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Sensitivity properties describe how changes to the input of a program affect the output, typically by upper

bounding the distance between the outputs of two runs by a monotone function of the distance between the

corresponding inputs. When programs are probabilistic, the distance between outputs is a distance between

distributions. The Kantorovich lifting provides a general way of defining a distance between distributions

by lifting the distance of the underlying sample space; by choosing an appropriate distance on the base

space, one can recover other usual probabilistic distances, such as the Total Variation distance. We develop

a relational pre-expectation calculus to upper bound the Kantorovich distance between two executions of

a probabilistic program. We illustrate our methods by proving algorithmic stability of a machine learning

algorithm, convergence of a reinforcement learning algorithm, and fast mixing for card shuffling algorithms.

We also consider some extensions: proving lower bounds on the Total Variation distance and convergence to

the uniform distribution. Finally, we describe an asynchronous extension of our calculus to reason about pairs

of program executions with different control flow.
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1 INTRODUCTION

Sensitivity properties describe how changes in program inputs affect program outputs, with respect

to particular distances on program inputs and program outputs. By varying these distances, sen-

sitivity properties are relevant in many application areas, including: (i) numerical computations,

where distances are taken between real numbers, (ii) numerical queries, where program inputs

are databases, and the distance between them is the number of differing entries, and (iii) learning

algorithms, where the distance between two training sets is the number of differing examples, and

the distance between outputs measures the difference in errors labeling unseen examples. This

paper is concerned with sensitivity properties of probabilistic programs. As such programs return

distributions over their output space, the corresponding notions of sensitivity use distances over

distributions. The Total Variation (TV) distance (a.k.a. statistical distance), for example, is a widely
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used notion of distance that measures the maximal difference of probabilities for two distributions.

One key benefit of the TV distance is that it is defined for distributions over arbitrary spaces.

However, it is sometimes desirable to consider distances inherited from the underlying space. It is

common to consider classes of distances on distributions that are obtained by lifting a distance

on an underlying space. This lifting is defined by the so-called Kantorovich metric, which yields a

family of probabilistic metrics obtained by lifting a distance E on a ground set X to a distance E#

on distributions over X . The class of Kantorovich metrics cover many notions of distance, including

the TV distance which can be obtained by applying the Kantorovich lifting to the discrete distance.

Approach. We develop a relational pre-expectation calculus for reasoning about sensitivity of prob-

abilistic computations under the Kantorovich metric. Relational pre-expectations are mappings

expressing a quantitative relation (e.g., a distance or metric) between states, and are modelled as

maps of the form State × State → [0,∞]. Our calculus takes as input a probabilistic program c
written in a core imperative language and a pre-expectation E between output states and deter-

mines a pre-expectation rpe(c, E) between input states. The calculus is a sound approximation of

sensitivity, in the sense that running the program c on inputs at distance smaller than rpe(c, E)
yields output distributions at distance smaller than E#

.

Technically, our calculus is inspired by earlywork on probabilistic dynamic logic due to Kozen [22]

in which maps E : State → [0,∞] serve as quantitative counterparts of Boolean predicates

P : State → {0, 1}. McIver and Morgan [23] later coined the term expectation—not to be con-

fused with expected values—for such maps E. Moreover, they developed a weakest pre-expectation

calculus for the probabilistic imperative language pGCL. Their calculus was designed as a general-

ization of Dijkstra’s weakest pre-conditions supporting both probabilistic and non-deterministic

choice. The basic idea is to define an operator wpe(c, E) that transforms an expectation E averaged

over the output distribution of a program c into an expectation evaluated over the input state. In

this way, the expectation is transformed by the effects of the probabilistic program in a backwards

fashion, much like how predicates are transformed through Dijkstra’s weakest pre-conditions.

Our pre-expectation calculus operates similarly, but—as it aims to measure distances between

distributions of outputs in terms of inputs—manipulates relational expectations instead. We next

motivate the need for relational expectations, and explain why they are challenging.

Why do we need relational pre-expectations? The classical weakest pre-expectation calculus enjoys

strong theoretical properties: in particular, it is both sound and complete (in an extensional sense)

w.r.t. common program semantics (cf. Gretz et al. [17]). Therefore, weakest pre-expectations can—in

principle—be applied to reason about bounds on the Total Variation distance: Given a program c ,
(i) take a copy c ′ over a fresh set of program variables—e.g. if variable x appears in c , substitute it
by x ′ in c ′—and (ii) determine the weakest pre-expectation wpe(c; c ′, E), where the expectation E
measures the distance between variables in c and their counterparts in c ′.
However, this naïve approach is not practical for analyzing sensitivity: the TV distance, for

example, is defined as a maximum of a difference of probabilities over all events of the output space.

While the output space—and thus potentially the TV distance—is often unbounded, the calculus of

McIver andMorgan [23] is restricted to bounded expectations. Moreover, the above approach pushes

the difficulty of reasoning about sensitivity properties into the task of finding suitable invariants

for probabilistic programs—a highly challenging task on its own. In particular, finding invariants

may involve reasoning about probabilistic independence, which is not readily available when using

weakest pre-expectations. In fact, mathematicians have long observed that reasoning about the TV

distance or the Kantorovich metric directly from their definition is inappropriate. Rather, they rely

on probabilistic couplings [32], a mathematical tool for relating two different distributions. Relational
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pre-expectations naturally connect with probabilistic couplings, and capture well-established proof

principles used by mathematicians for reasoning about the TV distance.

Challenges of relational pre-expectations. Relational pre-expectations pose a number of specific

challenges compared to their unary counterpart. First, the Kantorovich distance cannot be defined

inductively on the structure of programs. More specifically, the Kantorovich distance between two

runs of c; c ′ is not a simple combination of the Kantorovich distances between two runs of c and
two runs of c ′ (we provide a counterexample in Section 3). Instead, we define a pre-expectation

calculus r̃pe(c, E) that can compute a compositional upper-bound of the Kantorovich distance—this

is sufficient for proving sensitivity properties.

Second, proofs of soundness and continuity for our relational pre-expectation calculus are

significantly more involved than for the usual weakest pre-expectation calculus, and use non-

elementary results from optimal transport theory. In particular, we are only able to prove continuity

for finitely supported distributions, and soundness for discrete distributions.

Third, relational calculi are naturally better suited to reason about two executions that follow the

same control-flow. We offer useful support for reasoning about executions with different control-

flow, through a careful generalization of the rules for conditionals and loops. While our rules do not

suffice for arbitrary examples (it remains an open problem to develop relatively complete verification

approaches for relational properties of probabilistic programs), they suffice for non-trivial examples

that exhibit asynchronous behavior.

Applications. We demonstrate our technique on several applications. In our first application, we

formalize an algorithmic stability property of machine-learning algorithms. Informally, algorithmic

stability describes how much the output parameters from a learning algorithm are affected when

one input training example is changed; this notion of probabilistic sensitivity is known to imply

generalization and prevent overfitting [11]. We use our calculus for proving algorithmic stability of

a commonly-used learning algorithm: stochastic gradient descent (SGD). We use these examples to

constrast our approach with prior work.

Then, we consider a pair of applications showing convergence properties. We first formalize

convergence of a reinforcement learning algorithm [31], following a recent analysis by Amortila

et al. [2]. Then, we show convergence and rapid mixing of several card shuffling algorithms [1].

We show that the TV distance between the outputs of two probabilistic loops decreases to 0 as the

number of loop iterations increases—that is, the output distributions from any two inputs converge

to the same distribution. Moreover, our technique is precise enough to describe the rate of this

convergence. Upper bounds on convergence speed are key properties in algorithms that generate

samples form complex distributions, such as Markov Chain Monte Carlo.

Extensions: uniformity and lower bounds. Next, we show how to formalize other properties

complementing our bounds on convergence rate. First, we prove with our system that some card

shuffling examples converge to the uniform distribution. Second, we study lower bounds–a task

already challenging in the non-relational wpe calculus [19]. While upper bounds on convergence

speed are often the main focus of formal analyses of probabilistic processes, lower bounds are

also useful to understand how far apart the output distributions must be. The Monge-Kantorovich

theorem provides a general method for proving lower bounds on the Kantorovich metric by using

the unary wpe transformer from McIver and Morgan [23]. However, proving lower bounds poses

some challenges [19]: we have to find a separating event and establish both upper and lower bounds

on its probability. We show how to solve these challenges for card shuffling examples.

Extensions: asynchronous reasoning. Finally, we describe extensions to our calculus for asynchro-

nous reasoning. We show how to prove relational properties when pairs of program executions have
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different control flow. We demonstrate our asynchronous extensions to reason about a program

generating a binomial distribution.

Contributions and outline. After introducing preliminaries on probability theory and the Kan-

torovich distance (§ 2), we present our main contributions:

• We define a sound, compositional, relational pre-expectation calculus for computing upper-

bounds on the Kantorovich distance. We introduce convenient proof rules for sampling

commands and loops, and we show that the core fragment of probabilistic relational Hoare

logics, namely pRHL [8] and EpRHL [7], can be embedded into our calculus (§ 3).

• We apply our calculus to three case studies. As a warmup example, we use our calculus

to provide a clean proof of algorithmic stability of stochastic gradient descent [18] (§ 4).

Second, we formalize convergence of TD(0), an algorithm from the Reinforcement Learning

literature [31] (§ 5). Third, we apply our calculus to show rapid convergence of random walks

and card shuffling algorithms [1] (§ 6).

• We show two complementary extensions to the previous examples: we use the weakest

pre-expectation transformer from McIver and Morgan to compute lower bounds for the

distance between distributions, and we use our calculus to show that the limiting distribution

is uniform (§ 7).

• We present proof rules for reasoning about programs with asynchronous control flow (§ 8).

Finally, we survey related work (§ 9) and conclude (§ 10).

2 MATHEMATICAL PRELIMINARIES

We briefly recap the foundations required for relational reasoning about sensitivity properties:

(1) probability theory, (2) probabilistic programming languages, and (3) distances on probability

distributions. A comprehensive treatment of these topics is found, e.g., in the textbooks [3, 23, 32].

2.1 Basic probability concepts

We will use sub-distributions to model probabilistic behavior. A sub-distribution over a countable

set A is a function µ : A→ [0, 1] assigning a probability to each element of A. Probabilistic events
are subsets B ⊆ A; the probability of B is denoted µ(B) and defined by µ(B) = ∑

b ∈B µ(b). The
support of µ is the set of all events a ∈ A with µ(a) > 0. Moreover, we let |µ | = µ(A). As usual, the
probabilities in any sub-distribution must sum up to at most 1: |µ | ≤ 1. We call µ a distribution if

|µ | = 1. We let Dist(A) denote the set of sub-distributions over A.
Given a sub-distribution µ ∈ Dist(A1 × A2) over a product, its left and right marginals, π1(µ)

and π2(µ), are sub-distributions over A1 and A2, respectively, which are given by π1(µ)(x1) =∑
x2∈X µ(x1,x2), and π2(µ)(x2) =

∑
x1∈X µ(x1,x2) .

The Dirac distribution δ (a) ∈ Dist(A) is the point distribution at a ∈ A, δ (a)(a′) = [a = a′], where
the right-hand-side is an Iverson-bracket which evaluates to 1 if the formula inside (in this case,

a = a′) evaluates to true, and to 0 otherwise. If f : A→ R∞≥0
is a function mapping into the extended

reals, we can take its expected value Eµ [f ] with respect to some sub-distribution µ ∈ Dist(A):
Eµ [f ] =

∑
a∈A f (a) · µ(a). If the sum diverges, the expected value is∞. We assume that addition

and multiplication are extended in the natural way, with the convention 0 · ∞ = ∞ · 0 = 0.

2.2 Programming language and semantics

We work with a standard probabilistic imperative language pWhile. This language has commands

defined by the following grammar:

c B skip | x ← e | x $← d | c; c | if e then c else c | while e do c .
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Variables x are drawn from an arbitrary but finite setVar of variable names. Expressions e are largely
standard, formed from variables and basic operations (e.g., integer addition, boolean conjunction).

To handle programs with (static) arrays, we assume expressions include basic array operations for

accessing and updating. For instance, when a is an array variable we have syntactic sugar:

a[e] ≜ Lookup(a, e) (expression) and a[e] ← e ′ ≜ a ← Update(a, e, e ′) (command)

The random sampling command x $← d takes a sample from some primitive distribution d and

stores it in x . For simplicity, we assume that primitive distributions do not have free program

variables, and we interpret them as full distributions JdK : Dist(D) over some countable set D,
possibly different for different distributions. We will often use the uniform distribution U (S) when
S is a finite, non-empty set; for instance, for a positive integer N we will write [N ] for the set of
integers {0, . . . ,N − 1}, so that x $← U ([N ]) samples each number in [N ] with probability 1/N and

stores it in x . The distributions can also be parameterized by some more complex expression, for

instance in x $← [y] for a program variable y.
pWhile programs transform states, which are finite maps s : Var→ D; we write State for the

set of all states. The semantics of a program c is a map JcK : State→ Dist(State) assigning a sub-
distribution over possible outputs to each input. For example, for the random sampling command,

we define

(Jx $← dKs)(s ′) ≜
{
s(d)(s ′(x)) : s(y) = s ′(y) for all y , x

0 : otherwise

The semantics of the remaining language constructs is standard and deferred to the appendix. As

we only work with discrete primitive distributions and states have finitely many variables, output

distributions programs always have countable support.

To express properties about pairs of states we use relational expectations, which are maps of type

State×State→ R∞≥0
; we write Exp for the set of all relational expectations. This set is equipped with

the pointwise order inherited from the order on R∞≥0
, i.e., E ≤ E ′ if and only if E(s1, s2) ≤ E ′(s1, s2)

for all pairs (s1, s2) of states. Since R∞≥0
is a complete lattice and Exp has the pointwise order, Exp is

also a complete lattice; the top and bottom elements are the constant relational expectations∞ and

0, which send all pairs of states to∞ and 0 respectively.

For denoting specific relational expectations, we borrow notation from relational Hoare logic [10]:

We tag variables with ⟨1⟩ or ⟨2⟩ to refer to their value in the first or the second state, respectively. For
instance, [x ⟨1⟩ = x ⟨2⟩] is a relational expectation encoding the predicate λ⟨s1, s2⟩. [s1(x) = s2(x)].

2.3 Distances between probability distributions

Various notions of distances between distributions allow us to specify sensitivity properties of

probabilistic programs. A popular example is the following:

Definition 1 (Total Variation distance). The Total Variation (TV) distance between µ1, µ2 ∈
Dist(X ) is defined as: TV (µ1, µ2) ≜ 1

2

∑
x ∈X

��µ1(x) − µ2(x)
�� .

The term distance (or metric) is justified as TV (µ1, µ2) is symmetric, satisfies the triangle inequality,

and maps to zero if and only if µ1 = µ2. The normalization factor of
1

2
ensures that the TV distance

is within [0, 1]. Roughly speaking, the TV distance measures the largest difference in probabilities

of any event between two given distributions.

Note that the TV distance does not require a metric space, i.e., the underlying set X is not

necessarily equipped with any metric. If X is a metric space, we can define:

Definition 2 (Kantorovich distance). Let X be a (extended) metric space with a distance

E : X × X → R∞≥0
. The Kantorovich distance is a canonical lifting of E to a function E#

: Dist(X ) ×
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Dist(X ) → R∞≥0
that defines a metric on Dist(X ). This distance is defined as

E#(µ1, µ2) = inf

µ ∈Γ(µ1,µ2)
Eµ [E],

where Γ(µ1, µ2) is the set of probabilistic couplings of µ1, µ2, given by

Γ(µ1, µ2) = {µ ∈ Dist(X × X ) | πi (µ) = µi , for i = 1, 2}.
The set Γ(µ1, µ2) is non-empty provided |µ1 | = |µ2 |. Otherwise, Γ(µ1, µ2) = ∅ and E#(µ1, µ2) = ∞.

The coupling-based definition of the Kantorovich distance is more abstract than other distances

between distributions, but its generality turns out to be a strength. First, we can recover the TV

distance as a lifting of the discrete metric:

Theorem 1 (Total variation and Kantorovich distance). Let µ1, µ2 ∈ Dist(X ) such that

|µ1 | = |µ2 | = 1. If the discrete metric E : X × X → {0, 1} is given by E(x1,x2) = [x1 , x2], then
TV

(
µ1, µ2

)
= E#

(
µ1, µ2

)
.

Another advantage of the Kantorovich distance is that it is defined as an infimum. For our goal of

proving continuity, it suffices to compute an upper bound of the distance, which corresponds to

determining Eµ [E] for some particular coupling µ.
Traditionally, the definition of E#

is restricted to functions E defining a metric on X . However,

the definition of E#
extends mutatis mutandis to arbitrary functions E. We abuse terminology and

use the term Kantorovich distance also in the more general case. For instance, we can use this

more general notion to bound the difference between the expected values of two functions on the

outputs of two program runs:

Theorem 2 (Absolute expected difference). Let µ1, µ2 ∈ Dist(X ) such that |µ1 | = |µ2 | = 1,

and let f1, f2 : X → R∞≥0
. Let E : X × X → R∞≥0

be defined by E(x1,x2) = | f1(x1) − f2(x2)| . Then��Eµ1
[f1] − Eµ2

[f2]
�� ≤ E#

(
µ1, µ2

)
.

We can also obtain bounds on the TV distance when lifting other base distances that assign a

minimum, non-zero distance to all pairs of distinct elements.

Theorem 3 (Scaled TV distance). Let µ1, µ2 ∈ Dist(X ) with |µ1 | = |µ2 | = 1, let Eρ : X ×
X → [0, 1], and let ρ ∈ R>0 be a strictly positive constant with Eρ (x1,x2) ≥ ρ · [x1 , x2]. Then,
TV

(
µ1, µ2

)
≤ 1

ρ · E#

ρ
(
µ1, µ2

)
.

3 BOUNDING EXPECTED SENSITIVITY WITH RELATIONAL PRE-EXPECTATIONS

As we have seen, the Kantorovich distance encompasses many specific distances on distributions.

To reason about probabilistic and expected sensitivity, we would like to bound the Kantorovich

distance between two output distributions in terms of the distance between two program inputs. In

this section, we develop a relational pre-expectation operation to prove these bounds.

3.1 A first unsuccessful attempt: a relational pre-expectation for exact bounds

Since we want to reason about the Kantorovich distance lifting of a relational expectation E : State×
State→ R∞≥0

between output distributions of a program c , an initial idea is to define a relational

pre-expectation operator rpe(c, E) coinciding exactly with the Kantorovich distance:

rpe(c, E)(s1, s2) = E#
(
JcKs1, JcKs2

)
,

and then prove bounds of the form rpe(c, Eout ) ≤ Ein in order to bound the Kantorovich distance

between outputs by some distance between inputs. While this definition is appealing, it turns out to

be inconvenient for formal reasoning because it does not behave well under sequential composition:
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the expected sequence rule rpe(c ; c ′, E) = rpe(c, rpe(c ′, E)) does not hold. Roughly, this is because
choosing local infima on each step does not necessarily amount to a global infimum. In fact, in

some cases no local choice amounts to a global infimum.

Example 1. The Bernoulli distribution B(p) with bias p returns 1 with probability p and 0 with

probability 1−p. Consider the following programs:

c = if b then x $← B(1/2) else y $← B(1/2)
c ′ = if b then y $← B(1/2) else x $← B(1/2) .

Moreover, consider the relational expectation E = [x ⟨1⟩ , x ⟨2⟩ ∨ y⟨1⟩ , y⟨2⟩]. If we fix b⟨1⟩ = true

and b⟨2⟩ = false throughout, then

rpe(c ′, E)(s ′
1
, s ′

2
) = inf

Γ(Jy $←B(1/2)Ks ′
1
,Jx $←B(1/2)Ks ′

2
)
E[E] .

To compute the above relational pre-expectation, we first need to understand the possible couplings.

Hence, we compute the marginals of the involved distributions:

µ1 ≜ Jy $← B(1/2)Ks ′
1
=

{
1

2
: x 7→ s ′

1
(x),y 7→ 0

1

2
: x 7→ s ′

1
(x),y 7→ 1

µ2 ≜ Jx $← B(1/2)Ks ′
2
=

{
1

2
: x 7→ 0,y 7→ s ′

2
(y)

1

2
: x 7→ 1,y 7→ s ′

2
(y) .

The marginal conditions for couplings (Def. 2) then yield that any coupling in Γ(µ1, µ2) is of the form

µρ (s1, s2) = ρ · [s1(x) = s ′1(x) ∧ s1(y) = 1] · [s2(x) = 1 ∧ s2(y) = s ′2(y)]
+

(
1

2
− ρ

)
· [s1(x) = s ′1(x) ∧ s1(y) = 1] · [s2(x) = 0 ∧ s2(y) = s ′2(y)]

+
(

1

2
− ρ

)
· [s1(x) = s ′1(x) ∧ s1(y) = 0] · [s2(x) = 1 ∧ s2(y) = s ′2(y)]

+ ρ · [s1(x) = s ′1(x) ∧ s1(y) = 0] · [s2(x) = 0 ∧ s2(y) = s ′2(y)] .

for some 0 ≤ ρ ≤ 1

2
and the previously fixed states s ′

1
and s ′

2
. Hence,

Eµρ [E] = ρ · [s ′
1
(x) , 1 ∨ s ′

2
(y) , 1] +

(
1

2
− ρ

)
[s ′

1
(x) , 0 ∨ s ′

2
(y) , 1]

+
(

1

2
− ρ

)
[s ′

1
(x) , 1 ∨ s ′

2
(y) , 0] + ρ · [s ′

1
(x) , 0 ∨ s ′

2
(y) , 0] .

Since rpe(c ′, E) takes the minimum over all couplings, i.e., the minimum over all ρ ∈ [0, 1

2
], by

simple computation we get that rpe(c ′, E)(s ′
1
, s ′

2
) = 1/2, setting ρ = 1/2 if s ′

1
(x) = s ′

2
(y) and

ρ = 0 otherwise. Since s ′
1
(x), s ′

2
(y) are sampled from JcKs1 and JcKs2, for any way to couple them

rpe(c, rpe(c ′, E))(s1, s2) = 1

2
> 0. However, Jc ; c ′Ks1 and Jc ; c ′Ks2 have the same marginal distributions

for (x ,y) and thus distance 0. Therefore,

0 = rpe(c; c ′, E)(s1, s2) < rpe(c, rpe(c ′, E))(s1, s2) = 1

2
.

Fortunately, we generally do not need to compute the exact Kantorovich distance to prove sensi-

tivity properties: an upper bound suffices. Since the Kantorovich distance is an infimum over all

couplings, we can establish upper bounds by exhibiting a specific coupling—of course, the tightness

of these upper bounds will depend on the particular coupling we chose. Crucially, couplings can be

constructed compositionally: a coupling for a sequential composition c ; c ′ can be obtained by com-

bining a coupling for c with a coupling for c ′. We leverage this observation into our compositional

relational pre-expectation calculus, which provides upper bounds on the Kantorovich distance.
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r̃pe(skip, E) ≜ E

r̃pe(x ← e, E) ≜ E{e ⟨1⟩, e ⟨2⟩/x ⟨1⟩,x ⟨2⟩}
≜ λs1s2.E(s1[x 7→ e ⟨1⟩], s2[x 7→ e ⟨2⟩])

r̃pe(x $← d, E) ≜ λs1s2. E#(Jx $← dKs1, Jx $← dKs2) ,where E#(µ1, µ2) ≜ inf

µ ∈Γ(µ1,µ2)
Eµ [E]

r̃pe(c; c ′, E) ≜ r̃pe(c, r̃pe(c ′, E))

r̃pe(if e then c else c ′, E) ≜ [e ⟨1⟩∧e ⟨2⟩] · r̃pe(c, E) + [¬e ⟨1⟩∧¬e ⟨2⟩] · r̃pe(c ′, E) + [e ⟨1⟩,e ⟨2⟩] · ∞

r̃pe(while e do c, E) ≜ lfpX .ΦE,c (X ),
where ΦE,c (X ) ≜ [e ⟨1⟩∧e ⟨2⟩] · r̃pe(c,X ) + [¬e ⟨1⟩∧¬e ⟨2⟩] · E + [e ⟨1⟩,e ⟨2⟩] · ∞

Fig. 1. Definition of the relational pre-expectation operator r̃pe(c, E).

3.2 Compositional upper bounds by relational pre-expectation

To facilitate compositional reasoning, we define an upper bound r̃pe(c, E) of the Kantorovich

distance E with respect to program c . Technically, r̃pe(c, E) is a relational pre-expectation calculus

defined by induction on the structure of c , similarly to the calculus by McIver and Morgan [25]. The

rules of our calculus are shown in Figure 1. We take the indicator expectation [P] to be 1 if P is

true, otherwise 0, and we define addition and multiplication on expectations pointwise. The cases

of skipping, assignments and sequential composition are straightforward and apply the backwards

semantics of commands. The relational pre-expectation of sampling is expressed directly in terms

of the Kantorovich distance, i.e., an infimum is taken over the set of all couplings, which is not

always possible in practice. We give more details on this problem in Section 3.3. The relational

pre-expectation for conditionals assumes the two runs are synchronized. If not, [e ⟨1⟩ , e ⟨2⟩] = 1

and the distance is (trivially) upper bounded by ∞, since the branches may not terminate with

the same probability, so the set of couplings may be empty. Finally, in the case of while loops, we

take the least fixed point of the characteristic functional ΦE,c of the loop. It is not hard to show

that ΦE,c (−) : Exp→ Exp is monotonic (see Lemma 3 in the Appendix), so by the Knaster-Tarski

theorem the least fixed point is well-defined. As in the previous case, the relational pre-expectation

returns∞ when runs are not synchronized, i.e., only one loop guard is true. Computing the least

fixed point is usually not possible. We present an invariant-based rule in Section 3.3.

Remark (Synchronous vs. asynchronous control flow). In contrast to the Kantorovich distance

operator rpe(c, E), cour compositional relational pre-expectation operator r̃pe(c, E) only gives

useful (i.e., finite) bounds when the control flows in the two executions of c can be synchronized.

For deterministic guards, this means that pairs of related executions always take the same branches;

for randomized guards, this means that we can relate the random samplings so that pairs of related

executions always take the same branches. In Section 8, we describe extensions of our calculus that

can give more useful bounds when reasoning asynchronously.

Remark (Tightness of bounds). It is also complicated to estimate the exact loss between r̃pe(c, E)
and rpe(c, E), since lower bounds on rpe(c, E) are not given by a witness coupling. Nonetheless,

in our setting this limitation is not exclusive to our technique—in the statistical literature, lower

bounds for stochastic processes such as the ones we analyze in Section 6 are in general hard to

compute and so the exact distance is often not known. We will return to this topic in Section 7.

We now study the metatheory of our calculus. Our first result is that our calculus is sound: it

correctly upper bounds the Kantorovich distance.
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A Pre-Expectation Calculus for Probabilistic Sensitivity 9

E ≤ E ′

r̃pe(c, E) ≤ r̃pe(c, E ′)
Mono

FV (E ′) ∩MV (c) = ∅
r̃pe(c, E + E ′) ≤ r̃pe(c, E) + E ′

Const

r̃pe(c, E) + r̃pe(c, E ′) ≤ r̃pe(c, E + E ′)
SupAdd

f : R≥0 → R≥0 linear, with f (∞) ≜ ∞
r̃pe(c, f ◦ E) = f ◦ r̃pe(c, E)

Scale

M : State × State→ Γ(JdK, JdK)
r̃pe(x $← d, E) ≤ E(v1,v2)∼M (−,−)[E{v1,v2/x ⟨1⟩,x ⟨2⟩}]

Samp

f : State × State→ (D → D) bijection

r̃pe(x $← U (D), E) ≤ 1

|D |
∑
v ∈D
E{v, f (−,−)(v)/x ⟨1⟩,x ⟨2⟩}

Unif

[e ⟨1⟩ ∧ e ⟨2⟩] · r̃pe(c,I) + [¬e ⟨1⟩ ∧ ¬e ⟨2⟩] · E + [e ⟨1⟩ , e ⟨2⟩] · ∞ ≤ I
r̃pe(while e do c, E) ≤ I

Inv

Fig. 2. Properties of relational pre-expectation operator r̃pe(c, E).

Theorem 4 (Soundness of r̃pe). Let c be a pWhile program and E ∈ Exp be a relational

expectation. Then rpe(c, E) ≤ r̃pe(c, E), i.e., if r̃pe(c, E)(s1, s2) < ∞ for s1, s2 ∈ State then
Eµs

1
,s

2

[E] ≤ r̃pe(c, E)(s1, s2) for some coupling µs1,s2
∈ Γ(JcKs1, JcKs2) .

Proof Sketch. By induction on c . The most challenging cases are for sampling and loops. The

case for sampling requires first showing that there exists a coupling realizing the infimum defining

the Kantorovich distance; such existence results belong to the theory of optimal transport [32].

The case for loops is challenging for another reason: it is not clear how to show that the pre-

expectation operator is continuous in its second argument (but see Thm. 5). Instead, our proof

relies on extracting a convergent sequence of couplings. We defer the details to Appendix D. □

While it is not clear whether our relational pre-expectation operator is continuous for all programs,

continuity does hold for programs that sample from finite distributions. Note that such programs

can still produce distributions with infinite support by sampling in a loop.

Theorem 5 (Continuity of r̃pe). Let c be a pWhile program where all primitive distributions

have finite support, and let En ∈ Exp for n ∈ N be a monotonically increasing chain of relational

expectations converging pointwise to E ∈ Exp. Then,
r̃pe(c, E) = sup

n∈N
r̃pe(c, En).

Proof Sketch. By induction on the structure of c . The most challenging case is for sampling

instructions, where the proof depends on a continuity property for the Kantorovich distance. We

establish this property for distributions with finite support, and complete the proof of continuity

for relational pre-expectations. We defer details to Appendix D. □

3.3 Reasoning with relational pre-expectations

The definition of r̃pe in Fig. 1 is sufficient to prove relational properties of probabilistic programs in

theory, but there are some practical obstacles:

• Comparing different relational pre-expectations for the same program is difficult—using the

definition to compute each relational pre-expectation separately is tedious.
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• Computing the relational pre-expectation for random sampling is difficult: it requires com-

puting a minimum over all couplings.

• Computing the relational pre-expectation for loops is also difficult: in general, it is not possible

to compute the least fixed point in closed form.

To make our operator easier to use, we introduce a collection of auxiliary properties in Fig. 2. We

briefly describe the rules below.

Basic properties. The first four rules are basic properties of relational pre-expectations. Rule

Mono states that the r̃pe transformer is monotone, and Const intuitively states that the relational

pre-expectation of E is E if c doesn’t modify E; the rule is carefully stated to behave correctly

when r̃pe(c, E) is infinite.
The next two rules encode linearity-like properties of relational pre-expectations. SupAdd states

that the property is super-additive: the relational pre-expectation of a sum can be greater than the

sum of the relational pre-expectations. Intuitively, this is because r̃pe(c, E) involves an infimum

for random sampling, and the infimum of a sum is always less than the sum of the infima. Scale

states that the relational pre-expectation is preserved by scaling. The requirement that the scaling

function satisfies f (∞) = ∞ is needed for correctly handle scaling by 0: r̃pe(c, E) may be infinite,

even if E is identically zero.

Bounding the pre-expectation for sampling. Using the Kantorovich distance for defining the

relational pre-expectation of a sampling command x $← d is theoretically clean, but inconvenient

in practice for two reasons. First, the set of couplings Γ(Jx $← dKs1, Jx $← dKs2) over which the

infimum is computed is a set of distributions over pairs of states. Given denotations of primitive

distributions JdK ∈ Dist(D), it would be more convenient to reason about the set Γ(JdK, JdK)—this
is a set of distributions over pairs of sampled values D × D, rather than pairs of memories. Second,

computing the infimum is often difficult, and moreover unnecessary for establishing upper bounds.

Corresponding to the Samp rule, the following result states that we can actually upper bound

this Kantorovich distance by picking any coupling of the primitive distribution with itself; we call

such a functionM : State × State→ Γ(JdK, JdK) a coupling function (on d).

Proposition 6. Let d be a primitive distribution, and letM be a coupling function on d . For any
relational expectation E ∈ Exp, we have:

r̃pe(x $← d, E) ≤ E(v1,v2)∼M (−,−)[E{v1,v2/x ⟨1⟩,x ⟨2⟩}] .
We can reuse common couplings of primitive distributions across different proofs. For example, let

D be a finite, non-empty set and let f : State × State→ (D → D) map pairs of program states to

bijections on D. Then the bijection coupling Mf , the coupling function onU (D) is defined by

f (s1, s2)(x1,x2) =
{

1/|D | : f (s1, s2)(x1) = x2

0 : otherwise

,

where x1 and x2 are elements in D. Specialized to this case, Proposition 6 gives Unif:

r̃pe(x $← U (D), E) ≤ r̃pe(x $← d, E) ≤ E(v1,v2)∼Mf (−,−)[E{v1,v2/x ⟨1⟩,x ⟨2⟩}]
≤ Ev∼JU (D)K[E{v, f (−,−)(v)/x ⟨1⟩,x ⟨2⟩}]

=
1

|D |
∑
v ∈D
E{v, f (−,−)(v)/x ⟨1⟩,x ⟨2⟩} .

Different coupling functions can give upper bounds of different strengths—selecting appropriate

couplings to show the target property is the key part of reasoning by couplings. This technique is

well-known to probability theory, where it is called the coupling method [1].
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Bounding the pre-expectation for loops. As in the case of sampling, it may not always be desirable

or possible to compute the fixed point for loops. Instead, we can upper bound the relational

pre-expectation by a relational expectation I, called an invariant—intuitively, if the relational

pre-expectation of I with respect to the loop body is at most I, then the relational pre-expectation

of the loop is also at most I. Formally, this reasoning is captured by Inv and the following theorem:

Theorem 7. Let I ∈ Exp be a relational expectation. If

[e ⟨1⟩ ∧ e ⟨2⟩] · r̃pe(c,I) + [¬e ⟨1⟩ ∧ ¬e ⟨2⟩] · E + [e ⟨1⟩ , e ⟨2⟩] · ∞ ≤ I,

then r̃pe(while e do c, E) ≤ I.

Proof. Let Φ be the characteristic functional of the loop, as defined for the relational pre-

expectation. The hypothesis implies Φ(I) ≤ I, so I is a prefixed point of Φ. By Park induction [28],

the least fixed point r̃pe(while e do c, E) is less than I. □

3.4 Embedding EpRHL

Expectation Probabilistic Relational Hoare Logic (EpRHL) is a quantitative extension of pRHL [7].

Judgments of EpRHL are of the form: {P ; E} c1 ∼f c2 {Q ; E ′} where P ,Q are boolean-valued

assertions, E, E ′ are relational expectations, f is an affine function of the form ax + b, where
a,b ∈ R≥0, and c1 and c2 are pWhile programs. This judgment states that for every pair of input

states s1, s2 satisfying the pre-condition P , there is a coupling µ of Jc1K(s1), Jc2K(s2) whose support
lies within the post-condition Q , and moreover Eµ [E ′] ≤ f (E(s1, s2)). We can embed the core

inference rules of EpRHL in our proof system (see Appendix E for details).

Theorem 8 (Embedding EpRHL). Let ⊢ {P ;E} c ∼f c {Q ; E ′} be a valid EpRHL judgment derived

using the rules of Figure 6 in Appendix E, with finite E and E ′. Then:

r̃pe(c, E ′ + [¬Q] · ∞) ≤ f (E) + [¬P] · ∞.

Furthermore, this inequality can be derived using just the definition of r̃pe(c, E) for skip, assignment,

sequence, and conditionals in Figure 1, and the auxiliary proof rules in Figure 2.

Intuitively, the bound on the relational pre-expectation captures the validity of the original

EpRHL judgment. For any pair of states (s1, s2), if (s1, s2) does not satisfy P , then the right-hand side

is infinite and the bound trivially holds. If (s1, s2) satisfies P , then the right-hand side is finite (since

E is finite) and the relational pre-expectation is finite. This implies that Q must be satisfied almost

surely in the coupling and r̃pe(c, E ′) ≤ f (E). This last inequality recovers the EpRHL judgment’s

bound on the output distance in terms of the input distance. Furthermore, the embedding shows that

the bound is derivable in our calculus without computing infimums over couplings for sampling,

or computing least fixed points for loops.

4 WARMUP EXAMPLE: STABILITY OF SGD

To demonstrate our relational pre-expectation operator, we analyze the stability of Stochastic

Gradient Descent (SGD) as our warmup example. SGD is a core tool in modern machine learning;

SGD is the most common learning algorithm used in practice for training neural networks. Its

stability was first established in Hardt et al. [18], and it was later formalized in a relational program

logic EpRHL [7]. The corresponding proof in EpRHL involves complex proof rules—our calculus

can establish the same property with significantly cleaner reasoning.
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sgd(S)
w ← w0;

t ← 0;

while t < T do
s $← [S];
д← ∇ℓ(s,−)(w);
w ← w − αt · д;

t ← t + 1;

(a) Stochastic Gradient Descent (SGD)

TD0(V )
n ← 0;

while n < N do
i ← 0;

while i < |S| do
a $← π (i); r $← R(i,a); j $← P(i,a);
W [i] ← (1 − α) ·V [i] + α · (r + γ ·V [j]);
i ← i + 1

V ←W ;n ← n + 1;

(b) TD(0) learning algorithm

Fig. 3. Example programs: Stability and convergence

4.1 Background

Let Z be a space of labeled examples, e.g., images annotated with the main subject. A learning

algorithm A : S → Rd takes a set S ∈ Zn
of examples as input and produces (“learns”) parameters

w ∈ Rd . The algorithm is tailored to a given loss function ℓ : Z → Rd → [0, 1], which describes

how well an example is labeled by some parameters. The goal is to find parameters that have low

loss on examples.

In machine learning, uniform stability is a useful property for learning algorithms. In a nutshell,

a randomized learning algorithmA is ϵ-uniformly stable if for all pairs S, S ′ of training sets differing
in exactly one example, and for all examples z ∈ Z , the expected losses of z are close:

|EA(S )[ℓ(z)] − EA(S ′)[ℓ(z)]| ≤ ϵ .

Stable learning algorithms generalize: their performance on new, unseen examples is similar to

their performance on the training set [11]. In particular, stability controls how much a learning

algorithm can overfit the training set.

4.2 Verifying stability for stochastic gradient descent

We consider the program sgd in Figure 3a. The gradient ∇ is a higher-order function
1
with type

∇ : (Rd → [0, 1]) → (Rd → Rd ); we assume that it is well-defined and given. In SGD, the true

gradient of a function is approximated by a gradient д at a single sample s . The step sizes αt (with
t ∈ N) are a sequence of real numbers that control (together with the local gradient д) how to

adjust the parameters in each iteration of SGD. Following Hardt et al. [18], we make the following

assumptions:

(1) The loss function ℓ is convex and L-Lipschitz in its second argument, i.e., |ℓ(z,w)−ℓ(z,w ′)| ≤
L · ∥w −w ′∥ for all parametersw,w ′ ∈ Rd .

(2) The gradient ∇ℓ(z,−) : Rd → Rd is β-Lipschitz for every z ∈ Z .
(3) The step sizes satisfy 0 ≤ αt ≤ 2/β .

To show uniform stability, for any two training sets S ⟨1⟩, S ⟨2⟩ differing in one element and every

example z ∈ Z , our proof obligation is

|Esgd(S ⟨1⟩)[ℓ(z)] − Esgd(S ⟨2⟩)[ℓ(z)]| ≤ γL where γ ≜
2L

n

T−1∑
t=0

αt .

1
This makes our states non-discrete, but the distributions over them will still have discrete support, since they are generated

by a composition of discrete samplings.
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Rather than working with the loss function directly, we will first bound the pre-expectation of the

distance ∥w ⟨1⟩ −w ⟨2⟩∥ and then use the L-Lipschitz property of ℓ to conclude uniform stability. As

usual, the main part of the proof is bounding the pre-expectation of the loop. We use the following

loop invariant:

I ≜ [t ⟨1⟩ , t ⟨2⟩] · ∞ + [t ⟨1⟩ = t ⟨2⟩] · ©«∥w ⟨1⟩ −w ⟨2⟩∥ + 2L

n

T−1∑
j=t ⟨1⟩

α j
ª®¬ .

By the loop rule (Theorem 7), it suffices to show the following invariant condition:

[e ⟨1⟩ ∧ e ⟨2⟩] · r̃pe(bd,I) + [¬e ⟨1⟩ ∧ ¬e ⟨2⟩] · ∥w ⟨1⟩ −w ⟨2⟩∥ + [e ⟨1⟩ , e ⟨2⟩] · ∞ ≤ I . (1)

The main case corresponds to the first term, where both loop guards e ⟨1⟩ and e ⟨2⟩ are true. To
bound the pre-expectation r̃pe(bd,I), we consider r̃pe(bd,I) = r̃pe(s $← U (S),I ′) where

I ′ ≜ [t ⟨1⟩+1 , t ⟨2⟩+1] · ∞ + [t ⟨1⟩+1 = t ⟨2⟩+1] · P , with

P ≜
2L

n

T−1∑
j=t ⟨1⟩+1

α j +

 (w ⟨1⟩ − αt ⟨1⟩∇ℓ(s ⟨1⟩,−)(w ⟨1⟩))−(w ⟨2⟩ − αt ⟨2⟩∇ℓ(s ⟨2⟩,−)(w ⟨2⟩))

 .
To handle the random sampling command, we apply the sampling rule (Proposition 6) with the

coupling functionM for the two uniform distributions [S ⟨1⟩] and [S ⟨2⟩] induced by the bijection

f : S ⟨1⟩ → S ⟨2⟩ mapping the differing example in S ⟨1⟩ to its counterpart in S ⟨2⟩, and fixing all

other examples. We then have r̃pe(s $← U (S),I ′) ≤ I ′′, where
I ′′ ≜ [t ⟨1⟩+1 , t ⟨2⟩+1] · ∞ + [t ⟨1⟩+1 = t ⟨2⟩+1] · P ′, with

P ′ =
2L

n

T−1∑
j=t ⟨1⟩+1

α j +
1

n

n−1∑
s ∈S ⟨1⟩

 (w ⟨1⟩ − αt ⟨1⟩∇ℓ(s,−)(w ⟨1⟩))
−(w ⟨2⟩ − αt ⟨2⟩∇ℓ(f (s),−)(w ⟨2⟩))


We focus on the terms of the last sum. Using the L-Lipschitz property of ℓ, when s is the differing
example, we can bound the absolute difference by ∥w ⟨1⟩−w ⟨2⟩∥+2αt ⟨1⟩L. When s is not the differing
example, we have s ⟨1⟩ = s ⟨2⟩. By the β-Lipschitz property of ∇ℓ, convexity, and 0 ≤ αt ≤ 2/β , we
can bound each of the terms by ∥w ⟨1⟩ −w ⟨2⟩∥. Combining the two cases gives

r̃pe(bd,I) ≤ ©«∥w ⟨1⟩ −w ⟨2⟩∥ + 2L

n

T−1∑
j=t ⟨1⟩

α j
ª®¬

for all input states with t ⟨1⟩ = t ⟨2⟩ and e ⟨1⟩ ∧ e ⟨2⟩. This establishes (1). Theorem 7 gives

r̃pe(while e do bd, ∥w ⟨1⟩ −w ⟨2⟩∥) ≤ I.
Finally, taking the pre-expectations of both sides with respect to the initial assignments yields

r̃pe(sgd(S), ∥w ⟨1⟩ −w ⟨2⟩∥) ≤ 2L

n

T−1∑
j=0

α j = γ ,

when S ⟨1⟩ and S ⟨2⟩ differ in exactly one training example. Since ℓ is L-Lipschitz, we conclude

r̃pe(sgd(S), |ℓ(z,w)⟨1⟩ − ℓ(z,w)⟨2⟩|) ≤ γL ,
for any example z ∈ Z . By Theorem 2, the expected losses are at most γL apart:

|Esgd(S ⟨1⟩)[ℓ(z)] − Esgd(S ⟨2⟩)[ℓ(z)]| ≤ γL ,
and so SGD satisfies γL-uniform stability.
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Remark. This stability bound for SGD was previously verified in the program logic EpRHL [7],

using a complex rule for sequential composition (SeqCase) that required bounding the probability of

selecting two differing examples. Our proof using r̃pe is much simpler, involving just compositional

reasoning for sequencing and a loop invariant.

Remark. While our calculus was designed for probabilistic programs, it is also a useful tool for

proving relational properties of deterministic programs. In the Appendix G, we show how to prove a

sensitivity bound for projected gradient descent, a deterministic version of SGD.

5 EXAMPLE: CONVERGENCE OF REINFORCEMENT LEARNING ALGORITHMS

In the previous section, the stability guarantee weakens as the program progresses: starting from

two initially-equal parameter settings, the learned parameters may drift apart as SGD runs for

more iterations. In the following two sections, we will apply our technique to prove a different style

of guarantee: probabilistic convergence of two outputs, starting from two different inputs. Our

first example shows convergence for a classical algorithm from Reinforcement Learning (RL) [31],

guided by a novel analysis by Amortila et al. [2].

5.1 Background

In the standard reinforcement learning setting, an agent (the learning algorithm) repeatedly interacts

with the environment, a Markov Decision Process (MDP) with state space S. At each step, the

agent chooses an action from a set A. The MDP draws a numeric reward according to a function

R : S × A → Dist([0,R]), and transitions to a new random state drawn from a transition function

P : S×A → Dist(S). The current state of the process is known to the learner—imagine the current

position of a chessboard—but the exact reward and transition functions (R,P) are not known.
Given black-box access to R and S, the goal of the learner is to find a policy map π : S → A that

maximizes the learner’s expected reward when interacting with the unknown MDP over an infinite

time horizon; estimated rewards in the future are reduced by a discount factor γ ∈ [0, 1) for each
step into the future.

For many approaches to learning the optimal policy, an important requirement is estimating

the value function V : S → [0,R] of the MDP, i.e., the expected reward at each state if the agent

were to repeatedly act according to some given policy π . Temporal difference (TD) learning is one

approach to estimating the value function [31]. In brief, a TD learner maintains an estimate of V
and loops through states in S. At each state s , the learner selects an action a ∼ π (s), draws a reward
r ∼ R(s,a), and draws a transition s ′ ∼ R(s,a). Then, the estimateV (s) is updated by incorporating
the observed reward r and the estimated value V (s ′) of the new state.

Figure 3b shows one simple approach, known as TD(0). We assume that the program takes only

one argument V , the initial estimate of the value function. All other parameters are assumed to be

fixed: the current policy π , the reward and transition functions R and P, the discount factor γ , the
step size α ∈ (0, 1)—higher α allows V to evolve faster–and the number of iterations N .

5.2 Verifying convergence for TD0
Since the true value function is not known, the initial estimate V chosen with little information.

A natural question is: does the algorithm converge to the same distribution no matter how V is

initialized? If so, how fast does convergence happen, as a function of the number of iterations N ?

To answer these questions, we will verify that TD0 is contractive on V . More specifically, we will

show the bound

r̃pe(TD0(V ), ∥V ⟨1⟩ −V ⟨2⟩∥∞) ≤ kN · ∥V ⟨1⟩ −V ⟨2⟩∥∞, (2)
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where k ≜ (1 − α + αγ ) < 1. Before we describe the verification, we unpack the guarantee. First,

the∞-norms are defined by ∥V ⟨1⟩ −V ⟨2⟩∥∞ ≜ maxi< |S | |V ⟨1⟩[i] −V ⟨2⟩[i]|. By Theorem 4, Eq. (2)

implies that for any inputsV1 andV2, there exists a coupling µ of the output distributions µ1 and µ2

from TD0(V ⟨1⟩) and TD0(V ⟨2⟩), such that:

kN · ∥V1 −V2∥∞ ≥ E(s1,s2)∼µ [∥s1(V ) − s2(V )∥∞]
≥ max

i< |S |
E(s1,s2)∼µ [| s1(V [i]) − s2(V [i]) |]

≥ max

i< |S |

��E(s1,s2)∼µ [s1(V [i]) − s2(V [i])]
��

= max

i< |S |

��Es1∼µ1
[s1(V [i])] − Es2∼µ2

[s2(V [i])]
��

(by Theorem 2)

In words, the right-hand side of the final line is the maximum difference between the average

estimates of V [i] in the two outputs, taking the maximum over all indices i . Since k < 1, both sides

tend to zero exponentially quickly from any pair of starting states V1 and V2.

Inner loop. We start by analyzing the inner loopwin . We first show that

r̃pe(win , ∥W ⟨1⟩ −W ⟨2⟩∥∞) ≤ Iin
for the invariant Iin :

Iin ≜ [i⟨1⟩ , i⟨2⟩] · ∞
+ [i⟨1⟩ = i⟨2⟩] · max

l< |S |
([l < i⟨1⟩] · |W ⟨1⟩[l] −W ⟨2⟩[l]| + [i⟨1⟩ ≤ l] · k · ∥V ⟨1⟩ −V ⟨2⟩∥∞).

Let cin be the body, and csamp be the three sampling statements. Applying Inv, it suffices to show:

[i⟨1⟩ < |S|∧i⟨2⟩ < |S|]·r̃pe(cin ,Iin)+[i⟨1⟩ ≥ |S|∧i⟨2⟩ ≥ |S|]·∥W ⟨1⟩−W ⟨2⟩∥∞+[i⟨1⟩ , i⟨2⟩]·∞ ≤ Iin
The main case is bounding r̃pe(cin ,Iin); the other cases are simpler. We describe the overall idea

here, deferring details to Appendix F. To bound the relational pre-expectation for the three sampling

instructions, we apply the sampling rule Samp. Since the relational pre-expectation is computed in

reverse order, we must choose a coupling for sampling j first, then choose a coupling for sampling

r , and then finally choose a coupling for sampling a. We aim to take the identity coupling in

each case, ensuring j⟨1⟩ = j⟨2⟩, r ⟨1⟩ = r ⟨2⟩, and a⟨1⟩ = a⟨2⟩, but there is a small problem:

we can only take the identity coupling when samples are taken from the same distributions, e.g.,

R(i⟨1⟩,a⟨1⟩) = R(i⟨2⟩,a⟨2⟩). The invariant assumes i⟨1⟩ = i⟨2⟩, but we can only ensure a⟨1⟩ = a⟨2⟩
after we have specified the couplings for j and r . Accordingly, our coupling functions for Samp will
be of the following form: if a⟨1⟩ = a⟨2⟩ then we take the identity coupling, otherwise we take the

trivial (independent) coupling.

Outer loop. We now turn to the analysis of the outer loop. Consider the invariant:

Iout ≜ [n⟨1⟩ , n⟨2⟩] · ∞ + [n⟨1⟩ = n⟨2⟩] · k (N ⊖n ⟨1⟩)∥V ⟨1⟩ −V ⟨2⟩∥∞ ,

where N ⊖ n denotes max(N−n, 0). We compute:

r̃pe(i ← 0;win ;V ←W ;n ← n + 1,Iout )
= r̃pe(i ← 0;win , [n⟨1⟩ , n⟨2⟩] · ∞ + [n⟨1⟩ = n⟨2⟩] · k (N ⊖(n ⟨1⟩+1))∥W ⟨1⟩ −W ⟨2⟩∥∞)
≤ r̃pe(i ← 0, [n⟨1⟩ , n⟨2⟩] · ∞ + [n⟨1⟩ = n⟨2⟩] · k (N ⊖(n ⟨1⟩+1)) · Iin)
≤ [n⟨1⟩ , n⟨2⟩] · ∞ + [n⟨1⟩ = n⟨2⟩] · k · k (N ⊖(n ⟨1⟩+1))∥V ⟨1⟩ −V ⟨2⟩∥∞ = Iout
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where the last step holds because Iin = k · ∥V ⟨1⟩ −V ⟨2⟩∥∞ when i = 0. This establishes the outer

invariant. Computing the pre-expectation of the first initialization, we conclude:

r̃pe(TD0(V ), ∥V ⟨1⟩ −V ⟨2⟩∥∞) ≤ kN · ∥V ⟨1⟩ −V ⟨2⟩∥∞ .

6 EXAMPLE: RANDOMWALKS AND CARD SHUFFLES

In this section, we verify more challenging examples of probabilistic convergence from the theory of

Markov chains, formalizing arguments by Aldous [1] in his seminal work introducing the coupling

method. Our use of relational pre-expectations is similar in spirit to the previous section, but there

are two key differences: (1) we aim to prove convergence under Total Variation (TV) distance,

which is the standard notion of distance in this field, and (2) our arguments will require selecting

more complex couplings, instead of just the identity coupling.

6.1 Preliminaries: Card shuffling and Markov chain mixing

Distributions that are easy to describe can be surprisingly difficult to sample from. For instance,

consider the uniform distribution over all permutations of a deck of playing cards. It is not clear

how to sample from this distribution—i.e., perform a perfect shuffle—but we can implement a card

shuffle algorithm that executes a sequence of simple randomized steps (e.g. swapping pairs of cards)

and hope that after a small number steps, we will produce a shuffle that is close to uniform.

Abstracting a bit, card shuffling algorithms are a representative example of random walks for

approximating complex distributions. This is a technique with a long history, combining elements

of probability theory with statistical physics; and it is the basis of many heuristic algorithms used

today, e.g., Markov Chain Monte Carlo (MCMC). From a theoretical perspective, the central question

is: how fast do these processes converge to their target distribution? How many steps do we need to

get within ϵ distance of the uniform distribution on shuffles?

Random walks and card shuffling algorithms are classical examples of Markov chains. A fi-

nite, discrete-time Markov chain is defined by a finite state space Σ and a transition function

P : Σ → Dist(Σ). Given an initial state σ , the associated Markov process {Xσ
k }k ∈N is a sequence

of distributions such that Xσ
0
= δ (σ ) and Xσ

k+1
(τ ′) = ∑

τ X
σ
k (τ ) · P(τ ,τ

′). For example, the state

space Σ could be the set of all permutations of a deck of cards, and the transition function τ could

describe randomly splitting the deck and interleaving the halves.

Consider the TV distance v(k) between two state distributions after running k steps from two

states σ ,τ , i.e., v(k) ≜ maxσ ,τ TV (Xσ
k ,X

τ
k ) . If v(k) tends to 0, then there exists a unique stationary

distribution η such that η(σ ) · P(σ ,σ ′) = η(σ ′); typically, η will be the target distribution we are

trying to sample from. Furthermore, v(k) provides an upper bound on the distance between the

state distribution after k steps to the stationary distribution η:

max

σ
TV (Xσ

t ,η) ≤ v(k) .

While it is usually not possible to derive v(k) exactly, we can upper-bound v(k) by constructing

couplings of (Xσ
t ,X

τ
t ) and applying Theorems 1 and 3. In this way, we can prove bounds on the

number of steps needed to get within some distance of the target distribution.

6.2 Warmup: Hypercube walk

We start off with a (rather naive) random walk for sampling N uniformly random bits, which serves

as a toy version of the more complex random walks we will see later. Our position is a string of N
bits (which can be regarded as a vertex of an N -dimensional hypercube). On every iteration of the

walk we uniformly sample from {0, . . . ,N }. Note that there are N + 1 possible draws, but only N
coordinates: if we sample 0, then we do not move, otherwise we reverse the sampled coordinate i in
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the current position. We will show that starting from any two positions, the process mixes rapidly,

i.e. starting from any position we will quickly reach the uniform distribution over positions.

Let e(i) = (0, . . . , 1, . . . , 0) ∈ {0, 1}N be the position where all coordinates are set to zero except

for coordinate i , which is set to one. We also write ⊕ for xor applied coordinate-wise. We can model

K steps of the random walk with the following simple pWhile program:

hWalk(pos,N ,K)
k ← 0;

while k < K do
i $← U ([N+1]);
if i , 0 then pos← pos ⊕ e(i);
k ← k + 1

Consider two program runs, started at pos⟨1⟩ and pos⟨2⟩ respectively. Let dH be normalized Ham-

ming distance between the two positions:

dH ≜
1

N

N∑
i=1

[pos⟨1⟩[i] , pos⟨2⟩[i]] .

That is, dH equals the fraction of coordinates where pos⟨1⟩ and pos⟨2⟩ differ. LetC(pos⟨1⟩, pos⟨2⟩) ⊆
[N ] be the set of differing coordinates. We specify a coupling onU ([N+1]) by giving a bijection on

[N+1]. There are three cases:
(1) dH ≥ 2/N : Let C(pos⟨1⟩, pos⟨2⟩) = {i0, . . . , im−1}. Take the bijection that behaves like the

identity on [N+1] \C(pos⟨1⟩, pos⟨2⟩) and that, for all 0 ≤ n ≤ m, maps in to in+1, where we

set im = i0.
(2) dH = 1/N : Take the bijection exchanging the differing coordinate and 0.

(3) dH = 0: Take the identity bijection.

The coupling captures the following intuition. When dH ≥ 2/N , the distance decreases by 2/N
if we select a differing coordinate; otherwise, it remains unchanged. Likewise when dH = 1/N , if

we select the differing coordinate or 0, then the distance decreases by 1/N (to 0); otherwise, the

distance remains unchanged.

We can analyze the program hWalk using our relational pre-expectation calculus. Let the target

relational expectation be dH . The main step in the reasoning is to select a relational invariant for

the loop. We define:

I ≜ [k ⟨1⟩ , k ⟨2⟩] · ∞ + [k ⟨1⟩ = k ⟨2⟩] · dH ·
(
N − 1

N + 1

)K ⊖k ⟨1⟩
.

Then, we can verify for the loop while k < K do bd of program hWalk that

[(k ⟨1⟩ < K ⟨1⟩) ∧ (k ⟨2⟩ < K ⟨2⟩)] · r̃pe(bd,I)
+ [(k ⟨1⟩ ≥ K ⟨1⟩) ∧ (k ⟨2⟩ ≥ K ⟨2⟩)] · dH
+ [(k ⟨1⟩ < K ⟨1⟩) , (k ⟨2⟩ < K ⟨2⟩)] · ∞ ≤ I,

and conclude by the loop rule (Theorem 7):

r̃pe(while k < K do bd,dH ) ≤ I.

The main step here is showing that

[(k ⟨1⟩ < K ⟨1⟩) ∧ (k ⟨2⟩ < K ⟨2⟩)] · r̃pe(bd,I) ≤ [(k ⟨1⟩ < K ⟨1⟩) ∧ (k ⟨2⟩ < K ⟨2⟩)] · I ,

where we use the fact that the coupling described above makes dH decrease.
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rTop(deck,N ,K)
k ← 0;

while k < K do
p $← U ([N ]);
deck ← shiftR(deck,p);
k ← k + 1;

rTrans(deck,N ,K)
k ← 0;

while k < K do
p $← U ([N ]);p ′ $← U ([N ]);
c ← deck[p]; c ′← deck[p ′];
deck[p] ← c ′; deck[p ′] ← c;

k ← k + 1;

riffle(deck,N ,K)
k ← 0;

while k < K do
b $← U ({0, 1}N );
top ← deck(¯b);
bot ← deck(b);
deck ← cat(top,bot);
k ← k + 1;

Fig. 4. Shuffling algorithms

Pushing the invariant past the initialization instruction k ← 0 yields:

r̃pe(hWalk(pos,N ,K),dH ) ≤ r̃pe(k ← 0,I) =
(
N − 1

N + 1

)K
.

Since the distance dH takes distance at least 1/N on pairs of distinct positions, by Theorem 3 the

TV distance between the distributions over positions satisfies

v(K ,N ) = max

p1,p2∈{0,1}N
TV (JhWalkK(p1,N ,K), JhWalkK(p2,N ,K))

≤ N

(
1 − 2

N+1

)K
.

Plugging in specific values gives concrete bounds between the two output distributions. Let ρ > 1.

To achieve a bound of O(1/ρ) on the right hand side, we need to take K ≥ (1/2)N log(N ρ). The
inequality above also gives useful asymptotic information; if we set ρ = N , and take K ≥ N logN ,

the right-hand side is asymptotically bounded by O(1/N ) for large N . We can show that this

converges to the uniform distribution over vectors. We provide more details in Section 7. In

summary, we have shown the following:

Theorem 9. Let K = N logN . For any initial position pos,

TV
(
hWalk(pos,N ,K),U ({0, 1})N )

)
∈ O(1/N ) .

6.3 Random-to-top shuffle

For our shuffling examples, we will need some notation. We view a permutation deck as a map

from positions in p ∈ [N ] to names of cards in c ∈ C; deck[p] denotes the card at position p, while
deck−1(c) denotes the position corresponding to card c . Summation over an empty set of indices is

treated as zero, while the product over an empty set of indices is treated as one. We outline the

arguments here; further details are provided in Appendix F.

For our first card shuffling algorithm we consider the random-to-top shuffle. In each iteration, it

selects a random position in the deck and moves the card at that position to the top.
2
We model

this shuffle with program rTop in Figure 4. For a given input deck of size N , the program repeats K
times the process of selecting a random card and moving it to the top. The operation shiftR(deck, j)
takes the block deck[0], . . . , deck[j] and cycles it one position to the right (thus moving deck[j] to
the top), leaving the rest of the deck intact.

2
This algorithm is the time-reversed version of the top-to-random shuffle, where the top card is moved to a random position.

It is known that a Markov chain’s convergence behavior is equivalent to that of its reversed process [1].
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We are interested in bounding the distance between the stationary distribution—which in this

case is the uniform distribution—and the output distribution after K iterations. We will start with

two decks of size N that are both permutations of [N ]. As in the hypercube example, we bound the

pre-expectation of the normalized Hamming distance:

dH ≜
1

N

N−1∑
i=0

[deck⟨1⟩[i] , deck⟨2⟩[i]] .

Note that dH takes distance at least 1/N on pairs of distinct permutations. If we can show that

the pre-expectation of dH is not too big, then we can apply Theorem 3 to conclude that the final

distributions over permutations have a close TV distance. It will be convenient to work with an

auxiliary distance:

dM ≜ (1/N ) ·
(
N −max

i
(∀j < i .deck⟨1⟩[j] = deck⟨2⟩[j])

)
.

The idea is that the coupling chooses identical cards on both decks and moves them to the top. This

will form a block of matched cards on the top of both decks. Intuitively, dM measures the fraction

of the deck that is not part of this top block. The target distance dH is upper-bounded by dM , since

dM counts all cards outside the first block as different. Bounds on dH follow from bounds on dM .

To bound the pre-expectation of dM , we take the invariant:

I ≜ [k ⟨1⟩ , k ⟨2⟩] · ∞ + [k ⟨1⟩ = k ⟨2⟩] · dM ·
(
N − 1

N

)K ⊖k ⟨1⟩
.

We can check that it satisfies the inequality

[k ⟨1⟩ < K∧k ⟨2⟩ < K]· r̃pe(bd,I)+[k ⟨1⟩ ≥ K∧k ⟨2⟩ ≥ K]·dH +[(k ⟨1⟩ < K) , (k ⟨2⟩ < K)]·∞ ≤ I,

where bd is the loop body. The main case is to show the inequality for the first term when both

loop guards are true: we need to bound the pre-expectation of I with respect to bd. We can bound

r̃pe(bd,I) ≤ dM ·
(
N − 1

N

)K ⊖k ⟨1⟩
,

by applying the sampling rule (Proposition 6) with the coupling functionM that selects the same

card in both decks:

M(s1, s2)(p1,p2) ≜
{

1/N : JdeckKs1[p1] = JdeckKs2[p2]
0 : otherwise.

The idea is that if we pick two cards in the first matched block, which happens with probability

(1−dM ), then the distance will remain the same. Otherwise, we will create at least one new matched

pair in the first block and the distance will decrease by 1/N . Hence, we can apply the loop rule

(Theorem 7) to conclude:

r̃pe(while k < K do bd,dH ) ≤ I.
Computing the pre-expectation of I with respect to the first instruction, we have

r̃pe(rTop(deck,N ,K),dH ) ≤
(
N − 1

N

)K
,

noting that the distance dM between the initial decks is at most 1. Since dH assigns pairs of distinct

decks a distance at least 1/N , Theorem 3 implies that the TV distance between the distributions
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over decks satisfies:

v(K ,N ) = max

d1,d2∈[N ]
TV (JrTopK(d1,N ,K), JrTopK(d2,N ,K)) ≤ N

(
N − 1

N

)K
.

For example, if we choose K to be N log(N ρ), then the distance between permutation distributions

is bounded by O(1/ρ) for large N and ρ > 1. By setting ρ = N , we have shown the following:

Theorem 10. Let K = 2N logN , and Perm([N ]) be the set of permutations over N . For any initial

permutation of deck,

TV (rTop (deck,N ,K),U (Perm([N ]))) ∈ O(1/N ).

6.4 Random transpositions shuffle

Our next shuffle (rTrans in Figure 4) repeatedly selects two positions uniformly at random and

swaps the cards, allowing for the possibility of swapping a card with itself. As before, let dH be

the normalized Hamming distance between the two decks. We aim to bound r̃pe(rTrans,dH ). As
before, the key of the proof is finding an invariant for the loop. We take:

I ≜ [k ⟨1⟩ , k ⟨2⟩] · ∞ + [k ⟨1⟩ = k ⟨2⟩] · dH ·
(
1 − 1

N 2

)K ⊖k ⟨1⟩
There are two samplings in the loop body, so we need to provide two couplings. For the first

sampling p, we use the identity coupling. For the second sampling p ′, we couple using the bijection
induced by the two decks deck⟨1⟩ and deck⟨2⟩, i.e., the coupling matches every position p ′⟨1⟩ with
the unique position p ′⟨2⟩ such that deck[p ′]⟨1⟩ = deck[p ′]⟨2⟩. There are three cases: (1) if cards at
p⟨1⟩,p⟨2⟩ are already matched, dH remains unchanged; (2) if positions p ′⟨1⟩,p ′⟨2⟩ are equal, dH
remains unchanged; otherwise (3) dH decreases by 1. This is enough to show that the invariant

decreases. We can conclude:

r̃pe(rTrans(deck,N ,K),dH ) ≤
(
1 − 1

N 2

)K
using the fact that dH between the inputs is at most 1. Since dH takes value of at least 1/N for pairs

of distinct decks, by Theorem 3

v(K ,N ) = max

d1,d2∈[N ]
TV (JrTransK(d1,N ,K), JrTransK(d2,N ,K)) ≤ N

(
1− 1

N 2

)K
,

so the distance between the deck distribution and the uniform distribution decreases as K increases.

If we take K ≥ N 2
log(N ρ), then the right-hand side is bounded asymptotically byO(1/ρ) for large

N . By setting ρ = N , we conclude:

Theorem 11. Let K = 2N 2
logN , and Perm([N ]) be the set of permutations over N . For any initial

permutation of deck,

TV (rTrans(deck,N ,K),U (Perm([N ]))) ∈ O(1/N ).

Remark. Aldous’ [1] bound is slightly sharper: the TV distance between output distributions is

bounded byO(1/N ) asymptotically already forK ≥ CN 2
for some constantC . This discrepancy appears

because our proofs are carried out compositionally, while Aldous uses a global analysis. However, it is

possible that a clever choice of coupling or loop invariant could let us match Aldous’ bound.

, Vol. 1, No. 1, Article . Publication date: August 2020.



A Pre-Expectation Calculus for Probabilistic Sensitivity 21

6.5 Uniform riffle shuffle

In this examplewewill analyze the uniform riffle shuffle, which is amore realistic model of how cards

are shuffled by humans. The shuffle begins by dividing the deck in approximately two halves, and

then merges the two halves in an approximately alternating manner. The reversed process, program

riffle on Figure 4 which we analyze, takes a deck, samples a uniform random bit for each card, and

then places all cards labeled with 0 on top of the deck without altering their relative order. After

repeating this process k times, for every card i we have sampled a string of bits (bi,0, . . . ,bi,k−1),
and card i is on top of card j if, for some m, bi,k = bj,k ,bi,k−1 = bj,k−1, . . . ,bi,m = bj,m and

bi,m−1 < bj,m−1.

The vector b holds N bits, indexed by position;
¯b negates each entry. We use shorthands for

partitioning: deck(b) and deck(¯b) represent the sub-permutations from taking all positions where b
is 0 and 1, respectively. Finally, cat concatenates two permutations.

We will take the coupling that always samples the same bit for the same card on both sides:

b(deck−1(c))⟨1⟩ = b(deck−1(c))⟨2⟩ for every c ∈ C . It is not hard to see that this coupling will

eventually make the decks match. However, choosing an appropriate distance takes more care,

since the Hamming distance may not always decrease under this coupling. For reasons of space,

we leave the details of verification to Appendix G. We can show the following:

Theorem 12. Let K = 3 logN , and Perm([N ]) be the set of permutations over N . For any initial

permutation of deck,

TV (riffle(deck,N ,K),Unif{Perm([N ])}) ∈ O(1/N ).

7 EXTENSIONS: PROVING LOWER BOUNDS AND UNIFORMITY

In this section, we describe two extensions to our random walk examples from Section 6: proving

that the limit distribution is uniform, and proving lower bounds on the TV distance.

7.1 Convergence to uniform distribution

In Section 6, we showed that theMarkov chains correspond to each example converge to a stationary

distribution, but we did not shown that this distribution is the uniform distribution over states—if

we had made an error in the implementation, the probabilistic program may converge to the wrong

distribution. We can use our relational pre-expectation calculus along with Theorem 2 to show

that the limit distribution is indeed uniform.

We illustrate the technique for the random-to-top shuffle, but the idea is applicable to all our

examples. Consider any two permutations of the deck R1,R2, and the unary expectations

S1(deck) ≜ [deck = R1] and S2(deck) ≜ [deck = R2].

To show that the shuffle converges to uniform, we need to show that the expected values of S1 and

S2 converge to the same value. Recall that Theorem 2 states that for any initial states s1, s2,��EJrTopKs1
[S1] − EJrTopKs2

[S2]
�� ≤ |S1 − S2 |#

(
JrTopKs1, JrTopKs2

)
so it suffices to show that the right hand side converges to zero.

Computing the weakest pre-expectation of |S1−S2 | directly is difficult, so we define an alternative

distance. We can see R1 and R2 as defining a relation (actually, a permutation π over [N ]) of pairs
(R1[i],R2[i]) of cards that are at the same positions. We let d be the distance defined by:

d(deck⟨1⟩, deck⟨2⟩) ≜
N−1∑
i=0

[(deck⟨1⟩[i], deck⟨2⟩[i]) < π ] .
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wpe(skip, E) ≜ E
wpe(x ← e, E) ≜ E{e/x}
wpe(x $← d, E) ≜ λs .Ex∼d [E{e/x}]

wpe(c; c ′, E) ≜ wpe(c, wpe(c ′, E))
wpe(if e then c else c ′, E) ≜ [e] · wpe(c, E) + [¬e] · wpe(c ′, E)

wpe(while e do c, E) ≜ lfpX .[e] · wpe(c, X ) + [¬e] · E

Fig. 5. Definition of the weakest pre-expectation operator wpe(c, E)

We can show that |S1(deck⟨1⟩) − S2(deck⟨2⟩)| ≤ d(deck⟨1⟩, deck⟨2⟩), since d takes non-negative

integer values, and whenever d = 0, then S1 and S2 can only be true simultaneously. So it suffices

to show that the right-hand side converges to zero. This bound can also be established by our

pre-expectation calculus in much the same way as in our proof for the random-to-top shuffle, but

we use a different coupling. After sampling p⟨1⟩ on the first execution we just need to pick the

p⟨2⟩ on the second such that (deck⟨1⟩[p⟨1⟩], deck⟨2⟩[p⟨2⟩]) ∈ π . This makes d decrease any time

a new match is formed, and once a match is formed and moved to the top, it is never undone.

By starting from the same permutation deck⟨1⟩ = deck⟨2⟩, this analysis shows that the rate of
convergence—this time to the uniform distribution—is the same as in our previous analysis of

random-to-top: d converges to 0 at rate (1 − 1/N )K .

7.2 Proving lower bounds

Previously, we verified upper bounds of the Total Variation distance by using the Kantorovich

distance. It is also interesting to compute lower bounds on the TV distance, describing how far

apart the distributions must be. We consider how to verify these bounds using the wpe calculus of

McIver and Morgan [25], summarized in Figure 5. We will need an alternative definition of the TV

distance expressed in terms of expected values rather than sets:

Proposition 13. Let µ1, µ2 ∈ Dist(X ). Then,
sup

f : X→[0,1]
|Eµ1
[f ] − Eµ2

[f ]| = sup

S ⊆X
|µ1(S) − µ2(S)| = TV (µ1, µ2) .

Thus, it suffices to pick any f : X → [0, 1] and compute its expected values wr.t. µ1 and µ2 to get a

lower bound on TV (µ1, µ2). This is performed with the wpe operator, which takes a program c and
an expectation F : State→ [0,∞] and computes:

wpe(c,F ) = λs .Ex∼JcKs [F (c)]
Computing lower bounds using wpe poses some technical challenges. First, we need to find some ex-

pectation f that will achieve a lower bound that is as large as possible. Second, as we are computing

a difference of two expected values, we need to be able to compute exact pre-expectations—standard

invariant rules forwpe only produce upper bounds on the expectation. Overcoming the first problem

requires ingenuity, but the second problem can be addressed by using a technical result of Kaminski

et al. [21]. We start by defining upper and lower invariants.

Definition 3. A family of unary expectations {In}n∈N is an upper ω-invariant of the loop

while b do c with respect to the expectation F if

[¬b] · F ≤ I0 and [b] · wpe(c, In) + [¬b] · F ≤ In+1 .

The definition of lower ω-invariant is analogous, reversing the two inequalities.
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These invariants can be used to compute exact weakest pre-expectations of loops.

Theorem 14 (Kaminski et al. [21, Theorem 5]). Let In and Jn be an upper and a lowerω-invariant
of while b do c with respect to F , respectively. If the limits limn→∞ In and limn→∞ Jn exist, then

lim

n→∞
Jn ≤ wpe(while b do c,F ) ≤ lim

n→∞
In .

When the limits coincide, the weakest pre-expectation is determined exactly.

We illustrate our technique on the example from Section 6.2. LetwH be the expression denoting

the normalized Hamming weight of a vector, i.e.wH ≜ (1/N )∑N
i=0

pos[i]. We can use the expected

value ofwH to compute a lower bound for the TV distance between two runs of hWalk. We will

compute this expected value by using the usual (unary) pre-expectation calculus. To compute exact

weakest preconditions, we need to find upper and lower invariants. We consider the following

ω-invariant In ≜ [K − n ≤ k](Bk +Ak ·wH ), where

Ak ≜

(
N − 1

N + 1

)K ⊖k
and Bk ≜

1

N + 1

·
K−k−1∑
i=0

(
N − 1

N + 1

) i
.

We can check thatIn is both an upper and a lowerω-invariant, therefore theweakest pre-expectation
for the loop is exactly limn→∞ In = Bk +Ak ·wH . After computing its pre-expectation with respect

to the first assignment, we get:

wpe(hWalk,wH ) = B0 +A0 ·wH

Now, letW (p) ≜ (1/N )∑N
i=0

p[i], and let s1, s2 be any two initial states such that s1(N ) = s2(N ) and
s1(K) = s2(K). By Proposition 13, we can lower bound the TV distance as follows:

TV (JhWalkK(s1(pos),N ,K), JhWalkK(s2(pos),N ,K)) ≥ |wpe(hWalk,wH )(s1) − wpe(hWalk,wH )(s2)|

=

(
N −1

N +1

)K
· |W (s1(pos))−W (s2(pos))| .

By selecting the initial positions appropriately—essentially, picking worst-case inputs—we can

derive useful lower bounds on the Total Variation distance between output distributions. For

instance, taking s1(pos) to be the all-zeros vector and s2(pos) to be the all-ones vector gives:

TV (JhWalkK(s1(pos),N ,K), JhWalkK(s2(pos),N ,K)) ≥
(
N −1

N +1

)K
.

Using standard algebraic bounds, the right-hand side (and the TV distance between the two output

distributions) is at least ρ > 0 when K < (N /2) log ρ.
Verifying precise lower bounds is highly challenging—for many simple examples of randomized

processes, exact lower bounds are not known. Nonetheless, efforts in this direction could provide

useful, complementary information when analyzing probabilistic programs.

8 EXTENSIONS: RULES FOR ASYNCHRONOUS REASONING

Our relational pre-expectation operator r̃pe(c, E) can often derive useful upper bounds on the

Kantorovich distance rpe(c, E), but it gives a trivial bound of infinity when the program c can take

different branches on the two inputs. In this section, we develop techniques to give more useful

bounds in the asynchronous case.
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8.1 Asynchronous rules for bounding the Kantorovich distance

Our asynchronous bounds will use one-sided relational operators wpe⟨1⟩(c, E) (resp. wpe⟨2⟩(c, E))
that transform relational expectations by holding the left (right) state constant and then computing

the unary weakest pre-expectation wpe(c, E). We use the following soundness lemma for the left

version of the operator, the one for the right version being analogous.

Lemma 1. Let c be a pWhile program that is almost surely terminating, i.e., wpe(c, 1) = 1. Then,

for all s1, s2, Es ′
1
∼JcKs1

[E(s ′
1
, s2)] ≤ wpe⟨1⟩(c, E)(s1, s2).

Now we can present our asynchronous rules.

Theorem 15. Let c be a program that is almost surely terminating. Then:

rpe(if e then c else , E) ≤ [e ⟨1⟩ ∧ e ⟨2⟩] · r̃pe(c, E) + [e ⟨1⟩ ∧ ¬e ⟨2⟩] · wpe⟨1⟩(c, E)
+ [¬e ⟨1⟩ ∧ e ⟨2⟩] · wpe⟨2⟩(c, E) + [¬e ⟨1⟩ ∧ ¬e ⟨2⟩] · E

Let while e do c be an almost surely terminating loop, ρi (s) be the probability that the loop does not

terminate after executing the body at most i times starting from state s , and:

Mi (E, s1, s2) = max{E(t1, t2) | t1 ∈ supp(JciKs1), t2 ∈ supp(JciKs2)}
where ci is the first i iterations of the loop. If ρi andMi satisfy:

lim

i→∞
(ρi (s1) + ρi (s2)) ·Mi (E, s1, s2) = 0

for any two states (s1, s2), and if I is an invariant satisfying

[e ⟨1⟩ ∧ e ⟨2⟩] · r̃pe(c,I) + [e ⟨1⟩ ∧ ¬e ⟨2⟩] · wpe⟨1⟩(c, I)
+ [¬e ⟨1⟩ ∧ e ⟨2⟩] · wpe⟨2⟩(c, I) + [¬e ⟨1⟩ ∧ ¬e ⟨2⟩] · E ≤ I ,

then rpe(while e do c, E) ≤ I.
Proof Sketch. The soundness of the conditional rule follows a similar argument as soundness

for the definition of r̃pe for conditionals, using Lemma 1 for the asynchronous cases. The soundness

of the loop rule is more intricate, but it follows the same strategy as in Theorem 7: we define a

loop characteristic function based on the conditional rule (now asynchronous), show that the least

fixed-point lies above rpe, and finally show that the invariant rule implies that I is a pre-fixed-point,

so it must be above the fixed point. □

We detail the full proof in Appendix J.

8.2 Example: Bounding the distance between binomial distributions

Consider the following program, which simulates a binomial distribution:

binom(N )
n ← 0;

k ← 0;

while n < N do
b $← Bern(p);
if b then k ← k + 1;

n ← n + 1;

We treat p ∈ [0, 1] as a fixed constant. We will compare the distribution on the output k starting

from two inputs. Since the loops will run for different numbers of iterations if N ⟨1⟩ , N ⟨2⟩, we
will employ our asynchronous rule. We take the following invariant:

I ≜ | k ⟨1⟩ − k ⟨2⟩ + p · (N ⟨1⟩ ⊖ n⟨1⟩) − p · (N ⟨2⟩ ⊖ n⟨2⟩) | ,
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We will show the following invariant bound:

[(n <)⟨1⟩ ∧ (n < N )⟨2⟩] · r̃pe(c,I) + [(n < N )⟨1⟩ ∧ (n ≥ N )⟨2⟩] · wpe⟨1⟩(c, I)
+ [(n ≥ N )⟨1⟩ ∧ (n < N )⟨2⟩] · wpe⟨2⟩(c, I) + [(n ≥ N )⟨1⟩ ∧ (n ≥ N )⟨2⟩] · E ≤ I .

In the synchronous case, we can establish the invariant by applying Sampwith the identity coupling;

the inner conditional can also be analyzed synchronously. In the asynchronous case, computing

the unary weakest pre-expectation establishes the invariant. Thus, the asynchronous loop rule

(Theorem 15) gives:

rpe(w, | k ⟨1⟩ − k ⟨2⟩ |) ≤ I
wherew is the loop. Applying the assignment rule, we conclude:

rpe(binom(N ), | k ⟨1⟩ − k ⟨2⟩ |) ≤ p · | N ⟨1⟩ − N ⟨2⟩ |.
By Theorem 2, this bound implies that the expected values of the output k differ by at most

p · |N ⟨1⟩ − N ⟨2⟩| across the two runs.

9 RELATEDWORK

Proving expected sensitivity of probabilistic programs. We have shown that the quantitative logic

EpRHL [7] can be embedded into the framework of this paper (cf. Section 3.4), so we focus on other

work. Wang et al. [33] propose an alternative method based on martingales for proving the expected

sensitivity of probabilistic programs. Their technique focuses on computing the expected sensitivity

when the (expected) number of iterations for a loop may be different across two related executions

(i.e., loops may be asynchronous); this is similar to our asynchronous rules from Section 8. However,

Wang et al. [33] also frame their target property in a slightly weaker way, showing that programs

are Lipschitz continuous for some finite Lipschitz constant. In contrast, our method establishes

bounds on this constant, which is an important aspect in many applications (e.g., it determines the

rate of convergence for Markov chains). We are also able to handle the broader class of expected

sensitivity properties arising from Kantorovich metrics, subsuming the notion considered by Wang

et al. [33] where the output distance is the absolute difference between two expected values.

Formal reasoning for probabilistic programs. Logics for probabilistic programs has been an active

research area since the 1980s. Seminal work by Kozen [22] defines a probabilistic propositional

dynamic logic for reasoning about probabilistic programs, using real-valued functions rather than

boolean assertions. Morgan et al. [25] define a weakest pre-expectation calculus for a programming

language with (demonic) non-determinism and probabilities. Extensions of this calculus with

recursion and conditioning have been considered [26, 27]. Kaminski et al. [21] define a similar

calculus for bounding expected run-times of probabilistic programs. These works do not prove

relational properties of programs, and are unsuitable for verifying sensitivity.

Continuity in programs and process calculi. Formal reasoning about the continuity of deterministic

programs has received some attention. Chaudhuri et al. [12, 13] were the first to give a sound,

compositional framework for verifying that a program is continuous. Reed and Pierce [30] gave

a type system that can verify Lipschitz continuity of functional programs (see also [4, 5, 14, 35]).

Recently, Huang et al. [20] proposed the tool PSense which can perform sensitivity analysis of

probabilistic programs. Their technique relies on symbolic computation using the symbolic verifier

PSI and Mathematica, and supports, e.g., the Total Variation distance and the expectation distance.

PSense cannot reason, however, about general Kantorovich distances, or unbounded loops.

Finally, in the process-algebra setting, compositional reasoning about metrics has received some

attention. Gebler et al. [15] used uniform continuity to reason about the distance between recursive

processes in a compositional way, while Gebler and Tini [16] recently defined specification formats
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that can check uniform continuity syntactically. A more general framework for reasoning about

metrics has been given by Bacci et al. [6], who presented an algebraic axiomatization of Markov

processes in quantitative equational logic. Their framework supports reasoning about various

metrics, including the Kantorovich metric.

10 CONCLUSION

We defined a pre-expectation calculus to compute upper bounds for Kantorovich metrics, and

applied it to prove convergence of reinforcement learning and card shuffling algorithms, algorithmic

stability of SGD, and uniformity of limit distributions. Our calculus provides theoretical foundations

for reasoning about quantitative relational properties of probabilistic programs.

There are several natural directions for future work. One possible extension is to lift the require-

ment that programs terminate with equal probability on pairs of executions, possibly by leveraging

alternative notions of the Kantorovich metric that accommodate distributions of different weight

[29]. Other directions include developing a relational version of quantitative separation logic [9],

and use it for proving relational properties of probabilistic heap-manipulating programs.

We also explored methods for proving lower bounds of convergence speed. In general, we

are not aware of many works that prove lower bounds using program logics, with some notable

exceptions [19]. Developing more tools and techniques for reasoning about these fascinating

properties is an interesting avenue for future work.

REFERENCES

[1] David Aldous. 1983. Random Walks on Finite Groups and Rapidly Mixing Markov Chains. In Séminaire de Probabilités

XVII 1981/82 (Lecture Notes in Mathematics), Vol. 986. Springer-Verlag, 243–297. https://eudml.org/doc/113445

[2] Philip Amortila, Doina Precup, Prakash Panangaden, and Marc G. Bellemare. 2020. A Distributional Analysis of

Sampling-Based Reinforcement Learning Algorithms. In The 23rd International Conference on Artificial Intelligence and

Statistics, AISTATS 2020, 26-28 August 2020, Online [Palermo, Sicily, Italy] (Proceedings of Machine Learning Research),

Silvia Chiappa and Roberto Calandra (Eds.), Vol. 108. PMLR, 4357–4366. http://proceedings.mlr.press/v108/amortila20a.

html

[3] Robert B. Ash and Catherine A. Doleans-Dade. 2000. Probability and Measure Theory. Academic Press.

[4] Arthur Azevedo de Amorim, Marco Gaboardi, Emilio Jesús Gallego Arias, and Justin Hsu. 2014. Really natural linear

indexed type-checking. In Symposium on Implementation and Application of Functional Programming Languages (IFL),

Boston, Massachusetts. ACM Press, 5:1–5:12. http://arxiv.org/abs/1503.04522

[5] Arthur Azevedo de Amorim, Marco Gaboardi, Justin Hsu, Shin-ya Katsumata, and Ikram Cherigui. 2017. A semantic

account of metric preservation. In ACM SIGPLAN–SIGACT Symposium on Principles of Programming Languages (POPL),

Paris, France. 545–556.

[6] Giorgio Bacci, Radu Mardare, Prakash Panangaden, and Gordon D. Plotkin. 2018. An Algebraic Theory of Markov

Processes. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK,

July 09-12, 2018, Anuj Dawar and Erich Grädel (Eds.). ACM, 679–688. https://doi.org/10.1145/3209108.3209177

[7] Gilles Barthe, Thomas Espitau, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub. 2018. Proving expected sensitivity

of probabilistic programs. PACMPL 2, POPL (2018), 57:1–57:29. https://doi.org/10.1145/3158145

[8] Gilles Barthe, Benjamin Grégoire, and Santiago Zanella-Béguelin. 2009. Formal Certification of Code-Based Crypto-

graphic Proofs. In ACM SIGPLAN–SIGACT Symposium on Principles of Programming Languages (POPL), Savannah,

Georgia. New York, 90–101. http://certicrypt.gforge.inria.fr/2013.Journal.pdf

[9] Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Thomas Noll. 2019. Quantitative

Separation Logic: A Logic for Reasoning About Probabilistic Pointer Programs. PACMPL 3, POPL (2019), 34:1–34:29.

[10] Nick Benton. 2004. Simple Relational Correctness Proofs for Static Analyses and Program Transformations. In

ACM SIGPLAN–SIGACT Symposium on Principles of Programming Languages (POPL), Venice, Italy. 14–25. https:

//doi.org/10.1145/964001.964003

[11] Olivier Bousquet and André Elisseeff. 2002. Stability and Generalization. Journal of Machine Learning Research 2

(2002), 499–526. http://www.jmlr.org/papers/v2/bousquet02a.html

[12] Swarat Chaudhuri, Sumit Gulwani, and Roberto Lublinerman. 2010. Continuity analysis of programs. In ACM

SIGPLAN–SIGACT Symposium on Principles of Programming Languages (POPL), Madrid, Spain. 57–70.

, Vol. 1, No. 1, Article . Publication date: August 2020.

https://eudml.org/doc/113445
http://proceedings.mlr.press/v108/amortila20a.html
http://proceedings.mlr.press/v108/amortila20a.html
http://arxiv.org/abs/1503.04522
https://doi.org/10.1145/3209108.3209177
https://doi.org/10.1145/3158145
http://certicrypt.gforge.inria.fr/2013.Journal.pdf
https://doi.org/10.1145/964001.964003
https://doi.org/10.1145/964001.964003
http://www.jmlr.org/papers/v2/bousquet02a.html


A Pre-Expectation Calculus for Probabilistic Sensitivity 27

[13] Swarat Chaudhuri, Sumit Gulwani, and Roberto Lublinerman. 2012. Continuity and robustness of programs. Commun.

ACM 55, 8 (2012), 107–115. https://doi.org/10.1145/2240236.2240262

[14] Marco Gaboardi, Andreas Haeberlen, Justin Hsu, Arjun Narayan, and Benjamin C. Pierce. 2013. Linear dependent

types for differential privacy. In ACM SIGPLAN–SIGACT Symposium on Principles of Programming Languages (POPL),

Rome, Italy. 357–370. http://dl.acm.org/citation.cfm?id=2429113

[15] Daniel Gebler, Kim G. Larsen, and Simone Tini. 2016. Compositional bisimulation metric reasoning with probabilistic

process calculi. Logical Methods in Computer Science 12, 4 (2016). https://doi.org/10.2168/LMCS-12(4:12)2016

[16] Daniel Gebler and Simone Tini. 2018. SOS specifications for uniformly continuous operators. J. Comput. Syst. Sci. 92

(2018), 113–151. https://doi.org/10.1016/j.jcss.2017.09.011

[17] Friedrich Gretz, Joost-Pieter Katoen, and Annabelle McIver. 2014. Operational versus weakest pre-expectation semantics

for the probabilistic guarded command language. Perform. Evaluation 73 (2014), 110–132. https://doi.org/10.1016/j.

peva.2013.11.004

[18] Moritz Hardt, Ben Recht, and Yoram Singer. 2016. Train faster, generalize better: Stability of stochastic gradient descent.

In International Conference on Machine Learning (ICML), New York, NY (Journal of Machine Learning Research), Vol. 48.

JMLR.org, 1225–1234. http://jmlr.org/proceedings/papers/v48/hardt16.html

[19] Marcel Hark, Benjamin Lucien Kaminski, Jürgen Giesl, and Joost-Pieter Katoen. 2020. Aiming low is harder: induction

for lower bounds in probabilistic program verification. Proc. ACM Program. Lang. 4, POPL (2020), 37:1–37:28.

[20] Zixin Huang, Zhenbang Wang, and Sasa Misailovic. 2018. PSense: Automatic Sensitivity Analysis for Probabilistic

Programs. In Automated Technology for Verification and Analysis - 16th International Symposium, ATVA 2018, Los Angeles,

CA, USA, October 7-10, 2018, Proceedings (LNCS), Shuvendu K. Lahiri and Chao Wang (Eds.), Vol. 11138. Springer,

387–403. https://doi.org/10.1007/978-3-030-01090-4_23

[21] Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Federico Olmedo. 2016. Weakest Precondition

Reasoning for Expected Run-Times of Probabilistic Programs. In European Symposium on Programming (ESOP),

Eindhoven, The Netherlands (Lecture Notes in Computer Science), Vol. 9632. Springer-Verlag, 364–389. https://doi.org/10.

1007/978-3-662-49498-1_15

[22] Dexter Kozen. 1985. A Probabilistic PDL. J. Comput. System Sci. 30, 2 (1985), 162–178.

[23] Annabelle McIver and Carroll Morgan. 2005. Abstraction, Refinement and Proof for Probabilistic Systems. Springer.

[24] John Miller and Moritz Hardt. 2018. When Recurrent Models Don’t Need To Be Recurrent. CoRR abs/1805.10369 (2018).

arXiv:1805.10369 http://arxiv.org/abs/1805.10369

[25] Carroll Morgan, Annabelle McIver, and Karen Seidel. 1996. Probabilistic Predicate Transformers. ACM Transactions on

Programming Languages and Systems 18, 3 (1996), 325–353.

[26] Federico Olmedo, Friedrich Gretz, Nils Jansen, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Annabelle McIver.

2018. Conditioning in Probabilistic Programming. ACM Trans. Program. Lang. Syst. 40, 1 (2018), 4:1–4:50. https:

//doi.org/10.1145/3156018

[27] Federico Olmedo, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja. 2016. Reasoning about

Recursive Probabilistic Programs. In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science,

LICS ’16, New York, NY, USA, July 5-8, 2016, Martin Grohe, Eric Koskinen, and Natarajan Shankar (Eds.). ACM, 672–681.

https://doi.org/10.1145/2933575.2935317

[28] David Park. 1969. Fixpoint Induction and Proofs of Program Properties. Machine Intelligence 5 (1969).

[29] Benedetto Piccoli and Francesco Rossi. 2016. On Properties of the Generalized Wasserstein Distance. Archive for

Rational Mechanics and Analysis 222, 3 (01 Dec 2016), 1339–1365. https://doi.org/10.1007/s00205-016-1026-7

[30] Jason Reed and Benjamin C Pierce. 2010. Distance Makes the Types Grow Stronger: A Calculus for Differential

Privacy. In ACM SIGPLAN International Conference on Functional Programming (ICFP), Baltimore, Maryland. http:

//dl.acm.org/citation.cfm?id=1863568

[31] Richard S. Sutton. 1988. Learning to Predict by the Methods of Temporal Differences. Mach. Learn. 3 (1988), 9–44.

https://doi.org/10.1007/BF00115009

[32] Cédric Villani. 2008. Optimal Transport: Old and New. Springer-Verlag.

[33] Peixin Wang, Hongfei Fu, Krishnendu Chatterjee, Yuxin Deng, and Ming Xu. 2020. Proving expected sensitivity of

probabilistic programs with randomized variable-dependent termination time. Proc. ACM Program. Lang. 4, POPL

(2020), 25:1–25:30.

[34] David Williams. 1991. Probability with Martingales. Cambridge University Press. https://doi.org/10.1017/

CBO9780511813658

[35] Daniel Winograd-Cort, Andreas Haeberlen, Aaron Roth, and Benjamin C. Pierce. 2017. A framework for adaptive

differential privacy. In ACM SIGPLAN International Conference on Functional Programming (ICFP), Oxford, England.

10:1–10:29. https://dl.acm.org/citation.cfm?id=3110254

, Vol. 1, No. 1, Article . Publication date: August 2020.

https://doi.org/10.1145/2240236.2240262
http://dl.acm.org/citation.cfm?id=2429113
https://doi.org/10.2168/LMCS-12(4:12)2016
https://doi.org/10.1016/j.jcss.2017.09.011
https://doi.org/10.1016/j.peva.2013.11.004
https://doi.org/10.1016/j.peva.2013.11.004
http://jmlr.org/proceedings/papers/v48/hardt16.html
https://doi.org/10.1007/978-3-030-01090-4_23
https://doi.org/10.1007/978-3-662-49498-1_15
https://doi.org/10.1007/978-3-662-49498-1_15
http://arxiv.org/abs/1805.10369
http://arxiv.org/abs/1805.10369
https://doi.org/10.1145/3156018
https://doi.org/10.1145/3156018
https://doi.org/10.1145/2933575.2935317
https://doi.org/10.1007/s00205-016-1026-7
http://dl.acm.org/citation.cfm?id=1863568
http://dl.acm.org/citation.cfm?id=1863568
https://doi.org/10.1007/BF00115009
https://doi.org/10.1017/CBO9780511813658
https://doi.org/10.1017/CBO9780511813658
https://dl.acm.org/citation.cfm?id=3110254


28 Alejandro Aguirre, Gilles Barthe, Justin Hsu, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja

A BACKGROUND: REAL ANALYSIS

The following are standard convergence results in real analysis, see for instance [34]. In all of them

we consider a sequence of relational expectations En : State × State → R∞≥0
and a distribution

µ : Dist(State × State).

Lemma 2 (Fatou’s Lemma). Let En be a monotone increasing sequence of relational expectations.

Then,

Eµ [ lim

n→∞
En] ≤ lim

n→∞
Eµ [En].

Fatou’s Lemma also holds when En is not a monotone sequence (replacing the limit by a limit

inferior), but the monotone version suffices for our purposes.

Now we present a result that will be useful in showing convergence of couplings. A similar result

can be found in the monograph Villani [32, Theorem 5.19].

Theorem 16 (Convergence of couplings). Let νi and ρi denote two sequences of sub-distributions
with countable support over X , converging pointwise to ν and ρ respectively. Let µi ∈ Γ(νi , ρi ) be a
sequence of couplings of νi and ρi . Then there exists a subsequence µ

′
i of µi that converges to a coupling

µ ∈ Γ(ν , ρ).

Proof. The proof proceeds in two steps. First we show that there exists a convergent subsequence

of couplings. By the Bolzano-Weierstrass theorem, [0, 1] is sequentially compact, i.e., every sequence

in [0, 1] has a subsequence that converges in [0, 1]. Moreover, countable products preserve sequential

compactness. Since every νi and ρi have countable support, so does every µi , so we can consider

the sequence {µi }i ∈N as a sequence over [0, 1]S where S = ∪i supp(µi ). Since this is a sequentially
compact space, we can extract a subsequence {µ ′i }i ∈N that converges pointwise to some distribution,

call it µ ∈ Dist(X × X ); let {ν ′i }i ∈N and {ρ ′i }i ∈N be the corresponding subsequences of {νi }i ∈N and

{ρi }i ∈N such that µ ′i ∈ Γ(ν ′i , ρ ′i ). Since they are subsequences of convergent sequences, these were

convergent, {ν ′i }i ∈N converges to ν and {ρ ′i }i ∈N converges to ρ.
The main task is showing that µ is indeed a coupling of ν and ρ, i.e., µ ∈ Γ(ν , ρ). We consider the

first marginal condition. Let ϵ > 0 be any positive number. Since ρ is a distribution over a countable

set, there exists a finite set S(ϵ) such that

∑
x2<S (ϵ ) ρ(x2) < ϵ . We first show that:

lim

i→∞

∑
x2<S (ϵ/2)

ρi (x2) = 0. (3)

Since {ρ ′i }i converges pointwise to ρ, it also converges in L1. So, there exists a finite number N (ϵ)
such that for all i > N (ϵ), we have: ∑

x2∈X
| ρ ′i (x2) − ρ(x2) | < ϵ .

Thus for all i > N (ϵ/2), we have:∑
x2<S (ϵ/2)

ρ ′i (x2) =
∑

x2<S (ϵ/2)
(ρ ′i (x2) − ρ(x2)) +

∑
x2<S (ϵ/2)

ρ(x2)

≤
∑
x2∈X
| ρ ′i (x2) − ρ(x2) | + ϵ/2

≤ ϵ .
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Since ϵ was arbitrary, this establishes Eq. (3). Now, let x1 ∈ X be any element. We can compute:

| ν (x1) − (π1(µ))(x1) | = | ν (x1) −
∑
x2∈X

lim

i→∞
µi (x1,x2) |

≤ |ν (x1) −
∑

x2∈S (ϵ )
lim

i→∞
µi (x1,x2) | +

∑
x2<S (ϵ )

lim

i→∞
µi (x1,x2) (triangle ineq.)

= |ν (x1) − lim

i→∞

∑
x2∈S (ϵ )

µi (x1,x2) | +
∑

x2<S (ϵ )
lim

i→∞
µi (x1,x2) (S(ϵ) finite)

≤ |ν (x1) − lim

i→∞

∑
x2∈S (ϵ )

µi (x1,x2) | +
∑

x2<S (ϵ )
lim

i→∞
ρi (x2) (π2(µi ) = ρi )

≤ | ν (x1) − lim

i→∞

∑
x2∈S (ϵ )

µi (x1,x2) | +
∑

x2<S (ϵ )
ρ(x2) (limit ρ)

≤ | ν (x1) − lim

i→∞

∑
x2∈S (ϵ )

µi (x1,x2) | + ϵ (def. S(ϵ))

= | ν (x1) − lim

i→∞
νi (x1) + lim

i→∞

∑
x2<S (ϵ )

µi (x1,x2) | + ϵ (π1(µi ) = νi )

= | lim

i→∞

∑
x2<S (ϵ )

µi (x1,x2) | + ϵ (limit ν )

≤ lim

i→∞

∑
x2<S (ϵ )

ρi (x2) + ϵ = ϵ . (by Eq. (3))

Since ϵ > 0 and x1 ∈ X are arbitrary, this shows the first marginal condition ν = π1(µ). The second
marginal condition follows similarly, and so µ ∈ Γ(ν , ρ) as desired. □

B PROGRAM SEMANTICS

A state s ∈ State is a map from a finite set of variable names Var to a set of values Val. Given an

expression e , we abuse the notation s(e) to denote the natural lifting of s to a map from expressions

to values. Similarly, given an expression d denoting a distribution, we abuse the notation s(d) to
denote the lifting of s to a map from distributions to distribution over values. Given s ∈ State,
x ∈ Var and v ∈ Val, we write s{v/x} to denote the unique state such that s{v/x}(y) = v if y = x
and s{v/x}(y) = s(y) otherwise.

The semantics JcK of a command c is a map from an input state in State to an output distribution

in Dist(State). This semantics is standard, and is defined by induction on the structure of the

command:

JskipKs ≜ δ (s)
Jx ← eKs ≜ δ (s{s(e)/x})
Jx $← dKs ≜ Ev∼s(d )[s{v/x}]

Jc; c ′Ks ≜ Es ′∼JcKs [Jc ′Ks ′]
Jif e then c else c ′Ks ≜ [s(e)] · JcKs + [¬s(e)] · Jc ′Kδ (s)

Jwhile e do cKs ≜ lim

n→∞
JcnKs where c0 ≜ abort and ci+1 ≜ if e then c; ci

We use a dummy abort command that denotes the constant zero sub-distribution to help define the

semantics for loops. The limit exists and is a sub-distribution because for any initial state s , the
sub-distributions JciKs are monotone increasing in i under the pointwise order on sub-distributions,
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i.e., (JciKs)(s ′) ≤ (Jc jKs)(s ′) for all states s, s ′ ∈ State and all i ≤ j, and (JciKs)(s ′) is bounded above

by 1.

C SECTION 2: OMITTED PROOFS

Theorem 1. For the direction “≤”, it suffices to show that

��µ1(S) − µ2(S)
�� ≤ Eµ [E] for every

µ ∈ Γ(µ1, µ2) and every S ⊆ X . By the property of marginals and monotonicity of probabilities, we

have: ��µ1(S) − µ2(S)
�� = ��µ(S × X ) − µ(X × S)�� = ��µ(S × (X \ S)) − µ((X \ S) × S)��
≤ max(µ(S × (X \ S)), µ((X \ S) × S)) ≤ µ({(x1,x2) | x1 , x2}) = Eµ [E] .

For the other direction, we construct a so-called optimal coupling. For every x ∈ X , let µ0(x) =
min(µ1(x), µ2(x)). The optimal coupling for (µ1, µ2) is defined by:

µ(x1,x2) =
{
µ0(x1) : x1 = x2

(µ1(x1)−µ0(x1))·(µ2(x2)−µ0(x2))
TV (µ1,µ2) : x1 , x2 ,

where 0/0 B 0. One can check that µ is a coupling for (µ1, µ2) and that µ([x1 , x2]) = TV (µ1, µ2). □

Theorem 2. It suffices to show

��Eµ1
[f1] − Eµ2

[f2]
�� ≤ Eµ [E] for every µ ∈ Γ(µ1, µ2), which

follows from the marginal properties of couplings, linearity of expectation, and the fact that

|Eµ [f ]| ≤ Eµ [| f |]:��Eµ1
[f1] − Eµ2

[f2]
�� = ��Eµ [λ(x1,x2). f1(x1)] − Eµ [λ(x1,x2). f2(x2)]

��
=

��Eµ [λ(x1,x2). f1(x1) − f2(x2)]
�� ≤ Eµ [λ(x1,x2).

��f1(x1) − f2(x2)|
]
= Eµ [E] . □

Theorem 3. The proof follows from Theorem 1 and from the observations that (ρ · E)# = ρ · E#

and that E ≤ E ′ implies E# ≤ E ′#, taking the pointwise order in both cases. □

D SOUNDNESS AND CONTINUITY: OMITTED PROOFS

The syntactic relational pre-expectation transformer is a monotonic operator.

Lemma 3 (Monotonicity of r̃pe(c,−)). Let E be a relational expectation and let c be a program.

Then r̃pe(c,−) and ΦE,c (−) are monotonic, i.e. for any two relational expectations E1, E2 such that

E1 ≤ E2, we have r̃pe(c, E1) ≤ r̃pe(c, E2) and ΦE,c (E1) ≤ ΦE,c (E2).

Proof. The latter result is a corollary from the former. By definition,

ΦE,c,e (E1) = [e ⟨1⟩ ∧ e ⟨2⟩] · r̃pe(c, E1) + [¬e ⟨1⟩ ∧ ¬e ⟨2⟩] · E + [e ⟨1⟩ , e ⟨2⟩] · ∞
and

ΦE,c,e (E2) = [e ⟨1⟩ ∧ e ⟨2⟩] · r̃pe(c, E2) + [¬e ⟨1⟩ ∧ ¬e ⟨2⟩] · E + [e ⟨1⟩ , e ⟨2⟩] · ∞.
So given r̃pe(c, E1) ≤ r̃pe(c, E2) we can conclude ΦE,c,e (E1) ≤ ΦE,c,e (E2).
The former result is proven by induction on c:

• skip. Then
r̃pe(skip, E1) = E1 ≤ E2 = r̃pe(skip, E2)

• x ← e . Then

r̃pe(x ← e, E1) = E1{e ⟨1⟩, e ⟨2⟩/x ⟨1⟩,x ⟨2⟩}
and

r̃pe(x ← e, E2) = E2{e ⟨1⟩, e ⟨2⟩/x ⟨1⟩,x ⟨2⟩}
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Consider a pair of states s1, s2 then:

E1{e ⟨1⟩, e ⟨2⟩/x ⟨1⟩,x ⟨2⟩}(s1, s2) = E1(s1{s1(e)/x})(s2{s2(e)/x})
≤ E2(s1{s1(e)/x})(s2{s2(e)/x})
= E2{e ⟨1⟩, e ⟨2⟩/x ⟨1⟩,x ⟨2⟩}(s1, s2)

• x $← d . Then,

r̃pe(x $← d, E1) = inf

µ ∈Γ(µ1,µ2)
Eµ [E1]

and

r̃pe(x $← d, E2) = inf

µ ∈Γ(µ1,µ2)
Eµ [E2]

Let µ ∈ Γ(µ1, µ2) be an arbitrary coupling. By monotonicity of the expectation, then Eµ [E1] ≤
Eµ [E2], and therefore the infimum for E1 is less or equal than the one for E2.

• c; c ′. By the induction hypothesis,

r̃pe(c; c ′, E1) = r̃pe(c, r̃pe(c ′, E1)) ≤ r̃pe(c, r̃pe(c ′, E2)) = r̃pe(c; c ′, E2)
Note that the inequality needs two applications of the I.H., one to show that r̃pe(c ′, E1) ≤
r̃pe(c ′, E2) and another one to show r̃pe(c, r̃pe(c ′, E1)) ≤ r̃pe(c, r̃pe(c ′, E2)).
• if e then c else c ′. By the induction hypothesis (applied at c and c ′),

r̃pe(if e then c else c ′, E1) = [e ⟨1⟩ ∧ e ⟨2⟩] · r̃pe(c, E1) + [¬e ⟨1⟩ ∧ ¬e ⟨2⟩] · r̃pe(c ′, E1) + [e ⟨1⟩ , e ⟨2⟩] · ∞
≤ [e ⟨1⟩ ∧ e ⟨2⟩] · r̃pe(c, E2) + [¬e ⟨1⟩ ∧ ¬e ⟨2⟩] · r̃pe(c ′, E2) + [e ⟨1⟩ , e ⟨2⟩] · ∞
= r̃pe(if e then c else c ′, E2)

• while e do c . Then,

r̃pe(while e do c, E1) = lfpX .[e ⟨1⟩ ∧ e ⟨2⟩] · r̃pe(c,X ) + [¬e ⟨1⟩ ∧ ¬e ⟨2⟩] · E1 + [e ⟨1⟩ , e ⟨2⟩] · ∞
r̃pe(while e do c, E2) = lfpX .[e ⟨1⟩ ∧ e ⟨2⟩] · r̃pe(c,X ) + [¬e ⟨1⟩ ∧ ¬e ⟨2⟩] · E2 + [e ⟨1⟩ , e ⟨2⟩] · ∞

Existence of the least fixed points is guaranteed by monotonicity of the functionals, which

follows from the inductive hypothesis applied to c . Suppose X2 is the least fixpoint of the

second expression. We will show that it is a pre-fixpoint of the first expression.

[e ⟨1⟩ ∧ e ⟨2⟩] · r̃pe(c,X2) + [¬e ⟨1⟩ ∧ ¬e ⟨2⟩] · E1 + [e ⟨1⟩ , e ⟨2⟩] · ∞
≤ [e ⟨1⟩ ∧ e ⟨2⟩] · r̃pe(c,X2) + [¬e ⟨1⟩ ∧ ¬e ⟨2⟩] · E2 + [e ⟨1⟩ , e ⟨2⟩] · ∞
= X2

By Knaster-Tarski, the least fixed point of a monotonically increasing operator is the greatest

lower bound of the set of pre-fixpoints. From this we conclude r̃pe(while e do c, E1) ≤ X2. □

We need a lemma about the existence of a coupling realizing the minimum Kantorovich distance.

Lemma 4. Let µ1, µ2 ∈ Dist(State) be two subdistributions of finite support with the same weight,

and let E : State × State → R∞≥0
be a relational expectation. There exists a coupling µ ∈ Γ(µ1, µ2)

realizing the minimum Kantorovich distance:

Eµ [E] = inf

µ ∈Γ(µ1,µ2)
Eµ [E] = E#(µ1, µ2) .

This is an extremely simple case of standard existence results in the theory of optimal transport

(see, e.g., Theorem 4.1 in Villani’s monograph [32]). We include a proof to keep the exposition

self-contained.
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Proof. Let d∗ = inf µ ∈Γ(µ1,µ2) Eµ [E] be the infimum distance. If d∗ = ∞ then the product coupling

realizes the distance. Otherwise, suppose that the infimum d∗ is finite. By the definition of infimum,

there exists a sequence of couplings µ(1), µ(2), · · · ∈ Γ(µ1, µ2) such that

lim

k→∞
Eµ (k ) [E] = d∗.

Without loss of generality, we may assume that for each k the distance Eµ (k ) [E] is finite as well.
Let S = ∪k supp(µ(k )) be the union of the supports of all µ(k ). Since µ1, µ2 have countable support, S
is countable. Since all the expected distances are finite, in fact all pairs of states (s1, s2) ∈ S have

E(s1, s2) < ∞. By Theorem 16 we can find a subsequence of µ(k) that is converging pointwise;

define:

µ(s1, s2) = lim

k→∞
µ(k )(s1, s2)

for every s1, s2 ∈ State, where the limit is taken over the subsequence (so it exists). Then µ is indeed

a coupling in Γ(µ1, µ2). To show that µ realizes the infimum distance, we derive:

Eµ [E] =
∑

(s1,s2)∈S
E(s1, s2) · µ(s1, s2)

=
∑

(s1,s2)∈S
E(s1, s2) · lim

k→∞
µ(k )(s1, s2)

≤
∑

(s1,s2)∈S
lim

k→∞
E(s1, s2) · µ(k )(s1, s2)

≤ lim

k→∞

∑
(s1,s2)∈S

E(s1, s2) · µ(k )(s1, s2)

= lim

k→∞
Eµ (k ) [E]

= d∗.

The first inequality is because E may take value infinity; the second inequality is by Fatou’s

lemma. □

Continuity proceeds in two steps. We first need a lemma about continuity of the Kantorovich

distance. While it seems challenging to establish this lemma for distributions with infinite support,

we establish it for distributions with finite support.

Lemma 5. Let µ1, µ2 ∈ Dist(State) be two distributions with finite support, and let En : State ×
State→ R∞≥0

be a monotonically increasing chain of relational expectations converging pointwise to

E : State × State→ R∞≥0
. Then:

inf

µ ∈Γ(µ1,µ2)
Eµ [E] = inf

µ ∈Γ(µ1,µ2)
Eµ [ lim

n→∞
En] = lim

n→∞
inf

µ ∈Γ(µ1,µ2)
Eµ [En].

Proof. If µ1, µ2 have different weights, then both infimums are infinity and we are done. It is

not hard to show that

lim

n→∞
inf

µ ∈Γ(µ1,µ2)
Eµ [En] ≤ inf

µ ∈Γ(µ1,µ2)
Eµ [E],

since En ≤ E and the coupling realizing the infimum (which exists by Lemma 4) is a valid coupling

in each of the limit terms.

Showing the other direction is more involved. Define the finite relations

R<∞ = {(s1, s2) | E(s1, s2) < ∞} ∩ (supp(µ1) × supp(µ2))
R∞ = (supp(µ1) × supp(µ2)) \ R<∞.
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We first consider the case where

inf

µ ∈Γ(µ1,µ2)
Eµ [E] = ∞.

This means that every coupling must put weight on R<∞. To see this fact, note that the following

infimum is realized by some coupling µ∗:

inf

µ ∈Γ(µ1,µ2)
Eµ [R∞].

If µ∗(R∞) = 0, then µ∗ does not place any mass on points where E is infinity. Since µ∗ has finite
support, this means that Eµ∗ [E] would be finite, a contradiction. So, we have:

inf

µ ∈Γ(µ1,µ2)
Eµ [R∞] = inf

µ ∈Γ(µ1,µ2)
Eµ [R∞] ≥ ρ > 0.

for some constant ρ. Now, letM be any real number greater than ρ, and take N large enough so

that for every (s1, s2) ∈ R∞, we have En(s1, s2) > M/ρ for all n > N . Such an N must exist since R∞
is finite, and En(s1, s2) is tending to infinity for (s1, s2) ∈ R∞. We now have

inf

µ ∈Γ(µ1,µ2)
Eµ [En] ≥ inf

µ ∈Γ(µ1,µ2)
Eµ [[R∞] · En] ≥ (M/ρ) · ρ ≥ M

for all n > N . Since this is true forM arbitrarily large, we must have

lim

n→∞
inf

µ ∈Γ(µ1,µ2)
Eµ [En] = ∞ ≥ inf

µ ∈Γ(µ1,µ2)
Eµ [E]

as claimed.

Otherwise, suppose that the infimum is equal tow∗ < ∞. LetM = sup(s1,s2)∈R<∞ E(s1, s2) be the
largest finite value assigned by E. Since En(s1, s2) tends to infinity for all (s1, s2) ∈ R∞ and R∞
is finite, we may take a subsequence E ′n such that E ′n(s1, s2) ≥ n for all (s1, s2) ∈ R∞. Let ν ′i be a
coupling realizing the infimum

inf

µ ∈Γ(µ1,µ2)
Eµ [E ′i ].

Since this infimum is less than w∗, we have ν ′i (s1, s2) < w∗/n for every (s1, s2) ∈ R∞. Since each
ν ′i has finite support and takes values in [0, 1], by the Bolzano-Weierstrass theorem there exists a

subsequence ν ′′i converging pointwise to ν∗; we write E ′′i for the corresponding expectations. Note

that ν ′′i ∈ Γ(µ1, µ2) is a coupling, and ν ′′i (R∞) = 0.

Now let ϵ > 0. LetN be such that for alln > N and (s1, s2) ∈ R<∞, we have |ν ′′n (s1, s2)−ν∗(s1, s2)| <
ϵ/M ; such an N exists since the distributions have finite support. Then since E ′′n (s1, s2) ≤ E(s1, s2) ≤
M for all (s1, s2 ∈ R<∞, and ν∗(s1, s2) = 0 for all (s1, s2) ∈ R∞, we have

Eν ∗ [E ′′n ] < inf

µ ∈Γ(µ1,µ2)
Eµ [E ′′n ] + ϵ

for all n > N . The monotone convergence theorem implies:

Eν ∗ [E] = lim

n→∞
Eν ∗ [E ′′n ] ≤ lim

n→∞
inf

µ ∈Γ(µ1,µ2)
Eµ [E ′′n ] + ϵ .

On the other hand, we have the bound

inf

µ ∈Γ(µ1,µ2)
Eµ [E] ≤ Eν ∗ [E].

Since both bounds hold for all ϵ , we can conclude:

inf

µ ∈Γ(µ1,µ2)
Eµ [E] ≤ lim

n→∞
inf

µ ∈Γ(µ1,µ2)
Eµ [E ′′n ] = lim

n→∞
inf

µ ∈Γ(µ1,µ2)
Eµ [En]. □

Now, we can prove continuity of relational pre-expectations, provided that programs sample

from distributions with finite support. Note that such programs can still produce distributions with

infinite support, for instance by sampling in a loop.
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Theorem (Continuity). Let c be a program where all primitive distributions have finite support,

and let En : State × State → R∞≥0
be a monotonically increasing chain of relational expectations

converging pointwise to E : State × State→ R∞≥0
. Then,

r̃pe(c, E) = sup

n∈N
r̃pe(c, En).

Proof of Theorem 5. By induction on the structure of the program.

• skip. Then,
r̃pe(skip, E) = E = sup

n∈N
En = sup

n∈N
r̃pe(skip, En)

• x ← e . Then,

r̃pe(x ← e, E) = E{e ⟨1⟩, e ⟨2⟩/x ⟨1⟩,x ⟨2⟩}
= sup

n∈N
En{e ⟨1⟩, e ⟨2⟩/x ⟨1⟩,x ⟨2⟩} (subst. continuous)

= sup

n∈N
r̃pe(x ← e, En)

• x $← d . Let s1, s2 be any two states. By assumption, JdKs1 and JdKs2 have finite support, so

µ1 = Jx $← dKs1 and µ2 = Jx $← dKs2 also have finite support. By Lemma 5 applied to µ1, µ2,

we have

r̃pe(x $← d, E)(s1, s2) = inf

µ ∈Γ(µ1,µ2)
Eµ [E] = lim

n∈N
inf

µ ∈Γ(µ1,µ2)
Eµ [En] = lim

n∈N
r̃pe(x $← d, En)(s1, s2).

By monotonicity, the sup and the lim coincide.

• c; c ′. Then,

r̃pe(c; c ′, E) = r̃pe(c, r̃pe(c ′, E))
= r̃pe(c, sup

n∈N
r̃pe(c ′, En)) (induction)

= sup

n∈N
r̃pe(c, r̃pe(c ′, En)) (induction)

= sup

n∈N
r̃pe(c; c ′, En) (definition)

• if e then c else c ′. Then,

r̃pe(if e then c else c ′, E)
= [e ⟨1⟩ ∧ e ⟨2⟩] · r̃pe(c, E) + [¬e ⟨1⟩ ∧ ¬e ⟨2⟩] · r̃pe(c ′, E) + [e ⟨1⟩ , e ⟨2⟩] · ∞
= [e ⟨1⟩ ∧ e ⟨2⟩] · sup

n∈N
r̃pe(c, En) + [¬e ⟨1⟩ ∧ ¬e ⟨2⟩] · sup

n∈N
r̃pe(c ′, En) + [e ⟨1⟩ , e ⟨2⟩] · ∞

(induction)

= sup

n∈N
([e ⟨1⟩ ∧ e ⟨2⟩] · r̃pe(c, En) + [¬e ⟨1⟩ ∧ ¬e ⟨2⟩] · r̃pe(c ′, En) + [e ⟨1⟩ , e ⟨2⟩] · ∞)

= sup

n∈N
r̃pe(if e then c else c ′, En) (definition)

• while e do c . Then,

r̃pe(while e do c, E) = lfpX .Φc,E(X )
where Φc,E(X ) ≜ [e ⟨1⟩ ∧ e ⟨2⟩] · r̃pe(c,X ) + [¬e ⟨1⟩ ∧ ¬e ⟨2⟩] · E + [e ⟨1⟩ , e ⟨2⟩] · ∞
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We claim that:

r̃pe(while e do c, E) = lfpX .Φc,supn∈N En (X )
= lfpX . sup

n∈N
Φc,En (X ) (1)

= sup

n∈N
lfpX .Φc,En (X ) (2)

= sup

n∈N
r̃pe(while e do c, En) (definition)

Equality (1) follows from:

lfpX .Φc,supn∈N En (X ) = lfpX .[e ⟨1⟩ ∧ e ⟨2⟩] · r̃pe(c,X ) + [¬e ⟨1⟩ ∧ ¬e ⟨2⟩] · sup

n∈N
En + [e ⟨1⟩ , e ⟨2⟩] · ∞

= lfpX . sup

n∈N
([e ⟨1⟩ ∧ e ⟨2⟩] · r̃pe(c,X ) + [¬e ⟨1⟩ ∧ ¬e ⟨2⟩] · En + [e ⟨1⟩ , e ⟨2⟩] · ∞)

To show (2) we note that—by the Knaster-Tarski fixpoint theorem and the fact that Φc,En (X )
is monotonic—lfp is itself a supremum (over the ordinals), namely

lfpX . sup

n∈N
Φc,En (X ) = sup

m
sup

n∈N
Φmc,En (0).

Hence, the two suprema can be swapped. □

We are now ready to show soundness (Theorem 4).

Theorem (Soundness). Let c be a program, and suppose that E : State × State → R∞≥0
is a

relational expectation. Then

rpe(c, E) ≤ r̃pe(c, E) .
Equivalently, if r̃pe(c, E)(s1, s2) is finite for input states s1, s2 ∈ State then there exists a coupling

µs1,s2
∈ Γ(JcKs1, JcKs2) such that

Eµs
1
,s

2

[E] ≤ r̃pe(c, E)(s1, s2) .

Proof. Givenv ∈ X , we write δ (v) for the point distribution centered atv , and given µ ∈ Dist(X )
and f : X → Dist(X ), wewriteEµ [f ] for the distribution bind. Throughout, let (s1, s2) ∈ State×State
be two initial states. We prove the second, equivalent formulation by induction on the structure of

c . Suppose that r̃pe(c, E)(s1, s2) is finite.
• skip. Take the coupling δ (s1, s2). Then

Eδ (s1, s2)[E] = E(s1, s2) = r̃pe(skip, E)(s1, s2) .
• x ← e . Analogous to skip, but taking the coupling δ (s ′

1
, s ′

2
), where s ′i = si [x 7→ JeKsi ].

• x $← d . Let F : State→ Dist(State) be defined as F = Jx $← dK. F (s1) and F (s2)must have equal

weights for r̃pe(x $← d, E)(s1, s2) to be finite and evidently F (s1) and F (s2) both have countable
support, so Lemma 4 implies that there exists a coupling µ ∈ Γ(Jx $← dKs1, Jx $← dKs2) such
that

Eµ [E] = E#(Jx $← dKs1, Jx $← dKs2) = r̃pe(x $← d, E) .
• c; c ′. By induction, there exists a coupling µs1,s2

∈ Γ(JcKs1, JcKs2) such that

Eµs
1
,s

2

[r̃pe(c ′, E)] ≤ r̃pe(c; c ′, E)(s1, s2) < ∞.

As a consequence, r̃pe(c ′, E)(s ′
1
, s ′

2
) must be finite for all pairs (s ′

1
, s ′

2
) ∈ supp(µs1,s2

) ≜ S .
Again by induction, for all (s ′

1
, s ′

2
) ∈ S there exists a coupling µ ′s ′

1
,s ′

2

∈ Γ(Jc ′Ks ′
1
, Jc ′Ks ′

2
) such

that

Eµ′
s′
1
,s′

2

[E] ≤ r̃pe(c ′, E)(s ′
1
, s ′

2
) < ∞.
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Define the following joint distribution:

µ∗s1,s2

(x1,x2) = E(y1,y2)∼µs
1
,s

2

[µ ′y1,y2

(x1,x2)].

By a routine calculation, it is not hard to show that µ∗ is indeed a coupling in Γ(Jc ; c ′Ks1, Jc ; c ′Ks2).
Let’s for instance compute the first marginal (the second marginal is analogous):

π1(µ∗s1,s2

)(x1) =
∑

x2∈State
µ∗s1,s2

(x1,x2)

=
∑

x2∈State
E(y1,y2)∼µs

1
,s

2

[µ ′y1,y2

(x1,x2)]

= E(y1,y2)∼µs
1
,s

2

[
∑

x2∈State
µ ′y1,y2

(x1,x2)]

= E(y1,y2)∼µs
1
,s

2

[(Jc ′Ky1)(x1)]

=
∑

y1∈State

∑
y2∈State

(Jc ′Ky1)(x1) · µs1,s2
(y1,y2)

=
©«

∑
y1∈State

(Jc ′Ky1)(x1)
ª®¬ · ©«

∑
y2∈State

µs1,s2
(y1,y2)

ª®¬
=

∑
y1∈State

(Jc ′Ky1)(x1) · (JcKs1)(y1)

= (Jc; c ′Ks1)(x1)

Combining inequalities and applying monotonicity of expectations yields

Eµ∗s
1
,s

2

[E] = Eµs
1
,s

2

[Eµ′−,− [E]] ≤ Eµs1
,s

2

[r̃pe(c ′, E)] ≤ r̃pe(c; c ′, E)(s1, s2).

• if e then c else c ′. Note that e cannot be different between s1 and s2, otherwise

r̃pe(if e then c else c ′, E)(s1, s2)

is infinite. Thus, there are two possible cases: either e is true in both s1, s2, or e is false in both

s1, s2. In the first case, we have:

Jif e then c else c ′Ksi = JcKsi .

By induction, there exists a coupling µt (s1, s2) ∈ Γ(JcKs1, JcKs2) such that

Eµt (s1,s2)[E] ≤ r̃pe(c, E)(s1, s2) = r̃pe(if e then c else c ′, E)(s1, s2)

since the right-hand side is finite by assumption. Similarly, if e is false in both s1 and s2, by

induction there exists a coupling µf (s1, s2) ∈ Γ(Jc ′Ks1, Jc ′Ks2) such that

Eµf (s1,s2)[E] ≤ r̃pe(c ′, E)(s1, s2) = r̃pe(if e then c else c ′, E)(s1, s2)

since the right-hand side is finite by assumption. Thus, we can define the desired coupling by

case analysis:

µ(s1, s2) ≜


µt (s1, s2) : JeKs1 = JeKs2 = tt

µf (s1, s2) : JeKs1 = JeKs2 = ff

: JeKs1 , JeKs2 (impossible)
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• while e do c . By induction on c , for any pair of states s ′
1
, s ′

2
and any expectation Ec such that

r̃pe(c, Ec )(s ′1, s ′2) is finite, there exists a coupling νs1,s2
∈ Γ(JcKs1, JcKs2) such that

Eνs
1
,s

2

[Ec ] ≤ Ec (s ′1, s ′2).
Now, let’s consider the loop. We define the following loop approximants:

c0 ≜ while tt do skip

ci+1 ≜ if e then c; ci else skip

Each approximant executes at most i iterations of the loop; the zero-th approximant returns

the zero distribution and does not execute any iterations of the loop body. By definition, the

relational pre-expectation of E with respect to c0 is:

r̃pe(c0, E) = lfp X .ΦE,skip(X ),
where the characteristic functional of a loop while e do c is defined as:

ΦE,c (X ) ≜ [e ⟨1⟩ ∧ e ⟨2⟩] · r̃pe(c,X ) + [¬e ⟨1⟩ ∧ ¬e ⟨2⟩] · E + [e ⟨1⟩ , e ⟨2⟩]·
It is easy to show that the constant zero relational expectation is a fixed point for the loop c0,

and evidently it must be the least fixed point. So, r̃pe(c0, E) = 0. Let

E0 ≜ r̃pe(c0, E) = 0

Ei+1 ≜ r̃pe(ci+1, E) = [e ⟨1⟩ ∧ e ⟨2⟩] · r̃pe(c, Ei ) + [¬e ⟨1⟩ ∧ ¬e ⟨2⟩] · E + ·[e ⟨1⟩ , e ⟨2⟩] · ∞

By induction and definition of relational pre-expectation, Ei = Φi
E,c (0). Furthermore, by

monotonicity (Lemma 3) Φi
E,c (0) is a monotone increasing sequence in i .

We now need two small lemmas.

Lemma 6. For every j ∈ N, program c , and relational expectation E, we have:

Φj
E,c (0) ≤ lfpX .ΦE,c (X ) = r̃pe(while e do c, E).

Proof. By induction on j. The base case j = 0 is clear, and the inductive step follows by

monotonicity (Lemma 3):

Φj+1

E,c (0) = ΦE,c (Φi
E,c (0)) ≤ ΦE,c (lfpX .ΦE,c (X )) = lfpX .ΦE,c (X ). □

Now, let (s1, s2) be two given input states such that r̃pe(while e do c, E)(s1, s2) < ∞. As an
immediate consequence, Φi

E,c (0)(s1, s2) must be finite for all i , so Ei (s1, s2) are all finite.

Lemma 7. For all j ∈ N and (s ′
1
, s ′

2
) ∈ State×State, if Ej (s ′1, s ′2) < ∞ then there exists a coupling

µ j,s ′
1
,s ′

2

∈ Γ(Jc jKs ′1, Jc jKs ′2) such that

Eµ j,s′
1
,s′

2

[E] ≤ Ej (s ′1, s ′2) < ∞.

Proof. By induction on j. The base case j = 0 is clear, taking the null coupling that assigns

probability zero to every pair of states. For the inductive step, we have

Ej+1 = [e ⟨1⟩ ∧ e ⟨2⟩] · r̃pe(c, Ej ) + [¬e ⟨1⟩ ∧ ¬e ⟨2⟩] · E + [e ⟨1⟩ , e ⟨2⟩] · ∞.
Note that e must be equal in s ′

1
and s ′

2
, since Ej+1(s ′1, s ′2) is finite. There are two cases. If e

is false in s ′
1
and s ′

2
, then Jc j+1Ks ′1 = δ (s ′

1
) and Jc j+1Ks ′2 = δ (s ′

2
). We can define the coupling

µs ′
1
,s ′

2

= δ (s ′
1
, s ′

2
) ∈ Γ(Jc j+1Ks ′1, Jc j+1Ks ′2) and we are done, since

Eµs′
1
,s′

2

[E] = E(s ′
1
, s ′

2
) = Ej+1(s ′1, s ′2).
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Otherwise, suppose that e is true in s ′
1
and s ′

2
. SinceEj+1(s ′1, s ′2) < ∞, wemust have r̃pe(c, Ej )(s ′1, s ′2) <

∞ as well. Hence by the (outer) induction on the structure of the program, there exists a

coupling νs ′
1
,s ′

2

∈ Γ(JcKs ′
1
, JcKs ′

2
) such that

Eνs′
1
,s′

2

[Ej ] ≤ Ej (s ′1, s ′2) < ∞.

As a result, for all states (t1, t2) ∈ supp(νs ′
1
,s ′

2

), we must have Ej (t1, t2) finite as well. By the

(inner) induction hypothesis on j, there is a coupling µ j,t1,t2
∈ Γ(Jc jKt1, Jc jKt2) such that

Eµ j,t
1
,t

2

[E] ≤ Ej (t1, t2) < ∞.

Now, we can define the coupling for the (j + 1)-th approximants:

µ j+1,s ′
1
,s ′

2

≜ Eνs′
1
,s′

2

[µ j,−,−]

We first check the distance condition. By definition, we have:

Eµ j+1,s′
1
,s′

2

[E] = E(t1,t2)∼νs′
1
,s′

2

[Eµ j,t
1
,t

2

[E]]
≤ E(t1,t2)∼νs′

1
,s′

2

[Ej (t1, t2)]

≤ Ej (s ′1, s ′2)
≤ Ej+1(s ′1, s ′2)

The marginal condition is not hard to show, using the marginal properties of νs ′
1
,s ′

2

and µ j,t1,t2

combined with the definition of approximants: since e is true in s ′
1
and s ′

2
, we have Jc j+1Ks ′1 =

Jc; c jKs ′1 and Jc j+1Ks ′2 = Jc; c jKs ′2. The proof follows the case for sequential composition. □

Since Ei (s1, s2) < ∞ by assumption, we may apply Lemma 7 with input states s1, s2 and

expectations Ei to produce a sequence of couplings µi,s1,s2
∈ Γ(JciKs1, JciKs2) such that

Eµi,s
1
,s

2

[E] ≤ Ei (s1, s2) = r̃pe(ci , E) = Φi
E,c (0) < ∞.

By Theorem 16, from the sequence µi,s1,s2
we can extract a subsequence µ ′i,s1,s2

(and a corre-

sponding subsequence c ′i of ci ) that converges monotonically to a coupling satisfying

µ̃s1,s2
∈ Γ( lim

i→∞
Jc ′i Ks1, lim

i→∞
Jc ′i Ks2) = Γ(Jwhile e do cKs1, Jwhile e do cKs2),

by the definition of semantics for loops. All that remains to show is:

E(s ′
1
,s ′

2
)∼µ̃s

1
,s

2

[E(s ′
1
, s ′

2
)] ≤ r̃pe(while e do c, E)(s1, s2).
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We can compute:

E(s ′
1
,s ′

2
)∼µ̃s

1
,s

2

[E(s ′
1
, s ′

2
)] =

∑
(s ′

1
,s ′

2
)∈State×State

E(s ′
1
, s ′

2
) · lim

i→∞
µ ′i,s1,s2

(s ′
1
, s ′

2
)

≤
∑

(s ′
1
,s ′

2
)∈State×State

lim

i→∞
E(s ′

1
, s ′

2
) · µ ′i,s1,s2

(s ′
1
, s ′

2
) (E may be∞)

≤ lim

i→∞

∑
(s ′

1
,s ′

2
)∈State×State

E(s ′
1
, s ′

2
) · µ ′i,s1,s2

(s ′
1
, s ′

2
) (by Fatou’s lemma)

≤ lim

i→∞
(r̃pe(c ′i , E)(s1, s2)) (by construction)

= ( lim
i→∞

r̃pe(c ′i , E))(s1, s2) (definition)

= lim

i→∞
(Φi
E,c (0))(s1, s2) (subsequence)

≤ (lfpX .ΦE,c (X ))(s1, s2) (Lemma 6)

= r̃pe(while e do c, E)(s1, s2). (definition)

□

E EMBEDDING RELATIONAL HOARE LOGICS

Proof of Theorem 8. We adopt the convention that f (∞) ≜ ∞, even if f is constant. The proof

is by induction on the derivation.

Case Assn: By definition, we have:

r̃pe(x ← e, E + [¬Q] · ∞) = id(E{e ⟨1⟩, e ⟨2⟩/x ⟨1⟩,x ⟨2⟩}) + [¬Q{e ⟨1⟩, e ⟨2⟩/x ⟨1⟩,x ⟨2⟩}] · ∞
Case Rand*: By the proof rule for sampling (Proposition 6) taking the coupling function given

by the bijection couplingM(s1, s2) = Mh , we have:

r̃pe(x $← [D], E + [¬Q] · ∞) ≤ Ev∼J[D]K[E{v,h(v)/x ⟨1⟩,x ⟨2⟩} + [¬Q{v,h(v)/x ⟨1⟩,x ⟨2⟩}] · ∞]
≤ Ev∼J[D]K[E{v,h(v)/x ⟨1⟩,x ⟨2⟩}] + [∀v ∈ D. ¬Q{v,h(v)/x ⟨1⟩,x ⟨2⟩}] · ∞

where the second inequality is because each element v ∈ D has positive probability under

J[D]K, so if ¬Q{v,h(v)/x ⟨1⟩,x ⟨2⟩} for some v ∈ D then both sides are infinite.

Case Seq: By induction, we have:

r̃pe(c ′, E ′′ + [¬R] · ∞) ≤ f ′(E ′) + [¬Q] · ∞ (induction)

r̃pe(c, E ′ + [¬Q] · ∞) ≤ f (E) + [¬P] · ∞ (induction)

Then, we can conclude:

r̃pe(c; c ′, E ′′ + [¬R] · ∞) = r̃pe(c, r̃pe(c ′, E ′′ + [¬R] · ∞)) (definition)

= r̃pe(c, f ′(E ′) + [¬Q] · ∞) (monotonicity)

≤ f ′(r̃pe(c, E ′ + [¬Q] · ∞)) (affine)

≤ f ′(f (E) + [¬P] · ∞) (monotonicity)

= f ′ ◦ f (E) + [¬P] · ∞
Case Cond: By induction, we have:

r̃pe(c, E ′ + [¬Q] · ∞) ≤ f (E ′) + [¬(P ∧ e ⟨1⟩)] · ∞ (induction)

r̃pe(c ′, E ′ + [¬Q] · ∞) ≤ f (E ′) + [¬(P ∧ ¬e ⟨1⟩)] · ∞ (induction)
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Assn

⊢ {Q[e1⟨1⟩, e2⟨2⟩/x1⟨1⟩,x2⟨2⟩]; E[e1⟨1⟩, e2⟨2⟩/x1⟨1⟩,x2⟨2⟩]} x1 ← e1 ∼id x2 ← e2 {Q ;E}

Rand*

h : D → D bijection

⊢ {∀v ∈ D.Q[v,h(v)/x1⟨1⟩,x2⟨2⟩];Ev∼[D][E[v,h(v)/x ⟨1⟩,x ⟨2⟩]]} x1
$← [D] ∼id x2

$← [D] {Q ; E}

Seq

⊢ {P ; E} c1 ∼f c2 {Q ; E ′} ⊢ {Q ; E ′} c ′
1
∼f ′ c ′2 {R; E ′′}

⊢ {P ; E} c1; c ′
1
∼f ′◦f c2; c ′

2
{R; E ′′}

Cond

⊢ {P ∧ e1⟨1⟩; E} c1 ∼f c2 {Q ; E ′}
⊢ {P ∧ ¬e1⟨1⟩;E} c ′1 ∼f c ′2 {Q ; E ′} |= P → e1⟨1⟩ = e2⟨2⟩
⊢ {P ; E} if e1 then c1 else c ′1 ∼f if e2 then c2 else c ′2 {Q ;E ′}

While

⊢ {P ∧v ⟨1⟩ = k ; Ek } c1 ∼fk c2 {P ∧v ⟨1⟩ = k − 1; Ek−1}
|= P → e1⟨1⟩ = e2⟨1⟩ ∧ (v ⟨1⟩ ≤ 0↔ ¬e1⟨1⟩)

⊢ {P ∧v ⟨1⟩ = n; En} while e1 do c1 ∼f1◦···◦fn while e2 do c2 {P ∧v ⟨1⟩ = 0; E0}

Conseq

⊢ {P ; E} c1 ∼f c2 {Q ; E ′} |= P ′→ (P ∧ f (E) ≤ f ′(E ′′)) ∧Q → Q ′ ∧ (E ′′′ ≤ E ′)
⊢ {P ′; E ′′} c1 ∼f ′ c2 {Q ′; E ′′′}

Case

⊢ {P ∧ R; E} c1 ∼f c2 {Q ; E ′} ⊢ {P ∧ ¬R; E} c1 ∼f c2 {Q ; E ′}
⊢ {P ; E} c1 ∼f c2 {Q ; E ′}

Frame-D

⊢ {P ; E} c1 ∼f c2 {Q ; E ′} f (z) = k · z where k ≥ 1 FV (E ′′) ∩MV (c1, c2) = ∅
⊢ {P ; E + E ′′} c1 ∼f c2 {Q ; E ′ + E ′′}

Fig. 6. EpRHL proof pules

Then, we have:

r̃pe(if e then c else c ′, E ′ + [¬Q] · ∞)
= [e ⟨1⟩ ∧ e ⟨2⟩] · r̃pe(c, E ′ + [¬Q] · ∞) + [¬e ⟨1⟩ ∧ ¬e ⟨2⟩] · r̃pe(c ′, E ′ + [¬Q] · ∞) + [¬(e ⟨1⟩ = e ⟨2⟩)] · ∞

(definition)

≤ [e ⟨1⟩ ∧ e ⟨2⟩] · (f (E ′) + [¬(P ∧ e ⟨1⟩)] · ∞) + [¬e ⟨1⟩ ∧ ¬e ⟨2⟩] · (f (E ′) + [¬(P ∧ ¬e ⟨1⟩)] · ∞) + [¬(e ⟨1⟩ = e ⟨2⟩)] · ∞
(induction)

≤ [e ⟨1⟩ ∧ e ⟨2⟩] · (f (E ′) + [¬(P ∧ e ⟨1⟩)] · ∞) + [¬e ⟨1⟩ ∧ ¬e ⟨2⟩] · (f (E ′) + [¬(P ∧ ¬e ⟨1⟩)] · ∞) + [¬P] · ∞
(|= P → e ⟨1⟩ = e ⟨2⟩)

= ([e ⟨1⟩ ∧ e ⟨2⟩] + [¬e ⟨1⟩ ∧ ¬e ⟨2⟩]) · f (E ′) + [¬P] · ∞ (boolean alg.)

= f (E ′) + [¬P] · ∞ (non-negative)

CaseWhile: Let n be any natural number. For any natural number 0 < m ≤ n, we write

f (m) = f1 ◦ · · · ◦ fm and we define f (0) = id. We will show:

r̃pe(while e do c, E0 + [¬(P ∧v ⟨1⟩ = 0)] · ∞) ≤ f (n)(En) + [¬(P ∧v ⟨1⟩ = n)] · ∞

, Vol. 1, No. 1, Article . Publication date: August 2020.



A Pre-Expectation Calculus for Probabilistic Sensitivity 41

We take the following loop invariant:

In ≜
n∑
j=0

([P ∧v ⟨1⟩ = j] · f (j)(Ej )) + [¬(P ∧v ⟨1⟩ ≤ n)] · ∞

We claim that:

[e ⟨1⟩ ∧ e ⟨2⟩] · r̃pe(c,In) + [¬e ⟨1⟩ ∧ ¬e ⟨2⟩] · (E0 + [¬(P ∧v ⟨1⟩ = 0)] · ∞) + [e ⟨1⟩ , e ⟨2⟩] · ∞ ≤ In .

Both sides are infinite if e ⟨1⟩ , e ⟨2⟩, or ¬(P ∧ v ⟨1⟩ ≤ n), or ¬e ⟨1⟩ ∧ ¬e ⟨2⟩ ∧ v , 0. So, it

suffices to prove:

[P∧e ⟨1⟩∧e ⟨2⟩∧v ⟨1⟩ ≤ n]·r̃pe(c,In)+[P∧¬e ⟨1⟩∧¬e ⟨2⟩]·E0 ≤ [P∧v ⟨1⟩ ≤ n]·In =
n∑
j=0

[P∧v ⟨1⟩ = j]·f (j)(Ej ).

If P ∧ ¬e ⟨1⟩ ∧ ¬e ⟨2⟩ holds, then v ⟨1⟩ = 0 holds by assumption. So by definition of In :

[P ∧ ¬e ⟨1⟩ ∧ ¬e ⟨2⟩] · E0 = [P ∧v ⟨1⟩ = 0] · f (0)(E0) ≤ In .

If P ∧ e ⟨1⟩ ∧ e ⟨2⟩ ∧v ⟨1⟩ ≤ n holds, then suppose that v ⟨1⟩ = k with 0 < k ≤ n. We have:

[P ∧ e ⟨1⟩ ∧ e ⟨2⟩ ∧v ⟨1⟩ = k] · r̃pe(c,In)

≤ [P ∧ e ⟨1⟩ ∧ e ⟨2⟩ ∧v ⟨1⟩ = k] · r̃pe(c,
n∑
j=0

[P ∧v ⟨1⟩ = j] · f (j)(Ej ) + [¬(P ∧v ⟨1⟩ = k − 1)] · ∞)

(boolean alg.)

= [P ∧ e ⟨1⟩ ∧ e ⟨2⟩ ∧v ⟨1⟩ = k] · r̃pe(c, [P ∧v ⟨1⟩ = k − 1] · f (k−1)(Ek−1) + [¬(P ∧v ⟨1⟩ = k − 1)] · ∞)
(boolean alg.)

≤ [P ∧ e ⟨1⟩ ∧ e ⟨2⟩ ∧v ⟨1⟩ = k] · f (k−1)(r̃pe(c, Ek−1 + [¬(P ∧v ⟨1⟩ = k − 1)] · ∞)) (affine)

≤ [P ∧ e ⟨1⟩ ∧ e ⟨2⟩ ∧v ⟨1⟩ = k] · f (k−1)(fk (Ek ) + [¬(P ∧v ⟨1⟩ = k)] · ∞) (induction)

= [P ∧ e ⟨1⟩ ∧ e ⟨2⟩ ∧v ⟨1⟩ = k] · f (k)(Ek ) (boolean alg.)

≤ [P ∧ e ⟨1⟩ ∧ e ⟨2⟩ ∧v ⟨1⟩ = k] · In (definition)

Above, we have used the induction hypothesis:

r̃pe(c, Ek−1 + [¬(P ∧v ⟨1⟩ = k − 1)] · ∞) ≤ fk (Ek ) + [¬(P ∧v ⟨1⟩ = k)] · ∞.

By the loop rule, we can conclude:

r̃pe(while e do c, E + [¬(P ∧v ⟨1⟩ = 0)] · ∞) ≤ In ≤ f (n)(En) + [¬(P ∧v ⟨1⟩ = n)] · ∞.

Case Conseq: By induction, we have:

r̃pe(c, E ′′′ + [¬Q ′] · ∞) = r̃pe(c, [Q] · E ′′′ + [¬Q ′] · ∞) (boolean alg.)

≤ r̃pe(c, E ′ + [¬Q ′] · ∞) (monotonicity)

≤ f (E) + [¬P] · ∞ (induction)

≤ f (E) + [¬P ′] · ∞ (assumption)

= [P ′] · f (E) + [¬P ′] · ∞ (boolean alg.)

≤ [P ′] · f ′(E ′′) + [¬P ′] · ∞ (assumption)

≤ f ′(E ′′) + [¬P ′] · ∞
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Case Case: By induction, we have:

r̃pe(c, E ′ + [¬Q] · ∞) ≤ f (E ′) + [¬(P ∧ R)] · ∞ (induction)

r̃pe(c, E ′ + [¬Q] · ∞) ≤ f (E ′) + [¬(P ∧ ¬R)] · ∞ (induction)

Thus, we have:

r̃pe(c, E ′ + [¬Q] · ∞) ≤ f (E ′) +min([¬(P ∧ R)], [¬(P ∧ ¬R)]) · ∞ (induction)

≤ f (E ′) + [¬P] · ∞ (boolean alg.)

Case Frame-D: We have:

r̃pe(c, E ′ + E ′′ + [¬Q] · ∞) ≤ r̃pe(c, E ′ + [¬Q] · ∞) + E ′′ (frame)

≤ f (E) + [¬P] · ∞ + E ′′ (induction)

≤ f (E + E ′′) + [¬P] · ∞ (f expanding)

□

F CONVERGENCE OF TD(0): OMITTED DETAILS

We start by analyzing the inner loopwin . We first show that

r̃pe(win , ∥W ⟨1⟩ −W ⟨2⟩∥∞) ≤ Iin
for the invariant Iin :

Iin ≜ [i⟨1⟩ , i⟨2⟩] · ∞
+ [i⟨1⟩ = i⟨2⟩] · max

l< |S |
([l < i⟨1⟩] · |W ⟨1⟩[l] −W ⟨2⟩[l]| + [i⟨1⟩ ≤ l] · k · ∥V ⟨1⟩ −V ⟨2⟩∥∞).

Let cin be the body, and csamp be the three sampling statements. Applying Inv, it suffices to show:

[i⟨1⟩ < |S|∧i⟨2⟩ < |S|]·r̃pe(cin ,Iin)+[i⟨1⟩ ≥ |S|∧i⟨2⟩ ≥ |S|]·∥W ⟨1⟩−W ⟨2⟩∥∞+[i⟨1⟩ , i⟨2⟩]·∞ ≤ Iin
We describe how to bound the key part of the invariant, r̃pe(cin ,Iin) in the first term; the other

cases are simpler. Computing the pre-expectation for the last two instructions gives us

r̃pe(cin ,Iin) ≤ r̃pe(csamp , [i⟨1⟩ = i⟨2⟩] · J),
where J is the following relational expectation:

max

l< |S |

( [l < i⟨1⟩] · |W ⟨1⟩[l] −W ⟨2⟩[l]|
+[l = i⟨1⟩] · | (1 − α) · (V [i]⟨1⟩ −V [i]⟨2⟩) + α · (r ⟨1⟩ − r ⟨2⟩ + γ · (V [j]⟨1⟩ −V [j]⟨2⟩)) |
+[i⟨1⟩ + 1 ≤ l] · k · ∥V ⟨1⟩ −V ⟨2⟩∥∞

)
.

By taking an appropriate coupling, we will show that r̃pe(csamp ,J) is at most Iin . For sampling j,
we take the coupling function where if a⟨1⟩ = a⟨2⟩, then we take the identity coupling ensuring

j⟨1⟩ = j⟨2⟩, otherwise we take the product coupling. We take the same coupling for sampling

r . Finally for sampling a, we take the identity coupling ensuring a⟨1⟩ = a⟨2⟩. When i⟨1⟩ = i⟨2⟩,
j⟨1⟩ = j⟨2⟩, and r ⟨1⟩ = r ⟨2⟩. By applying rule Samp, we can upper-bound r̃pe(cin ,Iin) by [i⟨1⟩ =
i⟨2⟩ = i] times:

ρ(va ,vr ,vj , i) · max

l< |S |
©«
[l < i] · |W ⟨1⟩[l] −W ⟨2⟩[l]|
+[l = i] · | (1 − α) · (V [i]⟨1⟩ −V [i]⟨2⟩) + α · (γ · (V ⟨1⟩[vj ] −V ⟨2⟩[vj ])) |
+[i + 1 ≤ l] · k · ∥V ⟨1⟩ −V ⟨2⟩∥∞

ª®¬ .
(4)

taking a sum over triples (va ,vr ,vj ) ∈ A × R × S and ρ(va ,vr ,vj , i) is the probability of drawing

va ,vr ,vj in current state i; note that for any fixed i < |S|, the coefficients sum to 1.
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pgd(w0,α ,T ) :

w ← w0;

t ← 1;

while t < T do
д← ∇ℓ(z,−)(w);
w ← ΠΩ(w − αt · д);
t ← t + 1;

Fig. 7. Projected Gradient Descent (PGD)

Now for any l < |S| and any input states, at most one of the three summands in the max is

non-zero. We can bound the first and last summands:

[l < i] · |W ⟨1⟩[l] −W ⟨2⟩[l]| ≤ Iin (since l < i)

[i + 1 ≤ l] · k · ∥V ⟨1⟩ −V ⟨2⟩∥∞ ≤ Iin (since i ≤ l )

For the second summand, we have:

[l = i] · | (1 − α) · (V ⟨1⟩[i] −V ⟨2⟩[i]) + αγ · (V ⟨1⟩[vj ] −V ⟨2⟩[vj ]) |
≤ [l = i] · | (1 − α) · ∥V ⟨1⟩ −V ⟨2⟩∥∞ + αγ · ∥V ⟨1⟩ −V ⟨2⟩∥∞ |
≤ [l = i] · k · ∥V ⟨1⟩ −V ⟨2⟩∥∞
≤ Iin , (since i ≤ l )

Putting everything together, we have:

r̃pe(cin ,Iin) ≤ [i⟨1⟩ = i⟨2⟩ = i] ·
∑

va,vr ,vj

(Eq. (4))

≤ [i⟨1⟩ = i⟨2⟩ = i] ·
∑

va,vr ,vj

ρ(va ,vr ,vj , i) · Iin

= Iin ,

establishing the inner invariant.

G VERIFYING ROBUSTNESS OF PROJECTED GRADIENT DESCENT (PGD)

This example is inspired by an analysis by Miller and Hardt [24]. Let Ω ⊆ Rd be a compact and

convex set of feasible parameters, and let ΠΩ : Rd → Ω be the Euclidean projection sending a

point from Rd to the closest point in Ω under the Euclidean distance. Given a loss function ℓ, initial
parameters w0, and a sequence of step sizes {αt }t , the program pgd in Figure 7 runs projected

gradient descent for T iterations.

Consider running this algorithm with two different loss functions ℓ⟨1⟩ and ℓ⟨2⟩, satisfying the
following conditions:

(1) Gradients are close. For any parameterw ∈ Rd ,

∥∇ℓ⟨1⟩(z,−)(w) − ∇ℓ⟨2⟩(z,−)(w)∥ ≤ γ .

(2) Gradient of loss function is Lipschitz. For any two parametersw,w ′ ∈ Rd ,

∥∇ℓ⟨1⟩(z,−)(w) − ∇ℓ⟨1⟩(z,−)(w ′)∥ ≤ β ∥w −w ′∥.
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Taking the step sizes αt ≤ α/t , we can bound the distance between final weights ∥w ⟨1⟩−w ⟨2⟩∥ from
running projected gradient descent on the loss functions ℓ⟨1⟩ and ℓ⟨2⟩ by showing the following

bound on the relational pre-expectation, which matches the analysis of Miller and Hardt [24]:

r̃pe(pgd(w0,α ,T ), ∥w ⟨1⟩ −w ⟨2⟩∥) ≤ αγT α β+1

Intuitively, this property means that small changes to the loss function in PGD do not lead to large

changes in the learned parameters.

To start the proof, we take the following loop invariant:

I ≜ [t ⟨1⟩ , t ⟨2⟩] · ∞

+ [t ⟨1⟩ = t ⟨2⟩] · ∥w ⟨1⟩ −w ⟨2⟩∥
T∏

j=t ⟨1⟩
(1 + α jβ)

+ [t ⟨1⟩ = t ⟨2⟩] ·
T∑

s=t ⟨1⟩
αsγ

T∏
j=s+1

exp(1 + α jβ)

To apply the loop rule, we need to check

[(t < T )⟨1⟩ ∧ (t < T )⟨2⟩]r̃pe(c,I)+ [(t ≥ T )⟨1⟩ ∧ (t ≥ T )⟨2⟩]E + [(t < T )⟨1⟩ , (t < T )⟨2⟩] ·∞ ≤ I.

The main case is when both loop guards are true and when both loop counters are equal. Taking

the relational pre-expectation for the loop body in this case, we have:

r̃pe(c,I) =

= ∥ΠΩ(w − αt · ∇ℓ(z,−)(w))⟨1⟩ − ΠΩ(w − αt · ∇ℓ(z,−)(w))⟨2⟩∥
T∏

j=t ⟨1⟩+1

(1 + α jβ) +
T∑

s=t ⟨1⟩+1

αsγ
T∏

j=s+1

(1 + α jβ)

≤ (∥w ⟨1⟩ −w ⟨2⟩∥ + αt ∥∇ℓ(z,−)(w)⟨1⟩ − ∇ℓ(z,−)(w)⟨2⟩∥)
T∏

j=t ⟨1⟩+1

(1 + α jβ) +
T∑

s=t ⟨1⟩+1

αsγ
T∏

j=s+1

(1 + α jβ)

≤ (∥w ⟨1⟩ −w ⟨2⟩∥ + αt β ∥w ⟨1⟩ −w ⟨2⟩∥ + αtγ )
T∏

j=t ⟨1⟩+1

(1 + α jβ) +
T∑

s=t ⟨1⟩+1

αsγ
T∏

j=s+1

(1 + α jβ)

= I
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Pushing the invariant past the initial assignment instructions and taking the same step sizes

αt ≤ α/t as Miller and Hardt [24], we conclude:

r̃pe(pgd(w0,α ,T ), ∥w ⟨1⟩ −w ⟨2⟩∥) ≤
T∑
s=1

αsγ
T∏

j=s+1

(1 + α jβ)

≤
T∑
s=1

αsγ
T∏

j=s+1

exp(α jβ)

≤
T∑
s=1

αγ

s

T∏
j=s+1

exp

(
αβ

j

)
=

T∑
s=1

αγ

s
exp

(
αβ

T∑
j=s+1

1

j

)
≤

T∑
s=1

αγ

s
exp (αβ log(T /s))

≤ αγT α β
T∑
s=1

1

sα β+1

≤ αγT α β+1.

H RANDOM-TO-TOP: OMITTED DETAILS

Axioms. We assume a few axioms about the shiftR operation. Let a1,a2 be two decks and J such
that ∀i .(0 ≤ i ≤ J ) ⇒ a1[i] = a2[i]. Then,
• If j ≤ J and a′i = shiftR(ai , j), then ∀i .(0 ≤ i ≤ J ) ⇒ a′

1
[i] = a′

2
[i]

• If j1, j2 > J , a′i = shiftR(ai , ji ), and a1[j1] = a2[j2], then ∀i .(0 ≤ i ≤ J + 1) ⇒ a′
1
[i] = a′

2
[i]

Additionally, if a is a permutation of [N ], then, for all i < N , so is shiftR(a, i).

Establishing the invariant. Let C ≜ (N − 1)/N . Recall the loop invariant:

I ≜ [k ⟨1⟩ , k ⟨2⟩] · ∞ + [k ⟨1⟩ = k ⟨2⟩] · dM ·Cmax(0,K−k ⟨1⟩)

We check that it satisfies the loop rule:

[k ⟨1⟩ < K ∧k ⟨2⟩ < K] · r̃pe(c,I)+ [k ⟨1⟩ ≥ K ∧k ⟨2⟩ ≥ K] · F + [(k ⟨1⟩ < K) , (k ⟨2⟩ < K)] ·∞ ≤ I,

If [k ⟨1⟩ , k ⟨2⟩]∞ then the right-hand side of the inequality is∞, and it is satisfied. Otherwise, if

[k ⟨1⟩ ≥ K ∧ k ⟨2⟩ ≥ K] then we need to check that, indeed,

F ≤ dM ·Cmax(0,K−k ⟨1⟩) = dM

Finally, if [k ⟨1⟩ < K ∧ k ⟨2⟩ < K], we compute the pre-expectation of the loop body with respect to

I. Let I ′ be the pre-expectation of the loop body without the sampling, i.e.,

I ′ ≜ [k ⟨1⟩ + 1 , k ⟨2⟩ + 1] · ∞

+ [k ⟨1⟩ + 1 = k ⟨2⟩ + 1] · (1/N ) ·
(
N −max

i
(∀j < i .a′⟨1⟩[j] = a′⟨2⟩[j]) ·Cmax(0,K−k ⟨1⟩−1)

)
where a′⟨1⟩ = shiftR(a⟨1⟩,y⟨1⟩) and a′⟨2⟩ = shiftR(a⟨2⟩,y⟨2⟩). In the following, let l ′ denote
maxi (∀j < ia′⟨1⟩[j] = a′⟨2⟩[j]). We pick a coupling induced by a bijection π such that, for all z,
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a⟨1⟩[z⟨1⟩] = a⟨2⟩[π (z⟨1⟩)]. The pre-expectation induced by this assignment is:

I ′′ ≜ [k ⟨1⟩ + 1 , k ⟨2⟩ + 1] · ∞

+ [k ⟨1⟩ + 1 = k ⟨2⟩ + 1] · (1/N ) ·
(
N −max

i
(∀j < i .a′′⟨1⟩[j] = a′′⟨2⟩[j]) ·Cmax(0,K−k ⟨1⟩−1)

)
where a′′⟨1⟩ = shiftR(a⟨1⟩,y) and a′⟨2⟩ = shiftR(a⟨2⟩,π (y)).

Now we have to compute the expected value of I ′′ when we sample y uniformly fromU ([N ]).
There are two cases. If y < l ′, then π (y) = y, and a⟨1⟩[y] = a⟨2⟩[y], and

max

i
(∀j < i .a′′⟨1⟩[j] = a′′⟨2⟩[j]) = max

i
(∀j < i .a⟨1⟩[j] = a⟨2⟩[j])

where we use the first axiom of shiftR. The probability of this happening is precisely l ′/N = 1−dM .

In the other case, by the second axiom of shiftR

max

i
(∀j < i .a′′⟨1⟩[j] = a′′⟨2⟩[j]) + 1 ≤ max

i
(∀j < i .a⟨1⟩[j] = a⟨2⟩[j])

This case happens with probability dM . The inequality arises from the fact that we may have

matches below l ′. From the expression above we derive:

(1/N )
(
N −max

i
(∀j < i .a′′⟨1⟩[j] = a′′⟨2⟩[j])

)
≤ (1/N )

(
N −max

i
(∀j < i .a⟨1⟩[j] = a⟨2⟩[j]) − 1

)
= dM − 1/N

Using this inequality, we can bound the pre-expectation of the loop invariant (simplifying under

the assumptions [k ⟨1⟩ ≥ K ∧ k ⟨2⟩ ≥ K] and [k ⟨1⟩ = k ⟨2⟩]):

Ey $←U ([N ])[I
′′] ≤ (1 − dM ) · dM ·CK−k ⟨1⟩−1 + dM · (dM − 1/N ) ·CK−k ⟨1⟩−1

= CK−⟨1⟩−1 · dM · ((1 − dM ) + (dM − 1/N ))
= CK−⟨1⟩−1 · dM ·C
= CK−⟨1⟩ · dM = I

This finishes the proof of the premise of the loop rule. Note that we did not explicitly compute the

pre-expectation of the loop invariant, we just found an upper bound which is enough to apply the

loop rule.

I UNIFORM RIFFLE: OMITTED DETAILS

Axioms. We use some axioms about permutations, filtering, and concatenation.

• Let perm(a1,a2) be the predicate that a1 and a2 are permutations ofC . Then if we split a deck

into two pieces and concatenate them, the result is a permutation of the original. Formally,

for any bit-vector b we have:

perm(a, cat(a(¯b),a(b)))

• Let a1,a2 be permutations, b1,b2 be bitstrings, and a
′
1
,a′

2
be

a′i = cat(ai ( ¯bi ),ai (bi )).

Then if b1,b2 match cards in a1,a2, i.e., b1 ◦ a−1

1
= b2 ◦ a−1

2
, then we can bound the size of

blocks in the block decomposition of a′
1
,a′

2
as:

∀c ∈ [C]. |BD(a′
1
,a′

2
)(c)| ≤ ¯b(a−1

1
(c))(¯b(BD(a1,a2)(c))) + b(a−1

1
(c))(b(BD(a1,a2)(c)))

where we write b(P) and ¯b(P) to mean the total number of ones in b and
¯b at the positions P .
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• Summing the previous bound over all cards gives:∑
c ∈C
|BD(a′

1
,a′

2
)(c)| ≤

∑
[c]∈BD(a1,a2)

¯b(BD(a1,a2)(c))2 + b(BD(a1,a2)(c))2

where the right-hand side sums over the equivalence classes of cards/positions induced by

the block decomposition.

Defining the distance. Defining the distance between decks requires some care. Consider the

following distance based on positions:

dP (deck1, deck2) ≜ (1/N 2)
∑
c ∈C
|deck−1

1
(c) − deck−1

2
(c)|

This distance measures the total difference between the positions of each card in deck1 and its

counterpart in deck2, normalized to be in [0, 1]; anddP = 0 holds only when deck1 = deck2. However,

it is not easy to directly show that this distance is monotonically decreasing in expectation—

indeed, some terms in the sum may actually increase. Instead, we define an upper bound dc on
|deck−1

1
(c) − deck−1

2
(c)| for every card. The sum dM ≜ 1/N 2

∑
c ∈C dc will be an upper bound of dP ,

and dM decreases monotonically to zero.

We will define dc in terms of a few concepts from the theory of permutations. Given two decks

deck1, deck2 and a permutation π on positions taking deck1 to deck2, there is a unique cyclical

decomposition of π , i.e., we can partition the positions into P1, . . . , Pk such that π moves positions in

Pi as a single cycle. We define a block decomposition of π to be a partition of the positions B1, . . . ,Bj
such that each block is contiguous, and π acts as a permutation on each Bi . A block decomposition

is minimal if no block can be further decomposed; it is not hard to show that a minimal block

decomposition must be unique. When deck1, deck2 are permutations, we write BD(deck1, deck2) for
the block decomposition induced by two decks deck1 and deck2. Finally, to define the distance, for

every card c ∈ C we let:

dc ≜ |BD(deck1, deck2)(c)| − 1

where |BD(deck1, deck2)(c)| is the size of the block containing card c in deck1 and deck2; both

positions must be in the same block. The size of each block is at least 1, and if the distance dc is
zero then c must be at the same position in deck1 and deck2. It is not hard to show that the size of

the c’s block is at least the difference in c’s position across deck1 and deck2:

|deck−1

1
(c) − deck−1

2
(c)| ≤ dc

so dc = 0 implies that c is at the same position in deck1 and a2. (However, the reverse implication

may not hold.) As a result, we can upper bound our target distance

dP ≤
1

N 2

∑
c ∈C

dc = dM .

Now, we turn to the loop. Let Φ be the binary invariant

Φ ≜ perm(deck ⟨1⟩,deck ⟨2⟩) ∧ k ⟨1⟩ = k ⟨2⟩ ∧ (b ◦ deck−1)⟨1⟩ = (b ◦ deck−1)⟨2⟩
and take the following invariant expectation:

I = [¬Φ] · ∞ + [Φ] · dM · (1/2)(K−k ⟨1⟩)+

We want to verify that:

[(k < K)⟨1⟩ ∧ (k < K)⟨2⟩] · r̃pe(bd,I)
+ [(k ≥ K)⟨1⟩ ∧ (k ≥ K)⟨2⟩] · dP
+ [(k < K)⟨1⟩ , (k < K)⟨2⟩] · ∞ ≤ I,
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where bd is the loop body. The cases [(k ≥ K)⟨1⟩ ∧ (k ≥ K)⟨2⟩] and [(k < K)⟨1⟩ , (k < K)⟨2⟩] are
almost immediate. The main case is when [(k < K)⟨1⟩ ∧ (k < K)⟨2⟩]. Focusing on the case where

Φ holds (otherwise there is nothing to show), this boils down to:

Eb [dM (cat(deck(¯b),deck(b))⟨1⟩, cat(deck(¯b),deck(b))⟨2⟩)] ≤ 1

2
dM ,

i.e., each iteration of the loop halves the invariant, where the expected value is taken over b⟨1⟩ ∼
{0, 1}N and b⟨2⟩ is coupled so that (b ◦ deck−1)⟨1⟩ = (b ◦ deck−1)⟨2⟩. Above, we write dM (x1,x2)
as shorthand for dM [x1,x2/deck⟨1⟩, deck⟨2⟩].
The inequality follows from the permutation axioms, and from the mean and variance of the

binomial distribution—for deck1, deck2 fixed,
¯b(BD(deck1, deck2)) and b(BD(deck1, deck2)) each fol-

low the binomial distribution with |BD(deck1, deck2)(c)| trials and parameter 1/2. This completes

the proof for the body of the loop. Finally, we push the invariant past the initialization of the

procedure, and we have the bound:

r̃pe(riffle(deck,N ,K),dP ) ≤ [¬Φ] + [Φ] · dM · (1/2)K ≤ [¬Φ] + [Φ] · (1/2)K .

since the initial distance dM is at most 1. Given that dP assigns different decks a distance of at least

1/N 2
, Theorem 3 implies that the TV distance between the deck distributions is at most

v(K ,N ) = max

d1,d2∈[N ]
TV (JriffleK(d1,N ,K), JriffleK(d2,N ,K)) ≤ N 2

(
1

2

)K
,

so the distributions converge to one another and to the uniform distribution exponentially quick.

If we take K ≥ log
2
(N 2ρ), v(K) is asymptotically bounded by O(1/ρ) for large N . When setting

ρ = N , we establish the following guarantee.

Theorem 17. Let K = 3 logN , and Perm([N ]) be the set of permutations over N . For any initial

permutation of deck,

TV (riffle(deck,N ,K),Unif{Perm([N ])}) ∈ O(1/N )

Establishing the invariant. Recall that we need to show:

Eb [dM (cat(deck(¯b),deck(b))⟨1⟩, cat(deck(¯b),deck(b))⟨2⟩)] ≤
1

2

dM (deck ⟨1⟩,deck ⟨2⟩),

i.e., each iteration of the loop halves the invariant, where the expected value is taken over b⟨1⟩ ∼
{0, 1}N and b⟨2⟩ is coupled so that (b ◦ deck−1)⟨1⟩ = (b ◦ deck−1)⟨2⟩. Writing a1,a2 = deck ⟨1⟩, ⟨2⟩,
and a′

1
,a′

2
= cat(deck(¯b),deck(b))⟨1⟩, ⟨2⟩, and b1,b2 = b⟨1⟩, ⟨2⟩, the permutation axioms give:

Eb
[
dM (a′1,a′2)

]
=

1

N 2

∑
c ∈C
Eb [|BD(a′1,a′2)(c)| − 1]

≤ 1

N 2

∑
[c]∈BD(a1,a2)

Eb [¯b(BD(a1,a2)(c))2] + Eb [b(BD(a1,a2)(c))2] − |BD(a1,a2)(c)|

=
1

2N 2

∑
[c]∈BD(a1,a2)

|BD(a1,a2)(c)|2 − |BD(a1,a2)(c)|

=
1

2N 2

∑
c ∈C
(|BD(a1,a2)(c)| − 1)

=
1

2

dM (a1,a2).
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J ASYNCHRONOUS RULES: OMITTED DETAILS

We prove soundness of the asynchronous rules.

Proof of Theorem 15. We start with the rule for conditionals. Let c be a program that is almost

surely terminating, let E be a relational pre-expectation, and let s1, s2 ∈ State be two states. If

s1(e) = s2(e), then the bound follows from soundness of synchronous case (Theorem 4):

rpe(if e then c, E)(s1, s2) ≤ r̃pe(if e then c, E)(s1, s2)
= ([e ⟨1⟩ ∧ e ⟨2⟩] · r̃pe(c, E) + [¬e ⟨1⟩ ∧ ¬e ⟨2⟩] · E)(s1, s2).

Otherwise if e is true in s1 and false in s2, then:

rpe(if e then c, E)(s1, s2) = inf

µ ∈Γ(JcKs1,δ (s2))
Eµ [E] ≤ wpe⟨1⟩(c, E)(s1, s2)

by Lemma 1. The case where e is false in s1 and true in s2 is almost identical.

Next, we consider the asynchronous rule for loops. Letwhile e do c be almost surely terminating.

We define a sequence of loop approximants:

c0 ≜ skip

ci+1 ≜ (if e then c); ci

When the loop is almost surely terminating, we have the following equivalence:

Jwhile e do cKs = lim

i→∞
(JciKs)

for any input state s , and the limit of distributions exists.

Our overall argument proceeds much like the proof for the synchronous case. We first show that

the least-fixed point of a characteristic function of the loop is an upper bound on pre-expectation.

Then, we argue that the asynchronous loop rule shows that I is a fixed point with respect to the

characteristic function, so it must also be an upper bound.We work with the following characteristic

function:

ΨE,c (E ′) ≜ [e ⟨1⟩ ∧ e ⟨2⟩] · r̃pe(c, E ′) + [¬e ⟨1⟩ ∧ ¬e ⟨2⟩] · E
+ [e ⟨1⟩ ∧ ¬e ⟨2⟩] · wpe⟨1⟩(c, E ′) + [¬e ⟨1⟩ ∧ e ⟨2⟩] · wpe⟨2⟩(c, E ′).

By Lemma 3 and monotonicity of the weakest pre-expectation operator, the operator ΨE,c is

monotone. Thus, the least fixed-point exists:

LE,c = lfpX .ΨE,c (X ).

We can inductively define:

E0 ≜ [¬e ⟨1⟩ ∧ ¬⟨2⟩] · E
Ei+1 ≜ [e ⟨1⟩ ∧ e ⟨2⟩] · r̃pe(c, Ei ) + [¬e ⟨1⟩ ∧ ¬e ⟨2⟩] · E
+ [e ⟨1⟩ ∧ ¬e ⟨2⟩] · wpe⟨1⟩(c, Ei ) + [¬e ⟨1⟩ ∧ e ⟨2⟩] · wpe⟨2⟩(c, Ei ).

By definition Ei = Ψi
E,c (E0), and by monotonicity Ei is a monotone increasing sequence. Further-

more, for any expectation E ′ we have E0 ≤ ΨE,c (E ′), hence E0 ≤ LE,c . By monotonicity of ΨE,c ,
we have Ei ≤ LE,c for every i .

We now prove an analogue of Lemma 7.
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Lemma 8. For all j ∈ N and (s ′
1
, s ′

2
) ∈ State × State, there exists µ j,s ′

1
,s ′

2

∈ Γ(Jc jKs ′1, Jc jKs ′2) such that

Eµ j,s′
1
,s′

2

[E] ≤ Ej (s ′1, s ′2) + (ρ j (s ′1) + ρ j (s ′2)) ·Mj (E, s ′1, s ′2)

where ρ j (s) is the probability of e being true in Jc jKs , and:

Mj (E, s ′1, s ′2) = max{E(t1, t2) | t1 ∈ supp(Jc jKs ′1), t2 ∈ supp(Jc jKs ′2)}.

Proof. By induction on j. The base case j = 0 is clear, taking the coupling δ (s ′
1
, s ′

2
). For the

inductive step, we have

Ej+1 ≜ [e ⟨1⟩ ∧ e ⟨2⟩] · r̃pe(c, Ej ) + [¬e ⟨1⟩ ∧ ¬e ⟨2⟩] · E
+ [e ⟨1⟩ ∧ ¬e ⟨2⟩] · wpe⟨1⟩(c, Ej ) + [¬e ⟨1⟩ ∧ e ⟨2⟩] · wpe⟨2⟩(c, Ej ). (5)

There are four cases.

Case: s ′
1
(e) = ff and s ′

2
(e) = ff . In this case, Jc j+1Ks ′1 = δ (s ′

1
) and Jc j+1Ks ′2 = δ (s ′

2
). We can define

the coupling µs ′
1
,s ′

2

= δ (s ′
1
, s ′

2
) ∈ Γ(Jc j+1Ks ′1, Jc j+1Ks ′2) and we are done, since

Eµs′
1
,s′

2

[E] = E(s ′
1
, s ′

2
) = Ej+1(s ′1, s ′2).

Case: s ′
1
(e) = tt and s ′

2
(e) = tt. In this case, Jc j+1Ks ′1 = Jc ; c jKs ′1 and Jc j+1Ks ′2 = Jc ; c jKs ′2. IfEj+1(s ′1, s ′2)

is infinite we are done, so suppose that it is finite. By Theorem 4, there exists a coupling

νs ′
1
,s ′

2

∈ Γ(JcKs ′
1
, JcKs ′

2
) such that

Eνs′
1
,s′

2

[Ej ] ≤ Ej (s ′1, s ′2).

By the induction hypothesis, there is a coupling µ j,t1,t2
∈ Γ(Jc jKt1, Jc jKt2) such that

Eµ j,t
1
,t

2

[E] ≤ Ej (t1, t2) + (ρ j (t1) + ρ j (t2)) ·Mj (E, t1, t2).
Now, we can define the coupling for the (j + 1)-th approximants:

µ j+1,s ′
1
,s ′

2

≜ Eνs′
1
,s′

2

[µ j,−,−]

We first check the distance condition. By definition, we have:

Eµ j+1,s′
1
,s′

2

[E] = E(t1,t2)∼νs′
1
,s′

2

[Eµ j,t
1
,t

2

[E]]
≤ E(t1,t2)∼νs′

1
,s′

2

[Ej (t1, t2) + (ρ j (t1) + ρ j (t2)) ·Mj (E, t1, t2)]

≤ Ej (s ′1, s ′2) + (ρ j+1(s ′1) + ρ j+1(s ′2)) ·Mj+1(E, s ′1, s ′2)
≤ Ej+1(s ′1, s ′2) + (ρ j+1(s ′1) + ρ j+1(s ′2)) ·Mj+1(E, s ′1, s ′2).

The marginal condition is not hard to show, using the marginal properties of νs ′
1
,s ′

2

and µ j,t1,t2

combined with the definition of approximants: since e is true in s ′
1
and s ′

2
, we have Jc j+1Ks ′1 =

Jc; c jKs ′1 and Jc j+1Ks ′2 = Jc; c jKs ′2. The proof follows the case for sequential composition.

Case: s ′
1
(e) = tt and s ′

2
(e) = ff . In this case, Jc j+1Ks ′1 = Jc ; c jKs ′1 and Jc j+1Ks ′2 = JskipKs ′

2
. By Lemma 1,

there exists a coupling νs ′
1
,s ′

2

∈ Γ(JcKs ′
1
, JskipKs ′

2
) such that

Eνs′
1
,s′

2

[Ej ] ≤ wpe⟨1⟩(c, E)(s ′
1
, s ′

2
) = Ej (s ′1, s ′2).

By the induction hypothesis, there is a coupling µ j,t1,t2
∈ Γ(Jc jKt1, Jc jKt2) such that

Eµ j,t
1
,t

2

[E] ≤ Ej (t1, t2) + (ρ j (t1) + ρ j (t2)) ·Mj (E, t1, t2).
Now, we can define the coupling for the (j + 1)-th approximants:

µ j+1,s ′
1
,s ′

2

≜ Eνs′
1
,s′

2

[µ j,−,−]

The distance and marginal conditions follow as in the previous case.
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Case: s ′
1
(e) = ff and s ′

2
(e) = tt. In this case, Jc j+1Ks ′1 = JskipKs ′

1
and Jc j+1Ks ′2 = Jc ; c jKs ′2. By Lemma 1,

there exists a coupling νs ′
1
,s ′

2

∈ Γ(JskipKs ′
1
, JcKs ′

2
) such that

Eνs′
1
,s′

2

[Ej ] ≤ wpe⟨2⟩(c, E)(s ′
1
, s ′

2
) = Ej (s ′1, s ′2).

By the induction hypothesis, there is a coupling µ j,t1,t2
∈ Γ(Jc jKt1, Jc jKt2) such that

Eµ j,t
1
,t

2

[E] ≤ Ej (t1, t2) + (ρ j (t1) + ρ j (t2)) ·Mj (E, t1, t2).
Now, we can define the coupling for the (j + 1)-th approximants:

µ j+1,s ′
1
,s ′

2

≜ Eνs′
1
,s′

2

[µ j,−,−]

The distance and marginal conditions follow as in the previous case. □

Thus, we may apply Lemma 8 with input states s1, s2 and expectations Ei to produce a sequence

of couplings µi,s1,s2
∈ Γ(JciKs1, JciKs2) such that

Eµi,s
1
,s

2

[E] ≤ Ei (s1, s2) + (ρi (s1) + ρi (s2)) ·Mi (E, s1, s2)
= Ψi

E,c (E0)(s1, s2) + (ρi (s1) + ρi (s2)) ·Mi (E, s1, s2).
By Theorem 16, we can extract a subsequence µ ′i,s1,s2

(with a corresponding subsequence c ′i of ci )
from the sequence µi,s1,s2

that converges monotonically to a coupling satisfying

µ̃s1,s2
∈ Γ( lim

i→∞
Jc ′i Ks1, lim

i→∞
Jc ′i Ks2) = Γ(Jwhile e do cKs1, Jwhile e do cKs2),

where the equality holds because the loop is almost surely terminating. All that remains to show is:

E(s ′
1
,s ′

2
)∼µ̃s

1
,s

2

[E(s ′
1
, s ′

2
)] ≤ r̃pe(while e do c, E)(s1, s2).

We can compute:

E(s ′
1
,s ′

2
)∼µ̃s

1
,s

2

[E(s ′
1
, s ′

2
)] =

∑
(s ′

1
,s ′

2
)∈State×State

E(s ′
1
, s ′

2
) · lim

i→∞
µ ′i,s1,s2

(s ′
1
, s ′

2
)

≤
∑

(s ′
1
,s ′

2
)∈State×State

lim

i→∞
E(s ′

1
, s ′

2
) · µ ′i,s1,s2

(s ′
1
, s ′

2
) (E may be∞)

≤ lim

i→∞

∑
(s ′

1
,s ′

2
)∈State×State

E(s ′
1
, s ′

2
) · µ ′i,s1,s2

(s ′
1
, s ′

2
) (by Fatou’s lemma)

= ( lim
i→∞

Ψi
E,c (E0))(s1, s2) + lim

i→∞
(ρ ′i (s1) + ρ ′i (s2)) ·M ′i (E, s1, s2)

(subsequence)

≤ LE,c (s1, s2). (bounded assumption)

Finally, the premise of the asynchronous loop rule implies that ΨE,c (I) ≤ I, i.e., I is a pre-fixed-

point of ΨE,c . Since LE,c is the least fixed point, we have:

rpe(while e do c, E)(s1, s2) ≤ E(s ′
1
,s ′

2
)∼µ̃s

1
,s

2

[E(s ′
1
, s ′

2
)] ≤ LE,c (s1, s2) ≤ I(s1, s2). □
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