
Modular Product Programs

Marco Eilers(�), Peter Müller, and Samuel Hitz

Department of Computer Science, ETH Zurich, Switzerland
{marco.eilers, peter.mueller, samuel.hitz}@inf.ethz.ch

Abstract. Many interesting program properties like determinism or in-
formation flow security are hyperproperties, that is, they relate mul-
tiple executions of the same program. Hyperproperties can be verified
using relational logics, but these logics require dedicated tool support
and are difficult to automate. Alternatively, constructions such as self-
composition represent multiple executions of a program by one product
program, thereby reducing hyperproperties of the original program to
trace properties of the product. However, existing constructions do not
fully support procedure specifications, for instance, to derive the deter-
minism of a caller from the determinism of a callee, making verification
non-modular.
We present modular product programs, a novel kind of product program
that permits hyperproperties in procedure specifications and, thus, can
reason about calls modularly. We demonstrate its expressiveness by ap-
plying it to information flow security with advanced features such as
declassification and termination-sensitivity. Modular product programs
can be verified using off-the-shelf verifiers; we have implemented our
approach to secure information flow using the Viper verification infras-
tructure.

1 Introduction

The past decades have seen significant progress in automated reasoning about
program behavior. In the most common scenario, the goal is to prove trace prop-
erties of programs such as functional correctness or termination. However, im-
portant program properties such as information flow security, injectivity, and de-
terminism cannot be expressed as properties of individual traces; these so-called
hyperproperties relate different executions of the same program. For example,
proving determinism of a program requires showing that any two executions
from identical initial states will result in identical final states.

An important attribute of reasoning techniques about programs is modular-
ity. A technique is modular if it allows reasoning about parts of a program in
isolation, e.g., verifying each procedure separately and using only the specifica-
tions of other procedures. Modularity is vital for scalability and to verify libraries
without knowing all of their clients. Fully modular reasoning about hyperprop-
erties thus requires the ability to formulate relational specifications, which relate
different executions of a procedure, and to apply those specifications where the

procedure is called. As an example, the statement

if (x) then {y:=x} else {y:= call f(x)}

can be proved to be deterministic if f’s relational specification guarantees that
its result deterministically depends on its input.

Relational program logics [11, 27, 29] allow directly proving general hyper-
properties, however, automating relational logics is difficult and requires building
dedicated tools. Alternatively, self-composition [9] and product programs [6, 7]
reduce a hyperproperty to an ordinary trace property, thus making it possible to
use off-the-shelf program verifiers for proving hyperproperties. Both approaches
construct a new program that combines the behaviors of multiple runs of the
original program. However, by the nature of their construction, neither approach
supports modular verification based on relational specifications: Procedure calls
in the original program will be duplicated, which means that there is no sin-
gle program point at which a relational specification can be applied. For the
aforementioned example, self-composition yields the following program:

if (x) then {y:=x} else {y:= call f(x)} ;
if (x’) then {y’:=x’} else {y’:= call f(x’)}

Determinism can now be verified by proving the trace property that identical
values for x and x’ in the initial state imply identical values for y and y’ in the
final state. However, such a proof cannot make use of a relational specification
for procedure f (expressing that f is deterministic). Such a specification relates
several executions of f, whereas each call in the self-composition belongs to a
single execution. Instead, verification requires a precise functional specification
of f, which exactly determines its result value in terms of the input. Verifying
such precise functional specifications increases the verification effort and is at
odds with data abstraction (for instance, a collection might not want to promise
the exact iteration order); inferring them is beyond the state of the art for most
procedures [28]. Existing product programs allow aligning or combining some
statements and can thereby lift this requirement in some cases, but this requires
manual effort during the construction, depends on the used specifications, and
does not solve the problem in general.

In this paper, we present modular product programs, a novel kind of prod-
uct programs that allows modular reasoning about hyperproperties. Modular
product programs enable proving k-safety hyperproperties, i.e., hyperproperties
that relate finite prefixes of k execution traces, for arbitrary values of k [12]. We
achieve this via a transformation that, unlike existing products, does not dupli-
cate loops or procedure calls, meaning that for any loop or call in the original
program, there is exactly one statement in the k-product at which a relational
specification can be applied. Like existing product programs, modular products
can be reasoned about using off-the-shelf program verifiers.

We demonstrate the expressiveness of modular product programs by apply-
ing them to prove secure information flow, a 2-safety hyperproperty. We show

how modular products enable proving traditional non-interference using natural
and concise information flow specifications, and how to extend our approach for
proving the absence of timing or termination channels, and supporting declassi-
fication in an intuitive way.

To summarize, we make the following contributions:

– We introduce modular k-product programs, which enable modular proofs of
arbitrary k-safety hyperproperties for sequential programs using off-the-shelf
verifiers.

– We demonstrate the usefulness of modular product programs by applying
them to secure information flow, with support for declassification and pre-
venting different kinds of side channels.

– We implement our product-based approach for information flow verification
in an automated verifier and show that our tool can automatically prove
information flow security of challenging examples.

After giving an informal overview of our approach in Section 2 and intro-
ducing our programming and assertion language in Section 3, we formally define
modular product programs in Section 4. We sketch a soundness proof in Sec-
tion 5. Section 6 demonstrates how to apply modular products for proving secure
information flow. We describe and evaluate our implementation in Section 7, dis-
cuss related work in Section 8, and conclude in Section 9.

2 Overview

In this section, we will illustrate the core concepts behind modular k-products on
an example program. We will first show how modular products are constructed,
and subsequently demonstrate how they allow using relational specifications to
modularly prove hyperproperties.

2.1 Relational Specifications

Consider the example program in Figure 1, which counts the number of female
entries in a sequence of people. Now assume we want to prove that the program
is deterministic, i.e., that its output state is completely determined by its input
arguments. This can be expressed as a 2-safety hyperproperty which states that,
for two terminating executions of the program with identical inputs, the outputs
will be the same. This hyperproperty can be expressed by the relational (as
opposed to unary) specification main :

1
people =

2
people 1count = 2count, where

ix refers to the value of the variable x in the ith execution.
Intuitively, it is possible to prove this specification by giving is_female a pre-

cise functional specification like is_female : true res = 1 − person mod 2,
meaning that is_female can be invoked in any state and that res = 1 − person
mod 2 will hold if it returns. From this specification and an appropriate loop
invariant, main can be shown to be deterministic. However, this specification

procedure main (p e o p l e)
r e t u r n s (count)

{
i := 0 ;
count := 0 ;
w h i l e (i < | p e o p l e |) {

c u r r e n t := p e o p l e [i] ;
f := i s _ f e m a l e (c u r r e n t) ;
count := count + f ;
i := i + 1 ;

}
}

procedure i s _ f e m a l e (pe r son)
r e t u r n s (r e s)

{
// gender encoded i n f i r s t b i t
gender = pe r son mod 2 ;
i f (gender == 0) {

r e s := 1 ;
} e l s e {

r e s := 0 ;
}

}

Fig. 1. Example program. The parameter people contains a sequence of integers that
each encode attributes of a person; the main procedure counts the number of females
in this sequence.

is unnecessarily strong. For proving determinism, it is irrelevant what exactly
the final value of count is; it is only important that it is uniquely determined
by the procedure’s inputs. Proving hyperproperties using only unary specifica-
tions, however, critically depends on having exact specifications for every value
returned by a called procedure, as well as all heap locations modified by it.
Not only are such specifications difficult to infer and cumbersome to provide
manually; this requirement also fundamentally removes the option of underspec-
ifying program behavior, which is often desirable in practice. Because of these
limitations, verification techniques that require precise functional specifications
for proving hyperproperties often do not work well in practice, as observed by
Terauchi and Aiken for the case of self-composition [28].

Proving determinism of the example program becomes much simpler if we
are able to reason about two program executions at once. If both runs start
with identical values for people then they will have identical values for people,
i , and count when they reach the loop. Since the loop guard only depends on i
and people, it will either be true for both executions or false for both. Assuming
that is_female behaves deterministically, all three variables will again be equal
in both executions at the end of the loop body. This means that the program
establishes and preserves the relational loop invariant that people, i , and count
have identical values in both executions, from which we can deduce the desired
relational postcondition. Our modular product programs enable this modular
and intuitive reasoning, as we explain next.

2.2 Modular Product Programs

Like other product programs, our modular k-product programs multiply the
state space of the original program by creating k renamed versions of all original
variables. However, unlike other product programs, they do not duplicate control
structures like loops or procedure calls, while still allowing different executions
to take different paths through the program.

Modular product programs achieve this as follows: The set of transitions
made by the execution of a product is the union of the transitions made by

procedure main (p1 , p2 , peop le1 , peop l e2)
r e t u r n s (count1 , count2)

{
i f (p1) { i 1 := 0 ; }
i f (p2) { i 2 := 0 ; }
i f (p1) { count1 := 0 ; }
i f (p2) { count2 := 0 ; }
w h i l e ((p1 && i 1 < | peop l e1 |) | |

(p2 && i 2 < | peop l e2 |)) {
l 1 := p1 && i 1 < | peop l e1 | ;
l 2 := p2 && i 2 < | peop l e2 | ;
i f (l 1) { c u r r e n t 1 := peop l e1 [i 1] ; }
i f (l 2) { c u r r e n t 2 := peop l e2 [i 2] ; }
i f (l 1 | | l 2) {

t1 , t2 := i s _ f e m a l e (l1 , l2 ,
c u r r e n t 1 , c u r r e n t 2) ;

}
i f (l 1) { f1 := t1 ; }
i f (l 2) { f2 := t2 ; }
i f (l 1) { count1 := count1 + f1 ; }
i f (l 2) { count2 := count2 + f2 ; }
i f (l 1) { i 1 := i 1 + 1 ; }
i f (l 2) { i 2 := i 2 + 1 ; }

}
}

procedure i s _ f e m a l e (p1 , p2 ,
person1 ,
pe r son2)

r e t u r n s (re s1 , r e s 2)
{

i f (p1) {
gender1 := per son1 mod 2 ;

}
i f (p2) {

gender2 := per son2 mod 2 ;
}
t1 := p1 && gender1 == 0 ;
t2 := p2 && gender2 == 0 ;
f 1 := p1 && ! (gender1 == 0) ;
f 2 := p2 && ! (gender2 == 0) ;
i f (t1) { r e s 1 := 1 ; }
i f (t2) { r e s 2 := 1 ; }
i f (f 1) { r e s 1 := 0 ; }
i f (f 2) { r e s 2 := 0 ; }

}

Fig. 2. Modular 2-product of the program in Fig. 1 (slightly simplified). Parameters
and local variables have been duplicated, but control flow statements have not. All
statements are parameterized by activation variables.

the executions of the original program it represents. This means that if two
executions of an if-then-else statement execute different branches, an execution
of the product will execute the corresponding versions of both branches; however,
it will be aware of the fact that each branch is taken by only one of the original
executions, and the transformation of the statements inside each branch will
ensure that the state of the other execution is not modified by executing it.

For this purpose, modular product programs use boolean activation vari-
ables that store, for each execution, the condition under which it is currently
active. All activation variables are initially true. For every statement that di-
rectly changes the program state, the product performs the state change for all
active executions. Control structures update which executions are active (for
instance based on the loop condition) and pass this information down (into the
branches of a conditional, the body of a loop, or the callee of a procedure call)
to the level of atomic statements1. This representation avoids duplicating these
control structures.

Figure 2 shows the modular 2-product of the program in Figure 1. Consider
first the main procedure. Its parameters have been duplicated, there are now
two copies of all variables, one for each execution. This is analogous to self-
composition or existing product programs. In addition, the transformed proce-

1 The information stored in activation variables is similar to a path condition in sym-
bolic execution, which is also updated every time a branch is taken. However, they
differ for loops and calls.

dure has two boolean parameters p1 and p2; these variables are the initial acti-
vation variables of the procedure. Since main is the entry point of the program,
the initial activation variables can be assumed to be true.

Consider what happens when the product is run with arbitrary input values
for people1 and people2. The product will first initialize i1 and i2 to zero, like
it does with i in the original program, and analogously for count1 and count2.

The loop in the original program has been transformed to a single loop in the
product. Its condition is true if the original loop condition is true for any active
execution. This means that the loop will iterate as long as at least one execution
of the original program would. Inside the loop body, the fresh activation variables
l1 and l2 represent whether the corresponding executions would execute the loop
body. That is, for each execution, the respective activation variable will be true if
the previous activation variable (p1 or p2, respectively) is true, meaning that this
execution actually reaches the loop, and the loop guard is true for that execution.
All statements in the loop body are then transformed using these new activation
variables. Consequently, the loop will keep iterating while at least one execution
executes the loop, but as soon as the loop guard is false for any execution, its
activation variable will be false and the loop body will have no effect.

Conceptually, procedure calls are handled very similarly to loops. For the call
to is_female in the original program, only a single call is created in the product.
This call is executed if at least one activation variable is true, i.e., if at least
one execution would perform the call in the original program. In addition to
the (duplicated) arguments of the original call, the current activation variables
are passed to the called procedure. In the transformed version of is_female, all
statements are then made conditional on those activation variables. Therefore,
like with loops, a call in the product will be performed if at least one execution
would perform it in the original program, but it will have no effect on the state
of the executions that are not active when the call is made.

The transformed version of is_female shows how conditionals are handled. We
introduce four fresh activation variables t1, t2, f1, and f2, two for each execution.
The first pair encodes whether the then-branch should be executed by either of
the two executions; the second encodes the same for the else-branch. These acti-
vation variables are then used to transform the branches. Consequently, neither
branch will have an effect for inactive executions, and exactly one branch has
an effect for each active execution.

To summarize, our activation variables ensure that the sequence of state-
changing statements executed by each execution is the same in the product and
the original program. We achieve this without duplicating control structures or
imposing restrictions on the control flow.

2.3 Interpretation of Relational Specifications

Since modular product programs do not duplicate calls, they provide a simple
way of interpreting relational procedure specifications: If all executions call a
procedure, its relational precondition is required to hold before the call and the
relational postcondition afterwards. If a call is performed by some executions

but not all, the relational specification are not meaningful, and thus cannot be
required to hold. To encode this intuition, we transform every relational pre-
or postcondition Q̂ of the original program into an implication (

∧k
i=1 pi) ⇒ Q̂.

In the transformed version, both pre- and postconditions are made conditional
on the conjunction of all activation parameters pi of the procedure. As a result,
both will be trivially true if at least one execution is not active at the call site.

In our example, we give is_female the relational specification is_female :
true 1person = 2person ⇒ 1res = 2res , which expresses determinism. This speci-
fication will be transformed into a unary specification of the product program:
is_female : p1 ∧ p2⇒ true p1 ∧ p2⇒ (person1 = person2⇒ res1 = res2).

Assume for the moment that is_female also has a unary precondition person ≥
0. Such a specification should hold for every call, and therefore for every active
execution, even if other executions are inactive. Therefore, its interpretation
in the product program is (p1 ⇒ person1 ≥ 0) ∧ (p2 ⇒ person2 ≥ 0). The
translation of other unary assertions is analogous.

Note that it is possible (and useful) to give a procedure both a relational and
a unary specification; in the product this is encoded by simply conjoining the
transformed versions of the unary and the relational assertions.

2.4 Product Program Verification

We can now prove determinism of our example using the product program.
Verifying is_female is simple. For main, we want to prove the transformed spec-
ification main : (p1 ∧ p2 ⇒ people1 = people2) (p1 ∧ p2 ⇒ count1 = count2).
We use the relational loop invariant

1
i =

2
i ∧ 1count = 2count ∧

1
people =

2
people,

encoded as p1 ∧ p2 ⇒ i1 = i2 ∧ count1 = count2 ∧ people1 = people2. The loop
invariant holds trivially if either p1 or p2 is false. Otherwise, it ensures l1 = l2
and current1 = current2. Using the specification of is_female, we obtain t1 = t2,
which implies that the loop invariant is preserved. The loop invariant implies
the postcondition.

3 Preliminaries

We model our setting according to the relational logic by Banerjee, Naumann
and Nikouei [5]2 and, like them, use a standard Hoare logic [4] to reason about
single program executions. Figure 3 shows the language we use to define mod-
ular product programs. x ranges over the set of local integer variable names
Var. Note that this language is deterministic; non-determinism can for exam-
ple be modelled via additional inputs, as is often done for modelling fairness in
concurrent programs [16]. Program configurations have the form 〈s, σ〉, where
2 Our handling of procedure calls is slightly different, but amounts to restricting proce-
dures to work only on local variables not used in the rest of the program (as opposed
to having a global state on which all procedures work directly), and only interacting
with the rest of the program via explicitly declared return parameters.

(P rograms) P rog ::= procedure main(x) returns (y){s} :: Nil | P roc :: P rog
(P rocedures) P roc ::= procedure m(x) returns (y){s}
(Statements) s ::= x:=e | s; s | if (e) then {s} else {s} | while (e) do {s}

| x:= call m(e)
(Expressions) e ::= c | x | e⊕ e where c ∈ Z and ⊕ ∈ {+,−,×, . . .}
(Assertions) P ::= P ∧ P | P ⇒ P | ∀x. P | e
(RelExpressions) ê ::= c | ix | ê⊕ ê

(RelAssertions) P̂ ::= P̂ ∧ P̂ | P̂ ⇒ P̂ | ∀1
x, . . . ,

kx. P̂ | ê
(MixAssertions) P̌ ::= P | P̂ | P̌ ∧ P̌

Fig. 3. Language.

σ ∈ Σ maps variable names to values. The value of expression e in state σ is
denoted as σ(e). The small-step transition relation for program configurations
has the form 〈s, σ〉 → 〈s′, σ′〉. A hypothesis context Φ maps procedure names to
specifications.

The judgment Φ � s : P Q denotes that statement s, when executed
in a state fulfilling the unary assertion P , will not fault, and if the execution
terminates, the resulting state will fulfill the unary assertion Q. For an extensive
discussion of the language and its operational and axiomatic semantics, see [5].

In addition to standard unary expressions and assertions, we define relational
expressions and assertions. They differ from normal expressions and assertions
in that they contain parameterized variable references of the form ix and are
evaluated over a tuple of states instead of a single one. A relational expression
is k-relational if for all contained variable references ix, 1 ≤ i ≤ k, and analogous
for relational assertions. The value of a variable reference ix with 1 ≤ i ≤ k
in a tuple of states (σ1, . . . , σk) is σi(x); the evaluation of arbitrary relational
expressions and the validity of relational assertions (σ1, . . . , σk) � P̂ are defined
accordingly.
Definition 1. A k-relational specification s : P̂ k Q̂ holds iff P̂ and Q̂ are
k-relational assertions, and for all σ1, . . . , σk, σ

′
1, . . . , σ

′
k, if (σ1, . . . , σk) � P̂ and

∀i ∈ {1, . . . , k}. 〈s, σi〉 →∗ 〈skip, σ′i〉, then (σ′1, . . . , σ′k) � Q̂.

We write s : P̂ Q̂ for the most common case s : P̂ 2 Q̂.

4 Modular k-Product Programs

In this section, we define the construction of modular products for arbitrary
k. We will subsequently define the transformation of both relational and unary
specifications to modular products.

4.1 Product Construction
Assume as given a function (Var,N)→ Var that renames variables for different
executions. We write e(i) for the renaming of expression e for execution i and

require that ∀x, y, i, j. i 6= j ⇒ x(i) 6= y(j). We write fresh(x1, x2, . . .) to denote
that the variable names x1, x2, . . . are fresh names that do not occur in the
program and have not yet been used during the transformation. e̊ is used to
abbreviate e(1), . . . , e(k).

We denote the modular k-product of a statement s that is parameterized
by the activation variables p(1), . . . , p(k) as JsKp̊

k. The product construction for
procedures is defined as

Jprocedure m(x1, . . . , xm) returns (y1, . . . , yn){s}Kk

= procedure m(p(1), . . . , p(k), args) returns (rets){JsKp̊
k}

where
args = x1

(1), . . . , x1
(k), . . . , xm

(1), . . . , xm
(k)

rets = y1
(1), . . . , y1

(k), . . . , yn
(1), . . . , yn

(k)

Figure 4 shows the product construction rules for statements, which gen-
eralize the transformation explained in Section 2. We write if (e) then {s} as
a shorthand for if (e) then {s} else {skip}, and

⊙k
i=1 si for the sequential

composition of k statements s1; . . . ; sk.
The core principle behind our encoding is that statements that directly

change the state are duplicated for each execution and made conditional under
the respective activation variables, whereas control statements are not duplicated
and instead manipulate the activation variables to pass activation information to
their sub-statements. This enables us to assert or assume relational assertions be-
fore and after any statement from the original program. The only state-changing
statements in our language, variable assignments, are therefore transformed to
a sequence of conditional assignments, one for each execution. Each assignment
is executed only if the respective execution is currently active.

Duplicating conditionals would also duplicate the calls and loops in their
branches. To avoid that, modular products eliminate top-level conditionals; in-
stead, new activation variables are created and assigned the values of the current
activation variables conjoined with the guard for each branch. The branches are
then sequentially executed based on their respective activation variables.

A while loop is transformed to a single while loop in the product program
that iterates as long as the loop guard is true for any active execution. Inside
the loop, fresh activation variables indicate whether an execution reaches the
loop and its loop condition is true. The loop body will then modify the state
of an execution only if its activation variable is true. The resulting construct
affects the program state in the same way as a self-composition of the original
loop would, but the fact that our product contains only a single loop enables us
to use relational loop invariants instead of full functional specifications.

For procedure calls, it is crucial that the product contains a single call for
every call in the original program, in order to be able to apply relational spec-
ifications at the call site. As explained before, initial activation parameters are
added to every procedure declaration, and all parameters are duplicated k times.

Js1; s2Kp̊
k = Js1Kp̊

k; Js2Kp̊
k

JskipKp̊
k = skip

Jx:=eKp̊
k =

⊙k

i=1 if (p(i)) then {x(i):=e(i)}
Jif (e) then {s1} else {s2}Kp̊

k =
⊙k

i=1(p1
(i):=p(i) ∧ e(i));⊙k

i=1(p2
(i):=p(i) ∧ ¬e(i));

Js1Kp̊1
k ; Js2Kp̊2

k

where
fresh(p̊1) ∧ fresh(p̊2)

Jwhile (e) do {s}Kp̊
k = while (

∨k

i=1(p(i) ∧ e(i))) do {⊙k

i=1(p1
(i):=p(i) ∧ e(i));

JsKp̊1
k

}
where
fresh(p̊1)

J ˚x1, . . . , xn:= call m(e1, . . . , em)Kp̊
k = if (

∨k

i=1 p(i)) then {⊙k

i=1 if (p(i)) then {
⊙m

j=1(aj
(i):=ej

(i))};
ts:= call m(p(1), . . . , p(k), as);⊙k

i=1 if (p(i)) then {
⊙n

j=1(xj
(i):=tj

(i))}
}
where
fresh(å1, . . . , åm) ∧ fresh(t̊1, . . . , t̊n)
as = [a1

(1), . . . , a1
(k), . . . , am

(1), . . . , am
(k)]

ts = [t1
(1), . . . , t1

(k), . . . , tn
(1), . . . , tn

(k)]

Fig. 4. Construction rules for statement products.

Procedure calls are therefore transformed such that the values of the current acti-
vation variables are passed, and all arguments are passed once for each execution.
The return values are stored in temporary variables and subsequently assigned
to the actual target variables only for those executions that actually execute the
call, so that for all other executions, the target variables are not affected.

The transformation wraps the call in a conditional so that the call is per-
formed only if at least one execution is active. This prevents the transformation
from introducing infinite recursion that is not present in the original program.

Note that for an inactive execution i, arbitrary argument values are passed
in procedure calls, since the passed variables aj

(i) are not initialized. This is
unproblematic because these values will not be used by the procedure. It is
important to not evaluate ej

(i) for inactive executions, since this could lead to
false alarms for languages where expression evaluation can fail.

4.2 Transformation of Assertions

We now define how to transform unary and relational assertions for use in a
modular product.

Unary assertions such as ordinary procedure preconditions describe state
properties that should hold for every single execution. When checking or assum-
ing that a unary assertion holds at a specific point in the program, we need to
take into account that it only makes sense to do so for executions that actually
reach that program point. We can express this by making the assertion con-
ditional on the activation variable of the respective execution; as a result, any
unary assertion is trivially valid for all inactive executions.

A k-relational assertion, on the other hand, describes the relation between
the states of all k executions. Checking or assuming a relational assertion at
some point is meaningful only if all executions actually reach that point. This
can be expressed by making relational assertions conditional on the conjunction
of all current activation variables. If at least one execution does not reach the
assertion, it holds trivially.

We formalize this idea by defining a function α that maps relational as-
sertions P̂ to unary assertions P of the product program such that α(P̂) =
P̂ [V ar(1)/

1
V ar] . . . [V ar(k)/

k

V ar]. Assertions can then be transformed for use in
a k-product as follows:

– The transformation bP̂ cp̊k of a k-relational assertion P̂ with the activation
variables p(1), . . . , p(k) is (

∧k
i=1 p

(i))⇒ α(P̂).
– The transformation bP cp̊k of a unary assertion P is

∧k
i=1(p(i) ⇒ P (i)).

Importantly, our approach allows using mixed assertions and specifications,
which represent conjunctions of unary and relational assertions. For example, it is
common to combine a unary precondition that ensures that a procedure will not
raise an error with a relational postcondition that states that it is deterministic.

A mixed assertion Ř of the form P ∧ Q̂ means that the unary assertion P
holds for every single execution, and if all executions are currently active, the
relational assertion Q̂ holds as well. The transformation of mixed assertions is
straightforward: bŘcp̊k = bP cp̊k ∧ bQ̂c

p̊
k.

4.3 Heap-Manipulating Programs

The approach outlined so far can easily be extended to programs that work on
a mutable heap, assuming that object references are opaque, i.e., they cannot
be inspected or used in arithmetic. In order to create a distinct state space for
each execution represented in the product, allocation statements are duplicated
and made conditional like assignments, and therefore create a different object
for each active execution. The renaming of a field dereference e.f is then defined
as e(i).f . As a result, the heap of a k-product will consist of k partitions that
do not contain references to each other, and execution i will only ever interact
with objects from its partition of the heap.

The verification of modular products of heap-manipulating programs does
not depend on any specific way of achieving framing. Our implementation is
based on implicit dynamic frames [25], but other approaches are feasible as well,
provided that procedures can be specified in such a way that the caller knows
the heap stays unmodified for all executions whose activation variables are false.

Since the handling of the heap is largely orthogonal to our main technique,
we will not go into further detail here, but we do support heap-manipulating
programs in our implementation.

5 Soundness and Completeness

A product construction is sound if an execution of a k-product mirrors k sep-
arate executions of the original program such that properties proved about the
product entail hyperproperties of the original program. In this section, we sketch
a soundness proof of our k-product construction in the presence of only unary
procedure specifications. We also sketch a proof for relational specifications for
the case k = 2, making use of the relational logic presented by Banerjee et al. [5].
Finally, we informally discuss the completeness of modular products.

5.1 Soundness with Unary Specifications

A modular k-product must soundly encode k executions of the original program.
That is, if an encoded unary specification holds for a product program then the
original specification holds for the original program.

We define a relation σ 'i σ
′ that denotes that σ contains a renamed version

of all variables in σ′, i.e., ∀v ∈ dom(σ′) : σ(v(i)) = σ′(v). Without the index i, '
denotes the same but without renaming, and is used to express equality modulo
newly introduced activation variables.

Theorem 1. Assume that for all procedures m in a hypothesis context Φ we
have that m : S T ∈ dom(Φ) if and only if m : bScp̊k bT c

p̊
k ∈ dom(Φ′).

Then Φ′ � JsKp̊
k : bP cp̊k bQc

p̊
k implies that Φ � s : P Q.

Proof (Sketch). We sketch a proof based on the operational semantics of our
language. We show that the execution of the product program with exactly one
active execution corresponds to a single execution of the original program.

Assume that Φ′ � JsKp̊
k : bP cp̊k bQc

p̊
k, and that σ � bP cp̊k. If JsKp̊

k does not
diverge when executed from σ we have that 〈JsKp̊

k, σ〉 →∗ 〈skip, σ′〉 and σ′ �
bQcp̊k. We now prove that a run of the product with all but one execution being
inactive reflects the states that occur in a run of the original program. Assume
that σ � p(1)∧

∧k
i=2(¬p(i)) and 〈s, σ1〉 →∗ 〈skip, σ′1〉 and initially σ '1 σ1, which

implies σ1 � P . We prove by induction on the derivation of 〈s, σ1〉 →∗ 〈skip, σ′1〉
that 〈JsKp̊

k, σ〉 →∗ 〈skip, σ′〉 and σ′ '1 σ
′
1, meaning that the product execution

terminates, and subsequently by induction on the derivation of 〈JsKp̊
k, σ〉 →∗

〈skip, σ′〉 that σ′ '1 σ
′
1, from which we can derive that σ′1 � Q. ut

5.2 Soundness for Relational Specifications

The main advantage of modular product programs over other kinds of product
programs is that it allows reasoning about procedure calls in terms of relational
specifications. We therefore need to show the soundness of our approach in the
presence of procedures with such specifications. In particular, we must establish
that if a transformed relational specification holds for a modular product then
the original relational specification will hold for a set of k executions of the
original program.

Our proof sketch is phrased in terms of biprograms as introduced by Banerjee
et al. [5]. Biprogram executions correspond to two partly aligned executions of
their two underlying programs. A biprogram ss can have the form (s1|s2) or
‖s‖; the former represents the two executions of s1 and s2, whereas the latter
represents an aligned execution of s by both executions, which enables using
relational specifications for procedure calls3. We denote the small-step transition
relation between biprogram configurations as 〈ss, σ1|σ2〉 V∗ 〈ss′, σ′1|σ′2〉. We
make use of a relation σ u σ1|σ2 that denotes that σ contains renamed versions
of all variables in both σ1 and σ2 with the same values.

Biprograms do not allow mixed procedure specifications, meaning that a
procedure can either have only a unary specification, or it can have only a
relational specification, in which case it can only be invoked by both executions
simultaneously. As mentioned before, our approach does not have this limitation,
but we can artificially enforce it for the purposes of the soundness proof.

We can now state our theorem. Since biprograms represent the execution of
two programs, we formulate soundness for k = 2 here.

Theorem 2. Assume that hypothesis context Φ maps procedure names to re-
lational specifications if all calls to the procedure in s can be aligned from any
pair of states satisfying P̂ , and to unary specifications otherwise. Assume further
that hypothesis context Φ′ maps the same procedure names to their transformed
specifications. Finally, assume that Φ′ ` JsKp̊

2 : bP̂ cp̊2 bQ̂c
p̊
2 and (σ1, σ2) � P̂ .

If 〈s, σ1〉 →∗ 〈skip, σ′1〉 and 〈s, σ2〉 →∗ 〈skip, σ′2〉, then (σ′1, σ′2) � Q̂.

Proof (Sketch). The proof follows the same basic outline as the one for Theo-
rem 1 but reasons about the operational semantics of biprograms representing
two executions of s.

Assume that Φ′ ` JsKp̊
2 : bP̂ cp̊2 bQ̂c

p̊
2 and σ � bP̂ cp̊2. If JsKp̊

2 does not diverge
when executed from σ we get that 〈JsKp̊

2, σ〉 →∗ 〈skip, σ′〉 and σ′ � bQ̂cp̊2. Assume
that initially σ u σ1|σ2, which implies that (σ1, σ2) � P̂ . We prove by induction
on the derivation of 〈JsKp̊

2, σ〉 →∗ 〈skip, σ′〉 that (1) if σ � p(1) ∧ p(2), then there
exists ss that represents two executions of s s.t. 〈ss, σ1|σ2〉 V∗ 〈‖skip‖, σ′1|σ′2〉
and σ′ u σ′1|σ′2; (2) if σ � p(1) ∧ ¬p(2), then 〈s, σ1〉 →∗ 〈skip, σ′1〉 and σ′ u
σ′1|σ2; (3) if σ � ¬p(1) ∧ p(2), then 〈s, σ2〉 →∗ 〈skip, σ′2〉 and σ′ u σ1|σ′2; (4) if
σ � ¬p(1) ∧ ¬p(2), then σ ' σ′. From the first point and semantic consistency
3 We modified the original notation to avoid clashes with our own concepts introduced
earlier.

of the relational logic, we can conclude that (σ′1, σ′2) � Q̂. Finally, we prove that
〈JsKp̊

2, σ〉 →∗ 〈skip, σ′〉 by showing that non-termination of the product implies
the non-termination of at least one of the two original program runs. If the
condition of a loop in the product remains true forever, the loop condition of at
least one encoded execution must be true after every iteration. We show that
(1) this is not due to an interaction of multiple executions, since the condition
for every execution will remain false if it becomes false once, and (2) since the
encoded states of active executions progress as they do in the original program,
the condition of a single execution in the product remains true forever only if it
does in the original program. A similar argument shows that the product cannot
diverge because of infinite recursive calls. ut

5.3 Completeness

We believe modular product programs to be complete, meaning that any hyper-
property of multiple executions of a program can be proved about its modular
product program. Since the product faithfully models the executions of the orig-
inal program, the completeness of modular products is potentially limited only
by the underlying verification logic and the assertion language, but not by the
product construction itself.

6 Modular Verification of Secure Information Flow

In this section, we demonstrate the expressiveness of modular product programs
by showing how they can be used to verify an important hyperproperty, informa-
tion flow security. We first concentrate on secure information flow in the classical
sense [9], and later demonstrate how the ability to check relational assertions at
any point in the program can be exploited to prove advanced properties like the
absence of timing and termination channels, and to encode declassification.

6.1 Non-Interference

Secure information flow, i.e., the property that secret information is not leaked
to the public outputs of a program, can be expressed as a relational 2-safety
property of a program called non-interference. Non-interference states that, if
a program is run twice, with the public (often called low) inputs being equal
in both runs but the secret (or high) inputs possibly being different, the public
outputs of the program must be equal in both runs [8]. This property guarantees
that the high inputs do not influence the low outputs.

We can formalize non-interference as follows:

Definition 2. A statement s that operates on a set of variables X = {x1, . . . , xn},
of which some subset Xl ⊆ X is low, satisfies non-interference iff for all σ1, σ2
and σ′1, σ′2, if ∀x ∈ Xl. σ1(x) = σ2(x) and 〈s, σ1〉 →∗ 〈skip, σ′1〉 and 〈s, σ2〉 →∗
〈skip, σ′2〉 then ∀x ∈ Xl.σ

′
1(x) = σ′2(x).

Since our definition of non-interference describes a hyperproperty, we can
verify it using modular product programs:

Theorem 3. A statement s that operates on a set of variables X = {x1, . . . , xn},
of which some subset Xl ⊆ X is low, satisfies non-interference under a unary
precondition P if Φ ` JsKp̊

2 : bP cp̊2 ∧ (∀x ∈ Xl. x
(1) = x(2)) ∀x ∈ Xl. x

(1) = x(2)

Proof (Sketch). Since non-interference can be expressed using a 2-relational spec-
ification, the theorem follows directly from Theorem 2. ut

For non-deterministic programs whose behavior can be modelled by adding
input parameters representing the non-deterministic choices, those parameters
can be considered low if the choice is not influenced in any way by secret data.

An expanded notion of secure information flow considers observable events
in addition to regular program outputs [17]. An event is a statement that has an
effect that is visible to an outside observer, but may not necessarily affect the
program state. The most important examples of events are output operations like
printing a string to the console or sending a message over a network. Programs
that cause events can be considered information flow secure only if the sequence
of produced events is not influenced by high data. One way to verify this using
our approach is to track the sequence of produced events in a ghost variable
and verify that its value never depends on high data. This approach requires
substantial amounts of additional specifications.

Modular product programs offer an alternative approach for preventing leaks
via events, since they allow formulating assertions about the relation between the
activation variables of different executions. In particular, if a given event has the
precondition that all activation variables are equal when the event statement is
reached then this event will either be executed by both executions or be skipped
by both executions. As a result, the sequence of events produced by a program
will be equal in all executions.

6.2 Information Flow Specifications

The relational specifications required for modularly proving non-interference
with the previously described approach have a specific pattern: they can contain
functional specifications meant to be valid for both executions (e.g., to make
sure both executions run without errors), they may require that some informa-
tion is low, which is equivalent to the two renamings of the same expression
being equal, and, in addition, they may assert that the control flow at a specific
program point is low.

We therefore introduce modular information flow specifications, which can
express all properties required for proving secure information flow but are trans-
parent w.r.t. the encoding or the verification methodology, i.e., they allow ex-
pressing that a given operation or value must not be secret without knowledge
of the encoding of this fact into an assertion about two different program exe-
cutions. We define information flow specifications as follows:

(SIFAssertions) P̃ ::= P̃ ∧ P̃ | e | low(e) | lowEvent | P̃ ⇒ P̃ | ∀x. P̃

deep̊ = (p(1) ⇒ e(1)) ∧ (p(2) ⇒ e(2))
dlow(e)ep̊ = (p(1) ∧ p(2) ⇒ e(1) = e(2))
dlowEventep̊ = p(1) = p(2)

dP̃1 ∧ P̃2ep̊ = dP̃1ep̊ ∧ dP̃2ep̊
dP̃1 ⇒ P̃2ep̊ = dP̃1ep̊ ⇒ dP̃2ep̊

d∀x. P̃ ep̊ = ∀x(1), x(2). x(1) = x(2) ⇒ dP̃ ep̊

Fig. 5. Translation of information flow specifications.

low(e) and lowEvent may be used on the left side of an implication only if the
right side has the same form. low(e) specifies that the value of the expression e is
not influenced by high data. Note that e can be any expression and is not limited
to variable references; this reflects the fact that our approach can label secrecy in
a more fine-grained way than, e.g., a type system. One can, for example, declare
to be public whether a number is odd while keeping its value secret.

lowEvent specifies that high data must not influence if and how often the cur-
rent program point is reached by an execution, which is a sufficient precondition
of any statement that causes an observable event. In particular, if a procedure
outputs an expression e, the precondition lowEvent ∧ low(e) guarantees that no
high information will be leaked via this procedure.

Information flow specifications can express complex properties. e1 ⇒ low(e2),
for example, expresses that if e1 is true, e2 must not depend on high data;
e1 ⇒ lowEvent says the same about the current control flow. A possible use case
for these assertions is the precondition of a library function that prints e2 to a
low-observable channel if e1 is true, and to a secure channel otherwise.

The encoding dP̃ ep̊ of an information flow assertion P̃ under the activation
variables p(1) and p(2) is defined in Figure 5. Note that high-ness of some expres-
sion is not modelled by its renamings being definitely unequal, but by leaving
underspecified whether they are equal or not, meaning that high-ness is simply
the absence of the knowledge of low-ness. As a result, it is never necessary to
specify explicitly that an expression is high. This approach (which is also used
in self-composition) is analogous to the way type systems encode security levels,
where low is typically a subtype of high. For the example in Figure 1, a possible,
very precise information flow specification could say that the results of main are
low if the first bit of all entries in people is low. We can write this as main :
low(|people|)∧∀i ∈ {0, . . . , |people|− 1}. low(people[i] mod 2) low(count). In
the product, this will be translated to main : p1∧p2⇒ |people1| = |people2|∧∀i ∈
{0, . . . , |people1| − 1}. (people1[i] mod 2) = (people2[i] mod 2) count1 =
count2.

In this scenario, the loop in main could have the simple invariant low(i) ∧
low(count), and the procedure is_female could have the contract is_female :
true (low(person mod 2) ⇒ low(res)). This contract follows a useful pattern
where, instead of requiring an input to be low and promising that an output will
be low for all calls, the output is decribed as conditionally low based on the level
of the input, which is more permissive for callers.

procedure check (password , i n p u t)
r e t u r n s (r e s u l t)

{
r e s u l t := | password | == | i n p u t | ;
i := 0 ;
w h i l e (i < min (| password | , | i n p u t |) {

r e s u l t := r e s u l t && password [i] == i n p u t [i] ;
i := i + 1 ;

}
}

Fig. 6. Password check example: Leaking secret data is desired.

The example shows that the information relevant for proving secure informa-
tion flow can be expressed concisely, without requiring any knowledge about the
methodology used for verification. Modular product programs therefore enable
the verification of the information flow security of main based solely on modular,
relational specifications, and without depending on functional specifications.

6.3 Secure Information Flow with Arbitrary Security Lattices

The definition of secure information flow used in Definition 2 is a special case
in which there are exactly two possible classifications of data, high and low. In
the more general case, classifications come from an arbitrary lattice 〈L,v〉 of
security levels s.t. for some l1, l2 ∈ L, information from an input with level l1
may influence an output with level l2 only if l1 v l2. Instead of the specification
low(e), information flow assertions can therefore have the form levelBelow(e, l),
meaning that the security level of expression e is at most l.

It is well-known that techniques for verifying information flow security with
two levels can conceptually be used to verify programs with arbitrary finite se-
curity lattices [23] by splitting the verification task into |L| different verification
tasks, one for each element of L. Instead, we propose to combine all these verifi-
cation tasks into a single task by using a symbolic value for l, i.e., declaring an
unconstrained global constant representing l. Specifications can then be trans-
lated as follows:

levelBelow(e, l′) =̂ l′ v l⇒ e(1) = e(2)

Since no information about l is known, verification will only succeed if all
assertions can be proven for all possible values of l, which is equivalent to proving
them separately for each possible value of l.

6.4 Declassification

In practice, non-interference is too strong a property for many use cases. Often,
some leakage of secret data is required for a program to work correctly. Consider
the case of a password check (see Figure 6): A secret internal password is com-
pared to a non-secret user input. While the password itself must not be leaked,

procedure main (h : I n t)
{

w h i l e (h != 0) {
h := h − 1 ;

}
}

procedure main (h : I n t)
{

i := 0 ;
w h i l e (i < h) {

i := i + 1
}
p r i n t (0)

}

Fig. 7. Programs with a termination channel (left), and a timing channel (right). In
both cases, h is high.

the information whether the user input matches the password should influence
the public outcome of the program, which is forbidden by non-interference.

To incorporate this intention, the relevant part of the secret information can
be declassified [24], e.g., via a declassification statement declassify e that de-
clares an arbitrary expression e to be low. With modular products, declassifica-
tion can be encoded via a simple assumption stating that, if the declassification
is executed in both executions, the expression is equal in both executions:

Jdeclassify eKp̊
2 = assume (p(1) ∧ p(2))⇒ e(1) = e(2)

Introducing an assumption of this form is sound if the information flow spec-
ifications from Section 6.2 are used to specify the program. Since high-ness is
encoded as the absence of the knowledge that an expression is equal in both
executions, not by the knowledge that they are different, there is no danger that
assuming equality will contradict current knowledge and thereby cause unsound-
ness. As in the information flow specifications, the declassified expression can be
arbitrarily complex, so that it is for example possible to declassify the sign of an
integer while keeping all other information about it secret.

The example in Fig. 6 becomes valid if we add declassify result at the
end of the procedure, or if we declassify a more complex expression by adding
declassify equal(password, input) at some earlier point. The latter would ar-
guably be safer because it specifies exactly the information that is intended to
be leaked, and would therefore prevent accidentally leaking more if the imple-
mentation of the checking loop was faulty.

This kind of declassification has the following interesting properties: First, it
is imperative, meaning that the declassified information may be leaked (e.g., via
a print statement) after the execution of the declassification statement, but not
before. Second, it is semantic, meaning that the declassification affects the value
of the declassified expression as opposed to, e.g., syntactically the declassified
variable. As a result, it will be allowed to leak any expression whose value con-
tains the same (or a part of the) secret information which was declassified, e.g.,
the expression f(e) if f is a deterministic function and e has been declassified.

6.5 Preventing Termination Channels

In Definition 2, we have considered only terminating program executions. In
practice, however, termination is a possible side-channel that can leak secret
information to an outside observer. Figure 7 (left) shows an example of a program
that verifies under the methodology presented so far, but leaks information about
the secret input h to an observer: If h is initially negative, the program will
enter an endless loop. Anyone who can observe the termination behavior of the
program can therefore conclude if h was negative or not.

To prevent leaking information via a termination side channel, it is necessary
to verify that the termination of a program depends only on public data. We will
show that modular product programs are expressive enough to encode and check
this property. We will focus on preventing non-termination caused by infinite
loops here; preventing infinite recursion works analogously. In particular, we want
to prove that if a loop iterates forever in one execution, any other execution with
the same low inputs will also reach this loop and iterate forever. More precisely,
this means that

(A) if a loop does not terminate, then whether or not an execution reaches that
loop must not depend on high data.

(B) whether a loop that is reached by both executions terminates must not
depend on high data.

We propose to verify these properties by requiring additional specifications
that state, for every loop, an exact condition under which it terminates. This
condition may neither over- nor underapproximate the termination behavior; the
loop must terminate if and only if the condition is true. For Figure 7 (left) the
condition is h ≥ 0. We also require a ranking function for the cases when the
termination condition is true. We can then prove the following:

(a) If the termination condition of a loop evaluates to false, then any two ex-
ecutions with identical low inputs either both reach the loop or both do
not reach the loop (i.e., reaching the loop is a low event). This guarantees
property (A) above.

(b) For loops executed by both executions, the loop’s termination condition is
low. This guarantees property (B) under the assumption that the termina-
tion condition is exact.

(c) The termination condition is sound, i.e., every loop terminates if its termi-
nation condition is true. We prove this by showing that if the termination
condition is true, we can prove the termination of the loop using the supplied
ranking function.

(d) The termination condition is complete, i.e., every loop terminates only if its
termination condition is true. We prove this by showing that if the condition
is false, the loop condition will always remain true. This check, along with the
previous proof obligation, ensures that the termination condition is exact.

(e) Every statement in a loop body terminates if the loop’s termination con-
dition is true, i.e., the loop’s termination condition implies the termination
conditions of all statements in its body.

term(w, c) = cond:=ec;
assert ¬ec ⇒ lowEvent; // checks (a)
assert low(ec); // checks (b)
assert ec ⇒ er ≥ 0; // checks (c)
assert c⇒ ec; // checks (e)
while (e)
invariant ¬cond⇒ e // checks (d)
do {

if (cond) then {rank:=er};
term(s, cond);
if (cond) then {

assert 0 ≤ er ∧ er < rank
}

// checks (c)

}

Fig. 8. Program instrumentation for termination leak prevention. We abbreviate
while (e) terminates(ec, er) do {s} as w.

We introduce an annotated while loop while (e) terminates(ec, er) do {s},
where ec is the exact termination condition and er is the ranking function,
i.e., an integer expression whose value decreases with every loop iteration but
never becomes negative if the termination condition is true. Based on these
annotations, we present a program instrumentation term(s, c) that inserts the
checks outlined above for every while loop in s. c is the termination condition
of the outside scope, i.e., for the instrumentation of a nested loop, it is the
termination condition ec of the outer loop. The instrumentation is defined for
annotated while loops in Figure 8; for all other statements, it does not make
any changes except instrumenting all substatements. The instrumentation uses
information flow assertions as defined in Section 6.2. Again, we make use of
the fact that modular products allow checking relational assertions at arbitrary
program points and formulating assertions about the control flow.

We now prove that if an instrumented statement verifies under some 2-
relational precondition then any two runs from a pair of states fulfilling that
precondition will either both terminate or both loop forever.

Theorem 4. If s′ = term(s, false), and Js′Kp̊
2 verifies under some precondition

P = bP̂ cp̊2, and for some σ1, σ2, σ
′
1, (σ1, σ2) � P̂ and 〈s, σ1〉 →∗ 〈skip, σ′1〉, then

there exists some σ′2 s.t. 〈s, σ2〉 →∗ 〈skip, σ′2〉.

Proof (Sketch). We first establish that our instrumentation ensures that each
statement terminates (1) if and (2) only if its termination condition is true, (1)
by showing equivalence to a standard termination proof, and (2) by a contra-
diction if a loop which should not terminate does. Since the execution from σ1
terminates, by the second condition, its termination condition must have been
true before the loop. We case split on whether the other execution also reaches
the loop or not. If it does then the termination condition before the loop is

identical in both executions, so by the first condition, the other execution also
terminates. If it does not then the loop is not executed at all by the other exe-
cution, and therefore cannot cause non-termination. ut

6.6 Preventing Timing Channels

A program has a timing channel if high input data influences the program’s
execution time, meaning that an attacker who can observe the time the program
executes can gain information about those secrets. Timing channels can occur
in combination with observable events; the time at which an event occurs may
depend on a secret even if the overall execution time of a program does not.

Consider the example in Figure 7 (right). Assuming main receives a positive
secret h, both the print statement and the end of the program execution will be
reached later for larger values of h.

Using modular product programs, we can verify the absence of timing side
channels by adding ghost state to the program that tracks the time passed since
the program has started; this could, for example, be achieved via a simple step
counting mechanism, or by tracking the sequence of previously executed bytecode
statements. This ghost state is updated separately for both executions. We can
then assert anywhere in the program that the passed time does not depend
on high data in the same way we do for program variables. In particular, we
can enforce that the passed time is equal whenever an observable event occurs,
and we can enable users to write relational specifications that compare the time
passed in both executions of a loop or a procedure.

7 Implementation and Evaluation

We have implemented our approach for secure information flow in the Viper
verification infrastructure [22] and applied it to a number of example programs
from the literature. Both the implementation and examples are available at
http://viper.ethz.ch/modularproducts/.

7.1 Implementation in Viper

Our implementation supports a version of the Viper language that adds the
following features:

1. The assertions low(e) and lowEvent for information flow specifications
2. A declassify statement
3. Variations of the existing method declarations and while loops that include

the termination annotations shown in Section 6.5

The implementation transforms a program in this extended language into a
modular 2-product in the original language, which can then be verified by the
(unmodified) Viper back-end verifiers. All specifications are provided as infor-
mation flow specifications (see Section 6.2) such that users require no knowledge

about the transformation or the methodology behind information flow verifica-
tion. Error messages are automatically translated back to the original program.

Declassification is implemented as described in Section 6.4. Our implemen-
tation optionally verifies the absence of timing channels; the metric chosen for
tracking execution time is simple step-counting. Viper uses implicit dynamic
frames [25] to reason about heap-manipulating programs; our implementation
uses quantified permissions [21] to support unbounded heap data structures.

For languages with opaque object references, secure information flow can re-
quire that pointers are low, i.e., equal up to a consistent renaming of addresses.
Therefore, our approach to duplicating the heap state space in the implemen-
tation differs from that described in Section 4.3: Instead of duplicating objects,
our implementation creates a single new statement for every new in the original
program, but duplicates the fields each object has. As a result, if both executions
execute the same new statement, the newly created object will be considered low
afterwards (but the values of its fields might still be high).

7.2 Qualitative Evaluation

We have evaluated our implementation by verifying a number of examples in
the extended Viper language. The examples are listed in Table 1 and include
all code snippets shown in this paper as well as a number of examples from the
literature [2,3,6,13,14,17,18,23,26,28]. They combine complex language features
like mutable state on the heap, arrays and procedure calls, as well as timing and
termination channels, declassification, and non-trivial information flows (e.g.,
flows whose legality depends on semantic information not available in a standard
information flow type system). We manually added pre- and postconditions as
well as loop invariants; for those that have forbidden flows and therefore should
not verify, we also added a legal version that declassifies the leaked information.
Our implementation returns the correct result for all examples.

In all cases but one, our approach allows us to express all information flow
related assertions, i.e., procedure specifications and loop invariants, purely as
relational specifications in terms of low-assertions (see Table 1). For all these
examples, we completely avoid the need to specify the functional behavior of the
program. Unlike the original product program paper [6], we also do not inline
any procedure calls; verification is completely modular.

The only exception is an example that, depending on a high input, executes
different loops with identical behavior, and for which we need to prove that
the execution time is low. In this case we have to provide invariants for both
loops that exactly specify their execution time in order to prove that the overall
execution time after the conditional is low. Nevertheless, the specification of the
procedure containing the loop is again expressed with a relational specification
using only low. For all other examples, unary specifications were only needed to
verify the absence of runtime errors (e.g., out-of-bounds array accesses), which
Viper verifies by default. Consequently, a verified program cannot leak low data
through such errors, which is typically not guaranteed by type systems or static
analyses.

File Event Heap Array Decl. Term. Time Call LOC Ann/SF/NI/TM/F TV CG TSE

antopolous1 [2] x 25 7/3/3/0/2 0.78 1.10
antopolous2 [2] x x 61 14/0/14/0/0 0.72 0.91
banerjee [3] x x x 76 17/11/6/0/0 1.02 0.61
constanzo [13] x x 22 7/2/5/0/0 0.67 0.28
darvas [14] x x 33 12/8/4/0/0 0.67 0.35
example x x 31 7/1/6/0/0 0.73 0.59
example_decl x x 19 5/2/3/0/0 0.72 0.77
example_term x x 31 8/4/2/2/0 0.77 0.43
example_time x x x x 32 9/0/9/0/0 0.70 0.38
joana_1_tl [17] x x x 28 1/0/1/0/0 0.62 0.23
joana_2_bl [17] x x 18 2/0/2/0/0 0.63 0.25
joana_2_t [17] x 15 1/0/1/0/0 0.62 0.20
joana_3_bl [17] x x x x 47 5/1/2/2/0 0.77 0.47
joana_3_br [17] x x x x 43 8/0/2/6/0 0.83 0.60
joana_3_tl [17] x x x 33 8/2/2/4/0 0.75 0.53
joana_3_tr [17] x x x x 35 8/4/2/2/0 0.76 0.51
joana_13_l [17] x 12 1/0/1/0/0 0.62 0.24
kusters [18] x x 29 9/6/3/0/0 0.64 0.44
naumann [23] x x 20 6/3/6/0/0 0.81 0.88
product [6] x x x 65 30/21/21/0/0 5.47 15.73
smith [26] x x 43 12/6/8/0/0 0.87 0.89
terauchi1 [28] 14 2/0/2/0/0 0.62 0.26
terauchi2 [28] x x 21 4/0/4/0/0 0.63 0.30
terauchi3 [28] 24 5/1/4/0/0 0.66 0.40

Table 1. Evaluated examples. We show the used language features, lines of code in-
cluding specifications, overall lines used for specifications (Ann), unary specifications
for safety (SF), relational specifications for non-interference (NI), specifications for ter-
mination (TM), and functional specifications required for non-interference (F). Note
that some lines contain specifications belonging to multiple categories. Columns TSE

and TV CG show the running times of the verifiers for the SE backend and the VCG
backend, respectively, in seconds.

7.3 Performance

For all but one example, the runtime (averaged over 10 runs on a Lenovo
ThinkPad T450s running Ubuntu) with both the Symbolic Execution (SE) and
the Verification Condition Generation (VCG) verifiers is under or around one
second (see Table 1). The one exception, which makes extensive use of unbounded
heap data structures, takes ca. five seconds when verified using VCG, and 15 in
the SE verifier. This is likely a result of inefficiencies in our encoding: The created
product has a high number of branching statements, and some properties have
to be proved more than once, two issues which have a much larger performance
impact for SE than for VCG. We believe that it is feasible to remove much of
this overhead by optimizing the encoding; we leave this as future work.

8 Related Work

The notion of k-safety hyperproperties was originally introduced by Clarkson
and Schneider [12]. Here, we focus on statically proving hyperproperties for im-
perative and object-oriented programs; much more work exists for testing or

monitoring hyperproperties like secure information flow at runtime, or for rea-
soning about hyperproperties in different programming paradigms.

Relational logics such as Relational Hoare Logic [11], Relational Separation
Logic [29] and others [1, 10] allow reasoning directly about relational properties
of two different program executions. Unlike our approach, they usually allow
reasoning about the executions of two different programs; as a result, they do
not give special support for two executions of the same program calling the same
procedure with a relational specification. Recently, Banerjee et al. [5] introduced
biprograms, which allow explicitly expressing alignment between executions and
using relational specifications to reason about aligned calls; however, this ap-
proach requires that procedures with relational specifications are always called
by both executions, which is for instance not the case if a call occurs under a
high guard in secure information flow verification. We handle such cases by in-
terpreting relational specifications as trivially true; one can then still resort to
functional specifications to complete the proof. Their work also does not allow
mixed specifications, which are easily supported in our product programs. Rela-
tional program logics are generally difficult to automate. Recent work by Sousa
and Dillig [27] presents a logic that can be applied automatically by an algorithm
that implicitly constructs different product programs that align some identical
statements, but does not fully support relational specifications. Moreover, their
approach requires dedicated tool support, whereas our modular product pro-
grams can be verified using off-the-shelf tools.

The approach of reducing hyperproperties to ordinary trace properties was
introduced by self-composition [9]. While self-composition is theoretically com-
plete, it does not allow modular reasoning with relational specifications. The
resulting problem of having to fully specify program behavior was pointed out
by Terauchi and Aiken [28]; since then, there have been a number of different
attempts to solve this problem by allowing (parts of) programs to execute in
lock-step. Terauchi and Aiken [28] did this for secure information flow by relying
on information from a type system; other similar approaches exist [23].

Product programs [6, 7] allow different interleavings of program executions.
The initial product program approach [6] would in principle allow the use of
relational specifications for procedure calls, but only under the restriction that
both program executions always follow the same control flow. The generalized
approach [7] allows combining different programs and arbitrary numbers of exe-
cutions. This product construction is non-deterministic and usually interactive.
In some (but not all) cases, programmers can manually construct product pro-
grams that avoid duplicated calls and loops and thereby allow using relational
specifications. However, whether this is possible depends on the used specifica-
tion, meaning that the product construction and verification are intertwined and
a new product has to be constructed when specifications change. In contrast, our
new product construction is fully deterministic and automatic, allows arbitrary
control flows while still being able to use relational specifications for all loops
and calls, and therefore avoids the issue of requiring full functional specifications.

Considerable work has been invested into proving specific hyperproperties
like secure information flow. One popular approach is the use of type systems
[26]; while those are modular and offer good performance, they overapproximate
possible program behaviors and are therefore less precise than approaches using
logics. In particular, they require labeling any single value as either high or
low, and do not allow distinctions like the one we made for the example in
Fig. 1, where only the first bits of a sequence of integers were low. In addition,
type systems typically struggle to prevent information leaks via side channels
like termination or program aborts. There have been attempts to create type
systems that handle some of these limitations (e.g. [15]).

Static analyses [2, 17] enable fully automatic reasoning. They are typically
not modular and, similarly to type systems, need to abstract semantic informa-
tion, which can lead to false positives. They strike a trade-off different from our
solution, which requires specifications, but enables precise, modular reasoning.

A number of logic-based approaches to proving specific hyperproperties exist.
As an example, Darvas et al. use dynamic logic for proving non-interference [14];
this approach offers some automation, but requires user interaction for most
realistic programs. Leino et al. [19] verify determinism up to equivalence using
self-composition, which suffers from the drawbacks explained above.

Different kinds of declassification have been studied extensively, Sabelfeld
and Sands [24] provide a good overview. Li and Zdancewic [20] introduce down-
grading policies that describe which information can be declassified and, similar
to our approach, can do so for arbitrary expressions.

9 Conclusion and Future Work

We have presented modular product programs, a novel form of product programs
that enable modular reasoning about k-safety hyperproperties using relational
specifications with off-the-shelf verifiers. We showed that modular products are
expressive enough to handle advanced aspects of secure information flow verifi-
cation. They can prove the absence of termination and timing side channels and
encode declassification. Our implementation shows that our technique works in
practice on a number of challenging examples from the literature, and exhibits
good performance even without optimizations.

For future work, we plan to infer relational properties by using standard
program analysis techniques on the products. We also plan to generalize our
technique to prove probabilistic secure information flow for concurrent program
by combining our encoding with ideas from concurrent separation logic. Finally,
we plan to optimize our encoding to further improve performance.

Acknowledgements. We would like to thank Toby Murray and David Nau-
mann for various helpful discussions. We are grateful to the anonymous reviewes
for their valuable comments. We also gratefully acknowledge support from the
Zurich Information Security and Privacy Center (ZISC).

References

1. A. Aguirre, G. Barthe, M. Gaboardi, D. Garg, and P. Strub. A relational logic for
higher-order programs. PACMPL, 1(ICFP):21:1–21:29, 2017.

2. T. Antonopoulos, P. Gazzillo, M. Hicks, E. Koskinen, T. Terauchi, and S. Wei.
Decomposition instead of self-composition for proving the absence of timing chan-
nels. In Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2017, Barcelona, Spain, June 18-23,
2017, pages 362–375, 2017.

3. A. Banerjee and D. A. Naumann. Secure information flow and pointer confinement
in a java-like language. In 15th IEEE Computer Security Foundations Workshop
(CSFW-15 2002), 24-26 June 2002, Cape Breton, Nova Scotia, Canada, page 253,
2002.

4. A. Banerjee and D. A. Naumann. A logical analysis of framing for specifications
with pure method calls. In Verified Software: Theories, Tools and Experiments -
6th International Conference, VSTTE 2014, Vienna, Austria, July 17-18, 2014,
Revised Selected Papers, pages 3–20, 2014.

5. A. Banerjee, D. A. Naumann, and M. Nikouei. Relational logic with framing
and hypotheses. In 36th IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, FSTTCS 2016, December 13-15,
2016, Chennai, India, pages 11:1–11:16, 2016.

6. G. Barthe, J. M. Crespo, and C. Kunz. Relational verification using product
programs. In FM 2011: Formal Methods - 17th International Symposium on Formal
Methods, Limerick, Ireland, June 20-24, 2011. Proceedings, pages 200–214, 2011.

7. G. Barthe, J. M. Crespo, and C. Kunz. Beyond 2-safety: Asymmetric product
programs for relational program verification. In Logical Foundations of Computer
Science, International Symposium, LFCS 2013, San Diego, CA, USA, January
6-8, 2013. Proceedings, pages 29–43, 2013.

8. G. Barthe, P. R. D’Argenio, and T. Rezk. Secure information flow by self-
composition. In 17th IEEE Computer Security Foundations Workshop, (CSFW-17
2004), 28-30 June 2004, Pacific Grove, CA, USA, pages 100–114, 2004.

9. G. Barthe, P. R. D’Argenio, and T. Rezk. Secure information flow by self-
composition. Mathematical Structures in Computer Science, 21(6):1207–1252,
2011.

10. G. Barthe, B. Grégoire, and S. Z. Béguelin. Formal certification of code-based
cryptographic proofs. In Proceedings of the 36th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 2009, Savannah, GA,
USA, January 21-23, 2009, pages 90–101, 2009.

11. N. Benton. Simple relational correctness proofs for static analyses and program
transformations. In Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2004, Venice, Italy, January 14-
16, 2004, pages 14–25, 2004.

12. M. R. Clarkson and F. B. Schneider. Hyperproperties. Journal of Computer
Security, 18(6):1157–1210, 2010.

13. D. Costanzo and Z. Shao. A separation logic for enforcing declarative information
flow control policies. In Principles of Security and Trust - Third International
Conference, POST 2014, Held as Part of the European Joint Conferences on The-
ory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014,
Proceedings, pages 179–198, 2014.

14. Á. Darvas, R. Hähnle, and D. Sands. A theorem proving approach to analysis of
secure information flow. In Security in Pervasive Computing, Second International
Conference, SPC 2005, Boppard, Germany, April 6-8, 2005, Proceedings, pages
193–209, 2005.

15. Z. Deng and G. Smith. Lenient array operations for practical secure information
flow. In 17th IEEE Computer Security Foundations Workshop, (CSFW-17 2004),
28-30 June 2004, Pacific Grove, CA, USA, page 115, 2004.

16. N. Francez. Fairness. Springer-Verlag New York, Inc., New York, NY, USA, 1986.
17. D. Giffhorn and G. Snelting. A new algorithm for low-deterministic security. Int.

J. Inf. Sec., 14(3):263–287, 2015.
18. R. Küsters, T. Truderung, B. Beckert, D. Bruns, M. Kirsten, and M. Mohr. A

hybrid approach for proving noninterference of java programs. In IEEE 28th Com-
puter Security Foundations Symposium, CSF 2015, Verona, Italy, 13-17 July, 2015,
pages 305–319, 2015.

19. K. R. M. Leino and P. Müller. Verification of equivalent-results methods. In
S. Drossopoulou, editor, European Symposium on Programming (ESOP), volume
4960 of Lecture Notes in Computer Science, pages 307–321. Springer-Verlag, 2008.

20. P. Li and S. Zdancewic. Downgrading policies and relaxed noninterference. In
Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2005, Long Beach, California, USA, January 12-
14, 2005, pages 158–170, 2005.

21. P. Müller, M. Schwerhoff, and A. J. Summers. Automatic verification of iterated
separating conjunctions using symbolic execution. In S. Chaudhuri and A. Farzan,
editors, Computer Aided Verification (CAV), volume 9779 of LNCS, pages 405–425.
Springer-Verlag, 2016.

22. P. Müller, M. Schwerhoff, and A. J. Summers. Viper: A verification infrastructure
for permission-based reasoning. In B. Jobstmann and K. R. M. Leino, editors,
Verification, Model Checking, and Abstract Interpretation (VMCAI), volume 9583
of LNCS, pages 41–62. Springer-Verlag, 2016.

23. D. A. Naumann. From coupling relations to mated invariants for checking infor-
mation flow. In Computer Security - ESORICS 2006, 11th European Symposium
on Research in Computer Security, Hamburg, Germany, September 18-20, 2006,
Proceedings, pages 279–296, 2006.

24. A. Sabelfeld and D. Sands. Dimensions and principles of declassification. In 18th
IEEE Computer Security Foundations Workshop, (CSFW-18 2005), 20-22 June
2005, Aix-en-Provence, France, pages 255–269, 2005.

25. J. Smans, B. Jacobs, and F. Piessens. Implicit dynamic frames. ACM Trans.
Program. Lang. Syst., 34(1):2:1–2:58, 2012.

26. G. Smith. Principles of secure information flow analysis. In Malware Detection,
pages 291–307. 2007.

27. M. Sousa and I. Dillig. Cartesian hoare logic for verifying k-safety properties. In
Proceedings of the 37th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2016, Santa Barbara, CA, USA, June 13-17,
2016, pages 57–69, 2016.

28. T. Terauchi and A. Aiken. Secure information flow as a safety problem. In Static
Analysis, 12th International Symposium, SAS 2005, London, UK, September 7-9,
2005, Proceedings, pages 352–367, 2005.

29. H. Yang. Relational separation logic. Theor. Comput. Sci., 375(1-3):308–334, 2007.

