
MaxSMT-Based Type Inference for Python 3

Mostafa Hassan1,2, Caterina Urban2, Marco Eilers2, and Peter Müller2

1 German University in Cairo, Egypt
2 Department of Computer Science, ETH Zurich, Switzerland

Abstract. We present Typpete, a sound type inferencer that auto-
matically infers Python 3 type annotations. Typpete encodes type con-
straints as a MaxSMT problem and uses optional constraints and spe-
cific quantifier instantiation patterns to make the constraint solving pro-
cess efficient. Our experimental evaluation shows that Typpete scales
to real world Python programs and outperforms state-of-the-art tools.

1 Introduction

Dynamically-typed languages like Python have become increasingly popular in
the past five years. Dynamic typing enables rapid development and adaptation
to changing requirements. On the other hand, static typing offers early error
detection, efficient execution, and machine-checked code documentation, and
enables more advanced static analysis and verification approaches [15].

For these reasons, Python’s PEP484 [25] has recently introduced optional
type annotations in the spirit of gradual typing [23]. The annotations can be
checked using MyPy [10]. In this paper, we present our tool Typpete, which
automatically infers sound (non-gradual) type annotations and can therefore
serve as a preprocessor for other analysis or verification tools.

Typpete performs whole-program type inference, as there are no principal
typings in object-oriented languages like Python [1, example in Section 1]; the
inferred types are correct in the given context but may not be as general as
possible. The type inference is constraint-based and relies on the off-the-shelf
SMT solver Z3 [7] for finding a valid type assignment for the input program.
We show that two main ingredients allow Typpete to scale to real programs: (1)
a careful encoding of subtyping that leverages efficient quantifier instantiation
techniques [6], and (2) the use of optional type equality constraints, which con-
siderably reduce the solution search space. Whenever a valid type assignment for
the input program cannot be found, Typpete encodes type error localization
as an optimization problem [19] and reports only a minimal set of unfulfilled
constraints to help the user pinpoint the cause of the error.

Typpete accepts programs written in (a large subset of) Python 3. Having a
static type system imposes a number of requirements on Python programs: (a) a
variable can only have a single type through the whole program; (b) generic types
have to be homogeneous (e.g., all elements of a set must have the same type);
and (c) dynamic code generation, reflection and dynamic attribute additions and
deletions are not allowed. The supported type system includes generic classes

2 Mostafa Hassan, Caterina Urban, Marco Eilers, and Peter Müller

1 class Item (metac lass=ABCMeta) :
2 @abstractmethod
3 def compete (s e l f , item) :
4 pass
5

6 def evalEven (s e l f , item) :
7 return ”WIN”
8

9 def evalOdd (s e l f , item) :
10 return ”LOSE”
11

12 class Even (Item) :
13 def compete (s e l f , item) :
14 return item . evalEven (s e l f)
15

16 class Odd(Item) :
17 def compete (s e l f , item) :
18 return item . evalOdd (s e l f)
19

20 def match (item1 , item2) :
21 return item1 . compete (item2)

Fig. 1. A Python implementation of the Odds and Evens hand game.

and functions. Users must supply a file and the number of type variables for any
generic class or function. Typpete then outputs a program with type annotations,
a type error, or an error indicating use of unsupported language features.

Our experimental evaluation demonstrates the practical applicability of our
approach. We show that Typpete performs well on a variety of real-world open
source Python programs and outperforms state-of-the-art tools.

2 Constraint Generation

Typpete encodes the type inference problem for a Python program into an
SMT constraint resolution problem such that any solution of the SMT problem
yields a valid type assignment for the program. The process of generating the
SMT problem consists of three phases, which we describe below.

In a first pass over the input program, Typpete collects: (1) all globally
defined names (to resolve forward references), (2) all classes and their respective
subclass relations (to define subtyping), and (3) upper bounds on the size of
certain types (e.g., tuples and function parameters). This pre-analysis encom-
passes both the input program — including all transitively imported modules —
and stub files, which define the types of built-in classes and functions as well as
libraries. Typpete already contains stubs for the most common built-ins; users
can add custom stub files written in the format that is supported by MyPy.

In the second phase, Typpete declares an algebraic datatype Type, whose
members correspond one-to-one to Python types. Typpete declares one datatype
constructor for every class in the input program; non-generic classes are repre-
sented as constants, whereas a generic class with n type parameters is represented
by a constructor taking n arguments of type Type. As an example, the class Odd
in Figure 1 is represented by the constant classOdd. Typpete also declares con-
structors for tuples and functions up to the maximum size determined in the
pre-analysis, and for all type variables used in generic functions and classes.

The subtype relation <: is represented by an uninterpreted function subtype
which maps pairs of types to a boolean value. This function is delicate to define
because of the possibility of matching loops (i.e., axioms being endlessly instanti-
ated [7]) in the SMT solver. For each datatype constructor, Typpete generates

MaxSMT-Based Type Inference for Python 3 3

axioms that explicitly enumerate the possible subtypes and supertypes. As an
example, for the type classOdd, Typpete generates the following axioms:

∀t. subtype(classOdd, t) = (t = classOdd ∨ t = classItem ∨ t = classobject)

∀t. subtype(t, classOdd) = (t = classnone ∨ t = classOdd)

Note that the second axiom allows None to be a subtype of any other type (as
in Java). As we discuss in the next section, this definition of subtype allows us to
avoid matching loops by specifying specific instantiation patterns for the SMT
solver. A substitution function substitute, which substitutes type arguments for
type variables when interacting with generic types, is defined in a similar way.

In the third step, Typpete traverses the program while creating an SMT
variable for each node in its abstract syntax tree, and generating type constraints
over these variables for the constructs in the program. During the traversal, a
context maps all defined names (i.e., program variables, fields, etc.) to the corre-
sponding SMT variables. The context is later used to retrieve the type assigned
by the SMT solver to each name in the program. Constraints are generated for
expressions (e.g., call arguments are subtypes of the corresponding parameter
types), statements (e.g., the right-hand side of an assignment is a subtype of
the left hand-side), and larger constructs such as methods (e.g., covariance and
contravariance constraints for method overrides). For example, the (simplified)
constraint generated for the call to item1.compete(item2) at line 21 in Figure 1
contains a disjunction of cases depending on the type of the receiver:

(vitem1 = classOdd ∧ competeOdd = f 2(classOdd, arg, ret) ∧ subtype(vitem2, arg))

∨ (vitem1 = classEven ∧ competeEven = f 2(classEven, arg, ret) ∧ subtype(vitem2, arg))

where f 2 is a datatype constructor for a function with two parameter types (and
one return type ret), and vitem1 and vitem2 are the SMT variables corresponding
to item1 and item2, respectively.

The generated constraints guarantee that any solution yields a correct type
assignment for the input program. However, there are often many different valid
solutions, as the constraints only impose lower or upper bounds on the types rep-
resented by the SMT variables (e.g., subtype(vitem2, arg) shown above imposes
only an upper bound on the type of vitem2). This has an impact on performance
(cf. Section 4) as the search space for a solution remains large. Moreover, some
type assignments could be more desirable than others for a user (e.g., a user
would most likely prefer to assign type int rather than object to a variable initial-
ized with value zero). To avoid these problems, Typpete additionally generates
optional type equality constraints in places where the mandatory constraints only
demand subtyping (i.e., local variable assignments, return statements, passed
function arguments), thereby turning the SMT problem into a MaxSMT opti-
mization problem. For instance, in addition to subtype(vitem2, arg) shown above,
Typpete generates the optional equality constraint vitem2 = arg. The optional
constraints guide the solver to try the specified exact type first, which is often
a correct choice and therefore improves performance, and additionally leads to
solutions with more precise variable and parameter types.

4 Mostafa Hassan, Caterina Urban, Marco Eilers, and Peter Müller

3 Constraint Solving

Typpete relies on Z3 [7] and the MaxRes [18] algorithm for solving the gener-
ated type constraints. We use e-matching [6] for instantiating the quantifiers used
in the axiomatization of the subtype function (cf. Section 2), and carefully choose
instantiation patterns that ensure that any choice made during the search imme-
diately triggers the instantiation of the relevant quantifiers. For instance, for the
axioms shown in Section 2, we use the instantiation patterns subtype(classOdd,
t) and subtype(t, classOdd), respectively. Our instantiation patterns ensure that
as soon as one argument of an application of the subtype function is known,
the quantifier that enumerates the possible values of the other argument is in-
stantiated, thus ensuring that the consequences of any type choices propagate
immediately. With a näıve encoding, the solver would have to guess both ar-
guments before being able to check whether the subtype relation holds. The
resulting constraint solving process is much faster than it would be when using
different quantifier instantiation techniques such as model-based quantifier in-
stantiation [12], but still avoids the potential unsoundness that can occur when
using e-matching with insufficient trigger expressions.

When the MaxSMT problem is satisfiable, Typpete queries Z3 for a model
satisfying all type constraints, retrieves the types assigned to each name in the
program, and generates type annotated source code for the input program. For
instance, for the program shown in Figure 1, Typpete automatically annotates
the function evalEven with type Even for the parameter item and a str return
type. Note that Item and object would also be correct type annotations for item;
the choice of Even is guided by the optional type equality constraints.

When the MaxSMT problem is unsatisfiable, instead of reporting the unful-
filled constraints in the unsatistiable core returned by Z3 (which is not guaran-
teed to be minimal), Typpete creates a new relaxed MaxSMT problem where
only the constraints defining the subtype function are enforced, while all other
type constraints are optional. Z3 is then queried for a model satisfying as many
type constraints as possible. The resulting type annotated source code for the
input program is returned along with the remaining minimal set of unfulfilled
type constraints. For instance, if we remove the abstract method compete of class
Item in Figure 1, Typpete annotates the parameters of the function match at
line 20 with type object and indicates the call compete at line 21 as problematic.
By observing the mismatch between the type annotations and the method call,
the user has sufficient context to quickly identify and correct the type error.

4 Experimental Evaluation

In order to demonstrate the practical applicability of our approach, we evaluated
our tool Typpete on a number of real-world open-source Python programs that
use inheritance, operator overloading, and other features that are challenging for
type inference (but not features that make static typing impossible):

MaxSMT-Based Type Inference for Python 3 5

T(SMT) T(MaxSMT) Unfulfilled T(Relaxed) Pytype

adventure 2.99s / 6.30s 3.27s / 6.76s 42 / 2 1.95s / 8.83s 0 [0]
icemu 9.45s / 6.79s 9.51s / 3.63s 4 / 2 0.08s / 21.76s 18 [2]

imp 16.88s / 59.95s 16.91s / 15.87s 67 / 2 0.82s / 82.56s 3 [2]
scion 4.65s / 3.35s 4.72s / 2.97s 28 / 2 0.16s / 3.39s 0 [0]

test suite 14.66s / 1.63s 14.66s / 2.17s - - 55 [34]

Fig. 2. Evaluation of Typpete on small programs and larger open source projects.

adventure [21]: An implementation of the Colossal Cave Adventure game (2
modules, 399 LOC). The evaluation (and reported LOC) excludes the mod-
ules game.py and prompt.py, which employ dynamic attribute additions.

icemu [8]: A library that emulates integrated circuits at the logic level (8 mod-
ules, 530 LOC). We conducted the evaluation on revision 484828f.

imp [4]: A minimal interpreter for the imp toy language (7 modules, 771 LOC).
The evaluation excludes the modules used for testing the project.

scion [9]: A Python implementation of a new Internet architecture (2 modules,
725 LOC). For the evaluation, we used path store.py and scion addr.py

from revision 6f60ccc, and provided stub files for all dependencies.

We additionally ran Typpete on our test suite of manually-written programs
and small programs collected from the web (47 modules and 1998 LOC).

In order to make the projects statically typeable, we had to make a num-
ber of small changes that do not impact the functionality of the code, such as
adding abstract superclasses and abstract methods, and (for the imp and scion
projects) introducing explicit downcasts in few places. Additionally, we made a
number of other innocuous changes to overcome the current limitations of our
tool, such as replacing keyword arguments with positional arguments, replacing
generator expressions with list comprehensions, and replacing super calls via
inlining. The complete list of changes for each project is included in our artifact.

The experiments were conducted on an 2,9 GHz Intel Core i5 processor with
8GB of RAM running Mac OS High Sierra version 10.13.3 with Z3 version 4.5.1.
Figure 2 summarizes the result of the evaluation. The first two columns show the
average running time (over ten runs, split into constraint generation and con-
straint solving) for the type inference in which the use of optional type equality
constraints (cf. Section 2) is disabled (SMT) and enabled (MaxSMT), respec-
tively. We can observe that optional type equality constraints (considerably)
reduce the search space for a solution as disabling them significantly increases
the running time for larger projects. We can also note that the constraint solv-
ing time improves significantly when the type inference is run on the test suite,
which consists of many independent modules. This suggests that splitting the
type inference problem into independent sub-problems could further improve
performance. We plan to investigate this direction as part of our future work.

The third column of Figure 2 shows the evaluation of the error reporting fea-
ture of Typpete (cf. Section 3). For each benchmark, we manually introduced
two type errors that could organically happen during programming and com-

https://github.com/hsoft/icemu/tree/484828fe9cf18b7abf548700f4c17b4fb42a6b3d
https://github.com/scionproto/scion/tree/6f60ccc50b25870606810628b3da9e62779d8d11

6 Mostafa Hassan, Caterina Urban, Marco Eilers, and Peter Müller

pared the size of the unsatisfiable core (left of /) and the number of remaining
unfulfilled constraints (right of /) for the original and relaxed MaxSMT prob-
lems given to Z3, respectively. We also list the times needed to prove the first
problem unsatisfiable and solve the relaxed problem. As one would expect, the
number of constraints that remain unfulfilled for the relaxed problems is consid-
erably smaller, which demonstrates that the error reporting feature of Typpete
greatly reduces the time that a user needs to identify the source of a type error.

Finally, the last column of Figure 2 shows the result of the comparison of
Typpete with the state-of-the-art type inferencer Pytype [16]. Pytype in-
fers PEP484 [25] gradual type annotations by abstract interpretation [5] of the
bytecode-compiled version of the given Python file. In Figure 2, for the con-
sidered benchmarks, we report the number of variables and parameters that
Pytype leaves untyped or annotated with Any. We excluded any module on
which Pytype yields an error; in square brackets we indicate the number of
modules that we could consider. Typpete is able to fully type all elements and
thus outperforms Pytype for static typing purposes. On the other hand, we note
that Pytype additionally supports gradual typing and a larger Python subset.

5 Related and Future Work

In addition to Pytype, a number of other type inference approaches and tools
have been developed for Python. The approach of Maia et al. [17] has some
fundamental limitations such as not allowing forward references or overloaded
functions and operators. Fritz and Hage [11] as well as Starkiller [22] infer sets
of concrete types that can inhabit each program variable to improve execution
performance. The former sacrifices soundness to handle more dynamic features of
Python. Additionally, deriving valid type assignments from sets of concrete types
is non-trivial. MyPy and a project by Cannon [3] can perform (incomplete) type
inference for local variables, but require type annotations for function parameters
and return types. PyAnnotate [13] dynamically tracks variable types during
execution and optionally annotates Python programs; the resulting annotations
are not guaranteed to be sound. A similar spectrum of solutions exists for other
dynamic programming languages like JavaScript [2,14] and ActionScript [20].

The idea of using SMT solvers for type inference is not new. Both F* [24] and
LiquidHaskell [26] (partly) use SMT-solving in the inference for their dependent
type systems. Pavlinovic et al. [19] present an SMT encoding of the OCaml type
system. Typpete’s approach to type error reporting can be seen as a simple
instantiation of their approach.

As part of our future work, we want to explore whether our system can be
adapted to infer gradual types. We also aim to develop heuristics for inferring
which functions and classes should be annotated with generic types based on the
reported unfulfilled constraints. Finally, we plan to explore the idea of splitting
the type inference into multiple separate problems to improve performance.

Acknowledgments. We thank the anonymous reviewers for their feedback. This
work was supported by an ETH Zurich Career Seed Grant (SEED-32 16-2).

MaxSMT-Based Type Inference for Python 3 7

References

1. D. Ancona and E. Zucca. Principal Typings for Java-like Languages. In POPL,
pages 306–317, 2004.

2. C. Anderson, P. Giannini, and S. Drossopoulou. Towards Type Inference for
JavaScript. In ECOOP, pages 428–452, 2005.

3. B. Cannon. Localized Type Inference of Atomic Types in Python. Master’s thesis,
California Polytechnic State University, 2005.

4. J. Conrod. IMP Interpreter. https://github.com/jayconrod/imp-interpreter.
5. P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for

Static Analysis of Programs by Construction or Approximation of Fixpoints. In
POPL, pages 238–252, 1977.

6. L. M. de Moura and N. Bjørner. Efficient E-Matching for SMT Solvers. In CADE,
pages 183–198, 2007.

7. L. M. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In TACAS, pages
337–340, 2008.

8. V. Dupras. Icemu. https://github.com/hsoft/icemu.
9. ETH Zurich. SCION. https://github.com/scionproto/scion.

10. D. Fisher, J. Lehtosalo, G. Price, and G. van Rossum. MyPy. http://mypy-

lang.org/.
11. L. Fritz and J. Hage. Cost Versus Precision for Approximate Typing for Python.

In PEPM, pages 89–98, 2017.
12. Y. Ge and L. M. de Moura. Complete Instantiation for Quantified Formulas in

Satisfiability Modulo Theories. In CAV, pages 306–320, 2009.
13. T. Grue, S. Vorobev, J. Lehtosalo, and G. van Rossum. PyAnnotate. https:

//github.com/google/pytype.
14. B. Hackett and S. Guo. Fast and Precise Hybrid Type Inference for JavaScript. In

PLDI, pages 239–250, 2012.
15. S. H. Jensen, A. Møller, and P. Thiemann. Type Analysis for JavaScript. In SAS,

pages 238–255, 2009.
16. M. Kramm, R. Chen, T. Sudol, M. Demello, A. Caceres, D. Baum, A. Peters,

P. Ludemann, P. Swartz, N. Batchelder, A. Kaptur, and L. Lindzey. Pytype.
https://github.com/google/pytype.

17. E. Maia, N. Moreira, and R. Reis. A Static Type Inference for Python. In DYLA,
2012.

18. N. Narodytska and F. Bacchus. Maximum satisfiability using core-guided maxsat
resolution. In AAAI, pages 2717–2723, 2014.

19. Z. Pavlinovic, T. King, and T. Wies. Finding Minimum Type Error Sources. In
OOPSLA, pages 525–542, 2014.

20. A. Rastogi, A. Chaudhuri, and B. Hosmer. The Ins and Outs of Gradual Type
Inference. In POPL, pages 481–494, 2012.

21. B. Rhodes. Adventure. https://github.com/brandon-rhodes/python-

adventure.
22. M. Salib. Starkiller : a static type inferencer and compiler for Python. Master’s

thesis, Massachusetts Institute of Technology, 2004.
23. J. G. Siek and W. Taha. Gradual Typing for Objects. In ECOOP, pages 2–27,

2007.
24. N. Swamy, C. Hritcu, C. Keller, A. Rastogi, A. Delignat-Lavaud, S. Forest, K. Bhar-

gavan, C. Fournet, P. Strub, M. Kohlweiss, J. K. Zinzindohoue, and S. Z. Béguelin.
Dependent types and multi-monadic effects in F. In POPL, pages 256–270, 2016.

https://github.com/jayconrod/imp-interpreter
https://github.com/hsoft/icemu
https://github.com/scionproto/scion
http://mypy-lang.org/
http://mypy-lang.org/
https://github.com/google/pytype
https://github.com/google/pytype
https://github.com/google/pytype
https://github.com/brandon-rhodes/python-adventure
https://github.com/brandon-rhodes/python-adventure

8 Mostafa Hassan, Caterina Urban, Marco Eilers, and Peter Müller

25. G. van Rossum, J. Lehtosalo, and L. Langa. Type Hints. https://www.python.

org/dev/peps/pep-0484/, 2014.
26. N. Vazou, E. L. Seidel, and R. Jhala. LiquidHaskell: experience with refinement

types in the real world. In Proceedings of the 2014 ACM SIGPLAN symposium on
Haskell, Gothenburg, Sweden, September 4-5, 2014, pages 39–51, 2014.

https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/

	MaxSMT-Based Type Inference for Python 3

