
TVAL+ : TVLA and Value Analyses Together

Pietro Ferrara, Raphael Fuchs, and Uri Juhasz

ETH Zürich, Switzerland
{pietro.ferrara,uri.juhasz}@inf.ethz.ch, fuchsra@ethz.ch

Abstract. Effective static analyses must precisely approximate both
heap structure and information about values. During the last decade,
shape analysis has obtained great achievements in the field of heap ab-
straction. Similarly, numerical and other value abstractions have made
tremendous progress, and they are effectively applied to the analysis
of industrial software. In addition, several generic static analyzers have
been introduced. These compositional analyzers combine many types
of abstraction into the same analysis to prove various properties. The
main contribution of this paper is the combination of Sample, an exist-
ing generic analyzer, with a TVLA-based heap abstraction (TVAL+).

1 Introduction

During the last decades, heap analysis has been extensively, deeply and success-
fully studied. Its goal is to approximate all possible heap shapes in a finite way.
This is particularly important when analyzing object-oriented programs, which
heavily interact with dynamically allocated memory. Static analysis has been
widely applied to the abstraction of numerical information as well. Numerical
domains [8, 22] track static information at different levels of approximation. In
addition, other approaches (e.g., string analyses) approximate other types of
information over the values computed during the execution.

Usually, the combination of the heap abstraction with information about
other values (called value domain) is necessary. For instance, consider a program
that sum the values contained in the nodes of a list. Here we would like to prove
that, at the end of the execution, the computed value of is the summation of
all elements in the given list. For this reason, several recent approaches have
combined heap and value abstractions. In this context, some heap analyses (e.g.,
TVLA) were extended with information about numerical values [21], or ad-hoc
heap analyses were combined with some existing numerical domains [3].

Thanks to compositional analyses based on abstract interpretation [5], we
can define a generic analyzer that combines various abstractions modularly and
automatically. In this way, the implementation of different domains can be com-
posed together without reimplementing the analysis. In addition, generic static
analyzers take care of all aspects not strictly related to the abstract domain,
e.g., the computation of a fixpoint. As far as we know, existing generic analyzers
[9, 18, 24] apply a fixed heap analysis, while they let the user specify the value
abstraction and the property of interest. Sample (Static Analyzer of Multiple

1 // list contains only
2 // positive integer values
3 IntNode it = list .next;
4 it . value = −1;
5 it = null ;

(a) Running example

(b) At the beginning
and at the end

(c) At line 4

Fig. 1. The running example and the states obtained by TVLA when analyzing it

Programming LanguagEs) is a novel generic analyzer of object-oriented pro-
grams that is parametric not only in the value domain and in the property of
interest, but in the heap abstraction as well.
Contribution Given this context, the contribution of this work is the extension
of Sample with a TVLA-based heap analysis (TVAL+). In particular, we formalize
the structure of Sample, how we name nodes in TVLA states through name
predicates, and how we communicate the modifications performed by TVLA on
the heap structure to the value analysis. In this way, TVAL+ can be combined
with any existing value abstraction in Sample. The combination between TVAL+
and value analyses is completely automatic.

Intuitevely, Sample computes an abstract state for each program point. We
use TVLA as the engine to define the heap small-step semantics of our lan-
guage, while the value analysis tracks information over the values contained in
abstract heap nodes represented by heap identifiers. Since TVLA names nodes in
a completely unpredictable and arbitrary way, and it does not provide any infor-
mation from where nodes come from after the application of a TVLA action, we
augment standard TVLA states with name predicates, and we normalize the exit
states obtained by applying TVLA actions to keep the naming schema consistent.
When we perform this normalization, we communicate the changes performed
by TVLA on the heap structure to the value analysis. Our approach supports
this normalization without requiring any additional feature to the value analysis,
since it relies on standard semantic operators (namely, assignment and forgetting
of identifiers). The TVLA state can contain any instrumentation predicates.

1.1 Running Example

Consider now the code in Figure 1a. This program assigns −1 to the value
contained in the second node of a given list. Let us suppose that the list is
acyclic, it contains at least two nodes, and that the initial TVLA state is the one
depicted in Figure 1b. The node pointed by list.next is materialized when it is
assigned to the iterator, while it.value is materialized when it is assigned at line
4. Therefore, after the analysis of line 4, TVLA infers the heap state depicted in
Figure 1c1. Finally, when we assign null to it, TVLA removes this unary predicate

1 TVLA would actually give more options, which we omit here.

%s PVar {x,y,z,..}

foreach (x in PVar) {
%p x(v 1) unique
}

(a) Program vari-
able predicates

%s Fields {n, i , ...}

foreach (f in Fields) {
%p f(v 1,v 2) function
}

(b) Field predicates

%action createObj(t) {
%new
{

t(v) = isNew(v)
}
}

(c) Object creation

%action getField(u,t , f) {
%f { E(v 1,v 2) t(v 1)

& f(v 1,v 2)}
{

u(v) = E(v 1) t(v 1)
& f(v 1, v)

}
}

(d) Field access

%action assignVariable(t , s) {
%f { source(v) }
{

t(v) = s(v)
}
}

(e) Variable assignment

%action assignField(t , f , s) {
%f { t(v), s(v) }
{

f(v 1, v 2) = (f(v 1, v 2) & !t(v 1))
| (t(v 1) & s(v 2))

}
}

(f) Field assignment

%action lub() {
{

}
}

(g) Upper
bound

Fig. 2. TVLA actions of the heap semantics

from the TVLA state, and this leads to summarize u2 with u4, and u3 with u5.
This brings the analysis to the initial state depicted in Figure 1b.

2 Background

2.1 Sample

Sample (Static Analyzer of Multiple Programming LanguagEs) is a novel generic
analyzer of object-oriented programs based on the abstract interpretation theory
[6, 7]. Relying on compositional analyses, Sample can be instantiated with various
heap abstractions and value domains. A state of the analysis is a pair composed
by a state of the heap domain H and a state of the value domain V (formally,
Σ = H×V). Sample has been already applied to various value analyses [4, 10, 11,
25], and it supports some of the most common numerical analyses through Apron
[16]. In addition, some rough heap analyses have been already developed in
Sample. The analyzer works on an intermediate object-oriented language called
Simple, and it supports the compilation of Scala and Java bytecode to this
language. Simple is based on control flow graphs (cfg). Each block of the cfg
contains a list of statements that may be x := y.f, y.f := x, or x := new T.

2.2 Shape Analysis

TVLA [17] is a framework for defining and implementing heap abstractions
in 3-valued first order logic [23] with transitive closure (FOLTC). In this section,
we sketch the standard TVLA features we adopt in TVAL+. For each analysis a
FOL signature (predicates of arity up to 2) is defined. The predicates are divided
into core (uninterpreted) predicates, and instrumentation predicates, which are
defined by a FOLTC formula over the core predicates. The abstract domain

is composed of sets of structures of 3-valued FOLTC. A 3-valued structure is
composed of normal and summary nodes. Normal nodes represent exactly one
concrete node, while summary nodes may represent many concrete nodes.

The abstraction is defined by a set of unary predicates out of the signature,
which can be core or instrumentation predicates (the abstraction predicates AP).
In a normalized structure any two distinct nodes are differentiated by at least
one abstraction predicate. For heaps, usually unary predicates represent local
reference valued variables and binary predicates represent reference valued fields.
The graphical representation, as in Figure 1b, uses circles for nodes (dashed for
summary nodes), labeled originless arrows for local variables (again dashed for
may point to), and labeled arrows between nodes to represent reference valued
fields. For example, for a linked list as in Figure 1b, we could use as abstraction
predicates with one free variable pointed-to-by-list (u0 in the example) list(x),
so that the first node is not summarized with the rest of the nodes.

In our example, we would need predicates to differentiate u1, u3 and u5.
We can achieve that by using (i) value-of-node-pointed-to-by-list (u1), that is,
∃y : list(y) ∧ value(y, x), (ii) value-of-node-pointed-to-by-it (u3 in 1c), that is,
∃y : it(y) ∧ value(y, x), and (iii) ∃y, z : it(y) ∧ next ∗ (y, z) ∧ value(z, x) for
differentiating the nodes coming before and after it.

Concrete transformers are represented by update formulae (P ′(x) = φ(x)).
Here P is a predicate symbol, φ a formula (evaluated in the pre-state), x are
bound variables (implicitly universally quantified - exactly as many as the arity of
P) and P ′ is P in the post state. For example, Figure 2f represents the assignment
t.f = s. Here the new value of f (the field being written) is given by a formula
on the old values of f, t and s (we omit here null checks).

TVLA works by applying a semantic reduction (called focus) before the ab-
stract transformer. Given an abstract state, focus produces a set of abstract
states with the same concrete representation, but ensuring some pairs of nodes
are not merged, in addition to the separation enforced by the abstraction predi-
cates. In the linked list example, before advancing to the next node, we would like
to make sure it is not merged with any other node, so we would focus on it using
the formula ∃y : it(y) ∧ next(y, x). TVLA uses widening (called blur) to ensure
termination. After applying the abstract transformer on the focused structures,
nodes which are not separable by the abstraction predicates are merged, and the
same happens for structures, ensuring a bound on the size of the abstract domain.

TVLA actions

Figure 2 reports all TVLA actions that are used in TVAL+. For every program
variable x, a unary predicate Px(v) specifies the node that is pointed by the
local variable (Figure 2a). Unique specifies that at most one node satisfies the
predicate. Heap nodes are connected to each other when a field of an object ref-
erences another object. For every possible field f, we introduce a binary predicate
Pf (v1, v2) that connects heap nodes (Figure 2b). For example, if field n of node
a references node b, we have that Pn(a, b) = 1. In the definition, function means
that the field relation is a (partial) function. Object creation relies on the TVLA

built-in predicate isNew . It creates a new (non-summary) node and assigns it to
a temporary program variable temp (Figure 2c). When we access a field of an
object, the node modelling the target object may have been summarized with
other nodes. However, we would like to obtain a concrete (i.e., not summarized)
node as the result of our access. With this purpose we add the focus formula
∃(v1, v2) : Ptarget(v1) ∧ Pf (v1, v2). As in the case of object creation, the result
is assigned to a temporary program variable (Figure 2d). In the case of assign-
ments, we assume there is always a unary predicate pointing to the source of
the assignment. In the case of a variable, it is the program variable predicate,
while in the case of a heap access or an object creation it is the variable temp
which was created as explained above. Therefore, we simply copy the valuation
of the unary predicate (Figure 2e). The treatment of the assignment to a field is
similar to normal assignment. However, the translation to TVLA is different, as
it involves a field predicate, and we need to access the target object whose field
is assigned (Figure 2f). When we join two states (e.g., when computing the exit
state of an if statement), we rely on the join performed automatically by TVLA
on all input structures in the entry state. Therefore, we simply provide TVLA
with the two states and an empty action, and we take the exit state as the result
of the upper bound operator (Figure 2g).

3 Heap and Value Analyses in Sample

The state of the computation of an object oriented program can be defined as
the combination of the heap structure with the values that can be contained in
heap locations or local variables. Let Ref be the set of concrete references, and
FieldName the set of field names. The heap may be defined by Ref×FieldName→
Ref for heap locations, and by VarId → Ref (where VarId is the set of local
variables) for the local variables. Let Val be the set of values (e.g., integers or
strings). The runtime values can be represented by Ref × FieldName → Val for
heap locations, and by VarId→ Val for local variables.

When we reason about the abstraction of concrete states, often we would like
to reason about heap structures and values separately. Therefore, we suppose
that concrete references are abstracted by abstract heap identifiers (HId). Each
heap analysis defines its own finite set of heap identifiers. A heap identifier
could represent one or many concrete references. Let γHId : HId → ℘(Ref) be
the concretization of abstract heap identifiers. We say that a heap identifier i
represents a summary node if |γHId(i)| > 1.

Since the heap analysis needs to abstract together many concrete heaps, a
heap interaction (e.g., a field access) may provide many heap identifiers. Some-
times the heap analysis may not be able to establish one exact node for a heap ac-
cess, and therefore it would return a possible set of heap identifiers. In other cases,
the heap analysis could track disjunctive information through a set of heap states
at a given program point, and therefore it would return a definite set of heap iden-
tifiers. Formally, we define set of heap identifiers SHId = ℘(HId) × {true, false}.
The boolean flag is true if the set is definite (if it represents all identifiers in

1 IntNode list = new IntNode();
2 if (...) {
3 IntNode newNode = new IntNode();
4 newNode.next = list;
5 list = newNode;
6 }
7 list . value = 1;

(a) Non-deterministic code

(b) Precise abstraction (c) Rough abstraction

Fig. 3. A non-deterministing program possible abstractions of the heap at line 7

the set), false if it is possible (if it represents some of them). Note that trace
partitioning [20] is supported in Sample[12]. Therefore, if the heap domain uses
a disjunction of heaps rather than a single 3-valued logical structure (as often
happens in TVLA), we can use this feature to prove complex properties.

Example: Consider the code in Figure 3a. This program non-deterministically
adds a node at the beginning of a list containing only one element. It then assigns
1 to field value of the node at the head of the list. Heap analyses could produce
different states at line 7. A precise analysis like TVLA may track two distinct
states (Figure 3b), while a rough analysis may abstract the two states into one
(Figure 3c). What happens when we assign to list.value? In the first scenario, we
have to perform a strong assignment to both the nodes pointed by list.value. This
is represented by assigning to the definite set of heap identifiers ({u5, u3}, true).
In the second scenario, we can only perform a weak assignment, since we do not
have two distinct states. This is represented by the possible set ({u1, u3}, false).

3.1 Replacements

The application of semantic or lattice operators could affect the structure and
the identifiers contained in the heap state. In particular, nodes could be ma-
terialized or merged. We must reflect these changes in the state of the value
domain to preserve the soundness of the analysis. This information is passed by
functions in R = ℘(HId) → ℘(HId) called replacements. Given a single relation
in a replacement, its semantics is to assign the upper bound of the values of
identifiers on the left side to all identifiers in the right side.

Running example: Consider the transition from Figure 1b to Figure 1c.
The node u2 of the initial state is split into nodes u2 and u4 in the final state.
This is represented by the relation {u2} 7→ {u2, u4}. The same happens on
u3 when it is split to nodes u3 and u5. Therefore we obtain the replacement
[{u2} 7→ {u2, u4}, {u3} 7→ {u3, u5}]. Consider now the transition obtained ana-
lyzing it = null, that is, the transition from Figure 1c to Figure 1b. u2 and u4
are summarized into u2. The same happens for u3 and u5 that are summarized
to u3, obtaining the replacement [{u2, u4} 7→ {u2}, {u3, u5} 7→ {u3}]. �

assignVarV : (VarId× SHId× V)→ V

assignVarV(x, (I, b), s) =


s if I = ∅⊔

i∈I assignIdV(x, i, s) if b = falsed
i∈I assignIdV(x, i, s) if b = true

assignHIdsV : (SHId× VarId× V)→ V

assignHIdsV((I, b), x, s) =


s if I = ∅⊔

i∈I assignIdV(i, x, s) if b = falsed
i∈I assignIdV(i, x, s) if b = true

replaceV : (V × R)→ V
replaceV(s, ∅) = s
replaceV(s, r) = forgetAllV((

⋃
I∈dom(r) I) \ (

⋃
I∈dom(r) r(I)), sn)

where dom(r) = {I1, · · · , In} ∧ s0 = s ∧ ∀i ∈ [1..n] :
s′i = assignVarV(temp, (Ii, false), si−1)∧
s′′i = assignHIdsV((r(Ii), true), temp, s′i)∧
si = forgetV(temp, s′′i)

and forgetAll : (℘(Id)× V)→ V is defined as follows:
forgetAllV({i1, · · · , in}, s) = sn where s0 = s ∧ ∀k ∈ [1..n] :

sk = forgetV(ik, sk−1)

Fig. 4. Definition of replaceV

3.2 Heap Analysis

The semantic operators of the heap analysis are (i) getFieldIdH : (VarId ×
FieldName × H) → (SHId × H × R), (ii) assignVarH : (VarId × SHId × H) →
(H × R), (iii) assignFieldH : (VarId × FieldName × VarId × H) → (H × R), and
(iv) createObjectH : (C × H) → (SHId × H × R). C is the set of classes that
can be instantiated. All these operators return a state of the heap, and a re-
placement to represent merges and materializations of heap nodes. In addition,
getFieldIdH(x, f, h) returns a set of heap identifiers that could be pointed to by
x.f in h. assignVarH(x, I, h) assigns I to x, while assignFieldH(x, f, I, h) assigns I
to x.f. Finally, createObjectH(C, h) creates an instance of class C returning the
heap identifiers pointing to the fresh object as well.

3.3 Value Analysis

The value analysis treats variable and heap identifiers in the same way. Therefore
we define identifiers (Id) as variable (VarId) or heap (HId) identifiers (Id = VarId∪
HId). The semantic operators the value analysis has to provide are (i) assignIdV :
(Id× Id× V)→ V, and (ii) forgetV : (Id× V)→ V. assignIdV(x, y, v) assigns the
value of y to x in state v, while forgetV(x, v) removes the value of x from state v.
Usually these operators are already supported by existing value analyses. The
only additional feature the value analysis has to take into account is when a
single heap identifier represents a summary node performing weak updates.

Relying on these semantic operators, Figure 4 defines how replacements and
assignments are computed by Sample in the value analysis. These operators will
be used in the definition of the semantics of our language. assignVarV(x, I, s) as-
signs the set of heap identifiers contained in I to variable x, while assignHIdsV(I, x, s)

1
2
3
4
5
6

SJx := y.f, (h, s)K = (h2, s3) :
getFieldIdH(y, f, h) = (I, h1, r)∧
assignVarH(x, I, h1) = (h2, r1)∧
replaceV(s, r) = s1∧
replaceV(s1, r1) = s2∧
assignVarV(x, I, s2) = s3

SJy.f := x, (h, s)K = (h2, s3) :
assignFieldH(y, f, x, h) = (h1, r)∧
getFieldIdH(y, f, h1) = (I, h2, r1)∧
replaceV(s, r) = s1∧
replaceV(s1, r1) = s2∧
assignHIdsV(I, x, s2) = s3

SJx := new T, (h, s)K = (h2, s3) :
createObjectH(T, h) = (I, h1, r)∧
assignVarH(x, I, h1) = (h2, r1)∧
replaceV(s, r) = s1∧
replaceV(s1, r1) = s2∧
assignVarV(x, I, s2) = s3

Fig. 5. Sample’s semantics of statements

assigns variable x to the set of heap identifiers inside I. Both these functions be-
have in accordance with whether the set of heap identifiers is definite or possible.
If we assign a definite set of heap identifiers to a variable, we assign the greatest
lower bound of the values of all given heap identifiers (since we have to assign
the intersection of their values). On the other hand, if we assign a possible set,
we assign one of the values, and therefore we have to take the upper bound.
Similarly, when we assign a variable to a possible set of heap identifiers, we are
affecting only one of the heap identifiers in the set, and therefore we have to take
the upper bound. Instead, when we are assigning to a definite set, we take the
greatest lower bound of the assignments of all the heap identifiers.

replaceV(s, r) applies the replacement r to s. For each relation [D 7→ C] ∈ r
it assigns the upper bound of the values of identifiers in D to each identifier in
C. In its definition we denote by temp ∈ VarId a variable identifier that does
not appear in the program. This variable is used as a gateway to build up the
abstract value represented by the variables in D, and to assign it to all identifiers
in C. At the end we remove all identifiers that appear at least once on the left part
of the replacement, and never on the right side. Intuitively, these identifiers are
replaced by something else, and they are never used as target of other replaced
variables. Therefore, they are not anymore used, and they can be safely removed.

Running example: We suppose that all nodes of the given list contain
values greater or equal to zero at the beginning of the program in Figure 1a.
Assuming we analyze the program using intervals (that is, tracking the interval of
numerical values that each variable could have at a given program point), in the
heap state of Figure 1b the value domain tracks that [u1 7→ [0..∞], u3 7→ [0..∞]].
After the first statement, the replacement we have to apply contains the relation
{u3} 7→ {u3, u5}. Therefore, the application of this replacement results in the
state [u1 7→ [0..∞], u3 7→ [0..∞], u5 7→ [0..∞]]. The semantics of it.value = −1
assigns [−1.. − 1] to u3 obtaining the state [u1 7→ [0..∞], u3 7→ [−1.. − 1], u5 7→
[0..∞]]. When we finally apply the second replacement during the evaluation of
it = null, the relation {u3, u5} 7→ {u3} tells the analysis to (i) assign the upper
bound of u3 and u5 (that is, [−1..∞]) to u3, and (ii) remove u5. Therefore, the
final state is [u1 7→ [0..∞], u3 7→ [−1..∞]]. �

3.4 Overall Semantics

Figure 5 defines the semantics of the language introduced in Section 2.1. When
we assign y.f to x, we extract the identifiers pointed by y.f (line 2) and we assign

them to x in the state of the heap analysis (line 3). These two actions lead to
two distinct replacements, which are passed to the value domain (line 4 and 5)
before assigning the identifiers of y.f to x (line 6). Similarly, when we assign x to
y.f, we perform the assignment on the heap state (line 2), and we query the heap
analysis to obtain the identifiers pointed by y.f (line 3). The two actions produce
two replacements that are passed to the value domain (line 4 and 5). At the end,
x is assigned to the heap identifiers pointed by y.f in the value domain (line 6).
When we assign new T to x, we create the object (line 2) and we assign it to x in
the heap analysis (line 3) obtaining two replacements. After the application of
these two replacements in the value domain (line 4 and 5), the heap identifiers
of the created object is assigned to x in the value domain (line 6).

4 TVAL+

We need that each node is represented exactly by one heap identifier in a TVLA
state, and each heap identifier points exactly to one node. Since TVLA names
nodes in a unpredictable way, and the same node could have several canonical
(that is, the evaluation of abstract predicates) names, we need to add some
predicates in order to track node identity. In addition, TVLA does not provide any
information about from where nodes come after an action, while these predicates
track that. Note that so far we did not use the names given by TVLA in the
running example, but we adopted a more predictable naming schema.

4.1 Name Predicates

We name nodes through unary non-abstraction predicates (called name predi-
cates). Each time we run TVLA, the entry state contains a name predicate for
each node. After running TVLA, name predicates tell us how nodes have been
split or merged. We then normalizes the exit state to ensure that each node
is pointed to exactly by one name predicate, and each name predicate points
exactly to one node.

Usually unary predicates are used to distinguish between different structures
when a join of heap states is performed. Since we only wish to track nodes,
we do not want the name predicates to influence the abstraction. We achieve
this behavior through non-abstraction predicates, since these allow nodes to be
merged even though different non-abstraction predicates hold for them [17].

The naming schema defines how we name nodes. A näıve approach is to
consecutively number all created heap nodes. The numbers are based on the
pre-state, and not counted globally, since otherwise we could go on creating new
names endlessly. In addition, we always need to obtain the same result when the
same operation is performed on the same pre-state. If we used a global counter,
this property would not be guaranteed. However, we would lose a lot of precision
in the analysis with this approach. Consider for instance an if statement that
allocates an object in both branches, but it assigns −1 to its value field in a
branch, and 1 in the other. Suppose that the internal counter of the state of the

analysis is 0. The analysis would name the nodes created by the new statements
in the two branches with the same name (that is, 1 for the created object,
and then 2 for its field value). When the abstract states in the two branches are
joined to compute the abstract state after the if statements, the values associated
with the heap identifier 2 in the value domain are joined as well. This means
that, regardless of the fact that the two nodes could be kept disjoint by the
heap analysis, we merged the values of the two nodes in the value domain,
introducing a sensible loss of precision. In the example above, we would not be
able to distinguish that value 1 may have been assigned only to x.value, and -1
only to y.value after the if statement.

4.2 TVAL+ Naming Schema

This example shows that we need a more sophisticated naming schema. In par-
ticular, we have to take into account the context in which heap identifiers are
created. Therefore, the name of a new node is based on the allocation site. In
addition, since a given program point pp could create several nodes (e.g., inside
a while loop), we have to count the number of times we are allocating (in the
abstract) the node, and increment the counter at each iteration. Let PP be the
set of program points. A basic heap identifier is a pair composed of a program
point and a natural number (formally, BHIdTVAL+ = PP× N).

What happens when two nodes are merged into a summary node? Since TVLA
could summarize nodes created at different program points, we have to extend
the definitions above to precisely approximate this scenario. Therefore, a heap
identifier is composed by a set of basic heap identifiers. When TVLA summarizes
two nodes created at different program points (e.g., (pp1, n1) and (pp2, n2)), the
resulting name will be a set composed by both ({(pp1, n1), (pp2, n2)}).

Instead, when a node is materialized from a summary node, the output state
of TVLA will contain two nodes pointed by the same name predicate, and we
have to provide two different names when normalizing this state. To keep the
precision of the analysis in this scenario, we add another counter to the whole
heap identifier. Formally, the set of heap identifiers is defined by HIdTVAL+ =
℘(BHIdTVAL+)× N.
Normalization By normalized state we mean a state in which (i) each node is
pointed only by one name predicate, and (ii) each name predicate points only to
one node. After we run TVLA on a normalized state, we may obtain a state in
which a name predicate points to many nodes, and a node is pointed by many
name predicates. Figure 6 formalizes this normalization. We focus the formal
definitions on the part of the TVLA state that deal with name predicates. Let
NodesTVAL+ be the set of node identifiers given by TVLA. We define the TVAL+
state by a function that relates each node to the set of name predicates that point
to it. Formally, ΣTVAL+ = NodesTVAL+ → ℘(HIdTVAL+). Function πId returns the
set of all heap identifiers contained in a given state, while rev returns a function
relating each heap identifier to the set of nodes it may point to.

First of all, we define what it means to merge a set of name predicates when
they point to the same node. mergeHIds takes the set union of all program points

πId : ΣTVAL+ → ℘(HIdTVAL+)
πId(f) =

⋃
n∈dom(f) f(n)

rev : ΣTVAL+ → (HIdTVAL+ → ℘(NodesTVAL+))
rev(f) = [id 7→ P : id ∈ πId(f) ∧ P = {p′ : id ∈ f(p′)}

mergeHIds : ℘(HIdTVAL+)→ HIdTVAL+

mergeHIds({(Ei, ui) : i ∈ [0..n]}) = (E′,min({ui : i ∈ [0..n]})) : (a)
E′ = {(pp, c) : ∃(pp, c′) ∈

⋃
i∈[0..n] Ei ∧ c = min({c′′ : (pp, c′′) ∈

⋃
i∈[0..n] Ei} (b)

merge : ΣTVAL+ → (ΣTVAL+ × R)
merge(f) = (f′, r) :

f′ =

[
n 7→

{
{mergeHIds(f(n))} if |f(n)| > 1
f(n) if |f(n)| == 1

: n ∈ dom(f)

]
∧

r = [f(n) 7→ {mergeHIds(f(n))} : ∃n ∈ dom(f) : |f(n)| > 1] (c)

split : ΣTVAL+ → (ΣTVAL+ × R)
split(f) = (f′, r) :

f′ =


n 7→ P : n ∈ dom(f)∧

P =

 {(T, |{k ∈ exclude((T, i), f) : k ≤ i}|+ in(n,N))} if f(n) = {(T, i)}∧
rev(f)(T, i) = N ∧ |N| > 1

f(n) otherwise

 (d)

r = [{(T, i)} 7→ {(T, i′) : ∃n : f(n) = {(T, i)} ∧ rev(f)(T, i) = N ∧ |N| > 1∧
i′ ∈

⋃
n′∈N{exclude((T, i), f) : k ≤ i}|+ in(n′,N))} : |rev(f)(T, i)| > 1]

in : NodesTVAL+ × ℘(NodesTVAL+)→ N
in(n,N) = |{n′ ∈ N : n′ <TVAL+ n}|

exclude : HIdTVAL+ × ΣTVAL+ → ℘(N)
exclude((T, i), f) = {j : j 6= i ∧ |rev(f)((T, i))| == 1}

normalize : ΣTVAL+ → (ΣTVAL+ × R)
normalize(f) = (f′, r) : (f1, r1) = merge(f) ∧ (f′, r2) = merge(f1) ∧ r = combine(r1, r2)

Fig. 6. Formal definition of the normalization of a TVLA state, where combine,
given two replacements, builds up a replacement that is their concatenation

in the set of heap identifiers, and the minimum values for the counters (point b).
The same approach is adopted for the global counter of the heap identifier (point
a). mergeHIds is the basis to define the merge of a complete state performed by
merge. This function applies mergeHIds to all nodes that are pointed by more
than one name predicate, and it builds up a coherent replacement function (point
c). After that, we have that each node is pointed to by one name predicate, but
we do not have yet that each name predicate points only to a node. split ensures
this. For each predicate name that points to (at least) two nodes, and for each
pointed node by this predicate, it creates a unique predicate by modifying its
counter (point d), and it builds up a coherent replacement. The modification
of the counter relies on in, a function that, given a set of nodes, and a node in
that set, returns its position inside that set. To achieve this, we suppose that
a total order <TVAL+ over node identifiers is provided by TVLA. In addition,
exclude provides the set of the counters already used in other name predicates
that point only to one node, and therefore they will be in the normalized state.
In this way, we cover possible holes in the counters related to a given set of basic
heap identifiers, avoiding duplicates and ensuring that the set of heap identifiers

(a) Initial and fi-
nal state

(b) At line 4 before
normalize

(c) At line 4 after
normalize

(d) At the end be-
fore normalize

Fig. 7. TVLA states of the running example with name predicates

is bounded. Finally, normalize returns the normalized form of a given state
by applying merge and split in sequence, and combining the two replacements
returned by these two functions.

Running example: When we analyze the running example introduced in
Section 1.1, we start from the TVLA state represented in Figure 7a. The name
predicates contain four basic heap identifiers {p1, p2, p3, p4} to name the nodes
in the entry state. Their initial counter is always zero. After the analysis of
line 4, we obtain the state depicted in Figure 7b. Here nodes u4 and u5 have
been materialized from nodes u2 and u3 respectively, and the name predicates
({p2}, 0) and ({p3}, 0) both point to many (two) nodes. Therefore normalize
introduces ({p2}, 1) and ({p3}, 1), and it sets them to point to one of the two
nodes (Figure 7c). This is the entry state of the semantics of it = null. After the
computation of the semantics of this statement, we obtain the state in Figure
7d. Here we have that ({p2}, 0) and ({p2}, 1) refer to the same node u2 (and the
same happens with ({p3}, 0) and ({p3}, 1)). Therefore, normalize merges these
name predicates together into ({p2}, 0), obtaining the same state we had at the
beginning of the method (Figure 7a). Note that the heap identifier ({p2}, 0) in
the entry state represents something different in the exit state, since here it is
the result of the merge of {({p2}, 0), ({p2}, 1)} as expressed by the replacement
{({p2}, 0), ({p2}, 1)} 7→ {({p2}, 0)}. �

4.3 Abstract Semantics

The abstract semantics applies the TVLA actions introduced in Section 2.2 and
normalizes the resulting states to define the semantic operators introduced in
Figure 3.2. In particular, (i) getFieldIdH applies the TVLA action in Figure 2d,
(ii) assignVarH that in Figure 2e, (iii) assignFieldH that in Figure 2f, and (iv)
createObjectH that in Figure 2c. In all the cases, after the application of the
TVLA action, the state is normalized through normalize. The same happens for
the lattice operators. In addition, createObjectH and getFieldIdH return the heap
identifier of the node pointed by temp.

5 Experimental Results

We ran TVAL+ on a set of case studies that represent a comprehensive set
of common interactions with the heap and some representative examples of list

Program #tvla t (sec) Program #tvla t (sec)

createObject 4 0,7 createObjectIfCondition 7 0,2
accessNullField 7 0,3 assignFieldSelf 7 0,3
assignNumericField 8 1,3 assignNextField 9 0,6
createAndOverWrite 9 0,7 assumeEqual 10 0,2
assumeUnequal2 10 0,2 overwriteField 10 0,4
assignAndAccessNumericField 10 1,0 conditionalAssignment 11 0,4
assignTwoFields 12 0,9 assumeUnequal 13 0,3
conditionalAssignmentVariant 14 0,6 appendByFieldAccessTwo 15 0,6
createSharedObject 19 0,8 buildList 20 0,5
appendByFieldAccessThree 22 0,9 createOneOrTwoNodes 22 1,8
accessNextSummarized 23 0,6 swapHeapObjectsOnce 24 1,8
createThreeElementList 30 2,0 linkObjects 32 1,4
createSummarizedIntList 32 2,0 swapLoop 34 0,9
linkAndTraverseObjects 38 1,9 createObjectWhile 39 1,1
assignFieldsAndSummarize 44 4,1 createPrependList 54 1,4
assignAndAddFields 55 8,3 appendByFieldAccessFour 72 4,7
traverseFixedShortList 93 3,3 createAppendList 103 3,3
initializeFixedList 109 4,5 createNumericalList 148 14,4
traverseSummarizedList 164 8,6 initializeAbstractedListFields 220 31,8
sumListElementsZero 609 86,7

Table 1. Execution times

manipulation. We combined TVAL+ with an implementation of intervals as value
domain. We ran the analysis on an Intel Core 2 Duo CPU at 2.53GHz with 4GB
of RAM. We used the Java HotSpot 64-Bit Server VM included in Java SE
Runtime Environment 1.6.0 26-b03. Table 1 depicts the experimental results.
Column #tvla shows the number of invocations of TVLA performed during the
analysis, while t reports the time of execution of the analysis.

The analysis is quite fast in many cases, since the execution rarely requires
more than few seconds. Anyway, most of these case studies are composed of few
sequential statements, and the examples whose analysis is slower are the ones
that create a list and iterate over it. This means that the analysis has to compute
a fixpoint, and this explains why TVLA is invoked many times.

For each of the case studies, we checked by hand if the heap abstraction
produced by TVAL+ is what we expected, and if the information tracked by the
value domain was sound and precise. In all examples, we obtained the expected
results. For instance, in program sumListElementsZero we are able to (i) construct
and precisely summarize a list whose nodes all contain 0 in field value, (ii) traverse
the list computing the sum of the values, and (iii) prove that the sum of the
elements is zero at the end of the program. This underlines that the combination
of TVAL+ and the intervals domain fully benefits of the precision of TVLA,
leading to really precise results on the value analysis as well.

6 Related Work

In this paper, we used an existing, well-established shape analysis to improve
the results of other value analyses supported by Sample. McCloskey et al. [21]
introduced a general way of integrating various analyses represented in FOLTC,
combining different theories in a generic way. Their work allows the flow of
information between all analyses concerned. To allow this flow, each analysis
has to define classification and communication predicates, which are defined in
terms of other predicates as well as core predicates that are interpreted only in
that particular domain. Therefore, all analyses have to be represented in FOLTC.

In our work, we took a different approach. On the one hand, we propagate the
information only from the heap to the value analysis. On the other hand, we
completely automate the integration between the two analyses without enforcing
any restrictions on the value domain, which could track information that is not
represented in FOLTC, thus allowing easier use of existing analyses. In addition,
since the information flows only in one direction, this leads to faster analyses,
as we only need to propagate information once.

Gopan et al. [14] presented a framework to track numeric information on
array elements. This work is specific for numeric analyses over arrays, while our
approach targets any value analysis. A previous work [13] shows that its instanti-
ation to a specific numeric domain is neither trivial nor automatic. The approach
they adopted to reflect the modifications performed by the heap analysis is sim-
ilar to ours. While they discharge the folding and unfolding of identifiers on the
interface of the numerical analysis by adding some specific operators (namely,
fold, expand, add, drop), our approach relies on assignment and forget.

Gulwani and Tiwari [15] combined analyzers represented in first order logic
through an approach based on the Nelson-Oppen method. They propagate equal-
ities both ways, but they place some restrictions on theories (e.g., convexity).

Magill et al. [19] adopted a shape analysis based on separation logic. Nu-
merical domains are used to refine the heap analysis through counter-examples
generated by the shape analysis. A potential error discovered by the shape anal-
ysis is translated into a counter-example program which is later reduced to a
heapless arithmetic program. This program passes through the arithmetic ana-
lyzer in order to try and rule out the error by finding some arithmetic properties.
This means they use arithmetic information only on demand to help to resolve
potential heap errors, and not to prove arithmetic properties in general.

Beyer et al. [2] combined the model checker BLAST [1] with TVLA using
Counter-Example Guided Abstraction Refinement for refining the shape analy-
sis. Instead, we allow general abstract domains (not just predicate abstraction as
in BLAST) at the price of having a fixed heap abstraction for the entire session.

Bouajjani et al. [3] developed a framework to statically infer properties over
programs manipulating lists containing integer numerical data. This approach
combines a specific heap analysis tracking information over lists with some ex-
isting numerical domains. Therefore, it cannot be automatically applied to other
value analyses, or to analyze other heap structures, but it can prove properties
that combine the content and the shape of lists.

Acknowledgments. Special thanks go to Roman Manevich for his support
during the implementation of TVAL+. This work was partially supported by the
SNF project “Verification-Driven Inference of Contracts”.

References

1. D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. The software model
checker blast. STTT, 9(5-6):505–525, 2007.

2. D. Beyer, T. A. Henzinger, and G. Théoduloz. Lazy shape analysis. In Proceedings
of CAV ’06. ACM Press, 2006.

3. A. Bouajjani, C. Dragoi, C. Enea, and M. Sighireanu. Abstract domains for auto-
mated reasoning about list-manipulating programs with infinite data. In Proceed-
ings of VMCAI ’12, LNCS. Springer, 2012.

4. G. Costantini, P. Ferrara, and A. Cortesi. Static analysis of string values. In
Proceedings of ICFEM ’11, LNCS. Springer, 2011.

5. P. Cousot. The calculational design of a generic abstract interpreter. In Calcula-
tional System Design. NATO ASI Series F. IOS Press, Amsterdam, 1999.

6. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings
of POPL ’77. ACM Press, 1977.

7. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
Proceedings of POPL ’79. ACM Press, 1979.

8. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Proceedings of POPL ’78. ACM Press, 1978.

9. P. Ferrara. Checkmate: a generic static analyzer of java multithreaded programs.
In Proceedings of SEFM ’09. IEEE Computer Society, 2009.

10. P. Ferrara. Static type analysis of pattern matching by abstract interpretation. In
Proceedings of FORTE/FMOODS ’09, LNCS. Springer, 2010.

11. P. Ferrara and P. Müller. Automatic inference of access permissions. In Proceedings
of VMCAI ’12, LNCS. Springer, 2012.

12. D. Gabi. Disjunction on demand. Master thesis, ETH Zürich, 2011.
13. D. Gopan, F. DiMaio, N. Dor, T. W. Reps, and M. Sagiv. Numeric domains with

summarized dimensions. In Proceedings of TACAS ’04, LNCS. Springer, 2004.
14. D. Gopan, T. W. Reps, and M. Sagiv. A framework for numeric analysis of array

operations. In Proceedings of POPL ’05. ACM Press, 2005.
15. S. Gulwani and A. Tiwari. Combining abstract interpreters. In Proceedings of

PLDI ’06. ACM Press, 2006.
16. B. Jeannet and A. Miné. Apron: A library of numerical abstract domains for static

analysis. In Proceedings of CAV ’09, LNCS. Springer, 2009.
17. T. Lev-Ami and M. Sagiv. TVLA: A framework for kleene logic based static

analyses. Master’s thesis, Tel Aviv University, 2000.
18. F. Logozzo and M. Fähndrich. Static contract checking with abstract interpreta-

tion. In Proceedings of FoVeOOS ’10, LNCS. Springer, 2010.
19. S. Magill, J. Berdine, E. M. Clarke, and B. Cook. Arithmetic strengthening for

shape analysis. In Proceedings of SAS ’07, LNCS. Springer, 2007.
20. L. Mauborgne and X. Rival. Trace partitioning in abstract interpretation based

static analyzers. In Proceedings of ESOP ’05, LNCS. Springer, 2005.
21. B. McCloskey, T. W. Reps, and M. Sagiv. Statically inferring complex heap, array,

and numeric invariants. In Springer, editor, Proceedings of SAS ’10, LNCS, 2010.
22. A. Miné. The octagon abstract domain. Higher-Order and Symbolic Computation,

2006.
23. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.

TOPLAS, 24(3):217–298, May 2002.
24. F. Spoto. Julia: A Generic Static Analyser for the Java Bytecode. In Proceedings

of FTfJP ’05, 2005.
25. M. Zanioli, P. Ferrara, and A. Cortesi. SAILS: static analysis of information leakage

with Sample. In Proceedings of SAC ’12. ACM Press, 2012.

