52 seconds for the CDDC case study, and 183 seconds for an
example involving a large number of quantifiers. We believe that 52 seconds for a
complex case study is still acceptable, whereas the slowest example demonstrates
that extensive use of quantifiers will lead to problematic performance in practice.

Table 2 shows that SecC is much faster than our implementation. How-
ever, SecC was designed and implemented for information flow verification from
scratch, without being able to reuse code from an existing verifier, whereas our
extended Nagini implementation could be implemented with minimal effort. Be-
sides this crucial difference, Nagini and SecC differ in many other ways, e.g., in
their supported language features, automation (see the table for required anno-
tations), and specification styles. As a result, direct performance comparisons
between the two are difficult; in fact, the unmodified version of Nagini without
the product construction already takes more time than SecC on four out of five
examples, likely as a result of the overhead required for modeling more complex
language features.

6 Related Work

There are various existing type systems (e.g. [37,45]) and static analyses (e.g. [11,
23]) for proving information flow security. Compared to verification based on
product programs, these are more automated, but less precise. Moreover, there
are dedicated program logics for information flow verification, such as SecCSL [20],
Covern [36], and Veronica [42], all of which allow proving probabilistic nonin-
terference for concurrent programs based on different reasoning techniques. The
implementation of the former in SecC is the only existing tool that automates
information flow verification for concurrent programs, see Sec. 5.

Relational logics, such as Relational Hoare Logic [7] and Cartesian Hoare
Logic [46], allow proving general relational program properties, which includes
noninterference. However, while they tackle a more general problem, they gen-
erally work only for sequential programs. Some tools automate information flow
verification using self-composition, e.g., for C [9] and for Java [41]. Compared to
modular product programs, this approach generally does not allow for modular
proofs of information flow security [19,48].

Product Programs in the Wild 21

Modular product programs were presented by Eilers et al. [19]. Other forms
of product programs differ in the way executions are interleaved. While some
keep executions in lock step [4], like modular product programs, others do
not describe a deterministic product construction and allow for arbitrary in-
terleavings [5]. In particular, Shemer et al. [43] propose property-directed self-
composition, which dynamically determines how to compose and interleave dif-
ferent executions based on the property to be verified. Similarly, Strichman and
Veitsman [47] propose a product-like construction that interleaves recursive func-
tions whose executions are not in lock step. Recently, Pick et al. [39] showed how
to automatically infer information flow specifications on modular product pro-
grams, which can likely be combined with the approach examined in this paper.

To the best of our knowledge, SymDiff [28] for the Boogie IVL is the only
existing tool that constructs product programs on an IVL-level. SymDiff is a
tool for differential program verification, which requires reasoning about pairs of
executions of two different (but related) programs and is thus similar to hyper-
property verification; in fact, SymDiff has also been used to verify noninterfer-
ence in the past [1]. The authors of SymDiff have proposed different techniques
for modularly proving mutual function summaries, similar to relational specifi-
cations, one of which uses a kind of product construction [26,29]. However, they
do not examine potential soundness problems arising from this approach, nor do
they discuss if it can be applied to concurrent source programs.

7 Conclusion

We presented an approach for retrofitting existing IVL-based program verifiers
to check information flow security using product programs. This approach allows
reusing existing frontends to reduce the required implementation effort. We have
shown when this technique is sound, that it can incorporate concurrency, and
that it can be implemented in an existing verifier with acceptable performance.

References

1. J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and M. Emmi. Verifying
constant-time implementations. In USENIX Security Symposium, pages 53–70.
USENIX Association, 2016.

2. V. Astrauskas, P. Müller, F. Poli, and A. J. Summers. Leveraging Rust
types for modular specification and verification. Proc. ACM Program. Lang.,
3(OOPSLA):147:1–147:30, 2019.

3. M. Barnett, B. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. Boogie: A
modular reusable verifier for object-oriented programs. In FMCO, volume 4111 of
LNCS, pages 364–387. Springer, 2005.

4. G. Barthe, J. M. Crespo, and C. Kunz. Relational verification using product
programs. In FM, volume 6664 of LNCS, pages 200–214. Springer, 2011.

5. G. Barthe, J. M. Crespo, and C. Kunz. Beyond 2-safety: Asymmetric product
programs for relational program verification. In LFCS, volume 7734 of LNCS,
pages 29–43. Springer, 2013.

22 Marco Eilers, Severin Meier, and Peter Müller

6. G. Barthe, P. R. D’Argenio, and T. Rezk. Secure information flow by self-
composition. Math. Struct. Comput. Sci., 21(6):1207–1252, 2011.

7. N. Benton. Simple relational correctness proofs for static analyses and program
transformations. In POPL, pages 14–25. ACM, 2004.

8. A. Betts, N. Chong, A. F. Donaldson, S. Qadeer, and P. Thomson. GPUVerify: a
verifier for GPU kernels. In OOPSLA, pages 113–132. ACM, 2012.

9. L. Blatter, N. Kosmatov, P. L. Gall, V. Prevosto, and G. Petiot. Static and dynamic
verification of relational properties on self-composed C code. In TAP@STAF,
volume 10889 of LNCS, pages 44–62. Springer, 2018.

10. S. Blom and M. Huisman. The VerCors tool for verification of concurrent programs.
In FM, volume 8442 of LNCS, pages 127–131. Springer, 2014.

11. Z. Chen, L. Chen, and B. Xu. Hybrid information flow analysis for python byte-
code. In IEEE WISA, pages 95–100. IEEE Computer Society, 2014.

12. M. R. Clarkson and F. B. Schneider. Hyperproperties. J. Comput. Secur.,
18(6):1157–1210, 2010.

13. E. Cohen, M. Moskal, W. Schulte, and S. Tobies. Local verification of global
invariants in concurrent programs. In CAV, volume 6174 of LNCS, pages 480–494.
Springer, 2010.

14. P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski.
Frama-C - A software analysis perspective. In SEFM, volume 7504 of LNCS, pages
233–247. Springer, 2012.

15. L. M. de Moura and N. Bjørner. Z3: an efficient SMT solver. In TACAS, volume
4963 of LNCS, pages 337–340. Springer, 2008.

16. D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a theorem prover for program
checking. J. ACM, 52(3):365–473, 2005.

17. M. Eilers, S. Meier, and P. Müller. Product Programs in the Wild: Retrofitting
Program Verifiers to Check Information Flow Security (Artifact), Apr. 2021.

18. M. Eilers and P. Müller. Nagini: A static verifier for Python. In CAV (1), volume
10981 of LNCS, pages 596–603. Springer, 2018.

19. M. Eilers, P. Müller, and S. Hitz. Modular product programs. In ESOP, volume
10801 of LNCS, pages 502–529. Springer, 2018.

20. G. Ernst and T. Murray. SecCSL: Security concurrent separation logic. In CAV
(2), volume 11562 of LNCS, pages 208–230. Springer, 2019.

21. J. Filliâtre and C. Marché. The Why/Krakatoa/Caduceus platform for deductive
program verification. In CAV, volume 4590 of LNCS, pages 173–177. Springer,
2007.

22. J. Filliâtre and A. Paskevich. Why3 - where programs meet provers. In ESOP,
volume 7792 of LNCS, pages 125–128. Springer, 2013.

23. D. Giffhorn and G. Snelting. A new algorithm for low-deterministic security. Int.
J. Inf. Sec., 14(3):263–287, 2015.

24. J. A. Goguen and J. Meseguer. Security policies and security models. In IEEE
Symposium on Security and Privacy, pages 11–20. IEEE Computer Society, 1982.

25. É. Goubault, J. Ledent, and S. Mimram. Concurrent specifications beyond lineariz-
ability. In OPODIS, volume 125 of LIPIcs, pages 28:1–28:16. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2018.

26. C. Hawblitzel, M. Kawaguchi, S. K. Lahiri, and H. Rebêlo. Towards modularly
comparing programs using automated theorem provers. In CADE, volume 7898 of
LNCS, pages 282–299. Springer, 2013.

27. B. Jacobs, F. Piessens, K. R. M. Leino, and W. Schulte. Safe concurrency for ag-
gregate objects with invariants. In SEFM, pages 137–147. IEEE Computer Society,
2005.

Product Programs in the Wild 23

28. S. K. Lahiri, C. Hawblitzel, M. Kawaguchi, and H. Rebêlo. SYMDIFF: A language-
agnostic semantic diff tool for imperative programs. In CAV, volume 7358 of LNCS,
pages 712–717. Springer, 2012.

29. S. K. Lahiri, K. L. McMillan, R. Sharma, and C. Hawblitzel. Differential assertion
checking. In ESEC/SIGSOFT FSE, pages 345–355. ACM, 2013.

30. K. R. M. Leino. Dafny: An automatic program verifier for functional correctness.
In LPAR (Dakar), volume 6355 of LNCS, pages 348–370. Springer, 2010.

31. K. R. M. Leino and P. Müller. Using the Spec# language, methodology, and tools
to write bug-free programs. In LASER Summer School, volume 6029 of LNCS,
pages 91–139. Springer, 2008.

32. K. R. M. Leino and P. Müller. A basis for verifying multi-threaded programs. In
ESOP, volume 5502 of LNCS, pages 378–393. Springer, 2009.

33. K. R. M. Leino, P. Müller, and J. Smans. Verification of concurrent programs with
chalice. In A. Aldini, G. Barthe, and R. Gorrieri, editors, Foundations of Security
Analysis and Design V, FOSAD 2007/2008/2009 Tutorial Lectures, volume 5705
of LNCS, pages 195–222. Springer, 2009.

34. B. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM Trans. Program.
Lang. Syst., 16(6):1811–1841, 1994.

35. P. Müller, M. Schwerhoff, and A. J. Summers. Viper: A verification infrastructure
for permission-based reasoning. In VMCAI, volume 9583 of LNCS, pages 41–62.
Springer, 2016.

36. T. C. Murray, R. Sison, and K. Engelhardt. COVERN: A logic for compositional
verification of information flow control. In EuroS&P, pages 16–30. IEEE, 2018.

37. A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and N. Nystrom. Jif: Java infor-
mation flow. Software release. Located at http://www.cs.cornell.edu/jif, 2006.

38. P. W. O’Hearn. Resources, concurrency, and local reasoning. Theor. Comput. Sci.,
375(1-3):271–307, 2007.

39. L. Pick, G. Fedyukovich, and A. Gupta. Automating modular verification of secure
information flow. In FMCAD, pages 158–168. IEEE, 2020.

40. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In
LICS, pages 55–74. IEEE Computer Society, 2002.

41. C. Scheben and P. H. Schmitt. Verification of information flow properties of Java
programs without approximations. In FoVeOOS, volume 7421 of LNCS, pages
232–249. Springer, 2011.

42. D. Schoepe, T. Murray, and A. Sabelfeld. VERONICA: expressive and precise
concurrent information flow security. In CSF, pages 79–94. IEEE, 2020.

43. R. Shemer, A. Gurfinkel, S. Shoham, and Y. Vizel. Property directed self compo-
sition. In CAV (1), volume 11561 of LNCS, pages 161–179. Springer, 2019.

44. J. Smans, B. Jacobs, and F. Piessens. Implicit dynamic frames. ACM Trans.
Program. Lang. Syst., 34(1):2:1–2:58, 2012.

45. G. Smith. Principles of secure information flow analysis. In Malware Detection,
pages 291–307. 2007.

46. M. Sousa and I. Dillig. Cartesian hoare logic for verifying k-safety properties. In
PLDI, pages 57–69. ACM, 2016.

47. O. Strichman and M. Veitsman. Regression verification for unbalanced recursive
functions. In FM, volume 9995 of LNCS, pages 645–658, 2016.

48. T. Terauchi and A. Aiken. Secure information flow as a safety problem. In SAS,
volume 3672 of LNCS, pages 352–367. Springer, 2005.

49. S. Zdancewic and A. C. Myers. Observational determinism for concurrent program
security. In CSFW, page 29. IEEE Computer Society, 2003.

