
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper.2012;00:1–23
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe

A generic static analyzer for multithreaded Java programs

P. Ferrara

ETH Zurich, Switzerland

SUMMARY

In this paper we present�heckmate, the first generic static analyzer of multithreadedJava programs based
on abstract interpretation.�heckmate can be tuned at different levels of precision and efficiency in order to
prove various properties (e.g., absence of divisions by zero and data races), and it is sound for multithreaded
programs. It supports all the most relevant features of Javamultithreading, such as dynamic thread creation,
runtime creation of monitors, and dynamic allocation of memory. The experimental results demonstrate that
�heckmate is accurate, and efficient enough to analyze programs with some thousands of statements and a
potentially infinite number of threads. Copyrightc© 2012 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Static Analysis, Generic Analyzers, Abstract Interpretation, Multithreaded Programs

1. INTRODUCTION

Testing and debugging multithreaded programs is particularly difficult [1]. Because of the
interleaving of parallel threads during execution, it is hard to expose specific bugs and, even if
these are produced, sometimes it is arduous to reproduce them. In addition, some executions may
be exposed only by specific compilers, virtual machines, or hardware architectures. On the other
hand, concurrency may significantly speed up the execution of programs.

For these reasons, tools that discover bugs in multithreaded software are particularly desirable
[2]. They should find classical bugs (e.g., null pointer accesses and divisions by zero) as well
as concurrency errors (e.g., data races and deadlocks). Many tools based on static analysis prove
a property on all possible executions by over-approximating the semantics of a program. In this
context, generic analyzers have been deeply studied. They define the semantics of statements and
programs such that the analysis can be plugged with various abstract domains, and can check several
properties.

Many generic static analyzers based on abstract interpretation [3, 4] have been formalized and
implemented. They can be fitted with different domains, to obtain faster and more approximated
or slower and more refined analyses, and in order to analyze different properties. Some examples
of these analyzers areClousot [5], Cibai [6], andJulia [7]. None of these analyzers supports
multithreading.

1.1. Contribution

In this paper we present�heckmate∗, a generic analyzer of multithreadedJava programs, based on
abstract interpretation. It can be plugged with different numerical domains, properties, and memory
models.�heckmate combines and implements several approaches [8, 9, 10] into one practical and
useful analyzer.

∗http://www.pm.inf.ethz.ch/people/pferrara/Checkmate/

Copyright c© 2012 John Wiley & Sons, Ltd.

Prepared usingspeauth.cls [Version: 2010/05/13 v3.00]

2 PIETRO FERRARA

The main technical features of�heckmate are: (i) it works at bytecode level [11], so it can analyze
libraries whose source code is not available, and programs written in other languages that compile to
Java bytecode (such as Scala [12]), (ii) it supports the main features ofJava multithreading (namely,
dynamic unbounded thread creation, runtime creation and management of monitors, and dynamic
allocation of shared memory), and (iii) it supports many features ofJava, such as strings, arrays,
static fields and methods, method-calls in the presence of overloading, overriding and recursion, etc.

The analysis performed by�heckmate is (i) whole-program, i.e., it analyzes a complete program
starting from itsmain method; (ii) context-sensitive, e.g., it tracks information through method calls
and conditional branches; (iii) completely automatic, i.e., it does not require any manual annotations,
such as contracts [13].

We have applied�heckmate to several case studies and benchmarks to study its precision and
efficiency. The experimental results show that�heckmate is (i) precise enough to catch common
bugs, (ii) fast enough to be applied to programs containing thousands of statements and a potentially
unbounded number of threads.

The paper is structured as follows. In the rest of this section we introduce the running example
used throughout this paper. Section2 discusses related work, while Section3 briefly sketches some
background on abstract interpretation, the happens-before memory model, and its definition in a
fixpoint form. Section4 describes the architecture of�heckmate and discusses the main design
choices and limitations. Section5 reports and discusses the experimental results. Finally, Section6
concludes and discusses future work.

This paper is based on the work published at the 7th IEEE International Conference on Software
Engineering and Formal Methods (SEFM ’09) [14].

1.2. The Running Example

We introduce a running example to illustrate the main features of�heckmate. The program in
Figure1 runs two threads in parallel. ClassSystem stores an instance of classAccount in its public
static fielda. Account implements a bank account which allows us to withdraw money and obtain
its balance. The initial balance is set to1000, and thenMyThread is launched. The two threads are
both synchronized on the same monitor.System prints the balance of the account, whileMyThread
sets the account tonull if its balance is less than100; otherwise it withdraws100 from the account.

Various properties could be interesting (e.g., the presence of data races and null pointer
dereferences), but specific numerical domains and memory models should be applied to successfully
analyze these properties. We will show in Section4 how, using different parameters to�heckmate,
we can prove the absence of data races and null pointer dereferences for this running example.

2. RELATED WORK

Static analysis has already been widely and extensively studied. In this section, we briefly sketch its
main achievements in the field of multithreading.

2.1. Model Checking

Context-bounded model checking [15, 16] has obtained an important amount of both theoretical and
practical results. Starting from the premise that verifying a concurrent program (with a context and
synchronization sensitive analysis, when dealing with rendezvous style synchronization primitives)
is undecidable [17], a multithreaded program is analyzed until a given contextbound, i.e., the
number of context switches is limited ton. Instead,�heckmate relies on the idea of abstraction,
and it is sound w.r.t. all possible multithreaded executions, allowing for an unbounded number of
context switches, all possible multi-core architectures,and also supporting weak memory models.

Thread-modular model checking [18] reduces the explosion of the state space by considering
each thread separately. The updates of the shared memory performed by a thread are summarized
by a single environment assumption, and this is used by otherthreads to know the values written in

Copyright c© 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

A GENERIC STATIC ANALYZER FOR MULTITHREADED JAVA PROGRAMS 3

class System {
public static Account a=new Account();
public static int main(String[] args){

MyThread th=new MyThread();
System.a.balance=1000;
th . start ();
synchronized(System.a) {

System.a.printBalance();
}
}
}
class MyThread {

public void run() {
synchronized(System.a) {

int temp=System.a.getBalance();
if (temp<100)

System.a=null;
else System.a.withdraw(100);
}
}
}
public class Account {

public int balance=0;
public void withdraw(int amount) {

synchronized(this) {
this .balance−=amount;
}
}
public int getBalance() {

return this .balance;
}
public void printBalance() {

System.out.println(this .balance);
}
}

Figure 1. A multithreaded application

parallel.�heckmate also considers each thread separately when computing its semantics, but it can
be tuned at different levels of precision and efficiency.

Other authors [19] have proposed intra-procedural analyses which work by summarizing the
concurrent behavior of other procedures. They consider only well-synchronized programs, and so
they are not sound for all possible multithreaded executions (e.g., programs containing data races).

2.2. Concurrency Properties

Many approaches have focused on particular concurrency properties, in particular on deadlock and
data race detection [20]. They usually take into account only sequentially consistent executions, but
this is not sound in the presence of weak memory models. In addition, these analyses are specific to
a single property.

2.2.1. Data Race AnalysisAbadi et al. [21] develop a type system to ensure the absence of data
races. This analysis is modular, and it scales, but it requires manual type annotation.

Naik and Aiken [22] apply a must-not alias analysis through a specific type system to check the
absence of data races. Race freedom is proved by checking that if two locks must not alias the same
monitor, then the accesses to the shared memory must not be onthe same location. The overall
analysis is not particularly efficient, since it takes more than 3 minutes to analyze only 2 classes.

Kahlon et al. [23] present a model-checking-based analysis to detect data races. The work is
composed of three phases: (i) discovering which variables share information, (ii) using a must-alias

Copyright c© 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

4 PIETRO FERRARA

analysis to check the owned monitors when shared variables are accessed, and (iii) reducing the
false warnings.

Another data race detector based on model checking is introduced by Henzinger et al. [24]. Its
programming language uses atomic sections for synchronization, and it is quite different from the
lock-based synchronization of Java. Moreover, the experimental results show that the approach is
affected by the state space explosion problem.

2.2.2. Deadlock DetectionMany works have focused on the dynamic detection of deadlocks
[25, 26, 27]. As usual when testing programs, these tools can find deadlocks during an execution,
but they cannot prove their absence for all possible executions of a program.

In the field of static analysis, Williams et al. [28] propose an effective analysis that detects
deadlocks onsynchronized statements andwait invocations. This analysis makes some assumptions
on how a user interacts with libraries. In order to analyze a library it supposes that the client code
“well-behaves”. In this way, even if a library is validated by this analysis, there may be a deadlock
when using it without respecting these assumptions.

Awargal et al. [29] introduce a type system to detect potential deadlocks onsynchronized
statements at compile time. The information inferred by thestatic analysis is used to check at
runtime only the locks which are not proved to be deadlock-free. The analysis has not been
implemented, but only manually validated by studying the speed-up of the runtime that uses this
information.

2.3. Other properties

Many static analyses check the absence of null pointer accesses [30, 31, 32, 33], divisions by zero
[34, 35], and overflows [36]. Usually these approaches are sound for sequential programs, and they
do not support concurrency. On the other hand, they are oftenmore precise than�heckmate, since
we do not develop specific analyses for these properties and we apply standard and sometimes rough
abstractions. We think that�heckmate could be extended to support these approaches, but this will
require the support of new features (e.g., relational numerical domains).

3. BACKGROUND

This section introduces some background which helps with understanding the architecture of
�heckmate. In particular, we introduce some basic concepts about abstract interpretation, the
happens-before memory model, and its fixpoint computation.

3.1. Abstract Interpretation

Abstract interpretation is a theory to define and soundly approximate the semantics of a program.
A concrete semantics, aimed at specifying the runtime properties of interest, is defined. It is then
approximated with an abstract semantics that is computable, but still precise enough to capture the
property of interest. In particular, the abstract semantics must be composed of an abstract domain, an
abstract transfer function, and a widening operator to makethe analysis convergent if the abstract
domain does not satisfy the ascending chain condition. Abstract interpretation can be applied to
develop generic analyzers [37]. In particular, this theory allows one to define a compositional
analysis, e.g., a generic analysis that can be instantiatedwith different numerical domains, and to
analyze different properties.

3.2. The Happens-Before Memory Model

Memory models define which behaviors are allowed during the execution of a multithreaded
program. In particular, they specify which values written in parallel may be read from the shared
memory. TheJava memory model [38] is quite complex, especially from the point of view of static
analysis. Other memory models have been proposed in the past: Lamport [39] formalized the rule of

Copyright c© 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

A GENERIC STATIC ANALYZER FOR MULTITHREADED JAVA PROGRAMS 5

sequential consistency. It is quite simple, but too restrictive in practice. A good compromise is the
happens-before memory model [40]; it is an over-approximation ofJava’s model, and it is simple
enough to base a static analysis on it.

The core of the happens-before memory model is a partial ordering between the actions performed
by a program. In particular, an actiona1 happens-before another actiona2 if (i) a1 appears before
a2 in the program order, or (ii)a2 synchronizes-witha1 (e.g.,a2 locks a monitor that was released
by a1), or (iii) a2 can be reached by following happens-before edges starting from a1. Using this
partial order, the happens-before consistency rule is defined. This states that a read of a variable is
allowed to see a write on that variable if (i) it is not the casethat the read happens-before the write,
and (ii) there is no write on the same variable that is executed between the observed write and the
read, thereby overwriting the observed value.

3.3. Fixpoint Definition

In [8] we define the happens-before memory model† in a way that is amenable to a fixpoint
computation, and then we abstract it with a computable semantics. On the concrete domain, the
stepfunction defines the possible results (following the happens-before consistency rule) of one
computational step (atomic at the multithreaded level) of agiven thread, for a given multithreaded
execution. Thestep function tracks the “synchronizes-with” relation when locking and releasing
monitors, and launching new threads as well. Relying on thissmall step operational semantics, a
fixpoint trace semanticsS◦ computes the semantics of a single thread.

Definition 3.1(Single-thread semanticsS◦)
Letσ0 be the initial state of computation.

S
◦ : [(Ψ × Ω × TId)→ ℘(St~+)]
S
◦Jf, r, tK = lfp⊆

∅
F◦

where

F◦ : [℘(St~+)→ ℘(St~+)]
F◦ = λT.{σ0} ∪ {σ0 → · · · → σi−1 → σi : σ0 → · · · → σi−1 ∈ T ∧ σi ∈ step(t, f, r, σi−1)}

The intuition behind this formal definition is to compute thesemantics of a single thread, given the
identifier of the thread (represented byt ∈ TId), an execution of parallel threads (f ∈ Ψ), and some
information to track the synchronize-with relation (r ∈ Ω). The definition of the trace semantics in
a fixpoint form is standard in abstract interpretation.

This single-thread trace semantics is the basis for the definition of the trace semanticsS‖ of a
multithreaded program.

Definition 3.2(Multithread semanticsS‖)

S
‖ : [Ψ × Ω→ ℘(Ψ ×Ω)]
S
‖Jf0, r0K = lfp⊆

∅
F‖

where

F‖ : [℘(Ψ ×Ω)→ ℘(Ψ ×Ω)]
F‖ = λΦ.{(f0, r0)} ∪ {(fi, ri−1) : ∃(fi−1, ri−1) ∈ Φ : ∀t ∈ dom(fi−1) :

τ ∈ S◦Jfi−1, ri−1, tK, τ ∈ St~+◦
→
, fi(t) = τ}

This semantics iterates the single thread semanticsS
◦ over all active threads until a fixpoint is

reached. Each iteration may, for each thread, expose new values written in parallel, thus causing new
executions during the following iteration. Iterating thisprocess until a fixpoint is reached allows us
to obtain an approximation of all possible multithreaded executions.

†Without consideringout-of-thin-airvalues

Copyright c© 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

6 PIETRO FERRARA

Figure 2. Overall structure of�heckmate

public interface MemoryModel {
public Value get(Reference ref, String field , JVMState state, Statement statement);
public MemoryModel factory(MultiThreadResult prev, int iteration number);
}

Figure 3. The code of theMemoryModel interface

A similar fixpoint semantics is defined on the abstract domain. The main difference is that it
relies on the upper bound operator of the abstract domain to compute one abstract trace that
approximates all the concrete executions, introducing approximation while achieving computability.
The soundness of this formal system is proved, relying on theabstract interpretation framework. We
refer the interested reader to Chapter 3 of [41] for the technical details of these definitions and
proofs.

Note that this approach is completely generic w.r.t. the semantics of the programming language,
the domains used to track information on numerical values, references, etc., and the property of
interest. This will allow us to build up a compositional analyzer of multithreaded programs.

4. ARCHITECTURE

Figure2 depicts the overall structure of�heckmate. First of all,�heckmate extracts the control
flow graph of a bytecode program. It then computes an approximation of the program’s semantics,
i.e., an element of the multithreaded semantics. Intuitively, this element relates each thread to the
result of its abstract semantics, that is, the abstract state before and after each statement in the control
flow graph. The inputs of the analysis are a memory model, an abstract numerical domain, and a
property. Finally,�heckmate checks if the given property is respected by the result of theabstract
semantics, and prints a list of warnings.

In this section we briefly sketch the approach adopted for theheap abstraction, and the interfaces
of the three inputs of the analysis (namely: memory models, numerical domains, and properties).
We sketch an example of interaction and the user interfaces as well.

Copyright c© 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

A GENERIC STATIC ANALYZER FOR MULTITHREADED JAVA PROGRAMS 7

4.1. Memory Model

�heckmate implements the approach introduced in Section3.3 to compute an over-approximation
of all multithreaded executions allowed by the chosen (weak) memory model. Figure3 shows the
code of theMemoryModel interface. This interface contains two methods:

• get is used to read values from the shared memory. Its arguments are a reference, a string
identifying the field to be read, the current state (also containing the call stack and the thread
that executes the current read), and the statement that is used to read the value.get returns the
abstract value read from the given location. Intuitively, it returns the upper bound of all values
written in parallel by other threads and that can be seen according to the memory model.
• factory creates a new instance of the currentMemoryModel. Its arguments are an object of

typeMultiThreadResult (the class that represents elements of our abstract thread-partitioning
trace semantics) and the current iteration number of the multithreaded fixpoint semantics.
factory returns an object of typeMemoryModel which provides the values written in parallel
contained in the given state of the thread-partitioning abstract domain.

The happens-before memory model is provided, implementingthis interface. In addition,
�heckmate contains two rougher memory models. The reason for implementing them is to compare
the computational overhead induced by more precise memory models. The first abstraction ignores
the synchronize-with relation on monitors. The second one also abstracts away the relation that
tracks when and by whom a thread is launched.

4.1.1. LimitationsBoth the approach developed in [8] and �heckmate only consider and track
precise information on synchronization via monitors and the launch of threads. Other synchronize-
with relations (e.g.,volatile variable and rendezvous patterns) are not considered. In these cases,
�heckmate obtains sound but rough results. We made this choice essentially for two reasons:

• The discussion about what should be or not be supported by a memory model is still ongoing.
In addition, several novel memory models[42, 43] have recently appeared. Since we did not
want to be bound to a specific model, we focused our attention on functionalities that are
always supported by memory models.
• Tracking more and more synchronize-with relations would increase both the theoretical and

practical complexity of our approach. Since�heckmate is the first generic analyzer that
tracks these types of relations, we wanted to investigate how this affects the complexity of our
approach on standard synchronization patterns before developing more advanced features.

We believe that�heckmate can be extended in order to support other synchronization patterns, but
this would require some additional work at both the theoretical and practical levels.

4.1.2. ExampleConsider the analysis of the data race condition on the running example of Section
1.2. With the most approximate memory model, all assignments would be seen as written in parallel
with the statements executed by the initial thread, since wedo not track any synchronize-with
relations. Therefore,System.a.balance = 1000 of System would be seen to be written in parallel
with all statements ofMyThread, and in particular withSystem.a.getBalance(). Since the first
action is not synchronized on any monitor,�heckmate produces a false alarm signaling that there
may be a data race. Using a more refined memory model (both the happens-before model and the
intermediate version that considers the synchronize-withrelation when a thread is launched) we can
check thatSystem.a.balance = 1000 of System cannot be executed in parallel with the statements
of MyThread, so that they do not form a data race. In addition, the alias analysis discovers that the
accesses performed inside the twosynchronized blocks are synchronized on the same monitor, so
that they cannot produce a data race.

4.2. Alias Analysis

In order to obtain an effective analysis of multithreadedJava programs, we need to precisely track
(i) when two accesses to the shared memory may be on the same location, and (ii) when two threads

Copyright c© 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

8 PIETRO FERRARA

public interface NumericalValue {
public NumericalValue add(NumericalValue v1, NumericalValue v2);
public NumericalValue divide(NumericalValue v1, NumericalValue v2);
public NumericalValue multiply(NumericalValue v1, NumericalValue v2);
public NumericalValue subtract(NumericalValue v1, NumericalValue v2);
public NumericalValue evalConstant(int v);
public BooleanDomain testTrue(NumericalValue v1, NumericalValue v2, ComparisonOperator c);
public BooleanDomain testFalse(NumericalValue v1, NumericalValue v2, ComparisonOperator c);
public NumericalValue lub(NumericalValue v1, NumericalValue v2);
public NumericalValue widening(NumericalValue v1, NumericalValue v2);
public boolean lessEqual(NumericalValue v);
public String toString ();
public boolean equals(Object v);
public int hashCode();
}

Figure 4. The code of theNumericalValue interface

are always synchronized on the same monitor. InJava the shared memory is the heap. It relates
references to objects. Monitors are associated with objects, and so they are identified by reference.
In addition, threads are objects, and so they are identified by reference as well. In this context,
alias analysis (i.e., the way in which we abstract references) is the critical point of our analysis. In
particular, we need to precisely check (i) when two references always point to the same location
(must-aliasing), and (ii) when two references may point to the same location (may-aliasing). In [9]
we present a combination of the must- and may- aliasing analysis.�heckmate adopts this approach.

The may-alias domain approximates all concrete referencesin a finite way. Intuitively, it binds
each abstract reference to the program point that creates the address. Since the number of statements
is bounded, this domain is composed by a finite number of elements. An abstract reference may
approximate many concrete references, e.g., when anew statement is inside a loop. If two abstract
references are equal, they may alias the same concrete address. If they are different, they never point
to the same location. The information inferred by the may-alias analysis is also used to approximate
threads, since these are objects, and so are dynamically allocated in the heap. It allows one to
build up the interprocedural control flow graph, as it soundly approximates all concrete references
through which a method may be dynamically invoked. In addition, we define an equivalence
relation on abstract references using equivalence classes. If two abstract references point to the
same equivalence class, they are equal in all possible executions, that is, they must alias the same
location. This information is particularly useful to checkif two threads are always synchronized on
a common monitor.

4.2.1. LimitationsA design choice which has been made in�heckmate is to rely on a fixed alias
analysis instead of having it as a parameter. Since references are involved and are fundamental for
all of the main multithreaded aspects (e.g., to identify monitors), it is important to rely on a precise
and specific abstraction of the heap. In particular, we need sound information about both may- and
must- aliasing. Therefore, we chose a fixed alias analysis toachieve both precision and efficiency in
�heckmate.

4.3. Numerical Domain

Figure4 shows the code of theNumericalValue interface. This interface contains some arithmetical
operators (add, multiply, ...), the evaluation of conditions (testTrue andtestFalse), and the common
operators on lattices (lessEqual, lub, and widening). We implemented some well-known non-
relational abstract domains (namely, Sign [3], Interval [3], Parity [4], and Congruence [44]).

4.3.1. ExampleWe analyze the running example with the Sign domain. We can check that
the balance of the bank account is positive (+), but we cannot precisely analyze the condition

Copyright c© 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

A GENERIC STATIC ANALYZER FOR MULTITHREADED JAVA PROGRAMS 9

public interface Property {
public Alert check(MultiThreadResult r);
}

public class SingleStatementProperty implements Property {
public SingleStatementProperty(Visitor v) {...}
}

public interface Visitor {
public void checkSingleState(JVMState st, Alert a, Reference tid,

Statement statement, Stack<ProgramCounter> callStack);
}

Figure 5. The code of theProperty andVisitor interfaces and of theSingleStatementProperty class

temp < 100 in MyThread, since+ may be< 100. So we conclude thatnull may be assigned to
System.a. This write action is propagated, and soSystem.a.printBalance() in System may cause
a NullPointerException. This happens because the numerical domain is too approximate. If we
use the Interval domain, we can check that the value written by System is [1000..1000]. So the
condition if(temp < 100) cannot be true,null cannot be assigned to the fieldSystem.a, and the
NullPointerException cannot be thrown.

4.4. Property

Figure5 reports the main interfaces and classes dealing with the checking of properties. In particular,
the Property interface defines a methodcheck that, given a state of the thread-partitioning trace
domain, returns an object of typeAlert. This contains all warnings produced while checking the
property. In many cases, it is not necessary to deal with the results of the abstract semantics as a
whole, but it is enough to consider each statement alone. Forthis reason,�heckmate includes a
classSingleStatementProperty that implementsProperty. The constructor of this class receives an
object of typeVisitor. This interface defines methodcheckSingleStatement, that receives a state,
an objectAlert, a thread identifier, the analyzed statement, and the call stack, and it returns anAlert
object containing possible warnings.
�heckmate implements several properties. Some of them (namely, division by zero, null pointer

access, and overflow) are also interesting for single-threaded code, whilst others (namely, data races,
deadlock on monitors, and determinism and weak determinismas defined in [14]) are specific to
parallel programs.

4.4.1. ExampleConsidering the example presented in Section1.2, we want to check if a data race
may happen, and if aNullPointerException may be thrown. As�heckmate is parameterized by the
property to be checked, we can build up an abstraction of its multithreaded executions, and we can
check both properties on this abstraction.

4.5. An Example Interaction

Figure6 depicts a UML sequence diagram that sketches one possible execution of�heckmate. The
analyzer receives a memory model and a numerical domain whenthe analysis is started. During the
analysis,�heckmate uses the memory model to know which values written in parallel are visible
at a given point of execution, and the numerical domain to approximate numerical information.
Once a fixpoint is reached, the analysis gets an object representing the abstraction of all possible
executions of the program. Then this abstract result is passed to aProperty object that checks if
the property is validated. The memory model and the numerical domain are used during this phase
as well. Finally,�heckmate gets an object of typeAlert containing all warnings produced while
checking the property; it displays this information, and itends the analysis.

Copyright c© 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

10 PIETRO FERRARA

Figure 6. An example of interaction during the analysis

4.6. User Interfaces

We implemented two user interfaces: a command line tool, andanEclipse plugin.
The command line tool receives all parameters of the analysis (namely, the memory model, the

numerical domain, and the property) when launching the analysis. In addition, the user has to specify
the directory that contains the bytecode files to analyze, and the class containing themain method.
At the end of the analysis, a list of warnings or a message stating that the program is correct are
printed.

TheEclipse plugin is composed of a single.jar file. In order to start the analysis, the user has
to choose a class in the package explorer window, and click on“Checkmate” as shown in Figure
7. Then a dialog will ask the user to select the property of interest (Figure8). At the end of the
analysis, the results are displayed in a view (Figure9). In addition, the users can set the memory

Copyright c© 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

A GENERIC STATIC ANALYZER FOR MULTITHREADED JAVA PROGRAMS 11

Figure 7. Launching the analysis

Figure 8. Choosing the prop-
erty

Figure 9. Output

model and the numerical domain. The default values are the happens-before memory model and the
Interval domain.

5. EXPERIMENTAL RESULTS

We have applied�heckmate to several patterns of multithreading [45], case studies of weak
memory models [46], an ad-hoc application to study performance, and many benchmarks [47, 45].
We investigated both the precision and the performance of the analysis. We executed�heckmate
on an Intel Pentium D 3.0 Ghz with 2 GB of RAM, running Windows Server 2003 withJava virtual
machine version 1.6.006.

5.1. Common Patterns of Multithreaded Programs

Lea [45] presents an overview of several representative patterns of Java multithreaded programs.
The author shows the errors that may arise in these examples and how they can be fixed. We applied

Copyright c© 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

12 PIETRO FERRARA

�heckmate to these examples‡ to discover the errors. Since�heckmate performs a whole-program
analysis, we developed amain method that exposes the behavior of interest for each example.
ExpandableArray: This class implements an array that is automatically expanded if the user wants
to append an object when the array is full. All methods aresynchronized. If, in parallel, a user
performs two writes or a read and a write, then a conflict arises. In fact, even though all methods
are synchronized, the position of the elements in the array may be non-deterministic because of
threads’ interleavings. This program does not contain dataraces, and�heckmate discovers that,
while exposing the conflicts by checking the property of determinism.
LinkedCell: This class implements a list ofdouble values. The methods that read and write the
value contained in the current cell are bothsynchronized. The method that returns the sum of all
cells is not synchronized but it relies on synchronized methods, and so it does not expose any data
races. Finally, a method performs an incorrect sum, reading(without synchronization) the value
contained in the first element of the list.�heckmate discovers that the well-synchronized method
does not expose any data races if executed in parallel with writes to the list. It also discovers that
the unsynchronized sum calculation causes a data race. If weanalyze the property of determinism,
we discover the well-synchronized program may produce non-deterministic behaviors.
Document: This class implements a document containing a pointer to anenclosed document. A
synchronizedprint method is provided. Another synchronizedprintAll method prints all of the
content using the synchronizedprint method of the current object, and then invokes the same
method on the enclosed document. Suppose now that we have twodocumentsd1 andd2 which
are each others enclosed documents. If we print these two documents concurrently, this may cause a
deadlock. For instance the first thread may start the execution ofprintAll and acquire the monitor of
d1 starting the execution ofprintAll. Then the control may switch to the second thread, that acquires
the monitor ofd2 and then waits on the monitor ofd1. Finally, the control may switch to the first
thread, that starts waiting on the monitor ofd2, causing a deadlock.�heckmate precisely discovers
that this program may cause a deadlock.
Dot: This class implements a dot in a Cartesian plane. Its coordinates are stored in aPoint object.
The getter methods of thePoint class are not synchronized, but all methods of classDot are
synchronized. If we move a point and shift itsx value concurrently, we may obtain non-deterministic
executions.�heckmate proves that this program does not contain any data race condition. In
addition, it discovers the non-deterministic behaviors bychecking the property of determinism.
Cell: This class implements a cell containing an integer value. The get andset methods are both
synchronized. In addition, anothersynchronized method allows swapping the content of the current
object with the content of an object passed to the method, using the getter and setter methods. If we
swap the contents of two cells twice, in parallel, we may obtain a deadlock.�heckmate detects this
behavior precisely checking the deadlock property.
TwoLockQueue: This class implements a queue with methods to take and put objects. If we execute
a take and a put action in parallel when the queue is empty, thetake action may return anull value,
as it may be executed before the put action.�heckmate precisely discovers that. In particular, if
the queue is empty when the two threads are executed in parallel, it signals that the value returned
by the take action may be null. If we add an element before launching the two actions in parallel,
�heckmate precisely discovers that the value returned by the take action cannot be null.
Account: This example is quite complex and involves many classes. Inparticular, it implements
an immutable and a mutable account, an account holder, and two account recorders (one correct
and the other one malicious). We refer the interested readerto [45] for more details about the
implementation of these classes. The potential problem is that if the account holder accepts
money without using an immutable instance of the recorder, amalicious recorder may cause
a non-deterministic behavior.�heckmate precisely signals it this by checking the property of
determinism. In addition, if the account recorder is not malicious or the account holder uses an
immutable instance of the recorder, it proves that the program is deterministic.

‡The source code of these examples can be downloaded athttp://www.pietro.ferrara.name/checkmate/LeaExamples.zip

Copyright c© 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

A GENERIC STATIC ANALYZER FOR MULTITHREADED JAVA PROGRAMS 13

5.1.1. Discussion�heckmate performs a precise and correct analysis of the representative set of
examples we chose from [45]. In particular, it always discovers the bug or proves that the program
is correct. This result is achieved thanks to the flexibilityof �heckmate. Using different properties
allows us to tune the analysis to catch all bugs in the examples without producing false alarms.
In addition, we found out that the property of determinism isoften the only way to discover the
behavior of interest. The focus of this property is to identify the non-deterministic behaviors due to
the random interleaving of parallel threads. During the development of this property, the idea was
to define a property more flexible than the data race conditionto precisely identify some unwanted
behaviors of multithreaded programs. Our experiments confirm that this property could overcome
the limits of existing properties in some contexts. Concerning the performance, all examples are
analyzed by�heckmate in less than a second.

5.2. Weak Memory Model

In this section, we take some challenging examples presented in [46] to test the precision of
�heckmate. Figure10 shows these examples. We wrote them inJava (i.e., adding a method main
that instantiates and launches the threads), we compiled them with javac, and we analyzed the
bytecode with�heckmate using the happens-before memory model and the Interval domain.
Figure 10a: A compiler may switch the statements of each thread. In fact they work on disjoint sets
of variables, and so they are independent.�heckmate correctly tracks this behavior, and it infers
thatr1, r2, andr3 may be equal to zero at the end of the execution.
Figure 10b: In order to obtain the required behavior, it seems that a thread may write a variable
before it reads it. Instead, this behavior may be exposed by some compiler optimizations as pointed
out in Section 2.2.2 of [46]. Our analysis soundly approximates it. This behavior is exposed after the
third iteration of the multithreaded semantics as (i) the first iteration writes 1 tox, (ii) at the second
iteration this value is written byThread1 to r1 and then toy, (iii) at the third iteration 1 is read by
Thread2 throughy and written tor2, and (iv) during the fourth and last iteration the analysis does
not expose any new behavior and so it converges.
Figure 10c: Thanks to the Interval domain,�heckmate precisely tracks that only [0..0] can be
assigned tor1 and r2. As our analysis is context-sensitive, it checks that the conditions of both
threads cannot evaluate totrue, and so that value 42 will never be assigned.
Figure 10d: We need three iterations of the analysis to propagate the value 1. The first iteration
writes 1 tox, the second propagates it tor1 andy, and finally the third iteration assigns it tor2. In
this way we obtain the result required by the example.
Figure 10e: Value 42 is assigned tox and y by Thread1. It is then assigned tox by Thread2
in parallel. Finally we come back to the first statement ofThread1 that assigns tor3 the value
contained byx. In this way we capture the behavior of interest.
Figure 10f: As this example involves 4 threads, it requires more iterations of the multithreaded
semantics to reach a fixpoint.�heckmate soundly discovers that a possible behavior yields the
valuesr1 == 0, r1 == r2 == 42.
Figure 10g: This example is similar to the one in Figure10c. The Interval domain is used to
precisely infer that the condition of the loops cannot evaluate to false. Then value 42 is never
assigned, neither tox nor to y, and so the threads never exit the loops.�heckmate discovers this
fact.
Figure 10h: The situation is similar to the one in Figure10e. �heckmate is precise w.r.t. the
expected behavior.

5.2.1. Discussion�heckmate analyzes all examples successfully, producing a sound abstraction
of the behavior of interest. As the figures depict toy examples (usually no more than 200 bytecode
statements and 4 threads), the analysis requires always less than a second. These results are quite
encouraging. We deal with examples aimed at explaining the main features of theJava memory
model, and this is more restrictive than the happens-beforememory model. This does not affect
the precision of�heckmate since it successfully analyzes all examples. In general, our analysis is
able to catch the behaviors presented by examples in [46] in all cases in which they do not involve

Copyright c© 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

14 PIETRO FERRARA

Thread1 Thread2

r1 = x; x = 1;
y = 1; r3 = y;
r2 = x;

(a) Figure 1.
Initially, x == y == 0.
r1 == r2 == r3 == 0 is a

legal behavior

Thread1 Thread2

r1 = x; r2 = y;
y = r1; r3 = r2|1;

x = r3;
(b) Figure 3.
Initially, x == y == 0.
r1 == r2 == r3 == 1 is a legal

behavior.

Thread1 Thread2

r1 = x; r2 = y;
if(r1! = 0) if(r2! = 0)
y = 42; x = 42;

(c) Figure 4. Initially,
x == y == 0. Correctly
synchronized, sor1 == r2 == 0

is the only legal behavior.

Thread1 Thread2

r1 = x; r2 = y;
if(r1 == 1) if(r2 == 1)
y = 1; x = 1;

if(r2 == 0)
x = 1;

(d) Figure 7. Initially,
x == y == 0. r1 == r2 == 1

is a legal behavior.

Thread1 Thread2

r3 = x; r2 = y;
if(r3 == 0) x = r2;
x = 42;
r1 = x;
y = r1;

(e) Figure 11. Initially,
x == y == z == 0.
r1 == r2 == r3 == 42 is a

legal behavior.

Thread1 Thread2 Thread3 Thread4

r1 = x; r2 = y; z = 42; r0 = z;
y = r1; x = r2; x = r0;

(f) Figure 12. Initially, x == y == z == 0.
r0 == 0, r1 == r2 == 42 is a legal behavior.

Thread1 Thread2

do{ do{
r1 = x; r2 = y;
}while(r1 == 0); }while(r2 == 0);
y = 42; x = 42;

(g) Figure 25. Initially,x == y == 0. Correctly
synchronized, so non-termination is the only

legal behavior

Thread1 Thread2

r1 = x; r3 = y;
if(r1 == 0) x = r3;
x = 1;
r2 = x;
y = r2;

(h) Figure 27. Initially,
x == y == 0. Compiler
transformations can result in

r1 == r2 == r3 == 1.

Figure 10. Some examples taken from [46]

volatile variables. In the remaining cases, our analysis does not take into account the fact that a
variable isvolatile. For this reason, we obtain results that are still sound but too approximate. On the
other hand, we believe our framework to be extensible and flexible enough to also take into account
volatile variables, and this could be done by implementing another memory model.

5.3. Examples of Increasing Sizes

We applied�heckmate to several examples of increasing size that simulate the operations
performed by a bank§. Figure11 reports the number of abstract threads and statements of each
program. Figure12reports the time taken by the analysis (in msec) to build up the abstraction of the

§The source code of these examples can be downloaded athttp://www.pietro.ferrara.name/checkmate/Incremental.zip

Copyright c© 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

A GENERIC STATIC ANALYZER FOR MULTITHREADED JAVA PROGRAMS 15

Program # ab. th. # st.

Test1 3 452
Test2 5 684
Test3 7 807
Test4 11 1049
Test5 13 1173
Test6 15 1405
Test7 17 1526
Test8 19 1758
Test9 20 1878
Test10 24 2294

Figure 11. Number of abstract threads and statements

Program Top Sign Interval Parity Congruence

Test1 814 361 217 404 294
Test2 409 391 356 620 545
Test3 712 595 925 521 642
Test4 799 823 3806 703 642
Test5 1090 919 5887 779 616
Test6 1382 824 7161 900 986
Test7 1071 1647 9289 1340 863
Test8 1018 1269 10999 1263 1221
Test9 1421 2212 11691 1274 1623
Test10 1466 2432 17016 863 1906

Figure 12. Analysis Time (msec) vs Domain

Program Weak det. Det. Data race Null Overflow Div. by 0 Deadlock

Test1 31 32 47 31 15 16 16
Test2 78 78 125 47 47 47 15
Test3 125 125 172 187 63 62 16
Test4 250 250 359 125 94 94 62
Test5 359 360 484 172 125 125 78
Test6 547 562 828 266 219 203 125
Test7 719 734 1047 313 250 250 156
Test8 1000 1047 1609 438 359 360 250
Test9 1203 1234 1938 516 406 422 265
Test10 2031 2094 3609 828 688 687 500

Figure 13. Analysis Time (msec) vs Property

program using different numerical domains. The analyzer is quite fast: it rarely requires more than
a couple of seconds to converge. Only the Interval domain requires more time (about 17 seconds in
the worst case), as it is the most complex domain that we implemented.

We want to study the complexity of the analysis w.r.t. the number of statements and abstract
threads. For each numerical domain, we plot the number of abstract threads (in the x-axis), against
the execution time (in the y-axis). The behavior of the Top domain (Figure14a) is not regular. The
execution times grow but, as the analysis is quite fast, it ishard to conclude how it grows exactly.
More regular results are obtained with Parity (Figure14d), Sign (Figure14b), and Congruence
(Figure14e). The complexity is linear w.r.t. the number of abstract threads in all cases. Finally, the
Interval domain (Figure14c) seems to expose a quadratic complexity. We also investigated how the
analysis time varies w.r.t. the number of abstract threads analyzed. Figure14f plots the execution
time per thread. All domains except Interval require a constant time per thread. In the case of the
Interval domain, the times per thread increase w.r.t. the number of abstract threads. This increase
seems to be linear, and this confirms that the overall time required by the analysis is quadratic w.r.t.
the number of abstract threads.

Starting from these experimental results, we conclude thatthe complexity exposed by�heckmate
in practice is quadratic w.r.t. the number of threads and statements. This result is promising, but we

Copyright c© 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

16 PIETRO FERRARA

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 5 10 15 20 25

T
im

e
 o

f
e

x
e

c
u

ti
o

n
 (

s
e

c
)

of abstract threads

Time of the analysis in msec using Top domain

(a) Top domain

 0

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20 25

T
im

e
 o

f
e

x
e

c
u

ti
o

n
 (

s
e

c
)

of abstract threads

Time of the analysis in msec using Sign domain

(b) Sign domain

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 5 10 15 20 25

T
im

e
 o

f
e

x
e

c
u

ti
o

n
 (

s
e

c
)

of abstract threads

Time of the analysis in msec using Intervals domain

(c) Interval domain

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 5 10 15 20 25

T
im

e
 o

f
e

x
e

c
u

ti
o

n
 (

s
e

c
)

of abstract threads

Time of the analysis in msec using Parity domain

(d) Parity domain

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 5 10 15 20 25

T
im

e
 o

f
e

x
e

c
u

ti
o

n
 (

s
e

c
)

of abstract threads

Time of the analysis in msec using Congruence domain

(e) Congruence domain

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

1 2 3 4 5 6 7 8 9 10

T
im

e
 o

f
e

x
e

c
u

ti
o

n
 (

s
e

c
)

Program

Time of execution per thread

Top
Sign

Int.
Par.

Cong.

(f) Per thread

Figure 14. Times of execution

think that the analysis could be optimized. In particular the fixpoint computation of single-thread
semantics is sometimes slow as it works at a low abstraction level by simulating step by step the
actions of theJava virtual machine.

Copyright c© 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

A GENERIC STATIC ANALYZER FOR MULTITHREADED JAVA PROGRAMS 17

Program # st. # ab. th.

philo 213 2
forkjoin 170 2
barrier 363 3
sync 320 3
crypt 2636 3
sor 1121 2
elevator 1829 2
lufact 3732 2
montecarlo 3864 2

total 14248 21

Figure 15. The analyzed programs

5.4. Benchmarks

In this section, we apply�heckmate to the analysis of some benchmarks adopted to evaluate the
performances of static analyses of multithreaded programs. Two applications (philo, andelevator)
are taken from [47], while the others (barrier, forkjoin, sync, sor, crypt, lufact, andmontecarlo) are
taken from theJava Grande Forum Benchmark Suite [48]. We removed from the original programs
the calls to system functions (e.g.,System.out.println) as sometimes they deal with native methods
or reflection that are not supported by�heckmate. Figure15 reports the analyzed programs, the
number of statements, and the number of abstract threads. Note that in all cases the abstract threads
approximate a potentially unbounded number of concrete threads. We apply the analysis to all
benchmarks with all possible combinations of memory modelsand abstract numerical domains.
Figure 16 reports the computational times. For each numerical domainwe report the times of
execution using (i) the most relaxed memory model (columnAP), (ii) the memory model that tracks
only when a thread is launched (columnTL), and (iii) the happens-before memory model (column
HB). In addition, columnS.T. reports the time spent to compute the semantics of each thread in
isolation.

For each numerical domain, we plot the times of the analysis using the three memory models,
against the overall number of analyzed statements. Figure18areports the result obtained applying
the Top domain, while Figures18b-e do the same with the Sign, Interval, Parity and Congruence
domains, respectively. In all cases, the analysis is quite fast for programs with fewer than 500
statements. In addition, we observe comparable computational times for same program using
different numerical domains. The analysis ofcrypt is always quite faster than that ofelevator, even
though it is larger. This happens because of the internal structure of the program. With the exception
of the Interval and (in part) the Sign domains, the time of theanalysis does not grow considerably
w.r.t. the number of statements. The complexity seems to be almost linear. Instead, Interval and in
part Sign seem to expose a higher complexity.

The analysis ofmontecarlo is notably slower. We wanted to check if this slowness is due to our
approach or to the fixpoint computation of a single thread, i.e., to the structure of the program.
Figure17 reports the overhead due to the multithreaded fixpoint computation compared with the
single-threaded fixpoint semantics. Figure18f depicts this overhead when applying the Interval
domain and the happens-before memory model. It makes clear that this overhead does not depend
on the number of threads or statements analyzed. Its values are between 250% and 450% (with the
exception ofcrypt), and do not depend on the program size.

In fact, we often obtain the greatest overhead for the smallest application. In addition, for larger
applications (sor, elevator, lufact, andmontecarlo) the overhead is almost stable (300% in average).
This result is quite encouraging: it means that on average weneed about 3 iterations of the single-
threaded semantics to reach a fixpoint in our multithreaded semantics. In addition, we think that
we can improve this result, since our implementation is not optimized at all. For instance, we may
parallelize the analysis of different threads during the same iteration of the multithreaded semantics.

Copyright c© 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

1
8

P
IE

T
R

O
F

E
R

R
A

R
A

Top Sign Int. Par. Cong.
Program AP TL HB S.T. AP TL HB S.T. AP TL HB S.T. AP TL HB S.T. AP TL HB S.T.

philo <1” <1” <1” <1” <1” <1” <1” <1” <1” <1” 1” <1” <1” <1” <1” <1” <1” <1” <1” <1”
forkjoin <1” <1” <1” <1” <1” <1” <1” <1” <1” <1” <1” <1” <1” <1” <1” <1” <1” <1” <1” <1”
barrier <1” <1” <1” <1” <1” 1” 1” <1” 1” 1” 2” 1” <1” 1” 1” <1” 1” 1” 1” <1”
sync 1” 1” 1” <1” 1” 1” 1” <1” 2” 2” 3” 1” 1” 1” 1” <1” 1” 1” 2” 1”
crypt 4” 4” 5” 1” 6” 6” 6” 3” 16” 17” 17” 13” 5” 5” 6” 1” 4” 5” 5” 2”
sor 4” 4” 4” 2” 6” 6” 7” 2” 16” 17” 17” 5” 5” 5” 6” 2” 5” 5” 5” 2”
elevator 27” 28” 31” 11” 10” 11” 11” 4” 18” 18” 19” 7” 29” 30” 30” 11” 28” 29” 29” 11”
lufact 25” 25” 27” 10” 52” 52” 53” 20” 5’52” 5’56” 5’59” 2’08” 28” 29” 29” 12” 27” 29” 29” 11”
montecarlo 54” 56” 1’02” 23” 2’23” 2’26” 2’35” 45” 1h00’33” 1h00’38” 1h00’56” 16’48” 1’38” 1’38” 1’43” 31” 54” 1’00” 1’04” 25”

Figure 16. Times of analysis

Top Sign Int. Par. Cong. Total
Program AP TL HB AP TL HB AP TL HB AP TL HB AP TL HB AP TL HB

philo 221% 263% 282%245% 246% 259%450% 480% 532%145% 198% 198%160% 297% 319%233% 282% 300%
forkjoin 352% 403% 531%282% 315% 332%279% 314% 317%422% 319% 559%432% 454% 495%348% 380% 434%
barrier 148% 193% 207%173% 212% 255%193% 205% 224%182% 199% 218%275% 278% 299%193% 215% 236%
sync 233% 296% 310%316% 323% 369%398% 400% 435%268% 300% 307%228% 242% 282%295% 309% 343%
crypt 295% 334% 349%201% 208% 214%120% 127% 128%366% 341% 395%258% 277% 281%171% 181% 186%
sor 263% 261% 267%252% 260% 301%304% 324% 325%225% 265% 247%251% 256% 264%269% 282% 292%
elevator 240% 249% 272%234% 248% 252%243% 252% 258%256% 253% 266%244% 251% 252%245% 254% 262%
lufact 259% 262% 279%252% 253% 258%274% 277% 279%230% 267% 238%235% 249% 254%265% 269% 272%
montecarlo 235% 245% 268%320% 328% 347%361% 361% 363%311% 295% 328%212% 235% 251%352% 353% 357%

average 249% 279% 307%253% 266% 287%291% 304% 318%267% 271% 306%255% 282% 300%

Figure 17. Overhead of multithreaded fixpoint computation

C
opyright c©

2012
John

W
iley

&
S

ons,Ltd.
S

o
ftw

.
P

ra
ct.

E
xp

e
r.(2012)

P
re

p
a
re

d
u
sin

gspeauth.cls
D

O
I:10.1002/spe

A GENERIC STATIC ANALYZER FOR MULTITHREADED JAVA PROGRAMS 19

 0

 10

 20

 30

 40

 50

 60

 70

 0 500 1000 1500 2000 2500 3000 3500 4000

T
im

e
 o

f
e

x
e

c
u

ti
o

n
 (

s
e

c
)

of bytecode statements

Time of the analysis in msec using Top domain

AP
TL
HB

(a) Top domain

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 500 1000 1500 2000 2500 3000 3500 4000

T
im

e
 o

f
e

x
e

c
u

ti
o

n
 (

s
e

c
)

of bytecode statements

Time of the analysis in msec using Signs domain

AP
TL
HB

(b) Sign domain

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 500 1000 1500 2000 2500 3000 3500 4000

T
im

e
 o

f
e

x
e

c
u

ti
o

n
 (

s
e

c
)

of bytecode statements

Time of the analysis in msec using Intervals domain

AP
TL
HB

(c) Interval domain

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000 2500 3000 3500 4000

T
im

e
 o

f
e

x
e

c
u

ti
o

n
 (

s
e

c
)

of bytecode statements

Time of the analysis in msec using Parity domain

AP
TL
HB

(d) Parity domain

 0

 10

 20

 30

 40

 50

 60

 70

 0 500 1000 1500 2000 2500 3000 3500 4000

T
im

e
 o

f
e

x
e

c
u

ti
o

n
 (

s
e

c
)

of bytecode statements

Time of the analysis in msec using Congruence domain

AP
TL
HB

(e) Congruence domain

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

philo forkjoin barrier sync crypt sor elevator lufact montecarlo

O
v
e

rh
e

a
d

 (
%

)

Program

Overhead in % of multithread fixpoint computation using Intervals and HB memory model

(f) Overhead of multithreaded fixpoint computation
using Interval

Figure 18. Times of execution using HB memory model

Finally, we compared the times of the analysis using different memory models. For programs with
fewer than 500 statements, the analysis is too fast to obtainsignificant comparisons. So we consider
only the analyses ofcrypt, sor, elevator, lufact, andmontecarlo. Figure19adepicts the overhead of
the analysis using the happens-before memory model againsttheAP memory model, while Figure
19bdepicts the overhead compared with theTL memory model. The overhead ofHB compared with
AP is rarely greater than 10%, and on average it is about 5%. It ison average about 2% w.r.t.TL
and rarely greater than 5%. We believe that these results arequite encouraging as well: the overhead
of more refined memory models is quite small. This means that tracking more and more relations
between threads does not affect the performance of the analysis significantly.

5.5. Comparison

Figure20summarizes the main achievements of some representative existing tools and�heckmate.
ColumnSound reports whether or not the analyzer is sound w.r.t. all multithreaded executions. We
identified two levels ofEfficiency: Fast means that the analyzer can be applied to few thousands of

Copyright c© 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

20 PIETRO FERRARA

 0

 2

 4

 6

 8

 10

 12

 14

 16

crypt sor elevator lufact montecarlo

O
v
e

rh
e

a
d

 (
%

)

Program

Overhead of HB w.r.t. AP in %

Top
Sign

Int.
Par.

Cong.

(a) Overhead of HB w.r.t. AP

 0

 2

 4

 6

 8

 10

 12

 14

crypt sor elevator lufact montecarlo

O
v
e

rh
e

a
d

 (
%

)

Program

Overhead of HB w.r.t. TL in %

Top
Sign

Int.
Par.

Cong.

(b) Overhead of HB w.r.t. AP

Figure 19. The overhead in % of the HB memory model

Analysis Sound Efficiency Accuracy Flexible Automatic

Fast Scalable Precise Complete

�heckmate ! ! % ! % ! !
Clousot[5] % ! ! ! % ! %
Chess [16] % % % ! ! % !
Abadi et al. [21] ! ! ! ! % % %
Naik and Aiken [22] ! % % ! % % !
Williams et al. [28] % ! ! ! % % !

Figure 20. Comparison with other tools

LOC in a reasonable (that is, within a few minutes) time, whileScalable means that it can be applied
to hundreds of thousands of LOC. Concerning theAccuracy of the analysis, we distinguished
betweenPrecise (that is, it produces few false alarms in practice) andComplete (that is, it produces
no false alarms). ColumnFlexible reports whether or not the analyzer can be applied to various
properties, while columnAutomatic reports whether or not the analyzer requires any form of
manual annotation (e.g., types or contracts).

The tool that is most similar to�heckmate is Clousot. The main differences w.r.t.�heckmate
are thatClousot does not consider multithreaded executions, it requires manual annotation, while
on the other hand it achieves scalability. A quite different tool isChess: it considers multithreaded
programs but it is not sound since it binds the number of context switches to a constant value. On
the other hand, it is the only tool that achieves completeness, since it executes the program. For this
reason,Chess is not efficient, but it is completely automatic. Finally, it is not flexible since although
it can be tuned to a specific property, it always checks all runtime errors. None of the other three
analyzers are flexible, since they check a specific multithreaded property (data races or deadlocks).
The type system proposed by Abadi et al. scales, but it requires manual annotation of the program
with extra type information. The must alias analysis proposed by Naik and Aiken is lacking in terms
of efficiency, while the deadlock checking proposed by Williams etal. is particularly efficient, but it
is not sound w.r.t. all possible multithreaded executions.

Given this context,�heckmate represents a unique result. In particular, it is the first flexible
analyzer that is sound for multithreaded programs.

Copyright c© 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

A GENERIC STATIC ANALYZER FOR MULTITHREADED JAVA PROGRAMS 21

5.6. Limitations

The experimental results underline both the efficiency and the precision of�heckmate, but they
prove that the analysis does not scale to industrial software as well. Since the analysis we perform is
whole-program, we are not in a position to analyze a completeindustrial application in a reasonable
time. The current generic analyzers that scale (e.g.,Clousot) reason modularly about methods,
relying on contracts when methods are invoked. Unluckily, precise modular reasoning is not possible
on multithreaded programs without imposing further restrictions on programs (e.g., absence of
data races) and applying a non-standard specification methodology. The goal of�heckmate was
to (i) analyze all multithreaded Java programs, and not to restrict programs to avoid data races
and deadlocks, and (ii) check properties for all possible executions without requiring additional
automatic synchronizations.

In this context, we had to develop a whole-program analysis.On the other hand, it seems evident
that something more is required to put developers in a position to think modularly about threads. For
instance, a different approach has been adopted by Software Transactional Memory [49]. However,
STM has not been adopted by common programming languages (e.g., Java andC#) which, so far,
offer threads rather than transactions.

Concerning precision, while�heckmate is able to deal effectively with many case studies, we
could still improve its precision in three main directions:

• supporting more synchronization patterns, as we pointed out in Section4.1,
• defining and implementing specific abstract domains for the properties of interest that do not

deal with concurrency, and
• manually developing the semantics of some native methods.

6. CONCLUSION

We have presented�heckmate, a generic static analyzer based on abstract interpretation for
multithreadedJava programs. It supports the most relevant features of theJava language, such
as unbounded dynamic thread creation, runtime creation andmanagement of monitors, method-
calls in the presence of overloading, overriding, and recursion, and dynamic allocation of shared
memory. We presented the overall structure of the analyzer,and we studied in detail the experimental
results obtained when applying�heckmate to some common patterns of concurrent programming
in Java [45], to some case studies about theJava memory model presented in [46], to an incremental
application, and to a set of well-known benchmarks [47, 48]. The precision exposed when analyzing
these examples is quite encouraging, and we are in a positionto analyze programs with an
unbounded number of threads and thousands of statements in alimited time.

Future work concerns the refinement of the analysis and its application to industrial software. In
particular, we want to refine the numerical domain to apply relational analyses. In order to reach
this goal, we need to perform some transformations on the bytecode, e.g., stack abstraction and
expression recovery [50]. Our aim is also to refine our memory model to track more synchronization
actions, and with some restrictions of theJava memory model that are not considered by the
happens-before memory model.

REFERENCES

1. Lee EA. The problem with threads.Computer, IEEE Computer Society Press, 2006.
2. Sutter H, Larus J. Software and the concurrency revolution. ACM Queue, ACM Press, 2005.
3. Cousot P, Cousot R. Abstract interpretation: a unified lattice model for static analysis of programs by construction

or approximation of fixpoints.Proceedings of POPL ’77, ACM, 1977.
4. Cousot P, Cousot R. Systematic design of program analysisframeworks.Proceedings of POPL ’79, ACM, 1979.
5. Logozzo F, Fähndrich M. Static contract checking with abstract interpretation.Proceedings of FoVeOOS ’10, LNCS,

Springer-Verlag, 2010.
6. Logozzo F. Cibai: An abstract interpretation-based static analyzer for modular analysis and verification of Java

classes.Proceedings of VMCAI ’07, LNCS, Springer-Verlag, 2007.

Copyright c© 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

22 PIETRO FERRARA

7. Spoto F. The Julia Generic Static Analyser.http://profs.sci.univr.it/∼spoto/julia/.
8. Ferrara P. Static analysis via abstract interpretation of the happens-before memory model.Proceedings of TAP ’08,

LNCS, Springer-Verlag, 2008.
9. Ferrara P. A fast and precise analysis for data race detection. Bytecode ’08, 2008.

10. Ferrara P. Static analysis of the determinism of multithreaded programs.Proceedings of SEFM ’08, IEEE Computer
Society, 2008.

11. Lindholm T, Yellin F.Java Virtual Machine Specification. Addison-Wesley Longman Publishing Co., Inc.: Boston,
MA, USA, 1999.

12. Odersky M.The Scala Language Specification2008.
13. Meyer B.Object-Oriented Software Construction (2nd Edition). Prentice Hall, 1997.
14. Ferrara P.Checkmate: a generic static analyzer of java multithreaded programs.Proceedings of SEFM ’09, IEEE

Computer Society, 2009.
15. Qadeer S, Rehof J. Context-bounded model checking of concurrent software.Proceedings of TACAS ’05, LNCS,

Springer-Verlag, 2005.
16. Musuvathi M, Qadeer S. Iterative context bounding for systematic testing of multithreaded programs.Proceedings

of PLDI ’07, ACM Press, 2007.
17. Ramalingam G. Context-sensitive synchronization-sensitive analysis is undecidable.ACM Trans. Program. Lang.

Syst.2000;22:416–430.
18. Flanagan C, Qadeer S. Thread-modular model checking.Proceedings of SPIN ’03, Springer, 2003.
19. Qadeer S, Rajamani SK, Rehof J. Summarizing procedures in concurrent programs.Proceedings of POPL ’04,

ACM, 2004.
20. Rinard MC. Analysis of multithreaded programs.Proceedings of SAS ’01, LNCS, Springer-Verlag, 2001.
21. Abadi M, Flanagan C, Freund SN. Types for safe locking: Static race detection for java.Proceedings of TOPLAS

’06, ACM Press, 2006.
22. Naik M, Aiken A. Conditional must not aliasing for staticrace detection.Proceedings of POPL ’07, ACM Press,

2007.
23. Kahlon V, Yang Y, Sankaranarayanan S, Gupta A. Fast and accurate static data-race detection for concurrent

programs.Proceedings of CAV ’07, LNCS, Springer-Verlag, 2007.
24. Henzinger TA, Jhala R, Majumdar R. Race checking by context inference.Proceedings of PLSI ’04, 2004.
25. Bensalem S, Fernandez J, Havelund K, Mounier L. Confirmation of deadlock potentials detected by runtime

analysis.Proceedings of PADTAD ’06, ACM Press, 2006.
26. Bensalem S, Havelund K. Scalable dynamic deadlock analysis of multithreaded programs.Proceedings of PADTAD

’05, ACM Press, 2005.
27. Eytani Y, Havelund K, Stoller SD, Ur S. Towards a framework and a benchmark for testing tools for multi-threaded

programs.Concurr. Comput. : Pract. Exper.2007;19(3).
28. Williams A, Thies W, Ernst MD. Static deadlock detectionfor Java libraries.Proceedings of ECOOP ’05, LNCS,

Springer-Verlag, 2005.
29. Agarwal R, Wang L, Stoller SD. Detecting potential deadlocks with static analysis and runtime monitoring.

Proceedings of PADTAD ’05, Springer-Verlag, 2005.
30. Spoto F. Nullness analysis in boolean form.Proceedings of SEFM ’08, IEEE Computer Society Press, 2008.
31. Fähndrich M, Leino KRM. Declaring and checking non-null types in an object-oriented language.Proceedings of

OOPSLA ’03, ACM Press, 2003.
32. Hovemeyer D, Pugh W. Finding more null pointer bugs, but not too many.Proceedings of PASTE ’07, ACM Press,

2007.
33. Hubert L, Jensen T, Pichardie D. Semantic foundations and inference of non-null annotations.Proceedings of

FMOODS ’08, Springer-Verlag, 2008.
34. Cousot P, Cousot R, Feret J, Mauborgne L, Miné A, Monniaux D, Rival X. The ASTŔEE analyzer.Proceedings of

ESOP ’05, LNCS, Springer-Verlag, 2005.
35. Flanagan C, Leino KRM, Lillibridge M, Nelson G, Saxe JB, Stata R. Extended static checking for java.Proceedings

of PLDI ’02, ACM Press, 2002.
36. Java program checker J.http://artho.com/jlint/.
37. Cousot P. The calculational design of a generic abstractinterpreter.Calculational System Design. NATO ASI Series

F. IOS Press, Amsterdam, 1999.
38. Manson J, Pugh W, Adve SV. The Java memory model.Proceedings of POPL ’05, ACM Press, 2005.
39. Lamport L. How to make a multiprocessor computer that correctly executes multiprocess programs.IEEE Trans.

Computers, 1979.
40. Lamport L. Time, clocks, and the ordering of events in a distributed system.Commun. ACM, ACM Press, 1978.
41. Ferrara P. Static analysis via abstract interpretationof multithreaded programs. PhD Thesis, Ecole Polytechnique

of Paris (France) and University ”Ca’ Foscari” of Venice (Italy) May 2009.
42. Batty M, Owens S, Sarkar S, Sewell P, Weber T. Mathematizing c++ concurrency.Proceedings of POPL ’11, Press

A (ed.), 2011.
43. Owens S, Sarkar S, Sewell P. A better x86 memory model: x86-tso.Proceedings of TPHOLs ’09, Springer (ed.),

LNCS, 2009.
44. Granger P. Static analysis of linear congruence equalities among variables of a program.Proceedings TAPSOFT

’91, LNCS, Springer-Verlag, 1991.
45. Lea D.Concurrent Programming in Java. Addison-Wesley, 1996.
46. Manson J, Pugh W, Adve S. The Java Memory Model.http://unladen-swallow.googlecode.com/files/journal.pdf.
47. Von Praun C, Gross TR. Object race detection.Proceedings of OOPSLA ’01, ACM Press, 2001.
48. Java Grande Forum Benchmark Suite.http://www.epcc.ed.ac.uk/research/activities/java-grande/.
49. Shavit N, Touitou D. Software transactional memory.Symposium on Principles of Distributed Computing, ACM

Press, 1995.

Copyright c© 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

A GENERIC STATIC ANALYZER FOR MULTITHREADED JAVA PROGRAMS 23

50. Logozzo F, Fähndrich M. On the relative completeness ofbytecode analysis versus source code analysis.
Proceedings of CC ’08, LNCS, Springer-Verlag, 2008.

Copyright c© 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2012)
Prepared usingspeauth.cls DOI: 10.1002/spe

	1 Introduction
	1.1 Contribution
	1.2 The Running Example

	2 Related Work
	2.1 Model Checking
	2.2 Concurrency Properties
	2.2.1 Data Race Analysis
	2.2.2 Deadlock Detection

	2.3 Other properties

	3 Background
	3.1 Abstract Interpretation
	3.2 The Happens-Before Memory Model
	3.3 Fixpoint Definition

	4 Architecture
	4.1 Memory Model
	4.1.1 Limitations
	4.1.2 Example

	4.2 Alias Analysis
	4.2.1 Limitations

	4.3 Numerical Domain
	4.3.1 Example

	4.4 Property
	4.4.1 Example

	4.5 An Example Interaction
	4.6 User Interfaces

	5 Experimental Results
	5.1 Common Patterns of Multithreaded Programs
	5.1.1 Discussion

	5.2 Weak Memory Model
	5.2.1 Discussion

	5.3 Examples of Increasing Sizes
	5.4 Benchmarks
	5.5 Comparison
	5.6 Limitations

	6 Conclusion

