SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Expei2012;00:1-23
Published online in Wiley InterScience (www.intersciemgtey.com). DOI: 10.1003pe

A generic static analyzer for multithreaded Java programs

P. Ferrara

ETH Zurich, Switzerland

SUMMARY

In this paper we presefitheckmate, the first generic static analyzer of multithreadiesta programs based
on abstract interpretatiotheckmate can be tuned at fferent levels of precision andf&iency in order to
prove various properties (e.g., absence of divisions by aed data races), and it is sound for multithreaded
programs. It supports all the most relevant features of dautithreading, such as dynamic thread creation,
runtime creation of monitors, and dynamic allocation of meynThe experimental results demonstrate that
Checkmate is accurate, andficient enough to analyze programs with some thousands ehst¢aits and a
potentially infinite number of threads. Copyright2012 John Wiley & Sons, Ltd.

Received ...

KEY WORDS: Static Analysis, Generic Analyzers, Abstradehpretation, Multithreaded Programs

1. INTRODUCTION

Testing and debugging multithreaded programs is partiguldifficult [1]. Because of the
interleaving of parallel threads during execution, it ischéo expose specific bugs and, even if
these are produced, sometimes it is arduous to reproduce theaddition, some executions may
be exposed only by specific compilers, virtual machines,asdWvare architectures. On the other
hand, concurrency may significantly speed up the execufiprograms.

For these reasons, tools that discover bugs in multithcead&ware are particularly desirable
[2]. They should find classical bugs (e.g., null pointer aceesand divisions by zero) as well
as concurrency errors (e.g., data races and deadlocksy, tdals based on static analysis prove
a property on all possible executions by over-approxingatire semantics of a program. In this
context, generic analyzers have been deeply studied. Téfayedthe semantics of statements and
programs such that the analysis can be plugged with varlmtsst domains, and can check several
properties.

Many generic static analyzers based on abstract intetjmetg, 4] have been formalized and
implemented. They can be fitted withfidirent domains, to obtain faster and more approximated
or slower and more refined analyses, and in order to analyieretit properties. Some examples
of these analyzers a® ousot [5], Cibai [6], and Julia [7]. None of these analyzers supports
multithreading.

1.1. Contribution

In this paper we presefitheckmate®, a generic analyzer of multithreadéalva programs, based on
abstract interpretation. It can be plugged witfielient numerical domains, properties, and memory
models Checkmate combines and implements several approacBg3, [LO] into one practical and
useful analyzer.

“http://www.pm.inf.ethz.ch/people/pferrara/Checkmate/

Copyright© 2012 John Wiley & Sons, Ltd.
Prepared usingspeauth.cls [Version: 20100513 v3.00]



2 PIETRO FERRARA

The main technical features @heckmate are: (i) it works at bytecode level]], so it can analyze
libraries whose source code is not available, and progranittewin other languages that compile to
Java bytecode (such as ScalH), (ii) it supports the main features déva multithreading (namely,
dynamic unbounded thread creation, runtime creation anthgement of monitors, and dynamic
allocation of shared memory), and (iii) it supports manytdieas ofJava, such as strings, arrays,
static fields and methods, method-calls in the presencessfaading, overriding and recursion, etc.

The analysis performed Wyheckmate is (i) whole-program, i.e., it analyzes a complete program
starting from itsmain method; (ii) context-sensitive, e.g., it tracks infornoatthrough method calls
and conditional branches; (iii) completely automatic, iteloes not require any manual annotations,
such as contractd g].

We have applie€heckmate to several case studies and benchmarks to study its precsid
efficiency. The experimental results show tli&ieckmate is (i) precise enough to catch common
bugs, (ii) fast enough to be applied to programs contairiing$ands of statements and a potentially
unbounded number of threads.

The paper is structured as follows. In the rest of this saatie introduce the running example
used throughout this paper. Sectbdiscusses related work, while Secti®briefly sketches some
background on abstract interpretation, the happens-eaf@mmory model, and its definition in a
fixpoint form. Section4 describes the architecture @heckmate and discusses the main design
choices and limitations. Secti@reports and discusses the experimental results. Finattich6
concludes and discusses future work.

This paper is based on the work published at the 7th IEEErfatemal Conference on Software
Engineering and Formal Methods (SEFM "09)1.

1.2. The Running Example

We introduce a running example to illustrate the main festwfCheckmate. The program in
Figurel runs two threads in parallel. ClaSgstem stores an instance of clagscount in its public
static fielda. Account implements a bank account which allows us to withdraw momelyabtain
its balance. The initial balance is setit@00, and therMyThread is launched. The two threads are
both synchronized on the same moni®ystem prints the balance of the account, whilg Thread
sets the account taull if its balance is less that00; otherwise it withdrawd.00 from the account.

Various properties could be interesting (e.g., the preseofc data races and null pointer
dereferences), but specific numerical domains and memodgleshould be applied to successfully
analyze these properties. We will show in Sectidrow, using diferent parameters ©heckmate,
we can prove the absence of data races and null pointer dameés for this running example.

2. RELATED WORK

Static analysis has already been widely and extensivetijesiuln this section, we briefly sketch its
main achievements in the field of multithreading.

2.1. Model Checking

Context-bounded model checkintf 16] has obtained an important amount of both theoretical and
practical results. Starting from the premise that veridyanconcurrent program (with a context and
synchronization sensitive analysis, when dealing witlilezwous style synchronization primitives)
is undecidable I7], a multithreaded program is analyzed until a given contexind, i.e., the
number of context switches is limited to Instead Checkmate relies on the idea of abstraction,
and it is sound w.r.t. all possible multithreaded execigj@ilowing for an unbounded number of
context switches, all possible multi-core architectuaes] also supporting weak memory models.
Thread-modular model checkingd] reduces the explosion of the state space by considering
each thread separately. The updates of the shared memdoynped by a thread are summarized
by a single environment assumption, and this is used by thiheads to know the values written in

Copyright© 2012 John Wiley & Sons, Ltd. Softw. Pract. Expe(2012)
Prepared usingspeauth.cls DOI: 10.1002spe



A GENERIC STATIC ANALYZER FOR MULTITHREADED JAVA PROGRAMS 3

class System {
public static Account a=new Account();
public static int main(String[] args){
MyThread th=new MyThread();
System.a.balance=1000;
th. start ();
synchronized(System.a) {
System.a.printBalance();
}
}

}
class MyThread {
public void run() {
synchronized(System.a) {
int temp=System.a.getBalance();
if (temp<100)
System.a=null;
else System.a.withdraw(100);
}
}

public class Account {
public int balance=0;
public void withdraw(int amount) {
synchronized(this) {
this.balance—=amount;
}

}
public int getBalance() {
return this.balance;

public void printBalance() {
System.out.printin(this.balance);

}
}

Figure 1. A multithreaded application

parallel.Checkmate also considers each thread separately when computingnisgies, but it can
be tuned at dferent levels of precision andfeiency.

Other authors 9] have proposed intra-procedural analyses which work bynsarizing the
concurrent behavior of other procedures. They consider well-synchronized programs, and so
they are not sound for all possible multithreaded execat{ery., programs containing data races).

2.2. Concurrency Properties

Many approaches have focused on particular concurren@epies, in particular on deadlock and
data race detectio2{)]. They usually take into account only sequentially comsisexecutions, but
this is not sound in the presence of weak memory models. liiadgthese analyses are specific to
a single property.

2.2.1. Data Race Analysidbadi et al. R1] develop a type system to ensure the absence of data
races. This analysis is modular, and it scales, but it reguitanual type annotation.

Naik and Aiken R2] apply a must-not alias analysis through a specific typeesysd check the
absence of data races. Race freedom is proved by checkirifttha locks must not alias the same
monitor, then the accesses to the shared memory must not e @ame location. The overall
analysis is not particularlyfgcient, since it takes more than 3 minutes to analyze only ssela

Kahlon et al. P3] present a model-checking-based analysis to detect de¢s.rahe work is
composed of three phases: (i) discovering which varialilasesinformation, (ii) using a must-alias

Copyright© 2012 John Wiley & Sons, Ltd. Softw. Pract. Expe(2012)
Prepared usingspeauth.cls DOI: 10.1002spe



4 PIETRO FERRARA

analysis to check the owned monitors when shared variabteacessed, and (iii) reducing the
false warnings.

Another data race detector based on model checking is intemtiby Henzinger et al2f]. Its
programming language uses atomic sections for synchrbmizand it is quite dierent from the
lock-based synchronization of Java. Moreover, the expartal results show that the approach is
affected by the state space explosion problem.

2.2.2. Deadlock DetectioMany works have focused on the dynamic detection of deadlock
[25, 26, 27]. As usual when testing programs, these tools can find deksliduring an execution,
but they cannot prove their absence for all possible exegsiof a program.

In the field of static analysis, Williams et al2§] propose an fective analysis that detects
deadlocks osynchronized statements andait invocations. This analysis makes some assumptions
on how a user interacts with libraries. In order to analyzibiaty it supposes that the client code
“well-behaves”. In this way, even if a library is validated this analysis, there may be a deadlock
when using it without respecting these assumptions.

Awargal et al. P9 introduce a type system to detect potential deadlockssyothronized
statements at compile time. The information inferred by stedic analysis is used to check at
runtime only the locks which are not proved to be deadloek-frThe analysis has not been
implemented, but only manually validated by studying theespup of the runtime that uses this
information.

2.3. Other properties

Many static analyses check the absence of null pointer aesdX), 31, 32, 33, divisions by zero

[34, 35, and overflows 36]. Usually these approaches are sound for sequential preggiand they

do not support concurrency. On the other hand, they are oftae precise tha@heckmate, since

we do not develop specific analyses for these properties arapply standard and sometimes rough
abstractions. We think th@theckmate could be extended to support these approaches, but this will
require the support of new features (e.g., relational nicakdomains).

3. BACKGROUND

This section introduces some background which helps wittletstanding the architecture of
Checkmate. In particular, we introduce some basic concepts aboutradisinterpretation, the
happens-before memory model, and its fixpoint computation.

3.1. Abstract Interpretation

Abstract interpretation is a theory to define and soundly@gmate the semantics of a program.
A concrete semantics, aimed at specifying the runtime ptseof interest, is defined. It is then
approximated with an abstract semantics that is computhbtestill precise enough to capture the
property of interest. In particular, the abstract semantiost be composed of an abstract domain, an
abstract transfer function, and a widening operator to ntlakeanalysis convergent if the abstract
domain does not satisfy the ascending chain condition.rAbistnterpretation can be applied to
develop generic analyzer87]. In particular, this theory allows one to define a composidl
analysis, e.g., a generic analysis that can be instantigitecdifferent numerical domains, and to
analyze diferent properties.

3.2. The Happens-Before Memory Model

Memory models define which behaviors are allowed during tkecetion of a multithreaded
program. In particular, they specify which values writtarpiarallel may be read from the shared
memory. Thelava memory model 38] is quite complex, especially from the point of view of stati
analysis. Other memory models have been proposed in thejpasport B9] formalized the rule of

Copyright© 2012 John Wiley & Sons, Ltd. Softw. Pract. Expe(2012)
Prepared usingspeauth.cls DOI: 10.1002spe



A GENERIC STATIC ANALYZER FOR MULTITHREADED JAVA PROGRAMS 5

sequential consistency. It is quite simple, but too redn practice. A good compromise is the
happens-before memory modél]; it is an over-approximation afava’s model, and it is simple
enough to base a static analysis on it.

The core of the happens-before memory model is a partiatioglbetween the actions performed
by a program. In particular, an actiea happens-before another actianif (i) a; appears before
a, in the program order, or (iiq, synchronizes-witta; (e.g.,a, locks a monitor that was released
by aj), or (iii) a; can be reached by following happens-before edges starmgd;. Using this
partial order, the happens-before consistency rule is el@fifhis states that a read of a variable is
allowed to see a write on that variable if (i) it is not the cts# the read happens-before the write,
and (ii) there is no write on the same variable that is exeth&gween the observed write and the
read, thereby overwriting the observed value.

3.3. Fixpoint Definition

In [8] we define the happens-before memory model a way that is amenable to a fixpoint
computation, and then we abstract it with a computable sgosar©On the concrete domain, the
stepfunction defines the possible results (following the haplesefore consistency rule) of one
computational step (atomic at the multithreaded level) given thread, for a given multithreaded
execution. Thestepfunction tracks the “synchronizes-with” relation whenkotg and releasing
monitors, and launching new threads as well. Relying onghiall step operational semantics, a
fixpoint trace semantic$® computes the semantics of a single thread.

Definition 3.1(Single-thread semantiés)
Let o be the initial state of computation.

S° 1 [(Wx Qx TId) — o(StH)]
S°[f,r, 1] = Ifp F°

where

F° : [p(StY) — p(St)]
Fe =AT{oo}U{og —> - > 0j.1 > 000> > 0.1 € TACT EStEF(t,f,I',O'i_l)}

The intuition behind this formal definition is to compute 8emantics of a single thread, given the
identifier of the thread (represented toy TId), an execution of parallel threadsq W), and some
information to track the synchronize-with relatiang(Q). The definition of the trace semantics in
a fixpoint form is standard in abstract interpretation.

This single-thread trace semantics is the basis for theitiefirof the trace semantic$' of a
multithreaded program.

Definition 3.2(Multithread semantics')
S [WxQ - oW x Q)]
S'fo, ro] = Ifipg F"
where
Fil': [p(W x Q) = p(¥ x Q)]

FlIl = a0.{(fo. r0)} U {(Fi, 1iog) - A(fi1,riia) € 1 Vt € don(fiy) :
TE SO[[fi_l, I'i_l,t]],T S Stg,fi(t) = T}
This semantics iterates the single thread semaStiasver all active threads until a fixpoint is
reached. Each iteration may, for each thread, expose newssalritten in parallel, thus causing new

executions during the following iteration. Iterating tipisocess until a fixpoint is reached allows us
to obtain an approximation of all possible multithreadeéloations.

TWithout consideringout-of-thin-air values

Copyright© 2012 John Wiley & Sons, Ltd. Softw. Pract. Expe(2012)
Prepared usingspeauth.cls DOI: 10.1002spe



6 PIETRO FERRARA

JAVA .class
Source towa L Control
Code .cl;gzsigmc #2 » Flow |
o e Graph Result
println("Ok"); ‘fgzsigtlc #2
Sorintin(wow;| [invokevirtual t4 th1: 60—..—>Gi
return Analyzer 5. 50_, oil ™
Numerical Domain
{L,0,+ T}
Property
Memory Model Checker
Happens-before
Property >
D Input of the analysis Data race

D Analyzer
. Result

Figure 2. Overall structure @heckmate

public interface MemoryModel {
public Value get(Reference ref, String field, JVMState state, Statement statement);
public MemoryModel factory(MultiThreadResult prev, int iteration_number);

}

Figure 3. The code of thelemoryModel interface

A similar fixpoint semantics is defined on the abstract domahe main diference is that it
relies on the upper bound operator of the abstract domairotapate one abstract trace that
approximates all the concrete executions, introducing@pmation while achieving computability.
The soundness of this formal system is proved, relying omalis¢ract interpretation framework. We
refer the interested reader to Chapter 3 4f][for the technical details of these definitions and
proofs.

Note that this approach is completely generic w.r.t. theasdios of the programming language,
the domains used to track information on numerical valueferences, etc., and the property of
interest. This will allow us to build up a compositional aymdr of multithreaded programs.

4. ARCHITECTURE

Figure2 depicts the overall structure @theckmate. First of all, Checkmate extracts the control
flow graph of a bytecode program. It then computes an appietiam of the program’s semantics,
i.e., an element of the multithreaded semantics. Intuitjtbis element relates each thread to the
result of its abstract semantics, that is, the abstraa b&fore and after each statement in the control
flow graph. The inputs of the analysis are a memory model, atradi numerical domain, and a
property. FinallyCheckmate checks if the given property is respected by the result obtistract
semantics, and prints a list of warnings.

In this section we briefly sketch the approach adopted foh#ao abstraction, and the interfaces
of the three inputs of the analysis (namely: memory modelmarical domains, and properties).
We sketch an example of interaction and the user interfaxesh.

Copyright© 2012 John Wiley & Sons, Ltd. Softw. Pract. Expe(2012)
Prepared usingspeauth.cls DOI: 10.1002spe



A GENERIC STATIC ANALYZER FOR MULTITHREADED JAVA PROGRAMS 7

4.1. Memory Model

Checkmate implements the approach introduced in Secidhto compute an over-approximation
of all multithreaded executions allowed by the chosen (Wweaémory model. Figur& shows the
code of theMemoryModel interface. This interface contains two methods:

e get is used to read values from the shared memory. Its argumenis geference, a string
identifying the field to be read, the current state (also @imimg the call stack and the thread
that executes the current read), and the statement thads¢oisead the valuget returns the
abstract value read from the given location. Intuitivelyeturns the upper bound of all values
written in parallel by other threads and that can be seenrdicpto the memory model.

e factory creates a new instance of the currdfeémoryModel. Its arguments are an object of
type MultiThreadResult (the class that represents elements of our abstract tipaditioning
trace semantics) and the current iteration number of theithmeladed fixpoint semantics.
factory returns an object of typelemoryModel which provides the values written in parallel
contained in the given state of the thread-partitioningralssdomain.

The happens-before memory model is provided, implementimg interface. In addition,
Checkmate contains two rougher memory models. The reason for impléimgthem is to compare
the computational overhead induced by more precise memodels. The first abstraction ignores
the synchronize-with relation on monitors. The second dse abstracts away the relation that
tracks when and by whom a thread is launched.

4.1.1. LimitationsBoth the approach developed ] [and Checkmate only consider and track
precise information on synchronization via monitors arelldunch of threads. Other synchronize-
with relations (e.g.yolatile variable and rendezvous patterns) are not consideredebetbases,
Checkmate obtains sound but rough results. We made this choice ealgidir two reasons:

e The discussion about what should be or not be supported byreorganodel is still ongoing.

In addition, several novel memory modelg] 43] have recently appeared. Since we did not
want to be bound to a specific model, we focused our attentiofunctionalities that are
always supported by memory models.

e Tracking more and more synchronize-with relations wouldéase both the theoretical and
practical complexity of our approach. Sin€@heckmate is the first generic analyzer that
tracks these types of relations, we wanted to investigatethis afects the complexity of our
approach on standard synchronization patterns beforéageng more advanced features.

We believe thaCheckmate can be extended in order to support other synchronizatitiampa, but
this would require some additional work at both the theoedtand practical levels.

4.1.2. ExampleConsider the analysis of the data race condition on the ngrexample of Section
1.2. With the most approximate memory model, all assignmentdavoe seen as written in parallel
with the statements executed by the initial thread, sincedwenot track any synchronize-with
relations. ThereforeSystem.a.balance = 1000 of System would be seen to be written in parallel
with all statements oMyThread, and in particular withSystem.a.getBalance(). Since the first
action is not synchronized on any monit@heckmate produces a false alarm signaling that there
may be a data race. Using a more refined memory model (bothathigehs-before model and the
intermediate version that considers the synchronize-eldtion when a thread is launched) we can
check thaSystem.a.balance = 1000 of System cannot be executed in parallel with the statements
of MyThread, so that they do not form a data race. In addition, the aliatysis discovers that the
accesses performed inside the tsymchronized blocks are synchronized on the same monitor, so
that they cannot produce a data race.

4.2. Alias Analysis
In order to obtain anféective analysis of multithreadeldva programs, we need to precisely track
(i) when two accesses to the shared memory may be on the saatioig and (ii) when two threads

Copyright© 2012 John Wiley & Sons, Ltd. Softw. Pract. Expe(2012)
Prepared usingspeauth.cls DOI: 10.1002spe



8 PIETRO FERRARA

public interface NumericalValue {
public NumericalValue add(NumericalValue v1, NumericalValue v2);
public NumericalValue divide(NumericalValue v1, NumericalValue v2);
public NumericalValue multiply(NumericalValue v1, NumericalValue v2);
public NumericalValue subtract(NumericalValue v1, NumericalValue v2);
public NumericalValue evalConstant(int v);
public BooleanDomain testTrue(NumericalValue v1, NumericalValue v2, ComparisonOperator c);
public BooleanDomain testFalse(NumericalValue v1, NumericalValue v2, ComparisonOperator c);
public NumericalValue lub(NumericalValue v1, NumericalValue v2);
public NumericalValue widening(NumericalValue v1, NumericalValue v2);
public boolean lessEqual(NumericalValue v);
public String toString ();
public boolean equals(Object v);
public int hashCode();

Figure 4. The code of thidumericalValue interface

are always synchronized on the same monitoddva the shared memory is the heap. It relates
references to objects. Monitors are associated with ahjacd so they are identified by reference.
In addition, threads are objects, and so they are identifjeceference as well. In this context,
alias analysis (i.e., the way in which we abstract referghisethe critical point of our analysis. In
particular, we need to precisely check (i) when two refeesnalways point to the same location
(must-aliasing), and (ii) when two references may poinhsame location (may-aliasing). 18] [
we present a combination of the must- and may- aliasing aisatheckmate adopts this approach.

The may-alias domain approximates all concrete refereimcadinite way. Intuitively, it binds
each abstract reference to the program point that creaesltiress. Since the number of statements
is bounded, this domain is composed by a finite number of altgsnén abstract reference may
approximate many concrete references, e.g., whawestatement is inside a loop. If two abstract
references are equal, they may alias the same concretesadditbey are dierent, they never point
to the same location. The information inferred by the magsanalysis is also used to approximate
threads, since these are objects, and so are dynamicallyatdd in the heap. It allows one to
build up the interprocedural control flow graph, as it soyrapiproximates all concrete references
through which a method may be dynamically invoked. In additiwe define an equivalence
relation on abstract references using equivalence clalsego abstract references point to the
same equivalence class, they are equal in all possible gamspthat is, they must alias the same
location. This information is particularly useful to cha€kwo threads are always synchronized on
a common monitor.

4.2.1. LimitationsA design choice which has been madeCimeckmate is to rely on a fixed alias
analysis instead of having it as a parameter. Since refesea@ involved and are fundamental for
all of the main multithreaded aspects (e.qg., to identify itayg), it is important to rely on a precise
and specific abstraction of the heap. In particular, we neaddinformation about both may- and
must- aliasing. Therefore, we chose a fixed alias analysishieve both precision andheiency in
Checkmate.

4.3. Numerical Domain

Figure4 shows the code of thdumericalValue interface. This interface contains some arithmetical
operatorsddd, multiply, ...), the evaluation of conditiongeétTrue andtestFalse), and the common
operators on latticedegssEqual, lub, and widening). We implemented some well-known non-
relational abstract domains (namely, Sigh Interval [3], Parity [4], and Congruencelf]).

4.3.1. ExampleWe analyze the running example with the Sign domain. We cagtlctihat
the balance of the bank account is positivg, (but we cannot precisely analyze the condition

Copyright© 2012 John Wiley & Sons, Ltd. Softw. Pract. Expe(2012)
Prepared usingspeauth.cls DOI: 10.1002spe



A GENERIC STATIC ANALYZER FOR MULTITHREADED JAVA PROGRAMS 9

public interface Property {
public Alert check(MultiThreadResultr);
}

public class SingleStatementProperty implements Property {
public SingleStatementProperty(Visitor v) {...}
}

public interface Visitor {
public void checkSingleState(JVMState st, Alert a, Reference tid,
Statement statement, Stack<ProgramCounter> callStack);

Figure 5. The code of theroperty andVisitor interfaces and of th8ingleStatementProperty class

temp < 100 in MyThread, since+ may be< 100. So we conclude thatull may be assigned to
System.a. This write action is propagated, and Sgstem.a.printBalance() in System may cause
a NullPointerException. This happens because the numerical domain is too apprtiiave
use the Interval domain, we can check that the value writteBystem is [1000..1000]. So the
conditionif(temp < 100) cannot be truenull cannot be assigned to the fighystem.a, and the
NullPointerException cannot be thrown.

4.4. Property

Figure5 reports the main interfaces and classes dealing with thekatgpof properties. In particular,
the Property interface defines a methadheck that, given a state of the thread-partitioning trace
domain, returns an object of typdert. This contains all warnings produced while checking the
property. In many cases, it is not necessary to deal withekelts of the abstract semantics as a
whole, but it is enough to consider each statement alonethi®reason{Checkmate includes a
classSingleStatementProperty that implement®roperty. The constructor of this class receives an
object of typeVisitor. This interface defines methatieckSingleStatement, that receives a state,
an objectAlert, a thread identifier, the analyzed statement, and the ealksand it returns aAlert
object containing possible warnings.

Checkmate implements several properties. Some of them (namely,idivisy zero, null pointer
access, and overflow) are also interesting for single-tleéaode, whilst others (namely, data races,
deadlock on monitors, and determinism and weak determiasmefined in 14]) are specific to
parallel programs.

4.4.1. ExampleConsidering the example presented in Seclidhwe want to check if a data race
may happen, and if HullPointerException may be thrown. A€heckmate is parameterized by the

property to be checked, we can build up an abstraction of itkitmreaded executions, and we can
check both properties on this abstraction.

4.5. An Example Interaction

Figure6 depicts a UML sequence diagram that sketches one poss#xtation ofCheckmate. The
analyzer receives a memory model and a numerical domain thieeanalysis is started. During the
analysisCheckmate uses the memory model to know which values written in pdralie visible

at a given point of execution, and the numerical domain tao@pmate numerical information.
Once a fixpoint is reached, the analysis gets an object reqptiag the abstraction of all possible
executions of the program. Then this abstract result isguass aProperty object that checks if
the property is validated. The memory model and the numledimaain are used during this phase
as well. Finally,Checkmate gets an object of typdlert containing all warnings produced while
checking the property; it displays this information, andnts the analysis.

Copyright© 2012 John Wiley & Sons, Ltd. Softw. Pract. Expe(2012)
Prepared usingspeauth.cls DOI: 10.1002spe



10 PIETRO FERRARA

User Checkmate Fixpaint computation MemoryModel NumericalDomain Property
| Eclipse plugin - command line } : i i
| 1 | I !
analyze(bytecode) | ! !
L I |
factory(null, 0) i '
I
MemoryModel '
K mmmmmmmmm e I
add '
L »l
Vaiue 'U
e S —

1

1

|

1

Fixpoint i
reached! i
1

1

1

1

1

1

1

1

MultiThreadResult
Kommmmm oo LJ
check(MultiThreadResult)
i
L 9e
u Value

Tt ettt -
1
I
I
I
I
I
I
i
I
I
I
I
I
I
I
I
|

Alert

Koo Ao

"> show alerts

Figure 6. An example of interaction during the analysis

4.6. User Interfaces

We implemented two user interfaces: a command line tool aaxitlipse plugin.

The command line tool receives all parameters of the ars(psimely, the memory model, the
numerical domain, and the property) when launching theyarslin addition, the user has to specify
the directory that contains the bytecode files to analyze tlaa class containing theain method.

At the end of the analysis, a list of warnings or a messagagt#tat the program is correct are
printed.

The Eclipse plugin is composed of a singlejar file. In order to start the analysis, the user has
to choose a class in the package explorer window, and cliciCheckmate” as shown in Figure
7. Then a dialog will ask the user to select the property ofregie(Figure8). At the end of the
analysis, the results are displayed in a view (Figdjreln addition, the users can set the memory

Copyright© 2012 John Wiley & Sons, Ltd. Softw. Pract. Expe(2012)
Prepared usingspeauth.cls DOI: 10.1002spe



A GENERIC STATIC ANALYZER FOR MULTITHREADED JAVA PROGRAMS

= 19 Tests
B e
=8 (default package)

1= [£] ExampleDataRace, java -

= Ex:
@ main()

frtlt |
& rund)
- [J] ExampleMullPointer ja

Mew

Open

Open With

Open Type Hierarchy
Show In

F3

F4
Ale+ShiftH

»

11

B IRE System Library [ire1.6.0_
= Copy ChrlHC

opy Qualified Name

ste Chrl+y

¥ Delete Delete

Build Path b weak determinism |
Source Ale+Shife+S ¥ Ful determinism

Datarace
Refactor Alt+Shife+T ¥ Null pointer access|
Overflow

£y Impart... Division by zero

Deadlack _|

£ Export...

References L4
Declarations 4

< Refresh FS
Assign Working Sets. ..

Figure 8. Choosing the prop-
@ Toggle Class Load Breakpoint
erty

Run As

Debug As

Team

Compare With

Replace With

Restare From Local Histary. ..

ry v vy

Properties Ale+Enter

il ExampleDatafiace - Tests
. &g Checkmate

Settings L4

Figure 7. Launching the analysis

[2_, Problems | @ Javadoc @ Checkmate results B i
| e @ Data race detected on field ExampleDataRace.i of dass ExampleDataRace when thread (#main_thread#, ExampleDataRace, main, 0 (line 13 of the source code), HH
Lo Walue written by thread #main_thread# when executing line 15 of class ExampleDataRace
8 @ Data race detected on field ExampleDataRace.i of cass ExampleDataRace when thread #main_thread# acceds it executing line 15 of class ExampleDataRace

Figure 9. Output

model and the numerical domain. The default values are thpdrs-before memory model and the
Interval domain.

5. EXPERIMENTAL RESULTS

We have appliedCheckmate to several patterns of multithreadingy, case studies of weak
memory models46], an ad-hoc application to study performance, and manytoeadks {7, 45].
We investigated both the precision and the performanceeéttalysis. We executdtheckmate
on an Intel Pentium D 3.0 Ghz with 2 GB of RAM, running Windowex&r 2003 withlava virtual
machine version 1.6.06.

5.1. Common Patterns of Multithreaded Programs
Lea [45] presents an overview of several representative pattdrdava multithreaded programs.
The author shows the errors that may arise in these exammuddsosv they can be fixed. We applied

Copyright© 2012 John Wiley & Sons, Ltd.
Prepared usingspeauth.cls

Softw. Pract. Expe(2012)
DOI: 10.1002spe



12 PIETRO FERRARA

Checkmate to these exampléso discover the errors. Sin@heckmate performs a whole-program
analysis, we developedmaain method that exposes the behavior of interest for each exampl
ExpandableArray: This class implements an array that is automatically edpdrif the user wants
to append an object when the array is full. All methods syiechronized. If, in parallel, a user
performs two writes or a read and a write, then a conflict arisefact, even though all methods
are synchronized, the position of the elements in the array be non-deterministic because of
threads’ interleavings. This program does not contain datas, andCheckmate discovers that,
while exposing the conflicts by checking the property of dataism.

LinkedCell: This class implements a list alouble values. The methods that read and write the
value contained in the current cell are betmchronized. The method that returns the sum of all
cells is not synchronized but it relies on synchronized méshand so it does not expose any data
races. Finally, a method performs an incorrect sum, rea@inignout synchronization) the value
contained in the first element of the ligtheckmate discovers that the well-synchronized method
does not expose any data races if executed in parallel witkswo the list. It also discovers that
the unsynchronized sum calculation causes a data race.dhalgze the property of determinism,
we discover the well-synchronized program may producedgtafrministic behaviors.

Document: This class implements a document containing a pointer teranhosed document. A
synchronizedprint method is provided. Another synchronizedntAll method prints all of the
content using the synchronizguint method of the current object, and then invokes the same
method on the enclosed document. Suppose now that we haveomumentsil andd2 which
are each others enclosed documents. If we print these twontkrats concurrently, this may cause a
deadlock. For instance the first thread may start the exatofiprintAll and acquire the monitor of
d1 starting the execution gfrintAll. Then the control may switch to the second thread, that eesjui
the monitor ofd2 and then waits on the monitor dfiL. Finally, the control may switch to the first
thread, that starts waiting on the monitord®, causing a deadlocKheckmate precisely discovers
that this program may cause a deadlock.

Dot: This class implements a dot in a Cartesian plane. Its coatés are stored inRoint object.
The getter methods of theoint class are not synchronized, but all methods of claes are
synchronized. If we move a point and shiftxtsalue concurrently, we may obtain non-deterministic
executions.Checkmate proves that this program does not contain any data race tommdin
addition, it discovers the non-deterministic behaviorgbgcking the property of determinism.
Cell: This class implements a cell containing an integer vallee get andset methods are both
synchronized. In addition, anothgmchronized method allows swapping the content of the current
object with the content of an object passed to the methodgubkie getter and setter methods. If we
swap the contents of two cells twice, in parallel, we may mbdadeadlockCheckmate detects this
behavior precisely checking the deadlock property.

TwolL ockQueue This class implements a queue with methods to take and pedtsblf we execute

a take and a put action in parallel when the queue is emptyalteeaction may returnaull value,

as it may be executed before the put acti®heckmate precisely discovers that. In particular, if
the queue is empty when the two threads are executed ingaraflignals that the value returned
by the take action may be null. If we add an element beforedaimg the two actions in parallel,
Checkmate precisely discovers that the value returned by the takemctnnot be null.

Account: This example is quite complex and involves many classepalticular, it implements
an immutable and a mutable account, an account holder, am@daount recorders (one correct
and the other one malicious). We refer the interested retmdgtS] for more details about the
implementation of these classes. The potential problemhas if the account holder accepts
money without using an immutable instance of the recordemadicious recorder may cause
a non-deterministic behavio€heckmate precisely signals it this by checking the property of
determinism. In addition, if the account recorder is notimialis or the account holder uses an
immutable instance of the recorder, it proves that the pnogs deterministic.

*The source code of these examples can be downloaded @t / /www.pietro. ferrara.name/checkmate/LeaExamples.zip

Copyright© 2012 John Wiley & Sons, Ltd. Softw. Pract. Expe(2012)
Prepared usingspeauth.cls DOI: 10.1002spe



A GENERIC STATIC ANALYZER FOR MULTITHREADED JAVA PROGRAMS 13

5.1.1. DiscussiorCheckmate performs a precise and correct analysis of the represemisei of
examples we chose frord]. In particular, it always discovers the bug or proves thatprogram
is correct. This result is achieved thanks to the flexibiityCheckmate. Using diferent properties
allows us to tune the analysis to catch all bugs in the exasnpléhout producing false alarms.
In addition, we found out that the property of determinisnofien the only way to discover the
behavior of interest. The focus of this property is to idgritie non-deterministic behaviors due to
the random interleaving of parallel threads. During theetlgyment of this property, the idea was
to define a property more flexible than the data race conditigmecisely identify some unwanted
behaviors of multithreaded programs. Our experiments wurthat this property could overcome
the limits of existing properties in some contexts. Conicggrihe performance, all examples are
analyzed byCheckmate in less than a second.

5.2. Weak Memory Model

In this section, we take some challenging examples predant¢46] to test the precision of
Checkmate. Figure10 shows these examples. We wrote thendama (i.e., adding a method main
that instantiates and launches the threads), we compiked thith javac, and we analyzed the
bytecode withCheckmate using the happens-before memory model and the Interval mloma
Figure 10a: A compiler may switch the statements of each thread. In Fast tvork on disjoint sets
of variables, and so they are independéiiteckmate correctly tracks this behavior, and it infers
thatrl, r2, andr3 may be equal to zero at the end of the execution.

Figure 10b: In order to obtain the required behavior, it seems that sathreay write a variable
before it reads it. Instead, this behavior may be exposedimgsompiler optimizations as pointed
outin Section 2.2.2 of46]. Our analysis soundly approximates it. This behavior {sosed after the
third iteration of the multithreaded semantics as (i) th& fieration writes 1 tx, (i) at the second
iteration this value is written b¥hreadl to r1 and then toy, (iii) at the third iteration 1 is read by
Thread?2 throughy and written tor2, and (iv) during the fourth and last iteration the analysiesl
not expose any new behavior and so it converges.

Figure 10c: Thanks to the Interval domaiiGheckmate precisely tracks that only0[.0] can be
assigned tal andr2. As our analysis is context-sensitive, it checks that thed@mns of both
threads cannot evaluatettoe, and so that value 42 will never be assigned.

Figure 10d: We need three iterations of the analysis to propagate thes\vial The first iteration
writes 1 tox, the second propagates ittbandy, and finally the third iteration assigns it 2. In
this way we obtain the result required by the example.

Figure 10e: Value 42 is assigned te andy by Threadl. It is then assigned ta by Thread2
in parallel. Finally we come back to the first statemenfTbfeadl that assigns te3 the value
contained by. In this way we capture the behavior of interest.

Figure 10f: As this example involves 4 threads, it requires more iteratiof the multithreaded
semantics to reach a fixpointheckmate soundly discovers that a possible behavior yields the
valuesrl == 0,rl ==r2 == 42.

Figure 10g: This example is similar to the one in Figut®c The Interval domain is used to
precisely infer that the condition of the loops cannot estdutofalse. Then value 42 is never
assigned, neither to nor toy, and so the threads never exit the loopseckmate discovers this
fact.

Figure 10h: The situation is similar to the one in Figufi®de Checkmate is precise w.r.t. the
expected behavior.

5.2.1. DiscussiorCheckmate analyzes all examples successfully, producing a soundaaiisin

of the behavior of interest. As the figures depict toy examflisually no more than 200 bytecode
statements and 4 threads), the analysis requires alwayhias a second. These results are quite
encouraging. We deal with examples aimed at explaining thim rieatures of thdava memory
model, and this is more restrictive than the happens-bef@mory model. This does noffact

the precision ofCheckmate since it successfully analyzes all examples. In generalanalysis is
able to catch the behaviors presented by example&drin all cases in which they do not involve

Copyright© 2012 John Wiley & Sons, Ltd. Softw. Pract. Expe(2012)
Prepared usingspeauth.cls DOI: 10.1002spe



14

PIETRO FERRARA

Threadl | Thread2 Threadl ‘ Thread2
rl =x; x=1; rl =x; r2 =y,
y=1; 3=y, y =rl, r3 =r2|1,
2 =X, X =r3;

(a) Figure 1. (b) Figure 3.

Initially, x==y==0. Initially, x==y==0.

rl==r2==1r3== is a rl==r2==r3==1Iis alegal

legal behavior behavior.
Threadl Thread2
Thread1 ‘ Thread2
rl =x; r2 =y,

rl=x; r2=y; ifrl == 1) | if(r2 == 1)

if(rl! = 0) | if(r2! = 0) y =1, x=1;

y = 42; X = 42; if(r2 == 0)
() Figure 4. Initially, X=1;
Xx==y==0. Correctly i iti
synchronized, sol ==r2==0 )((di: y flzg(L)J.re r71 __ r'zn'ﬂi"y'

is the only legal behavior.

is a legal behavior.

Threadl Thread2
r3=x; r2=y; Threadl ‘ Thread?2 ‘ Thread3 ‘ Thread4
n;(rf :2: 0) | x=r2 rl=x; 2=y, z=42; | 10=z
I‘l——X'1 y =rl; X=1r2; X = 10;
_ rlz ® Figure 12. Initially, x==y==z==0.

y=ri r0 == 0,rl ==r2 == 42 is a legal behavior.

(e) Figure 11. Initially,

X==y==2z==0.

r1==r2==r3==42 is a
legal behavior.

Thread1l ‘ Thread? Threadl Thread2
rl=x; 3=y,
c:':.i{— X; c:g{_ y; |f(rl == O) X =1r3;
twhile(rl == 0); | }while(r2 == 0); X = 1;.
= 42: X = 42 r2 = Xx;
y ; : .

(g) Figure 25. Initially,x ==y == 0. Correctly

synchronized, so non-termination is the only (M)~ Figure — 27. Initially,
legal behavior X==y==0 Compiler
transformations can result in

rl==r2==r3==1.

Figure 10. Some examples taken frofi]

volatile variables. In the remaining cases, our analysis does netitdak account the fact that a
variable isvolatile. For this reason, we obtain results that are still sounddmapproximate. On the
other hand, we believe our framework to be extensible antbfeernough to also take into account
volatile variables, and this could be done by implementing anothenong model.

5.3. Examples of Increasing Sizes

We applied Checkmate to several examples of increasing size that simulate theatipas
performed by a barik Figure 11 reports the number of abstract threads and statements lof eac
program. Figuré .2 reports the time taken by the analysis (in msec) to build e@tstraction of the

$The source code of these examples can be downloadied@at //www.pietro. ferrara.name/checkmate/Incremental.zip

Copyright© 2012 John Wiley & Sons, Ltd.

Softw. Pract. Expe(2012)
Prepared usingspeauth.cls

DOI: 10.1002spe



A GENERIC STATIC ANALYZER FOR MULTITHREADED JAVA PROGRAMS 15

Program | #ab.th. | #st.
Testl 3 452
Test2 5 684
Test3 7 807
Test4 11 1049
Test5 13 1173
Test6 15 1405
Test7 17 1526
Test8 19 1758
Test9 20 1878
Test10 24 2294

Figure 11. Number of abstract threads and statements

Program Top Sign Interval Parity Congruence
Testl 814 361 217 404 294
Test2 409 391 356 620 545
Test3 712 595 925 521 642
Test4 799 823 3806 703 642
Test5 1090 919 5887 779 616
Test6 1382 824 7161 900 98¢
Test7 1071 1647 9289 1340 863
Test8 1018 1269 10999 1263 12211
Test9 1421 2212 11691 1274 1628
Test10 1466 2432 17016 863 1906

Figure 12. Analysis Time (msec) vs Domain

Program | Weak det. Det. Data race Null Overflow Div. by ® Deadlock

Testl 31 32 a7 31 15 16 16
Test2 78 78 125 47 47 a7 15
Test3 125 125 172 187 63 62 16
Test4 250 250 359 125 94 94 62
Test5 359 360 484 172 125 125 78
Test6 547 562 828 266 219 203 126
Test7 719 734 1047 313 250 250 156
Test8 1000 1047 1609 438 359 360 250
Test9 1203 1234 1938 516 406 422 265
Test10 2031 2094 3609 828 688 687 500

Figure 13. Analysis Time (msec) vs Property

program using dferent numerical domains. The analyzer is quite fast: ityaeguires more than
a couple of seconds to converge. Only the Interval domainiresjmore time (about 17 seconds in
the worst case), as it is the most complex domain that we imgheed.

We want to study the complexity of the analysis w.r.t. the bamof statements and abstract
threads. For each numerical domain, we plot the number d¢faadbshreads (in the x-axis), against
the execution time (in the y-axis). The behavior of the Tomédmm (Figurel4g is not regular. The
execution times grow but, as the analysis is quite fast,higl to conclude how it grows exactly.
More regular results are obtained with Parity (Figar&), Sign (Figurel4b), and Congruence
(Figure146. The complexity is linear w.r.t. the number of abstrace#ds in all cases. Finally, the
Interval domain (Figuré4c seems to expose a quadratic complexity. We also investigaiw the
analysis time varies w.r.t. the number of abstract thread$éyaed. Figurel4f plots the execution
time per thread. All domains except Interval require a camstime per thread. In the case of the
Interval domain, the times per thread increase w.r.t. thraber of abstract threads. This increase
seems to be linear, and this confirms that the overall timeired by the analysis is quadratic w.r.t.
the number of abstract threads.

Starting from these experimental results, we concludehigatomplexity exposed yheckmate
in practice is quadratic w.r.t. the number of threads anstants. This result is promising, but we

Copyright© 2012 John Wiley & Sons, Ltd. Softw. Pract. Expe(2012)
Prepared usingspeauth.cls DOI: 10.1002spe



16 PIETRO FERRARA

Time of the analysis in msec using Top domain

Time of the analysis in msec using Sign domain

16 T T T T 25 T T T T -
+
14 - E3 n
2
§ + o § +
F 5 15
5 5
g o8 * 3 N
3 + 3
S o6 s 1 s
E £ + +
= F
0.4 + "
05
0.2 A
0 L L L L 0 L L L L
0 5 10 15 20 25 5 10 15 20 25
# of abstract threads # of abstract threads
(a) Top domain (b) Sign domain
Time of the analysis in msec using Intervals domain Time of the analysis in msec using Parity domain
18 T 1.4 T T
+ +
16 12 T
14
° 5 1
g 12 ¥ 8 +
5 * 5 *
5 10 = 0.8 ¥
8 * 8 +
5 8 S 06 #
s + 5 : N
g 6 + g
= = 04 +
4 ¥
2 0.2
4
0 + 1 1 1 1 0 1 1 1 1
0 5 10 15 20 25 5 10 15 20 25
# of abstract threads # of abstract threads
(c) Interval domain (d) Parity domain
Time of the analysis in msec using Congruence domain Time of execution per thread
2 T T T T 0.8 T T T T T T T
+
18 07
16 *
0.6
g 4 3
) 2 05
s 12 * s ' Top EXXX
g = Sign EoEm
8 1 + 8 04 Int. e—
3 N 3 Par. =
5 0.8 k] 03 Cong. Ez=z=2
g g
E 06 i * Fre IS
0.2
0.4
-
0.2 0.1
0 L L L L o

0 5 10 15 20
# of abstract threads

(e) Congruence domain

25

2 3 4 5 6 7 8 9 10
Program

(f) Per thread

Figure 14. Times of execution

think that the analysis could be optimized. In particular fixpoint computation of single-thread
semantics is sometimes slow as it works at a low abstractieel by simulating step by step the
actions of thelava virtual machine.

Copyright© 2012 John Wiley & Sons, Ltd.
Prepared usingspeauth.cls

Softw. Pract. Expe(2012)
DOI: 10.1002spe



A GENERIC STATIC ANALYZER FOR MULTITHREADED JAVA PROGRAMS 17

Program #<t. #ab. th
philo 213 2
forkjoin 170 2
barrier 363 3
sync 320 3
crypt 2636 | 3
sor 1121 2
elevator 1829 2
lufact 3732 2
montecarlo | 3864 2
total 14248 | 21

Figure 15. The analyzed programs

5.4. Benchmarks

In this section, we appl¢heckmate to the analysis of some benchmarks adopted to evaluate the
performances of static analyses of multithreaded programe applicationsghilo, andelevator)

are taken from47], while the othersHarrier, forkjoin, sync, sor, crypt, lufact, andmontecarlo) are
taken from thelava Grande Forum Benchmark Sui#g]. We removed from the original programs
the calls to system functions (e.§ystem.out.printin) as sometimes they deal with native methods
or reflection that are not supported Byeckmate. Figure15 reports the analyzed programs, the
number of statements, and the number of abstract threads tina in all cases the abstract threads
approximate a potentially unbounded number of concreteatts. We apply the analysis to all
benchmarks with all possible combinations of memory modeld abstract numerical domains.
Figure 16 reports the computational times. For each numerical doma&rreport the times of
execution using (i) the most relaxed memory model (coldx®), (ii) the memory model that tracks
only when a thread is launched (columh), and (iii) the happens-before memory model (column
HB). In addition, columrS.T. reports the time spent to compute the semantics of eachdtimea
isolation.

For each numerical domain, we plot the times of the analysisguthe three memory models,
against the overall number of analyzed statements. Fitgaeeports the result obtained applying
the Top domain, while Figures8lre do the same with the Sign, Interval, Parity and Congruence
domains, respectively. In all cases, the analysis is qaise for programs with fewer than 500
statements. In addition, we observe comparable compotdtiimes for same program using
different numerical domains. The analysisofpt is always quite faster than that elevator, even
thoughitis larger. This happens because of the internadtstre of the program. With the exception
of the Interval and (in part) the Sign domains, the time ofdhalysis does not grow considerably
w.r.t. the number of statements. The complexity seems tdrbest linear. Instead, Interval and in
part Sign seem to expose a higher complexity.

The analysis omontecarlo is notably slower. We wanted to check if this slowness is dueutr
approach or to the fixpoint computation of a single threaa, io the structure of the program.
Figure 17 reports the overhead due to the multithreaded fixpoint caatipm compared with the
single-threaded fixpoint semantics. Figuréf depicts this overhead when applying the Interval
domain and the happens-before memory model. It makes tlaathis overhead does not depend
on the number of threads or statements analyzed. Its vatadseaveen 250% and 450% (with the
exception ofcrypt), and do not depend on the program size.

In fact, we often obtain the greatest overhead for the sistadlgplication. In addition, for larger
applicationsgor, elevator, lufact, andmontecarlo) the overhead is almost stable (300% in average).
This result is quite encouraging: it means that on averageege about 3 iterations of the single-
threaded semantics to reach a fixpoint in our multithrea@adasitics. In addition, we think that
we can improve this result, since our implementation is ineized at all. For instance, we may
parallelize the analysis of flerent threads during the same iteration of the multithréadenantics.

Copyright© 2012 John Wiley & Sons, Ltd. Softw. Pract. Expe(2012)
Prepared usingspeauth.cls DOI: 10.1002spe



sjo yineaduisn paredaid

P11 'suos % As|iM uyor 10z @ybuAdod

(zTOZ)edX3 19RId "MYOS

adsz00T°0T 10d

Top Sign Int. Par. Cong.
Program | AP TL HB ST.|] AP TL HB ST. AP TL HB ST.|] AP TL HB ST.|AP TL HB ST.
philo <1” <1” <1" <1"| <1” <1" <1" <I” <1” <1” 17 <1"l <1 <1" <17 <1"|<1” <1" <1" <17
forkjoin <1” <1”7 <1" <1"| <1” <1" <1" <I” <1” <1” <1” <1"| <1 <1" <17 <1"|<1” <1" <1" <17
barrier <1” <1” <1" <1"| <1 1" 1" <17 1" 17 2" 1" <1 1" 1" <17 17 1" 1" <17
sync R R R A T S R RS 2" 2" 3" 1" 1 1 1" <1 1 1 2
crypt 4" 4 5 1 6" 6" 6" 3 16" 17 17 13” 5" 5" 6" 1| 4 5" 5 2
sor 4" 4 4" 2 6" 6" 7”2 16" 17 17 5" 5" 5" 6" 2"| 5" 5" 5 2
elevator 27" 28" 31" 11"| 10" 11" 11" 4" 18" 18" 19” 7| 29" 30" 30" 117|28" 29" 29" 11"
lufact 25" 25" 27" 10"| 52" 52" 53" 20" 552" 556" 559" 2'08"| 28" 29" 29" 12|27 29" 29" 11"
montecarlo| 54" 56" 1'02" 23”|2'23” 2'26” 2'35" 45" |1h00'33" 1h00'38” 1h00'56" 16'4811'38" 1'38” 1'43" 31" |54" 1'00" 1'04" 25"
Figure 16. Times of analysis
Top Sign Int. Par. Cong. Total

Program AP TL HB| AP TL HB| AP TL HB| AP TL HB| AP TL HB| AP TL HB

philo 221% 263% 282%R45% 246% 259Y%50% 480% 5329%45% 198% 198%160% 297% 319%233% 282% 300%

forkjoin 352% 403% 5319282% 315% 3329R279% 314% 3179422% 319% 5599432% 454% 495%B48% 380% 434%

barrier 148% 193% 207%dl73% 212% 255%193% 205% 2249%i182% 199% 218%R75% 278% 299%i93% 215% 236%

sync 233% 296% 3109@B316% 323% 369%B398% 400% 435%268% 300% 307%R228% 242% 282%295% 309% 343%

crypt 295% 334% 3499%01% 208% 214%d20% 127% 128%B66% 341% 395%258% 277% 281%il71% 181% 186%

sor 263% 261% 2679%252% 260% 301%B04% 324% 3259®R25% 265% 247%251% 256% 264%269% 282% 292%

elevator  [240% 249% 2729%234% 248% 2529243% 252% 258%®256% 253% 266%R44% 251% 252%245% 254% 262%

lufact 259% 262% 2799%252% 253% 258YR74% 277% 279%R30% 267% 238%R235% 249% 254%265% 269% 272%

montecarlo | 235% 245% 268%B320% 328% 347%B361% 361% 363%B11% 295% 328%212% 235% 251%B352% 353% 357%

average [249% 279% 3079%253% 266% 287%291% 304% 318%®267% 271% 306%®255% 282% 300%

Figure 17. Overhead of multithreaded fixpoint computation

8T

vdvdd3d od.13ld



A GENERIC STATIC ANALYZER FOR MULTITHREADED JAVA PROGRAMS 19

Time of the analysis in msec using Top domain Time of the analysis in msec using Signs domain
70 160 =
60 2 140 8
8
120
5 50 =
3 3
- = 100
% 40 AP O % AP O
8 L o g 80 L o©
8 30 s HB & 3 HB &
o 8 8 e 60
£ o : °
IS
40
10 20
o Lo B 8 o L & a a
0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000
# of bytecode statements # of bytecode statements
(a) Top domain (b) Sign domain
Time of the analysis in msec using Intervals domain Time of the analysis in msec using Parity domain
4000 120
3500 ®
100 &
3000 _
5 S
8 g =
¢ 2500 <
k=1 AP O S AP @
§ 2000 TL o g 60 TL o
3 HB & 3 HB &
1500 H
2 g 40
= =
1000 ] ]
20
500
a
a B
0 0 -
0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000
# of bytecode statements # of bytecode statements
(c) Interval domain (d) Parity domain
Time of the analysis in msec using Congruence domain Overhead in % of multithread fixpoint computation using Intervals and HB memory model
70 450 T T T T T T T T
a
60 400
o 350
5 50
8 300 ]
§ S
£ 40 AP © < 250 4
] TL o }‘?
3 HB & § 200
g " :
g 150 1
F 20
100 8
10 50
a 8
- 0
0 500 1000 1500 2000 2500 3000 3500 4000 philo forkjoin barier sync oyt sor elevator lufact montecarlo
# of bytecode statements Program
(e) Congruence domain (f) Overhead of multithreaded fixpoint computation

using Interval

Figure 18. Times of execution using HB memory model

Finally, we compared the times of the analysis usiffpdént memory models. For programs with
fewer than 500 statements, the analysis is too fast to obigiificant comparisons. So we consider
only the analyses afrypt, sor, elevator, lufact, andmontecarlo. Figurel9adepicts the overhead of
the analysis using the happens-before memory model agh#&wP memory model, while Figure
19bdepicts the overhead compared with Thememory model. The overheadléB compared with
AP is rarely greater than 10%, and on average it is about 5%.0lh iaverage about 2% w.rIL
and rarely greater than 5%. We believe that these resultpigteeencouraging as well: the overhead
of more refined memory models is quite small. This means thaking more and more relations
between threads does nditext the performance of the analysis significantly.

5.5. Comparison

Figure20summarizes the main achievements of some representatbtmgitools andCheckmate.
ColumnSound reports whether or not the analyzer is sound w.r.t. all iuitiaded executions. We
identified two levels oEfficiency: Fast means that the analyzer can be applied to few thousands of

Copyright© 2012 John Wiley & Sons, Ltd. Softw. Pract. Expe(2012)
Prepared usingspeauth.cls DOI: 10.1002spe



20 PIETRO FERRARA

Overhead of HB w.r.t. AP in % Overhead of HB w.r.t. TL in %
16 T T T T T 14

10

6 4 Par. =3

Overhead (%)
Overhead (%)

Y

sor elevator lufact montecarlo crypt sor elevator lufact montecarlo

Program Program

(a) Overhead of HB w.r.t. AP (b) Overhead of HB w.r.t. AP

Figure 19. The overhead in % of the HB memory model

Analysis Sound| Efficiency Accuracy Flexible|Automatic
Fast | Scalable| Precise| Complete

Checkmate

Clousot[5]

Chess [16]

Abadi et al. P1]
Naik and Aiken P2]
Williams et al. p§]

XU XX
X NUX NN
WX N XN %
RN
%X % X N % %
X %X X NN
CAUX U XS

Figure 20. Comparison with other tools

LOC in areasonable (that is, within a few minutes) time, eBdalable means that it can be applied
to hundreds of thousands of LOC. Concerning Aeuracy of the analysis, we distinguished
betweerPrecise (that is, it produces few false alarms in practice) @utnplete (that is, it produces
no false alarms). ColumRlexible reports whether or not the analyzer can be applied to various
properties, while colummutomatic reports whether or not the analyzer requires any form of
manual annotation (e.g., types or contracts).

The tool that is most similar t@heckmate is Clousot. The main dfferences w.r.tCheckmate
are thatClousot does not consider multithreaded executions, it requirasualeannotation, while
on the other hand it achieves scalability. A quitfeatient tool isChess: it considers multithreaded
programs but it is not sound since it binds the number of carswitches to a constant value. On
the other hand, it is the only tool that achieves completgrsdsce it executes the program. For this
reasonChess is not dficient, but it is completely automatic. Finally, it is not flebe since although
it can be tuned to a specific property, it always checks alfimen errors. None of the other three
analyzers are flexible, since they check a specific multithed property (data races or deadlocks).
The type system proposed by Abadi et al. scales, but it reguranual annotation of the program
with extra type information. The must alias analysis pregbsy Naik and Aiken is lacking in terms
of efficiency, while the deadlock checking proposed by Williamalgis particularly éicient, but it
is not sound w.r.t. all possible multithreaded executions.

Given this contextCheckmate represents a unique result. In particular, it is the firstilfllex
analyzer that is sound for multithreaded programs.

Copyright© 2012 John Wiley & Sons, Ltd. Softw. Pract. Expe(2012)
Prepared usingspeauth.cls DOI: 10.1002spe



A GENERIC STATIC ANALYZER FOR MULTITHREADED JAVA PROGRAMS 21

5.6. Limitations

The experimental results underline both tHecéency and the precision d@heckmate, but they
prove that the analysis does not scale to industrial sofhaamwell. Since the analysis we perform is
whole-program, we are not in a position to analyze a comneligstrial application in a reasonable
time. The current generic analyzers that scale (€pusot) reason modularly about methods,
relying on contracts when methods are invoked. Unluckigcise modular reasoning is not possible
on multithreaded programs without imposing further resiths on programs (e.g., absence of
data races) and applying a non-standard specification miefibgy. The goal ofCheckmate was

to (i) analyze all multithreaded Java programs, and not strict programs to avoid data races
and deadlocks, and (ii) check properties for all possiblecatons without requiring additional
automatic synchronizations.

In this context, we had to develop a whole-program anal@isthe other hand, it seems evident
that something more is required to put developers in a positi think modularly about threads. For
instance, a dferent approach has been adopted by Software Transacti@mbh {9]. However,
STM has not been adopted by common programming languagesi@va andC#) which, so far,
offer threads rather than transactions.

Concerning precision, whil€heckmate is able to deal #ectively with many case studies, we
could still improve its precision in three main directions:

e supporting more synchronization patterns, as we pointéthdsectiond. 1,

¢ defining and implementing specific abstract domains for thegrties of interest that do not
deal with concurrency, and

e manually developing the semantics of some native methods.

6. CONCLUSION

We have presente@heckmate, a generic static analyzer based on abstract interpretdtio
multithreadedlava programs. It supports the most relevant features ofJtva language, such
as unbounded dynamic thread creation, runtime creatiomaamthgement of monitors, method-
calls in the presence of overloading, overriding, and rgoar, and dynamic allocation of shared
memory. We presented the overall structure of the analgmerywe studied in detail the experimental
results obtained when applyiritheckmate to some common patterns of concurrent programming
in Java [45], to some case studies about la@a memory model presented ifg), to an incremental
application, and to a set of well-known benchmarkg E8]. The precision exposed when analyzing
these examples is quite encouraging, and we are in a pogiiaanalyze programs with an
unbounded number of threads and thousands of statemenlignites time.

Future work concerns the refinement of the analysis and iBcapion to industrial software. In
particular, we want to refine the numerical domain to applgtienal analyses. In order to reach
this goal, we need to perform some transformations on thecbye, e.g., stack abstraction and
expression recoverp]. Our aim is also to refine our memory model to track more symcization
actions, and with some restrictions of theva memory model that are not considered by the
happens-before memory model.

REFERENCES

. Lee EA. The problem with threadSomputey IEEE Computer Society Press, 2006.

. Sutter H, Larus J. Software and the concurrency revaluA€M Queug ACM Press, 2005.

. Cousot P, Cousot R. Abstract interpretation: a unifieicamodel for static analysis of programs by construction
or approximation of fixpointsProceedings of POPL '7,7ACM, 1977.

. Cousot P, Cousot R. Systematic design of program andigsieeworks.Proceedings of POPL '7,90CM, 1979.

. Logozzo F, Fahndrich M. Static contract checking witktedrt interpretatiorProceedings of FoVeOOS "1ONCS,
Springer-Verlag, 2010.

. Logozzo F. Cibai: An abstract interpretation-basedicstatalyzer for modular analysis and verification of Java
classesProceedings of VMCAI '07LNCS, Springer-Verlag, 2007.

[« (208N WN -

Copyright© 2012 John Wiley & Sons, Ltd. Softw. Pract. Expe(2012)
Prepared usingpeauth.cls DOI: 10.1002spe



22 PIETRO FERRARA

7. Spoto F. Theulia Generic Static Analysehttp://profs.sci.univr.it/~spoto/julia/.
8. Ferrara P. Static analysis via abstract interpretatidheohappens-before memory modetoceedings of TAP 'Q8
LNCS, Springer-Verlag, 2008.
9. Ferrara P. A fast and precise analysis for data race dmteBlytecode '082008.
0. Ferrara P. Static analysis of the determinism of mu#@ed program$&roceedings of SEFM 'Q8EEE Computer
Society, 2008.

11. Lindholm T, Yellin FJava Virtual Machine SpecificatioAddison-Wesley Longman Publishing Co., Inc.: Boston,
MA, USA, 1999.

12. Odersky MThe Scala Language Specificatid®08.

13. Meyer B.Object-Oriented Software Construction (2nd EditioRjentice Hall, 1997.

14. Ferrara RCheckmate: a generic static analyzer of java multithreaded progrdPnsceedings of SEFM 'Q9EEE
Computer Society, 2009.

15. Qadeer S, Rehof J. Context-bounded model checking @ucant softwareProceedings of TACAS '0&NCS,
Springer-Verlag, 2005.

16. Musuvathi M, Qadeer S. Iterative context bounding fatematic testing of multithreaded prograrRsoceedings
of PLDI '07, ACM Press, 2007.

17. Ramalingam G. Context-sensitive synchronizatiorsisiga analysis is undecidabl&CM Trans. Program. Lang.
Syst.2000;22:416—-430.

18. Flanagan C, Qadeer S. Thread-modular model checdRimgeedings of SPIN 'QBpringer, 2003.

19. Qadeer S, Rajamani SK, Rehof J. Summarizing procedaresricurrent program$roceedings of POPL '04
ACM, 2004.

20. Rinard MC. Analysis of multithreaded prograr®soceedings of SAS 'QLNCS, Springer-Verlag, 2001.

21. Abadi M, Flanagan C, Freund SN. Types for safe lockingtiStace detection for jav&®roceedings of TOPLAS
'06, ACM Press, 2006.

22. Naik M, Aiken A. Conditional must not aliasing for statace detectionProceedings of POPL 'Q7ACM Press,
2007.

23. Kahlon V, Yang Y, Sankaranarayanan S, Gupta A. Fast aodrate static data-race detection for concurrent
programsProceedings of CAV 'QLNCS, Springer-Verlag, 2007.

24. Henzinger TA, Jhala R, Majumdar R. Race checking by soitérence Proceedings of PLSI 'q42004.

25. Bensalem S, Fernandez J, Havelund K, Mounier L. Confiomatf deadlock potentials detected by runtime
analysis Proceedings of PADTAD 'Q6ACM Press, 2006.

26. Bensalem S, Havelund K. Scalable dynamic deadlock sisaly multithreaded programBroceedings of PADTAD
‘05, ACM Press, 2005.

27. Eytani Y, Havelund K, Stoller SD, Ur S. Towards a framewand a benchmark for testing tools for multi-threaded
programsConcurr. Comput. : Pract. Expe2007;19(3).

28. Williams A, Thies W, Ernst MD. Static deadlock detectfonJava librariesProceedings of ECOOP 'Q4.NCS,
Springer-Verlag, 2005.

29. Agarwal R, Wang L, Stoller SD. Detecting potential deakls with static analysis and runtime monitoring.
Proceedings of PADTAD 'Q%pringer-Verlag, 2005.

30. Spoto F. Nullness analysis in boolean foRmceedings of SEFM "Q8EEE Computer Society Press, 2008.

31. Fahndrich M, Leino KRM. Declaring and checking nontybes in an object-oriented languad&oceedings of
OOPSLA '03ACM Press, 2003.

32. Hovemeyer D, Pugh W. Finding more null pointer bugs, lmtitoo manyProceedings of PASTE '0ACM Press,
2007.

33. Hubert L, Jensen T, Pichardie D. Semantic foundationksiaference of non-null annotationBroceedings of
FMOODS '08 Springer-Verlag, 2008. )

34. Cousot P, Cousot R, Feret J, Mauborgne L, Miné A, Monn@uRival X. The ASTREE analyzerProceedings of
ESOP '05 LNCS, Springer-Verlag, 2005.

35. Flanagan C, Leino KRM, Lillibridge M, Nelson G, Saxe JBat8 R. Extended static checking for jaPaoceedings
of PLDI '02, ACM Press, 2002.

36. Java program checkerhttp://artho.com/jlint/.

37. Cousot P. The calculational design of a generic abstrespreterCalculational System DesighNATO ASI Series
F. 10S Press, Amsterdam, 1999.

38. Manson J, Pugh W, Adve SV. The Java memory mdetelceedings of POPL 'Q5ACM Press, 2005.

39. Lamport L. How to make a multiprocessor computer thatembly executes multiprocess progrartiSEE Trans.
Computers1979.

40. Lamport L. Time, clocks, and the ordering of events instriiuted systemCommun. ACMACM Press, 1978.

41. Ferrara P. Static analysis via abstract interpretaifanultithreaded programs. PhD Thesis, Ecole Polytectaiqu
of Paris (France) and University "Ca’ Foscari” of Venicea(f) May 2009.

42. Batty M, Owens S, Sarkar S, Sewell P, Weber T. Mathenmgtizi + concurrencyProceedings of POPL '11Press
A (ed.), 2011.

43. Owens S, Sarkar S, Sewell P. A better x86 memory modetts@@roceedings of TPHOLs 'Q%pringer (ed.),
LNCS, 2009.

44. Granger P. Static analysis of linear congruence egbtmong variables of a prografroceedings TAPSOFT
'91, LNCS, Springer-Verlag, 1991.

45. Lea D.Concurrent Programming in Jav@ddison-Wesley, 1996.

46. Manson J, Pugh W, Adve S. The Java Memory Mddetp : //unladen-swallow.googlecode.com/files/journal.pdf.

47. Von Praun C, Gross TR. Object race detectRmoceedings of OOPSLA 'QACM Press, 2001.

48. Java Grande Forum Benchmark Suitetp: //www.epcc.ed.ac.uk/research/activities/java-grande/.

49. Shavit N, Touitou D. Software transactional mem@&ymposium on Principles of Distributed ComputiAG¢M
Press, 1995.

Copyright© 2012 John Wiley & Sons, Ltd. Softw. Pract. Expe(2012)
Prepared usingspeauth.cls DOI: 10.1002spe



A GENERIC STATIC ANALYZER FOR MULTITHREADED JAVA PROGRAMS 23

50. Logozzo F, Fahndrich M. On the relative completenesdyiécode analysis versus source code analysis.
Proceedings of CC '08LNCS, Springer-Verlag, 2008.

Copyright© 2012 John Wiley & Sons, Ltd. Softw. Pract. Expe(2012)
Prepared usingspeauth.cls DOI: 10.1002spe



	1 Introduction
	1.1 Contribution
	1.2 The Running Example

	2 Related Work
	2.1 Model Checking
	2.2 Concurrency Properties
	2.2.1 Data Race Analysis
	2.2.2 Deadlock Detection

	2.3 Other properties

	3 Background
	3.1 Abstract Interpretation
	3.2 The Happens-Before Memory Model
	3.3 Fixpoint Definition

	4 Architecture
	4.1 Memory Model
	4.1.1 Limitations
	4.1.2 Example

	4.2 Alias Analysis
	4.2.1 Limitations

	4.3 Numerical Domain
	4.3.1 Example

	4.4 Property
	4.4.1 Example

	4.5 An Example Interaction
	4.6 User Interfaces

	5 Experimental Results
	5.1 Common Patterns of Multithreaded Programs
	5.1.1 Discussion

	5.2 Weak Memory Model
	5.2.1 Discussion

	5.3 Examples of Increasing Sizes
	5.4 Benchmarks
	5.5 Comparison
	5.6 Limitations

	6 Conclusion

