
Checking well-formedness of pure-method
specifications

Arsenii Rudich1, Ádám Darvas1, and Peter Müller2

1 ETH Zurich, Switzerland, {arsenii.rudich,adam.darvas}@inf.ethz.ch
2 Microsoft Research, USA, mueller@microsoft.com

Abstract. Contract languages such as JML and Spec# specify invari-
ants and pre- and postconditions using side-effect free expressions of the
programming language, in particular, pure methods. For such contracts
to be meaningful, they must be well-formed: First, they must respect the
partiality of operations, for instance, the preconditions of pure methods
used in the contract. Second, they must enable a consistent encoding of
pure methods in a program logic, which requires that their specifications
are satisfiable and that recursive specifications are well-founded.
This paper presents a technique to check well-formedness of contracts.
We give proof obligations that are sufficient to guarantee the existence
of a model for the specification of pure methods. We improve over earlier
work by providing a systematic solution including a soundness result and
by supporting more forms of recursive specifications. Our technique has
been implemented in the Spec# programming system.

1 Introduction

Contract languages such as the Java Modeling Language (JML) [21] and Spec# [2]
specify invariants and pre- and postconditions using side-effect free expressions
of the programming language. While contract languages are natural for pro-
grammers, they pose various challenges when contracts are encoded in the logic
of a program verifier or theorem prover, especially when contracts use pure
(side-effect free) methods [13]. This paper addresses two challenges related to
pure-method specifications.

The first challenge is how to ensure that a specification is well-defined, that is,
that all partial operations are applied within their domain. For instance method
calls are well-defined only for non-null receivers and when the precondition of the
method is satisfied. This challenge can be solved by encoding partial functions
as under-specified total functions [15]. However, it has been argued that such
an encoding is counter-intuitive for programmers, is not well-suited for runtime
assertion checking, and assigns meaning to bogus contracts instead of having
them rejected by a verifier [8]. Another solution is the use of 3-valued logic, such
as LPF [3]. However, 3-valued logic is typically not supported by the theorem
provers that are used in program verifiers. We present a technique based on 2-
valued logic to check whether a specification satisfies all partiality constraints.
If the check fails, the specification is rejected.

interface Sequence {

[Ghost] int Length;

invariant Length >= 0;

invariant IsEmpty() ==> Length == 0;

invariant !IsEmpty() ==> Length == Rest().Length + 1;

[Pure][Measure=Length] int Count(Object c)

requires !IsEmpty();

ensures result >= 0;

ensures result == (GetFirst() == c ? 1 : 0) +

(Rest().IsEmpty() ? 0 : Rest().Count(c));

[Pure] bool IsEmpty();

[Pure] Object GetFirst()

requires !IsEmpty();

[Pure] Sequence Rest()

requires !IsEmpty();

ensures result != null;

// other methods and specifications omitted

}

Fig. 1. Specification of interface Sequence. We use a notation similar to Spec#, which
is an extension of C#. The Pure attribute marks a method to be side-effect free;
pre- and postconditions are attached to methods by requires and ensures clauses,
respectively. Invariants are specified in invariant clauses; in postconditions, result
denotes the return value of methods. User-specified recursion measures are given by
the Measure attribute. Fields marked with the Ghost attribute are specification-only.

The second challenge is how to ensure that a specification is consistent. In
order to reason about contracts that contain pure-method calls, pure methods
must be encoded in the logic of the program verifier. This is typically done by
introducing an uninterpreted function symbol for each pure method m, whose
properties are axiomatized based on m’s contract and object invariants [10, 13].
A specification is consistent if this axiomatization is free from contradictions.
Consistency is crucial for soundness. We present a technique to check consistency
by showing that the contracts of pure methods are satisfiable and well-founded
if they are recursive. If the consistency check fails, the specification is rejected.

An inconsistent specification of a method m is not necessarily detected during
the verification of m’s implementation [13]: (1) m might be abstract; (2) partial
correctness logics allow one to verify m w.r.t. an unsatisfiable specification if m’s
implementation does not terminate; (3) any implementation could be trivially
verified based on inconsistent axioms stemming from inconsistent pure-method
specifications; this is especially true for recursion, when the axiom for m is
needed to verify its implementation. These reasons justify the need for verifying
consistency of specifications independently of implementations.

We illustrate these challenges by the interface Sequence in Fig. 1. It contains
pure methods to query whether the sequence is empty, and to get the first element
and the rest of the sequence. Method Count returns the number of occurrences
of its parameter in the sequence. The interface contains the specification-only
ghost field Length, which represents the length of the sequence. The interface is
equipped with method specifications and invariants specifying Length.

We call a specification well-formed if it is well-defined and consistent. The
main difficulty in the checking of well-formedness lies in the subtle dependencies
between the specification elements. For instance, to be able to show that the ex-
pression Rest().Count(c) in Count’s postcondition is well-defined, the guarding
condition !Rest().IsEmpty(), the precondition of Count, and the contract of
Rest are needed. These specification elements together allow one to conclude
that the receiver is not null and that the preconditions of Rest and Count are
satisfied. That is, we need the specification of (axioms for) some pure methods
to prove the well-definedness of other pure methods.

The second challenge is illustrated by the specification of method Count. Con-
sistency requires that there actually is a result value for each call to Count. This
would not be the case, for instance, if the first postcondition required result
to be strictly positive. Since the specification of Count is recursive, proving the
existence of a result value relies on the specification of Count. Using this spec-
ification is sound since the recursion in Count’s specification is well-founded:
the first and third invariant, and the precondition of Count guarantee that the
sequence is finite, and the guarding condition together with the precondition of
Count and the third invariant guarantees that we recurse on a shorter sequence.
Again, we have a subtle interaction between specifications: proving the consis-
tency of a pure method makes use of the specification of this method as well as
invariants and the specification of the methods mentioned in these invariants.

These examples demonstrate that generating the appropriate proof obliga-
tions to check well-formedness is challenging. A useful checker must permit de-
pendencies between specification elements, but prevent circular reasoning.

Approach and contributions. We show well-formedness of specifications by
posing proof obligations to ensure: (1) that partial operations are applied within
their domains, (2) the existence of a possible result value for each pure method,
and (3) that recursive specifications are well-founded. In order to deal with
dependencies between pure methods, we determine a dependency graph, which
we process bottom-up. Thereby, one can use the properties of a method m to
prove the proof obligations for the methods using m.

To deal with partiality, we interpret specifications in 3-valued logic. However,
we want to support standard theorem provers, which typically use 2-valued logic
and total functions [22, 14]. Therefore, we express the proof obligations in 2-
valued logic by applying the ∆ formula transformer [17] to the specification
expressions. We proved the following soundness result: If all proof obligations
for the pure methods of a program are proved then there is a partial model for
the axiomatization of these pure methods. In other words, we guarantee that
the partiality constraints are satisfied and the axiomatization is consistent.

Our approach differs from existing solutions for theorem provers [11, 22],
where consistency is typically enforced by restricting specifications to conser-
vative extensions, but no checks are performed for axioms. Since specifications
of pure methods are axiomatic, the approach of conservative extensions is not
applicable to contract languages. Moreover, theorem provers require the user
to resolve dependencies by ordering the elements of a theory appropriately. We
determine this order automatically using a dependency graph.

Our approach improves on existing solutions for program verifiers in three
ways. First, it supports (mutually) recursive specifications, whereas in previous
work recursive specifications are severely restricted [13, 12]. Second, our approach
allows us to use the specification of one method to prove well-formedness of
another, which is needed in many practical examples. Such dependencies are not
discussed in previous work [9, 13] and are not supported by program verifiers
that perform consistency checks, such as Spec#. Neglecting dependencies leads
to the rejection of well-formed specifications. Third, we prove consistency for the
axiomatization of pure methods; such a proof is either missing in earlier work
[9, 12] or only presented for a very restricted setting [13].

For simplicity, we consider pure methods to be strongly-pure. That is, pure
methods may not modify the heap in any way. An extension to weakly-pure
methods [13], which may allocate and initialize objects, is possible.

Outline. Sec. 2 defines well-formedness of pure-method specifications. We present
sufficient proof obligations to guarantee the existence of a model in Sec. 3. We
discuss how our technique can be applied with automatic theorem provers in
Sec. 4. We summarize related work in Sec. 5 and offer conclusions in Sec. 6.

2 Well-formedness

In this section, we define the well-formedness criteria for the specifications of
pure methods. Even though some criteria such as partiality also apply to non-
pure methods, we focus on pure methods in the following.

Preliminaries. We assume a set Heap of heaps with the usual properties. For
simplicity, we assume that a program consists of exactly one class; a generaliza-
tion to several classes and subclassing is possible.

Since there is a one-to-one mapping between pure methods and the cor-
responding uninterpreted function symbols, we can state the well-formedness
criteria directly on the function symbols. In particular, we say “the specifi-
cation of a function f” to abbreviate “the specification of the pure method
encoded by function f”. We assume a signature with the function symbols
F := {f1, f2, , . . . , fn}, which correspond to the pure methods of a program.
For simplicity we assume pure methods to have exactly one explicit parameter.
Thus, all functions in F are ternary with parameters for the heap (h), receiver
object (o), and explicit parameter (p). We assume that all formulas and terms
are well-typed.

We define a specification of F as Spec := 〈Pre,Post, INV〉, where:

– Pre maps each fi ∈ F to a formula. We denote Pre(fi) as Prefi
. Due to

the syntactic structure of preconditions, the only free variables in Prefi are
h, o, and p.

– Post maps each fi ∈ F to a formula. We denote Post(fi) as Postfi . Due to
the syntactic structure of postconditions, the only free variables in Postfi

are h, o, p, and the result variable res. Since we assume pure methods to be
strongly-pure, one heap variable is enough to capture the heap before and
after the method execution.

– INV is a set of formulas {Inv1, Inv2, . . . , Invm}. Due to the syntactic struc-
ture of invariants, the only free variables in Invi ∈ INV are the heap h and
the object o to which the invariant is applied.
We use SysInv := ∀ o ∈ h.∧m

i=1 Invi to denote the conjunction of all invari-
ants for all allocated objects, where o ∈ h expresses that a reference o refers
to an allocated object in heap h. Note that SysInv is an open formula with
free variable h.

Structures and interpretations. To define the interpretation of specifica-
tions, we use a structure M := 〈Heap,R, I〉, where R is the set of references
and I is an interpretation function for the specification of a function f ∈ F:
I(f) : Heap × R ×R → R. This structure can be trivially extended to other
sorts like integer or boolean.

For a formula ϕ, we define the interpretation in total structures [ϕ]2Me in the
standard way. Here, e is a variable assignment that maps the free variables of ϕ
to values. For the interpretation in partial structures [ϕ]3Me, we follow Berezin
et al. [5]: intuitively, the interpretation of a function is defined if and only if the
interpretations of all parameters are defined and the vector of parameters belongs
to the function domain. The interpretation of logical operators and quantifiers
is defined according to Kleene logic [20].

A total interpretation maps a formula to a value in Bool2 := {T,F}, while
a partial interpretation maps a formula to a value in Bool3 := {T,F,⊥}. A
partial structure M can be extended to a total structure M̂ by defining values
of functions outside of their domains by arbitrary values. To check whether or
not a value in Bool3 is ⊥ we use the following function:

wd : Bool3 → Bool2

wd(x) :=
{

T , if x ∈ {T,F}
F , if x = ⊥

Well-formedness criteria. A specification Spec is well-formed (denoted by
|= Spec) if there exists a partial model M for the specification. A structure M
is a partial model for specification Spec, denoted by M |= Spec, if it satisfies
the following four criteria:

1. Invariants are never interpreted as ⊥, that is, for each heap ∈ Heap:
wd([SysInv]3Me) holds

where e := [h → heap].
2. Preconditions are never interpreted as ⊥ in heaps that satisfy the invariants

of all allocated objects, that is, for each f ∈ F, heap ∈ Heap, this ∈ heap,
and par ∈ heap:

if [SysInv]3Me holds, then wd([Pref]3Me) holds
where e := [h → heap, o → this, p → par].

3. The values of the parameters belong to the domain of the interpretation
of function symbols, provided that the heap satisfies the invariants and the
precondition holds. That is, for each f ∈ F, heap ∈ Heap, this ∈ heap,
and par ∈ heap:

if [SysInv]3Me and [Pref]3Me hold,
then 〈heap, this,par〉 ∈ dom(I(f)) holds

where e := [h → heap, o → this, p → par].
4. Postconditions are never interpreted as ⊥ for any result, and the interpreta-

tion of function f as result value satisfies the postcondition, provided that
the heap satisfies the invariants and the precondition holds. That is, for each
f ∈ F, heap ∈ Heap, this ∈ heap, and par ∈ heap:

if [SysInv]3Me and [Pref]3Me hold,
then for each result ∈ heap wd([Postf]3Me′) holds,
and [Postf]3Me holds

where e := [h → heap, o → this, p → par, res → I(f)(heap, this,par)],
e′ := [h → heap, o → this, p → par, res → result].

Axiomatization. As motivated in Sec. 1, a verification system needs to extract
axioms from the specifications of pure methods. We denote the axiom for function
symbol f as Axf and the axioms for all functions as AxSpec. Formally:

Axf := ∀ h, o ∈ h, p ∈ h. SysInv ∧Pref ⇒ Postf [f(h, o, p)/res]

AxSpec :=
∧

f∈F

Axf

From well-formedness criterion 4 and Axf , we can conclude that if a structure
M is a partial model for specification Spec then it is a model for AxSpec:

if M |= Spec then M |= AxSpec

Consequently, if specification Spec is well-formed then the axioms are consistent:

if |= Spec then |= AxSpec

Important to note is that this property does not hold in the other direction,
that is, if |= AxSpec then |= Spec is not necessarily true. For example, consider
a method with precondition 1/0 == 1/0 and postcondition true. In 2-valued
logic, the axiom is trivially consistent, but the specification is not well-formed
(criterion 2). This demonstrates that our well-formedness criteria require more
than just consistency, namely also satisfaction of partiality constraints.

3 Checking well-formedness

In this section, we present sufficient proof obligations that ensure that a speci-
fication is well-formed, that is, the existence of a model.

3.1 Partiality

We want our technique to work with first-order logic theorem provers, which are
often used in program verifiers. These provers check that a formula holds for all
total models. However, we need to check properties of partial models. Therefore,
we apply a technique that reduces the 3-valued domain to a 2-valued domain by
ensuring that ⊥ is never encountered. This is a standard technique applied in
different tools, for instance, in B [4], CVC Lite [5], and ESC/Java2 [9].

The main idea is to use the formula transformer ∆ [17, 4], which takes a (pos-
sibly open) formula ϕ and domain restriction δ, and produces a new formula ϕ′.
The interpretation of ϕ′ in 2-valued logic is true if and only if the interpretation
of ϕ in 3-valued logic is different from ⊥. The domain restriction δ is a mapping
from a set of function symbols Fδ to formulas. δ characterizes the domains of
the function symbols of Fδ. For instance for the division operator, the domain
restriction δ requires the divisor to be non-zero. Thus, ∆(a/b > 0, δ) ≡ b 6= 0.

For lack of space, we do not give the details of the ∆ operator and refer the
reader to [4]. The most important property for our purpose is the following [5]:

M |= δ ⇒ ([∆(ϕ, δ)]2
M̂

e = wd([ϕ]3Me)) (1)

which captures the intuition of ∆ described above. ∆ is a syntactical characteri-
zation of the semantical operation wd. Thus, using ∆, we can check in 2-valued
logic the partiality properties we are interested in.

Property (1) interprets formulas w.r.t. a structure M. This structure with
function symbols Fδ has to be a model for δ (denoted by M |= δ), that is:

– The domain formulas are defined, that is, for each f ∈ Fδ

wd([δ(f)]3Me) holds for all e.

– δ characterizes the domains of function interpretations for M, that is, for
each f ∈ Fδ and val1, . . . ,valk ∈ R:

[δ(f)]3Me holds if and only if 〈val1, . . . ,valk〉 ∈ dom(I(f))

where e := [v1 → val1, . . . , vk → valk] and {v1, . . . , vk} are the parameter
names of f . (Since methods have only one explicit parameter, k = 3.)

3.2 Incremental construction of model

In general, showing the existence of a model requires one to prove the existence
of all its functions. To be able to work with first-order logic theorem provers, we
approximate this second-order property in first-order logic. We generate proof
obligations whose validity in 2-valued first-order logic guarantees the existence

of a model. However, if we fail to prove them then we do not know whether a
model exists or not. That is, the procedure is sound but not complete. However,
it works for the practical examples we have considered so far.

The basic idea of our procedure is to construct a model incrementally. We
build a dependency graph whose nodes are function symbols and invariants.
There is an edge from node a to node b if the specification of function a or the
invariant a applies function b. The dependency graph of interface Sequence is
presented in Fig. 2.

The dependency graph may be cyclic. However, we disallow cycles that are
introduced by preconditions. In other words, a precondition must not be recursive
in order to avoid fix-point computation to define the domain of the function. This
is not a limitation for practical examples.

We construct the model by traversing the dependency graph bottom-up. We
start with the empty specification Spec0 := 〈∅, ∅, ∅〉, for which we trivially have
a model M0. In each step j, we select a set of nodes Gj := {g1, g2, . . . , gk} such
that if there is an edge from gi to a node n then either n has already been visited
in some previous step (i.e., n ∈ G1 ∪ ...∪Gj−1) or n ∈ Gj . Moreover, we choose
Gj such that it has one of the following forms:

1. Gj contains exactly one invariant Invl ∈ INV.
2. Gj contains exactly one function symbol fl ∈ F and the specification of fl

is not recursive.
3. Gj is a set of function symbols, and the nodes in Gj form a cycle in the

dependency graph, that is, they are specified recursively in terms of each
other. Gj may contain only one node in case of direct recursion.

We call the pre- and postconditions and the invariants of Gj the current specifi-
cation fragment, sj . We extend Specj−1 with sj resulting in Specj . We impose
proof obligations on sj that guarantee that the model Mj−1 for Specj−1 can be
extended to a model Mj for Specj . Since this construction is inductive, we may
assume that all specification fragments processed up to step j−1 are well-formed.

It is easy to see that an order in which one can traverse the dependency graph
always exists. However, the chosen order may influence the success of the model
construction. Essentially one should choose an invariant node whenever possible
because the invariant provides information that might be useful for later steps.

3.3 Proof obligations

We now present the proof obligations for the three different kinds of current
specification fragments sj . We refer to the elements of Specj as Prej , Postj ,
and INVj . To make the formulas more readable we use the following notations:

– SysInvj := ∀ o ∈ h.
∧

Inv∈INVj
Inv. SysInvj is the conjunction of invari-

ants processed up to step j. After the last step z of the construction of the
model, we have SysInvz = SysInv.

– Fj denotes the set of function symbols whose pre- and postconditions have
been processed up to step j: Fj := dom(Prej), and thus Fj = dom(Postj).

IsEmptyInv1

Inv3

Rest

Count

GetFirst
Inv2

Fig. 2. Dependency graph for interface Sequence.

– We denote the axioms for Specj as follows:

Axj
f := ∀ h, o ∈ h, p ∈ h. SysInvj ∧Pref ⇒ Postf [f(h, o, p)/res]

AxSpecj :=
∧

f∈Fj
Axj

f

Axj
f is the definition of the axiom for a function f according to specifica-

tion Specj . Note that the axiom Axj
f may be different for different j since

SysInvj gets gradually strengthened during the construction of the model.
Therefore, the axiom Axj

f becomes gradually weaker. This is an important
observation for the soundness of our approach. After the last step z of the
construction of the model, we have Axz

f = Axf and AxSpecz = AxSpec.

The following proof obligations are posed on the three different types of specifi-
cation fragments in step j.

Invariant Invl. The invariant Invl must be well-defined for each object, pro-
vided the invariants SysInvj−1 hold.

AxSpecj−1 ⇒ ∀ h. (SysInvj−1 ⇒ ∆(∀ o ∈ h. Invl,Prej−1)) (2)

Note that we use preconditions Prej−1 as domain restriction. Although invari-
ants additionally restrict the domain of functions, these restrictions are never
violated due to the assumption that SysInvj−1 holds.

Example. We instantiate the proof obligation for a specification fragment from
Fig. 1. The corresponding dependency graph is presented in Fig. 2. The traversal
of the dependency graph first visits the first invariant since it has no dependen-
cies. The well-definedness of the invariant is trivial. Next, the traversal takes
method IsEmpty, which is also processed trivially since the method has no spec-
ifications. As third node, the second invariant is picked. For this specification
fragment, the following proof obligation is generated.

∀ h. ((∀ o ∈ h. h[o, Length] ≥ 0) ⇒
∆(∀ o ∈ h. IsEmpty(h, o) ⇒ h[o, Length] = 0, {〈IsEmpty , true〉}))

where h[o, f] denotes field access with receiver object o and field f in heap h.
Note that AxSpec2 has been omitted since it is equivalent to true. After the
application of the ∆ operator, the proof obligation requires one to prove that
(1) o is non-null since it is the receiver of a method call and a field access, and
that (2) the domain restriction of IsEmpty is not violated. The first property
holds since o ∈ h, the second since the domain restriction of IsEmpty is true. ut

Pre- and postcondition of a single function fl. This case requires two
proof obligations for the non-recursive pre- and postcondition of fl, respectively.
The first proof obligation checks that the precondition of fl is defined for all
receiver objects and parameters in all heaps in which the invariants hold.

AxSpecj−1 ⇒ ∀ h, o ∈ h, p ∈ h. (SysInvj−1 ⇒ ∆(Prefl
,Prej−1)) (3)

Example. Assume method Rest is selected as fourth specification fragment. The
corresponding proof obligation is the following.

∀ h, o ∈ h.
((∀ o ∈ h. h[o, Length] ≥ 0 ∧ (IsEmpty(h, o) ⇒ h[o, Length] = 0)) ⇒

∆(¬IsEmpty(h, o), {〈IsEmpty , true〉}))

Again, AxSpec3 has been omitted since it is equivalent to true. After the appli-
cation of the ∆ operator, the same properties need to be proven as above: o is
non-null and the domain restriction of IsEmpty is not violated. ut

The second proof obligation checks that the postcondition of fl is never inter-
preted as ⊥ for any result, and that there exists a value which satisfies the post-
condition for all receiver objects and parameters that satisfy the precondition in
all heaps in which the invariants hold.

AxSpecj−1 ⇒ ∀ h, o ∈ h, p ∈ h. (SysInvj−1 ∧ Prefl
⇒

(∀ res. ∆(Postfl
,Prej−1)) ∧ (∃ res. Postfl

))
(4)

Example. The proof obligation for the postcondition of method Rest is:
∀ h, o ∈ h.

((∀ o ∈ h. h[o, Length] ≥ 0 ∧ (IsEmpty(h, o) ⇒ h[o, Length] = 0)) ∧
¬IsEmpty(h, o)
⇒

(∀ res. ∆(res 6= null, {〈IsEmpty , true〉})) ∧ (∃ res. res 6= null))
As before, AxSpec3 is equivalent to true. The first conjunct is proved trivially
since formula res 6= null does not contain any partial operation. To satisfy the
second conjunct, we instantiate res with o. ut

Pre- and postconditions of a set of recursively-specified functions. This
case handles both direct and mutual recursion. That is, we have a set of functions
Gj := {g1, g2, . . . , gk} with k ≥ 1. We assume that for each function gi in Gj

the programmer provides a measure function ‖ · ‖gi : Heap × R × R → N
using the Measure attribute. We assume that there is no recursion via measure
functions, that is, the definition of measure function ‖ · ‖gi

may only contain
function symbols from G1 ∪ . . . ∪ Gj−1, but not from Gj .

Since preconditions must not be recursively specified (see Sec. 3.2), the proof
obligation for the precondition of each gi is identical to proof obligation (3) for
the non-recursive case.

In order to prove well-formedness of postconditions, we first need to show
that user-specified measures are well-defined and non-negative. For a function
gi with measure attribute Measure=µgi

, we introduce a new pure method Mgi

with precondition Pregi
and postcondition µgi

≥ 0. The dependency graph is
extended with a node for Mgi and an edge from gi to Mgi . Node Mgi is processed
like any other node. This allows measures to rely on invariants and to contain
calls to pure methods.

Proof obligation (5) below for postconditions is similar to proof obligation (4),
but differs in two ways: First, we have to prove that the recursive specification
is well-founded. Since we have already shown that our measure functions yield
non-negative numbers, it suffices to show that the measure decreases for each
recursive application. We achieve this by using a domain restriction that ad-
ditionally requires the measure for recursive applications to be lower than the
measure ind of the function being specified. If the measure ind is 0, the domain
restriction becomes false, which prevents further recursion. Note that the oc-
currence of ind seems to violate the condition that domain restrictions do not
contain free variables other than the parameters of the function whose domain
they characterize. However, since ind is universally quantified, we may consider
ind to be a constant for each particular application of the domain restriction.
(One could think of the universal quantification as an unbounded conjunction,
where ind is a constant in each of the conjuncts.)

Second, for the proof of well-formedness of the specification of a function gi,
we may assume the properties of the functions recursively applied in this spec-
ification. This is an induction scheme over the measure ind, which is expressed
by the assumption in lines 4 and 5 of the following proof obligation, which must
be shown for each method gi.

AxSpecj−1 ⇒
∀ ind ∈ N, h, o ∈ h, p ∈ h.

(SysInvj−1 ∧ Pregi ∧ ‖〈h, o, p〉‖gi = ind ∧
(
∧k

l=1 ∀ o′ ∈ h, p′ ∈ h. Pregl
[o′/o, p′/p] ∧ ‖〈h, o′, p′〉‖gl

< ind ⇒
Postgl

[o′/o, p′/p, gl(h, o′, p′)/res])
⇒

(∀ res. ∆(Postgi ,Prej−1 ∪ {〈gl,Pregl
∧ ‖〈h, o, p〉‖gl

< ind〉 | l ∈ 1..k})) ∧
(∃ res. Postgi))

(5)

Example. Since the size of proof obligation (5) for the postcondition of method
Count (the only recursive specification in our example) is rather large, we use
a considerably smaller example here, namely the factorial function with the
following specification.

[Pure][Measure=p] int Fact(int p)

requires p >= 0;

ensures p == 0 ==> result == 1;

ensures p > 0 ==> result == Fact(p-1)*p;

To simplify the example, we omit the variables for heap h and receiver object o.
First, we need to prove that measure p is well-defined and non-negative. This

is trivially proven since the measure does not contain partial operators and the
precondition of Fact guarantees that p is non-negative.

Next, we need to show proof obligation (5). For brevity, we only show it for
the second postcondition, which is the interesting case containing recursion:

∀ ind ∈ N, p.
(p ≥ 0 ∧ p = ind ∧
(∀ p′. p′ ≥ 0 ∧ p′ < ind ⇒

(p′ = 0 ⇒ Fact(p′) = 1) ∧ (p′ > 0 ⇒ Fact(p′) = Fact(p′ − 1) ∗ p′))
⇒

(∀ res. ∆(p > 0 ⇒ res = Fact(p− 1) ∗ p, {〈Fact, p ≥ 0 ∧ p < ind〉 })) ∧
(∃ res. p > 0 ⇒ res = Fact(p− 1) ∗ p))

We need to show that the two quantified conjuncts on the right-hand side of
the implication hold. Proving that the existential holds is straightforward due to
the equality. The other conjunct is more interesting. The only partial operator
is Fact and after applying the ∆ operator the sub-formula simplifies to:

∀ res. p > 0 ⇒ p− 1 ≥ 0 ∧ p− 1 < ind

The first conjunct is provable from p > 0 and the second from p = ind in the
premise of the proof obligation. ut

Soundness. The above proof obligations are sufficient to show that a specifi-
cation is well-formed:

Theorem. If a specification Spec does not contain recursive precondi-
tions and all of the above proof obligations for Spec hold then Spec is
well-formed, that is, |= Spec holds.

The proof of this theorem runs by induction on the order of specification frag-
ments given by the dependency graph. For each recursive specification fragment,
the proof uses a nested induction on the recursion depth ind. Due to lack of space,
we refer to [23] for a detailed proof sketch.

Modularity. In general, adding new classes to a program does not invalidate
the proofs for the well-formedness criteria of existing methods and invariants.
This is because we assume behavioral subtyping, which ensures that the axiom
for an overriding method is weaker than the axiom for the overridden method.
Although new classes can introduce cycles in the dependency graph that involve
existing methods, proofs remain valid since we introduce new function symbols
for overriding methods, which thus do not interfere with existing proofs.

The invariants of additional classes strengthen SysInv, which appears as part
of the premises of proof obligations; thus, they weaken the proof obligations.

4 Application with automatic theorem provers

The proof obligations presented in the previous section are sufficient to show
the well-formedness of a specification. However, they are not well-suited for au-
tomatic theorem provers such as Simplify [14] or Z3 for two reasons. First, the
proof obligations to ensure consistency for postconditions (proof obligations (4)
and (5)) contain existential quantifiers, for which automatic theorem provers
often do not find suitable instantiations. Second, the proof obligation for the
well-foundedness of recursive specifications (proof obligation (5)) is in general
proved by induction on ind, but induction is not supported well by automatic
theorem provers. In this section, we discuss these issues.
Consistency. Spec# uses four approaches to find witnesses for the satisfiability
of a specification, that is, instantiations for the existential quantifiers1. First, if
a postcondition has the form result R E, where R is a reflexive operator and
E is an expression that does not contain result and recursive calls, then there
always exists a possible result value, namely, the value of E [12]. Thus, this part
of the proof obligations can be dropped. Second, if a pure method has a body of
the form return E, where E does not contain a recursive call, then expression E
is a likely candidate for a witness. It suffices to use a simplified proof obligation
to show that this candidate actually is a witness. Third, for many postconditions,
good candidates for witnesses can be inferred by simple heuristics. For instance,
for a postcondition result > E, one might try E + 1. Finally, if the former
approaches do not work, Spec# allows programmers to specify witnesses for
model fields explicitly. One could use the same approach for pure methods.
Well-foundedness. Proof obligation (5) in general requires induction. For in-
stance, if function f(n) has a postcondition (n = 0 ⇒ res = 1)∧(n > 0 ⇒ res =
1/f(n − 1)), one needs to apply induction to prove that f never returns zero.
However, induction is needed only if the function is specified recursively and the
recursive call occurs as an argument to a partial function, as in this example. In
our experience, this is not the case for most specifications. For instance, proving
proof obligation (5) for the factorial function does not require induction, as we
have shown in Sec. 3.3. Therefore, this proof obligation is not a major limitation
in practice.
1 Most of these approaches were proposed and implemented by Rustan Leino and

Ronald Middelkoop.

5 Related work

We sketch what three important groups of formal systems do in the areas of
consistency and well-definedness checking.

Theorem provers. Isabelle [22] is an interactive LCF-style theorem proving
framework based on a small logical core. Everything on top of the core is sup-
posed to be defined by conservative extensions, which ensures the consistency of
the specification. The use of axioms is possible but discouraged since inconsis-
tency may be introduced. Recursion (both direct and mutual) is supported and
the well-foundedness of the recursion has to be proven. Isabelle handles partiality
by under-specification [15] and requires no well-definedness checks.

PVS [11] is similar to Isabelle with respect to consistency guarantees. The
main difference is in the modeling of partial functions. Although PVS also con-
siders functions to be total, predicate subtyping is used to restrict the domain of
functions. This makes the type system undecidable leading to Type Correctness
Conditions to be proven [24].

Formal software development systems. Z is a formal specification language
for computing systems [25]. The work closest to ours is the approach of Hall et
al., which shows how a model conjecture can be derived from a Z specification
[16]. Partiality is handled by under-specification [26].

The B method [1] is similar to Z but is more focused on the notion of refine-
ment. Satisfiability of the specification has to be proven in each refinement step.
B allows users to add axioms whose consistency is not checked. Thus, they may
introduce unsoundness. B allows functions to be partial and requires specifica-
tions to be well-defined by using the ∆ formula transformer [4].

VDM [18] also checks satisfiability of specifications and allows the use of
(possibly inconsistent) axioms. VDM uses LPF [3], a 3-valued logic. In contrast
to our approach, well-definedness is not proven before the actual proof process,
but is proven together with the validity of verification conditions.

Program verifiers. ESC/Java2 [19] is an automatic extended static checker for
Java programs annotated with JML specifications. The tool axiomatizes speci-
fications of pure methods [10]. Consistency of the axiom system is not ensured,
which can lead to unsoundness. Recently, well-definedness checks have been
added by Chalin [9] but it is not clear how dependencies among specification
elements are handled, and no soundness proof is provided.

Jack [7] is a program verifier for JML annotated Java programs. The backend
prover of the tool is Coq [6]. The tool axiomatizes pre- and postconditions of pure
methods separately. This separation ensures that axioms are only instantiated
when a pure-method call occurs in a given verification condition—as opposed to
be available to the theorem prover at any time. However, since Jack does not
check consistency, unsoundness can still occur by the use of axioms. Jack does
not support mutual recursion and does not check well-definedness.

The Spec# program verifier ensures consistency of axioms over pure methods
by the approaches described in Sec. 4 and by allowing programmers to declare
a static call-order on pure methods. Only a simple form of recursive specifica-
tions is supported where the measure is based on the ownership relation. The
well-foundedness of this relation can be checked by the compiler without proof
obligations [12]. Spec# does not fully check well-definedness of specifications.

Our technique improves on our own earlier work [13] by allowing pure-method
calls in invariants, ensuring well-formedness of specifications, supporting mutual
recursion, taking dependencies into account, and by precisely defining what the
proposed proof obligations guarantee. On the other hand, [13] handles weak-
purity which we omitted in this paper for simplicity. However, our work could
be extended following the technique described in [13].

6 Conclusion

Well-formedness of specifications is important to meet programmer expectations,
to reconcile static and runtime assertion checking, and to ensure soundness of
static verification. We presented a new technique to check the well-formedness
of specifications. We showed how to incrementally construct a model for the
specification, which guarantees that the partiality constraints of operations are
respected and that the axiomatization of pure methods is consistent. Our tech-
nique can be applied in any verification system, regardless of its contract lan-
guage, logic, or backend theorem prover. As a proof of concept, we implemented
our technique in the Spec# verification system.

As future work, we plan to develop adapted proof obligations that require
induction in fewer cases. We expect that this can be done by generating spe-
cific proof obligations for each given recursive call, which encode the inductive
argument. We also plan to investigate how to conveniently specify measures for
methods that traverse object structures.

Acknowledgments. We are grateful to Julien Charles, Farhad Mehta, and
Burkhart Wolff for helpful discussions on related work. Thanks also to the anony-
mous reviewers for their insightful comments. Geraldine von Roten implemented
the presented technique in the Spec# system.

This work was funded in part by the Information Society Technologies pro-
gram of the European Commission, Future and Emerging Technologies under
the IST-2005-015905 MOBIUS project.

References

1. J. R. Abrial. The B Book: Assigning Programs to Meanings. Cambridge University
Press, 1996.

2. M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system: An
overview. In CASSIS, volume 3362 of LNCS, pages 49–69. Springer-Verlag, 2005.

3. H. Barringer, J. H. Cheng, and C. B. Jones. A logic covering undefinedness in
program proofs. Acta Informatica, 21:251–269, 1984.

4. P. Behm, L. Burdy, and J.-M. Meynadier. Well Defined B. In International B
Conference, pages 29–45. Springer-Verlag, 1998.

5. S. Berezin, C. Barrett, I. Shikanian, M. Chechik, A. Gurfinkel, and D. L. Dill. A
practical approach to partial functions in CVC Lite. In PDPAR, 2004.

6. Y. Bertot and P. Castran. Interactive Theorem Proving and Program Development.
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. Springer-Verlag, 2004.

7. L. Burdy, A. Requet, and J.-L. Lanet. Java applet correctness: A developer-oriented
approach. In FME, volume 2805 of LNCS, pages 422–439. Springer-Verlag, 2003.

8. P. Chalin. Are the logical foundations of verifying compiler prototypes matching
user expectations? Formal Aspects of Computing, 19(2):139–158, 2007.

9. P. Chalin. A sound assertion semantics for the dependable systems evolution
verifying compiler. In ICSE, pages 23–33. IEEE Computer Society, 2007.

10. D. Cok. Reasoning with specifications containing method calls and model fields.
Journal of Object Technology, 4(8):77–103, October 2005.

11. J. Crow, S. Owre, J. Rushby, N. Shankar, and M. Srivas. A Tutorial Introduction
to PVS, April 1995.

12. Á. Darvas and K. R. M. Leino. Practical reasoning about invocations and im-
plementations of pure methods. In FASE, volume 4422 of LNCS, pages 336–351.
Springer-Verlag, 2007.

13. Á. Darvas and P. Müller. Reasoning About Method Calls in Interface Specifica-
tions. Journal of Object Technology (JOT), 5(5):59–85, June 2006.

14. D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A theorem prover for program
checking. Technical Report HPL-2003-148, HP Labs, 2003.

15. D. Gries and F. B. Schneider. Avoiding the undefined by underspecification. In
J. van Leeuwen, editor, Computer Science Today, volume 1000 of LNCS, pages
366–373. Springer-Verlag, 1995.

16. J. G. Hall, J. A. McDermid, and I. Toyn. Model conjectures for Z specifications.
In 7th International Conference on Putting into Practice Methods and Tools for
Information System Design, pages 41–51, 1995.

17. A. Hoogewijs. On a formalization of the non-definedness notion. Zeitschrift für
Mathematische Logik und Grundlagen der Mathematik, 25:213–217, 1979.

18. C. B. Jones. Systematic software development using VDM. Prentice Hall, 1986.
19. J. R. Kiniry and D. R. Cok. ESC/Java2: Uniting ESC/Java and JML. In CASSIS,

volume 3362 of LNCS, pages 108–128. Springer-Verlag, 2005.
20. S. C. Kleene. Introduction to Metamathematics. Van Nostrand, 1952.
21. G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of JML: a behavioral

interface specification language for Java. ACM SIGSOFT Software Engineering
Notes, 31(3):1–38, 2006.

22. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer-Verlag, 2002.

23. A. Rudich, Á. Darvas, and P. Müller. Checking well-formedness of pure-method
specifications (Full Paper). Technical Report 588, ETH Zurich, 2008.

24. J. Rushby, S. Owre, and N. Shankar. Subtypes for Specifications: Predicate Sub-
typing in PVS. IEEE Transactions on Software Engineering, 24(9):709–720, 1998.

25. J. M. Spivey. Understanding Z: a specification language and its formal semantics.
Cambridge University Press, 1988.

26. S. H. Valentine. Inconsistency and Undefinedness in Z - A Practical Guide. In
International Conference of Z Users, pages 233–249. Springer-Verlag, 1998.

