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Abstract

Security protocols such as TLS or Signal ensure security and privacy for browsing the web, sending private
messages, and using cloud services. It is, thus, crucial that these ubiquitous and critical protocols are
designed and implemented correctly. Protocol model verifiers such as Tamarin and ProVerif make it viable
to formally verify protocol models. However, proving protocol models secure is insufficient to guarantee secure
implementations. Coding errors such as missing bounds checks (e.g., causing the Heartbleed bug), omitted
protocol steps (as in the Matrix SDK), or ignored errors (e.g., returned by a TLS library) may invalidate all
security properties proven for the corresponding models.

This dissertation is centered around proving security properties in the symbolic model of cryptography
for protocol implementations. This faces three key challenges. First, security properties like secrecy and
authentication are global properties, which depend on the collective behavior of all protocol participants and
the attacker. Accounting for this entire behavior in a proof presents a significant obstacle as implementation-
level proof techniques rely heavily on local reasoning, which proves each method in isolation. Second,
practically deployed protocol implementations are written in languages such as C, Go, Java or Rust and
utilize complex programming language features like side effects, mutable state, and concurrency to achieve high
performance. Despite complicating the reasoning about implementations and, thus, their security, it is crucial
to support these features and programming languages to verify real-world protocol implementations. Third,
protocol implementations are often embedded in large software systems to provide secure communication as a
building block to application logic. Requiring a laborious proof for the entire software system is prohibitively
expensive and, thus, impractical. This dissertation addresses all three key challenges.

To address the first and second key challenge, this dissertation develops two novel verification methodologies.
If an abstract model of a security protocol preexists, the first methodology exploits this abstract model to pro-
vide the required global view for proving security properties. In a second step, this methodology extracts proof
obligations from the abstract model for implementations. Successfully discharging these proof obligations guar-
antees that an implementation refines an abstract model and, thus, inherits the security properties proven for
the abstract model. The second methodology does not require a preexisting, accurate abstract model; instead, it
uses invariants to establish a global view on the behavior of protocol participants and the attacker. By verifying
each implementation against these invariants, we soundly consider the collective behavior in an implementa-
tion’s proof. Our evaluations on different security protocol implementations in C, Go, and Java demonstrate
that both methodologies are applicable to a wide range of security protocols and programming languages.

To address the third key challenge, this dissertation introduces Diodon, a novel and provably sound
methodology to symbiotically combine proof systems of different expressive power, significantly reducing
the proof effort and, thus, scaling security property verification to large, production codebases. We partition a
codebase into its, typically small, security-critical part and the rest of the codebase for tailoring the employed
proof system to each partition. Mandated by the security properties we want to prove, we apply a highly
expressive but laborious program verifier to the security-critical part as we have to reason, e.g., about the
content of messages and their cryptographic protection. We accomplish this task by using the aforementioned
verification methodologies addressing the first and second key challenges and, thus, we directly benefit from
their advances. Although the remaining partition is less security-critical, we cannot simply ignore it. A priori,
there are ample opportunities for vulnerabilities in this partition because it is generally impossible to isolate
the partitions for two main reasons. First, widely adopted programming languages like C, Go, and Java do not
provide sufficiently strong isolation guarantees because such guarantees conflict with their features enabling
high performance implementations like mutable state, aliasing, and concurrency. Second, refactoring a
codebase to ensure—without relying on the programming language—that only the security-critical partition
has access to sensitive data such as cryptographic keys can be prohibitively expensive and unacceptable from a
performance perspective, as is the case for the production codebase on which we evaluate Diodon. Therefore,
we apply lightweight, fully-automatic static analyses to ensure that the partitions soundly compose, i.e.,
without violating proven security properties. Our evaluation demonstrates that Diodon supports different
coding styles and allows us to prove security properties for a production codebase of more than 100k LOC.

In summary, this dissertation achieves sound and modular verification of security protocols implemented in
real-world codebases, regardless of programming language, coding style or program verifier.





Resumaziun

Protocols da segirtad sco TLS ni Signal garanteschan segirtad e sfera privata per navigar sin il web, tarmetter
messadis e duvrar survetschs da cloud. Igl ei perquei elementar che quels protocols tutpresents e critics
vegnien concepi ed implementai correctamein. Ils verificaders da models da protocol sco Tamarin e ProVerif
possibliteschan da verificar formalmein models da protocol. Igl ei denton buc avunda da cumprovar models
segirs per garantir implementaziuns segiras. Sbagls da programms sco la munconza da controllas da cunfins
(tgei che ha p. ex. caschunau il bug Heartbleed), pass da protocol emblidai (sco el SDK da Matrix) ni sbagls
ignorai (che vegnan returnai p. ex. d’ina biblioteca da TLS) san invalidar tut las qualitads da segirtad ch’eran
vegnidas cumprovidas per ils models corrispundents.

Quella dissertaziun seconcentrescha sin la cumprova da qualitads da segirtad el model simbolic da criptografia
per implementaziuns da protocols. Ella explica treis sfidas principalas. Sco emprem, qualitads da segirtad sco
manteniment dil secret ed autentificaziun ein qualitads globalas che dependan dil cumportament collectiv da
tut ils participonts d’in protocol e digl attaccader. Risguardar il secuntener entir el process da cumprova
presenta in obstachel considerabel, oramai che las tecnicas da cumprova sin nivel d’implementaziun dependan
fermamein dad arguments locals, tier las quallas mintga metoda vegn cumprovida isoladamein. Sco secund,
implementaziuns da protocols duvradas en la pratica vegnan screttas en lungatgs sco C, Go, Java ni
Rust, e drovan caracteristicas cumplicadas da lungatgs da programmaziun sco effects laterals, stadis midabels
e parallelitads per contonscher aulta performanza. Malgrad che quei engreviescha ils arguments davart
ina implementaziun e consequentamein sia segirtad, eis ei essenzial da sustener quellas caracteristicas e
quels lungatgs per verificar implementaziuns realas. Sco tierz, implementaziuns da protocols vegnan savens
integradas en gronds sistems da software per porscher communicaziun segira sco in element da construcziun
per logica d’applicaziun. Pretender ina cumprova custeivla per igl entir sistem ei insupportablamein car e
perquei impraticabel. Questa dissertaziun adressescha tut las treis sfidas principalas.

Per adressar l’emprema e la secunda sfida principala, sviluppa quella dissertaziun duas metodicas novas da
verificaziun. Sch’ei exista gia in model abstract d’in protocol da segirtad, lu seprofitescha l’emprema metodica
da quei model per porscher ina vesta globala necessaria per cumprovar qualitads da segirtad. En in proxim
pass, extrai quella metodica obligaziuns da cumprova per implementaziuns dil model abstract. Il reussi
dallas obligaziuns da cumprova garantescha che in’implementaziun refineschi il model abstract e perquei
possedi las qualitads da segirtad cumprovadas per quei model. La secunda metodica sebasa buca sin in
model abstract accurat, mobein sin invariantas che stabilischeschan ina vesta globala sin il cumportament dils
participonts d’in protocol e digl attaccader. Verifitgond mintga implementaziun encunter quellas invariantas,
risguardein nus correctamein il cumportament collectiv en la cumprova d’ina implementaziun. Nus evaluein
las duas metodicas sin implementaziuns differentas da protocols da segirtad en C, Go e Java e mussein che
quellas ein applicablas ad in vast spectrum da protocols da segirtad e lungatgs da programmaziun.

Per adressar la tiarza sfida principala, presenta quella dissertaziun Diodon, ina metodica nova e cumpro-
vadamain correcta per cumbinar simbioticamein sistems da cumprova cun expressivitads differentas, tgei
che reducescha significativamein igl impundiment da cumprova ed engrondescha perquei la cumprova da
qualitads da segirtad a gronds codebases da producziun. Nus partiziunein ina codebase en sia part critica
per segirtad – savens pintga – e la part restonta dalla codebase, per adaptar il sistem da cumprova tenor
mintga partiziun. Tenend en consideraziun las qualitads da segirtad che nus vulein cumprovar, duvrein
nus in verificader da programs fetg expressiv, dentont pretensiv, per la part critica per segirtad, perquei
ch’ei basegna argumentaziun detagliada p. ex. davart cuntegn da messadis e lur protecziun criptografica.
Nus contonschin quell’incumbensa cun las metodicas da verificaziun menziunadas avon che adressar
l’emprima e la secunda sfida principala e profitein perquei directamein da lur svilup. Malgrad che la partiziun
restonta ei meins critica per segirtad, sa ella buc semplamein vegnir ignorada. A priori dat ei numerusas
pusseivladads da vulnerabilitads en quella part, perquei ch’igl ei en general nunpusseivel per duas raschuns
primaras d’isolar partiziuns. Sco emprem, lungatgs da programmaziun sco C, Go e Java porschan buc
garanzias d’isolaziun suffizientas, perquei che quellas garanzias stattan en conflict cun lur caracteristicas da
performanza sco p. ex. stadi midabels, aliasing e parallelitad. Sco secundo, refar ina codebase per garantir
– senza seschar sil lungatg da programmaziun – che mo la part critica hagi access a datas sensitivas sco
clavs criptograficas po esser insupportablamein car ed inacceptabel ord perspectiva da performanza, sco
igl ei il cass per la codebase da producziun nua che nus evaluain Diodon. Perquei druvein nus analisas



staticas levas e cumplettamein automaticas per garantir che las partiziuns secumbineschien correctamein,
qvd. senza donnegiar las qualitads da segirtad cumprovadas. Nossa evaluaziun muossa che Diodon sustegn
diversas stilisticas da programmaziun e possiblitescha da cumprovar qualitads da segirtad per ina codebase
da producziun cun dapli che 100k LOC.

En resumaziun, quella dissertaziun contonscha ina verificaziun correcta e modulara da protocols da
segirtad implementai en codebases realas, independentamein dil lungatg da programmaziun, stilistica da
programmaziun ni verificader da programs.



Zusammenfassung

Sicherheitsprotokolle wie TLS oder Signal gewährleisten Sicherheit und Privatsphäre beim Surfen im Web,
Versenden von privaten Nachrichten und Nutzen von Cloud-Diensten. Daher ist es essenziell, dass diese
allgegenwärtigen und kritischen Protokolle korrekt entworfen und implementiert werden. Protokollmodell-
verifizierer wie etwa Tamarin und ProVerif ermöglichen die formale Verifikation von Protokollmodellen.
Sicherheitsbeweise für Protokollmodelle sind jedoch unzureichend, um die Sicherheit von Implementierungen
zu garantieren. Programmfehler wie fehlende Grenzüberprüfungen (die z. B. den Heartbleed-Bug verursacht
haben), vergessene Protokollschritte (wie im Matrix-SDK) oder ignorierte Fehler (welche z. B. von einer
TLS-Library zurückgegeben werden) können alle Sicherheitseigenschaften, welche für das entsprechende
Modell bewiesenen wurden, invalidieren.

Diese Dissertation konzentriert sich auf das Beweisen von Sicherheitseigenschaften im symbolischen Modell
der Kryptographie für Protokollimplementierungen. Damit sind drei Hauptherausforderungen verbunden.
Erstens sind Sicherheitseigenschaften wie Geheimhaltung und Authentifizierung globale Eigenschaften, welche
vom kollektiven Verhalten aller Protokollteilnehmer und des Angreifers abhängen. Die Berücksichtigung
dieses gesamten Verhaltens in einem Beweis stellt ein erhebliches Hindernis dar, da sich Beweistechniken
auf Implementierungsebene stark auf lokale Argumentationen stützen, bei denen jede Methode isoliert
bewiesen wird. Zweitens sind in der Praxis eingesetzte Protokollimplementierungen in Sprachen wie C,
Go, Java oder Rust verfasst und nutzen komplexe Programmiersprachenbesonderheiten wie etwa Seiteneffekte,
veränderbare Zustände und Nebenläufigkeiten, um einen hohen Datendurchsatz und gute Laufzeit zu
erzielen. Obwohl diese Besonderheiten die Argumentation über Implementierungen und damit deren
Sicherheit erschweren, ist es essenziell, diese Besonderheiten und Programmiersprachen zu unterstützen, um
reale Protokollimplementierungen zu verifizieren. Drittens sind Protokollimplementierungen oft in grosse
Softwaresysteme eingebettet, um sichere Kommunikation als Baustein für Anwendungslogik bereitzustellen.
Einen aufwändigen Beweis für das gesamte Softwaresystem zu erfordern, ist unerschwinglich teuer und
deshalb praxisfern. Diese Dissertation adressiert alle drei Hauptherausforderungen.

Um die ersten beiden Hauptherausforderungen zu adressieren, entwickelt diese Dissertation zwei neuartige
Verifikationsmethodiken. Falls ein abstraktes Modell eines Sicherheitsprotokolls bereits existiert, nutzt die
erste Methodik dieses abstrakte Modell, um die erforderliche globale Sicht zum Beweisen von Sicherheits-
eigenschaften bereitzustellen. In einem zweiten Schritt extrahiert diese Methodik Beweisverpflichtungen
für Implementierungen aus dem abstrakten Modell. Das erfolgreiche Erfüllen dieser Beweisverpflichtungen
garantiert, dass eine Implementierung ein abstraktes Modell verfeinert und somit die für das abstrakte Modell
bewiesenen Sicherheitseigenschaften erbt. Die zweite Methodik erfordert kein bestehendes, genaues abstraktes
Modell; stattdessen verwendet sie Invarianten, um eine globale Sicht auf das Verhalten der Protokollteilneh-
mer und des Angreifers zu etablieren. Indem jede Implementierung gegen diese Invarianten verifiziert wird,
berücksichtigen wir das kollektive Verhalten korrekt im Beweis einer Implementierung. Unsere Evaluationen
auf verschiedenen Sicherheitsprotokollimplementierungen in C, Go und Java zeigen, dass beide Methodiken
auf ein breites Spektrum von Sicherheitsprotokollen und Programmiersprachen anwendbar sind.

Um die dritte Hauptherausforderung zu adressieren, führt diese Dissertation Diodon ein, eine neuartige und
beweisbar korrekte Methodik, um Beweissysteme unterschiedlicher Ausdrucksstärke symbiotisch zu kombi-
nieren, was den Beweisaufwand erheblich reduziert und somit die Verifikation von Sicherheitseigenschaften
auf grosse Produktionscodebasen hochskaliert. Wir partitionieren eine Codebasis in ihren, typischerweise
kleinen, sicherheitskritischen Teil und den Rest der Codebasis, um das eingesetzte Beweissystem auf jede
Partition zuzuschneiden. Aufgrund der zu beweisenden Sicherheitseigenschaften wenden wir einen aus-
drucksstarken, aber aufwändigen Programmverifizierer auf den sicherheitskritischen Teil an, da wir über den
Inhalt von Nachrichten und deren kryptografischen Schutz argumentieren müssen. Wir lösen diese Aufgabe,
indem wir eine der zuvor genannten Verifikationsmethodiken anwenden, welche die ersten beiden Haupther-
ausforderung adressieren, und profitieren daher direkt von deren Fortschritten. Obwohl die verbleibende
Partition weniger sicherheitskritisch ist, können wir sie nicht einfach ignorieren. A priori gibt es unzählige
Möglichkeiten für Schwachstellen in dieser Partition, da es im Allgemeinen unmöglich ist, die Partitionen aus
zwei primären Gründen zu isolieren. Erstens bieten weit verbreitete Programmiersprachen wie C, Go und
Java keine hinreichend starken Isolationsgarantien, da solche Garantien mit ihren Besonderheiten – wie bei-
spielsweise veränderbare Zustände, Aliasing und Nebenläufigkeiten – in Konflikt stehen, die leistungsfähige



Implementierungen ermöglichen. Zweitens kann die Restrukturierung einer Codebasis, um sicherzustel-
len, dass nur die sicherheitskritische Partition auf sensible Daten wie kryptografische Schlüssel zugreifen
kann – ohne sich dabei auf die Programmiersprache zu verlassen – unerschwinglich aufwändig sein und
inakzeptable Leistungseinbussen mit sich bringen, wie dies bei der Produktionscodebasis der Fall ist, auf der
wir Diodon evaluieren. Daher wenden wir leichtgewichtige und vollautomatische statische Analysen an, um
sicherzustellen, dass die Partitionen korrekt zusammenspielen, d. h. ohne bewiesene Sicherheitseigenschaften
zu verletzen. Unsere Evaluation zeigt, dass Diodon verschiedene Programmierstile unterstützt und es uns
ermöglicht, Sicherheitseigenschaften für eine Produktionscodebasis mit mehr als 100k LOC zu beweisen.

Zusammenfassend erzielt diese Dissertation eine korrekte und modulare Verifikation von Sicherheitsproto-
kollen, die in realen Codebasen implementiert sind, unabhängig von Programmiersprache, Programmierstil
oder Programmverifizierer.
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Security protocols are central to securing communication and distributed
computation and, by nature, they are often employed in critical applica-
tions. These critical applications are numerous. E.g., in online banking,
we use Transport Layer Security (TLS) to securely communicate with our
bank’s server and desire at least authentication, meaning that no one can
perform transactions on our behalf, and replay protection, which ensures
that legitimate transactions cannot be duplicated. Likewise, we employ
secure messaging services to ensure that our private conversations remain
confidential and are not tampered with. This is relevant for exchanging
sensitive information, such as medical records, intellectual property or
political and religious discussions; disclosing the latter in particular can
result in life-threatening consequences in certain jurisdictions.

Unfortunately, as history amply demonstrates, security protocols and
their implementations are notoriously difficult to get right, and their flaws
can be a source of devastating attacks. Thus, it is crucial to prove that a
security protocol actually provides the security properties it is intended
to guarantee to an application, such as secrecy and authentication.
However, reasoning about security protocols and their implementations
is challenging.

First, proving that a security protocol achieves a particular security prop-
erty must consider all possible attacks that an attacker can perform in
every possible state of a distributed system and show that neither attack
breaks this security property. Enumerating all these attacks is impossible
as we not only consider distributed systems with infinitely many states
but also the attacker can perform an infinite number of actions, such
as constructing messages, sending them, and observing responses by
protocol participants. For example, an attacker performing the TLS Triple
Handshake Attack [1] engages in two parallel TLS connections with differ-
ent entities, such as a bank client and a bank’s server, and selects particular
connection parameters. After several session resumptions, the attacker
manages to connect the bank client with the bank’s server, which they
do not intend. This attack potentially enables the attacker to inject data
before the final session resumption that ultimately appears to the bank’s
server as coming from the bank client, which means that the attacker can
impersonate the bank client and, thus, break authentication.

Second, implementations of security protocols pose significant risks
for coding errors. As they are typically employed at a lower layer in a
software stack, which establishes security for higher layers, they interface
with the untrusted, adversarial network. Carefully crafted messages
by the attacker can thus exploit coding errors in this layer. E.g., the
famous Heartbleed vulnerability [2] allowed attackers to read sensitive
data from the memory of servers and clients, including private keys
and passwords, due to missing bounds checks in the OpenSSL library,
which is widely used for establishing TLS connections. In addition,
security protocol implementations are complex due to their intricate
combination of cryptographic primitives and interactions with other
protocol participants making them error-prone. Apple’s TLS library
was susceptible to impersonation attacks due to a superfluous goto
statement [3] causing the library to skip checking TLS certificate signatures.
Ignoring errors, e.g., returned by a TLS library [4, 5], or omitting protocol
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2 1 Introduction

steps as in the Matrix software development kit (SDK) [6] enable attacks
even if the protocol design might be secure.

Faulty security protocols and their implementations can have devastating
consequences, as they can lead to unauthorized access to sensitive data,
financial loss, and even physical harm. Additionally, the widespread
deployment of, e.g., the OpenSSL library means that a single vulnerability
can affect millions of users and systems worldwide.

This highlights the importance of formal verification of security protocols
and their implementations to ensure their correctness. This disserta-
tion tackles this problem by developing verification methodologies to
prove security properties for implementations, facing the complexities of
security protocols and modern, widely-used programming languages.
Additionally, we present a solution to soundly scale verification to large
codebases while allowing for a high degree of automation. This is crucial
for production codebases because application logic on higher levels of a
software stack can forfeit security properties established by a security
protocol implementation on a lower level.

1.1 State of the Art

This section overviews the state of the art in reasoning about security
protocol models, programs, and implementations of security protocols.
Sec. 2.8, Sec. 3.11, and Sec. 4.7 provide more detailed comparisons of this
dissertation’s contributions with related work.

1.1.1 Protocol Model Verification

A security protocol model captures the essence of a security protocol,
abstracting from low-level details like memory management, bit-level
descriptions of protocol messages, and the algorithm details of the em-
ployed cryptographic primitives. Therefore, such models focus on the
interactions between protocol participants and the high-level components
of protocol messages. Their abstract nature makes them amenable to
formal reasoning as the proof search is not hindered by low-level details.
Over the past decades, expressive and highly automated security protocol
model verifiers have been developed, including the two state-of-the-art
tools Tamarin [7, 8] and ProVerif [9], which have been used to analyze
real-world protocol models such as TLS [10–12], 5G [13], EMV [14–16],
and Apple’s iMessage PQ3 [17]. These tools build on a model of crypto-
graphic protocols called the symbolic or Dolev–Yao (DY) model [18], where
cryptographic primitives are idealized, protocols are modeled by process
algebras or rewriting systems, and the attacker is an abstract entity control-
ling the network and manipulating messages represented as terms. The
symbolic model is powerful as it abstracts from low-level details of cryp-
tographic primitives, such as the probabilities for generating an already
existing key, and hash collisions; thus, the symbolic model reduces the
proof effort and enables automation, i.e., to automatically find a proof that
a model satisfies certain security properties [19]. In contrast, approaches
adopting the computational model (e.g., CryptoVerif [20], EasyCrypt [21],
and SSProve [22]) are more precise and, thus, give stronger guarantees
than symbolic ones. However, their proofs are very difficult to automate,
as surveyed by Blanchet [23] and Barbosa et al. [19].
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While these protocol model verifiers enable proving that a security pro-
tocol achieves desired security properties, they do a priori not provide
any guarantees about implementations of the protocols. For example,
omitted protocol steps, incorrect certificate checks, missing error han-
dling, and other coding errors like buffer overflows can lead to security
vulnerabilities despite the protocol model being secure.

1.1.2 Program Verification

Traditionally, developers apply testing to ensure that their implementa-
tions are correct by checking for a small set of possible inputs whether
an implementation demonstrates the desired behavior. However, the
main limitation of testing is that only the presence of bugs for the tested
inputs can be shown, not providing any guarantees about their absence,
as a bug might get triggered by an untested but nevertheless possible
input. Alternatives to testing exist; E.g., runtime monitoring augments an
implementation with additional runtime checks that abort the execution
as soon as a bug, i.e., a violation of a desired property, is detected. While
runtime monitoring provides guarantees that the monitored execution is
free of bugs, it does not provide any guarantees about all other possible
executions. Static approaches fill this gap by reasoning about an imple-
mentation’s source code without executing it or adding any runtime
checks. Model checking is such an approach that typically starts at the
entry point of an implementation and tries to exhaustively explore all
reachable program states, which, however, quickly becomes intractable.
A common remedy is to bound a model checker to a finite number of
program states, e.g., by limiting the number of considered loop iterations.
However, this bound trades soundness for practicality as a model checker
misses bugs that lie in a program state that is outside the chosen bound.

Program verification, on the other hand, aims to prove that an implemen-
tation achieves safety and functional properties for all possible inputs
without limiting the number of considered program states. In this context,
the term safety expresses that an implementation neither causes runtime
exceptions nor undefined behavior. In particular, it covers the absence
of memory errors, buffer overflows, and data races. Functional properties
are implementation-specific and express the desired behavior, e.g., that a
sorting algorithm’s result is a sorted permutation of the input. To scale
to large, real-world programs, the proof for an entire implementation is
decomposed into smaller proofs for individual components, typically
functions and methods, to make the proof search tractable for proof
engineers and dedicated verification tools. This decomposition relies on
a modular program logic that allows verifying components individually
and then combining the per-component proofs to constitute a proof
for the entire implementation. To do this, we equip every method (and
function) with a specification that consists of a pre- and postcondition. A
method’s precondition is a logical formula specifying all valid program
states in which this method can be called, and a method’s postcondition
specifies properties that hold for all valid program states after executing
the method’s body.

Verifying programs with side effects, mutable state, and concurrency
poses additional challenges for modular verification. While purely func-
tional programming languages do not offer these features, they are
commonly found in widely used programming languages such as C,
C++, Java, Python, and Go. Mutable state in a fully sequential program
not only causes aliasing, where multiple variables refer to the same
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memory location, but also side effects, i.e., calling another method might
modify arbitrary memory locations. Concurrency adds further compli-
cations, as multiple threads can access and modify the same memory
locations at the same time, leading to data races.

To enable modular verification of programs with mutable state and
concurrency, specialized program logics have been developed, foremost
among them separation logic [24, 25], the de facto standard. Separation
logic achieves modular reasoning by associating a so-called permission
with each memory location, which is required to read or write a memory
location and conceptually represents ownership of a memory location.
Thus, every method includes in its precondition the permissions required
to perform its memory accesses, and its postcondition specifies the
permissions that are returned to the caller. Since permissions are non-
duplicable, separation logic provides a powerful way to reason about
side effects and concurrency. More specifically, separation logic allows us
to express precisely in a method’s precondition which heap fragment 𝑓
this method operates on. Using separation logic’s connectives that split
and combine heap fragments, e.g., when calling another method that
operates only on a subfragment 𝑓 ′ ⊆ 𝑓 , we know that the method does
not modify any heap location in the frame 𝑓 \ 𝑓 ′.

Proving that each method has sufficient permissions for each heap access
guarantees safety. E.g., a buffer overflow corresponds to accessing an
array element out of bounds; this is prevented since allocating an array
creates permissions only for in-bound elements. Similarly, data races
are prevented since two threads simultaneously writing the same heap
location would require that both threads have permission for writing this
heap location, which is impossible as there is only a single permission
for writing any given heap location.

Several program verifiers for different programming languages exist that
are based on separation logic. For example, VeriFast [26], VST [27], and
RefinedC [28] for C, VeriFast and VerCors [29] for Java, Nagini [30] for
Python, and Verus [31] and Prusti [32] for Rust. Most of these verifiers are
auto-active [33], i.e., encode the proof obligations as an unsatisfiability
query to a satisfiability modulo theories (SMT) solver, which automates the
proof search. Despite the automation, verifying programs remains a high
effort task as proof engineers have to provide pre- and postconditions
for each method and loop invariants. Additionally, proof engineers may
have to assert intermediate properties to guide the SMT solver’s proof
search.

Gobra. Despite not forming one of the technical chapters of this thesis,
I1 have significantly contributed to the development of Gobra [34], a pro-
gram verifier for the Go programming language. Gobra is a translational
verifier translating Go programs into Viper [35]. Viper is an infrastruc-
ture for program verification offering the Viper language, a sequential
programming language with mutable state, and verifiers that prove
the correctness of Viper programs. Hence, Gobra encodes a potentially
concurrent Go program using, e.g., structural subtyping, goroutines,
which are lightweight threads, and message-passing communication into
a Viper program, such that the correctness of this Viper program implies
the correctness of the original Go program.

Over the years, Gobra has been extended to not only support additional
Go features but also to support more verification techniques that make
reasoning easier and more concise. For example, my contributions to
Gobra include adding support for ghost struct fields and ghost memory
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locations. The former enable co-locating additional information used
exclusively for verification purposes with a struct. The latter allow us to
share potentially complex data structures, such as the one in Chapter 3,
with other goroutines without requiring the data structure to be part of
the program’s state at runtime. All these advancements made it possible
to apply Gobra to real-world Go programs such as a next-generation
internet router [36] and the case studies in this thesis, which include an
implementation of the WireGuard [37] Virtual Private Network (VPN)
protocol.

1.1.3 Protocol Implementation Verification

Reasoning about security properties on the implementation level is
challenging as on the one hand the same challenges as for program
verification apply and on the other hand, security properties are typi-
cally global properties, i.e., hold only if all protocol participants behave
correctly. E.g., confidentiality of some key material requires that every
participant in a distributed system having access to this key material does
not leak it to an attacker. Since protocol participants often run different
implementations, depending on their role in the protocol, reasoning
about security properties requires reasoning about the interactions of
these different implementations.

Related work faces this challenge using one of three approaches, which
we discuss in detail next: generating an implementation from a verified
protocol model, extracting a protocol model from an implementation, or
proving security properties directly on an implementation—possibly in
conjunction with a protocol model. Avalle et al. [38] survey early work
using one of the first two approaches.

Code Generation. The first approach avoids reasoning about imple-
mentations by generating secure-by-construction implementations from
an abstract protocol model. For instance, Bhargavan et al.’s DY★ frame-
work [39–41] takes functional specifications and implementations in
F★ [42] as input and generates OCaml code. Besides proving that an
implementation refines a specification, F★ additionally supports gener-
ating C code if an implementation is written in Low★ [43] (a particular
subset of F★). The generated OCaml and C code is secure by construction
(provided the code generator is correct). However, changing the code
manually (e.g., to optimize performance) forfeits any security guarantees.
To achieve modular verification, DY★ relies on a specific coding discipline
(at most one protocol step per F★ function), which must be enforced
manually, and is in general not adhered to by existing implementations.
A violation of this discipline unwittingly restricts the capabilities of the
attacker and, thus, may cause DY★ to miss attacks.

The DY★ framework has been applied to several protocols. Bhargavan et
al. [39] take an existing Signal implementation (in Low★) and its func-
tional protocol specification (in F★) [44] and show that its functional
protocol specification (also in F★) satisfies forward and post-compromise
security. The same authors implement and verify ACME in F★ [40], which
extracts to OCaml. Ho et al. [41] provide a framework for generating
implementations for Noise protocols. Their framework consists of Low★

code (extracting to C), which refines functional F★ specifications (that
would extract to OCaml). To apply DY★, the authors replace in their
F★ specification calls to concrete cryptographic primitives by calls to
their symbolic counterpart. The resulting symbolic specification is not
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executable, and is manually kept in sync with the original, executable
specification. The authors prove secrecy and authentication properties
as stated by Noise for the symbolic specification. To avoid manually
keeping a symbolic and concrete specification in sync, Wallez et al. [45]
parameterize their F★ specification for Messaging Layer Security (MLS)
by a type class, which can be instantiated either by concrete bytes and
concrete cryptographic primitives (to generate an executable specification
in OCaml) or symbolic terms and symbolic cryptographic primitives (to
apply DY★).

While DY★ and Pozza et al. [46] obtain guarantees in the symbolic model,
Cadé et al. [47, 48], Delignat-Lavaud et al. [49, 50] and, developed in
parallel to this dissertation, Owl [51] provide computational guarantees.
As is the case for DY★, implementations generated by these works cannot
be optimized by hand or integrated into a larger codebase without forfeit-
ing proven security properties. OwlC [52], which extends Owl, partially
addresses this limitation by generating not only a library implementing
a security protocol in Rust but also a specification to verify the generated
library against this specification using Verus. Composing the generated
library with handwritten code is particularly crucial for Owl and OwlC
to support realistic applications as their domain-specific protocol mod-
eling language supports neither recursion nor loop constructs. Thus,
any looping behavior can occur only in the handwritten code. Since
OwlC treats all code except for the generated and verified library as
being attacker-controlled, the generated library can share only public
values with the handwritten code—a constraint enforced via the Rust
type system. To support more sophisticated applications that require
access to non-public values, one would have to insert declassifications of
these values into the generated specification. However, modifying the
generated specification forfeits the security guarantees as Verus does not
currently support reasoning about security properties.

Model Extraction. The second approach extracts an abstract protocol
model from an implementation, such that protocol model verifiers can
be used to prove security properties about the extracted model. Over
the years, numerous approaches have been developed targeting different
programming languages and protocol model verifiers. Bhargavan et
al. [53] extract a ProVerif model from code written in a subset of F#,
which is used in [54] to verify TLS 1.0. Recent work by Bhargavan et
al. [55] targets a subset of Rust to extract a symbolic protocol model for
ProVerif, an implementation in F★ for safety verification, and packages
for a computational proof using SSProve. They apply their methodology
to their own post-quantum implementation of TLS 1.3. Elyjah [56] extracts
a model from Java, which requires implementing all protocol roles and
the network connecting instances of these roles as different Java classes
within the same file. While Aizatulin et al. [57] target C code and obtain
guarantees in the computational model by targeting CryptoVerif, their
tool considers only a single execution of the input code, i.e., ignores
untaken branches and unrolls loops as many times as taken in the
considered execution. Bhargavan et al. [12] and Kobeissi et al. [58] extract a
model from a subset of JavaScript that disallows, e.g., recursion and loops,
and generate a ProVerif model. [12] and [58] additionally use CryptoVerif
to obtain computational guarantees but must modify the generated model
to match CryptoVerif’s input language and to make them easier to verify.
CryptoBap [59] analyzes ARMv8 and RISC-V machine code and extracts
to ProVerif and CryptoVerif. Follow-up work [60] extends the extraction
to Tamarin and enables the combination of components implemented
in different languages, e.g., to manually model the high-level behavior
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of other protocol roles instead of considering their binaries. However,
both works [59, 60] translate a binary to a sequential intermediate
representation, thus, suggesting that they do not support concurrency
within a protocol role.

Several works generate both models for verification and executable
code from abstract protocol descriptions. In [61, 62], Alice&Bob-style
protocol specifications are translated into ProVerif models and into
JavaScript or Java implementations. Sisto et al. [63] generate a ProVerif
model and a refined Java implementation from an abstract Java protocol
specification.

Common to all approaches based on model extraction is that this ex-
traction typically requires that an implementation follows restrictive
coding disciplines, such that relevant protocol steps can be identified
and extracted. E.g., protocol steps that could happen concurrently must
be identified and represented accordingly in the extracted model.

Code-Level Verification. The third approach, which this dissertation
advances, takes implementations and proves security properties either
directly or in combination with an abstract protocol model. Dupressoir et
al. [64, 65] combine an interactive theorem prover and the program
verifier VCC [66] to reason about security properties of C code. Bharga-
van et al. [67] modularly verify protocol code written in F# using the F7
refinement type checker [68]. They rely on protocol-specific invariants for
cryptographic structures, e.g., stating which messages are public. To state
authentication properties, they use a combination of (trusted) assume
and assert statements. The more recent work [39], which we already
covered as an approach for generating implementations, overcomes this
limitation by incorporating a global trace; we explain this idea in detail
in Chapter 3. Vanspauwen and Jacobs [69, 70] use a similar approach for
protocols implemented in C and verified using VeriFast. They extend
the symbolic model of cryptography to enable the attacker to directly
manipulate byte strings, which they over-approximate by considering
the set of symbolic terms that possibly influences a byte string. The Igloo
framework [71] provides a series of generic steps that gradually trans-
form an abstract model into a specification. While program verifiers can
establish that an implementation meets this specification, this framework
requires establishing a refinement relation between each successive pair
of steps.

1.2 Challenges

This dissertation advances the state of the art in verifying strong security
properties for protocols implemented in programming languages offering
mutable state and concurrency. To achieve this goal, this dissertation
tackles the following three main challenges.

Challenge 1: Leveraging Verified Protocol Models. Security protocol
model verifiers, such as Tamarin, have been successfully applied to a wide
range of protocols to ensure that these protocol models are secure. Several
such applications focused on protocol candidates and had a positive
impact on the standardization process by first uncovering security flaws,
often suggesting fixes, and ultimately verifying the fixed protocol, such
as for TLS [10–12], 5G [13], and MLS [45, 72]. As a natural next step in a
standardization process, a protocol is implemented potentially multiple
times in different programming languages to provide, e.g., a reference
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implementation, an optimized high-performance implementation or an
implementation for a specific platform. Iterating over protocol models and
gradually moving towards implementations catches security flaws as early
as possible, before potentially spending days or weeks implementing
a flawed protocol. Instead of ignoring an existing, verified protocol
model and reproving all security properties for an implementation, it is
highly desirable to leverage this model. While the state of the art offers
several different approaches, these approaches are generally limited to a
single programming language. Approaches based on code generation
do not allow optimizing and adapting a generated implementation for
performance and to other platforms, respectively. Other approaches do
not use the verified protocol model as they either extract a new model
from the implementation or do the entire proof on the implementation
level.

To flexibly support various use cases, we need an approach that is pro-
gramming language-agnostic, allows for optimized implementations,
and does not impose coding disciplines such that existing implementa-
tions can be verified. Additionally, such an approach should exploit the
automation offered by protocol model verifiers to additionally reduce
the overall proof effort for the protocol model and the implementation
compared to directly proving the same security properties on the imple-
mentation level. Achieving this goal is challenging as it requires bridging
the distinct formalisms and abstraction levels used by a protocol model
verifier and a program verifier. Furthermore, it requires dealing with the
full details of prevalent programming languages as reference implemen-
tations optimize for readability (thus preferring widely used, imperative
languages over, e.g., purely functional ones) and fast implementations
exploit mutable state and concurrency, neither of which make verification
easier.

Challenge 2: Unifying Reasoning in a Program Verifier. There are
several cases in which a protocol model verifier cannot be leveraged. E.g.,
if a protocol model does not exist, is outdated, the protocol model’s proof
turns out to be very challenging for the protocol model verifier or if the
trust assumptions and required expertise have to be minimized to make
it more accessible to proof engineers. These cases demand for proving
ideally the same security properties for implementations as one would
prove for protocol models, and for using a single formalism, namely the
one of a program verifier. This is challenging for mainly two reasons. First,
security properties are typically expressed in a different formalism than
found in program verifiers and, second, are global properties, i.e., require
co-operation by multiple protocol participants. In particular, a security
property often refers to the existence or absence of certain actions not only
in the past but also performed by other protocol participants. This global
view is a priori not available when verifying an implementation, which
usually contains only the code for a single protocol role. In addition,
a program verifier has to cope with the complexity arising from both,
the programming patterns employed by developers, and the advanced
features provided by programming languages. Since a protocol, or more
precisely its protocol roles, are potentially implemented in different
programming languages, there is the additional challenge of developing
a language-agnostic approach.

Challenge 3: Scaling Verification to Real-World Codebases. The final
challenge that this dissertation must address such that real-world code-
bases can be verified is scalability. Many approaches focus on a particular
protocol or even just a particular phase therein without considering
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the codebase in which a protocol is implemented. Existing, real-world
codebases go against the spirit of approaches based on code generation
and are typically too large and complex to extract a protocol model from
them. Our chosen approach, i.e., verifying security properties on the
level of implementations using a program verifier, gives in principle
a story line how to verify an entire codebase. However, verifying an
entire codebase is often financially infeasible since program verification
is labor-intensive. Our observation is that security protocols are typically
employed at a lower protocol stack layer such that the application layer
can focus on implementing the actual business logic, ideally without
worrying about how messages are protected against eavesdropping or
tampering. Thus, security risks vary for different parts of a codebase,
e.g., parts implementing a security protocol pose higher security risks
than others. To maximize the guarantees one can obtain with bounded
financial resources, it is desirable to focus most of the verification effort
on these high-risk parts by applying a program verifier there and use
more lightweight and scalable techniques for all other parts. However,
combining the program verifier’s reasoning about the high-risk parts
with more these lightweight techniques is challenging for codebases
implemented in programming languages with mutable state and con-
currency, as in principle any memory location accessed by the high-risk
parts can be concurrently modified by all other parts. This issue surfaces
in separation logic as the proof obligation that the entire codebase re-
spects the permissions, i.e., performs memory accesses only if a method
currently possesses the required permissions. While this proof obligation
is discharged for high-risk parts of the codebase by applying a program
verifier, all other parts do not a priori respect these permissions. Thus, to
verify security properties for large, real-world codebases, this dissertation
must address the challenge of ensuring in a scalable way that the parts of
a codebase on which we do not apply a program verifier do not interfere
with the high-risk, verified parts.

1.3 This Dissertation

This dissertation enables verifying strong security properties for pro-
tocols implemented in (a) different programming languages offering
mutable state and concurrency without presuming particular coding
disciplines, thus, avoiding the need to reimplement protocols, (b) uti-
lizing abstract protocol models if they exist, and (c) large, real-world
codebases. To achieve this goal, this dissertation successfully develops
novel methodologies overcoming the three challenges in Sec. 1.2 and
applies them to various case studies ranging from WireGuard, a state of
the art VPN protocol, to a large AWS codebase.

Chapter 2 presents a methodology to bridge the gap between abstract
protocol models and concrete implementations. This methodology es-
tablishes a refinement relation showing that all trace-based security
properties proven for an abstract protocol model hold for a concrete sys-
tem. Since this concrete system is composed of potentially unboundedly
many instances, each executing a specific protocol role, a key ingredient
of this methodology is decomposing the (global) abstract protocol model
into the different protocol roles and proving that each role’s implemen-
tation refines the corresponding protocol role. We extend Tamarin to
automate this process. I.e., Tamarin automatically produces specification
for each protocol role from a protocol model that can be used by different
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program verifiers. Verifying that an implementation satisfies such a spec-
ification guarantees that the implementation refines the corresponding
protocol role. On a high level, this refinement proof shows that every I/O
operation performed by an implementation is justified by the abstract
model, which encompasses not only the correct ordering of I/O opera-
tions but also the correct payloads for these operations. Establishing the
correctness of these payloads requires bridging the different abstraction
levels of protocol models and implementations as the former operates on
symbolic terms and the latter on concrete byte arrays stored in memory.

While the first methodology shifts all reasoning about global security
properties such as secrecy and agreement to the abstract protocol model
and its verifier, our second methodology in Chapter 3 integrates this rea-
soning into off-the-shelf program verifiers. To obtain a language-agnostic
methodology, we build on separation logic and well understood tech-
niques from concurrency reasoning to capture all possible interleavings
of operations performed by instances of protocol roles and the attacker.
Furthermore, separation logic allows us to go beyond state of the art
in this area, i.e., prove stronger security properties than related work,
namely injective agreement.

Chapter 4 introduces Diodon, a novel methodology for scaling verification
to large, production codebases with an emphasis on security properties.
Diodon’s central idea is to focus the verification effort on the most
security-critical parts of a codebase, which requires precise reasoning
about, e.g., payloads of I/O operations. However, all other parts of
a codebase cannot be ignored as they still pose a security risk. Thus,
Diodon employs lightweight static analyses that scale to the size of these
codebases to ensure that these parts are not only free of security risks
but also use the critical parts correctly. To achieve this goal, we bridge
the gap between the different formalisms used in program verifiers and
static analyses, and obtain a provably sound technique to construct a
proof for the entire codebase, where all side conditions are discharged
by static analyses.

In summary, this dissertation makes the following high-level contribu-
tions:

➤ A methodology for automatically extracting refinement proof obliga-
tions from an abstract protocol model for implementations. Discharg-
ing these proof obligations guarantees that implementations satisfy
the same security properties as the abstract protocol model.

➤ A language-agnostic methodology for separation logic-based program
verifiers to prove strong security properties including forward secrecy
and injective agreement without relying on protocol model verifiers.

➤ A methodology for combining separation logic-based verification with
lightweight static analyses to scale verification to large, production
codebases. Security-critical code parts are verified using one of the
first two methodologies, while the rest of the codebase is checked for
security risks using lightweight static analyses.

➤ We apply all three methodologies to case studies of varying sizes
and different protocols implemented in multiple programming lan-
guages, demonstrating that our methodologies are language-agnostic,
applicable to real-world codebases, and scalable.

Outline. This dissertation presents the three methodologies one by
one in the following technical chapters. Particularly noteworthy are the
sections 3.10 and 4.6 therein. The former compares the first two method-
ologies and discusses their applicability. While Chapter 4 focuses on
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using the first methodology for verifying security-critical code parts
in the context of Diodon, Sec. 4.6 discusses alternatively applying the
second methodology to these code parts. Finally, Chapter 5 concludes
and discusses future work.

Throughout this thesis, various stylistic conventions are employed to
enhance readability. Supplementary information that is not essential for
following the main narrative, but is nevertheless relevant, is presented in
green boxes. In code listings, lines consisting exclusively of ghost code are
highlighted with a gray background, except when another background
color is already used elsewhere in the same listing.

1.4 Publications and Collaborations

The main results of this dissertation have been presented in the following
publications.

The main results of Chapter 2 appeared in:

Sound Verification of Security Protocols: From Design to Interoperable
Implementations
Linard Arquint, Felix A. Wolf, Joseph Lallemand, Ralf Sasse, Christoph
Sprenger, Sven N. Wiesner, David A. Basin, and Peter Müller.
In IEEE Symposium on Security and Privacy (S&P), 2023. [73]

In comparison, this dissertation considers equational theories when deriv-
ing the pattern requirement in Sec. 2.4.3. Furthermore, Sec. 2.7 discusses
an additional case study which is not part of the above publication.

The main results of Chapter 3 appeared in:

A Generic Methodology for the Modular Verification of Security Protocol
Implementations
Linard Arquint, Malte Schwerhoff, Vaibhav Mehta, and Peter Müller.
In Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2023. [74]

Compared to the above publication, this dissertation additionally de-
scribes mechanisms to simplify the verification of concurrent imple-
mentations (in Sec. 3.6.3) and to enforce deletion of key material (in
Sec. 3.9).

The main results of Chapter 4 are part of a US patent application [75]
and are going to appear in:

The Secrets Must Not Flow: Scaling Security Verification to Large Codebases
Linard Arquint, Samarth Kishor, Jason R. Koenig, Joey Dodds, Daniel
Kroening, and Peter Müller.
In IEEE Symposium on Security and Privacy (S&P), 2026. [76]

The work in this dissertation has been conducted in close collaboration
with several researchers and students. The following paragraphs describe
these collaborations.

Chapter 2 is the outcome of a collaboration with the Information Security
Group at ETH Zurich. Besides pushing for a solution that supports
message formats as they appear in real-world protocols, evaluating
early versions of I/O specifications, and contributing to the technical
discussions, I created and verified the Diffie–Hellman (DH) case study
and, together with Felix A. Wolf, adapted and verified the WireGuard
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case study. The additional case study in Sec. 2.7 is the result of Lasse
Meinen’s Master’s Thesis [77], which I co-led with Felix Linker. While
Felix Linker provided the technical guidance on the Authentic Digital
EMblem (ADEM) and its implementation, I advised on the application
and adaptation of our verification methodology and the use of Gobra.

In close collaboration with my supervisor Peter Müller and the senior
scientist Malte Schwerhoff, I led the work on Chapter 3. The work in
Chapter 3 was led by me. Malte Schwerhoff and Peter Müller contributed
with technical discussions and to the writing of the corresponding
publication [74]. In addition to designing the entire methodology, I
implemented the verification framework for Go, implemented all Go case
studies that did not already exist, and verified this verification framework
and all Go case studies. Additionally, I proved the methodology sound.
Vaibhav Mehta contributed the framework’s prototype in C and the
Needham–Schroeder–Lowe (NSL) case study in C, primarily during a
summer internship under my close supervision. The mechanism for
secure deletion of key material (Sec. 3.9), resulted from Hugo Queinnec’s
Master’s Thesis [78], which I closely led.

Diodon (Chapter 4) is the result of two internships at AWS in Portland, OR.
While I provided the expertise on Gobra, Tamarin, and their combination
for verification of security protocol implementations, my collaborators
at AWS contributed to technical discussions, provided the expertise
on static analyses, and adapted the existing static analyses. I modeled
the security protocol of the corresponding case study in Tamarin and
implemented this protocol in an existing AWS codebase, building on an
initial prototype implementation of an earlier protocol draft by Samarth
Kishor. Afterwards, I performed the code-level verification with Gobra
independently. In addition, I carried out the soundness proof after
brainstorming sessions with my AWS collaborators. Finally, I provided
the vast majority of the technical writing in the publication. My AWS
collaborators mostly helped with editing and discussions on the story
line, and Peter Müller contributed to the framing and by revising the
paper.

Contributions Beyond This Dissertation. In the time working on this
dissertation, I supervised numerous students working on Gobra and
Gobra’s ecosystem and contributed to the following publication:

Gobra: Modular Specification and Verification of Go Programs
Felix A. Wolf, Linard Arquint, Martin Clochard, Wytse Oortwĳn,
João Carlos Pereira, and Peter Müller.
In International Conference on Computer Aided Verification (CAV),
2021. [34]
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2.1 Introduction

In this chapter, we approach the verification of security protocol imple-
mentations with the premise that an abstract protocol model exists—a
premise we eschew in Chapter 3 when a model does not exist and is too
difficult to construct. Leveraging abstract protocol models is attractive
as dedicated tools like Tamarin and ProVerif with specialized proof
search engines were developed in the past decades to reason about these
models (cf. Sec. 1.1). Since implementation-level details, like memory
accesses, are not present in these models, these tools can focus on proving
security properties, such as secrecy and authentication, without getting
sidetracked. At the same time, this absence of implementation-level
details is a drawback as the protocol verified is a highly abstract version
of the actual protocol executed and there is a priori no formal link between
the model and implementation.

Existing approaches to verified security protocol implementations, as
covered in Sec. 1.1, are usually tied to a specific implementation lan-
guage, like ML, F★, or Java dialects, and they are difficult to extend to
other languages. They are therefore ill-suited to verifying pre-existing
implementations, especially when used for code extraction. In addition,
the extraction mechanisms used are not always proved correct or even
formalized, which weakens the guarantees for the resulting code. More-
over, in many cases, the security proof is tailored to the implementation
considered rather than being performed at an abstract level by a standard
security protocol verifier such as Tamarin or ProVerif. Hence, one can
neither leverage these tools’ automation capabilities nor the substantial
prior work invested in security protocol proofs using them.

Our Approach. We propose a novel approach to end-to-end verified
security protocol implementations. Our approach leverages the combined
power of state-of-the-art security protocol verifiers and source code
verifiers. This provides abstract, concise, and expressive security protocol
specifications on the modeling side and flexibility and versatility on the
implementation side.

More precisely, our approach bridges abstract security protocol models
expressed in Tamarin as multi-set rewriting systems—one of the most
advanced and widely used security protocol verifiers—with concrete
program specifications expressed as I/O specifications (in a dialect of
separation logic [25]), against which implementations can be verified. Its
technical core is a procedure, and the associated tool implementation, that
translates Tamarin models into I/O specifications along with a soundness
proof, stating that an implementation satisfying the I/O specifications
refines the abstract model in terms of trace inclusion. As a result, any
trace property proved for the abstract model using Tamarin, including
standard security protocol properties such as secrecy and authentication,
also holds for the implementation.

Our approach provides a modular and flexible way to verify security
protocol implementations. On the model verification side, we can lever-
age Tamarin’s proof automation capabilities to prove protocols secure.
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Moreover, we can prove a given protocol’s security once in Tamarin, and
reuse this proof to verify multiple implementations of this protocol, rather
than having to produce a custom security proof for each implementation.
In fact, numerous complex, real-world protocols have been analyzed
using Tamarin over the years. Using our method, this substantial body
of prior work can be exploited to verify implementations.

On the code verification side, the I/O specifications we produce can be
encoded in many existing verifiers that support separation logic. Our tool
currently generates I/O specifications for the Go code verifier Gobra [34]
and for the Java code verifier VeriFast [26], which we respectively use for
our case study and for our running example. It could easily be extended
to other verifiers supporting I/O specifications such as Nagini [30] for
Python code. In addition, the requirements for adding other code verifiers
based on separation logic to our arsenal are low: they need to only support
abstract predicates to encode I/O specifications and to guarantee that
successful verification implies trace inclusion between the I/O traces of
the program and those of its I/O specification.

We establish our central soundness result relating Tamarin models via
I/O specifications to implementations. This result follows a methodology
inspired by the Igloo framework [71], which provides a series of generic
steps that gradually transform an abstract model into an I/O specification,
and requires establishing a refinement relation between each successive
pair of steps. We take similar steps and prove these refinements once and
for all starting from a generic Tamarin system, so that our method can be
applied to obtain an I/O specification from any Tamarin protocol model
(under some mild syntactic assumptions) without any additional proof.

Our Contributions. We summarize our contributions as follows:

➤ We design a framework for the end-to-end verification of security pro-
tocol implementations. This consists of a procedure and an associated
tool to extract I/O specifications from a Tamarin model, which can
be verified on implementation code. Our soundness result ensures
that the implementation inherits all properties proven in Tamarin.

➤ We propose a novel approach to relate the I/O specifications’ symbolic
terms to the code’s byte string messages. We parametrize the code
verifiers’ semantics with an abstraction function, instantiate it to a
message abstraction function, and identify assumptions and proof
obligations to verify that the code correctly implements terms as byte
strings.

➤ To validate our approach, we perform a substantial case study on a
complex, real-world protocol: the WireGuard key exchange, which is
part of the widely-used WireGuard VPN in the Linux kernel. We verify
a part of the official Go implementation of WireGuard, which is inter-
operable with the full version. Using our method, we thereby obtain
an end-to-end symbolically verified WireGuard implementation.

2.2 Background

We present background on tools and methodology.
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2.2.1 Tamarin and Multiset Rewriting

In the Tamarin prover [7, 8], protocols are represented as multiset rewriting
(MSR) systems, where each rewrite rule represents a step or action taken
by a protocol participant or the attacker. We present the building blocks
in order: messages, facts, and rules.

Message terms are elements of a term algebra T = TΣ(N∪ V). These
are built over a signature Σ of function symbols and a set of names
N= fresh ∪ pub consisting of a set of fresh names fresh (for secret values,
generated by parties, unguessable by the attacker), a countably infinite
set of public names pub (for globally known values), and a set of variables
V. Cryptographic messages M are modeled as ground terms, i.e., terms
without variables. The term algebra is equipped with an equational theory E,
which is a set of equations, and we denote by =E the equality modulo E.

Example 2.2.1 (Diffie–Hellman Equational Theory) The signed Diffie–
Hellman (DH) protocol is a well-known key exchange protocol, where
two agents 𝐴 and 𝐵 exchange two DH public keys, 𝑔𝑥 and 𝑔𝑦 , to
establish the shared key 𝑔𝑥𝑦 (where 𝑔 is a group generator). For the
Tamarin model, we use a term signature containing symbols ,̂ 𝑔, sign,
verify, pk modeling respectively exponentiation, the group generator,
signature, verification, and public keys. We use the simplified theory:

(𝑔𝑥)𝑦 = (𝑔𝑦)𝑥 verify(sign(𝑥, 𝑘), pk(𝑘)) = true

Tamarin’s actual model includes further equations. The protocol’s
informal description is as follows:

𝐴→ 𝐵 : 𝑔𝑥 𝑥 fresh
𝐵→ 𝐴 : 𝑠𝑖𝑔𝑛(⟨0, 𝐵, 𝐴, 𝑔𝑥 , 𝑔𝑦⟩, 𝑘𝐵) 𝑦 fresh
𝐴→ 𝐵 : 𝑠𝑖𝑔𝑛(⟨1, 𝐴, 𝐵, 𝑔𝑦 , 𝑔𝑥⟩, 𝑘𝐴) agree on (𝑔𝑥)𝑦 =E (𝑔𝑦)𝑥

The tags 0 and 1 are used to distinguish the last two messages.

All parties, including the attacker, can use the equational theory. The
attacker also has its own set of rewriting rules, expressing that it can
intercept, modify, block, and recombine all network messages, following
the classic DY model [18]. These rules are generated automatically from
the equational theory, but users may formalize additional rules giving
the attacker further scenario-specific capabilities.

Facts are simply atomic predicates applied to message terms, constructed
over a signature Σfacts = Σlin ⊎ Σper of fact symbols, partitioned into
linear (Σlin), i.e., single-use, and persistent (Σper) facts, which encode the
state of agents and the network. We write F = {𝐹(𝑡1 , . . . , 𝑡𝑘) | 𝐹 ∈
Σfacts with arity 𝑘, and 𝑡1 , . . . , 𝑡𝑘 ∈ T} for the set of facts instantiated
with terms, partitioned into Flin ⊎Fper as expected. In addition, ∪m, ∩m,
\m, ⊆m, and ∈m denote the usual operations and relations on multisets,
and for a multiset 𝑚, set(𝑚) denotes the set of its elements.

A multiset rewriting (MSR) rule, written l
a−→ r, contains multisets of

facts l and r on the left and right-hand side, and is labeled with a,
a multiset of actions (also facts, but disjoint from state facts) used for
property specification. A MSR system R and an equational theory E
have a semantics as a labeled transition system (LTS), whose states are
multisets of ground facts from F, the initial state is empty ([]), and the
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transition relation
·

=⇒R,E is defined by

l
a−→ r ∈ R

l′
a′−−→ r′ =E (l

a−→ r)𝜃 l′ ∩m Flin ⊆m 𝑆 set(l′) ∩Fper ⊆ set(𝑆)

𝑆
a′
=⇒R,E 𝑆 \m (l′ ∩m Flin) ∪m r′

, (2.1)

where 𝜃 is a ground instance of the variables in l, a, and r. Intuitively,
the relation describes an update of state 𝑆 to a successor state, that is
possible when a given rule in R is applicable, i.e., an instantiation with
some 𝜃 (mod E) of its left-hand side appears in 𝑆. Applying the rule
consumes the linear but not the persistent facts appearing in its left-hand
side, and adds the instantiations under 𝜃 of all the facts of its right-hand
side to the resulting successor state.

The MSR rules used in Tamarin feature the reserved fact symbols K ∈ Σper,
and Fr, in, out ∈ Σlin, modeling respectively the attacker’s knowledge,
freshness generation, inputs, and outputs. The attacker is modeled by a
set of message deduction rules MDΣ, giving it the DY capabilities mentioned
above. A distinguished freshness rule, labeled Fr(𝑛), generates fresh values
𝑛, which either protocol agents or the attacker directly learn, but never
both.

Finally, a protocol’s observable behaviors are its traces, which are se-
quences of multisets of actions labeling a sequence of transitions. We
define the sets of full traces and of filtered traces with empty labels
removed.

Tr(R) = {⟨𝑎𝑖⟩1≤𝑖≤𝑚 |
∃𝑠1 , . . . , 𝑠𝑚 . []

𝑎1
=⇒R,E 𝑠1

𝑎2
=⇒R,E . . .

𝑎𝑚
=⇒R,E 𝑠𝑚}

Tr′(R) = {⟨𝑎𝑖⟩1≤𝑖≤𝑚,𝑎𝑖≠[] | ⟨𝑎𝑖⟩1≤𝑖≤𝑚 ∈ Tr(R)}.

To ensure that fresh values are unique, we exclude traces with colliding
fresh values by defining

Trt(R) = {⟨𝑎𝑖⟩1≤𝑖≤𝑚 ∈ Tr′(R) |
∀𝑖 , 𝑗 , 𝑛. Fr(𝑛) ∈ 𝑎𝑖 ∩m 𝑎 𝑗 ⇒ 𝑖 = 𝑗}.

We will abbreviate inclusions between each kind of trace sets using
relation symbols≼,≼′, and≼t. For example, R1 ≼t R2 denotes Trt(R1) ⊆
Trt(R2), and similarly for the other two. Note that ≼⊆≼′⊆≼t.

We focus here on Tamarin’s trace properties (i.e., sets of traces) such as
secrecy and authentication [79]. An MSR R satisfies a trace property Φ, if
Trt(R) ⊆ Φ.

Example 2.2.2 (Diffie–Hellman) Continuing Example 2.2.1, we
use the linear fact symbols SetupAlice(𝑖𝑛𝑖𝑡), 𝑆𝑡𝑒𝑝1

Alice(𝑖𝑛𝑖𝑡 , 𝑥),
𝑆𝑡𝑒𝑝2

Alice(𝑖𝑛𝑖𝑡 , 𝑥, 𝑔𝑦) to initialize and record the progress of agent
𝐴 playing the role of Alice in the protocol. The parameters of the facts
store her knowledge. It is initialized with 𝑖𝑛𝑖𝑡 = rid, 𝐴, 𝑘𝐴 , 𝐵, 𝑝𝑘𝐵,
i.e., a thread identifier, her identity, her private key, and her partner’s
identity and public key. It is then extended with her share of the secret
𝑥, and the DH public key 𝑔𝑦 she received. For Alice, the two steps of



[80]: Penninckx et al. (2015), Sound, Mod-
ular and Compositional Verification of the
Input/Output Behavior of Programs

2.2 Background 17

the protocol can then be modeled by the rules:

[SetupAlice(𝑖𝑛𝑖𝑡), Fr(𝑥)] []−→ [𝑆𝑡𝑒𝑝1
Alice(𝑖𝑛𝑖𝑡 , 𝑥), out(𝑔𝑥)]

[𝑆𝑡𝑒𝑝1
Alice(𝑖𝑛𝑖𝑡 , 𝑥), in(𝑠𝑖𝑔𝑛(⟨0, 𝐵, 𝐴, 𝑔𝑥 , 𝑌⟩, 𝑘𝐵))]

[𝑆𝑒𝑐𝑟𝑒𝑡(𝑌𝑥 )]−−−−−−−−−→
[𝑆𝑡𝑒𝑝2

Alice(𝑖𝑛𝑖𝑡 , 𝑥, 𝑌), out(𝑠𝑖𝑔𝑛(⟨1, 𝐴, 𝐵, 𝑌, 𝑔𝑥⟩, 𝑘𝐴))]

The received signature is checked by expecting 𝑝𝑘𝐵 = 𝑝𝑘(𝑘𝐵) using
pattern-matching. The action fact 𝑆𝑒𝑐𝑟𝑒𝑡(𝑌𝑥) in the second rule is
used to specify key secrecy. It records Alice’s belief that the key she
computes from the value𝑌 (supposedly 𝑔𝑦) received from Bob remains
secret. The fact SetupAlice(𝑖𝑛𝑖𝑡) in the first rule is produced by another
rule, modeling the environment initializing Alice’s knowledge:

[Fr(rid), sk(𝐴, 𝑘𝐴), pk(𝐵, 𝑝𝑘𝐵)]
[]−→ [SetupAlice(rid, 𝐴, 𝑘𝐴 , 𝐵, 𝑝𝑘𝐵)].

2.2.2 Separation Logic and I/O Specifications

Separation logic enables sound and modular reasoning about heap ma-
nipulating programs by associating every allocated heap location with
a permission. Permissions are a static concept used to verify programs,
but do not affect their runtime behavior. Each permission is held by at
most one function execution at each point in the program execution. To
access a heap location, a function must hold the associated permission;
otherwise, a verification error occurs. The separating conjunction ★ sums
up the permissions in its conjuncts. Permissions to an unbounded set
of locations, for instance, all locations of a linked list, can be expressed
via co-recursive predicates. Moreover, abstract predicates are useful to
specify permissions to an unknown set of locations.

Permission-based reasoning generalizes from heap locations to other
kinds of program resources. Penninckx et al. [80] reason about a pro-
gram’s I/O behavior by associating each I/O operation with a permission
that is required to call the operation and is then consumed. They equip
the main function’s precondition with an I/O specification that grants all
permissions necessary to perform the desired I/O operations of the entire
program execution. These I/O specifications can easily be encoded in
standard separation logic, such that existing program verifiers supporting
different programming languages can be used to verify I/O behavior.

Every I/O operation io, such as sending or receiving a value, is associ-
ated with an abstract predicate io, called an I/O permission. Intuitively,
io(𝑝1 , 𝑣̄ , 𝑤̄, 𝑝2) expresses the permission to perform io with outputs 𝑣̄
and inputs 𝑤̄. We use 𝑥̄ to denote a vector of zero or more values. The
parameters 𝑝1 and 𝑝2 are called source and target places, respectively. An
abstract predicate 𝑡𝑜𝑘𝑒𝑛(𝑝) is called a token at place 𝑝. The I/O operation
io moves a token from the source place 𝑝1 to the target place 𝑝2 by
consuming 𝑡𝑜𝑘𝑒𝑛(𝑝1) and producing 𝑡𝑜𝑘𝑒𝑛(𝑝2). Hence, the position of
the token indicates the currently allowed I/O operations.

Example 2.2.3 (Send I/O Operation) Figure 2.1 shows the signature
and specification of a send function. The precondition requires an
I/O permission out to send the value v at some source place 𝑝1 with
the corresponding token. When the send operation succeeds, the I/O
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Figure 2.1: Specification of the send op-
eration with I/O permissions. Variables
starting with ? are implicitly existentially
quantified. The code verifier uses && to
denote the separating conjunction ★.

1 requires token(?p1) && out(p1,v,?p2)
2 ensures ok =⇒ token(p2)
3 ensures !ok =⇒ token(p1) && out(p1,v,p2)
4 func send(v int) (ok bool)

permission is consumed and the token is moved to some target place 𝑝2.
In case of failure, the token remains at the source place and the I/O
permission is not consumed.

The separating conjunction of I/O permissions with the same source
place encodes non-deterministic choice between such permissions. More-
over, co-recursion enables repeated as well as non-terminating sequences
of I/O operations.

Example 2.2.4 (I/O Specification for a Server)

𝑃(𝑝, 𝑆) = 𝑄(𝑝, 𝑆)★ 𝑅(𝑝, 𝑆)
𝑄(𝑝1 , 𝑆) = ∃𝑣, 𝑝2 , 𝑝3. in(𝑝1 , 𝑣, 𝑝2)★ out(𝑝2 , 𝑣, 𝑝3)

★𝑃(𝑝3 , 𝑆 ∪ {𝑣})
𝑅(𝑝1 , 𝑆) = ∃𝑝2. out(𝑝1 , “Ping”, 𝑝2)★ 𝑃(𝑝2 , 𝑆)

The formula 𝜙 = 𝑡𝑜𝑘𝑒𝑛(𝑝)★𝑃(𝑝, ∅) specifies a non-terminating server
that repeatedly and non-deterministically chooses between receiving
and forwarding a value 𝑣 or sending a “Ping” message. All received
values 𝑣 are recorded in the state 𝑆, which is initially empty. Input
parameters, like 𝑣 in in here, are existentially quantified to avoid
imposing restrictions on the values received from the environment.

To enforce certain state updates between I/O operations, it is useful
to associate permissions also with certain internal (that is, non-I/O)
operations and include those internal permissions in an I/O specification.
For instance, the above server could include an internal operation to reset
the state 𝑆 when it exceeds a certain size.

I/O specifications induce a transition system and hence have a trace
semantics. The traces can intuitively be seen as the sequences of I/O
permissions consumed by possible executions of the programs that satisfy
it. We write Tr(𝜙) for the set of traces of an I/O specification 𝜙. In the
example above, the sequence in(5) · out(5) · out(“Ping”) · in(7) · out(7)
is one example of a trace of 𝜙. Note that the I/O permissions’ place
arguments do not appear in the trace.

2.3 From Tamarin Models to I/O Specifications

In this section, we present our transformation of a Tamarin protocol
model, expressed as an MSR system R, into a set of I/O specifications 𝜓𝑖 ,
one for each protocol role 𝑖. They serve as program specifications, against
which the roles’ implementations 𝑐𝑖 are verified (Sec. 2.4). Our main
result is an overall soundness guarantee stating that the traces of the
complete system 𝐶(𝑐1 , . . . , 𝑐𝑛 , E), composed of the roles’ verified imple-
mentations 𝑐𝑖 and the environment E, are contained in the traces of the
protocol model R (Sec. 2.5):

𝐶(𝑐1 , . . . , 𝑐𝑛 , E) ≼t R.
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Hence, any trace property Φ proven for the protocol model, i.e., Trt(R) ⊆
Φ, is inherited by the implementation.

The sound transformation of an MSR protocol model R into a set of I/O
specifications is challenging:

1. Tamarin’s MSR formalism is very general and expressive and offers
great flexibility in modeling protocols and their properties. We
want to preserve this generality as much as possible.

2. For the transformation to I/O specifications, we require a separate
description of each protocol role and of the environment, with a
clear interface between the two parts. This interface will be mapped
to I/O permissions in the I/O specification and eventually to (e.g.,
I/O or cryptographic) library calls in the implementation.

3. The protocol models operate on abstract terms, whereas the imple-
mentation manipulates byte strings. We need to bridge this gap in
a sound manner.

Our solution is based on a general encoding of the MSR semantics into
I/O specifications. To separate the different roles’ rewrite rules from
each other and from the environment, we partition the fact symbols
and rewrite rules accordingly. The interface between the roles and the
environment is defined by identifying I/O fact symbols, for which we
introduce separate I/O rules. This isolates the I/O operations from
others and allows us to map them to I/O permissions and later to library
functions. Moreover, we keep I/O specifications as abstract as possible by
using message terms rather than byte strings. We handle the transition
to byte strings in the code verification process (Sec. 2.4).

The proofs for the results stated in this section can be found in the
extended version [81] of the publication on which this chapter is based.

2.3.1 Protocol Format

We introduce a few mild formatting assumptions on the Tamarin model.
They mostly correspond to common modeling practice and serve to
cleanly separate the different protocol roles and the environment. They do
not restrict Tamarin’s expressiveness for modeling protocols. In particular,
all protocols in the Tamarin distribution would fit our assumptions after
some minor modifications.

Rule Format

To model an 𝑛-role protocol, we will use a fact signature of the form

Σfacts = Σact ⊎ Σenv ⊎
( ⊎

1≤𝑖≤𝑛
Σ𝑖

state

)
,

where (i) Σact, Σenv, and Σ𝑖
state are mutually disjoint sets of fact symbols,

used to construct action facts (used in transition labels), environment
facts, and each role 𝑖’s state facts; (ii) Σenv contains two disjoint subsets,
Σin and Σout, of input and output fact symbols such that Fr, in ∈ Σin,
out ∈ Σout, and K ∈ Σenv \ (Σin ∪ Σout); and (iii) there is an initialization
fact symbol Setup𝑖 ∈ Σin for each protocol role 𝑖.
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We consider MSR systems R whose rules are as follows:

R = Renv ⊎
( ⊎

1≤𝑖≤𝑛
R𝑖

)
.

We require that the rules’ labels contain only facts from Σact, i.e., for all
l

a−→ r ∈ R, facts(a) ⊆ Σact. Here, facts(𝑠) denotes the set of fact symbols
that occur in a multiset of facts 𝑠. Additionally, Renv and the R𝑖s are
pairwise disjoint rule sets containing rules for the environment and each
protocol role. Protocol rules use input and output facts to communicate
with the environment. For example, the following two environment rules
transfer a message to and from the attacker’s knowledge:

[out(𝑥)] []−→ [K(𝑥)] [K(𝑥)] []−→ [in(𝑥)]. (2.2)

The attacker rules MDΣ, the freshness rule, and the rules that generate
the Setup𝑖 facts (cf. Example 2.2.2), are also in Renv. We assume that
environment rules do not directly use the agents’ internal states. Namely,
for all l

a−→ r ∈ Renv, facts(l∪ r) ⊆ Σenv. In addition, any rule in Renv
producing a Setup𝑖 fact must not produce any other facts on its right-hand
side and its label must be empty. The protocol rules for role 𝑖 (and only
these) use role state facts fromΣ𝑖

state to keep track of the role’s progress and
may consume facts in Σin (but must not produce them) and may produce
facts in Σout (but must not consume them). More formally, we require,
for all l

a−→ r ∈ R𝑖 , facts(l) ⊆ Σ𝑖
state ∪ Σin and facts(r) ⊆ Σ𝑖

state ∪ Σout.
Finally, we require that for a protocol rule l

a−→ r ∈ R𝑖 , at least one state
fact appears in r, and that there is a 𝑘𝑖 ≥ 1 such that the tuple of the first
𝑘𝑖 arguments of all state facts in l

a−→ r is the same. Intuitively, these
first 𝑘𝑖 arguments represent parameters of the run of the protocol role:
their value remains fixed throughout the role’s execution. They can be,
for instance, the agent’s identity, a thread identifier, or any value that
is assumed to be known beforehand by the agent. We assume that the
first one of these arguments is the thread identifier rid, which is of type
fresh. For readability, we will usually group these 𝑘𝑖 initial parameters as
a tuple, denoted by 𝑖𝑛𝑖𝑡.

These formatting rules impose only very mild constraints on Tamarin
models. All protocol models in the Tamarin distribution could easily be
adapted to conform to these constraints with only minor modifications.
The main changes would be related to providing a separate setup rule
for each role 𝑖 and keeping the arguments of the resulting Setup𝑖 fact as
the initial arguments of all state facts as described above.

Protocol Messages

We support both the usual ways of checking received messages using
pattern matching and explicit equality checks. The latter are formalized,
as usual in Tamarin, as a combination of action facts labeling the given
rule (e.g., Eq(𝑥, hash(𝑧))) and restrictions associating these facts with (a
boolean combination of) equalities (e.g., 𝑥 =E 𝑦 whenever Eq(𝑥, 𝑦) occurs
in a trace). These restrictions act as assumptions on the traces considered
by Tamarin.1 The I/O specifications resulting from our procedure require
that these equality checks are implemented (Sec. 2.3.3).

Furthermore, we recommend, but do not require, the replacement of
nested pairs and tuples by formats [82]. These are user-defined function
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symbols, along with projections for all arguments, that behave like tuples.
In the implementation, each format is mapped to a combination of tags
(i.e., constant byte strings), fixed-size fields, and variable-sized fields
prepended with a length field. Formats help to soundly relate term
and byte string messages, if we prove that they are unambiguous and
non-overlapping (see Sec. 2.4).

Example 2.3.1 (Diffie–Hellman Formatting) The rules for Alice’s role
from Example 2.2.2 satisfy the format conditions above. The initiator
setup rule produces a fact SetupAlice(𝑖𝑛𝑖𝑡), whose parameters 𝑖𝑛𝑖𝑡

appear as the first parameters of the state facts 𝑆𝑡𝑒𝑝1
Alice(𝑖𝑛𝑖𝑡 , . . .) and

𝑆𝑡𝑒𝑝2
Alice(𝑖𝑛𝑖𝑡 , . . .). Both protocol rules produce an out fact to send

a message. The second rule also consumes an in fact to receive a
message. To follow our recommendation to use formats, we can model
the message ⟨0, 𝐵, 𝐴, 𝑔𝑥 , 𝑌⟩ being signed as a format with five fields,
rather than a tuple. Note that, at the Tamarin level, tuples containing
unique tags to distinguish them behave essentially the same as formats.

2.3.2 Transformation to Component Models

We decompose an MSR system R that satisfies our format requirements
into several component models, one for each role, and a separate en-
vironment model, which includes the attacker. In doing so, we move
from a global view of the protocol, useful for security analysis, to a
local view of each role, more appropriate for the implementation. In
Sec. 2.3.3, we transform the component models into I/O specifications
for the programs implementing them.

As a preparatory step, we refine R into an interface model which starts
decoupling the roles from the environment by introducing separate
rewrite rules for their interactions.

Interface Model

The protocol roles and the environment interact using input and output
facts, including the built-in facts Fr, in, and out. For example, the protocol
roles receive messages by consuming in facts produced by the attacker.
The interface model adds an I/O rule for each such fact, which turns it
into a buffered version. These I/O rules will later be implemented as
calls to library functions.

Let Σ−in be the set Σin without the initialization facts Setup𝑖 . We first add
to the fact signature, for each non-setup input or output fact 𝐹 and role 𝑖,
a copy (the “buffer”) 𝐹𝑖 :

Σ𝑖
buf = {𝐹𝑖 | 𝐹 ∈ Σ−in ∪ Σout} Σ𝑖

role = Σ𝑖
state ∪ Σ𝑖

buf

Σ′facts = Σact ⊎ Σenv ⊎ (
⊎

𝑖 Σ
𝑖
role).

We then replace the facts used by the protocol rules as follows. For each
role 𝑖, let R′

𝑖
be the set of rules obtained by replacing, in all rules in R𝑖 ,

each fact 𝐹(𝑡1 , . . . , 𝑡𝑘) such that 𝐹 ∈ Σ−in ∪ Σout by 𝐹𝑖(rid, 𝑡1 , . . . , 𝑡𝑘). The
latter fact has rid as an additional parameter.
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We also introduce the set Rio of I/O rules, which translate between input
or output facts and their buffered versions.
The set Rio contains the following rules, for each role 𝑖:

[𝐹(𝑥1 , . . . , 𝑥𝑘)]
[]−→ [𝐹𝑖(rid, 𝑥1 , . . . , 𝑥𝑘)] for 𝐹 ∈ Σ−in

[𝐺𝑖(rid, 𝑥1 , . . . , 𝑥𝑘)]
[]−→ [𝐺(𝑥1 , . . . , 𝑥𝑘)] for 𝐺 ∈ Σout.

For reasons that will become clear later, we also count the role setup
rules as I/O rules. Hence, we move them from Renv to Rio, calling the
remaining environment rules R−env.

Finally, the interface model is specified by:

Rintf = R−env ⊎Rio ⊎ (
⊎
𝑖

R′𝑖). (2.3)

Example 2.3.2 Continuing Example 2.3.1, we introduce the buffer
facts inAlice, outAlice, and FrAlice. Recall that rid is included in 𝑖𝑛𝑖𝑡. This
yields the modified set R′Alice for the role Alice:

[SetupAlice(𝑖𝑛𝑖𝑡), FrAlice(rid, 𝑥)] []−→
[𝑆𝑡𝑒𝑝1

Alice(𝑖𝑛𝑖𝑡 , 𝑥), outAlice(rid, 𝑔𝑥)]

[𝑆𝑡𝑒𝑝1
Alice(𝑖𝑛𝑖𝑡 , 𝑥), inAlice(rid, 𝑠 𝑖 𝑔𝑛(⟨0, 𝐵, 𝐴, 𝑔𝑥 , 𝑌⟩, 𝑘𝐵))]

[𝑆𝑒𝑐𝑟𝑒𝑡(𝑌𝑥 )]−−−−−−−−−→
[𝑆𝑡𝑒𝑝2

Alice(𝑖𝑛𝑖𝑡 , 𝑥, 𝑌), outAlice(rid, 𝑠 𝑖 𝑔𝑛(⟨1, 𝐴, 𝐵, 𝑌, 𝑔𝑥⟩, 𝑘𝐴))].

We show that the interface model refines the original one.

Lemma 2.3.1 Rintf ≼′ R.

Decomposition

We are now ready to decompose the interface model into the role compo-
nents and the environment. In a nutshell, we assign the rules R′

𝑖
to the

component for role 𝑖 and the rules R−env, including the attacker rules MDΣ,
to the environment. The protocol communicates with the environment
using the I/O rules. We split them into two synchronized parts, one
belonging to the environment and the other to the protocol. Below, we will
show that the re-composed system implements the interface model.

We explain the splitting of the I/O rules into a protocol part and an
environment part using the example rule

[out𝑖(rid, 𝑥)] []−→ [out(𝑥)].

This rule models instance rid of role 𝑖 outputting a message to the attacker.
We split this rule into two parts:

[out𝑖(rid, 𝑥)] [𝜆out(rid,𝑥)]−−−−−−−−→ [], (2.4)

[] [𝜆out(rid,𝑥)]−−−−−−−−→ [out(𝑥)], (2.5)

where the first rule belongs to role 𝑖 and the second to the environment.
We label both rules with a new action fact 𝜆out(rid, 𝑥), which uniquely
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identifies the original I/O rule and has as parameters all variables oc-
curring in it. We call this fact a synchronization label, as we later use it
for synchronizing the two parts to recover the original rule’s behavior.
Similarly, we split all rules in Rio, yielding two sets R𝑖

io and R𝑒
io belonging

to the protocol role 𝑖 and to the environment.

The components for each protocol role 𝑖 and for the environment are
then defined as follows.

R𝑖
role = R′𝑖 ⊎R𝑖

io R𝑒
env = R−env ⊎R𝑒

io. (2.6)

Note that the rule sets R𝑖
role and R𝑒

env operate on pairwise disjoint sets of
facts, namely over the signatures Σ𝑖

role and Σenv, respectively. This means
that they can interact with each other only by synchronizing the split
I/O rules.

Example 2.3.3 (Component for Diffie–Hellman) The MSR system RAlice
role

for Alice’s role contains the two protocol rules in R′Alice from Exam-
ple 2.3.2, the output rule (2.4) described above, and similar rules for
inputs and freshness generation. In addition, it contains the protocol
part of the split setup rule for Alice’s role from Example 2.2.2, i.e.,

[]
[𝜆Alice(rid,𝐴,𝑘𝐴 ,𝐵,𝑝𝑘𝐵)]−−−−−−−−−−−−−−−−→ [SetupAlice(rid, 𝐴, 𝑘𝐴 , 𝐵, 𝑝𝑘𝐵)].

The traces of the recomposition of all roles with the environment are
included in the traces of the interface model. We define two kinds of
parallel compositions on LTSs (induced here by the MSR systems’ transi-
tion semantics). We provide their intuition first and present the formal
definitions as additional information before showing the trace inclusion.
The (indexed) parallel composition ||| interleaves the transitions of a
family of component systems without communication. The (binary) par-
allel composition ∥Λ synchronizes transitions with labels from the set Λ,
resulting in a transition labeled [], and interleaves all other transitions.

We define the (indexed) interleaving parallel composition ||| and the
(binary) synchronizing parallel composition ∥Λ. These compose their
argument MSR systems into an LTS.

The (indexed) interleaving parallel composition |||𝑖 ,ridR𝑖(rid) has as
states functions 𝑓 that map each pair (𝑖 , 𝑟𝑖𝑑) to a multiset of state facts
and transitions 𝑓

a−→ 𝑓 ′ if, for some 𝑖 and 𝑟𝑖𝑑, 𝑓 (𝑖 , 𝑟𝑖𝑑) a
=⇒R𝑖 (rid) 𝑆′

and 𝑓 ′ = 𝑓 [(𝑖 , rid) ↦→ 𝑆′], where 𝑓 ′ agrees with 𝑓 except that it maps
(𝑖 , rid) to 𝑆′.

The synchronized composed system R1 ∥Λ R2 has states of the form
(𝑆1 , 𝑆2) and transitions (𝑆1 , 𝑆2)

a−→ (𝑆′1 , 𝑆′2) if either

(i) a = [] and there is an a′ ∈E Λ such that 𝑆1
a′
=⇒R1 𝑆′1 and

𝑆2
a′
=⇒R2 𝑆

′
2,

(ii) a ∉E Λ, 𝑆1
a

=⇒R1 𝑆
′
1 and 𝑆′2 = 𝑆2, or

(iii) a ∉E Λ, 𝑆2
a

=⇒R2 𝑆
′
2 and 𝑆′1 = 𝑆1.

Here, a′ ∈E Λ means that a′ =E a for some a ∈ Λ.
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Lemma 2.3.2 (Decomposition) Let R𝑖
role(rid) be the MSR system R𝑖

role for
a fixed thread id rid. Then

(|||𝑖 ,ridR
𝑖
role(rid)) ∥Λ R𝑒

env ≼ Rintf ,

where Λ =
⋃

𝑖{a𝜃 | ∃l, r. l a−→ r ∈ R𝑖
io ∧ range(𝜃) ⊆ M} consists of all

ground instances of synchronization labels.

2.3.3 Transformation to I/O Specifications

Finally, we extract an I/O specification 𝜓𝑖 from each role 𝑖’s MSR sys-
tem R𝑖

role, which serves as the specification for the role’s implementation
at the code level. 𝜓𝑖 is parameterized by the thread identifier rid, and
associates a token with the starting place 𝑝 of the predicate 𝑃𝑖 :

𝜓𝑖(rid) = ∃𝑝. token(𝑝)★ 𝑃𝑖(𝑝, rid, []).

The predicate 𝑃𝑖(𝑝, rid, 𝑆)’s parameters are: a place 𝑝, a thread identi-
fier rid, and a state 𝑆 of the MSR system R𝑖

role (i.e., a multiset of ground
facts). Note that 𝜓𝑖 invokes 𝑃𝑖 with the initial state, i.e., the empty
multiset [] (see Sec. 2.2.1). It is defined co-recursively as the separating
conjunction over the formulas 𝜙𝑅, one for each rewrite rule 𝑅 ∈ R𝑖

role:

𝑃𝑖(𝑝, rid, 𝑆) = ⋆𝑅∈R𝑖
role

𝜙𝑅(𝑝, rid, 𝑆).

𝜙𝑅 encodes an application of the rewrite rule 𝑅 to the model state 𝑆. It
contains an I/O or internal permission R(𝑝, . . . , 𝑝′), which an implemen-
tation must hold in order to execute the program part implementing 𝑅.
𝜙𝑅 co-recursively calls 𝑃𝑖(𝑝′, rid, 𝑆′)with the target place 𝑝′ of R and the
updated state 𝑆′. We define the formulas 𝜙𝑅 separately for protocol rules
in R′

𝑖
and for I/O rules in R𝑖

io.

Consider a protocol rule 𝑅 = l
a−→ r ∈ R′

𝑖
with variables 𝑥. We associate

the internal permission R(𝑝, 𝑥, l′,a′, r′, 𝑝′) to𝑅, and define 𝜙𝑅(𝑝, rid, 𝑆)
by

𝜙𝑅(𝑝, rid, 𝑆) = ∀𝑥, l′,a′, r′.
𝑀(l′, 𝑠) ∧ l′ =E l ∧ a′ =E a ∧ r′ =E r ∧ Φ𝑅(𝑥)
=⇒ ∃𝑝′. R(𝑝, 𝑥, l′,a′, r′, 𝑝′) ★ 𝑃𝑖(𝑝′, rid, 𝑈(l′, r′, 𝑆))

where𝑀(l′, 𝑆) = (l′∩mFlin ⊆m 𝑆)∧(set(l′)∩Fper ⊆ set(𝑆)),𝑈(l′, r′, 𝑆) =
𝑆 \m (l′∩m Flin) ∪m r′, and Φ𝑅 is the conjunction of all (boolean combina-
tions of) equality checks (mod E) that the rule 𝑅 performs using a combi-
nation of action facts in a and associated restrictions (cf. Sec. 2.3.1).

This formula specifies that, for any instantiation (mod E) l′,a′, r′ of the
facts in the rule, if the matching condition 𝑀(l′, 𝑆) and the equational
formula Φ𝑅 are satisfied, we have an internal permission R to execute
the rule’s implementation. This yields an updated state 𝑈(l′, r′, 𝑆), on
which 𝑃𝑖 is co-recursively applied to produce the permissions for the rest
of the execution. The formula Φ𝑅 thus enforces that the implementation
performs the explicit equality checks on messages specified in the rule 𝑅
(see also Sec. 2.4.3).
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We define similar formulas for all I/O rules. For output rules of the form

𝑅𝐺 = [𝐺𝑖(rid, 𝑥)] [𝜆𝐺(rid,𝑥)]−−−−−−−→ [] ∈ R𝑖
io, we define the formula

𝜙𝑅𝐺 (𝑝, rid, 𝑆) = ∀𝑥. 𝐺𝑖(rid, 𝑥) ∈m 𝑆
=⇒ ∃𝑝′.RG(𝑝, rid, 𝑥, 𝑝′)★ 𝑃𝑖(𝑝′, rid, 𝑆 \m [𝐺𝑖(rid, 𝑥)]))

which grants the I/O permission RG(𝑝, rid, 𝑥, 𝑝′) for any rid and terms 𝑥
for which fact 𝐺𝑖(rid, 𝑥) exists in 𝑆. 𝑃𝑖 is called co-recursively with
the target place of the permission and the updated state, where the
fact 𝐺𝑖(rid, 𝑥) is removed.

For input rules 𝑅𝐹 = [] [𝜆𝐹(rid,𝑧)]−−−−−−−→ [𝐹𝑖(rid, 𝑧)] ∈ R𝑖
io, we define the

formula

𝜙𝑅𝐹 (𝑝, rid, 𝑆) =
∃𝑝′, 𝑧. RF(𝑝, rid, 𝑧, 𝑝′) ★ 𝑃𝑖(𝑝′, rid, 𝑆 ∪m [𝐹𝑖(rid, 𝑧)]),

which grants the I/O permission RF(𝑝, rid, 𝑧, 𝑝′) to read inputs 𝑧 for any
rid. Note that the input variables 𝑧 are existentially quantified (cf. Sec. 2.2.2)
and the fact 𝐹𝑖(rid, 𝑧) is added to the state in the co-recursive call to 𝑃𝑖 .

Example 2.3.4 (I/O Specification for Diffie–Hellman) Continuing
Examples 2.3.2 and 2.3.3, the component system is translated into an
I/O specification that features the following conjunct corresponding
to the rule for the second step of Alice’s role:

𝜙Alice2(𝑝, rid, 𝑆) = ∀𝑖𝑛𝑖𝑡 , 𝑥, 𝑌, l′,a′, r′.
𝑀(l′, 𝑆) ∧
l′ =E {|𝑆𝑡𝑒𝑝1

Alice(𝑖𝑛𝑖𝑡 , 𝑥), inAlice(rid, 𝑠 𝑖 𝑔𝑛(⟨0, 𝐵, 𝐴, 𝑔𝑥 , 𝑌⟩, 𝑘𝐵))|} ∧
a′ =E {|𝑆𝑒𝑐𝑟𝑒𝑡(𝑌𝑥)|} ∧
r′ =E {|𝑆𝑡𝑒𝑝2

Alice(𝑖𝑛𝑖𝑡 , 𝑥, 𝑌), outAlice(rid, 𝑠 𝑖 𝑔𝑛(⟨1, 𝐴, 𝐵, 𝑌, 𝑔𝑥⟩, 𝑘𝐴))|} ∧
=⇒ ∃𝑝′.Alice2(𝑝, 𝑖𝑛𝑖𝑡 , 𝑥, 𝑌, l′,a′, r′, 𝑝′)★𝑃𝑖(𝑝′, rid, 𝑈(l′, r′, 𝑆))

i.e., the permission to execute this step is granted, provided 𝑆 contains
instantiations of the previous state fact and the correct input fact, and
that 𝑆 is updated by replacing them with the new state and output
facts. Recall that 𝑖𝑛𝑖𝑡 abbreviates rid, 𝐴, 𝑘𝐴 , 𝐵, 𝑝𝑘𝐵.

The construction of 𝜓𝑖 from R𝑖
role can be seen as an instance of Igloo [71]

and by the soundness result from that paper, we get the following trace
inclusion.

Theorem 2.3.3 (I/O Soundness) Sprenger et al. [71] prove

𝜋(𝜓𝑖(rid)) ≼ R𝑖
role(rid),

for all MSR systems R𝑖
role(𝑟𝑖𝑑), where the fresh name rid instantiates the

thread identifier in all facts, and 𝜋 = 𝜋int ◦ 𝜋ext relabels (the LTS induced by)
𝜓𝑖(rid). Here, 𝜋int and 𝜋ext are the identity functions except on the following
labels:

𝜋int(R(𝑥, l′,a′, r′)) = a′ for 𝑅 ∈ R′𝑖
𝜋ext(F(rid, 𝑥)) = [𝜆𝐹(rid, 𝑥)] for 𝐹 ∈ R𝑖

io.
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2.3.4 I/O Specification Generation

We implement the described transformation to fully automatically gener-
ate I/O specifications from a Tamarin protocol model. Our tool takes a
Tamarin model as input and emits an I/O specification per protocol role
that satisfies the mild formatting assumptions. While the tool transforms
each rule in a role’s MSR system independently and, thus, is generic, i.e., in-
dependent of a protocol and its properties, the emitted I/O specifications
are specific to a program verifier. Therefore, the tool features two main
configuration options besides the path to the input Tamarin model and
the output directory. The first option selects the targeted program verifier
such that the emitted I/O specifications conform to the verifier’s syntax
and features. Currently, the tool supports Gobra for Go and VeriFast for
Java. However, additional program verifiers and programming languages
can easily be supported by implementing additional pretty-printers from
the internal representation of I/O specifications to the desired output
format. Since the tool emits multiple modules in different files, which
define internal I/O operations and terms as well as the actual I/O spec-
ifications, the second option customizes the module name prefix such
that the generated import statements work as expected after embedding
the emitted files in the targeted codebase. Except for embedding the
emitted files, a user has to add only constructors for public constants and
fresh terms in the emitted files, equip I/O operations with a specification
that enforces the respective I/O permission (cf. Sec. 2.2.2), and prove
that an implementation satisfies a particular role’s I/O specification, as
explained in the following subsection.

Our tool is open-source [83, 84]. The transformation is implemented
in Isabelle/HOL amounting to 1723 lines of code (LOC), and used to
generate Haskell code, which is integrated into a fork of Tamarin to reuse
the parsing of Tamarin models. Ignoring the generated Haskell code, the
tool adds 2880 LOC to the Tamarin codebase, most of which correspond
to the two pretty-printers for Gobra and VeriFast.

2.4 Verified Protocol Implementations

The implementation step consists of providing the code 𝑐𝑖(𝑟𝑖𝑑) im-
plementing each role 𝑖 and proving that it satisfies its I/O specifica-
tion 𝜓𝑖(rid). The challenge here is bridging the abstraction gap between
the message terms in the I/O specifications 𝜓𝑖(rid) and the byte string
messages manipulated by the code. In Sec. 2.4.1, we present an exten-
sion of the code verifiers’ semantics of Hoare triples to accommodate
such abstractions. In Sec. 2.4.2, we explain how we concretely relate
byte strings to terms. Finally, in Sec. 2.4.3, we show how we verify the
roles’ I/O specifications based on appropriate I/O and crypto library
specifications.

2.4.1 Code Verification with Abstraction

In Penninckx et al.’s program logic [80], the statement that a program 𝑐
satisfies an I/O specification 𝜙 is expressed as the Hoare triple

{𝜙} 𝑐 {true}, (2.7)
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with the I/O specification 𝜙 in the precondition and the postcondi-
tion true. We assume that the program 𝑐 has an LTS semantics C given
by the programming language’s operational semantics, where the labels
represent the program’s I/O (and internal) operations and the program’s
traces consist of sequences of such labels. We leave the exact semantics
unspecified here, to keep our formulation generic with respect to the
programming language used. The semantics of the Hoare triple (2.7)
implies that the program 𝑐’s traces are included in the traces of 𝜙, i.e.,
C ≼ 𝜙.

To bridge the gap between message terms and byte string messages,
we extend Penninckx et al.’s approach by introducing an abstraction or
relabeling function 𝛼 between the implementation’s transition labels
and the I/O specification’s transition labels. For example, 𝛼 may map
a concrete label in𝑐(𝑙) to an abstract version in𝑎(𝑠), where 𝑙 is a list
implementation and 𝑠 is the mathematical set of 𝑙’s elements. We also
extend the soundness assumption on the code verifier accordingly.

Assumption 2.4.1 (Verifier Assumption)

⊢𝛼 {𝜙} 𝑐 {true} =⇒ 𝛼(C) ≼ 𝜙.

This means that a successful verification implies that the program traces,
abstracted under 𝛼, are included in the I/O specification 𝜙’s traces. Next,
we sketch a semantics for Hoare triples that implies this trace inclusion.

Extended Semantics for Hoare Triples

Following Penninckx et al. [80] [80]: Penninckx et al. (2015), Sound, Mod-
ular and Compositional Verification of the
Input/Output Behavior of Programs

, we sketch an example of semantic
assumptions on programs and Hoare triples that make our verifier
assumption (Asm. 2.4.1) hold semantically. The soundness of the
program logic itself, i.e., that a provable Hoare triple ⊢𝛼 {𝜙} 𝑐 {𝜓}
implies its semantic validity |=𝛼 {𝜙} 𝑐 {𝜓}, is orthogonal and can be
established using standard techniques from the literature.

We assume that a programming language’s semantics makes judg-
ments of the form 𝑠, 𝑐 ⇓ 𝑠′, 𝜏, meaning that the program 𝑐 when
started in state 𝑠 terminates in state 𝑠′ and produces the I/O trace 𝜏.
This semantics induces a LTS C, whose set of traces for a given starting
state 𝑠0 is thus

Tr(C) = {𝜏 | ∃𝑠′. 𝑠0 , 𝑐 ⇓ 𝑠′, 𝜏}.

I/O specifications 𝜙 have both a static and a dynamic semantics,
which are defined in terms of (I/O) heaps. Heaps are multisets of
(ground) I/O permission and token predicates. The static semantics,
written ℎ |= 𝜙, intuitively means that a heap ℎ contains (at least) the
I/O permissions and tokens prescribed by 𝜙. The dynamic semantics
defines the set of traces allowed by an I/O specification 𝜙 to contain
those traces that are possible in all heap models of 𝜙, i.e.,

Tr(𝜙) = {𝜏 | ∀ℎ. ℎ |= 𝜙 =⇒ ℎ
𝜏−→},

where ℎ
𝜏−→ intuitively means that it is possible to produce a trace 𝜏

by successively pushing the tokens in ℎ through the I/O permissions
in ℎ (and thus consume these permissions).

The semantics of Hoare triples of the form {𝜙} 𝑐 {true}with respect
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to an abstraction function 𝛼 from program-level I/O operations to
abstract I/O permissions is given by

|=𝛼 {𝜙} 𝑐 {true}
def⇐⇒ ∀𝑠, 𝜏, 𝑠′, ℎ. 𝑠, 𝑐 ⇓ 𝑠′, 𝜏 ∧ ℎ |= 𝜙 =⇒ ℎ

𝛼(𝜏)−−−→
⇐⇒ 𝛼(Tr(C)) ⊆ Tr(𝜙)
⇐⇒ 𝛼(C) ≼ 𝜙.

Here, 𝛼(C) denotes the LTS C whose transition labels are renamed un-
der 𝛼. The final equivalence uses the equality 𝛼(Tr(C)) = Tr(𝛼(C)).
Penninckx et al.’s semantics is formulated for the case where 𝛼 is the
identity function. Both our and their semantics of Hoare triples also
include non-trivial postconditions, which we omit here to simplify
the presentation.

To ensure that our extension using the abstraction function 𝛼 is sound,
we require that the I/O operations’ contracts are consistent with 𝛼, i.e.,
imply a correct mapping of transition labels under 𝛼. More precisely,
suppose the specification of such an operation op induces a concrete
transition label op𝑐(𝑎), where 𝑎 are op’s inputs and outputs, and the I/O
permission in the precondition induces the abstract transition label op𝑎(𝑏).
Then we define 𝛼 as lifting from an (overloaded) function 𝛼 that maps
concrete parameter types to abstract ones, i.e., 𝛼(op𝑐(𝑎)) = op𝑎(𝛼(𝑎)).
We therefore require that 𝑏 = 𝛼(𝑎) follows from op’s precondition (for
arguments) and postcondition (for return values). Moreover, we allow 𝛼
to be a partial function, in which case the specification must also imply
that the concrete arguments are in its domain.

Application to Role Verification

We now apply this idea to the verification of the protocol’s role imple-
mentations (using Gobra and VeriFast in our case studies). That is, we
wish to establish

⊢𝛼 {𝜓𝑖(rid)} 𝑐𝑖(𝑟𝑖𝑑) {true} (2.8)

for a suitable 𝛼. An obvious possibility would be to define an abstraction
function 𝛼 : 𝔹★ → M from byte strings to messages and then lift it
to trace labels. For example, a concrete in𝑐(rid, 𝑏) would be abstracted
to 𝛼(in𝑐(rid, 𝑏)) = in𝑎(rid, 𝛼(𝑏)). However, this mapping assumes that
each byte string corresponds to exactly one term, and consequently that
every byte string can be uniquely parsed as a term. To minimize our
assumptions, however, we do not a priori want to exclude collisions
between byte strings, i.e., we allow a byte string to have several term
interpretations.

In Sec. 2.4.2, we therefore relate byte strings and terms using a con-
cretization function 𝛾 : M→ 𝔹★. Since a byte string may be related to
several terms, we cannot define a function 𝛼 mapping concrete labels
to abstract I/O labels. Our solution is based on adding ghost term pa-
rameters to the I/O operations in the implementation code. For example,
the operation receiving a byte string 𝑏 gets an additional ghost return
value term 𝑚 with 𝑏 = 𝛾(𝑚) and the corresponding transition label is
in𝑐(rid, (𝑏, 𝑚)). These ghost terms aid verification (see Sec. 2.4.3), but
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1 ensures seq(ciph) = enc𝐵(seq(key), seq(msg))
2 func encrypt(key, msg []byte) (ciph []byte)

4 ensures ok =⇒ seq(c) = enc𝐵(seq(k), seq(m))
5 func decrypt(k, c []byte) (m []byte, ok bool)

7 requires token(?p1) && in(p1,?m,?p2)
8 ensures ok =⇒ token(p2) && seq(b) = 𝛾(m)
9 ensures !ok =⇒ token(p1) && in(p1,m,p2)

10 func receive() (b []byte,ghost m term,ok bool)

Figure 2.2: Simplified specifications for
encryption, decryption, and receive. The
function seq abstracts an in-memory
byte array to B. We omit Gobra’s mem-
ory annotations needed to reason about
heap data structures and conditions on
the size of byte strings.

are not present in the executable code. We instantiate 𝛼 to the func-
tion 𝜋′ext that removes the byte strings from the concrete I/O operation’s
labels and keeps only the ghost terms used for the reasoning. For in-
stance, 𝜋′ext(in𝑐(rid, (𝑏, 𝑚))) = in𝑎(rid, 𝑚). This function is defined only
for 𝑏 = 𝛾(𝑚), which is guaranteed by the receive operation’s contract (cf.
Fig. 2.2).

Our proposed method enables us to verify that preexisting real-world
code satisfies I/O specifications produced from abstract Tamarin mod-
els (see Sec. 2.6).

2.4.2 Relating Terms and Byte Strings

In Tamarin’s MSR semantics, messages in Mare ground terms. We model
the concrete messages and the operations on them as byte string algebras
defined asΣ-algebras Bwith the set of byte strings𝔹★ as the carrier set. To
relate terms to byte strings, we use a surjectiveΣ-algebra homomorphism
𝛾 : M→ B, which maps (fresh and public) names to byte strings and
the signature’s symbols to functions on byte strings:

𝛾(𝑛) = 𝑛B for 𝑛 ∈ N
𝛾( 𝑓 (𝑡1 , . . . , 𝑡𝑘)) = 𝑓B(𝛾(𝑡1), . . . , 𝛾(𝑡𝑘)) for 𝑓 ∈ Σ𝑘

With the requirement that 𝛾 is surjective, we avoid junk byte strings that
do not represent any term (i.e., the algebra B is term-generated). This is
without loss of generality as there are countably infinitely many public
names that can be mapped to potential junk byte strings.

Note that Σ-algebra homomorphisms are required to preserve equali-
ties. For example, a symbolic equality dec(𝑘, enc(𝑘, 𝑚)) =E 𝑚 on terms
implies the equality

decB(key, encB(key, msg)) = msg

on byte strings. In the next section, we will use the byte string algebra’s
functions in our crypto library’s specification. This enables us to reason
about message parsing and construction.

2.4.3 Verifying the I/O Specification

The verification of the I/O specification generally follows the same
approach as in previous work [71, 80]. Every I/O operation performed
by the code requires that a corresponding I/O permission is held. The
required I/O permissions must be obtained from the I/O specification.
However, our introduction of abstraction makes reasoning about what is
sent and, in particular, received more challenging.
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Figure 2.3: Reasoning about receiving
and parsing a ciphertext.

1 // seq(key) = 𝛾(k) holds
2 ciph, c, ok := receive(); if !ok {return}
3 assert seq(ciph) = 𝛾(c)
4 msg, ok := decrypt(key, ciph); if !ok {return}
5 assert ∃u. seq(msg) = 𝛾(u)
6 && seq(ciph) = 𝛾(enc(k, u))
7 PaR1(m, ...) // using the pattern requirement
8 assert ∃w. c =E enc(k, w) && seq(msg) = 𝛾(w)

Sending and Receiving Messages

For a sent pair of a byte string and a ghost message (in M), we must verify
that the I/O specification permits sending the message. Similarly, for a
received pair of a byte string and a ghost message, we must verify that
the received message matches a term in the I/O specification, describing
the expected protocol message. We refer to such terms as patterns. In
Example 2.3.4, there is a single pattern, namely 𝑠𝑖𝑔𝑛(⟨0, 𝐵, 𝐴, 𝑔𝑥 , 𝑌⟩, 𝑘𝐵),
where the unconstrained 𝑌 is a variable and all other entities are con-
strained by the fact 𝑆𝑡𝑒𝑝1

Alice(𝑖𝑛𝑖𝑡 , 𝑥).

Verifying that the I/O specification permits sending a message boils down
to verifying that the byte string 𝛾(𝑚) for a permitted message 𝑚 was
constructed and then sent. This becomes straightforward by equipping the
cryptographic library with suitable specifications. Consider the simplified
specification of an encryption function shown in Fig. 2.2. The function seq
abstracts an in-memory byte array into a mathematical sequence of bytes,
i.e., an element of 𝔹★. Due to the specification and the surjectivity of
𝛾, the result of encrypt(key, msg) is equal to 𝛾(enc(𝑚key , 𝑚msg)) for
some messages 𝑚key and 𝑚msg, where 𝛾(𝑚key) = seq(key) and 𝛾(𝑚msg) =
seq(msg). To verify the construction of an entire message, we combine
the information of all such calls.

Verifying that a message 𝑚 returned by receive() (cf. Fig. 2.2) matches
a pattern 𝑡 is more involved. Using our cryptographic library’s specifica-
tions, we can verify that 𝛾(𝑚) is equal to 𝛾(𝑡𝜎), where the substitution 𝜎
instantiates the variables of 𝑡 with messages. Unfortunately, this does not
entail that the received message 𝑚 matches the pattern 𝑡. The function 𝛾
may have collisions and hence 𝛾(𝑚) may equal 𝛾(𝑡𝜎), while 𝑚 and
𝑡𝜎 differ. We address this issue by requiring that instances of the I/O
specification’s patterns do not collide with other byte strings; we discuss
below how we justify this requirement.

Definition 2.4.1 The pattern requirement for a pattern 𝑡 ∈ T is defined
for ground messages 𝑚 ∈M by

𝛾(𝑡𝜎) = 𝛾(𝑚) =⇒ ∃𝜎′. 𝑚 =E 𝑡𝜎′. (PaR(𝑡))

This requirement states that if (ground) messages 𝑚 and 𝑡𝜎 coincide
under 𝛾, then 𝑚 must match the pattern 𝑡 (mod E) with some substitution
𝜎′, which may differ from 𝜎.

We need the pattern requirement for all patterns of the I/O specification.
For code verification, we express the pattern requirement as a ghost
function whose pre- and postcondition are the left-hand and right-hand
side of the pattern requirement, for each pattern respectively. To apply
the pattern requirement, the corresponding ghost function is called in the
code. We will explain how to prove the pattern requirement for a given
pattern 𝑡 after illustrating the pattern requirement on an example.
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1 requires token(p) && 𝑃Ann(p,r,S) && 𝑆𝑡𝑒𝑝1
Ann(k)∈mS

2 requires ∃x. 𝛾(enc(k,x)) = 𝛾(m)
3 ensures token(p) && 𝑃Ann(p,r,S) && ∃x′. m =E enc(k,x′)
4 ghost func PaR1(m,p,r,S,k)

Figure 2.4: Ghost function for the pattern
requirement of Example 2.4.1. There is
the single pattern enc(𝑘, 𝑥), where 𝑘 is a
constant and 𝑥 is a variable.

Example 2.4.1 (Checking a Ciphertext) Consider a simple protocol
where a role Ann expects a message matching the pattern enc(𝑘, 𝑥),
where 𝑘 is a pre-shared key. We use the fact 𝑆𝑡𝑒𝑝1

Ann(𝑘) to bind 𝑘
in the model state. Fig. 2.3 shows part of an implementation. The
variable key stores the pre-shared key, expressed as seq(key) = 𝛾(k).
After successfully receiving a byte string ciph with a message c, seq(
ciph) = 𝛾(c) holds due to receive’s specification (cf. Fig. 2.2). Next,
the code decrypts ciph. If successful, ciph equals the byte string 𝛾(
enc(k,u)) for some message u with seq(msg) = 𝛾(u) (lines 5–6)
by decrypt’s postcondition (cf. Fig. 2.2) and 𝛾 being a surjective
homomorphism. Furthermore, we know that 𝛾(enc(k,u)) equals 𝛾(c
), but not yet that the received message c matches the pattern enc(𝑘, 𝑥)
(line 8). For this, we apply the pattern requirement by calling the ghost
function PaR1 (cf. Fig. 2.4). The constant 𝑘 of the pattern enc(𝑘, 𝑥)
is passed as an argument to the call, and related to the state facts
of the I/O specification via the ghost function’s precondition (with
𝑆𝑡𝑒𝑝1

Ann(k)∈mS).

Deriving the Pattern Requirement

The pattern requirement for a given pattern 𝑡 can be derived from
two more basic properties. We define these properties here and prove this
implication. Afterwards, we will discuss assumptions and justifications
regarding these properties.

The first property is image disjointness, which has two parts: First, the
images of (public and fresh) names under 𝛾 are pairwise disjoint and
disjoint from the image of any function 𝑓B for 𝑓 ∈ Σ (cf. (NID)). Second,
the image of any function 𝑓B does not collide (modulo equational
theory E) with the image of any other function 𝑔B, for 𝑓 , 𝑔 ∈ Σ (cf.
(ID 𝑓 (𝑡))). To define image disjointness, we split the equational theory E
into two parts, namely the associativity and commutativity (AC) part and
a user-defined, convergent rewriting system R. This split allows us to
normalize a term 𝑡 by sequentially applying R’s rules to obtain a unique
normal form modulo AC, which we call R,AC-normalized.

Definition 2.4.2 (R,AC-Normalized) A pattern 𝑡 is R,AC-normalized if
this pattern has converged under R (mod AC),

𝑡 = 𝑡 ↓R,AC ,

where 𝑡 ↓R,AC denotes applying the rules of the rewriting system R until
convergence (mod AC).

Definition 2.4.3 (AC-Subterm) Following Cremers et al. [85, Definition 3] [85]: Cremers et al. (2023), Subterm-Based
Proof Techniques for Improving the Automa-
tion and Scope of Security Protocol Analysis

,
we define 𝑠 being a subterm of 𝑡 modulo AC as

𝑠 ⊑AC 𝑡 ≜ ∃𝑠′, 𝑡′. (𝑠′ =AC 𝑠) ∧ (𝑡′ =AC 𝑡) ∧ (𝑠′ ⊑synt 𝑡
′),



32 2 Refinement-Based Verification of Security Protocol Implementations

where ⊑synt denotes the syntactic subterm relation. Analogously, we define
the strict AC-subterm relation ⊏AC.

Definition 2.4.4 (Image Disjointness) Image disjointness for an R,AC-
normalized pattern 𝑡 holds if (i) 𝛾 is injective on the set of names N (NID),
which includes that names and results of all functions 𝑓 ∈ Σ are disjoint
under 𝛾 as 𝑚 ranges over all ground messages, and (ii) for AC-subterms of 𝑡,
all 𝑓 ∈ Σ, and the image of function 𝑓 coinciding after concretization with
some term 𝑚, there exist terms 𝑤1 , . . . , 𝑤𝑘 such that 𝑓 (𝑤1 , . . . , 𝑤𝑘) is equal
to 𝑚 modulo the equational theory E (ID 𝑓 (𝑡)).

∀𝑛 ∈ N, 𝑚 ∈M. 𝛾(𝑛) = 𝛾(𝑚) =⇒ 𝑛 = 𝑚 (NID)

𝑓 (𝑢1 , . . . , 𝑢𝑘) ⊑AC 𝑡 ∧ 𝛾( 𝑓 (𝑢1𝜎, . . . , 𝑢𝑘𝜎)) = 𝛾(𝑚)
=⇒ ∃𝑤1 , . . . , 𝑤𝑘 . 𝑚 =E 𝑓 (𝑤1 , . . . , 𝑤𝑘). (ID 𝑓 (𝑡))

The second property is pattern injectivity for a pattern 𝑡. This constitutes
a much weaker form of standard injectivity. It is required to hold only
for AC-subterms 𝑡′ ⊑AC 𝑡 and where, again, equality is guaranteed only
modulo a substitution 𝜎′.

Definition 2.4.5 (Pattern Injectivity) Pattern injectivity holds for an
R,AC-normalized pattern 𝑡 if, for all 𝑓 ∈ Σ occurring in 𝑡,

𝑓 (𝑢1 , . . . , 𝑢𝑘) ⊑AC 𝑡 ∧ 𝑓B(𝛾(𝑢1𝜎), . . . , 𝛾(𝑢𝑘𝜎)) = 𝑓B(𝑏1 , . . . , 𝑏𝑘)
=⇒ ∃𝑤1 , . . . , 𝑤𝑘 , 𝜎

′. 𝑓 (𝑢1 , . . . , 𝑢𝑘) =AC 𝑓 (𝑤1 , . . . , 𝑤𝑘) ∧
𝑏1 = 𝛾(𝑤1𝜎

′) ∧ . . . ∧ 𝑏𝑘 = 𝛾(𝑤𝑘𝜎
′). (PaI 𝑓 (𝑡))

Proposition 2.4.1 Given an R,AC-normalized, linear (where every variable
occurs only once) pattern 𝑡, image disjointness and pattern injectivity for 𝑡
imply the pattern requirement for 𝑡.

Proof. We prove the proposition’s statement by well-founded induction
on ⊏AC using the induction hypothesis

∀𝑡′ ⊏AC 𝑡. PaI 𝑓 (𝑡′) ∧ ID 𝑓 (𝑡′)
=⇒

(
𝛾(𝑡′𝜎) = 𝛾(𝑚) =⇒ ∃𝜎′. 𝑚 =E 𝑡′𝜎′

)
. (IH)

We assume (NID), (ID 𝑓 (𝑡)), (PaI 𝑓 (𝑡)), and 𝛾(𝑡𝜎) = 𝛾(𝑚) and show
∃𝜎′. 𝑚 =E 𝑡𝜎′. We proceed by case distinction on 𝑡.

▶ 𝑡 = 𝑥 ∈ V: Since 𝑥 is a variable, we choose 𝜎′ = [𝑥 ↦→ 𝑚]. Hence,
𝑚 =E 𝑥[𝑥 ↦→ 𝑚].

▶ 𝑡 = 𝑛 ∈ N: We apply (NID) and obtain 𝑛 = 𝑚.
▶ Otherwise, we have

𝑡 = 𝑓 (𝑢1 , . . . , 𝑢𝑘) (2.9)

for some 𝑢1 , . . . , 𝑢𝑘 . By instantiating 𝛾(𝑡𝜎) = 𝛾(𝑚) and 𝛾 being a
homomorphism, we obtain 𝑓B(𝛾(𝑢1𝜎), . . . , 𝛾(𝑢𝑘𝜎)) = 𝛾(𝑚). Ap-
plying (ID 𝑓 (𝑡)), we get

𝑚 =E 𝑓 (𝑣1 , . . . , 𝑣𝑘) (2.10)

for some 𝑣1 , . . . , 𝑣𝑘 . Under 𝛾, we have 𝑓B(𝛾(𝑢1𝜎), . . . , 𝛾(𝑢𝑘𝜎)) =
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𝑓B(𝛾(𝑣1), . . . , 𝛾(𝑣𝑘)). Next, we define 𝑏1 = 𝛾(𝑣1), . . . , 𝑏𝑘 = 𝛾(𝑣𝑘)
and apply (PaI 𝑓 (𝑡)) to obtain

∃𝑤1 , . . . , 𝑤𝑘 , 𝜎
′. 𝑓 (𝑢1 , . . . , 𝑢𝑘) =AC 𝑓 (𝑤1 , . . . , 𝑤𝑘) ∧
𝑏1 = 𝛾(𝑤1𝜎

′) ∧ . . . ∧ 𝑏𝑘 = 𝛾(𝑤𝑘𝜎
′). (2.11)

We note that 𝑤𝑖 ⊏AC 𝑡 holds for 1 ≤ 𝑖 ≤ 𝑘. Therefore, we have
PaI 𝑓 (𝑤𝑖) and ID 𝑓 (𝑤𝑖), which allow us to apply (IH) for each 𝑤𝑖

resulting in∃𝜎𝑖 .𝑤𝑖𝜎𝑖 =E 𝑣𝑖 . Since the pattern 𝑡 is linear, all variables
in 𝑤𝑖 are disjoint from the variables in all other 𝑤 𝑗 with 𝑖 ≠ 𝑗. As
a consequence, the domains of all 𝜎𝑖 are pairwise disjoint, which
allows us to combine them into a single substitution 𝜎′, where
𝜎′ =

⋃
𝑖 𝜎𝑖 . As 𝑓 is a function symbol and 𝑤𝑖𝜎′ =E 𝑣𝑖 holds, we get

𝑓 (𝑤1𝜎
′, . . . , 𝑤𝑘𝜎

′) =E 𝑓 (𝑣1 , . . . , 𝑣𝑘). (2.12)

Finally, we obtain

𝑚
(2.10)
=E 𝑓 (𝑣1 , . . . , 𝑣𝑘)

(2.12)
=E 𝑓 (𝑤1𝜎

′, . . . , 𝑤𝑘𝜎
′)

(2.11)
=AC 𝑓 (𝑢1𝜎

′, . . . , 𝑢𝑘𝜎
′) (2.9)

= 𝑡𝜎′,

which proves 𝑚 =E 𝑡𝜎′.

We split non-linear patterns into multiple linear ones. For instance, the
non-linear pattern 𝑡 = ⟨𝑥, hash(𝑥)⟩ can be split into 𝑡1 = ⟨𝑥, _⟩ and
𝑡2 = ⟨_, hash(𝑥)⟩ (where _ matches any term). Conceptually, we then first
match a given term ⟨𝑢, hash(𝑢)⟩ against 𝑡1, which binds 𝑥 to 𝑢, and then
against ⟨_, hash(𝑢)⟩ = 𝑡2[𝑥 ↦→ 𝑢]. This is equivalent to matching against
𝑡. This turned out to be simpler to work with than a single linearized
pattern with additional equality constraints.

Requiring that patterns are R,AC-normalized is not a restriction in practice
since patterns arising in a Tamarin model are usually normalized—
otherwise, such patterns can easily be rewritten to be normalized.

Assumptions and Proof Obligations

We discuss assumptions and proof obligations regarding image disjoint-
ness and pattern injectivity. In doing so, we distinguish cryptographic
operations from formats.

Since we are working in a symbolic (DY) model, which assumes perfect
cryptography, we maintain this assumption for cryptographic operations
at the byte string level in the following form.

Assumption 2.4.2 (Cryptographic Operations) We assume that

(i) 𝛾 is injective on the set of names N,
(ii) (ID 𝑓 (𝑡)) holds for cryptographic 𝑓 ∈ Σ and all 𝑔 ∈ Σ, and
(iii) (PaI 𝑓 (𝑡)) holds for all protocol patterns 𝑡 and all cryptographic 𝑓 ∈ Σ

occurring in 𝑡.

We justify these assumptions by noting that we can expect collisions
violating these assumptions to occur only with negligible probability
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in good cryptographic libraries. Also recall that pattern injectivity is a
much weaker requirement than standard injectivity.

The situation is different for formats (cf. Sec. 2.3.1). We can expect that
the formats of a well-designed protocol are unambiguously parsable (i.e.,
injective and hence pattern-injective) and mutually disjoint (i.e., image
disjoint). We therefore require that these properties are proved for formats,
e.g., using the techniques proposed in [82, 86, 87]

[82]: Mödersheim et al. (2014), A Sound
Abstraction of the Parsing Problem
[86]: Ramananandro et al. (2019), Ever-
Parse: Verified Secure Zero-Copy Parsers for
Authenticated Message Formats
[87]: Wallez et al. (2023), Comparse: Prov-
ably Secure Formats for Cryptographic Pro-
tocols

.

Remark 2.4.1 An obvious way to achieve image disjointness and
pattern injectivity is to tag each construct of the byte string algebra
with a different byte string. This approach is followed, e.g., in [71][71]: Sprenger et al. (2020), Igloo: Soundly

Linking Compositional Refinement and Sep-
aration Logic for Distributed System Verifi-
cation

but
this is unrealistic for real protocols.
Alternatively, image disjointness holds if different operations result in
differently sized byte strings. For operations with varying output sizes,
such as stream encryption, this may require restricting the allowed
argument sizes in the implementation. In some cases, this approach
may allow us to prove image disjointness even for some cryptographic
operations. Indeed, we do this for a pre-existing implementation of
the WireGuard protocol, which does not use tagging. However, this
approach also has its limitations; for example, AES-256 or SHA-256
have the same output size.

Proving Term Equalities

Obligations to prove term equalities during code verification arise from
equality constraints in the I/O specification. However, while the code
can check that an equality holds on the byte string level (e.g., 𝛾(𝑥) =
𝛾(hash(𝑧))), this does not in general imply the prescribed term equality
(e.g., 𝑥 =E hash(𝑧)). Following [64, 65, 69, 70], we can reasonably assume
that collisions violating this implication do not occur (with overwhelming
probability) in actual protocol executions and thus prove the specification
under the condition that byte string equality implies term equality for
the two concrete byte strings at hand (e.g., 𝛾(𝑥) = 𝛾(hash(𝑧)) =⇒ 𝑥 =E
hash(𝑧)). We call this a collision-freedom assumption for a given equation.

Summary

The verification of the role implementations, i.e., the Hoare triples
⊢𝜋′ext
{𝜓𝑖(rid)} 𝑐𝑖(𝑟𝑖𝑑) {true}, relies on the following assumptions:

1. contracts for the I/O and cryptographic libraries, where the former’s
operations are consistent with 𝜋′ext;

2. the pattern requirement for each pattern 𝑡 occurring in the I/O
specification; and

3. collision-freedom for all equalities Φ𝑅 occurring in the I/O specifi-
cation.

We suggest to also prove the pattern requirement for a given pattern 𝑡
whenever possible, e.g., by showing image disjointness and pattern
injectivity (at least) for formats and assuming them for the cryptographic
operations (Asm. 2.4.2).
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Figure 2.5: Overview of soundness proof,
where 𝜋 and Λ′ are defined by 𝜋 = 𝜋int ◦
𝜋ext and Λ′ = (𝜋ext ◦ 𝜋′ext)−1(Λ).

2.5 Concrete Environment and Overall
Soundness

We now derive an overall soundness result for our approach, which relates
the abstract Tamarin model to the concrete protocol implementation.

2.5.1 Concrete Environment

To formulate such a result, we must first define a concrete environment
model E, including a concrete attacker, which can interact with the
roles’ implementations. These implementations communicate with the
environment using I/O library functions, which include non-ghost and
ghost parameters: they send and receive both byte strings (used by the
program) and ghost terms (used for the reasoning), related by 𝛾. The ghost
parameters should be reflected in E’s interface, i.e., its synchronization
labels. Moreover, to fit into an overall soundness result, E must be trace-
included in R𝑒

env. Hence, the concrete attacker must not be more powerful
than the DY attacker, i.e., we must prevent attacks at the byte string level
such as exploiting collisions.

To achieve this, we construct the concrete environment from the term-level
environment R𝑒

env by changing only its interface with the protocol. Con-
cretely, we rename and extend every synchronization label [𝜆𝐹(𝑟𝑖𝑑, 𝑥)]
of (the LTS induced by) R𝑒

env to the label F(𝑟𝑖𝑑, 𝛾(𝑥), 𝑥) in E, and we
keep the labels of R𝑒

env’s internal actions. Note that applying the relabel-
ing 𝜋ext ◦ 𝜋′ext to E recovers R𝑒

env’s original labels. Hence, we record the
following property.

Proposition 2.5.1 𝜋ext(𝜋′ext(E)) ≼ R𝑒
env .

2.5.2 Overall Soundness Result

Our goal now is to show that any trace property proved for the Tamarin
model is preserved in the concrete system(

|||𝑖 ,rid 𝜋int(C𝑖(rid))
)
∥Λ′ E,

which is composed of the verified programs’ LTSs C𝑖 and the concrete
environment E, where the programs’ internal operations are mapped
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back to their action fact arguments and Λ′ = (𝜋ext ◦ 𝜋′ext)−1(Λ) synchro-
nizes I/O permissions that also include byte strings beside terms. Note
that our soundness result assumes that the role implementations are
already verified and that the verifier assumption (Asm. 2.4.1) holds.
The verification of the role implementations themselves and the related
assumptions are discussed in Sec. 2.4.

Theorem 2.5.2 (Soundness) Suppose Asm. 2.4.1 holds and that we have
verified, for each role 𝑖, the Hoare triple ⊢𝜋′ext

{𝜓𝑖(rid)} 𝑐𝑖(𝑟𝑖𝑑) {true}. Then

(|||𝑖 ,rid 𝜋int(C𝑖(rid))) ∥Λ′ E ≼t R.

Proof. We decompose the proof into a series of trace inclusions. Fig. 2.5
gives an overview of the proof.

The first trace inclusion is(
|||𝑖 ,rid 𝜋int(C𝑖(rid))

)
∥Λ′ E

≼ (|||𝑖 ,rid 𝜋(𝜋′ext(C𝑖(rid)))) ∥Λ 𝜋ext(𝜋′ext(E)),
(2.13)

where the first line is obtained from the second by pushing the relabel-
ing 𝜋ext ◦ 𝜋′ext into the parallel composition, thus changing the set of
synchronizing labels from Λ to Λ′. Next, we deduce

𝜋(𝜋′ext(C𝑖(rid))) ≼ R𝑖
role(rid) (2.14)

from Thm. 2.3.3 and from the combination of Asm. 2.4.1 and the assump-
tion ⊢𝜋′ext

{𝜓𝑖(rid)} 𝑐𝑖(𝑟𝑖𝑑) {true}. We then leverage a general composition
theorem [71, Theorem 2.3], which implies that trace inclusion is compo-
sitional for a large class of composition operators including ||| and ∥Λ.
We apply this to the trace inclusion (2.14) and the one from Prop. 2.5.1 to
derive the trace inclusion

(|||𝑖 ,rid 𝜋(𝜋′ext(C𝑖(rid)))) ∥Λ 𝜋ext(𝜋′ext(E))
≼ (|||𝑖 ,rid R𝑖

role(rid)) ∥Λ R𝑒
env .

(2.15)

Our result now follows by combining the trace inclusions (2.13) and (2.15)
with Lemmata 2.3.1 and 2.3.2 and the relation inclusions ≼ ⊆ ≼′ ⊆ ≼t
from Sec. 2.2.

Corollary 2.5.3 (Property Preservation) Any trace property Φ that holds
for R also holds for (|||𝑖 ,rid 𝜋int(C𝑖(rid))) ∥Λ′ E.

Example 2.5.1 (Secrecy for Diffie–Hellman) We have verified the
secrecy of and agreement on the exchanged key for the Tamarin
protocol model from Example 2.2.2, expressed as the requirement that
in all possible traces of the system, the attacker never learns a value 𝑘 for
which a 𝑆𝑒𝑐𝑟𝑒𝑡(𝑘) action occurs in the trace. We then implemented both
roles by programs, and proved that they satisfy their I/O specifications
(Example 2.3.4). Our soundness result and its corollary guarantee that
the composed system also satisfies key secrecy and authentication.
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2.6 Application and WireGuard Case Study

To provide evidence that our approach to verifying cryptographic protocol
implementations is general, powerful, and scales to complex real-world
protocols, we use it to verify our DH running example and the WireGuard
protocol. Additionally, we apply our approach to a key component of a
digital asset authentication system in Sec. 2.7. Although this component
implements on a high level a passive protocol role, which does not
send messages, our approach is nevertheless applicable with a minimal
extension, thus, demonstrating its generality.

2.6.1 Applying Our Approach

The application of our approach involves three steps:

1. Protocol model specification and verification in Tamarin. Protocol mod-
els must satisfy our mild format restrictions (Sec. 2.3.1). Existing
protocol models may require minor syntactic modifications. Verify
the desired trace properties such as secrecy and authentication.

2. Generation of the roles’ I/O specifications. Our tool automatically gen-
erates each protocol role’s I/O specification along with definitions
of types and internal operations. It accepts all protocol models
satisfying our format assumptions. The tool currently supports
Gobra (for Go) and VeriFast (for Java).

3. Role implementation and verification. Verify an existing or new role
implementation against its I/O specification. This relies on user-
provided (reusable) contracts for the I/O and cryptographic li-
braries used and on proofs of the relevant instances of the pattern
requirement (e.g., using Asm. 2.4.2 and Prop. 2.4.1).

By Cor. 2.5.3 (and Asm. 2.4.1), all properties proven for the Tamarin
model are inherited by the implementation.

For our DH example, we have verified a Go implementation (using Gobra)
and a Java implementation (using VeriFast) against their generated spec-
ifications. These two implementations are interoperable and exchange
messages via UDP. The model amounts to 119 lines that Tamarin automat-
ically verifies in less than 4 s. Gobra verifies the 106 lines long initiator
implementation in 11.0 s, requiring 1051 lines of specifications and proof
annotations, which includes the specifications for library stubs. 650 lines
thereof are generated by our tool. Our Java implementation is comparable
in size and verifies in 0.2 s using VeriFast. We have also produced a faulty
Go implementation that sends 𝑥 instead of 𝑔𝑥 as the first message. As
expected, verification for this faulty implementation fails in 11.0 s because
the I/O permissions do not permit sending this payload.

2.6.2 The WireGuard Key Exchange

WireGuard is an open VPN system that is widely deployed on various
platforms and integrated into the Linux kernel. Its core is the WireGuard
cryptographic protocol.

The WireGuard protocol mainly consists of a handshake, where two
agents establish secret session keys and authenticate each other, and a
transport phase, where they use these keys to set up a secure channel for
message transport. We give an overview of the protocol in Fig. 2.6. The
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Figure 2.6: The WireGuard protocol.

// handshake phase
𝐴→ 𝐵 : ⟨1, sid𝐼 , 𝑔ek𝐼 , 𝑐pk𝐼 , 𝑐ts , mac1𝐼 , mac2𝐼⟩
𝐵→ 𝐴 : ⟨2, sid𝑅 , sid𝐼 , 𝑔ek𝑅 , 𝑐empty , mac1𝑅 , mac2𝑅⟩
// transport phase
𝐴→ 𝐵 : ⟨4, sid𝑅 , 0, aead(𝑘IR , 0, 𝑝0 ,

′′ )⟩
𝐵→ 𝐴 : ⟨4, sid𝐼 , 0, aead(𝑘RI , 0, 𝑝′0 ,

′′ )⟩
𝐴→ 𝐵 : ⟨4, sid𝑅 , 1, aead(𝑘IR , 1, 𝑝1 ,

′′ )⟩
. . .

complete protocol additionally features denial of service (DoS) protection
mechanisms, which we omit.

The protocol involves two roles, the initiator (Alice) and the respon-
der (Bob), each with long-term secret and public keys. It is assumed that
Alice and Bob know each other’s public keys pk𝐼 and pk𝑅 in advance.
They may optionally use a pre-shared secret. The protocol relies on an
authenticated encryption with associated data (AEAD) construction, hash-
ing, and key derivation functions (KDFs). The exact algorithms used are
irrelevant for our presentation. All protocol messages contain a tag: 1 and
2 for handshake messages, 3 for the optional DoS prevention messages
(not shown), and 4 for transport messages. They also contain randomly
generated unique session identifiers sid𝐼 or sid𝑅 (for each role).

The handshake phase comprises two messages. Alice and Bob generate
fresh ephemeral DH keys ek𝐼 , ek𝑅, and exchange the associated public
keys 𝑔ek𝐼 , 𝑔ek𝑅 . They also exchange ciphertexts 𝑐pk𝐼 , 𝑐ts, and 𝑐empty, which
encrypt Alice’s public key, a timestamp, and the empty string, respec-
tively, with keys derived from both long term and ephemeral secrets. The
messages also contain message authentication codes (MACs) for the DoS
protection mode, not described here. At the end of the handshake phase,
both agents compute two symmetric keys 𝑘IR and 𝑘RI.

WireGuard Message Construction

Fig. 2.7 displays the detailed message constructions and key compu-
tations for the WireGuard protocol, where:

▶ info and prologue are fixed strings encoding protocol information
such as the protocol version;

▶ aead is an AEAD algorithm, h is a hash function, kdf1, kdf2, kdf3
are key derivation functions (KDFs);

▶ (k𝐼 , pk𝐼) and (k𝑅 , pk𝑅) are the initiator and responder’s long-term
secret and public keys;

▶ (ek𝐼 , epk𝐼 = 𝑔ek𝐼 ) and (ek𝑅 , epk𝑅 = 𝑔ek𝑅 ) are the initiator and
responder’s ephemeral secret and public DH keys, 𝑔 being the
group generator; and

▶ psk is an optional pre-shared key—if unused it is set to a string
of zeros.

These two keys are then used to encrypt messages in the transport phase:
𝑘IR for messages from initiator to responder and 𝑘RI for the other direction.
Alice and Bob both keep two counters 𝑛IR and 𝑛RI, counting the number
of messages sent in each direction. When Alice sends a message, she
encrypts it with 𝑘IR, using the current value of 𝑛IR as the AEAD nonce, and
increments 𝑛IR. Thus, no confusion is possible regarding the order of mes-
sages. The use of different keys and counters allows messages to be sent
independently in each direction, without a need for strict alternation.

Note that the protocol mandates that Alice sends the first transport



2.6 Application and WireGuard Case Study 39

𝑐pk𝐼 , 𝑐ts, and 𝑐empty are computed as follows.

𝑐0 = h(info)
ℎ0 = h(⟨𝑐0 , prologue⟩)
ℎ1 = h(⟨ℎ0 , pk𝑅⟩)
𝑐1 = kdf1(⟨𝑐0 , epk𝐼⟩)
ℎ2 = h(⟨ℎ1 , epk𝐼⟩)
𝑐2 = kdf1(⟨𝑐1 , 𝑔

k𝑅∗ek𝐼 ⟩)
𝑘1 = kdf2(⟨𝑐1 , 𝑔

k𝑅∗ek𝐼 ⟩)
𝑐pk𝐼 = aead(𝑘1 , 0, pk𝐼 , ℎ2)
ℎ3 = h(⟨ℎ2 , 𝑐pk𝐼 ⟩)
𝑐3 = kdf1(⟨𝑐2 , 𝑔

k𝑅∗k𝐼 ⟩)
𝑘2 = kdf2(⟨𝑐2 , 𝑔

k𝑅∗k𝐼 ⟩)
𝑐ts = aead(𝑘2 , 0, timestamp, ℎ3)
ℎ4 = h(⟨ℎ3 , 𝑐ts⟩)
𝑐4 = kdf1(⟨𝑐3 , epk𝑅⟩)
ℎ5 = h(⟨ℎ4 , epk𝑅⟩)
𝑐5 = kdf1(⟨𝑐4 , 𝑔

ek𝑅∗ek𝐼 ⟩)
𝑐6 = kdf1(⟨𝑐5 , 𝑔

ek𝑅∗k𝐼 ⟩)
𝑐7 = kdf1(⟨𝑐6 , psk⟩)
𝜋 = kdf2(⟨𝑐6 , psk⟩)
𝑘3 = kdf3(⟨𝑐6 , psk⟩)
ℎ6 = h(⟨ℎ5 ,𝜋⟩)
𝑐empty = aead(𝑘3 , 0, ””, ℎ6)

𝑘IR and 𝑘RI are the resulting symmetric keys that are used in the
subsequent transport phase: 𝑘IR = kdf1(𝑐7), 𝑘RI = kdf2(𝑐7).

Figure 2.7: The WireGuard message con-
struction

message. The reason is that it is used by Bob to confirm she has received
his key—in contrast, Alice confirms this for Bob when she receives the
second handshake message.

2.6.3 Tamarin Model

We model the WireGuard protocol in Tamarin as a MSR system satisfying
the assumptions from Sec. 2.3.1. Our model features rules for each of the
two roles’ behavior, as well as environment rules modeling the initial
distribution of long-term keys. The environment may spawn any number
of instances of each role, i.e., an unbounded number of sessions running
in parallel, between the same or different agents.

Note that we not only model the handshake and first transport message,
after which the key exchange is concluded, but also the loop that follows
where agents may exchange any number of transport messages, in any
order, using the computed keys. Verifying such unbounded loops is
challenging for automated tools, and often leads to non-termination. For
this reason, they are usually not modeled in their full generality. However,
the presence of the loop in the implementation required its inclusion in
the model as well, so that the implementation adheres to the model’s
behavior. We had to manually write three lemmata and an oracle (a
heuristic for Tamarin’s proof search) to help the tool terminate. Tamarin
can then prove these lemmata and verify the model automatically.

We formulate and prove in Tamarin trace properties expressing authenti-
cation (see Tab. 2.1). More precisely, we show that, after the first transport
message, the participants mutually agree on the resulting keys: if Alice
believes she has exchanged 𝑘IR and 𝑘RI with Bob, then Bob also believes
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Table 2.1: Properties verified for the Wire-
Guard case study. By Cor. 2.5.3, the code
preserves the trace properties of the pro-
tocol model.

Verified properties
Protocol Agreement on the keys, forward secrecy
Code Memory safety, conformance with generated I/O spec

so, and conversely. Moreover, we prove the forward secrecy of the keys 𝑘IR
and 𝑘RI: they remain secret from the attacker, provided neither Alice nor
Bob’s long-term secrets were corrupted before the end of the key exchange. The
Tamarin file consists of 221 lines of MSR rules, and 71 lines of lemmata and
properties. It is verified automatically by Tamarin in about 1.90 min.

2.6.4 Implementation and Code Verification

We separately verified the initiator and responder code of the official Go
implementation of WireGuard [88] in Gobra. We first proved memory
safety, which is independent of our approach, but a required initial
step in tools like Gobra and VeriFast. We then verified each role im-
plementation against its I/O specification, which we generated with
our tool from the WireGuard Tamarin model. We annotated the code
with specifications, namely pre- and postconditions and loop invariants,
and proof annotations, namely assertions, lemma calls, and predicate
unfolding commands. The code can be compiled as annotations appear
inside comments. Tab. 2.1 summarizes all properties we proved.

Changes to the Implementation. We modified the official Go imple-
mentation in three ways. First, we removed features not included in
our Tamarin model, namely DoS protection. Second, we made changes
to simplify proving memory safety. For this, we removed metrics and
load balancing, which requires complex concurrency reasoning currently
not supported by Gobra. Lastly, we performed changes related to our
approach. Namely, we wrote stubs for cryptographic and network oper-
ations and equipped them with trusted specifications (cf. Sec. 2.4.3) and
adapted the code accordingly.

Our verified implementation is interoperable with the official implemen-
tation and can relay traffic between the operating system and a VPN
connection.

Verified Components. We verified both the handshake and transport
phases for both roles. These components are responsible for all I/O
operations that establish and interact directly with a VPN connection. The
codebase contains additional I/O operations outside the verified compo-
nents that, e.g., interact with the operating system and are not influenced
by a VPN connection’s ephemeral key material. We did not verify the
setup code for network sockets and cryptographic keys. The stubs for
cryptographic and network operations are trusted by assumption and
thus also not verified.

I/O Specification. In addition to the I/O specifications generated by our
tool, we declared the byte string algebra operations and the homomor-
phism 𝛾.

Our verification of the I/O specification is standard. To verify a call to
an I/O operation or an internal operation, we extract the corresponding
I/O permission from the predicate 𝑃𝑖(𝑝, rid, 𝑆). This requires facts about
the model state 𝑆. For instance, to send a byte string 𝑏, there must exist
a term 𝑡 with 𝛾(𝑡) = 𝑏 such that out𝑖(rid, 𝑡) ∈ 𝑆. We verify such facts by
relating the program state to the model state 𝑆.
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Pattern Requirement. Each of the protocol’s three non-linear patterns
induces two instances of the pattern requirement, realized as lemma
functions (cf. Fig. 2.4).

We proved the pattern requirement instances using Prop. 2.4.1 and
Asm. 2.4.2 by showing that all formats are (i) image-disjoint with each
other and names and (ii) pattern-injective. Point (i) holds, since all formats
start with a different constant and their lengths differ from the lengths
of byte strings representing names. Formats are also injective and hence
satisfy (ii), as the arguments of all formats appear at fixed offsets in the
byte string representation.

Statistics. Our implementation consists of 551 lines of verified Go code,
excluding library stubs. Specifications and proof annotations make up
4173 lines of code, 1358 of which are generated by our tool. We required
329 lines of code to declare the term and byte string algebras and the
axioms about 𝛾. The verification runtime is about 22.9 and 23.2 s for the
initiator and responder, respectively.

The case study demonstrates that our approach is applicable to pre-
existing real-world security protocols with implementations of consid-
erable size.

2.7 ADEM Case Study: Verifying Emblems to
Authenticate Digital Assets

While Sec. 2.6 evaluates our approach on security protocol implemen-
tations containing key exchange mechanisms, this section applies our
approach to an implementation arising in the context of Linker and
Basin’s Authentic Digital EMblem (ADEM) [89], a system for authenticat-
ing digital assets. This application is interesting for two main reasons.
First, this implementation is different from a classical security protocol as
it does not use any secrets, receives almost all necessary data as program
inputs, and keeps the computed result local, i.e., does not send this result
to the network. Thus, focusing on network I/O operations and proving
refinement thereof is insufficient to guarantee that the implementation
computes the correct result. We address this shortcoming by slightly
extending our approach to treat also command-line inputs and outputs
as I/O operations. Thus, we can prove that the implementation performs
all checks mandated by the corresponding protocol model and computes
a result that refines the model’s result. Second, as we will discuss in
Sec. 2.7.3, this application illustrates that gaps between implementations
and abstract models arise in practice that go beyond relating concrete
bytes with abstract terms. More specifically, the implementation performs
certain checks concurrently while the model performs them sequentially.
Therefore, the implementation may exhibit additional interleavings of
these checks that are not possible in the model. To address this shortcom-
ing, we develop a novel solution that closes the gap between concurrency
patterns arising in the implementation and the sequential processing
in the original abstract model, which leverages Tamarin’s semantics to
require only slight adaptations of the model for incorporating concurrent
processing therein.
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2.7.1 Authentic Digital EMblem (ADEM)

ADEM is a novel authentication mechanism for digital assets, such as
servers, software applications, and networks. Motivated by the Inter-
national Committee of the Red Cross (ICRC), this mechanism aims at
signaling protection under International Humanitarian Law (IHL) similar
to the red cross, crescent, and crystal for physical objects such as hos-
pitals, vehicles, and personnel. Similar to physical assets, digital assets
belong to a party that is protected under IHL, a so-called protected party,
and, thus, should not be attacked. Examples for such protected partys
include humanitarian organizations like UNICEF and Médecins Sans
Frontières.

ADEM authenticates digital assets by means of a digital emblem, which
is cryptographically signed. More specifically, a protected party uses
a hierarchy of signing keys to ultimately endorse a digital emblem’s
signing key, which authenticates the digital asset as belonging to this
protected party. ADEM enables agents, such as military units, to check2

not only to which protected party a digital asset belongs but also whether
an authority permits this party to use an emblem. An authority, such as a
nation state, permitting a protected party to use emblems means that this
authority acknowledges that the protected party generally performs op-
erations that may use (according to the authority’s jurisdiction) emblems
signaling protection under IHL and, thus, should not be attacked. Since
these emblems should signal protection during armed conflicts, a single
authority authenticating a protected party is impractical as a particular
agent may not trust this authority. Therefore, ADEM envisions multiple
authorities endorsing a protected party such that an agent can pick the
most trustworthy authority therefrom.

ADEM is formalized in a Tamarin model for which Linker and Basin [89]
prove authentication and accountability. Authentication in this context
means that an emblem marks an asset as protected, unless the attacker
obtains signing key material, or a component in the system misbehaves.
Accountability states that misbehavior is detectable and the misbehaving
component can be identified, e.g., if a protected party misuses its status
to issue an emblem for an asset that actually does not enjoy protection
under IHL or if an authority maliciously endorses a party as being
protected. ADEM achieves accountability by making authorities and
protected partys commit to their signing keys via the existing Web public
key infrastructure (PKI). For this purpose, authorities and protected
partys request a certificate from a certificate authority (CA) that binds
their signing public key to their identity in the form of their domain
name. Ultimately, Certificate Transparency (CT) enables an authority or
protected party to detect if someone else requested a certificate in their
name such that they can dispute this certificate, which ADEM expects
to happen. As a consequence, if a signing key appearing in a CT log is
misused, the bound authority or protected party is accountable. Since our
approach guarantees that an implementation satisfies the same properties
as proven for a Tamarin model, we refer to Linker and Basin’s work [89]
for the detailed definitions of these security properties and, instead, focus
on the implementation and how we can prove refinement therefor.

2.7.2 Implementation

ADEM is implemented as a prototype in the Go programming lan-
guage [90] providing several libraries and command-line tools to generate,
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distribute, and check digital emblems. While the former two functionali-
ties are relevant for availability, the latter is the critical functionality from
an authentication point of view. Hence, we focus on emblem checking as
incorrectly checking an emblem and, thus, deeming an asset as protected
even though it is not, results in users loosing trust in ADEM, which is
an attacker’s goal. Trust in ADEM is crucial due to emblems’ signaling
nature, which prevents attacks to protected assets only if users launching
such attacks respect emblems.

The method that checks emblems3 takes an emblem and multiple en-
dorsements, both in binary format, and an optional set of trusted signing
keys as inputs and returns, if successful, various information about the
emblem, including the assets it protects and its security level. Trusted
signing keys enable agents to configure which authorities they trust, and
the security level depends, e.g., on whether there is an endorsement by
an authority (instead of just internal endorsements by a protected party)
or whether one of the involved signing keys is trusted.

An emblem and its endorsements conceptually form a tree structure,
where emblems and endorsements are the nodes and “endorsed by”
is the parent-child relation. The emblem is the root of this tree and is
cryptographically signed by a key that is endorsed by the emblem’s
children in the tree. Similarly, each endorsement is again signed by a
key endorsed by its children. Thus, the implementation checks that
the (potentially attacker-provided) input indeed forms such a tree and
traverses this tree from the leaves to the root, checking in each step that an
endorsement and ultimately the emblem are valid. To avoid building this
dependency tree explicitly, the implementation spawns a goroutine, i.e., a
lightweight thread, for each emblem and endorsement, and uses promises
to await completion of the children’s checks. In particular, each goroutine
deserializes the emblem or endorsement, performs the task explained
next, and finally completes the corresponding promise indicating that
the emblem or endorsement is checked. The goroutine’s task waits first
on the successful completion of the promise for their signing key; unless
it is an endorsement by an authority, in which case the implementation
checks that the authority’s key binding exists in a certificate in a CT log
and that this certificate is valid. Afterwards the task checks the emblem’s
or endorsement’s signature. The implementation waits for all goroutines
to complete before proceeding to check the contents of the emblem
and endorsements, e.g., whether issuer information is consistent and
constraints are met. Finally, the implementation determines the security
level based on the processed emblem and endorsements.

2.7.3 Verification

Given that a security proof for ADEM exists in the form of a verified
Tamarin model, it is attractive to verify the implementation that checks
emblems against this model by applying our approach. However, we have
to slightly extend our approach in order to relate this implementation
to the model. As explained in the introductory paragraph to Sec. 2.7,
the implementation’s result, i.e., the security level, is not sent over
the network but printed on the command line. Thus, showing that
the implementation’s network I/O behavior matches the model’s is
insufficient and, in particular, would not prove that the implementation
returns a security level that is at most as trustworthy as the one determined
by the model4. We bridge this gap by naturally extending our approach
to treat network and non-network I/O operations equally, with the latter
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including interactions with the command line. More specifically, we treat
the program inputs, which are typically obtained by performing some
network operations beforehand, as data received from the untrusted
environment in the abstract model. Similarly, we make the computed
security level an explicit output operation in the model and enforce for the
implementation that an I/O permission for the computed security level
is returned via the postcondition, justifying printing it on the command
line. This adaptation required inserting output operations with string
constants corresponding to the security levels into the Tamarin model.

Proving that the implementation is memory safe and refines this slightly
modified Tamarin model turned out to be challenging, which required
further adaptations to the model and implementation. While we conclude
on a high level that verifying such an implementation using our approach
is in principle possible, we remark that there are several practical obstacles
that need to be overcome, which are to be expected for an implementation
and model that were designed without having program verification or
applying our approach in mind. Orthogonal to our approach are language
features unsupported by Gobra, which we rewrote or axiomatized,
and instances of incompleteness, which we sidestepped by appropriate
assumptions. We encountered two main obstacles related to our approach,
both caused by a mismatch between the implementation and the model.
In the following, we focus on these two obstacles and how we overcame
them; we refer to Meinen’s Master’s Thesis [77] for the full details.

Concurrency. As discussed in Sec. 2.7.2, the implementation employs
separate goroutines to check emblems and endorsements concurrently.
These goroutines not only exploit the independence of certain endorse-
ments but also simplify the implementation as no explicit dependency
tree has to be constructed. We verify the implementation’s promise mech-
anism, which internally uses Go channels, thanks to Gobra’s support for
Go channels. Additionally, the implementation uses a thread-safe data
structure to manage all promises and handle their completion, which we
verify using Gobra’s support for mutexes and wait groups. In contrast to
the implementation, the original Tamarin model processes emblems and
endorsements not only sequentially but also in the opposite order, i.e.,
starting with the emblem and ending with endorsements by authorities.
While it is possible to enable multiple goroutines to make progress in
a sequential, abstract model, e.g., by sharing the corresponding I/O
specification via a shared resource, all transition orderings that can occur
in the implementation must be permitted by the model.

We resolve the concurrency and processing order mismatch by adapting
the Tamarin model and explicitly modeling the parallel processing of
emblems and endorsements. Instead of naively encoding concurrency
in the model, we exploit the fact that Tamarin considers the presence
of unboundedly many protocol role instances during its proof search.
Accordingly, we turn the processing of an emblem or endorsement into a
dedicated protocol role. This allows us to use a dedicated I/O specification
for each goroutine performing emblem or endorsement checks, which
heavily simplifies the concurrency reasoning on the implementation level.
However, we introduce at the same time additional communication in the
abstract model between protocol role instances. In the model, instances of
this dedicated and newly added protocol role communicate via a secure
channel with the already existing, main protocol role checking an emblem.
In the implementation, this communication corresponds to spawning a
goroutine with particular arguments and ultimately sending a goroutine’s
result via a channel to the main goroutine. We omit the inter-goroutine
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communication in the model that happens in the implementation via
promises for simplicity; an extension is straightforward.

Internal Endorsements. The original ADEM model makes simplifying
assumptions about endorsements that the implementation does not
satisfy. In particular, the model assumes that an emblem is directly signed
with a protected party’s signing key. For realistic deployments, however,
a protected party may use zero or more intermediate signing keys by
signing internal endorsements. I.e., instead of directly signing an emblem,
a protected party can use a chain of internal endorsements initially
signed by its main signing key and ultimately signing an emblem. The
original model omits this possibility as the authors argue on paper that
an attacker cannot violate the authentication property by compromising
any of these intermediate signing keys without also violating one of their
assumptions, namely that internal endorsements restrict the issuance of
emblems to protected assets. Since the implementation supports internal
endorsements, we extend the model accordingly as we would otherwise
have to prove that an emblem is directly signed by a protected party’s
signing key, which is violated for program inputs containing internal
endorsements.

Discussion. The ADEM case study demonstrates that our approach
is broadly applicable and not restricted to key exchange protocols as
long as an abstract model exists. However, an abstract model has to
accurately capture an implementation’s behavior, which may not always
be the case. Due to the abstract nature of a model, it is possible that
certain operations were omitted in a model as an extension seemed
straightforward at modeling time. If these omitted operations occur in
an implementation, they are, however, relevant for proving refinement.
Therefore, certain adaptations to the model or implementation might be
necessary to enable successful verification despite our approach being
powerful. Specific to ADEM is that the original Tamarin model proves the
claims of the corresponding publication [89]. While our changes result
in the model more accurately reflecting the implementation, most of
these changes increase at the same time the gap between the model and
ADEM’s publication, making it more difficult for readers to validate that
the model captures the published protocol and claims.

2.8 Related Work

We compare our work with different kinds of approaches to formally ver-
ifying protocol implementations. We focus here on symbolic approaches
providing soundness guarantees for security protocol implementations
and approaches to message parsing, complementing the more general
discussion in Sec. 1.1.

Sound Model Extraction and Code Generation. Bhargavan et al. [53]
present a sound model extractor from (a first-order subset of) F# to
ProVerif models. They work with an abstract datatype of byte strings
and corresponding interfaces for the cryptographic and network libraries,
which they instantiate both to symbolic terms for prototyping and
to actual library implementations. Thus, they assume that protocol
messages are injective and disjoint. This approach is used to verify a
small functional implementation of TLS 1.0 in F# ([54]) and reference
implementations of TLS 1.2 and TLS 1.3 in a typed subset of JavaScript ([12]).
Several works generate both models for verification and executable
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code from abstract protocol descriptions. While Almousa et al. [62]
and Bugliesi et al. [91] prove the correctness of a partial translation
from a high-level to a low-level semantics, neither paper proves the full
translation’s correctness. Sisto et al. [63] generate a ProVerif model and a
refined Java implementation from an abstract Java protocol specification
and prove the implementation’s soundness. CryptoBap [59] extracts
a ProVerif and CryptoVerif model from machine code. The authors
prove on paper a theorem stating that their extraction starting from an
intermediate representation preserves attack probabilities such that any
upper bound proven by the protocol model verifier is an upper bound for
the intermediate representation. While they use a certificate producing
compiler [92] to obtain their intermediate representation from machine
code together with a proof of correctness, it remains unclear whether
this certificate straightforwardly composes with their on-paper proof.
The same authors fully mechanize this proof in an interactive theorem
prover in follow-up work [60] while moving from the computational
to the symbolic model of cryptography to enable mechanization and
compositionality. OwlC [52] builds on top of Owl [51] to generate a
Rust implementation from a security protocol model in their domain-
specific language. Alongside the implementation, OwlC generates an
interaction tree (ITree) [93] specifying the network I/O, sampling of
random numbers, and declassification behavior of a protocol and use
Verus to verify the generated code against the generated ITree. Since Owl
and Verus do not support loops and co-recursion, respectively, proving
an implementation of a non-terminating server, such as Example 2.2.4, is
currently not possible, even if the server’s non-terminating loop is placed
in a handwritten part of the codebase as suggested by the authors [52,
Sec. 7.2].

These approaches usually target a single implementation language.
Although adding support for additional programming or modeling
languages is possible in principle, this requires a translator and a related
soundness result for each new language. Furthermore, model extraction
for realistic protocols lacks abstraction and conciseness: it tends to yield
large models that are difficult to automatically verify.

Code Verification Only. Bhargavan et al. [67] modularly verify protocol
code written in F# using the F7 refinement type checker [68]. They rely
on protocol-specific invariants for cryptographic structures, e.g., stating
which messages are public. Vanspauwen and Jacobs [69, 70] use a similar
approach for protocols implemented in C and verified using VeriFast.
They allow the concrete attacker to directly manipulate byte strings,
which they overapproximate symbolically by a set of terms. However, it
is unclear what effect these manipulations have on message parsing in
the protocol roles. While the verification of global protocol properties in
the earlier work [67] required additional handwritten proofs, the more
recent work [39] enables their verification in a single tool, F★, by explicitly
incorporating a global event trace.

While these approaches are also modular and, thus, scale to protocols
like Signal, we push modularity and automation further. Our approach
not only decouples proving the security properties from verifying the
implementation’s correctness, but it also leverages Tamarin’s automated
proof search.

Combined Model and Code Verification. Dupressoir et al. [64, 65] use
the interactive prover Coq for model verification in combination with the
C code verifier VCC. Their approach involves reasoning about concrete
byte strings and their relation to terms. The central definitions of the
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protocol model are duplicated in Coq and in VCC and some theorems
proven in Coq are imported as axioms into VCC.

Igloo [71] is a framework for distributed system verification that soundly
combines model refinement in Isabelle/HOL with code verification using
I/O specifications. Their case studies include a simple authentication
protocol. We follow similar steps to extract I/O specifications from
Tamarin models, but do this generically and automatically for a large
class of protocol models. In contrast, these steps must be repeated in Igloo
for each protocol, which requires Isabelle/HOL expertise. Moreover,
our way of relating terms and byte strings is more flexible and realistic
than theirs, which assumes an injective function from byte strings to
terms. Penninckx et al. [80] introduced I/O specifications for verifying
programs’ I/O behaviors, but did not propose a method for verifying
global system properties.

Message Parsing. Mödersheim and Katsoris [82] show that an abstract
symbolic model using message formats soundly abstracts a more con-
crete model, which includes associative message concatenation, variable
and fixed length fields, and tags. Their result holds for protocols whose
formats are uniquely parsable and image disjoint, and they give algo-
rithms to check these conditions. This work has inspired our use of byte
string algebras and our decomposition of the pattern requirement into
image disjointness and pattern injectivity. Their focus is on abstraction
soundness, whereas ours is on code verification. EverParse [86] and its
successor EverParse3D [94] are frameworks to generate provably secure
(i.e., injective and surjective) parsers and serializers in C for authenti-
cated message formats. Wallez et al. [87] derive properties for message
formats based on game-based cryptographic assumptions and propose
the Comparse framework to prove these properties for particular message
formats and to generate reference implementations for testing purposes.
Instead of defining a concrete environment and concrete attacker (like
we do), Nasrabadi et al. [60] lift a concrete component, e.g., implement-
ing a protocol role, to an LTS operating on symbolic terms and define
composition with a symbolic attacker (another LTS) on this level. A key
ingredient to this composition is a deduction combiner specifying how
logical predicates transfer from one LTS to another to enable deductions
in the latter. Since messages are represented as variables, the attacker
can, e.g., decompose a received message 𝑚 only after obtaining the
predicate 𝑚 ↦→ 𝑡 from the message sender, which states that variable 𝑚
maps to the message’s symbolic term 𝑡 [60, Example 3]. The authors
discuss different deduction combiners that over- or under-approximate
attacker deductions [60, Sec. II-G], where the over-approximating deduc-
tion combiner is similar to the extended symbolic model proposed by
Vanspauwen and Jacobs [69].

Conclusions. We have proposed a novel approach to cryptographic pro-
tocol verification that soundly bridges abstract design models, specified
as MSR systems, with code-level specifications. This allows us to leverage
the automation and proof techniques available in Tamarin for design
verification together with state-of-the-art program verifiers to obtain
security guarantees for protocol implementations. Our approach is gen-
eral, compatible with different code verification tools, and applicable to
real-world protocols as demonstrated by our case studies. Furthermore,
our approach enabled Morio and Künnemann [95] to build a runtime
monitor enforcing that a program execution adheres to a Tamarin model
as they adopt our decomposition of a Tamarin model into role-specific
MSR systems.
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3.1 Introduction

The methodology presented in Chapter 2 proves refinement between an
existing verified model and a corresponding existing implementation. This
methodology supports realistic implementations, but requires expertise
in and relies on the soundness of two tools (a protocol model verifier and
a program verifier). Moreover, formal models may not always exist, or
may not be in sync with an evolving implementation, as seen in Sec. 2.7.
Additionally, the model checking approach chosen by state-of-the-art
protocol model verifiers is non-modular in the sense that they explore
all state transitions that are applicable to a given state. Hence, verifying
security properties for protocols exhibiting looping behavior frequently
necessitates auxiliary lemmata or custom oracles to ensure that the proof
search terminates.

In contrast, we present in this chapter a methodology for the verification of
strong security properties (e.g., injective agreement and forward secrecy)
directly on the level of protocol implementations. Our methodology
leverages established program verification techniques that are supported
by a wide range of existing automated1 tools (e.g., [26, 29, 32, 34, 96]),
which makes it readily applicable. It is based on separation logic [24, 25],
a program logic that supports the language features used to write efficient
implementations, such as mutable heap data structures and concurrency.
As a result, our methodology applies to realistic implementations written
in mainstream programming languages such as C, Go, JavaScript, and
Rust. Verification in our methodology is modular, that is, one can verify
each method (or protocol participant) in isolation. Modularity is crucial
for scalability, to reduce the re-verification effort when the code evolves,
and to provide strong guarantees for libraries.

As is common in protocol verification, we explicitly model the global
trace of a protocol execution, which allows us to express security prop-
erties in ways familiar to security experts. This trace is expressed and
manipulated via ghost code [97], that is, program code that is used for
verification purposes, but erased by the compiler before the program
is executed. The ghost code required to manipulate the global protocol
trace is encapsulated in the I/O and cryptographic libraries used by
an implementation to ensure, e.g., that each sent message is correctly
reflected on the trace.

Using ghost code allows us to cleanly separate the global trace, which is
necessary to prove protocol-wide properties, from the data structures
maintained locally by each participant. We treat each participant instance
of a protocol (including a Dolev–Yao (DY) attacker [18]) as a concurrent
thread, and the global trace as shared state among these threads. This
approach allows us to reason about unboundedly many participant
instances and to leverage existing verification techniques and tools for
shared-data concurrency.

Contributions. We make the following contributions:

➤ We present a modular verification methodology for protocol imple-
mentations, based on global traces and concurrent separation logic,
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that applies to a wide range of programming languages, protocol
implementations, and verification tools.

➤ We show how to use separation logic’s linear resources to modularly
prove injective agreement, i.e., the absence of replay attacks. To the
best of our knowledge, we present the first invariant-based verification
technique for this property.

➤ We developed a reusable Go library that facilitates maintaining the
global trace; protocol-independent properties are verified once and
for all for this library and can, thus, be reused for different protocol
implementations.

➤ We demonstrate the practicality of our approach by using the Gobra
verifier [34] to verify memory safety and security of Go implemen-
tations of three protocols: Needham–Schroeder–Lowe (NSL) [98, 99],
signed Diffie–Hellman (DH) [100], and WireGuard [37]. We show
that our approach supports different programming languages and
verifiers by additionally implementing a prototype of the reusable
library for C and the VeriFast verifier [26], and using it to verify
a C implementation of NSL. The implementations of our reusable
verification library and the case studies are open-source [101].

➤ We prove soundness of our approach, in particular, that the global
trace correctly reflects all relevant protocol steps and, thus, any
security property proved for the trace indeed holds for the protocol
implementation.

We build on and substantially extend two lines of prior work: Our use
of a global trace and security labels to prove secrecy is inspired by
Bhargavan et al. [39], but our approach achieves modularity without
relying on a coding discipline (cf. Sec. 1.1.3), and thus handles existing
protocol implementations soundly. Our encoding of the global trace as a
concurrent data structure is inspired by Dupressoir et al. [64]. Their work
depends on specific features of the used programming language (e.g., C’s
volatile fields) and verifier (VCC [66]), while we present a separation-logic-
based methodology applicable across different programming languages
and verifiers, as demonstrated by our case studies. The use of separation
logic allows us to verify concurrent, heap-manipulating programs and
prove security properties that so far were out of reach for invariant-based
approaches.

Outline. Sec. 3.2 introduces background on trace-based verification and
our attacker model. In Sec. 3.3, we explain how we encode the global
trace and how we relate it formally to the local state of each participant. In
Sec. 3.4, we show how to prove important security properties based on a
suitable trace invariant, and how we use separation logic’s linear resources
to prove injective agreement. We introduce our reusable verification
library in Sec. 3.5, which implements our methodology, and substantially
reduces the verification effort per protocol. Sec. 3.6 describes our case
studies. We explain the trust assumptions underlying our methodology
and sketch its soundness proof in Sec. 3.7 and 3.8, respectively. In Sec. 3.9,
we present an extension to enforce secure deletion of protocol secrets on
the programming language’s level. We compare the methodologies from
Chapter 2 and this chapter in Sec. 3.10 before we discuss related work in
Sec. 3.11.



2: Session corruption affects the entire
short-term state of a participant instance
as we assume that an execution of a pro-
tocol participant’s implementation corre-
sponds to a single protocol session. We
discuss in Sec. 3.9 a more fine-grained
treatment of individual sessions.
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3.2 Trace-Based Verification

A protocol’s security depends on the interplay of the protocol participants
in the presence of an attacker. A standard technique to verify security is to
record all relevant actions of the participants and the attacker on a global
trace and to formulate the intended security properties as properties of
this trace. Verification then amounts to proving that all possible traces
of a protocol satisfy the intended properties. In this section, we give a
high-level overview of this approach; we provide the details in the later
sections.

Attacker. We consider a DY attacker that has full control over the network
and performs symbolic cryptographic operations. These operations are
modeled as functions over symbolic values, so-called terms, and encode
the perfect cryptography assumption, e.g., that decryption succeeds if
and only if it uses the correct key.

An attacker can apply these functions to all terms in its knowledge, which
initially consists of all publicly-known terms, including string and integer
constants. An attacker obtains additional knowledge by reading mes-
sages on the network. Furthermore, an attacker may corrupt participants,
which adds all terms in the state of the corrupted participant to the
attacker knowledge. We model two kinds of corruption: Corrupting a
participant leaks its long-term state, which is common to all instances of
this participant, such as long-term secret keys. Corrupting a participant
session additionally leaks short-term state, e.g., ephemeral secret keys,
or exchanged nonces related to the corrupted session2.

Trace Entries. The global trace is a sequence of events. Each event
corresponds to a high-level operation performed by a participant or the
attacker. It has a name and takes event-specific arguments. E.g., event
CreateNonce(n) records that nonce n was created. This event is protocol-
independent; we also support protocol-specific events to keep track of
the progress within a protocol execution and to express specific security
properties. E.g., a protocol-specific event may express which nonces or
keys a participant uses to communicate with a peer (cf. Sec. 3.4).

We use seven protocol-independent events: (1) A create nonce event records
that a fresh nonce has been generated. (2) A send message event records that
a message has been sent on the network. Both events may originate from
a participant or the attacker. The remaining five protocol-independent
events model the capabilities of the attacker. (3) The (unique) root event is
the first event on every trace and contains the initial attacker knowledge.
(4) An extend attacker knowledge event models that the attacker learns
additional terms, e.g., by applying a cryptographic operation to a term
already in the attacker knowledge. Corruption is represented by (5) a
participant corruption or (6) a session corruption event. In both cases, we use
extend-events (4) to add the newly-learned terms (from the corrupted
state) to the attacker knowledge. At any point during a protocol run, the
total attacker knowledge is therefore determined by the union of the root
event (3), the send-events (2), and the extend-events (4). Finally, (7) a
drop message event records that the attacker dropped a message from the
network.

Trace Invariant. To reason modularly about the (unbounded) set of all
possible traces, we introduce a trace invariant, a property that must hold
for every prefix of each trace produced by a protocol. Verification then
consists of two main steps: first, proving that each action of a participant
or the attacker (according to the above attacker model) maintains the
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trace invariant and, second, showing that the trace invariant implies the
intended security properties.

An important component of a trace invariant are message invariants, which
characterize the content of a message. For instance, a message invariant
might express that a message parameter is a nonce (as opposed to an
arbitrary term).

3.3 Local Reasoning

In the previous section, we have summarized how we can prove security
properties based on a global trace of events. In this section, we show
how to verify concrete protocol implementations by relating the global
trace of the protocol to the local state and operations of each protocol
participant. This verification is modular and can be automated using
existing verification tools.

3.3.1 Safety Verification

To support realistic, efficient, and existing protocol implementations,
our verification technique needs to handle programming concepts such
as mutable heap structures and concurrency. To this end, we employ
separation logic [24, 25], the de facto standard for the modular verification
of imperative code, as discussed in Sec. 1.1.2. Separation logic is supported
by existing verifiers for many languages, including VeriFast [26] for C,
Prusti [32] for Rust, and Gobra [34] for Go. All of them can be used in
combination with our methodology.

In specifications, the points-to assertion 𝑝 ↦→ 𝑒 expresses ownership, i.e.,
that the current function has an exclusive permission to access location 𝑝
and that 𝑝 has value 𝑒 (we write _ if the value is irrelevant). For instance,
the proof rule for heap updates (rule Write in Fig. 3.1) enforces via its
precondition that the current function execution may update 𝑝 only if it
holds the corresponding permission; otherwise, verifying this function
results in a verification failure.

Permissions are initially obtained when allocating a heap location, and are
transferred between function executions upon call and return according
to the callee function’s specification. Permissions may also be transferred
between threads, see Sec. 3.3.3.

Verifying a protocol implementation in separation logic ensures that it
is memory safe (e.g., does not cause null-pointer dereferences or buffer
overflows), does not abort (e.g., due to division by zero), and does not
exhibit data races. Where needed for our safety or security proof, we also
verify functional correctness properties. We omit the details of safety

(Write)
Γ ⊢

[
𝑝 ↦→ _

]
*𝑝 := 𝑒

[
𝑝 ↦→ 𝑒

]
Γ ⊢ [𝑃1] 𝐶1 [𝑄1] Γ ⊢ [𝑃2] 𝐶2 [𝑄2]

(Par)
Γ ⊢ [𝑃1 ★ 𝑃2] 𝐶1 || 𝐶2 [𝑄1 ★𝑄2]

Γ ⊢ [𝑃 ★ 𝐼𝑟] 𝐶 [𝑄 ★ 𝐼𝑟]
(With)

Γ, 𝑟 : 𝐼𝑟 ⊢ [𝑃] with (𝑟) {𝐶} [𝑄]
Figure 3.1: Selected separation logic proof rules: heap writes (cf. Sec. 3.3.1) along with parallel composition and lock-protected critical
sections (cf. Sec. 3.3.3). Side-conditions are omitted for simplicity.
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M1. 𝐴→ 𝐵 : {⟨1, na, 𝐴⟩}pkB

M2. 𝐵→ 𝐴 : {⟨2, na, nb, 𝐵⟩}pkA

M3. 𝐴→ 𝐵 : {⟨3, nb⟩}pkB

Figure 3.2: The NSL public key protocol,
where na and nb are nonces, whose gener-
ation is omitted. {𝑚}pk and ⟨· · · ⟩ denote
public key encryption of plain text 𝑚
under the public key pk and tupling, re-
spectively. Creation and distribution of
the participants’ authentic keys is not
part of the protocol.

proofs here because they are routine work and orthogonal to the focus of
this dissertation.

3.3.2 Relating Bytes with Terms

Our global trace includes symbolic terms, such as keys, nonces, and
messages. In concrete implementations, these terms are typically rep-
resented by (mutable) byte arrays. In order to relate the two, we use a
concretization function 𝛾, which maps a term to its byte representation.
We use this function in specifications; in particular, we have annotated
library functions, e.g., for cryptographic operations, to relate the term
representations of their inputs and outputs. E.g., a hash function that
maps the byte array xa (representing, e.g., a message) to the byte array ra
(representing, e.g., a number) is specified by relating the corresponding
terms: ∃𝑥, 𝑟. xa = 𝛾(𝑥) ∧ ra = 𝛾(𝑟) ∧ 𝑟 = ℎ(𝑥), where ℎ is the symbolic
hash operation on terms.

Parsing a received message often requires showing that the parsed byte
array 𝑏 corresponds to a given term 𝑡: 𝑏 = 𝛾(𝑡). Proving this property
generally requires that each byte array corresponds to a unique term.
However, this requirement is typically not satisfied in realistic implemen-
tations where, e.g., a byte array of length four could store an integer or
an ASCII-encoded string, which have different term representations. A
possible solution [39, 71] is to enforce a unique byte-level representation
for every term (for instance, by preceding it with a tag). However, this is
not possible when targeting existing implementations with fixed message
formats.

Therefore, we adopt a less restrictive solution here. We use the pattern
requirement (cf. Def. 2.4.1), which allows multiple terms to have the same
byte-level representation in general, but requires a unique representation
for the terms corresponding to protocol messages. This requirement
allows a participant to uniquely determine the term for a parsed message.
It ensures that the concretization function 𝛾 is injective on the byte arrays
received as messages. The pattern requirement is satisfied by many
protocols because they include message tags to distinguish the kinds of
messages, which in turn determines the unique relationship between a
byte array and a term. At the same time, it allows clashes among the
representations of other terms, such as integers and strings.

We illustrate the approach using the NSL public key protocol [99] in
Fig. 3.2. After receiving message M1, Bob parses it as an encrypted
triple. The specification of the parse operation ensures ∃na. 𝛾(𝑚) =
𝛾({1, na, 𝐴}pkB). Since {1, na, 𝐴}pkB is a protocol message, we can apply
the pattern requirement to derive the required information about 𝑚:
∃na. 𝑚 = {1, na, 𝐴}pkB .
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3.3.3 Global Trace Encoding

As explained in Sec. 3.2, we use a global trace of events, verify invariants
over this trace, and finally prove that the invariants imply the intended
security properties. For this approach to be sound, the global trace has to
include all relevant events performed by the protocol participants and
the attacker, which we ensure as follows.

We model each participant instance potentially participating in a protocol
session, and the attacker, as a thread in a concurrent system. Each thread
maintains its own (mutable) local state, which may contain short-term,
session-specific data and long-term data that is shared by all instances of
the participant. Multiple instances of the same protocol role are modeled
as threads that execute the same code. Soundness of separation logic
ensures that any verified property holds for all possible interleavings
between the threads, that is, for all possible interactions between the
participant instances and the attacker. Moreover, since separation logic is
modular, it verifies the implementation of each participant in isolation,
independent of the other threads potentially running in the system (as-
suming only that their implementations are also verified). Consequently,
the verified properties hold for an arbitrary, unbounded number of
participant instances.

Separation logic achieves thread-modular reasoning by ensuring that
different threads operate on disjoint memory, which prevents data races
and eliminates interference between threads (see below for shared state).
The proof rule for parallel composition (Par in Fig. 3.1) illustrates this
approach. The threads 𝐶1 and 𝐶2 can be verified independently. They
operate on the heap locations for which they obtain permissions via
their preconditions 𝑃1 and 𝑃2, resp. Separation logic’s separating conjunc-
tion ∗ in the precondition of the parallel composition expresses that the
permissions in 𝑃1 and 𝑃2 are disjoint. Note that we show the rule for a
structured parallel composition statement for simplicity; our technique
also supports dynamic thread creation.

Each thread needs to manipulate its own local data structures and the
global trace data structure that is shared among all threads. To support
mutable shared state, we can use any of the established verification
techniques for concurrency reasoning. For concreteness, we use a global
lock, which is associated with a lock invariant that needs to be established
when the lock is first created. This invariant may then be assumed
whenever the lock is acquired and must be proved to hold upon release.
Proof rule With in Fig. 3.1 illustrates this reasoning for a critical section 𝐶
that is protected by the lock 𝑟. 𝐼𝑟 is the invariant associated with lock 𝑟,
as specified by 𝑟 : 𝐼𝑟 in the proof context. Conceptually, a lock owns the
permissions expressed in 𝐼𝑟 and temporarily lends these permissions to
a thread on entering the critical section.

Since the global trace exists only for the purpose of verification, we model
it as ghost state and all operations on it as ghost operations; both are erased
during compilation. Consequently, the lock protecting this ghost data
structure can also be erased. Reasoning about ghost locks is completely
analogous to standard locks (and supported by separation logic program
verifiers). However, since a ghost lock is erased during compilation, it
does not ensure mutual exclusion. Therefore, any non-ghost operation
performed between an acquire and a release must be atomic to ensure
that erasing the ghost lock does not create thread interleavings that were
not considered during verification.
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Figure 3.3: An overview of the main com-
ponents of a protocol execution in our
methodology. The blue boxes are com-
ponents of the protocol implementation;
green boxes denote ghost structures that
are used for verification. Blue and green
arrows denote actual and ghost method
calls, resp. The red dashed arrows denote
invariants relating different data struc-
tures. Participants and the attacker send
and receive messages by interacting with
the network. The attacker can perform ad-
ditional I/O operations such as instruct-
ing the network to drop or modify mes-
sages. All protocol-relevant operations
(including I/O operations) are recorded
on a global trace. We verify (global) secu-
rity properties by proving modularly that
each protocol implementation (e.g., two
and one implementations of Alice’s and
Bob’s role, resp.) and the attacker main-
tain a trace invariant, and that the trace
invariant implies the security properties.
We enable the verification of participants
by relating participant-local state with
the trace via local ghost state that con-
tains a participant’s local snapshot, i.e.,
its last observed version of the trace.

The trace data structure provides two operations: appending an event,
and reading the current state of the global trace. Fig. 3.3 illustrates how
participants and the attacker interact with the global trace. The lock
invariant for the global trace is the trace invariant. By formulating this
invariant in separation logic, it can express ownership of heap locations
and other resources, which allows us to prove security properties that
are out of reach for existing invariant-based related work, as we will see
in Sec. 3.4.1.

Participants must record all protocol-relevant operations on the global
trace. That is, to perform an operation such as sending a message or
creating a nonce, they must (1) acquire the ghost lock, (2) perform the
operation, (3) append the corresponding event to the trace, and (4) release
the ghost lock (and at this point prove that the trace invariant is preserved).
For each relevant operation, we provide a library wrapper (see Sec. 3.5
for details) that performs these four steps3. Preconditions on the library
functions ensure that the performed operation indeed preserves the trace
invariant. Since the trace invariant (and, hence, the preconditions) contain
protocol-specific properties, our library is parametric in the invariant
(cf. Sec. 3.5). To ensure that all relevant operations are recorded on the
trace, it then suffices to perform a simple syntactic check that relevant
operations are performed only via the wrapper library.

The attacker is handled similarly. We model it as code that (1) acquires the
ghost lock, (2) determines which operations the attacker could potentially
perform based on its current attacker knowledge (which is recorded on
the trace), (3) non-deterministically chooses any of these operations
and appends the corresponding event to the trace, and (4) releases the
ghost lock (and at this point proves that the trace invariant is preserved).
Verifying this code ensures that all possible attacker operations preserve
the trace invariant. In other words, the invariant may state only those
properties that are valid under our attacker model, a property we call
attacker completeness (sometimes referred to as robust safety [102] or attacker
typability [39]).
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Participant and session corruption are two of the possible attacker
operations in step 2 above. In both cases, step 3 adds all symbolic terms
possibly present in the participant’s (long-term or short-term) state to
the attacker knowledge, and step 4 checks that the invariant about the
attacker knowledge is maintained.

3.3.4 Local Snapshots

To prove that a protocol-relevant operation preserves the trace invariant,
we frequently need to relate the arguments of the operation to earlier
events on the trace. For example, when sending the first message of the
NSL protocol (Fig. 3.2), Alice has to show that the message invariant holds.
The message invariant specifies that na is a nonce, i.e., requires a prior
CreateNonce(na) event on the trace.

Discharging such proof obligations requires that participants retain
information about their prior operations on the global trace. Since the
global trace is a shared data structure that may grow between any two
accesses, participants may soundly hold on to those facts that are stable
under extensions of the trace. For instance, if a CreateNonce(na) is present
on the trace at some program point, it will also be present in all future
versions of the trace.

We represent the stable information of a participant by maintaining in
each participant a local snapshot (i.e., a local copy) of the global trace (see
Fig. 3.3). Since the global trace may evolve by actions of other participants
and the attacker, the local snapshot of a participant is generally a prefix
of the global trace. Whenever a participant performs a protocol-relevant
operation, we update its local snapshot to the current global trace. The
trace invariant ensures that the local snapshots of all participants are pre-
fixes of the global trace, and that these updates are the only modifications
of local snapshots.

With this design, local snapshots need to be owned by the participants
(to ensure their values are retained across operations of other threads),
and they must also be owned by the ghost lock (to allow the lock
invariant to relate the local snapshots to the global trace). To express
this notion of shared ownership, we use fractional permissions [103],
which are supported by many separation logics and distinguish between
exclusive and shared ownership, which permits multiple threads in
a concurrent program to simultaneously share ownership of a heap
location. Conceptually, fractional permissions allow one to split an
exclusive permission into several fractions each representing shared
ownership; a non-zero fraction permits read access, whereas the full
permission is required for write access. In specifications, we express
permission to a heap location l with fraction p as acc(l,p). Separating
conjunction adds the fractions in both conjuncts and yields false if the
sum for any location exceeds a full permission. For instance, acc(l1,1)
∗ acc(l2,1/2) specifies full and half permissions for heap locations l1
and l2, respectively. Additionally, this example implicitly specifies that
the heap locations are disjoint, i.e., l1 ≠ l2. Otherwise, if l1 and l2
were aliased, the permission amounts would add up to 3/2 contradicting
separation logic’s invariant that at most a full permission exists for a heap
location.

We split the permission to a local snapshot into two halves: One half
is part of the trace invariant and lets it express properties of the local
snapshot, namely that the local snapshot is a prefix of the global trace. The
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1 na /*@, naT @*/ := CreateNonce(/*@ rvlib @*/)
2 //@ assert rvlib.Snap().NonceOccurs(naT)

Figure 3.4: Excerpt from a NSL imple-
mentation for Alice creating a nonce and
demonstrating how to relate local state
with the global trace. //@ and /*@ ...
@*/ mark ghost code that is used for

verification only. We omit the nonce’s
secrecy label (Sec. 3.4.2) for simplicity.

other half remains with the corresponding participant and enables the
participant to retain information about the global trace. After acquiring
the ghost lock, a participant temporarily obtains exclusive permission to
its local snapshot by adding the half it holds with the half from the trace
invariant (through the precondition 𝑃 ★ 𝐼𝑟 in rule With in Fig. 3.1) and
can, thus, update the local snapshot.

By letting each participant retain a non-zero permission to its snapshot,
we can rule out interference from other threads and, thus, use standard
sequential reasoning to relate the content of the local snapshot to the con-
crete data structures maintained by the participant (via local invariants)
and to prove the presence of an event on the snapshot. The example in
Fig. 3.4 illustrates that. Line 1 invokes the library function CreateNonce.
Its regular result na is the generated nonce; the additional ghost re-
sult naT is the corresponding term. CreateNonce takes an instance of
the reusable verification library rvlib (cf. Sec. 3.5) as ghost argument,
which allows the function to append to the global trace and update the
local snapshot. Thus, its postcondition expresses the existence of the
CreateNonce(naT) event on the updated local snapshot. This postcondition
allows the caller to prove the assertion in line 2, where rvlib.Snap()
returns the local snapshot. The CreateNonce(naT) event is the last event
on this local snapshot as the local snapshot is not updated when other
participants or the attacker add events to the global trace.

3.4 Proving Security Properties

In this section, we show how to define a trace invariant that lets us
verify two important security properties, authentication and secrecy.
Authentication means that two protocol participants are indeed commu-
nicating with each other and (depending on the particular authentication
property) agree on some common values. Secrecy holds if confidential
data remains unknown to the attacker. While we focus here on the
proof techniques for these two standard properties, our methodology is
also applicable to more complex properties such as forward secrecy, as
demonstrated in Sec. 3.6.3.

3.4.1 Authentication

To prove authentication, we use protocol-specific events to record addi-
tional information beyond the exchanged messages, so that authentication
properties can be expressed in a familiar way: as correspondence between
these events. In this subsection, we show how to use trace invariants
expressed in separation logic to prove two strong and common authenti-
cation properties: non-injective and injective agreement.

We illustrate our methodology using the NSL example from Fig. 3.2. We
prove authentication using four protocol-specific events: Before send-
ing the first message, Alice creates event Initiate(Alice, Bob, na) to record
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Figure 3.5: Non-injective (white back-
ground) and injective (all lines) agree-
ment from Alice’s perspective with Bob
on the nonces na and nb.

1 let commit = FinishA(A,B,na,nb) in
2 t.Occurs(commit) =⇒
3 let prefix, i = t.GetPrefix(commit) in
4 (prefix.Occurs(Respond(A,B,na,nb)) &&
5 !(∃A′,B′,nb′,i′. i != i′ &&
6 t.OccursAt(FinishA(A′,B′,na,nb′),i′))
7 ) || prefix.IsCorrupted({A, B})

Figure 3.6: A simplified fragment of the
trace invariant for NSL-specific events.
This invariant is universally quantified
over the events ev occurring on the trace;
prefix is the trace prefix up to event
ev. The highlighted line includes a sep-
aration logic resource to express that
the FinishA event is unique w.r.t. to the
nonce na, which allows us to prove injec-
tive agreement.

1 match ev {
2 case FinishA(A, B, na, nb):
3 UniWit(FinishA, na) &&
4 (prefix.Occurs(Respond(A, B, na, nb)) ||
5 prefix.IsCorrupted({A, B}))
6 ...
7 }

that she wants to communicate with Bob, and use the nonce na in the
current protocol session. After receiving the first and before sending
the second message, Bob in turn creates event Respond(Alice, Bob, na, nb),
indicating the communication partners and used nonces. Finally, the
events FinishA and FinishB, with the same parameters as Respond, indi-
cate successful completion of the protocol (i.e., runtime checks such as
nonce comparisons succeeded) for Alice and Bob, resp. We focus on
Alice’s perspective in the following. We prove authentication for Bob’s
perspective in Sec. 3.6.3, where we also discuss authentication properties
for WireGuard.

Non-Injective Agreement. The fact that Alice agrees with Bob on the
nonces na and nb, known as non-injective agreement [79], is specified in
Fig. 3.5 (ignore the conjunct highlighted in blue for now). This trace-based
property states that if a FinishA event occurs on the trace (line 2) then
either a Respond event with matching arguments occurs earlier on the
trace (line 4) or one of the participants has been corrupted before an
agreement was reached (line 7) as t.Occurs(e) yields whether event e
occurs on trace t; t.GetPrefix(e) returns t’s prefix up to and including
the most recent occurrence of e, and the index of that occurrence (i.e.,
the length of prefix minus 1). t.OccursAt(e,i) expresses that event e
occurs at index i on trace t.

To prove agreement for NSL, we include the NSL-specific property from
Fig. 3.6 (ignore line 3 for now) into the trace invariant. It states that
for every FinishA event, a corresponding Respond event with matching
arguments occurred prior on the trace, or one of the participants has been
corrupted. Maintaining this invariant requires us to show the occurrence
of a suitable Respond event (or of corruption) when Alice creates the
FinishA event.

We discharge this proof obligation by extending the trace invariant with
a message invariant for NSL’s second message, which requires that the
Respond event occurs on the trace or the message comes from the attacker.
Hence, an implementation for Bob has to create a Respond event before
sending the second message. When Alice receives the message, she may
assume its message invariant (as part of the trace invariant). Since her
local snapshot gets updated upon the receive-operation, the received
message is recorded on the local snapshot and the message invariant
becomes part of Alice’s stable knowledge. So when Alice adds the FinishA
event to the trace, she knows that either the Respond event occurs on the
trace, or the second NSL message comes from the attacker. In the latter



3.4 Proving Security Properties 59

case, Alice can derive that corruption must have occurred because the
attacker was able to construct a message containing the nonce na, which
is accessible only to Alice and Bob (unless corrupted).

Once we established the trace invariant, it remains to show that for
all traces, the invariant from Fig. 3.6 implies non-injective agreement
(Fig. 3.5). This proof is a standard entailment check, which is performed
automatically by program verifiers.

Injective Agreement. The stronger property injective agreement holds
only for implementations that detect if the attacker replays messages
from other protocol sessions. If successful, such a replay attack could
trick participants into reusing outdated nonces (in general, key material),
thereby weakening security. Proving injective agreement modularly is
challenging; to the best of our knowledge, we present here the first
invariant-based verification technique for injective agreement in protocol
implementations (see also Sec. 3.11).

The highlighted conjunct in Fig. 3.5 strengthens non-injective to injective
agreement by mandating that there is no second FinishA event on the trace
with the same nonce na. The uniqueness of the event/nonce-pair enforces
a one-to-one correspondence between Respond and FinishA events and,
thus, excludes replay attacks.

To prove injective agreement, we strengthen our trace invariant to imply
this property. We could in principle include a conjunct that specifies
uniqueness by quantifying over the indexes into the trace. However,
such an invariant would be difficult to maintain modularly. The necessary
proof obligation for adding a FinishA event would require that no such
event with the same first nonce already exists on the trace. However,
each participant has only partial information about the trace stored in its
local snapshot. So even if we proved the absence of an event on the local
snapshot, we could not conclude its absence on the trace, such that the
proof obligation cannot be discharged.

To obtain a modular verification technique for injective agreement, we
leverage separation logic’s permissions to encode arbitrary linear re-
sources (non-duplicable facts). Due to the meaning of separating conjunc-
tion, 𝑝 ↦→ _ ★ 𝑝 ↦→ _ is equivalent to false (because the permissions of
the two conjuncts are not disjoint). That is, the points-to assertion 𝑝 ↦→ _
is a non-duplicable (i.e., unique) resource. We can use this fact to model the
uniqueness of an event by representing the event as a separation logic
permission. We use this mechanism as follows.

Conceptually, we tie event uniqueness to nonces because nonces are, by
assumption of perfect cryptography, unique. When a protocol-specific
event is declared, it can be specified as unique w.r.t. a specific nonce
parameter. E.g., in NSL, event FinishA is unique w.r.t. its third parameter na.
Subsequently, when a nonce is generated via a call to our verification
library, a program annotation states for which events this nonce will be
used (e.g., FinishA). The library call returns not only the fresh nonce (na),
but also a linear resource for each indicated event type (technical details
follow in Sec. 3.5).

This resource—called an event’s uniqueness witness—then needs to be
given up when the corresponding event is appended to the trace. That
is, ownership of the resource is transferred from the participant to
the ghost lock by conjoining the resource to the trace invariant. E.g.,
for NSL, Alice obtains the witness UniWit(FinishA, na) when creating
nonce na. This witness is transferred to the trace invariant when she
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appends the event FinishA(_, _, na, _) to the trace, as expressed by the
highlighted conjunct in Fig. 3.6, where && is interpreted as separation
logic’s separating conjunction ★. Due to the linearity of the resource, any
attempt to append another FinishA event with na would fail to verify
because the required witness cannot be provided a second time, which
would be necessary to preserve the trace invariant.

Consequently, the invariant from Fig. 3.6 implies that the FinishA event
with na is unique, which allows a standard separation logic verifier
to prove the highlighted conjunct in the definition of injective agree-
ment (Fig. 3.5).

Our discussion shows how the combination of a global trace and local
snapshots allows us to prove authentication modularly, and how we
can leverage the expressive power of separation logic to specify a trace
invariant that lets us prove injective agreement.

3.4.2 Secrecy

Secrecy of a term s, e.g., a key or a nonce, states that the attacker does not
learn this term except when corrupting one of the protocol participants
that know the term. We can express secrecy as a property of the global
trace because we can extract both the attacker knowledge and corruption
events from the trace.

Instead of directly reasoning about the concrete attacker knowledge,
we follow Bhargavan et al. [39, 67] by over-approximating the concrete
attacker knowledge to classes of terms that the attacker (possibly) knows.
This over-approximation enables modular reasoning about secrecy: we
impose proof obligations that prevent secrets from being leaked to the
attacker by checking for every send operation that the sent message
belongs to a class already known to the attacker. For instance, if a
participant tried to send a (unencrypted) secret term over the network,
the send operation would be rejected by the verifier. Consequently,
sending a message does not change the over-approximated attacker
knowledge. This knowledge is extended only when the attacker corrupts
a participant or session. In this case, we add the class of terms readable
by the corrupted participant or session to the knowledge.

We classify terms based on their allowed recipients by assigning them a
secrecy label. Secrecy labels range from public (i.e., everyone including
the attacker) over a set of participants to a set of particular protocol
sessions. The latter is useful to classify ephemeral private keys, e.g., in
our WireGuard case study, because only a participant running a particular
protocol session is allowed to read these keys.

By proactively enforcing secrecy labels, we ensure that the (concrete)
attacker knowledge may contain only public terms and terms whose
secrecy label contains a participant or protocol session that is allowed
to read the term and that has been corrupted in the past. We prove this
so-called secrecy lemma once and for all as part of our reusable verification
library (cf. Sec. 3.5).

3.5 Reusable Verification Library

We implement our methodology as a reusable verification library, which
significantly reduces the verification effort per protocol: the library encap-
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Figure 3.7: Structure of our reusable ver-
ification library (RVL). The library pro-
vides implementations for the abstrac-
tions used in our methodology: terms,
events, the global trace, and local snap-
shots. Both the trace and all local snap-
shots are governed by the trace invariant.
The trace is encapsulated inside a con-
current data structure (CDS) that permits
shared access. The APIs for I/O and cryp-
tographic operations apply these opera-
tions and also register the corresponding
events on the trace. The RVL also provides
several lemmata that have been proved
for all protocols, e.g., attacker complete-
ness. Many components of the library
are parametric to accommodate protocol-
specific events and invariants (and the
corresponding preconditions for the I/O
and crypto API). We indicate parametric
components using a tab symbol near the
top of the box. The parameters are sup-
plied for a concrete protocol (here, NSL),
as indicated by the tab at the bottom of
the box.

sulates the global trace and provides a convenient application program-
ming interface (API) for common network and cryptographic operations
that automates trace updates. In addition, the library provides various
lemmata, such as attacker completeness (Sec. 3.2), which are proved
once and hold for all protocols. To enable verification of a wide range of
protocols, the global trace is parametric in the events it records, and the
trace invariant is parametric to account for protocol-specific properties.

To demonstrate that our methodology is widely applicable, we developed
a library for the Go verifier Gobra [34], and one for the C verifier
VeriFast [26]. Both library implementations are available in our open-
source artifact [101]. In this section, we give an overview of the library
and highlight some of its technical solutions.

3.5.1 Overview

In the following, we describe the library’s structure and components,
explain how the library can be instantiated for different protocols, and
provide data on its size and verification time.

Components. Fig. 3.7 illustrates the structure of our library (lower
box) and a protocol implementation that uses it (upper box). The library
provides the abstractions introduced in Sec. 3.3: terms and events abstract
over concrete data structures (e.g., byte arrays) and participant operations,
respectively. Events are recorded on the global trace, whose content is
constrained by the trace invariant. The concurrent data structure (CDS)
fully encapsulates the trace, to govern shared access and maintain the
invariant. Local snapshots are prefixes of the global trace but are owned
locally by the protocol participants.

The library also provides a convenient API for common network I/O
and cryptographic operations: each function performs the corresponding
concrete operation (e.g., sending a message or creating a nonce) and
also adds the corresponding event to the trace. Suitable preconditions
ensure that the operation preserves the trace invariant; they lead to proof
obligations for clients using the API. Clients typically discharge these
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Figure 3.8: Excerpt of the paramet-
ric trace invariant, defined via pattern
matching over individual trace entries.
All cases may refer to earlier events on the
trace via the prefix parameter pre. The
case for a Send event enforces the mes-
sage invariant, which is partly defined
by the library, but itself parametric. A
PEvent represents any protocol-specific
event pe. The corresponding case of the
trace invariant comes entirely from the
protocol parameter P.

1 pred TraceInv[P](t: Trace) {
2 foreach e: Entry of t:
3 let pre = ... in // trace prefix up to e
4 match e {
5 case Send(msg):
6 MsgInv[P](msg, pre)
7 case PEvent(pe):
8 P::PEventInv(pe, pre)
9 ...

10 }
11 }

with the help of stable knowledge about the trace, which is recorded in
their local snapshots.

In terms of cryptographic operations, our library currently offers asym-
metric encryption, authenticated encryption with associated data (AEAD),
signatures, and modular exponentiation, but can easily be extended
by additional cryptographic operations. As a reference, adding the lat-
ter two features and proving the corresponding lemmata took about
two person days.

Note that almost the entire library consists of ghost code that is used
for verification, but will be erased by the compiler. The only non-ghost
operations are the calls to the underlying I/O and cryptographic libraries.
This has two important consequences. First, these calls can be inlined
in the participant implementation, such that the entire library can be
removed from the executable program and does not cause any runtime
overhead. Second, existing protocol implementations do not have to be
modified to use the library. The library provides a convenient way to
systematically annotate an implementation with ghost code and proof
obligations, but other forms of annotations are also possible.

Parametricity. As we discussed earlier, some events and aspects of the
trace invariant (and consequently the preconditions of the I/O and
cryptographic API) are protocol-specific. To capture them, we designed
our library to be parametric, such that clients using the library can
instantiate it for a given protocol.

Despite being parametric, our library nonetheless provides lemmata
that are proven once and for all protocols, in particular, attacker complete-
ness (Sec. 3.2) and the secrecy lemma (Sec. 3.4.2). Attacker completeness
can be proved once and for all because the library is not parametric in
the kinds of term abstractions it provides. The secrecy lemma directly
follows from the protocol-independent parts of the trace invariant, which
enforce for all protocols that implementations do not leak secrets to the
attacker, i.e., messages have to be public. The library provides also several
utility lemmata (e.g., that event existence is a stable trace property) that
can be used when verifying a participant implementation.

Fig. 3.8 shows a small excerpt of our trace invariant. The parameter P
provides protocol-specific events and invariants. Besides various proper-
ties of the entire trace (not shown in the figure), the trace invariant also
includes event-specific invariants. We show here the invariants for Send
events and protocol-specific events. A Send event requires the message
invariant, which itself can be parameterized by library clients. We prove
that the generic part of the message invariant is weak enough to be
preserved by the attacker; it states, in particular, that the terms occurring
in the message do not leak secrets. The protocol-specific part of the
message invariant may constrain only encrypted data and must allow
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Library LOC LOS Verification time [s]
Go/Gobra 85 7688 115.0
C/VeriFast 343 3837 1.1

Table 3.1: Verified lines of code (LOC) and
lines of specification (LOS) (incl. ghost
code) for the library, together with the
average verification times in Gobra and
VeriFast.

the possibility that the encrypted data was fabricated by the attacker out
of terms in the attacker knowledge. This ensures that it is maintained
by all attacker actions. For a protocol-specific event, the invariant is
supplied entirely by the parameter P. In the following, we explain how
this parameter is represented in our library implementations.

In the Go implementation of the library, we achieve parametricity by
using Go interfaces. In particular, the generic protocol interface declares
mathematical functions (e.g., isUnique to indicate that an event is unique),
separation logic predicates (e.g., protocol-specific event invariants), and
lemmata. Clients may then supply different implementations of this
interface with different definitions for these functions, predicates, and
lemmata. Gobra checks via suitable proof obligations that any concrete
implementation satisfies key properties specified in the interface (e.g.,
that protocol-specific invariants provide uniqueness witness resources
for unique events). These properties can thus soundly be assumed while
verifying the parametric library. Analogously, parametricity w.r.t. events
is enabled by declaring an Event interface that protocol-specific events
extend.

In VeriFast, we use its generic types (e.g., for events), abstract mathe-
matical functions (e.g., isUnique), and abstract lemmata (e.g., that the
event invariant is stable) to achieve parametricity and verify the library
once for all protocols. When verifying implementations of a particu-
lar protocol, these abstract functions and lemmata are concretized by
providing function and lemma definitions via an automated syntactic
transformation. We prove that these definitions are not present while
verifying the library, that is, we indeed verify the parametric version of
the library, not a concrete instantiation.

Statistics. Tab. 3.1 shows the size and verification time for the two verified
implementations of our library. As explained above, the library consists
mostly of ghost code; only around 1 % is executable code. All methods
and lemmata together are verified in ca. 2 min. The library for VeriFast
is currently less complete than the one for Gobra, and lacks several
useful lemmata, which explains the smaller amount of ghost code. It
verifies in 1.1 s (VeriFast is usually faster than Gobra, but provides less
automation). We have measured the verification times by computing the
10 % Winsorized mean of the wall-clock runtime across 10 verification
runs on a 2023 Apple MacBook Pro with M3 Pro processor and macOS
Sequoia 15.6. Since the library is verified once for all protocols, this
effort does not have to be repeated when verifying a concrete protocol
implementation.

3.5.2 Technical Solutions

In the following, we summarize the features of a verification technique
and tool required to implement the main abstractions (e.g., terms, events,
global traces) provided by our library.

Custom Mathematical Theories. Verification techniques frequently rep-
resent information as values of mathematical theories, such as sets,
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tuples, and sequences. In contrast to the corresponding data types of a
programming language, these values are immutable and their operations
have a direct representation in the verification logic, which simplifies
reasoning.

We use mathematical theories to represent the abstractions we use in
specifications and ghost code: events, the global trace, secrecy labels, and
terms with equational theories. Conceptually, events form an algebraic
data type (ADT), as does the global trace (a functional list). Labels and
terms are also algebraic structures, but with additional properties (e.g.,
labels have a commutative join operator).

For secrecy labels, we axiomatize a GetLabel function that maps a term
to its secrecy label. This axiomatization abstracts terms to secrecy labels,
and models the symbolic model of cryptography. Therefore, this axiom-
atization has to be consistent with the equational theories of terms.

The Gobra implementation of the library represents all these structures
as uninterpreted functions with appropriate axioms (analogous to how
custom theories are encoded to SMT solvers). E.g., for the ADT of events,
we define axioms that ADT constructors are injective in their arguments,
and that different constructors produce different events. For terms, we
define additional axioms to encode cryptographic equational theories,
e.g., 𝑔𝑥 𝑦 = 𝑔𝑦𝑥 , where 𝑔𝑥 denotes DH exponentiation with generator 𝑔.
VeriFast supports ADTs natively, which we use to represent events and the
global trace. For labels and terms, we again use uninterpreted functions
and axioms (“auto-lemmata”) to express equational theories.

Linear Resources. Our novel support for proving injective agreement
(cf. Sec. 3.4) requires reasoning about the uniqueness of certain protocol-
specific events. For this purpose, we introduce (ghost) memory locations
and use separation logic’s (exclusive) permissions to these locations as
linear resources. Separation logic predicates [104] allow us to construct
linear resources with arbitrary parameters by mapping the parameter
tuples injectively to a heap location. We use such predicates to represent
the uniqueness witnesses from Sec. 3.4.

Concurrency Reasoning. As discussed in Sec. 3.3.3, we model the global
trace as a concurrent data structure. Our approach is compatible with
any verification technique that is able to reason about shared accesses to
such a data structure and to maintain an invariant over it. Moreover, to
encode local snapshots (cf. Sec. 3.3.4), we require support for reasoning
about properties that are stable under concurrency, which are offered by
separation logic verifiers.

We model the global trace as a data structure that is protected by a
ghost lock. Neither Gobra nor VeriFast support ghost locks directly, but
both offer standard locks. Reasoning about ghost locks and standard
locks is almost identical, with one exception: Any non-ghost operations
performed between acquiring and releasing a ghost lock must be atomic
(because the lock will be erased by the compiler, so it does not actually
provide mutual exclusion). This property is satisfied in our library.

3.6 Case Studies

We applied our methodology to Go implementations of the NSL public
key protocol, signed DH key exchange, and the WireGuard VPN protocol,
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1 struct Alice {
2 SkA byte[]
3 PkB byte[]
4 Na byte[]
5 Nb byte[]
6 /*@ ghost Step uint @*/
7 ...
8 }

10 /*@ pred LocalInvariant(a: Alice) {
11 ∃naT,nbT.
12 ... && // memory omitted
13 (a.Step == 2 ==>
14 UniWit(FinishA, naT)) &&
15 (a.Step >= 2 ==>
16 𝛾(naT) == a.Na &&
17 a.Snap().NonceOccurs(naT)) &&
18 (a.Step >= 3 ==>
19 𝛾(nbT) == a.Nb &&
20 a.Snap().Occurs(FinishI(A, B, naT, nbT)))
21 } @*/

Figure 3.9: The struct used for Alice’s
local state in the Go implementation of
NSL, and an excerpt from the local invari-
ant that relates this state to Alice’s local
snapshot and, thereby, to the global trace.
The Step field is a ghost field that is used
to track Alice’s progress in the protocol.

and prove strong security properties. We also verified a C implemen-
tation of NSL, and obtained the same security properties as for the Go
implementation. Our case studies (included in our artifact [101]) thus
demonstrate the portability of our methodology across different proto-
cols, programming languages, and verifiers, and its scalability to realistic,
interoperable implementations. In this section, we first summarize each
of the case studies and then discuss our experiences.

3.6.1 Needham–Schroeder–Lowe (NSL)

We used Gobra to verify a Go implementation of the initiator and re-
sponder roles for the NSL protocol (cf. Fig. 3.2), and likewise VeriFast
for a C implementation thereof. We implemented the core of the pro-
tocol as one method per participant; we also verified an alternative Go
implementation of the initiator that contains one method per message to
demonstrate that verification is not sensitive to the code structure. Both
protocol roles store their program state locally and use an invariant to
relate the local state via the term abstraction to their local snapshot and,
thereby, to the global trace.

Fig. 3.9 illustrates the interplay between the local state and the local
snapshot for the initiator, Alice. Alice manages her program state in a
struct Alice. The local invariant in lines 10–21 relates Alice’s local state
to her local snapshot (and, thus, indirectly to the global trace). This
invariant expresses ownership of the heap locations for the struct fields,
which is omitted in the figure. More importantly, it specifies properties
about the struct fields depending on Alice’s progress within the protocol
execution, which we keep track of via the Step field. E.g., Alice is in
Step 2 after creating the nonce naT and sending the first message. In this
case, the invariant includes the uniqueness witness (line 14), which allows
Alice to create the FinishI event in a later protocol step. The invariant
relates the concrete nonce field Na to its term representation naT using
the concretization function 𝛾 (line 16). This term is used in the events on
the global trace. In particular, the CreateNonce event for naT must occur
on Alice’s local snapshot a.Snap() (line 17) and, thus, on the global
trace. Once Alice’s protocol run has reached the final Step 3, it adds the
FinishI event to the trace. The invariant reflects this by stating that the event
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Figure 3.10: The signed DH key exchange
protocol, where 𝑔𝑥 and 𝑔𝑦 are DH public
keys and {|𝑚|}sk denotes cryptographi-
cally signing a payload 𝑚 with a secret
key 𝑠𝑘.

M1. 𝐴→ 𝐵 : 𝑔𝑥

M2. 𝐵→ 𝐴 : {|⟨0, 𝐵, 𝐴, 𝑔𝑥 , 𝑔𝑦⟩|}skB

M3. 𝐴→ 𝐵 : {|⟨1, 𝐴, 𝐵, 𝑔𝑦 , 𝑔𝑥⟩|}skA

is on the local snapshot (line 20). Knowledge about FinishI’s existence on
the trace entails (via the trace invariant) properties about the Respond event
created by Bob (recall Fig. 3.6). This knowledge, together with FinishI’s
uniqueness witness (now stored in the trace invariant), allows us to prove
injective agreement with Bob as explained in Sec. 3.4.1.

We prove for all participant implementations that they achieve (at the
end of a protocol execution) injective agreement on, and secrecy for, both
nonces na and nb. Additionally, we verify initialization code that creates
an empty trace, generates public/private key pairs for the participants,
and spawns two participant instances as goroutines to demonstrate that
key distribution (although not part of the protocol) can be modeled using
our methodology.

3.6.2 Signed Diffie–Hellman (DH)

In the signed DH key exchange (cf. Fig. 3.10), Alice and Bob each generate
a DH secret key 𝑥 and 𝑦, respectively. By transmitting the corresponding
(signed) DH public keys 𝑔𝑥 and 𝑔𝑦 , they agree on the shared key 𝑔𝑥

𝑦

after a successful protocol run.

We prove secrecy for, and injective agreement on, the shared key. The proof
is similar to the proof for NSL, which allowed us to reuse substantial parts.
One noticeable difference is that proving that both participants derive the
same shared key requires the equational theory for DH exponentiation. Our
reusable verification library provides such custom theories, as discussed
in Sec. 3.5.2. Another difference is that the nonces 𝑥 and 𝑦 are not directly
part of the protocol messages (in contrast to 𝑛𝑎 and 𝑛𝑏 in NSL), but are
existentially quantified in the message invariants. A participant instance
can determine the values of these existentially-quantified variables after
receiving a protocol message, by connecting the message invariant to its
own DH secret key.

3.6.3 WireGuard

As our main case study, we have picked the WireGuard VPN protocol as
a real-world protocol achieving even stronger security properties than
NSL. WireGuard is a modern, open-source, and cross-platform VPN that
uses state-of-the-art cryptography and is part of the Linux kernel. The
WireGuard protocol, which performs an authenticated key exchange,
has been analyzed rigorously [105, 106]. It consists of a handshake and
transport phase. During the handshake phase, the protocol participants
agree on two session keys kIR and kRI, one per direction, that are used to
symmetrically encrypt VPN packets in the transport phase.

Implementation. We used the existing Go implementation from Chap-
ter 2, whose memory safety proof we reused. Thanks to our reusable
verification library’s parametric design, instantiating our library with the
concrete networking library used by the WireGuard implementation was
straightforward and only required annotating cryptographic functions
with suitable postconditions.
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Figure 3.11: Illustration of the permission
distribution. The ghost lock within the
concurrent data structure (CDS) owns
via its lock invariant full permissions
(dark green boxes in full) to the global
trace and 1/2 permissions to every local
snapshot (each visualized as a truncated
box). Each local snapshot conceptually
belongs to a protocol role and session,
or more precisely to an instance of the
reusable verification library (RVL). The
CDS uses a mathematical map (omitted)
to keep track of local snapshots by map-
ping from an RVL instance identifier to
a local snapshot. Each RVL instance has
access (omitted) to the CDS to perform
operations that require acquiring and re-
leasing the ghost lock, and owns 1/2 per-
missions to its own local snapshot.

As explained in Sec. 2.6.4, this implementation is a subset of WireGuard’s
official Go implementation. It omits advanced VPN features such as
protection against denial of service (DoS) attacks, session key renewal,
and support for multiple concurrent VPN connections. Moreover, their
implementation reduces concurrency (which we partly re-introduced,
as we discuss below), and replaces a message buffer pool by single-
use buffers. Our technique could handle the removed features with
additional effort that is mostly orthogonal to our methodology. For
instance, the implementation of DoS protection collects metrics (which
does not pose a challenge for program verification) and uses a slightly
different handshake (whose verification is analogous to the standard
handshake; the differences are not relevant for authentication and secrecy).
Supporting multiple VPN connections requires slightly more complex data
structures, as do buffer pools, which can easily be handled in separation
logic. Despite these simplifications, the implementation is interoperable
with other WireGuard implementations and supports tunneling Internet
Protocol (IP) packets via the established VPN connection to and from
the operating system. Since each IP packet is encrypted using a distinct
counter value, a new handshake must be performed before the counter
reaches its upper limit, which is not yet implemented. Instead, the
implementation stops forwarding IP packets at that point.

Our case study goes substantially beyond of Chapter 2’s, which focuses
on connecting Tamarin to code-level verification, and proves weak
forward secrecy and non-injective agreement in the presence of long-
term key corruption. We additionally consider session corruption, i.e., the
possibility for an attacker to obtain ephemeral key material, and prove
strong forward secrecy and injective agreement with actor key compromise
(AKC) security. Furthermore, we have re-introduced (from the official
WireGuard implementation) and verified the ability to send and receive
transport messages in the initiator concurrently. This change increases
Transmission Control Protocol (TCP) throughput compared to Chapter 2’s
implementation by a factor of 180, which illustrates how important such
code optimizations are for real-world protocol implementations. The
initiator verified in our work reaches 72 % of the official implementation’s
throughput; the additional concurrency needed to close the remaining
performance gap requires standard concurrency reasoning in separation
logic, which is supported by our methodology.
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Verifying Concurrent Implementations

Our reusable verification library can be used in two different ways to
verify a concurrent implementation. First, one can treat an instance of
this library as representing a protocol run, which implies that one has
to perform all trace-relevant operations by all threads of this protocol
run with this single library instance. While possible, this approach
is not very convenient for concurrent implementations, as it requires
appropriate synchronization for every library access performed by
the threads.

Second, we can instantiate the library once for each thread, which is
the approach we took in our WireGuard case study. This second ap-
proach exploits the fact that we are using a concurrent data structure
(CDS) to represent the global trace and consider all possible interleav-
ings of trace events added by all library instances. Thus, extending
the library to support multiple library instances per protocol run was
straightforward as we added only a thread identifier to distinguish
these library instances and their corresponding local snapshots. Prior
to explaining how we use multiple library instances in an implementa-
tion, we need to introduce the internal representation and permission
management of our CDS, as shown in Fig. 3.11. Our CDS internally
uses a ghost heap location to store the global trace (cf. Sec. 3.3.3) and a
ghost mathematical map mapping library instance identifiers to ghost
heap locations storing their corresponding local snapshots (Sec. 3.3.4).
To synchronize accesses to these ghost heap locations, the CDS em-
ploys a ghost lock, whose lock invariant owns full permissions to
the heap location storing the global trace and to the trace invariant,
and 1/2 permissions to every heap location storing local snapshots.
A library instance holds the remaining 1/2 permissions to the heap
location storing its own local snapshot and the necessary permissions
to acquire the CDS’s ghost lock. To enable a single protocol run to create
multiple library instances, each such instance requires its own local
snapshot in the CDS’s ghost map, which we achieved by extending the
ghost map’s key from a tuple of protocol role and session identifier
to a triple of protocol role, session identifier, and an optional44: The thread identifier is optional to en-

sure backward compatibility, i.e., single-
threaded implementations do not have
to provide such an identifier.

thread
identifier.

In our WireGuard case study, we create two library instances per
protocol run for the initiator role55: Our reusable verification library does

not allow to dynamically add additional
entries to the ghost map and, thus, we
have to account for all library instances
at initialization time. However, this re-
striction could easily be lifted by using
a ghost map that supports concurrently
inserting entries whose keys are not yet
contained. This side-condition ensures
that existing map entries remain stable.

. During the handshake phase,
only one of the two instances is used to generate ephemeral secret
keys and derive the session keys. At the beginning of the transport
phase, we launch a goroutine to concurrently take IP packets from the
operating system and send them over the established VPN connection.
Conversely, the main goroutine continuously receives and processes
incoming VPN packets. Since we continuously prove the subsequently
explained secrecy and authentication properties after processing every
outgoing and incoming packet, both goroutines require not only a
session key but also precise knowledge about a session key’s secrecy
label and events on the global trace. Since one of the two library
instances was not used during the handshake phase, it does not have
the necessary knowledge and, thus, cannot be immediately used in
either goroutine. In particular, this instance’s local snapshot is highly
outdated and does not reflect the trace knowledge acquired during
the handshake phase.

We solve this problem with a simple synchronization mechanism
that allows us to copy a local snapshot from one library instance
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1 !t.AttackerKnows(s) ||

2 t.GetHs(ASess, PSess).IsCorrupted({ A, P}) ||

3 t.IsSessionCorrupted({ASess, PSess})

Figure 3.12: Strong (without highlighted
part) and weak forward secrecy (entire
property) for a session key s on trace t.

to another. We implemented this mechanism using minimal proof
obligations, meaning that the new local snapshot for a library instance
does not need to satisfy any constraints w.r.t. to this instance’s old local
snapshot. In particular, the old local snapshot is not required to be
a prefix of the new local snapshot6 6: The CDS’s invariant enforces, however,

that all local snapshots are prefixes of the
global trace, which is the case for the new
local snapshot since it is a copy of another
library instance’s local snapshot.

. For WireGuard, this mechanism
allows us to copy the local snapshot of the library instance that is used
during the handshake phase to the second library instance providing
all acquired knowledge about the global trace and the session keys
to this other library instance. Hence, we can use the second library
instance, which is used in the goroutine sending VPN packets, as if
we had already used this instance during the handshake phase and
prove the security properties as expected.

Security Properties. Since the session keys are based on ephemeral
as well as long-term key material that is contributed by both protocol
participants, WireGuard achieves strong security properties. In particular,
we prove forward secrecy and injective agreement, both with AKC security.
While WireGuard optionally incorporates a pre-shared symmetric key
into the handshake to increase security, we prove all security properties in
this section without considering this pre-shared key, i.e., we treat the pre-
shared key as a term known to the attacker. In the following, we call the
initiator actor and the responder peer when proving a property from the
initiator’s perspective, and vice versa for the responder’s perspective.

Forward secrecy protects sessions against future corruption of the long-
term secret keys. I.e., an attacker cannot compute the session keys of
an already established session after learning the long-term secret keys.
However, sessions that get established after corrupting the long-term
secret keys are not protected because the attacker can impersonate partic-
ipants by knowing their secret keys. The literature distinguishes between
weak and strong forward secrecy. We were able to reuse formalizations
from existing work [11, 41, 107], which are phrased as trace-based security
properties and, thus, directly supported by our methodology.

Weak forward secrecy for a session key s holds if at any point in time, one
of the following three properties hold: (1) The attacker does not know s
(line 1), (2) the actor or its peer has been corrupted before completing the
handshake (line 2), or (3) the actor’s or peer’s session has been corrupted
(line 3). In the last case, the attacker gets to read the long-term and
short-term state of the corrupted participant, that is, the long-term secret
key and also the session keys if the session is established. Hence, the
attacker either directly obtains the session keys if the session is already
established or otherwise uses the long-term secret key to impersonate
the actor or its peer while establishing a session in the future. The session
keys of all other sessions remain secret. Fig. 3.12 (entire figure) shows
the definition of weak forward secrecy, where A and P identify the actor
and peer that derive the session key s in their protocol sessions ASess
and PSess, respectively. t.GetHs(ASess, PSess) returns a prefix of
trace t up to and including the corresponding handshake’s completion
from the actor’s perspective. The session key s is protected against (future)
participant corruption after the handshake’s completion.

Compared to weak forward secrecy, session keys satisfying strong forward
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Figure 3.13: Injective agreement with
AKC security on a term m from the actor A
’s perspective with a peer P. The high-
lighted conjunct indicates the Commit
event’s uniqueness requirement for the
given m.

1 let commit = Commit(A,P,ASess,PSess,m) in
2 let running = Running(A,P,ASess,PSess,m) in
3 t.Occurs(commit) =⇒
4 let prefix, i = t.GetPrefix(commit) in
5 (prefix.Occurs(running) &&
6 !(∃A′,P′,ASess′,PSess′,i′. i != i′ &&
7 t.OccursAt(Commit(A′,P′,ASess′,PSess′,m),i′))
8 ) || prefix.IsCorrupted({P})
9 || prefix.IsSessionCorrupted({ASess})

secrecy are additionally protected against corrupting the actor, i.e., the
highlighted actor is removed from line 2 in Fig. 3.12. In particular, having
access to the actor’s long-term secret key does not allow the attacker to
obtain the established session keys. This resilience has been formalized
as actor key compromise (AKC) by Basin et al. [108], generalizing the more
widely known notion of key compromise impersonation (KCI).

From the initiator’s perspective, WireGuard guarantees strong forward
secrecy for the two session keys once the handshake has been completed.
In contrast, the responder guarantees only weak forward secrecy by the
end of the handshake, but achieves strong forward secrecy after receiving
the first transport message. We verified strong forward secrecy at the
appropriate points in the protocol for both roles.

The responder’s forward secrecy guarantee is strengthened by receiving
and successfully processing the first transport message because this
message acts as a key confirmation. I.e., the responder checks that
it derived the same session key kIR as the initiator, which allows the
responder to detect AKC attacks. Based on strong forward secrecy for the
session keys, we further prove that the VPN payloads are treated with the
same level of secrecy. This induces proof obligations that a participant
sends VPN payloads to the network in a way that they can be read only
by participants allowed to read the session keys (e.g., by encrypting the
VPN payloads with one of the session keys).

Confirming the session keys not only enables strong forward secrecy for
the session keys but also provides additional authentication guarantees:
Injective agreement with AKC security (cf. Fig. 3.13) states that (1) an actor A
agrees with a peer P on a term m with a one-to-one correspondence
between the Commit and Running events unless (2) the actor’s session
or (3) the peer’s (short-term or long-term) state has been corrupted. In
particular, corrupting the actor is not sufficient to satisfy this property.
In contrast, the NSL protocol only satisfies injective agreement without
AKC security from the initiator’s perspective (as presented in Sec. 3.4.1)
because having access to the initiator’s secret key enables the attacker to
decrypt the second message, obtain the nonces na and nb, and construct
a modified second message containing na and nb′ with nb ≠ nb′. Thus,
there is no correspondence between Commit and Running events in the
case of actor key compromise because the initiator and responder do not
agree on the nonces.

3.6.4 Discussion

For each case study, Tab. 3.2 reports the size of the implementation and its
specification, along with the verification time. We exclude the alternative
NSL initiator implementation in Go, and the reusable verification library
(recall Tab. 3.1). However, the specifications do include the (ghost) code
instantiating our reusable verification library and applying the pattern
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Case Studies LOC LOS Verification time [s]
Go/Gobra

NSL 207 1013 78.6
Signed DH 235 930 113.9
WireGuard 557 6339 220.8

C/VeriFast
NSL 300 1014 4.8

Table 3.2: Verified lines of code (LOC)
and lines of specification (LOS) (incl.
ghost code) for our case studies, together
with the average verification times in
Gobra and VeriFast. We performed the
measurements in the same way as in
Tab. 3.1.

requirement: it amounts to 377, 373, and 1086 lines of specification (LOS)
in Gobra for NSL, DH, and WireGuard, respectively, and 391 LOS in
VeriFast for NSL.

Overall, the annotation overhead for Gobra ranges between 4.0 and
11.4 LOS per line of code, and is in the typical range for modular program
verification. For example, Wolf et al. [34] report a ratio of 2.7 for a small
example using concurrency in Gobra. VST [27], a separation logic-based
verifier based on Coq, reports an average ratio of 13.9 for small C programs.
Both works verify only memory safety and functional properties, but
do not include any (arguably much more complex) security properties,
whereas our numbers include safety and security. In comparison, Sec. 2.6
proves security properties for WireGuard in Gobra with a ratio of 7.6, in
addition to requiring a Tamarin model of 292 lines and a Tamarin oracle
implemented in Python, which ensures that Tamarin’s proof search
terminates. Counting the Tamarin model and oracle as specification, the
overall ratio is 8.2 (and requires the use of three different languages).
We will discuss the differences between our two methodologies beyond
annotation overhead in Sec. 3.10.

The main challenge in our case studies was finding a sufficiently strong
trace invariant to prove the presented security properties. For WireGuard,
we had to find suitable message invariants such that the secrecy labels
for the derived session keys kIR and kRI are sufficiently strong to prove
weak and strong forward secrecy. These secrecy labels are related to
the message invariants because the session keys are derived by an
eightfold application of KDFs that factors in long-term and ephemeral,
i.e., session-specific, DH key material that is either locally generated or
received from the peer. Thus, each KDF application results in a new key
with a secrecy label that depends on the secrecy labels of the input key
material. To keep the annotations related to the secrecy labels in the
implementation to a minimum, we have implemented a lemma for each
KDF application that proves the result’s secrecy label.

Moreover, the invariant for protocol-specific events has to be strong
enough to prove injective agreement with AKC resilience. Our reusable
verification library enables strengthening the proven authentication
property from non-injective to injective by adding the uniqueness witness
for each protocol-specific event. This allowed us to focus on finding a
suitable invariant for non-injective agreement with AKC resilience first,
and then strengthen the authentication property, which required less
than 40 additional LOS.

After completing the proofs for sequential code, we re-introduced con-
currency to the initiator’s transport phase (recall Sec. 3.6.3). Extending
the reusable verification library to allow multiple library instances per
protocol run by adding the thread identifier, but without adding the
synchronization mechanism as that already existed, and adapting the
initiator’s implementation and proof was done in an afternoon. This
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demonstrates that our separation-logic-based methodology enables secu-
rity proofs that are robust w.r.t. nontrivial code changes.

3.7 Trust Assumptions

Our methodology allows us to prove strong security properties for im-
plementations of security protocols. Like with all verification techniques,
these proofs rely on several assumptions about the implementation and
the execution environment.

We rely on the soundness of the used program verifier. Since our method-
ology is compatible with standard separation logic verifiers, we can
mitigate this assumption by using a mature tool.

As is standard for symbolic cryptography, we assume perfect crypto-
graphic operations (e.g., absence of hash collisions, or that ciphertexts
do not leak any information). This includes that the secrecy labels’ ax-
iomatization is consistent with the equational theories, which express
the properties of these cryptographic operations. We also do not verify
that the implementations of the cryptographic primitives are functionally
correct; while this is orthogonal to our work, our methodology could be
combined with verified libraries like EverCrypt [109].

Furthermore, we assume that all output operations, i.e., sending messages,
are reflected on the global trace by corresponding events, which is the
case when using the I/O operations provided by our verification library.
However, if an implementation uses, e.g., inline assembly or third-party
libraries to send messages to the network, the global trace has to reflect
these messages nonetheless. Omitting any other event does not affect
soundness, only completeness.

Lastly, we assume that the protocol terms corresponding to the byte
arrays in a participant’s initial state, and those obtained from operations
outside our library (e.g., read from a config file), are readable by at least
that participant according to the terms’ secrecy labels (recall Sec. 3.4.2).
Otherwise, it would not be sufficient to model corruption of a participant
by adding the class of terms readable by that participant to the attacker
knowledge; the attacker could learn even more. For all terms a participant
can obtain by interacting with our verification library (e.g., receiving
messages, generating nonces, applying encryption), we prove in our
library (via corresponding lemmata) that a participant can read these
terms (and thus the terms leak as expected to the attacker in case of
corruption).

3.8 Soundness

We sketch soundness of our methodology by showing that the global
trace reflects all relevant protocol steps and, thus, any security property
proved for the trace indeed holds for the protocol implementation. More
specifically, given a distributed system of verified protocol implementa-
tions and an arbitrary attacker, the system’s set of possible executions is a
subset of the executions permitted by the trace invariant, which in turn is
a subset of the executions that satisfy the desired security properties.
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For this purpose, we define a core programming language covering all
protocol-relevant operations (e.g., network I/O, cryptographic primi-
tives), and those relevant for modeling an attacker (e.g., corruption). The
language’s operational semantics (Sec. 3.8.1) supports thread-local state
and explicitly maintains a shared global trace. The thread-local state
models the state of each participant and is manipulated via assignments
in the participants’ implementations. In contrast, the global trace is main-
tained automatically by our semantics and extended whenever a relevant
protocol operation is executed. We then define a Hoare logic (Sec. 3.8.2)
parameterized with a trace invariant to enable modularly verifying each
participant implementation. The logic natively supports our methodol-
ogy’s local snapshots and the global trace. We prove that this logic is
sound w.r.t. the operational semantics using a standard rule induction.
Thereby, we obtain the guarantee that locally-verified participants, if
composed with the attacker to a concurrent system, maintain the global
trace invariant in all possible interleavings. Since the global trace reflects
all relevant protocol steps, we can conclude that the aforementioned trace
inclusion holds (Sec. 3.8.3). As one would expect, obtaining this global
guarantee about the concurrent system from locally-verified participants
turned out to be the most challenging step in the soundness proof.

Since we parameterize our Hoare logic with a trace invariant, secrecy la-
bels and equational theories come into play only when verifying protocol
role implementations and our reusable verification library against an in-
stance of the trace invariant. Our reusable verification library instantiates
the trace invariant to mandate, e.g., that a message may be sent only if its se-
crecy label is public, thereby ensuring that sending this message does not
increase the attacker’s over-approximated knowledge. Discharging this
proof obligation when verifying a protocol role’s implementation against
our reusable verification library requires reasoning about equational the-
ories and secrecy labels, whose axiomatization is trusted (cf. Sec. 3.5.2).

In each subsection, we relate the semantics defined for the proof sketch
with the verification performed by an off-the-shelf separation-logic-based
verifier (such as Gobra) against our reusable verification library. Formally
connecting our dedicated Hoare logic to a standard separation logic
is straightforward, based on the encoding discussed throughout the
paper (using the heap to store the thread-local state, a ghost lock to
synchronize access, and a lock invariant to constrain the trace and all
local snapshots).

3.8.1 Language and Operational Semantics

On a high-level, we consider a distributed system consisting of multiple
components: either instances of a protocol implementation, i.e., partic-
ipants, or the attacker. Our programming language does not support
user-defined shared variables or a heap, and each participant executes its
commands in its own local state. However, security-relevant commands
additionally mutate the global trace to reflect the performed operation.

Consequently, our system’s configurations comprise a local configuration
per component, and the global trace 𝜏. A local configuration for a protocol
participant 𝑖 is characterized by its local command 𝐶𝑖 and local state 𝜎𝑖 .
The local configuration for the attacker is similar, but additionally contains
a knowledge set 𝑘𝑎 that stores all symbolic terms that are known to the
attacker.
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Definition 3.8.1 (Local Program States) Local program states, ranged over
by 𝜎, are total functions from local variables (in the set PVars) to values (in
the set PVals).

PStates ≜ PVars→ PVals

We define our programming language such that it directly works with
symbolic terms instead of bytes, which avoids having to complicate the
semantics to reflect the orthogonal issue of mapping between the bytes
and terms.

Definition 3.8.2 (System Configurations) A configuration of our dis-
tributed system has the shape

⟨⟨𝐶1 , 𝜎1⟩, · · · , ⟨𝐶𝑛 , 𝜎𝑛⟩, ⟨𝐶𝑎 , 𝜎𝑎⟩, 𝑘𝑎 , 𝜏⟩

where ⟨𝐶𝑖 , 𝜎𝑖⟩ denotes the local command and local state of participant 𝑖,
⟨𝐶𝑎 , 𝜎𝑎⟩ denotes the local command and local state of the attacker 𝑎, 𝑘𝑎 is the
attacker’s knowledge set, and 𝜏 denotes the system’s global trace.

Note that the local configurations of participants and the attacker have
the same shape such that the same operational semantics rules, e.g., for
sequential composition, are applicable to both. We achieve this common
shape by keeping the attacker’s knowledge set 𝑘𝑎 separate from the
attacker’s local configuration ⟨𝐶𝑎 , 𝜎𝑎⟩, even though only commands
executed by the attacker possibly modify 𝑘𝑎 .

Definition 3.8.3 (Programming Language) We consider the following
programming language, where 𝐶 ranges over commands, 𝑥 and ®𝑥 over
variables and lists of variables in the set PVars, respectively, and 𝑒 over
expressions (modeled as total functions from PStates to PVals):

𝐶 ≜ skip | 𝐶; 𝐶 | if (𝑒) {𝐶} else {𝐶} | while (𝑒) {𝐶} |
x B e | send(𝑒) | x B recv() | x B nonce() |
x B hash(𝑒) | x B pk(𝑒) | x B enc(𝑒 , 𝑒) | x, x B dec(𝑒 , 𝑒) |
drop(𝑒) | learn(𝑒) | x B choose() | corrupt(𝑒) |
fork (®𝑥) {𝐶}

Besides standard commands, such as sequential composition and assign-
ment, the programming language provides several commands essential
for protocol implementations: for sending and receiving a network mes-
sage, for generating a nonce, hashing a term, generating a public key
corresponding to a given secret key (pk), and encrypting and decrypting
a term with a key. Additionally, the programming language provides
commands only available to the attacker: dropping a message from
the network, adding the value of a local variable to the attacker knowl-
edge (learn), non-deterministically obtaining a term from the attacker
knowledge (choose), and corrupting the state of specific participant (each
participant has a unique id/index).

Finally, the fork command starts a new thread executing the provided
command, which corresponds to spawning a new participant or the
attacker. The new thread operates on its own local state, which initially
maps the variables in ®𝑥 to the same values as the state in which the fork
command is executed. This command is used to bootstrap the distributed
system, as discussed in Sec. 3.8.3.

The expression language comprises symbolic terms for booleans and inte-
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gers, and the usual operations thereon. We assume well-typed programs,
e.g., that if-conditions are of type boolean.

Definition 3.8.4 (Operational Semantics) Fig. 3.14 defines the small-step
operational semantics for our programming language.

The rules for standard commands such as sequential composition and
conditionals, are as expected, and we will thus only discuss non-standard
aspects of our programming language.

Global Trace. Recall from Sec. 3.3.3 that in our verification methodology
(as implemented in Gobra), we use a concurrent ghost data structure
with ghost locks to manage the global trace. In our operational semantics,
we instead represent the trace as the dedicated element 𝜏 in the system’s
state. Regardless of the technical implementation, we must ensure three
crucial properties: (1) Each operation may append only a single trace
event. In our methodology, this is checked via a suitable proof obligation
upon lock release; in our operational semantics, each rule adds at most
one event. (2) To ensure monotonicity, the trace may only grow. Checked
upon lock release in our methodology; in our operational semantics,
no rule shortens the trace. (3) Every single operation must preserve
the trace invariant. Checked upon lock release in our methodology; in
our operational semantics, this is part of the soundness theorem (cf.
Thm. 3.8.3).

Local Snapshots. Recall from Sec. 3.3.4 that each participant has a trace
snapshot, which enables participants to maintain local invariants that
depend on trace prefixes. To enable corresponding assertions in our
program logic (Sec. 3.8.2), our operational semantics provides a local
variable snap that is treated special in two ways: local states 𝜎 map snap
to a sequence of trace events (not to a value in PVals), and program
commands may not use (in particular, modify) snap (a straightforward
syntactical constraint).

Projecting System Configurations. The Local and Attacker rules project
a system configuration down to a participant- and attacker-local con-
figuration, respectively. Except for the Corrupt and Fork rules, these
projection rules simplify the definition of all other rules, as all other
rules operate on either a participant-local or attacker-local configuration
instead of on the full system configuration, depending on whether a
command can be executed by participants and the attacker, or only by
the attacker.

Network Messages. All operations modifying the network state, i.e.,
sending and dropping a message, are recorded on the global trace 𝜏, and,
thus, we can compute the set of receivable messages as follows:

Definition 3.8.5 (Messages on the Network)

msgs(𝜏) ≜ {𝑚 | ∀𝑚. Send(m) ∈ 𝜏 ∧Drop(m) ∉ 𝜏}

The function msgs(𝜏) is used in the Recv rule’s side-condition to constrain
the set of messages that can be received. Without loss of generality, this
side-condition implies that we consider only non-blocking traces, i.e.,
recv() is invoked only if msgs(𝜏) is non-empty.

Nonce Freshness. The NonceGen rule’s side condition captures our
perfect cryptography assumption that generated nonces are always
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⟨𝐶𝑖 , ⟨𝜎𝑖 , 𝜏⟩⟩ → ⟨𝐶′𝑖 , ⟨𝜎
′
𝑖 , 𝜏
′⟩⟩

(Local)
⟨· · · , ⟨𝐶𝑖 , 𝜎𝑖⟩, · · · , 𝑘𝑎 , 𝜏⟩ → ⟨· · · , ⟨𝐶′𝑖 , 𝜎

′
𝑖⟩, · · · , 𝑘𝑎 , 𝜏

′⟩
⟨𝐶𝑎 , ⟨𝜎𝑎 , 𝑘𝑎 , 𝜏⟩⟩ → ⟨𝐶′𝑎 , ⟨𝜎′𝑎 , 𝑘′𝑎 , 𝜏′⟩⟩ (Attacker)

⟨· · · , ⟨𝐶𝑎 , 𝜎𝑎⟩, 𝑘𝑎 , 𝜏⟩ → ⟨· · · , ⟨𝐶′𝑎 , 𝜎′𝑎⟩, 𝑘′𝑎 , 𝜏′⟩

(Skip)
⟨skip, ⟨𝜎, 𝜏⟩⟩ → ⟨𝜖, ⟨𝜎, 𝜏⟩⟩

⟨𝐶1 , ⟨𝜎, 𝜏⟩⟩ → ⟨𝜖, ⟨𝜎′, 𝜏′⟩⟩ (Seq1)
⟨𝐶1; 𝐶2 , ⟨𝜎, 𝜏⟩⟩ → ⟨𝐶2 , ⟨𝜎′, 𝜏′⟩⟩

⟨𝐶1 , ⟨𝜎, 𝜏⟩⟩ → ⟨𝐶′1 , ⟨𝜎
′, 𝜏′⟩⟩

(Seq2)
⟨𝐶1; 𝐶2 , ⟨𝜎, 𝜏⟩⟩ → ⟨𝐶′1; 𝐶2 , ⟨𝜎′, 𝜏′⟩⟩

(If1)𝑒(𝜎𝑖 )=True()
⟨if (𝑒) {𝐶1} else {𝐶2}, ⟨𝜎, 𝜏⟩⟩ → ⟨𝐶1 , ⟨𝜎, 𝜏⟩⟩

(If2)𝑒(𝜎𝑖 )≠True()
⟨if (𝑒) {𝐶1} else {𝐶2}, ⟨𝜎, 𝜏⟩⟩ → ⟨𝐶2 , ⟨𝜎, 𝜏⟩⟩

(While)
⟨while (𝑒) {𝐶}, ⟨𝜎, 𝜏⟩⟩ → ⟨if (𝑒) {𝐶; while (𝑒) {𝐶}} else {skip}, ⟨𝜎, 𝜏⟩⟩

(Assign)
⟨x B e, ⟨𝜎, 𝜏⟩⟩ → ⟨𝜖, ⟨𝜎[𝑥 ↦→ 𝑒(𝜎)], 𝜏⟩⟩

(Send)
⟨send(𝑒), ⟨𝜎, 𝜏⟩⟩ → ⟨𝜖, ⟨𝜎[snap ↦→ 𝜏 + Send(𝑒(𝜎))], 𝜏 + Send(𝑒(𝜎))⟩⟩

(Recv)𝑣∈msgs(𝜏)
⟨x B recv(), ⟨𝜎, 𝜏⟩⟩ → ⟨𝜖, ⟨𝜎[𝑥 ↦→ 𝑣], 𝜏⟩⟩

(NonceGen)fresh(𝑣,𝜏)
⟨x B nonce(), ⟨𝜎, 𝜏⟩⟩ → ⟨𝜖, ⟨𝜎[𝑥 ↦→ 𝑣, snap ↦→ 𝜏 +Nonce(𝑣)], 𝜏 +Nonce(𝑣)⟩⟩

(Hash)
⟨x B hash(𝑒), ⟨𝜎, 𝜏⟩⟩ → ⟨𝜖, ⟨𝜎[𝑥 ↦→ hash(𝑒(𝜎))], 𝜏⟩⟩

(Pk)
⟨x B pk(𝑒), ⟨𝜎, 𝜏⟩⟩ → ⟨𝜖, ⟨𝜎[𝑥 ↦→ pk(𝑒(𝜎))], 𝜏⟩⟩

(Enc)
⟨x B enc(𝑒1 , 𝑒2), ⟨𝜎, 𝜏⟩⟩ → ⟨𝜖, ⟨𝜎[𝑥 ↦→ enc(𝑒1(𝜎), 𝑒2(𝜎))], 𝜏⟩⟩

(DecSucc)∃𝑣.𝑒2(𝜎)=enc(pk(𝑒1(𝜎)),𝑣)
⟨x, ok B dec(𝑒1 , 𝑒2), ⟨𝜎, 𝜏⟩⟩ → ⟨𝜖, ⟨𝜎[𝑥 ↦→ 𝑣, ok ↦→ True()], 𝜏⟩⟩

(DecFail)∀𝑣.𝑒2(𝜎)≠enc(pk(𝑒1(𝜎)),𝑣)
⟨x, ok B dec(𝑒1 , 𝑒2), ⟨𝜎, 𝜏⟩⟩ → ⟨𝜖, ⟨𝜎[ok ↦→ False()], 𝜏⟩⟩

(Drop)
⟨drop(𝑒), ⟨𝜎, 𝑘, 𝜏⟩⟩ → ⟨𝜖, ⟨𝜎[snap ↦→ 𝜏 +Drop(𝑒(𝜎))], 𝑘, 𝜏 +Drop(𝑒(𝜎))⟩⟩

(Learn)
⟨learn(𝑒), ⟨𝜎, 𝑘, 𝜏⟩⟩ → ⟨𝜖, ⟨𝜎, 𝑘 ∪ {𝑒(𝜎)}, 𝜏⟩⟩

(Choose)𝑣∈𝑘
⟨x B choose(), ⟨𝜎, 𝑘, 𝜏⟩⟩ → ⟨𝜖, ⟨𝜎[𝑥 ↦→ 𝑣], 𝑘, 𝜏⟩⟩

(Corrupt)
⟨· · · , ⟨𝐶𝑖 , 𝜎𝑖⟩, · · · , ⟨corrupt(𝑖); 𝐶′𝑎 , 𝜎𝑎⟩, 𝑘𝑎 , 𝜏⟩ → ⟨· · · , ⟨𝐶𝑖 , 𝜎𝑖⟩, · · · , ⟨𝐶′𝑎 , 𝜎𝑎⟩, 𝑘𝑎 ∪ val(𝜎𝑖), 𝜏 + Corrupt(𝑖 , val(𝜎𝑖))⟩

(Fork)
⟨· · · , ⟨fork (®𝑥) {𝐶}; 𝐶′, 𝜎𝑖⟩, · · · , 𝑘𝑎 , 𝜏⟩ → ⟨· · · , ⟨𝐶′, 𝜎𝑖⟩, · · · , ⟨𝐶, [®𝑥 ↦→ 𝜎𝑖(®𝑥), snap ↦→ 𝜎𝑖(snap)]⟩, 𝑘𝑎 , 𝜏⟩

Figure 3.14: Small-step semantics. Since expressions are functions from states to values, 𝑒(𝜎) denotes the evaluation of expression 𝑒 in
state 𝜎. 𝜎[𝑥1 ↦→ 𝑣1 , · · · , 𝑥𝑛 ↦→ 𝑣𝑛] denotes state update: a state that, for all 𝑖, 1 ≤ 𝑖 ≤ 𝑛, yields 𝑣𝑖 for 𝑥𝑖 , and the value in 𝜎 for all other
variables. We extend this notion naturally to vectors of variables for the Fork rule, i.e., [®𝑥 ↦→ 𝜎𝑖(®𝑥), snap ↦→ 𝜎𝑖(snap)] denotes a state that
contains only mappings for the variables in ®𝑥 and snap, and maps them to their respective values in state 𝜎𝑖 . Appending to a trace is
denoted by +, e.g., 𝜏 +Nonce(𝑣). ⟨𝜖, ⟨𝜎, 𝜏⟩⟩ denotes a terminal state.
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fresh.

Definition 3.8.6 (Freshness of Nonces) Since all previously generated
nonces have been recorded on the trace 𝜏, we can define freshness of a nonce 𝑣
on the global trace 𝜏 as follows:

fresh(𝑣, 𝜏) ≜ 𝑣 ∉ {𝑛 | ∀𝑛, 𝑙.Nonce(n, l) ∈ 𝜏}

Corruption. The Corrupt rule expresses that the attacker knowledge
is extended by all terms in the state 𝜎𝑖 of the corrupted participant 𝑖.
The attacker can make use of these newly learned terms by executing
x B choose() that non-deterministically picks a term in the attacker
knowledge and assigns it to the local variable 𝑥.

To avoid additional sequential composition rules operating on the system
configuration (instead of a local configuration like Seq1 and Seq2), we
bake sequential composition into the Corrupt and Fork rules. While
this simplification requires the corrupt() and fork () {} commands to be
followed by another command, this requirement is not a limitation in
practice, as inserting a skip command fulfills this requirement without
changing a program’s behavior.

Forking. The Fork rule extends the system configuration by another
local configuration containing the forked command and the new thread’s
initial state. This new state maps the variables in ®𝑥 and snap to the same
value as they have in state 𝜎𝑖 , i.e., the state in which the fork command is
executed, which enables, e.g., the sharing of public keys.

3.8.2 Program Logic

We now present a program logic that enables local reasoning about each
participant, while guaranteeing that the trace invariant is maintained even
when composing arbitrarily many verified participants and the attacker
to a distributed system. We first present several auxiliary definitions and
lemmata, and then the logic’s proof rules.

Definition 3.8.7 (Trace Prefix) We define the following predicate over
two traces expressing that 𝜏1 is a prefix of 𝜏2

prefix(𝜏1 , 𝜏2) ≜ ∃𝑝. 𝜏1 + 𝑝 = 𝜏2

where 𝑝 is a possibly empty sequence of trace events.

Lemma 3.8.1 (Prefix Reflexivity)

∀𝜏. prefix(𝜏, 𝜏)

Proof. Pick 𝑝 to be the empty sequence in Def. 3.8.7.

Lemma 3.8.2 (Prefix Transitivity)

∀𝜏1 , 𝜏2 , 𝜏3. prefix(𝜏1 , 𝜏2) ∧ prefix(𝜏2 , 𝜏3) =⇒ prefix(𝜏1 , 𝜏3)
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Proof.

prefix(𝜏1 , 𝜏2) ∧ prefix(𝜏2 , 𝜏3)
def⇐⇒ ∃𝑝1 , 𝑝2. 𝜏1 + 𝑝1 = 𝜏2 ∧ 𝜏2 + 𝑝2 = 𝜏3

=⇒ ∃𝑝1 , 𝑝2. 𝜏1 + 𝑝1 + 𝑝2 = 𝜏3

def⇐⇒ prefix(𝜏1 , 𝜏3)

where, in the last step, we pick 𝑝 in Def. 3.8.7 to be 𝑝1 + 𝑝2.

Inspired by Vafeiadis [110], we express the semantics of judgments in our
logic in terms of configuration safety, which we define next. Intuitively,
safe𝑛(𝑖 , 𝐶, 𝜎, 𝑄, 𝜏) expresses that it is safe to execute command 𝐶, as
the 𝑖th component of the distributed system, and for 𝑛 execution steps
starting in a state 𝜎; and if the command is fully executed, the predicate 𝑄
holds in the resulting final state. Furthermore, if new threads have been
forked as part of executing 𝐶 then it is safe to execute these forked
components, too. Since we are ultimately interested in the effects on the
global trace 𝜏, configuration safety includes maintenance of the trace
invariant 𝜌. A judgement |= [𝑃] 𝐶 [𝑄] then expresses that it is safe
to execute the command 𝐶 starting from any initial state satisfying the
predicate 𝑃 for an arbitrary number of execution steps.

Definition 3.8.8 (Configuration Safety)

safe0(𝑖 , 𝐶, 𝜎, 𝑄, 𝜏) holds always.
safe𝑛+1(𝑖 , 𝐶, 𝜎, 𝑄, 𝜏) holds if and only if

(i) 𝐶 = 𝜖 =⇒ 𝑄(𝜎) and

(ii) ∀ ®𝐶, ®𝐶′, ®𝜎, ®𝜎′, 𝑘𝑎 , 𝑘′𝑎 , 𝜏′. 𝑖 ≤ | ®𝐶| = |®𝜎| ≤ | ®𝐶′| = | ®𝜎′| ∧
®𝐶𝑖 = 𝐶 ∧ ®𝐶′

𝑖
≠ 𝐶 ∧ ®𝜎𝑖 = 𝜎 ∧

𝜌(𝜏) ∧ prefix(snap(𝜎), 𝜏) ∧

⟨
−−−−→
⟨𝐶, 𝜎⟩, 𝑘𝑎 , 𝜏⟩ → ⟨

−−−−−−→
⟨𝐶′, 𝜎′⟩, 𝑘′𝑎 , 𝜏′⟩

=⇒ 𝜌(𝜏′) ∧ prefix(𝜏, 𝜏′) ∧ prefix(snap( ®𝜎′
𝑖
), 𝜏′) ∧

𝑘𝑎 ⊆ 𝑘′𝑎 ∧ safe𝑛(𝑖 , ®𝐶′𝑖 , ®𝜎′𝑖 , 𝑄, 𝜏′) ∧©­«
∧

| ®𝐶|< 𝑗≤| ®𝐶′|
safe𝑛(𝑗 , ®𝐶′𝑗 , ®𝜎′𝑗 , True(), 𝜏′) ∧ prefix(snap( ®𝜎′

𝑗
), 𝜏′)ª®¬

where | ®𝑉| and ®𝑉𝑖 denote the length and element at index 𝑖 of a vector 𝑉 , resp.,
and
−−−−→
⟨𝐶, 𝜎⟩ is syntactic sugar for ⟨ ®𝐶1 , ®𝜎1⟩ · · · ⟨ ®𝐶| ®𝐶| , ®𝜎|®𝜎|⟩.

Definition 3.8.9 (Validity)

|= [𝑃] 𝐶 [𝑄] ≜ ∀𝑛, 𝑖, 𝜎, 𝜏. 𝑃(𝜎) =⇒ safe𝑛(𝑖 , 𝐶, 𝜎, 𝑄, 𝜏)

Executing zero steps is vacuously safe. Executing 𝑛 + 1 steps is safe if
(𝑖) the command is already fully executed and the predicate 𝑄 satisfied;
and otherwise if (𝑖𝑖) there is a transition to ®𝐶′

𝑖
that maintains the trace

invariant 𝜌, the necessary monotonicity properties (on snapshot, trace,
and the attacker’s knowledge set), and allows continued safe execution
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(Skip)
⊢ [𝑃] 𝑠𝑘𝑖𝑝 [𝑃]

⊢ [𝑃] 𝐶1 [𝑅] ⊢ [𝑅] 𝐶2 [𝑄]
(Seq)

⊢ [𝑃] 𝐶1; 𝐶2 [𝑄]
𝑃 |= 𝑃′ 𝑄′ |= 𝑄 ⊢ [𝑃′] 𝐶 [𝑄′]

(Cons)
⊢ [𝑃] 𝐶 [𝑄]

⊢ [𝑒 ∧ 𝑃] 𝐶1 [𝑄] ⊢ [¬𝑒 ∧ 𝑃] 𝐶2 [𝑄]
(If)

⊢ [𝑃] if (𝑒) {𝐶1} else {𝐶2} [𝑄]
⊢ [𝑒 ∧ 𝑃] 𝐶 [𝑃]

(While)
⊢ [𝑃] while (𝑒) {𝐶} [¬𝑒 ∧ 𝑃]

(Assign)
⊢ [𝑃[𝑒/𝑥]] x B e [𝑃]

(Send)
⊢
[
ext(Send(𝑒), snap) ∧ ∀𝑝. 𝑃[snap + 𝑝 + Send(𝑒)/snap]

]
send(𝑒) [𝑃]

(Recv)
⊢ [∀𝑥. 𝑃] x B recv() [𝑃]

(NonceGen)
⊢
[
ext(Nonce(𝑥), snap) ∧ ∀𝑝, 𝑥. 𝑃[snap + 𝑝 +Nonce(𝑥)/snap]

]
x B nonce() [𝑃]

(Hash)
⊢ [𝑃[hash(𝑒)/𝑥]] x B hash(𝑒) [𝑃]

(Pk)
⊢ [𝑃[pk(𝑒)/𝑥]] x B pk(𝑒) [𝑃]

(Enc)
⊢ [𝑃[enc(𝑒1 , 𝑒2)/𝑥]] x B enc(𝑒1 , 𝑒2) [𝑃]

(Dec)
⊢ [∀𝑥. 𝑃[True()/ok][𝑒2/enc(pk(𝑒1), 𝑥)] ∧ 𝑃[False()/ok]] x, ok B dec(𝑒1 , 𝑒2) [𝑃]

(Drop)
⊢
[
ext(Drop(𝑒), snap) ∧ ∀𝑝. 𝑃[snap + 𝑝 +Drop(𝑒)/snap]

]
drop(𝑒) [𝑃]

(Learn)
⊢ [𝑃] learn(𝑒) [𝑃]

(Choose)
⊢ [∀𝑥. 𝑃] x B choose() [𝑃]

(Corrupt)
⊢
[
(∀𝑣. ext(Corrupt(𝑒 , 𝑣), snap)) ∧ (∀𝑝, 𝑣. 𝑃[snap + 𝑝 + Corrupt(𝑒 , 𝑣)/snap])

]
corrupt(𝑒) [𝑃]

fv(𝑅) ⊆ ®𝑥 𝑃 |= 𝑅 ⊢ [𝑅] 𝐶 [True()] ⊢ [𝑃] 𝐶′ [𝑄]
(Fork)

⊢ [𝑃] fork (®𝑥) {𝐶}; 𝐶′ [𝑄]

Figure 3.15: The proof rules.

of all components (i.e., of commands ®𝐶′) in the system, including newly
forked ones (the last, iterated conjunct in the definition).

Fig. 3.15 shows the proof rules for our logic. Our assertion language is a
first-order logic (for brevity not a separation logic) with the usual logical
connectives and quantifiers, and access to local program variables. Pre-
and postconditions can therefore refer to the local snapshot, but they
cannot refer to the global trace. The latter corresponds to our methodology
(recall Sec. 3.3.4), where pre- and postconditions also cannot directly
express properties about the trace because access to it is governed by
our reusable verification library’s ghost lock. Instead, properties about
the global trace, such as the existence of a particular trace event, must
always be expressed via the local snapshot. This ensures that pre- and
postconditions are stable under potential environment interference, which
is needed to prove our proof rules sound.

As for the operational semantics, we again discuss only non-standard
proof rules. Proof rules corresponding to commands that modify the
global trace, e.g., the Send rule, enforce that the trace invariant is main-
tained under potential environment interference. For this purpose, we
define an extensibility predicate specifying that appending a trace event 𝑛
to an arbitrary extension of a trace 𝜏 maintains the trace invariant 𝜌.
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Definition 3.8.10 (Extensibility) A trace 𝜏 is extensible by a trace event 𝑛
if the trace invariant 𝜌 is maintained for any possible trace 𝜏′, given that 𝜏 is
a prefix thereof:

ext(𝑛, 𝜏) ≜ ∀𝜏′. prefix(𝜏, 𝜏′) ∧ 𝜌(𝜏′) =⇒ 𝜌(𝜏′ + 𝑛)

Recall from Fig. 3.14 that commands modifying the global trace, e.g., the
send command, also update the local snapshot to the most recent version
of the trace. Analogous to the proof rule for assignments, the proof
rules for trace-modifying commands, thus, require that ∀𝑝. 𝑃[snap + 𝑝 +
𝑛/snap] holds in the state before executing the command, where 𝑃 is
the postcondition and n is a trace event (e.g., Send(𝑒)). The quantified
𝑝 accounts for all possible trace extensions that could have been made
by the environment since the local snapshot was last updated, and thus
accounts for arbitrary interleavings of participants and the attacker.

For the sake of presentation we have omitted additional assumptions
that are available when discharging preconditions of snapshot-updating
commands: e.g., in proof rule NonceGen, we may additionally use nonce
freshness, and in proof rule Recv, we may assume that a received message
was previously sent and not dropped in the meantime.

Theorem 3.8.3 (Soundness of Proof Rules)

If ⊢ [𝑃] 𝐶 [𝑄] then |= [𝑃] 𝐶 [𝑄]

We proof this theorem in the usual way, i.e., by structural induction on
the shape of the proof tree given by the theorem’s left-hand side of the
implication. We proceed by case distinction on the last rule applied, and
may assume the theorem (i.e., our induction hypothesis) for this rule’s
premises. In our proof sketch we focus on a few interesting cases—send,
sequential composition, and fork—, which we present further down,
as individual lemmata. Send is interesting because it illustrates a trace-
updating proof rule, for which we have to show that the trace invariant is
maintained. The challenge for sequential composition is to show that our
definition of configuration safety allows us to prove that each transition in
the system maintains the trace invariant. The Fork proof rule is of interest
because it is the only command that extends the system configuration
with additional components.

We begin by sketching the proofs for several auxiliary lemmata about
configuration safety that will be useful later on.

Lemma 3.8.4 The empty command satisfies configuration safety given that
the predicate 𝑄 holds.

∀𝑛, 𝑖, 𝜎, 𝑄, 𝜏. 𝑄(𝜎) =⇒ safe𝑛(𝑖 , 𝜖, 𝜎, 𝑄, 𝜏)

Proof. We show for arbitrary 𝑛, 𝑖, 𝜎, 𝜏, and assuming 𝑄(𝜎), that con-
figuration safety safe𝑛(𝑖 , 𝜖, 𝜎, 𝑄, 𝜏) holds. Case (𝑖) from the definition
of safe holds straightforwardly. Case (𝑖𝑖) is satisfied because there is no
transition starting in command 𝜖 and resulting in a different command.
Hence, this case vacuously holds.
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Lemma 3.8.5 A command 𝐶 satisfying configuration safety for 𝑛 execution
steps is safe to execute for fewer execution steps.

∀𝑚, 𝑛, 𝑖, 𝐶, 𝜎, 𝑄, 𝜏. 𝑚 ≤ 𝑛 ∧ safe𝑛(𝑖 , 𝐶, 𝜎, 𝑄, 𝜏)
=⇒ safe𝑚(𝑖 , 𝐶, 𝜎, 𝑄, 𝜏)

Proof. Straightforward induction on 𝑚.

Next, we present soundness lemmata for the aforementioned interesting
proof rules: send, sequential composition, and fork.

Send. Soundness for the proof rule Send directly follows from the
following safety lemma:

Lemma 3.8.6

∀𝑛, 𝑖, 𝜎, 𝑄, 𝜏. ext(Send(𝑒(𝜎)), snap(𝜎)) ∧
(∀𝑝. 𝑄[snap + 𝑝 + Send(𝑒)/snap](𝜎))

=⇒ safe𝑛(𝑖 , send(𝑒), 𝜎, 𝑄, 𝜏)

Proof. We prove this lemma by induction on 𝑛 using the following
induction hypothesis:

IH(𝑛) ≜ ∀𝑖 , 𝜎, 𝑄, 𝜏. ext(Send(𝑒(𝜎)), snap(𝜎)) ∧
(∀𝑝. 𝑄[snap + 𝑝 + Send(𝑒)/snap](𝜎))

=⇒ safe𝑛(𝑖 , send(𝑒), 𝜎, 𝑄, 𝜏)

In the base case (𝑛 = 0), safe0(𝑖 , send(𝑒), 𝜎, 𝑄, 𝜏) holds by definition. For
the induction step, we assume IH(𝑛) and show that IH(𝑛 + 1) holds.
I.e., we further assume ext(Send(𝑒(𝜎)), snap(𝜎)) and ∀𝑝. 𝑄[snap + 𝑝 +
Send(𝑒)/snap](𝜎) for arbitrary 𝑖, 𝜎, 𝑄, and 𝜏. We have to prove that
safe𝑛+1(𝑖 , send(𝑒), 𝜎, 𝑄, 𝜏) holds. Case (𝑖) from the definition of safe holds
trivially because send(𝑒) ≠ 𝜖. To prove case (𝑖𝑖), we assume the implica-
tion’s left-hand side and show that the right-hand side holds. In particular,
we consider a transition that executes command send(𝑒). According to the
operational semantics, only the transition rule Local with an application
of the Send rule in its premise is applicable and modifies the command
in the 𝑖th component’s configuration. This allows us to conclude that the
considered transition must have the following shape:

⟨
−−−−→
⟨𝐶, 𝜎⟩, 𝑘𝑎 , 𝜏⟩ → ⟨

−−−−−−→
⟨𝐶′, 𝜎′⟩, 𝑘′𝑎 , 𝜏′⟩

where

| ®𝐶′| = | ®𝐶| ∧ 𝑘′𝑎 = 𝑘𝑎 ∧ 𝜏′ = 𝜏 + Send(𝑒(𝜎)) ∧
®𝐶′
𝑖
= 𝜖 ∧ ®𝜎′

𝑖
= ®𝜎𝑖[snap ↦→ 𝜏 + Send(𝑒(𝜎))] ∧

(∀𝑗. 𝑖 ≠ 𝑗 =⇒ ®𝐶′
𝑗
= ®𝐶 𝑗 ∧ ®𝜎′𝑗 = ®𝜎𝑗)

and 𝜌(𝜏) ∧ prefix(snap( ®𝜎𝑖), 𝜏) holds. We have to prove that (1) 𝜌(𝜏′), (2)
prefix(𝜏, 𝜏′), (3) prefix(snap( ®𝜎′

𝑖
), 𝜏′), (4) 𝑘𝑎 ⊆ 𝑘′𝑎 , and (5) safe𝑛(𝑖 , ®𝐶′𝑖 , ®𝜎′𝑖 , 𝑄, 𝜏′)

hold. Note that no additional local configurations have been added by
this command because | ®𝐶′| = | ®𝐶| holds. (1) follows directly by definition
of Def. 3.8.10. (2) holds by choosing 𝑝 = Send(𝑒(𝜎)) as witness in Def. 3.8.7.
(3) holds by reflexivity (cf. Lemma 3.8.1). (4) holds because the attacker
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knowledge is unchanged. Finally, (5) follows from Lemma 3.8.4 via the
following derivation to obtain 𝑄( ®𝜎′

𝑖
):

∀𝑝. 𝑄[snap + 𝑝 + Send(𝑒)/snap]( ®𝜎𝑖)
=⇒ 𝑄[𝜏 + Send(𝑒)/snap]( ®𝜎𝑖)
⇐⇒ 𝑄( ®𝜎𝑖[snap ↦→ 𝜏 + Send(𝑒( ®𝜎𝑖))]) ⇐⇒ 𝑄( ®𝜎′

𝑖
)

where the implication is justified by the fact that prefix(snap( ®𝜎𝑖), 𝜏) holds.

Seq. In the case where the last rule applied in our proof tree is Seq,
we may assume the induction hypothesis for the rule’s premises, i.e.,
|= [𝑃] 𝑆1 [𝑅] and |= [𝑅] 𝑆2 [𝑄]. Soundness for this case, i.e., showing
|= [𝑃] 𝑆1; 𝑆2 [𝑄], then follows from the following safety lemma:

Lemma 3.8.7

∀𝑛, 𝑖, 𝑆1 , 𝑆2 , 𝜎1 , 𝑅, 𝑄, 𝜏. safe𝑛(𝑖 , 𝑆1 , 𝜎1 , 𝑅, 𝜏) ∧
(∀𝑚, 𝜎2 , 𝜏

′. 𝑚 ≤ 𝑛 ∧ 𝑅(𝜎2) =⇒ safe𝑚(𝑖 , 𝑆2 , 𝜎2 , 𝑄, 𝜏′))
=⇒ safe𝑛(𝑖 , 𝑆1; 𝑆2 , 𝜎1 , 𝑄, 𝜏)

Proof. We perform induction on 𝑛 using the following induction hypoth-
esis:

IH(𝑛) ≜ ∀𝑖 , 𝑆1 , 𝑆2 , 𝜎1 , 𝑅, 𝑄, 𝜏, .

safe𝑛(𝑖 , 𝑆1 , 𝜎1 , 𝑅, 𝜏) ∧
(∀𝑚, 𝜎2 , 𝜏

′. 𝑚 ≤ 𝑛 ∧ 𝑅(𝜎2) =⇒ safe𝑚(𝑖 , 𝑆2 , 𝜎2 , 𝑄, 𝜏′))
=⇒ safe𝑛(𝑖 , 𝑆1; 𝑆2 , 𝜎1 , 𝑄, 𝜏)

The base case (𝑛 = 0) holds by definition. In the induction step, we
may assume IH(𝑛) to prove IH(𝑛 + 1). For arbitrary 𝑖, 𝑆1, 𝑆2, 𝜎1, 𝑅,
𝑄, and 𝜏 we assume the left-hand side, i.e., safe𝑛+1(𝑖 , 𝑆1 , 𝜎1 , 𝑅, 𝜏) and
∀𝑚, 𝜎2 , 𝜏′. 𝑚 ≤ 𝑛 + 1 ∧ 𝑅(𝜎2) =⇒ safe𝑚(𝑖 , 𝑆2 , 𝜎2 , 𝑄, 𝜏′). It remains to
prove that safe𝑛+1(𝑖 , 𝑆1; 𝑆2 , 𝜎1 , 𝑄, 𝜏) holds. The proof proceeds similarly
to the proof of Lemma 3.8.6 except that in case (𝑖𝑖) the Local rule’s
premise is fulfilled by an application of either the Seq1 or Seq2 rule:

▶ Case Seq1: According to this transition’s premise, there exists a
transition ⟨𝑆1 , ⟨𝜎𝑖 , 𝜏⟩⟩ → ⟨𝜖, ⟨𝜎′𝑖 , 𝜏′′⟩⟩ for some 𝜏′′. Thus, we ob-
tain by definition of safe𝑛+1(𝑖 , 𝑆1 , 𝜎𝑖 , 𝑅, 𝜏) that 𝜌(𝜏′′), prefix(𝜏, 𝜏′′),
prefix(snap(𝜎′

𝑖
), 𝜏′′), 𝑘𝑎 ⊆ 𝑘′𝑎 , and safe𝑛(𝑖 , 𝜖, 𝜎′𝑖 , 𝑅, 𝜏′′) hold. We dis-

tinguish two cases, namely 𝑛 = 0 and 𝑛 > 0. In the first case, we
obtain by definition of configuration safety safe0(𝑖 , 𝑆2 , 𝜎′𝑖 , 𝑄, 𝜏′′).
In the second case, we obtain by definition of safe𝑛(𝑖 , 𝜖, 𝜎′𝑖 , 𝑅, 𝜏′′)
that 𝑅(𝜎′

𝑖
) holds. Therefore, we can instantiate 𝑚, 𝜎2, and 𝜏′ with

𝑛, 𝜎′
𝑖
, and 𝜏′′, respectively, in the quantifier above. Thus, we obtain

safe𝑛(𝑖 , 𝑆2 , 𝜎′𝑖 , 𝑄, 𝜏′′). This concludes the proof for both cases 𝑛 = 0
and 𝑛 > 0 showing that safe𝑛+1(𝑖 , 𝑆1; 𝑆2 , 𝜎𝑖 , 𝑄, 𝜏) holds.

▶ Case Seq2: This transition’s premise specifies that a transition
⟨𝑆1 , ⟨𝜎𝑖 , 𝜏⟩⟩ → ⟨𝑆′1 , ⟨𝜎′𝑖 , 𝜏′′⟩⟩ for some 𝜏′′ exists. We apply the
definition of safe𝑛+1(𝑖 , 𝑆1 , 𝜎𝑖 , 𝑅, 𝜏) to obtain 𝜌(𝜏′′), prefix(𝜏, 𝜏′′),
prefix(snap(𝜎′

𝑖
), 𝜏′′), 𝑘𝑎 ⊆ 𝑘′𝑎 , and safe𝑛(𝑖 , 𝑆′1 , 𝜎′𝑖 , 𝑅, 𝜏′′). By applying

the induction hypothesis for 𝑛, we obtain safe𝑛(𝑖 , 𝑆′1; 𝑆2 , 𝜎′𝑖 , 𝑄, 𝜏′′).
Thus, we showed safe𝑛+1(𝑖 , 𝑆1; 𝑆2 , 𝜎𝑖 , 𝑄, 𝜏).
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Fork. Soundness of the Fork proof rule follows from the following safety
lemma:

Lemma 3.8.8

∀𝑛, 𝑖, ®𝑥, 𝑆1 , 𝑆2 , 𝜎1 , 𝑄, 𝜏. safe𝑛(𝑖 , 𝑆1 , 𝜎1 , 𝑄, 𝜏) ∧
(∀𝑗 , 𝜎2. [𝜎1 ∼ 𝜎2]®𝑥∪snap

=⇒ safe𝑛(𝑗 , 𝑆2 , 𝜎2 , True(), 𝜏))
=⇒ safe𝑛(𝑖 , fork (®𝑥) {𝑆2}; 𝑆1 , 𝜎1 , 𝑄, 𝜏)

where [𝜎1 ∼ 𝜎2]®𝑥∪snap denotes that 𝜎1 maps the variables in ®𝑥 and vari-
able snap to the same values as 𝜎2 does.

Proof. We perform induction on 𝑛 and use the following induction
hypothesis:

IH(𝑛) ≜ ∀𝑖 , ®𝑥, 𝑆1 , 𝑆2 , 𝜎1 , 𝑄, 𝜏, .

safe𝑛(𝑖 , 𝑆1 , 𝜎1 , 𝑄, 𝜏) ∧
(∀𝑗 , 𝜎2. [𝜎1 ∼ 𝜎2]®𝑥∪snap

=⇒ safe𝑛(𝑗 , 𝑆2 , 𝜎2 , True(), 𝜏))
=⇒ safe𝑛(𝑖 , fork (®𝑥) {𝑆2}; 𝑆1 , 𝜎1 , 𝑄, 𝜏)

For 𝑛 = 0, safe0(𝑖 , fork (®𝑥) {𝑆2}; 𝑆1 , 𝜎1 , 𝑄, 𝜏) holds by definition. In the
induction step, we assume 𝐼𝐻(𝑛) to show 𝐼𝐻(𝑛 + 1). We assume the
left-hand side, i.e.,

safe𝑛+1(𝑖 , 𝑆1 , 𝜎1 , 𝑄, 𝜏) ∧ (3.1)

(∀𝑗 , 𝜎2. [𝜎1 ∼ 𝜎2]®𝑥∪snap
=⇒ safe𝑛+1(𝑗 , 𝑆2 , 𝜎2 , True(), 𝜏)) (3.2)

and seek to show safe𝑛+1(𝑖 , fork (®𝑥) {𝑆2}; 𝑆1 , 𝜎1 , 𝑄, 𝜏). Similar to the
proof of Lemma 3.8.6, the interesting case is (𝑖𝑖) in which we only
consider the inference rule Fork. Based on the operational semantics, we
obtain

( ®𝐶′
𝑖
= 𝑆1) ∧ (𝜎1 = ®𝜎𝑖 = ®𝜎′𝑖) ∧ (| ®𝐶′| = | ®𝐶| + 1) ∧

( ®𝐶′| ®𝐶′| = 𝑆2) ∧
[
𝜎1 ∼ ®𝜎′| ®𝐶′|

] ®𝑥∪snap
∧

(∀𝑗. 1 ≤ 𝑗 ≤ | ®𝐶| =⇒ ®𝜎′
𝑗
= ®𝜎𝑗) ∧

(∀𝑗. 1 ≤ 𝑗 ≤ | ®𝐶| ∧ 𝑖 ≠ 𝑗 =⇒ ®𝐶′
𝑗
= ®𝐶 𝑗)

Since the attacker knowledge 𝑘𝑎 and global trace 𝜏 remain unchanged
by the application of this inference rule, we have to prove that (a)
safe𝑛(𝑖 , 𝑆1 , 𝜎1 , 𝑄, 𝜏) and (b) safe𝑛(| ®𝐶′|, 𝑆2 , ®𝜎′| ®𝐶′| , True(), 𝜏)hold. (a) follows
from applying Lemma 3.8.5 to safe𝑛+1(𝑖 , 𝑆1 , 𝜎1 , 𝑄, 𝜏). Since (3.2)’s left-
hand side is satisfied for 𝜎2 = ®𝜎′| ®𝐶′|, we instantiate the quantifier 𝑗

with | ®𝐶′| to obtain safe𝑛+1(| ®𝐶′|, 𝑆2 , ®𝜎′| ®𝐶′| , True(), 𝜏). We also obtain (b) by
applying Lemma 3.8.5.

3.8.3 Trace Inclusion

We can now show the desired trace inclusion (recall Sec. 3.8), which
directly follows from Thm. 3.8.3.
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Figure 3.16: Sketch of a program 𝐶system
bootstrapping the distributed system
by executing sequential initialization
code to, e.g., generate public/private key
pairs and forking several instances of
an initiator and responder implementa-
tion and the highly non-deterministic at-
tacker implementation. initiator_args
and responder_args are abbreviations
for a list of arguments that are passed
to the initiator and responder imple-
mentations, respectively. E.g., the initia-
tor’s public/private key pair and the re-
sponder’s public key might constitute
initiator_args.

1 func main(num_initiators, num_responders int) {
2 ... // initialization code
3 while (num_initiators > 0) {
4 fork (initiator_args) {
5 initiator(initiator_args)
6 }
7 num_initiators := num_initiators - 1
8 }
9 while (num_responders > 0) {

10 fork (responder_args) {
11 responder(responder_args)
12 }
13 num_responders := num_responders - 1
14 }
15 fork() { attacker() }
16 }

Theorem 3.8.9 If we bootstrap the distributed system from a single component,
with no precondition, a trace invariant that holds for the empty trace, and an
initial attacker knowledge set, then the trace invariant always holds, regardless
of how many transitions are performed and whether additional components
(participants and the attacker) are forked.

∀𝐶, ®𝐶′, 𝑄, 𝜎, ®𝜎′, 𝑘′𝑎 , 𝜏′. ⊢ [True()] 𝐶 [𝑄] ∧ 𝜌(∅) ∧

⟨⟨𝐶, 𝜎⟩, 𝑘init
𝑎 , ∅⟩ →∗ ⟨

−−−−−−→
⟨𝐶′, 𝜎′⟩, 𝑘′𝑎 , 𝜏′⟩

=⇒ 𝜌(𝜏′)

where 𝑘init
𝑎 is the initial attacker knowledge consisting of all public terms.

Proof. We prove this theorem by first applying soundness of our proof
rules (Thm. 3.8.3) and expanding Def. 3.8.8 because the state 𝜎 trivially
satisfies the precondition True(). We proceed by induction over the
length of transition sequences. Since the trace invariant holds initially, is
maintained by each transition, and each command in every component of
the system satisfies configuration safety, we obtain 𝜌(𝜏′) for every trace 𝜏′
that is possible after executing 𝑛 transitions, where 𝑛 is the induction
variable.

Thm. 3.8.9 implies the following trace inclusion property where 𝜙 is a
security property implied by the trace invariant 𝜌, i.e., 𝜌 |= 𝜙:

∀𝐶, 𝑄. ⊢ [True()] 𝐶 [𝑄] ∧ 𝜌(∅) =⇒ Tr(𝐶) ⊆ Tr(𝜌) ⊆ Tr(𝜙)

where Tr(𝐶) denotes the set of all traces that result from executing arbi-
trary many transitions according to the small-step operational semantics.
Tr(𝜌) and Tr(𝜙) are the sets of traces satisfying 𝜌 and 𝜙, respectively. I.e.,
Tr(𝜌) = {𝜏 | ∀𝜏. 𝜌(𝜏)} and Tr(𝜙) analogously.

In our verification case studies we prove Thm. 3.8.9 in three steps:
In step 1, we once-and-for-all verify our reusable verification library,
including a most-general attacker implementation (an iterated non-
deterministic choice between all executable commands) against a par-
tially abstract (thus sufficiently general) trace invariant. I.e., the judge-
ment ⊢ [𝑡𝑟𝑢𝑒] 𝐶𝑎 [𝑡𝑟𝑢𝑒] that we obtain for the attacker holds for all
possible attackers and protocol-specific instantiations of this abstract
trace invariant. In step 2, we implement each participant in its own
program 𝐶𝑖 ; verifying these effectively yield a judgement ⊢ [𝑃𝑖] 𝐶𝑖 [𝑄𝑖]
per participant.
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In step 3, we combine these separate judgments for the protocol par-
ticipants and the attacker by constructing a program 𝐶system that first
performs some sequential initialization code and then forks several in-
stances of protocol participants and the attacker, as illustrated in Fig. 3.16.
By taking the number of participant instances as unconstrained input
parameters, we obtain a result for unboundedly many instances. Func-
tions and non-deterministic choices are straightforward extensions to our
programming language. The initialization code’s purpose is to establish
the participants’ preconditions. E.g., in our NSL case study, we implement
initialization code that generates public-private key pairs and passes the
necessary keys to each protocol participant. In the case of WireGuard,
the corresponding initialization code remains an assumption, which is
typical for security protocol verification and corresponds to assuming
that there exists a mechanism to authentically distribute public keys.

3.9 Secure Deletion

Our methodology presented so far enables proving strong security prop-
erties for protocol implementations, like forward secrecy for WireGuard.
While forward secrecy is typically defined to consider compromise of
long-term keys only, as opposed to also consider session key compro-
mise, modern protocols are often designed to provide even stronger
security guarantees. To protect past messages against future compromise
of a session key, protocols employ a so-called ratchet mechanism that
periodically updates the session key by applying a one-way function,
e.g., a key derivation function (KDF). Therefore, if the attacker obtains a
future session key, it cannot decrypt past messages as that would require
inverting the one-way function. Similarly, a ratchet enables inputting
additional entropy into the generation of the next session key, providing
post-compromise security. Post-compromise security informally states
that a session key 𝑘 remains secure even if the attacker compromises a
session key that was previously used in the same session. However, this
property requires that the attacker does not obtain all entropy that got
input to derive the key 𝑘 starting from the compromised session key,
as the attacker could otherwise perform the very same derivation to
obtain 𝑘. The ratchet mechanism became well-known through the Signal
protocol [111] employing the Double Ratchet Algorithm [112].

While employing the Double Ratchet Algorithm, or more generally a
ratchet, achieves strong security guarantees for a protocol design, these
security guarantees carry over to an implementation only if past key
material is securely deleted. If an implementation retains, e.g., all past
session keys, corrupting a participant session would allow the attacker to
decrypt past messages without having to invert the employed one-way
function as all session keys leak to the attacker.

In this section, we present an extension of our methodology that enforces
secure deletion of past key material. Without cooperation with the
compiler (as, e.g., Olmos et al. [113] propose for the Jasmin compiler) and
operating system, secure deletion, however, remains best effort as sensitive
data, such as keys, may get copied arbitrarily or delete operations therefor
may get eliminated by the compiler [114]. We designed our extension to
support off-the-shelf program verifiers, which made it impossible simply
enforce an invariant for every heap location and stack variable stating
that the stored value is either not sensitive, has been securely deleted, or
is currently required to execute the protocol. More specifically, enforcing
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Figure 3.17: Definition of the three ab-
stract predicates used to count heap lo-
cations storing sensitive data per epoch.

1 pred EpochGuard(sessionId uint32, epoch uint32)
2 pred NextEpochGuard(sessionId uint32, epoch uint32)
3 pred IsSensitive(data []byte, sessionId uint32, epoch uint32)

such an invariant is not readily supported by program verifiers as, e.g.,
a separation-logic-based verifier like Gobra is not even aware of the
complete set of allocated heap locations due to thread-local, modular
reasoning. DY★ [39] side-steps this quantification over the entire program
state by requiring that implementations store their program state after
every protocol step in serialized form on the global trace, which has
several drawbacks. First, existing implementations do not satisfy this
requirement; second, serializing and deserializing all program state
adds runtime overhead; third and as already discussed in Sec. 1.1.3, this
approach imposes a coding discipline for protocol steps as the invariant
is not enforced within a protocol step, and lastly, storing actual program
state on the global trace makes it impossible to treat the global trace as a
ghost data structure, as the global trace’s existence is required at runtime.
While our extension is inspired by DY★, we overcome its drawbacks
resulting in a solution that is applicable to existing implementations and
off-the-shelf program verifiers and retains the global trace as a ghost data
structure.

Counting Sensitive Data. We split the lifetime of a security protocol’s
session into so-called epochs and extend secrecy labels to determine in
which epochs sensitive data is allowed to be stored. In a nutshell, our
extension hinges on keeping track of the number of heap locations per
epoch storing sensitive data. This allows us to enforce, before moving
to the next epoch, that an implementation has either securely deleted
each heap location or proved that the stored data therein is allowed to
be in memory in the next epoch, according to the stored data’s secrecy
label. For simplicity, the current epoch is stored locally in an instance of
our verification library and, thus, we assume that only a single instance
of our verification library is created per protocol session. Lifting this
restriction is possible as we discuss in Chapter 5.

Permission accounting [115] is a separation-logic-based permission model
that keeps track of how many so-called shares have been handed out from
a factory resource and not yet recollected. While this permission model
could be used for our purpose, most off-the-shelf program verifiers do not
readily support it. In addition, allowing multiple threads to obtain a share
from the same factory resource would require synchronization, e.g., via a
ghost lock. We overcome the lack of support for permission accounting in
off-the-shelf program verifiers and avoid synchronization when allocating
a new heap location storing sensitive data and securely deleting such a
heap location. For this purpose, we introduce three abstract predicates (cf.
Fig. 3.17) to count the number of heap locations storing sensitive data per
epoch, which rely on the support for fractional permissions offered by
most program verifiers and natively support concurrent programs. We
assume that epochs are sequentially numbered starting from zero and
are part of a session that is identified via some session identifier. A full
permission of EpochGuard(s,e) expresses that no heap location exists
storing sensitive data belonging to epoch e in the session identified by s.
Similarly, NextEpochGuard(s,e+1) keeps track of heap locations storing
sensitive data belonging to the next epoch e+1, whose necessity will
become clear later. A protocol session starts off with EpochGuard(s,0)★
NextEpochGuard(s,1) as a free precondition indicating that no heap
locations storing sensitive data have been allocated yet in this protocol
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session. Whenever sensitive data is stored in a heap location h, a non-zero
fraction 𝑓 of EpochGuard(s,e) is consumed while the same amount 𝑓
of IsSensitive(h,s,e) is produced. IsSensitive(h,s,e) acts as a
receipt that heap location h stores sensitive data belonging to epoch e.
Since all operations that depend on sensitive data occur within our
verification library7, the library is solely responsible for performing these
conversions of permissions. We achieve these conversions by adding
trusted specifications to cryptographic functions like nonce generation
or decryption since these functions may place sensitive data that should
only exist in certain epochs in newly allocated or already existing heap
locations.

The trusted specifications of our verification library maintain the fol-
lowing informal invariants about the predicates in Fig. 3.17. We omit
invariants involving NextEpochGuard(s,e) and introduce them later
after motivating this predicate’s necessity.

©­«
perm(EpochGuard(s,e1)) > 0

∧
perm(EpochGuard(s,e2)) > 0

ª®¬ =⇒ e1 = e2 (3.3)

perm(EpochGuard(s,e)) +
∑
h

perm(IsSensitive(h,s,e)) ≤ 1 (3.4)

where all free variables are for all quantified and perm(𝑝) returns the
global permission amount of predicate instance 𝑝, implicitly quantifying
over all threads in a program. Invariant (3.3) states that EpochGuard
instances agree on a particular epoch for a session s. Invariant (3.4)

expresses that a fraction 𝑓 of a IsSensitive(h,s,e) resource temporarily
replaces the same amount 𝑓 of an EpochGuard(s,e) resource until heap
location h is securely deleted. While invariant (3.4) could in theory be
strengthened to an equality, it is an upper bound in practice as a client
of our verification library might arbitrarily drop permission amounts,
which does not result in a verification error in several program verifiers,
including Gobra.

Having introduced the general mechanism behind tracking heap loca-
tions storing epoch-specific sensitive data, we now explain how this
mechanism is used in practice by considering three use cases, namely
creating an epoch-specific ephemeral key, securely deleting such data,
and transitioning from the current to the next epoch. We omit, e.g.,
decrypting a ciphertext containing an epoch-specific plaintext because
copying such sensitive data into a heap location is similar to creating an
epoch-specific ephemeral key. We end this section with details on the
implementation of secure deletion in our verification library and a case
study extending WireGuard and its implementation to provide forward
secrecy and post-compromise security even in the presence of ephemeral
key corruption.

Epoch-Specific Key Creation. We extend our verification library’s nonce
creation function with an additional precondition requiring a non-
zero fraction 𝑓 of EpochGuard(s,e) if an epoch-specific nonce should
be created. This precondition not only uniquely determines the current
epoch (cf. invariant (3.3)) but also consumes the same fraction 𝑓 of
EpochGuard(s,e) indicating that sensitive data belonging to this epoch
exists in the program state. If an epoch-specific nonce should be created,
an additional postcondition returns 𝑓 amounts of IsSensitive(h,s,e),
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Figure 3.18: Implementation and trusted
specification of the secure deletion func-
tion in the reusable verification library.
Mem(h) abstracts over the permissions
for the elements of the byte slice h. acc(
p, f) expresses f permission amounts
of predicate p in Gobra’s syntax. rvlib.
Session() and rvlib.Epoch() retrieve
the current session identifier and epoch,
respectively, from our reusable verifica-
tion library. We omit the permissions
for rvlib, which is required to, e.g., call
these two functions, in all code listings
within this section.

1 //@ trusted
2 //@ requires Mem(h)
3 //@ requires 0 < f
4 //@ requires acc(IsSensitive(h, rvlib.Session(), rvlib.Epoch()), f)
5 //@ ensures acc(EpochGuard(rvlib.Session(), rvlib.Epoch()), f)
6 func DeleteSecurely(h []byte/*@, ghost rvlib *Lib, ghost f perm @*/) {
7 // overwrite content
8 for i := range h {
9 h[i] = 0

10 }
11 // prevent compiler from optimizing away the deletion
12 runtime.KeepAlive(h)
13 return
14 }

where h refers to the heap location that stores the freshly created nonce
and is returned by this function.

This specification highlights our native support for concurrency. In par-
ticular, permissions to the EpochGuard(s,e) resource can be partitioned
arbitrarily among multiple threads, allowing each thread to create epoch-
specific nonces by choosing an appropriately small fraction 𝑓 when
invoking the library’s nonce creation function. As fractional permissions
can be split arbitrarily often, we neither limit the number of threads that
can create nonces nor the amount of creatable nonces in general.

Secure Deletion. We add a function to our verification library that
securely deletes sensitive data stored in a heap location h. Its implemen-
tation highly depends on the programming language and compiler and
must take compiler optimizations such as dead store elimination into
account. Ideally, its implementation utilizes compiler intrinsics to inform
the compiler of the sensitive nature of the data stored in heap location h
and that this location should be securely deleted. Olmos et al. [113] and
Yang et al. [114] survey secure deletion implementations found in various
open-source projects and Fig. 3.18 shows our implementation for the Go
programming language. We rely on the Go compiler intrinsic runtime
.KeepAlive to prevent optimizations, however, at the cost of keeping
the heap location h alive and, thus, preventing garbage collection after
overwriting its content.

We equip our secure deletion function (cf. Fig. 3.18) with a precondition
requiring full permission to the heap location h (line 2), which is a
shorthand notation for acc(Mem(h), 1/1). This permission allows the
secure deletion function to overwrite the content of h and, unless we are
in a garbage-collected programming language, deallocate h. In addition,
we require a non-zero fraction f of IsSensitive(h,s,e) (lines 3–4) to
bind the permission amount f that is used in the postcondition to return
f permission amounts of EpochGuard(s,e) (line 5), where s and e are the
current session identifier and epoch, respectively, which our verification
library provides.

Clients of our verification library ideally pick the permission amount f
when invoking the secure deletion function as large as possible, i.e., to be
the same amount as was used for the allocation of the heap location h, as
we explained for the creation of nonces. If clients choose the permission
amount f in this way, the secure deletion function undoes the swap of
resources that the allocation of h performed:

acc(EpochGuard(s,e),f)
alloc h−−−−−−−−−−−→←−−−−−−−−−−−

securely delete h
acc(IsSensitive(h,s,e),f)
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1 //@ ghost
2 //@ trusted
3 //@ requires Allowed(hT,rvlib.Snap(),rvlib.Session(),rvlib.Epoch()+1)
4 //@ requires 0 < f
5 //@ requires acc(IsSensitive(h, rvlib.Session(), rvlib.Epoch()), f)
6 //@ requires acc(NextEpochGuard(rvlib.Session(), rvlib.Epoch()+1), f)
7 //@ ensures acc(IsSensitive(h, rvlib.Session(), rvlib.Epoch()+1), f)
8 //@ ensures acc(EpochGuard(rvlib.Session(), rvlib.Epoch()), f)
9 //@ func CarryForward(h []byte, hT Term, rvlib *Lib, f perm)

Figure 3.19: Trusted ghost function in
our verification library to carry a heap lo-
cation h forward from epoch e to the next
epoch e+1. hT is the term corresponding
to h’s content and Allowed checks that
this content may be present in epoch e
+1 according to hT’s secrecy label and
taking potential corruption (as reflected
in the local snapshot) into account. We
omit specification that binds h and hT.

Otherwise, some fraction 𝑓 ′ of EpochGuard(s,e) with 0 < 𝑓 ′ is un-
recoverably lost. This loss of permissions occurs because a client re-
tains 𝑓 ′ permission amounts of IsSensitive(h,s,e) and cannot call
DeleteSecurely for heap location h again, since h is deleted during the
first invocation. As we will cover next, this loss of permissions prevents
any future epoch transitions.

Epoch Transition. By enforcing that we transition to the next epoch e+1
only if we possess full permission to EpochGuard(s,e), we ensure that
all heap locations storing sensitive data belonging to epoch e have been
securely deleted. The mechanism present so far, however, would be
insufficient to support realistic security protocol implementations as we
would be forced to delete all sensitive data before transitioning to the
next epoch. Considering a security protocol using a ratchet mechanism,
this would mean that an ephemeral key 𝑘𝑒+1 of an epoch e+1 cannot
depend on the ephemeral key 𝑘𝑒 of the previous epoch e because having
to delete 𝑘𝑒 before transitioning to epoch e+1 implies that we must already
compute 𝑘𝑒+1 shortly before the transition, i.e., in epoch e. Without the
possibility to carry the ephemeral key 𝑘𝑒+1 forward to the next epoch e+1,
we could transition only if we delete 𝑘𝑒 and 𝑘𝑒+1 in epoch e.

We enable carrying sensitive data, like 𝑘𝑒+1, forward to the next epoch e+1
by introducing the NextEpochGuard(s,e+1) resource (cf. Fig. 3.17). Con-
ceptually, we alter a heap location h storing sensitive data belonging to an
epoch e to storing sensitive data belonging to the next epoch e+1. However,
this alteration comes with a proof obligation that h stores data that may be
present in epoch e+1 and, thus, does not have to be securely deleted in the
current epoch. As shown in Fig. 3.19, we can trade a fraction f of permis-
sions to the IsSensitive(h,s,e) resource (line 5) for f permissions to
IsSensitive(h,s,e+1) (line 7), which corresponds to marking the heap
location h as storing sensitive data that no longer belongs to epoch e but
now belongs to the next epoch e+1. To reflect that after performing this
carry forward operation less sensitive data belonging to epoch e exists,
line 8 ensures f permissions to the EpochGuard(s,e) resource, which
allows transitioning to the next epoch after all sensitive data belonging
to epoch e has either been securely deleted or carried forward to the
next epoch. The precondition on line 6 consumes f permissions to the
NextEpochGuard(s,e+1) resource to record that sensitive data belonging
to the next epoch e+1 will exist when this function returns. Finally, line 3
enforces the side-condition that carrying the heap location h forward
does not violate the corresponding secrecy label.

Having introduced the NextEpochGuard(s,e+1) resource, our verifica-
tion library maintains the following invariant involving this resource.

©­­«
perm(NextEpochGuard(s,e+1))

+∑
h

perm(IsSensitive(h,s,e+1))
ª®®¬ ≤ 1 (3.5)



8: A client of our verification library
might choose a smaller fractionf than the
upper summand in (3.5), whose value
we denote as 𝑠 in the following. In this
case (f < 𝑠), however, this client will
be unable to transition ever again as the
client can recover at most f permissions
to EpochGuard(s,e+1) from f permis-
sions to NextEpochGuard(s,e+2) (line 7)
by securely deleting or carrying forward
heap locations. Hence, 𝑠 − f permissions
to EpochGuard(s,e+1) are unrecover-
able, thus, making any future application
of the transition function impossible.

9: The most precise secrecy label would
be the intersection of both inputs’ secrecy
labels reflecting that an attacker requires
both inputs to apply the KDF. However, to
provide maximum flexibility to clients of
our verification library, the KDF output’s
secrecy label should be customizable for
a given security protocol as any secrecy
label between this most precise secrecy
label and public (cf. Sec. 3.4.2) would be
a sound choice.
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Figure 3.20: Specification for the li-
brary function that transitions to the
next epoch. We omit the permissions
that are required to access the verifica-
tion library’s state and bump the epoch
therein.

1 //@ ghost
2 //@ requires EpochGuard(rvlib.Session(), rvlib.Epoch())
3 //@ requires 0 ≤ f
4 //@ requires acc(NextEpochGuard(rvlib.Session(), rvlib.Epoch()+1), f)
5 //@ ensures rvlib.Epoch() == old(rvlib.Epoch()) + 1
6 //@ ensures acc(EpochGuard(rvlib.Session(), rvlib.Epoch()), f)
7 //@ ensures NextEpochGuard(rvlib.Session(), rvlib.Epoch()+1)
8 //@ func Transition(f perm)

Similar to invariant (3.4), invariant (3.5) expresses that the library swaps
fractions of NextEpochGuard(s,e+1) for fractions of IsSensitive(h,s,
e+1)when allocating or copying sensitive data into a heap location h, and
vice versa when securely deleting such a heap location, while keeping
their sum upper bounded by one.

Since the NextEpochGuard(s,e+1) resource allows us to carry sensitive
data forward to the next epoch before transitioning, we obtain the
specification as shown in Fig. 3.20 for the transition function in our
verification library. In the following, we refer to the epoch before the
transition as e and the next epoch as e+1. Line 2 requires full permission
to the EpochGuard(s,e) resource, which ensures that all sensitive data
belonging to epoch ehas either been securely deleted or carried forward to
the next epoch. After performing the transition, line 6 returns a fraction f
amounts of permissions to the succeeding (cf. line 5) epoch’s guard, i.e.,
EpochGuard(s,e+1), which accounts for the carried forward sensitive
data. More precisely, line 4 binds this fraction f to the permission amount
of NextEpochGuard(s,e+1) that a client of our verification library passes
to the transition function. The fraction f ideally corresponds to the
upper summand in invariant (3.5)8. Lastly, line 7 returns full permissions
to the NextEpochGuard(s,e+2) resource, indicating that epoch e+2 will
be the next epoch and that no sensitive data belonging to this epoch
exists yet.

Implementation and Case Study. To demonstrate that our extension
enables proving strong security properties taking corruption of ephemeral
keys into account, we forked our Go verification library and an earlier,
sequential version of our WireGuard implementation (cf. Sec. 3.6.3).

We added the functions described in this section to our verification
library. Furthermore, we added a function to bypass the secure deletion
mechanism for a particular heap location if one can prove that this
heap location stores data that is allowed to be present for the entirety
of the program execution, i.e., protocol session. This function is useful
to reduce the proof burden for, e.g., non-sensitive parts of a plaintext
as our library conservatively assumes that plaintexts contain data that
is as sensitive as the decryption key. In addition, we added a KDF
implementation and corresponding term abstraction representing the
application of a ratchet operation to our reusable verification library. This
function takes two parameters, namely the current ephemeral key and
some entropy, and returns the next ephemeral key. We assume that the
underlying implementation allows recomputing an output value only
if both inputs are known. We soundly over-approximate the output’s
secrecy label to match the second input’s secrecy label9. We verify our
extended verification library in the same once-and-for-all manner as
described in Sec. 3.5. However, the library does not yet provide lemmata
proving forward secrecy considering ephemeral key compromise and
post-compromise security for data that has epoch-specific secrecy labels.
However, we expect that these lemmata are straightforward extensions
of our secrecy lemma (cf. Sec. 3.4.2).



10: We use superscripts to indicate the
epoch in which a key is (mainly) used.
Since no ratchet operation has been per-
formed to derive 𝑘0

IR, we have 𝑘0
IR =

𝑘IR, where 𝑘IR follows the notation in
Sec. 3.6.3.
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We adapted the WireGuard protocol’s transport phase to continuously
exchange DH public keys, compute DH shared secrets, and use these
shared secrets as entropy for updating the symmetric key used for
encrypting transport messages by applying a ratchet operation. Since
the duration of an epoch is protocol-specific, we chose a participant’s
epoch to last for one transport message round trip, which minimizes the
provable duration in which ephemeral keys remain in memory. Using a
single ratchet is sufficient as each request is followed by a response. To
support sending multiple transport messages before requiring a response,
a similar design to Signal’s Double Ratchet Algorithm could be employed,
where the output of our KDF is not immediately used as the encryption
key for transport messages but instead used as input to a second KDF
that uses a message counter as additional input to derive a unique key
per transport message.

To illustrate the adapted protocol, let us consider an instance of the initia-
tor role that just completed the handshake phase and, thus, is in epoch 0
and derived the symmetric key 𝑘0

IR for encrypting the first transport
message10. Before sending this transport message, the initiator generates
a DH secret key 𝑥0 and includes the corresponding DH public key as ad-
ditional authenticated data in the transport message’s AEAD component.
After receiving this transport message, the responder likewise generates
a DH secret key 𝑦0 and replies with a transport message containing the
corresponding DH public key in the same way. The initiator uses this
DH public key and its own DH secret key 𝑥0 to compute the DH shared
secret ss0, which forms the entropy for performing the ratchet operation
to derive the next symmetric key 𝑘1

IR. As hinted at by 𝑘1
IR’s superscript,

we transition to epoch 1 before the initiator sends the next transport
message.

The interplay of ephemeral keys with epochs illustrates the necessity
of carrying sensitive data forward to the next epoch as ephemeral keys
cannot be assigned to a single epoch. In particular, the computation of
𝑘1

IR depends on the DH secret keys that occur in the round trip in epoch 0
while 𝑘1

IR is used as the symmetric key for encrypting the initiator sent
transport message in the next epoch 1. No matter whether we transition
to epoch 1 before or after computing 𝑘1

IR, either the shared secret ss0 or
𝑘1

IR must be carried forward to epoch 1.

We adapted the WireGuard implementation to generate the required DH
secret keys, add their public keys to transport messages, and employ the
KDF to derive the transport messages’ encryption keys. Additionally, we
inserted calls to securely delete the DH secret keys, DH shared secrets,
and the transport messages’ encryption keys when they are no longer
needed, and a call to transition to the next epoch whenever a round
trip is completed from the perspective of a protocol participant. We
verified the adapted WireGuard initiator and responder implementations
with simplifying code changes and assumptions, to demonstrate that
our methodology’s extension to secure deletion is powerful enough to
support such a ratchet-based protocol implementation. More specifically,
we unrolled the main loop sending transport messages and assume that
the attacker has no access to the initial transport message keys that result
from the handshake phase to simplify the verification effort. We prove
particular secrecy labels for the transport message keys that we derive
by applying the KDF. Even though these keys are symmetric and, thus,
derived by both the initiator and responder, their proved secrecy labels
differ due to partial knowledge about the other communication partner’s
epoch. We prove in the implementation of one protocol role that such
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a derived transport message key is present only in a specific protocol
session and two subsequent epochs of this role and possibly any session
and epoch of the other role. To achieve such secrecy labels, we indicate
when generating a DH secret key in epoch 𝑒 that this key may exist in
epochs 𝑒 and 𝑒 + 1 by choosing an appropriate secrecy label, which
then allows us to carry either the corresponding DH shared secret or the
derived symmetric transport message key forward to the next epoch. This
faithfully represents the circumstances that there exists a short period of
time immediately after applying the KDF in which the current’s and next’s
epochs’ transport message keys are simultaneously present in memory
such that corrupting this state would reveal both keys to the attacker.
We refer to Hugo Queinnec’s Master’s Thesis [78] for further details. In
Chapter 5, we will discuss how the proved secrecy labels could be further
strengthened to provably restrict the sessions and epochs of the other
protocol role in which these transport message keys may occur.

3.10 Refinement-Based vs. Invariant-Based
Verification of Security Protocol
Implementations

Having presented two orthogonal methodologies to verifying security
protocol implementations—one in Chapter 2 and one in this chapter—we
now compare their strengths and weaknesses, focusing on four aspects,
namely their support for incremental verification, the level of automation
they enable, their applicability to concurrent implementations, and how
easily security guarantees can be extended from, e.g., keys to message
payloads.

Incremental Verification. As security properties like secrecy or authen-
tication typically hold only if multiple protocol roles behave correctly,
a global view on the distributed system is required to prove security
properties about it. Our refinement-based methodology (Chapter 2)
utilizes a protocol’s Tamarin model as such a global view, while our
invariant-based methodology (this chapter) obtains this global view from
the trace invariant specifying properties about protocol roles’ behavior.
In the former methodology, Tamarin provides an abstract way of stat-
ing the behavior of protocol roles, which enables fast modeling and, if
necessary, iterating quickly over different versions of a protocol until a
version satisfies the desired security properties. Once this abstract view
is established, the refinement-based methodology allows us to verify a
particular protocol role’s implementation in isolation from all other roles.
Although every implementation of all protocol roles must be verified to
ensure that the distributed system satisfies the proven security properties,
this methodology allows us to focus, e.g., on particularly critical protocol
roles like the role checking an Authentic Digital EMblem (ADEM) (cf.
Sec. 2.7), and to verify their implementations first, thus, providing a way
to incrementally verify the implementations of all protocol roles.

In contrast, our invariant-based methodology proves security properties
with respect to a trace invariant. Hence, it is crucial that this trace
invariant is correct, which is established by proving all implementations
of protocol roles against the same trace invariant. Without verifying at
least one implementation per protocol role against the trace invariant,
we cannot be sure that we can even implement a protocol role in a
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way that satisfies the trace invariant. Therefore, our refinement-based
methodology provides more flexibility in this aspect.

Automation. As demonstrated by our evaluations, our refinement-based
methodology requires less specification than the invariant-based one and
a part thereof is automatically generated from the Tamarin model. In
addition, the former methodology utilizes Tamarin’s proof search that is
specifically tailored to security protocols, allowing us to utilize advances
in protocol model verifiers from the past decades. However, Tamarin’s
proof search is not modular in the sense that Tamarin tries to prove the
absence of a valid sequence of transitions from an initial state to every
state that violates a given security property. Especially for large and
complex protocols that, e.g., exhibit looping behavior or make use of DH
exponentiation like WireGuard, this quickly leads to a non-terminating
proof search. Tamarin provides several ways to mitigate this issue, e.g.,
handwritten or automatically generated auxiliary lemmata [116] can not
only serve as shortcuts within Tamarin’s proof search11 but also prune
the search space12. Furthermore, Tamarin provides several heuristics to
control the order in which different branches are explored during the
proof search and, ultimately, a custom Python oracle provides full control
over this order.

In contrast, our invariant-based methodology utilizes the trace invariant
to modularize the proof. Conceptually, the trace invariant not only serves
as a boundary between a protocol role’s implementation and the rest of
the distributed system, but also provides clear proof obligations for every
protocol-relevant operation therein, such as proving that a message’s
secrecy label permits sending this message to the network. Although
highly subjective and influenced by my expertise in Gobra13, I personally
perceive our invariant-based methodology as more goal-oriented at the
cost of requiring more specification and proof annotations than our
refinement-based methodology. Namely, manually controlling Tamarin’s
proof search to prove (or disprove) a lemma, spotting certain patterns
in its proof search, and eventually writing a custom oracle is in my
experience tedious as this process is time-consuming and mostly trial
and error. E.g., this process took me more than one person month for
the protocol described in Sec. 4.5.1. In our invariant-based methodology,
it is usually clear whether the trace invariant has to be strengthened to
allow a protocol role to derive certain conclusions after, e.g., receiving a
message or whether additional proof annotations are required to derive
a conclusion, e.g., about a key’s or message’s secrecy label.

Concurrency. As mentioned in Sec. 2.7.3 and Sec. 3.6.3, both methodolo-
gies support verifying concurrent implementations. Since the refinement-
based methodology uses a resource in I/O separation logic to express the
I/O operations that an implementation may perform, a synchronization
primitive must be used to verify concurrent threads performing I/O
operations. If these threads perform I/O operations that are independent
of operations performed by other threads, no synchronization might be
required at runtime, so ghost synchronization must be employed for
verification purposes, e.g., in the form of a ghost lock. In this case, the
lock invariant must provide sufficient information about the abstract
state such that the threads can use the I/O specification to justify their
I/O operations. Since the lock invariant conceptually owns the I/O spec-
ification and abstract state, additional ghost heap locations are required
such that each thread can keep track of its contributions to the abstract
state. These ghost heap locations abstractly serve the same purpose as
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the auxiliary variables in Owicki and Gries’s counter example [117, Fig. 1]
or our local snapshots.

In contrast, our invariant-based methodology does not require ghost syn-
chronization primitives outside the reusable verification library. As each
thread has its own instance of the verification library, this methodology
does not introduce dependencies between I/O operations of different
threads and these I/O operations must satisfy only the trace invariant. If
different threads perform I/O operations that depend on each other, e.g.,
sending and receiving payloads encrypted with the same key, an imple-
mentation will employ some (non-ghost) synchronization primitives or
perform read-only accesses to avoid data races. In these situations, our
methodology is flexible enough to use these already existing synchroniza-
tion primitives to share knowledge about the trace between these threads
and their respective library instances, as shown in our WireGuard case
study (cf. Sec. 3.6.3). Hence, our invariant-based methodology is easier
to apply to concurrent implementations.

Guarantees for Payloads. In the evaluations of both methodologies, we
focused on proving security properties like secrecy and authentication
for keys that are established by running a security protocol. In practice,
these keys are subsequently used to encrypt message payloads, such
as VPN packets in the case of WireGuard. Ideally, security properties
established for encryption keys should extend to the message payloads
that are encrypted with those keys. In both methodologies, proving
security properties for message payloads and keys is analogous. In
our refinement-based methodology, security properties about message
payloads are proved by adapting the lemmata or labels of transitions in
the Tamarin model such that they also cover message payloads and not
only keys. The security properties that Tamarin can prove for message
payloads depend not only on the security protocol establishing the
encryption keys for these payloads but also on how message payloads
are modeled. In our case studies, message payloads are modeled as terms
that are obtained from the attacker, which makes the attacker in charge of
choosing the payloads sent by protocol participants. Thus, secrecy for
message payloads is trivially violated. Alternatively, message payloads
can be modeled as fresh terms [118], which are a priori unknown to the
attacker. However, this modeling choice imposes restrictions on the set
of payloads that Tamarin considers in its proof search. E.g., sending
any public constant or a term that occurs earlier in a protocol run falls
outside this set. Therefore, both modeling choices have advantages and
disadvantages, which is why, e.g., Girol et al. [107] employ both modeling
choices and select them according to the security property they aim to
prove.

In contrast, our invariant-based methodology uses secrecy labels to
specify for a given term whether the attacker and which protocol role
instances may obtain this term. Thus, it is straightforward to assign
a particular secrecy label to a message payload by introducing an as-
sumption. E.g., we specify for a VPN packet that the initiator role of
WireGuard obtains from the operating system, that this packet has some
arbitrary term representation and that only this particular instance of
the initiator and any instance of the responder role may obtain this term,
unless any of these instances got compromised. This forces the initiator
to encrypt this packet using a sufficiently strong encryption key before
sending the resulting ciphertext to the network. Otherwise, verification
fails as the corresponding send operation does not preserve the trace
invariant. Therefore, our invariant-based methodology provides a more
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straightforward way to specify and prove security properties for message
payloads than our refinement-based methodology.

To summarize, incremental verification is supported exclusively by our
refinement-based methodology and our invariant-based methodology
makes verifying concurrent implementations and guarantees for message
payloads easier. Regarding automation, there is no clear winner as our
refinement-based methodology results in a lower specification overhead
and more automation as it utilizes Tamarin. However, in case of a non-
terminating proof search, our invariant-based methodology provides a
more principled approach to proving security properties at the expense
of requiring more specifications.

3.11 Related Work

Complementing Sec. 1.1 and Sec. 2.8, we focus here on modular verification
of symbolic security properties, and discuss the most closely related work
first: techniques for verifying security of realistic protocol implementations.

Dupressoir et al. [64] use VCC [66] to verify memory safety, non-injective
agreement, and (via an external argument in Coq) weak secrecy, of
two protocols implemented in C: RPC and Otway–Rees. To our knowl-
edge, they are the first to encode a global protocol trace (“log”) as a
concurrent data structure. We generalize this idea to separation logic to
make it much more widely applicable, because their encoding relies on
C’s volatile fields and a VCC-specific program logic, neither of which are
(widely) available in other languages and verifiers. Moreover, since their
logic (unlike separation logic) does not provide linear resources, proving
injective agreement would require a nontrivial extension of their work.
Their set-based trace encoding prevents proving, e.g., forward secrecy
(which we do); they account for principal corruption, but not session
corruption (we account for both). Polikarpova et al. [119] extend this work
by incorporating stepwise refinement to formally connect a model to an
existing implementation, all encoded in VCC . This refinement decom-
poses the verification into smaller steps, but incurs additional overhead.
Moreover, they remove the need for external arguments when proving
weak secrecy. They verify the latter, and a variant of authentication, for a
small stateful subset of TPM 2.0.

Vanspauwen et al. [69], like us, use a separation-logic-based verifier
(VeriFast [26]), but they do not model a global trace. Consequently,
properties that are commonly expressed over a trace potentially need
to be assembled from individual assertions. They propose an extended
symbolic model that strengthens attackers by permitting byte-wise ma-
nipulations, such as splitting and reconcatenating byte sequences, in
addition to the usual symbolic manipulations. Our attacker operates on
terms (standard for symbolic cryptography) but we could adapt their ex-
tension. They specify PolarSSL’s API using this extended model, and then
verify secrecy and non-injective agreement of an NSL-implementation
(and a few less complex protocols). Unlike us, they do not consider
session corruption.

Bhargavan et al. [39] suggest DY★: a framework for verifying protocols
implemented in F★ [42], a functional language that enables type-system-
based proofs, e.g., using monadic effects and refinement types. DY★

introduces the idea of a parametric library for reducing the per-protocol
proof effort; an idea we adopted. DY★’s type system is tailored to F★,
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whereas our methodology supports a wide range of languages and
tools. Moreover, by building on separation logic, we are able to prove
stronger properties, in particular, injective agreement. Our methodology
can be applied directly to existing implementations, as we demonstrate
in the WireGuard case study. In contrast, DY★ supports code generation,
but additionally requires a handwritten (and partly protocol-specific)
runtime wrapper [40]. Included in DY★’s case study is the first automated
verification of Signal [111] that proves forward and post-compromise
security over an unbounded number of protocol messages. Our main
case study is WireGuard, for which we prove, also for an unbounded
number of messages, forward secrecy and injective agreement with AKC
resilience. Soundness of DY★’s global protocol trace depends on a specific
coding discipline (one method per protocol step) that is not automatically
enforced. If missed, the attacker is accidentally restricted, and security
properties can be proven incorrectly.

An earlier line of work (e.g., [67, 68, 120]) verifies security of functional
programs written in F# using the F7 type checker [68], but does not
integrate equational theories, and has limited support for mutable state.
Moreover, this work does not model the global protocol traces and, thus,
states security properties only implicitly.

Küsters et al. [121] share our goal of reusing existing program analyzers
and suggest an approach that enables non-interference checkers to estab-
lish computational indistinguishability results for sequential programs.
To account for closed-system assumptions (typically made by such check-
ers) in the presence of an attacker-controlled environment, they restrict
interaction with the latter to static, exception-free methods, and primitive
(i.e., value) types. How to extend their approach to trace-based properties
and concurrent programs remains unclear.

Several security property verifiers exist that (unlike us) do not reuse
existing program analyzers, e.g., Csur [122] and ASPIER [123] (for C),
and JavaSec [124] (for Java). However, to reduce development costs, such
domain-specific tools typically only implement semantics of a restricted
language subset and, e.g., assume crucial properties such as memory
safety (which may render implementations insecure, e.g., due to buffer
overflows).

Prior work [41, 105–107, 125, 126] on verifying properties of WireGuard
(our main case study) is concerned with verifying models of the protocol,
not existing implementations.

Finally, a large body of work is concerned with mechanizing the ver-
ification of computational (rather than symbolic) properties; several
surveys [19, 23, 38] provide an overview. This line of work establishes
stronger guarantees by making weaker, more realistic cryptographic
assumptions. For instance, Owl [51] allows one to verify computational
security of protocols written in a dedicated language. Like in our work,
their proofs are automated and compositional. Recently, OwlC [52] added
a refinement-based technique for verifying implementations that Owl
generates, as discussed in detail in Sec. 2.8. Meanwhile, the first separa-
tion logics for probabilistic reasoning have been proposed [127–129], but
we are not aware of automated verifiers for such logics.

Conclusions. Our methodology for the modular verification of security
protocol implementations enables proving strong security properties
for realistic protocol implementations. By employing separation logic,
we support efficient implementations using, e.g., heap data structures,
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side effects, and concurrency. Encapsulating the global trace in a concur-
rent ghost data structure and our use of invariants over local snapshots
allow our methodology to support arbitrary code structures and data
representations, which is crucial for targeting existing implementations.
Separation logic also allows us to specify resources in the trace invariant
to express uniqueness of protocol-specific events, which is key to modu-
larly proving injective agreement. Our case studies, which use different
programming languages and program verifiers, demonstrate that our
methodology handles existing and interoperable implementations of
protocols and proves strong security properties, such as forward secrecy
and injective agreement.
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Chapters 2 and 3 covered two orthogonal methodologies for verifying
security protocol implementations. While both methodologies enable
proving strong security properties, such as forward secrecy and injective
agreement, they require both a proof of memory safety as a prerequisite.
Memory safety guarantees crash freedom and absence of not only buffer
overflows but also data races. Although memory safety is a highly desir-
able property for any codebase, completing a proof covering just memory
safety is already a laborious task that requires expertise in program
verification and involves annotating the codebase with specifications and
ghost code, e.g., to update ghost data structures that simplify the proof
or to assert auxiliary properties. The necessary specifications and ghost
code often amount to a multiple of a codebase’s actual code, making a
proof of memory safety prohibitively expensive for large codebases.

We explore in this chapter how to scale the verification of security proper-
ties to large codebases by differentiating between the security-criticality
of a codebase’s parts and trading off between expressiveness and automa-
tion. More specifically, we exploit that large codebases mostly consist
of application logic while parts implementing a security protocol are
often small. We therefore propose to apply our expressive, refinement-
based methodology from Chapter 21 to only these small and critical
parts (the Core) implementing a security protocol and to prove their
security and memory safety. To prove that all other parts of the code-
base (the Application) do not violate the security properties, we apply
fully-automatic static analyses. The static analyses achieve that by proving
I/O independence, i.e., that the I/O operations within the Application are
independent of the Core’s security-relevant data (such as keys), and that
the Application meets the Core’s requirements.

We have proved Diodon sound by first showing that we can safely
allow the Application to perform I/O independent of the security
protocol, and second that manual verification and static analyses soundly
compose. We evaluate Diodon on two case studies: an implementation
of the signed DH key exchange and a large (100k+ LoC) production Go
codebase implementing a key exchange protocol for which we obtained
secrecy and injective agreement guarantees by verifying a Core of about
1 % of the code with the auto-active program verifier Gobra in less
than three person months. The evaluation demonstrates that our novel
combination of an expressive program verifier and fully-automatic static
analyses significantly reduces the proof effort and, thus, enables proving
security properties for large, production codebases.

4.1 Introduction

Approaches to verifying existing security protocol implementations (cf.
Sec. 1.1.3), including our two methodologies from Chapters 2 and 3, are
sound only if they are applied to the entire implementation. Verifying
only a subset of the codebase is unsound, and would fail to prevent,
e.g., code seemingly unrelated to a security protocol accidentally logging
key material [130, 131]. However, the required expertise and annotation
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Figure 4.1: The Diodon methodology.
We partition the codebase (blue) into
the module implementing a proto-
col (Core) and the remaining code-
base (Application). We prove that the
Core refines (trace inclusion on the right)
a particular role of the verified protocol
model (green) by auto-active verification.
We apply static analyses to the entire
codebase to enforce that secrets (red) do
not influence (red arrows) the I/O opera-
tions (gray circles) of the Application and
to ensure that the Application cannot in-
validate the security properties proved
for the Core. Consequently, Diodon guar-
antees that the entire codebase refines
the protocol model (trace inclusion in
the middle) and, thus, enjoys all security
properties proved for that model. CORE

I/O
I/O

I/O

I/O

Secrets

Role 1

⊑

I/O
I/O

APPLICATION

I/O

Protocol Model

⊑

I/O

overhead make it infeasible to verify entire production codebases, which
often consist of hundreds of thousands of lines of code.

In this chapter, we present Diodon2, a proved-sound methodology that
scales verification of security properties to large production codebases.
Diodon works with codebases where a small, syntactically-isolated
component implements a security protocol, whose security argument
can be made separately from the rest of the code. Our methodology
decomposes the overall codebase into this protocol implementation (the
Core) and the remainder (the Application).

This decomposition allows us to apply different verification techniques
to the two parts. We verify the Core using our approach from Chapter 2
to show refinement w.r.t. a verified Tamarin model, which requires
precise reasoning about, e.g., the payloads of I/O operations. Instead
of applying the same annotation-heavy approach to the Application,
we use automatic static analyses to ensure that security-relevant data
of the Core (in particular, secrets such as keys) does not influence any
I/O operation within the Application. If this I/O independence holds,
the Application cannot perform any I/O operations that could interfere
with the protocol and invalidate its proven security. Additionally, we use
static analyses to prove that the Application satisfies the assumptions
made for the proof of the Core, in particular, that the preconditions
of Core functions hold when called from the Application and that the
Application does not violate any invariants of Core data structures.
These checks ensure that the proofs of the Core and the Application
compose soundly. Consequently, the entire codebase refines the protocol
model and enjoys all security properties proved for the model. Diodon
significantly reduces the proof effort of verifying software that contains
protocol implementations. Fig. 4.1 illustrates our methodology.

We prove I/O independence for the Application by executing an auto-
matic taint analysis on the entire codebase to identify I/O operations
that are possibly affected by secrets (also implicitly via control flow) and
checking that all such operations are within the Core, which shows that
the codebase’s decomposition is valid and the Core is sufficiently large. It
would be too restrictive to enforce that all secrets are confined within the
Core. In most implementations, secrets exist outside the Core, e.g., the
Application might have access to secrets either via program inputs or the
Core’s state (red area within the Application in Fig. 4.1). It is therefore
essential to ensure (via a whole-program analysis) that the Application
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does not use these secrets to violate the security properties of the Tamarin
model.

Most I/O operations within the Core correspond to a protocol step and
are relevant for proving refinement w.r.t. a protocol model. In production
code, however, the Core might also contain operations irrelevant to the
protocol, such as logging a protocol step. To reduce the verification effort
further, we also check I/O independence within the Core to classify each
I/O operation based on whether it depends on secrets occurring in a
protocol run (dark red circles in Fig. 4.1) or not (gray circles). The former
need to be considered during the refinement proof, while the latter can
safely be ignored. This classification simplifies the refinement proof and
shortens the abstract protocol model.

We prove refinement of the Core w.r.t. a protocol model using an auto-
active program verifier [33]. Auto-active program verifiers take as input
an implementation annotated with specifications such as pre- and post-
conditions and loop invariants, and attempt to verify the implementation
automatically using an SMT solver.

Auto-active verification is generally sound only if it is applied to the
entire codebase because all callers of a function must establish its pre-
condition and all functions must preserve data structure invariants. To
ensure that our methodology is sound while avoiding this requirement
for the Application, we design our methodology such that static anal-
yses automatically discharge the proof obligations on the Application.
Nevertheless, our methodology is flexible enough to permit complex in-
teractions between the Core and Application, e.g., through concurrency
and callbacks. Some assumptions remain, in particular, the absence of
data races and undefined behavior; we discuss those in Sec. 4.3.4.

We prove Diodon sound, providing a blueprint for combining the distinct
formalisms of auto-active verifiers and static analyses. First, we prove
that a DY attacker can simulate all secret-independent I/O operations.
Consequently, if a Tamarin model permits every secret-dependent I/O
operation in a codebase, then this codebase refines the model. Second, we
show that Diodon reasons about these secret-dependent I/O operations
without verifying the entire codebase. I.e., we construct the corresponding
proof for the entire codebase by starting from the proof for the Core, which
we obtain from auto-active verification, and discharging the remaining
proof obligations using our static analyses.

We evaluate Diodon on two Go implementations, a signed DH key
exchange and a fork of the AWS Systems Manager Agent (SSM Agent) [132],
a large (100k+ LoC) codebase. Part of the latter codebase implements
an experimental protocol for encrypted shell sessions. We prove secrecy
for and injective agreement on the session keys established by both
protocols. For the SSM Agent codebase, Diodon allowed us to limit auto-
active verification to only about 1% of the entire codebase, which took
less than three person months. This demonstrates that Diodon enables,
for the first time, the verification of strong security properties at the
scale of production codebases. Our static analyses and case studies are
open-source [133, 134].

Contributions. We make the following contributions:

➤ We present a scalable verification methodology for implementations
of security protocols within large codebases, which applies to any
codebase with a clear distinction between the protocol core and the
rest of the code.
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➤ We identify I/O independence, enabling concise protocol models for
complex implementations.

➤ We show how to use static analyses to automatically discharge the
Core’s proof obligations, enabling Diodon to scale to large codebases.

➤ We prove the soundness of I/O independence w.r.t. a DY attacker, and
the soundness of Diodon’s combination of auto-active verification
and static analyses.

➤ We evaluate our methodology on two case studies, an implementation
of the signed DH key exchange and an AWS Systems Manager Agent
fork, to demonstrate that Diodon scales to large, production codebases.

4.2 Running Example of Diodon

We demonstrate the core ideas of Diodon on a sample program in the Go
programming language, which implements a simple message authentica-
tion code (MAC) protocol that sends and receives signed messages using
a pre-shared key. In the remainder of this section, we refers to a user of
Diodon. First, we manually split the codebase into Core and Application
following function boundaries. We make the Core as small as possible to
reduce auto-active verification efforts while making sure that the entire
protocol implementation is contained therein and that we can define an
invariant for the Core’s API with which the Application interacts.

We model the protocol and prove security properties with the Tamarin
protocol verifier [7, 8]. The goal is to prove that the entire program, i.e.,
the composition of the Core and Application, refines the Tamarin model
and, thus, satisfies the same security properties as the protocol model. We
auto-actively verify the Core using Gobra [34] and apply the automatic
Argot [135] static analyses to the entire codebase.

Core. The Core (Fig. 4.2) consists of a struct definition, two API functions,
InitChannel and Send, which access this struct, and a predicate Inv
that represents the separation logic [25] invariant used to verify the
functions. Separation logic controls heap access with these permissions
to reason about side effects and to prove data-race freedom, as detailed
in Sec. 1.1.2. For instance, acc(msg,1) on line 24 passes full permission
to write the contents of msg (if it is non-nil) from a caller to function
Send, and back to the caller when the function returns. acc(c, 1/2)
on line 33 denotes 1/2 permissions, i.e., read-only access, to all fields
of the struct to which c points (cf. fractional permissions). Separation
logic predicates [104], like Inv, abstract over individual permissions to
heap locations. Conceptually, we can treat a predicate instance such as
Inv(c) as a shorthand notation for the predicate’s body, which includes
permissions to access the struct fields and the pre-shared key’s bytes. We
use preserves as syntactic sugar for properties that are preserved, that
is, act as pre- and postconditions.

To receive incoming packets, the Core spawns a goroutine on line 19
executing the function continuousRecv. We omit its implementation in
the figure for space reasons. The goroutine repeatedly calls a blocking
receive operation, checks the MAC’s validity, and on success calls the
closure that is stored in the struct field cb as a callback. If the callback is
non-nil, it delivers the resulting message to the Application.

We verify the Core for any callback closure that satisfies the specification
CbSpec (cf. line 13 & 10–11), which states that a caller must pass permission
for modifying the message to the closure when invoking it and that the
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1 package core

3 type Chan struct {
4 psk []byte
5 cb Cb
6 }

8 type Cb = func(msg []byte)

10 //@ requires acc(msg, 1)
11 //@ func CbSpec(msg []byte)

13 //@ requires cb != nil ==> cb implements CbSpec{}
14 //@ preserves psk != nil ==> acc(psk, 1)
15 //@ ensures Inv(c)
16 func InitChannel(psk []byte, cb Cb) (c *Chan) {
17 //@ inhale AliceIOPermissions()
18 c = &Chan{append([]byte(nil), psk...), cb}
19 go continuousRecv(c)
20 return c
21 }

23 //@ preserves c != nil ==> Inv(c)
24 //@ preserves msg != nil ==> acc(msg, 1)
25 func Send(c *Chan, msg []byte) {
26 if c == nil || msg == nil { return }
27 fmt.Printf("Send %x\n", msg)
28 packet := append(msg, HMAC(msg, c.psk)...)
29 sendToNetwork(packet)
30 }

32 /*@ pred Inv(c *Chan) {
33 c != nil && acc(c, 1/2) &&
34 acc(c.psk, 1/2) && AliceIOPermissions() &&
35 (c.cb != nil ==> c.cb implements CbSpec{})
36 } @*/

Figure 4.2: Sample Core for a simple MAC
communication. In Go, function defini-
tions take a list of input parameters and
may have a second list for outputs. We
omit the continuousRecv goroutine’s
implementation that invokes the c.cb
closure (if non-nil) whenever a message
has been received. We simplify the rep-
resentation of I/O permissions, which
describe permitted protocol-relevant I/O
operations, and omit proof-related state-
ments.

closure does not have to return any permissions. On line 18, we duplicate
the pre-shared key (which the Application obtains as a program input)
to keep the Core’s memory footprint separated from the Application.
Thus, we can pass half of the permissions for accessing the struct fields to
the goroutine spawned on line 19 and store the remaining permissions in
the invariant Inv, which is then returned to the caller of InitChannel.

Application. The Application (Fig. 4.3) consists of a single function that
creates a closure that will print any incoming message, initializes the Core
with the pre-shared key psk and this closure, and then sends a message
by invoking the Send function of the Core. In realistic programs, the
Application might have thousands of lines of code, making auto-active
verification prohibitively expensive. Diodon allows us to apply automatic
static analyses instead, as detailed below.

Protocol Model. Fig. 4.4 excerpts the abstract protocol model as a multiset
rewriting system in Tamarin (cf. Sec. 2.2.1) with two protocol roles, Alice
and Bob, each starting off with a pre-shared key psk. Both roles can
send and receive unboundedly many packets, each of which are the
composition of a message plus the appropriate MAC. To make zero
assumptions about the messages themselves, we treat them as being
attacker-controlled, i.e., the sending role obtains a message from the
attacker-controlled network via an In fact, as shown on line 3. For this
protocol model, we prove that all received messages were previously
sent by either Alice or Bob, unless the attacker obtains the pre-shared
key, which Tamarin proves automatically.
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Figure 4.3: Sample Application that is
a client of Fig. 4.2. We omit parsing of
command line arguments for presenta-
tion purposes and, thus, assume that psk
stores the parsed pre-shared key.

1 package main

3 import . "core"

5 func main(psk []byte) {
6 cb := func(m []byte) {fmt.Printf("%x\n", m)}
7 c := InitChannel(psk, cb)
8 Send(c, []byte("hello world"))
9 fmt.Printf("Log: message sent.\n")

10 // fmt.Printf("%v\n", c)
11 }

Figure 4.4: Tamarin model excerpt for the
MAC protocol implemented in Fig. 4.2.

1 rule Alice_Send:
2 let packet = <msg, sign(msg, psk)> in
3 [ Alice_1(rid, A, B, psk), In(msg) ]
4 --->
5 [ Alice_1(rid, A, B, psk), Out(packet) ]
6 rule Alice_Recv:
7 let packet = <msg, sign(msg, psk)> in
8 [ Alice_1(rid, A, B, psk), In(packet) ]
9 --->

10 [ Alice_1(rid, A, B, psk), Out(msg) ]

In order to prove that our program is actually a refinement of this model
and, thus, inherits all proven properties, Diodon combines auto-active
verification and static analyses to obtain provably-sound guarantees.

Verification. Our goal is to ensure that the composition of the Applica-
tion and Core refines the abstract Tamarin model, i.e., the program’s
I/O behavior is contained in the model’s I/O behavior. This refinement
implies that any trace-based safety property proven in Tamarin also
holds for the program because the program performs the same or fewer
I/O operations than the protocol model. We split the refinement proof
into three steps: We prove that (1) non-protocol I/O is independent of
protocol secrets, (2) all remaining I/O refines a protocol role, and (3) the
proof steps soundly compose.

First, we manually identify protocol-relevant calls to I/O operations
within the Core. In our example, these are the sendToNetwork call and the
corresponding network receive operation. We then perform an automatic
taint analysis on the entire codebase to prove I/O independence for all
other calls to I/O operations (in our example, the calls to Printf), i.e.,
we check that they do not use tainted data. Uncommenting line 10 in
Fig. 4.3 would result in printing all struct fields of variable c including the
pre-shared key psk, which is the only secret. I/O independence would
correctly fail for this modified program, resulting in an error message
indicating the flow of secret data to the print statement. In general, we
treat data as a secret (i.e., tainted) if the protocol model’s attacker might
not know this data. Checking I/O independence ensures that we do not
miss any protocol-relevant I/O operations and that the chosen Core is
sufficiently large.

The Core may execute protocol-relevant operations not only by perform-
ing I/O operations, but also by communicating with the Application.
For example, Alice’s protocol step of taking an arbitrary message from
the environment (before signing and sending it), is implemented by the
Core obtaining msg from the Application (line 25 in Fig. 4.2). Similarly,
Alice may (after receiving a packet and checking its signature) release
its payload to the environment, which is implemented as passing the
payload to the Application when invoking the closure c.cb (not shown in
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Fig. 4.2). To handle such protocol-relevant operations uniformly, we treat
them as virtual protocol-relevant I/O operations. This allows us to enforce
or assume constraints on the arguments’ taint status while creating the
necessary proof obligations in the next step of the refinement proof. Here,
the fact that releasing the payload is permitted by the protocol model
(line 10 in Fig. 4.4) informs the taint analysis that the callback’s argument
may be considered as untainted, which allows printing it on line 6 in
Fig. 4.3.

Second, we prove the Core using an auto-active program verifier, i.e., a
program verifier that uses manual annotations and proof automation to
prove properties about programs. While various other separation logic-
based, auto-active program verifiers exist, including VeriFast [26] for C,
Nagini [30] for Python, and Prusti [32] for Rust, we use the Go verifier
Gobra [34] to prove the Core. This proof includes showing that the
protocol model permits every protocol-relevant I/O operation, including
virtual I/O. Note that step (1) ensures that these operations must all be in
the Core. We use an I/O specification for each protocol role describing
the permitted protocol-relevant I/O operations (cf. Sec. 2.2.2). In our
example, Alice obtains the permissions to perform these operations
during the initialization of the Core (line 17) and maintains them as part
of the invariant (line 34), where inhale adds the specified permissions to
the current program state by assumption. When performing a protocol-
relevant I/O operation, like sendToNetwork, Gobra proves that the
I/O specification permits this operation with the specific arguments.
Otherwise, Gobra reports a verification failure.

Third, since the Gobra proof for the Core assumes that callers respect
the functions’ preconditions, Diodon restricts the class of supported
preconditions such that static analyses are able to prove that the Appli-
cation satisfies them. For example, the precondition of Send requires
exclusive access for the argument msg; Diodon enforces this condition
using a combination of static pointer, escape, and pass-through analyses
to ensure that no other goroutine accesses the memory pointed to by msg.
Send’s other precondition requires the Core’s invariant to hold, which
is established by InitChannel. The Application could in principle vio-
late this precondition, for example, by creating a Chan instance without
calling InitChannel, or by invalidating the invariant of a Chan instance
through field updates or concurrency. We apply this combination of
static analyses to prevent all such cases (cf. Sec. 4.3.3).

Together, these three proof steps ensure that the program refines the
abstract Tamarin model and inherits the security properties proved for
the model.

4.3 Diodon

Our methodology, Diodon, proves security properties for implementa-
tions by refinement and scales to large codebases by significantly reducing
verification effort. Diodon enables more concise protocol models than
previous approaches and leverages fully automatic analyses on most of
the implementation to discharge proof obligations.

We manually decompose a codebase into two syntactically isolated com-
ponents, the Core implementing a security protocol, and the Application
consisting of the remaining code. Typically, this decomposition is natural
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Figure 4.5: Diodon proves that the en-
tire codebase (blue) refines a protocol
model (green) by soundly composing
auto-active verification with automatic
static analyses. We auto-actively verify
the Core based on its specification to
show that the protocol-relevant I/O op-
erations refine a protocol role (upper
trace inclusion). This specification is par-
tially generated from the protocol model,
which is omitted. The static taint analy-
sis proves that all other I/O operations
within the entire codebase refine our
attacker model (lower trace inclusion).
Lastly, we discharge the Core’s assump-
tions by applying automatic static analy-
ses, proving that the Application satisfies
the calling restrictions expressed in the
Core’s specification.
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and follows module boundaries as a protocol’s implementation is local-
ized. As illustrated in Fig. 4.5, this decomposition allows us to split the
proof that the entire codebase refines a protocol model into three steps
and uses the best-suited tool for each step. We explain in Sec. 4.3.1 how
Diodon identifies which I/O operations are protocol-relevant by per-
forming a static taint analysis on the entire codebase. Sec. 4.3.2 covers
the Core’s auto-active verification using Gobra proving that protocol-
relevant I/O operations refine a particular protocol role. Finally, Sec. 4.3.3
explains how we discharge the assumptions made when auto-actively
verifying the Core by performing static analyses on the Application.

4.3.1 I/O Independence

One of our key insights is to distinguish between I/O operations that
are relevant for a security protocol from those that are not (e.g., sending
log messages to a remote server). This distinction has two main benefits.
First, protocol-irrelevant operations do not have to be reflected in the
abstract protocol model, which makes the model concise, more general,
and easier to maintain, review, and prove secure. Second, by ensuring that
protocol-irrelevant I/O operations cannot possibly invalidate the security
properties proven for the protocol model, we do not have to consider
them during the laborious auto-active refinement proof and instead can
check simpler properties using automatic static analyses. We classify all
calls to I/O operations as either protocol-relevant or protocol-irrelevant.
In the Core, an I/O operation is protocol-irrelevant if and only if its
specification requires no I/O permissions. In contrast, all I/O operations
in the Application are implicitly considered protocol-irrelevant.

To ensure that I/O operations classified as protocol-irrelevant indeed do
not interfere with the protocol or invalidate proven security properties
of the protocol, we check that they do not use any secret data (such as
key material); more precisely, we check non-interference between protocol
secrets and the parameters of these I/O operations. We call this important
property of an I/O operation I/O independence. It guarantees that an I/O
operation cannot possibly invalidate the protocol’s proven security prop-
erties: any I/O operation that uses only non-secret data could also have
been performed by the DY attacker and, thus, was already considered by
Tamarin during the protocol verification. In other words, proving that all
protocol-irrelevant I/O operations satisfy I/O independence guarantees
that they refine our DY attacker (cf. Sec. 4.4.1).
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From a cryptographic perspective, I/O independence allows us to reduce
the security of an entire codebase to the security of its Core. This reduction
is valid because most of the Application can be treated as part of the
attacker, while the parts of the Application that manipulate secrets (e.g.,
code that loads long-term keys from disk) are shown not to perform
I/O, and thus can conceptually be considered part of the Core, without
introducing violations of the I/O specification of its protocol role.

We prove I/O independence by performing an automatic static taint
analysis on the entire codebase that includes implicit information flows
from control flow. A taint analysis checks for a set of sources and sinks
whether there are any flows of information from a source to a sink. The
analysis starts at each source, i.e., a function which produces secret data,
and explores how secret information propagates through the program
by keeping track of program locations storing a tainted value, i.e., a value
that is influenced by a source. We disallow branching on tainted data to
avoid information flows via control flow.

We configure the taint analysis to consider all calls to key-generation
functions within the Core and long-term secrets that are passed as
program inputs, like the pre-shared key in our running example, as
sources because the DY attacker does not have access to them. This set of
initial sources taints all protocol secrets including session keys. E.g., if
the Core implements a DH key exchange, the analysis correctly considers
the generated secret key and the resulting shared key tainted because the
shared key is computed from the secret key and the other party’s public
key. We then configure the taint analysis to treat all I/O operations in the
Application as well as all protocol-irrelevant I/O operations in the Core as
sinks. We use Capslock [136] to identify such I/O performing functions in
the Go standard library. We consider all functions with at least one of the
following capabilities as a sink: write to the file system or network, modify
the state of the operating system (e.g., os.Setenv), perform a system call,
and execute external programs (e.g., (*os/exec.Cmd).Run).

We run the taint analysis on the entire codebase. If taint reaches a
sink, verification fails because a secret reached a supposedly protocol-
irrelevant I/O operation. Otherwise, we have correctly identified the
protocol-relevant I/O operations (and thereby confirmed that we have
correctly delimited the Core); it remains to reason about those I/O
operations, as we discuss next.

4.3.2 Core Refinement

We auto-actively verify the entire Core, which allows us to state and
prove (besides safety and functional correctness) precise constraints
about protocol-relevant calls to I/O functions and their arguments. We
prove that the implementation uses the payload for each I/O operation
specified in the protocol model. The corresponding verification effort is
feasible since, in industrial codebases like our main case study, the Core
comprises only a small fraction of the codebase.

We prove that the Core refines a protocol role by building on the approach
explained in Chapter 2. In particular, we equip each protocol-relevant
I/O operation with a specification that requires an I/O permission
for executing this operation with the provided arguments. Since we
provide exactly the I/O permissions justified by the protocol role’s
model to the Core during its initialization, successful verification with
Gobra implies that the Core executes at most the protocol-relevant I/O
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Figure 4.6: Example of a signature and
specification of a Core API function.

1 //@ preserves c ≠ nil =⇒ inv(c)
2 //@ preserves a0 ≠ nil =⇒ acc(a0)
3 //@ preserves a1 ≠ nil =⇒ acc(a1)
4 //@ ensures r ≠ nil =⇒ acc(r)
5 func (c *Core) ApiFn(a0, a1 *int) (r *int)

operations permitted by the model and, thus, refines this protocol role.
This approach differs in three significant ways from Chapter 2.

First, we do not auto-actively verify the entire codebase and, instead,
verify only the Core. As we will discuss in Sec. 4.3.3, we syntactically
restrict the preconditions of the Core functions so that we can apply
automatic static analyses to check that each call from the Application
satisfies them, which is necessary for soundness.

Second, our approach supports codebases that use multiple instances
of the Core, e.g., to run multiple roles of the protocol or to run the
protocol multiple times. Since Tamarin considers unboundedly many
role instantiations, we can soundly create the required I/O permissions
for executing a role instance whenever we create a new Core instance.
These I/O permissions are bound to an instance’s unique identifier such
that each Core instance has its own set of I/O permissions for executing
the security protocol once.

Third, to reflect that interactions in the model between the protocol and
the environment may manifest as interactions between the Core and
the Application in the implementation, we treat the boundary between
them as a virtual network interface and enforce I/O permissions for the
corresponding virtual I/O operations, as we illustrated in Sec. 4.2.

4.3.3 Analyzing the Application

We now show how to scale auto-active verification to the entire codebase.
Applying auto-active verification to an entire codebase is typically not
feasible within the resource constraints of industrial projects. A key
insight of Diodon is that this is not necessary: we can use static analyses
to automatically discharge separation logic proof obligations arising in
the Application to obtain, together with the verified Core, a proof in
separation logic for the entire codebase.

The refinement proof for the Core is valid in the context of the entire
application if (1) each call to a Core function from the Application satisfies
the function precondition, and (2) the Application respects permissions
on memory accesses. Our soundness proof for Diodon (cf. Sec. 4.4.2)
ensures that these proof obligations are sufficient and that our novel
combination of static analyses can soundly discharge them. We illustrate
these proof obligations and how we discharge them by considering
the exemplary Core function in Fig. 4.6, taking two integer pointers as
input and returning an integer pointer. This function maintains the Core
invariant (if c is non-nil), needs full permissions for both inputs, and
returns full permissions for the input and output parameters (if they are
non-nil). Thus, we cannot allow, e.g., the Application to pass two aliased
arguments to this function or to concurrently access heap locations
pointed to by these arguments as this would violate the precondition,
i.e., the permissions specified therein.

Implicit Annotations. To construct a proof for the entire codebase, we
enrich the Application with a hypothetical program instrumentation that
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connects the Application to the necessary proof obligations imposed by
the proof of the Core. These implicit annotations track the permissions
that the Application owns by using sets of heap locations and a program
invariant specifying permissions for the heap locations in these sets.
More precisely, each thread has a set lhs (short for “local heap set”) for
thread-local objects such as buffers, and a set ihs (short for “invariant
heap set”) for Core instances. Similarly, a global set ghs (“global heap
set”) keeps track of objects that might be shared between threads, which
becomes relevant later. These sets are mutable and, thus, their content
depends on a particular program point. The sets lhs and ihs allow us
to state the following local program invariant that must hold at every
program point in the Application.

Π𝑙 ≜
(
⋆𝑙∈lhsacc(𝑙)

)
★
(
⋆𝑖∈ihsinv(𝑖)

)
Here, the iterated separating conjunction ⋆𝑒∈𝑠 𝑎(𝑒) conjoins the asser-
tions 𝑎(𝑒) using separating conjunction for all elements 𝑒 in set 𝑠. Π𝑙

states that a thread holds full permissions for all objects in lhs and the
Core invariant for all instances in ihs. In addition, these permissions
are disjoint allowing the Application to write to heap locations in lhs
without breaking the Core invariant. When a thread obtains or gives up
permissions, our implicit annotations adjust lhs and ihs to maintain the
program invariant.

Fig. 4.7 shows these implicit annotations for calls to ApiFn. To highlight that
each statement in the Application maintains the program invariant, we
assert Π𝑙 on lines 1 and 22. For each permission required by the callee’s
precondition, we remove the corresponding heap location from one of
the sets to reflect that ownership is being passed to the callee. Assuming
(for now) that the location was originally in the set, this removal extracts
the corresponding permission from Π𝑙 , as illustrated by the intermediate
assert statements starting on lines 3, 6, and 10 for the three arguments of
the call. After the call, we conversely add those heap locations to the sets
for which the callee’s postcondition provides permissions.

For each permission in the precondition, if the corresponding heap
location was contained in one of the sets before the removal operation,
then we have effectively proved that the precondition holds (syntactic
restrictions ensure that the preconditions cannot contain constraints other
than permission requirements, see below). In the rest of this subsection,
we explain how we use static analyses to check this set containment.
Then, we explain the proof obligations for memory accesses within the
Application.

Guaranteeing Permissions for Parameters. For the arguments a0 and
a1 (we will discuss the core instance c below), we need to prove that
(1) {a0, a1} ⊆ lhs holds before the call to ApiFn and (2) a0 and a1 do not
alias. If (2) was violated, a1 would no longer be in lhs after removing
a0 on line 5 in Fig. 4.7, i.e., we would obtain only acc(a0) instead of
acc(a0)★ acc(a1).

We discharge these two proof obligations by checking the conditions (C6)
and (C7) in Tab. 4.1, resp., using static analyses. We check (C6) by using a
thread escape analysis, which delivers judgments local(𝑥) for a particular
program point expressing that ∗𝑥 is definitely not accessible by any other
thread. We show in Sec. 4.4.2 that (C6) suffices to discharge {a0, a1} ⊆ lhs
(if the arguments are non-nil) by proving a lemma that relates local(𝑥)
for a program point 𝑝 with 𝑥 ∈ lhs. We obtain (C7) by applying a
pointer analysis, which computes may-alias information, i.e., pts(x) for
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Figure 4.7: Conceptually inserted implicit
annotations for a Core API call r := c.
ApiFn(a0, a1) in the Application. The
assert statements solely illustrate our de-
ductions and, thus, can be omitted.

1 //@ assert
(
⋆𝑙∈lhsacc(𝑙)

)
★
(
⋆𝑖∈ihsinv(𝑖)

)
2 //@ ihs := ihs \ {c}
3 //@ assert

(
⋆𝑙∈lhsacc(𝑙)

)
★
(
⋆𝑖∈ihsinv(𝑖)

)
★

4 //@ (c ≠ nil =⇒ inv(c))
5 //@ lhs := lhs \ {a0}
6 //@ assert

(
⋆𝑙∈lhsacc(𝑙)

)
★
(
⋆𝑖∈ihsinv(𝑖)

)
★

7 //@ (c ≠ nil =⇒ inv(c))★
8 //@ (a0 ≠ nil =⇒ acc(a0))
9 //@ lhs := lhs \ {a1}

10 //@ assert
(
⋆𝑙∈lhsacc(𝑙)

)
★
(
⋆𝑖∈ihsinv(𝑖)

)
★

11 //@ (c ≠ nil =⇒ inv(c))★
12 //@ (a0 ≠ nil =⇒ acc(a0))★
13 //@ (a1 ≠ nil =⇒ acc(a1))
14 r := c.ApiFn(a0, a1)
15 //@ assert

(
⋆𝑙∈lhsacc(𝑙)

)
★
(
⋆𝑖∈ihsinv(𝑖)

)
★

16 //@ (c ≠ nil =⇒ inv(c))★
17 //@ (a0 ≠ nil =⇒ acc(a0))★
18 //@ (a1 ≠ nil =⇒ acc(a1))★
19 //@ (r ≠ nil =⇒ acc(r))
20 //@ lhs := lhs ∪ ({a0, a1, r} \ nil)
21 //@ ihs := ihs ∪ ({c} \ nil)
22 //@ assert

(
⋆𝑙∈lhsacc(𝑙)

)
★
(
⋆𝑖∈ihsinv(𝑖)

)
a pointer 𝑥, where 𝑎 ∈ pts(x) denotes that ∗𝑥 may-alias any location
allocated at site 𝑎. More precisely, we check for each pair of arguments
that the sets of locations they may-alias are disjoint, which is sufficient as
we restrict parameters to be shallow.

Guaranteeing the Core Invariant. Similarly to parameters, we have to
prove that c ∈ ihs holds such that removing c from ihs on line 2 grants
us the Core invariant inv(c), if c is non-nil. In Sec. 4.4.2, we prove that
c ∈ ihs if the following premises hold. (1) The Core instance c must have
been returned as a result from a Core API function initially establishing
the Core invariant, e.g., InitChannel in our running example. (2) All
heap modifications in the Application must not modify the internal state
of the Core instance, even through an alias, since this could invalidate
the Core invariant.

In a single-threaded program without callbacks from the Core to the
Application, the above premises are sufficient. However, in the presence
of these two features, we need to ensure that the Application does
not call two Core functions on the same Core instance simultaneously,
which would effectively duplicate permissions and, thus, make reasoning
unsound: (3) The Application must not pass the same Core reference
to more than one thread, and (4) the Application must not call a Core
function in a callback on the same instance that is invoking the callback.

We establish the four premises by checking the conditions (C1) to (C5)
in Tab. 4.1. Conditions (C1) and (C3) can be enforced by checking that
the Application calls only Core functions that establish or preserve
the invariant. While the postconditions provide this information for
Core instances that are passed as arguments or results, our analyses
need to prevent a subtle loophole: We need to prevent Core functions
from allocating a Core instance without establishing its invariant and
letting the Application access it via global variables or shared memory.
We implemented a pass-through analysis computing pass 𝑓 (𝑥, 𝑟) for a
function 𝑓 stating that outside of calls to 𝑓 , ∗𝑥 definitely passed through
return parameter 𝑟. We use this pass-through analysis to ensure that all
references to Core instances in the Application are obtained exclusively
through the return parameter, such that the postcondition establishes
the invariant.
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Condition Details
C1 Core init Core instances are created in a function en-

suring the invariant in its postcondition
C2 No modification Application does not write to Core instances’

internal state, even through an alias
C3 Core preservation Core instances are passed only to Core func-

tions that preserve the invariant
C4 Core locality Core instances are used only in the thread

they are created in
C5 Core callback Core APIs are not invoked in Application

callbacks
C6 Parameter locality Parameters to Core APIs are local
C7 Disjoint parameters Parameters to the same Core API call do not

alias one another
C8 Application access Reads and writes in the Application occur

to memory allocated in the Application or
transferred from the Core

Table 4.1: Sufficient conditions checked
by our static analyses, grouped into those
involving Core instances, other param-
eters to Core functions, and memory
accesses in the Application.

To establish (C2), we use a pointer analysis to ensure that all reads and
writes in the Application never access a Core instance’s internal state. In
particular, we ensure that the Application accesses only heap locations
that must-not-alias locations reachable from ihs, i.e., internal state of Core
instances. Since we use a sound pointer analysis, this check conservatively
over-approximates the heap locations about which the Core invariant
states properties. While it is possible to access Core memory without
breaking the invariant, we could not treat the Core invariant as an opaque
separation logic resource when analyzing the Application, which would
require a static analysis capable of reasoning about fractional permissions
and arbitrary functional properties.

For (C4), we use the thread escape analysis to ensure that each Core
instance does not escape its thread (we show local(c) for each call to
Core instance c), guaranteeing that each thread operates on a disjoint set
of Core instances ihs. While it is possible to safely pass Core instances
between threads, this would require a significantly more sophisticated
static analysis that can reason about the ordering of concurrent executions.
Condition (C5) is enforced by checking that the call graph does not contain
Core functions invoked transitively from Application callbacks. Allowing
such calls would require proving that the same instance is not used in
the inner call, which requires a more precise pointer analysis.

Our explanations generalize from the exemplary Core function in Fig. 4.6
to arbitrary Core API functions as long as they satisfy the following
restrictions on pre- and postconditions. We support an arbitrary number
of input and output parameters with arbitrary value and pointer types.
Our restrictions mandate that Core API functions preserve the Core
invariant and full permissions for each parameter of pointer type, both
only under the condition that the receiver and parameters are non-nil.
Additionally, the postcondition specifies full permissions for each return
parameter if it is non-nil and of pointer type. These restrictions ensure
that preconditions do not specify functional properties, such as require
an input array to have a certain length, which we cannot check using
our static analyses. As seen with our example in Fig. 4.6, we cannot rule
out that the Application passes nil as an argument because there is no
sound nilness analysis for Go to the best of our knowledge and, thus, we
account for this possibility in our restrictions.

Application Memory Access. Finally, we need to ensure that the Appli-
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cation accesses only memory to which it has permissions. While we have
already established that the Application does not write to internal state
of Core instances (C2), we need to particularly consider the case where
memory is transferred after its allocation between the Core and the
Application. The other case, namely the Core or Application allocating
memory without transferring it, is straightforward. I.e., if Core-allocated
memory is never transferred to the Application then the Application can-
not access it. Similarly, if Application-allocated memory is not transferred
to the Core then the Application retains the corresponding permission.

Checking condition (C8) is sufficient. If Application-allocated memory
is transferred to the Core, our syntactic restrictions guarantee that the
Core only temporarily borrows the corresponding permissions until the
Core API call returns. If the Core allocates memory and transfers it to the
Application, the Core must also transfer the corresponding permissions,
which we enforce via our pass-through analysis checking that this trans-
fer happens via a return parameter as our syntactic restrictions guarantee
that the postcondition specifies permissions for this return parameter.
Using (C8), we prove that each memory access in the Application is to
a location in either lhs or ghs (cf. Sec. 4.4.2). In the latter case, we need
to reason about concurrent access. We assume that the Application is
free from data races: if two accesses race, then the program is invalid
according to the Go specification. If there are no races, then there is some
total order in which the threads can atomically pull permission from ghs,
perform the access, and then return permissions to ghs before the next
thread needs to access the same location.

4.3.4 Threat Model, Assumptions, and Limitations

The Diodon methodology provides strong guarantees for large codebases,
namely that a codebase satisfies the same trace-based safety properties as
the abstract protocol model. Like other verification techniques, Diodon
relies on assumptions about the codebase, execution environment, and
the employed tools.

Diodon considers an arbitrary number of potentially concurrent protocol
sessions, allowing the DY attacker to, e.g., replay messages across sessions
or apply cryptographic operations thereto to construct messages of
unbounded size. As is standard for symbolic cryptography, we assume
cryptographic operations such as signing are perfectly secure, e.g., the
attacker can create valid signatures only if it possesses the correct signing
key. The attacker can obtain such keys only by observing or constructing
them, never by guessing.

Our methodology allows us to prove that each implementation indi-
vidually refines a particular role of an abstract protocol model. Since
the security properties we prove about an abstract model are typically
global, they hold only if each involved implementation refines one of
the protocol roles. Next, we discuss limitations of this refinement proof,
grouped by limitations of the methodology itself and limitations of our
instantiation in Go.

The Diodon methodology requires a partitioning of a codebase into
Core and Application, while satisfying the syntactic restrictions for
the Core API specifications. This partitioning limits applicability, not
soundness as the taint analysis checking I/O independence guides
correct partitioning and fails otherwise. Additionally, Diodon requires
the absence of undefined behavior in the codebase, which we prove
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for the Core. However, this remains an assumption for the Application,
which could be mitigated by performing an additional static analysis
establishing this property. E.g., we could use Astrée [137] for a subset of C
and C++. Finally, we inherit the pattern requirement from Arquint et al. [73],
which allows multiple terms to have the same byte-level representation
in general, but requires a unique representation for terms corresponding
to protocol messages.

Our instantiation of Diodon in Go uses several tools to discharge proof
obligations, and we rely on the soundness of each tool: the abstract
protocol model verifier, the auto-active program verifier, and the static
analyses. The risk that any of these tools is unsound can be mitigated by
choosing mature tools such as Tamarin and Gobra.

More specifically, the Core’s auto-active verification relies on trusted
specifications for libraries, such as the I/O or cryptographic libraries that,
e.g., consume I/O permissions or specify the cryptographic relations
between input and output parameters. Diodon could be combined with
verified libraries like EverCrypt [109] to reduce this trust assumption.

Furthermore, our taint analysis relies on the correct specification of
secrets and I/O operations (we use an existing tool [136] to identify I/O
operations). E.g., not treating the pre-shared key in the running example
as a secret would allow us to perform I/O operations in the Application
that depend on this key.

The employed static analyses assume that the entire codebase is free of
data races and, thus, exhibits defined behavior only [138]. While we auto-
actively prove race freedom for the Core, this remains an assumption
for the Application. Our implicit annotations clearly indicate where
in the Application we rely on this assumption. Additionally, the static
analyses do not soundly handle certain hard-to-analyze features such
as the unsafe package (e.g., allowing arbitrary pointer arithmetic), cgo
(i.e., the ability to invoke C functions), or reflection. We rely on the
codebase not using them in a way that would invalidate the analysis
results. Diodon could be extended by additional static analyses to reduce
these assumptions, e.g., by performing a data race analysis and checking
for uses of the unsafe and cgo packages and reflection. As such, these
assumptions are not an inherent limitation of Diodon itself. We report
case-studies-related limitations of the static analyses in Sec. 4.5.

4.4 Soundness

To prove Diodon sound, we reason separately about allowing protocol-
independent I/O operations in a codebase and combining auto-active
verification with static analyses.

In Sec. 4.4.1, we prove that a codebase 𝑐 containing protocol-dependent
and protocol-independent I/O operations refines a given Tamarin model
if the I/O specification 𝜙, corresponding to a protocol role in this Tamarin
model, permits all protocol-dependent I/O operations in the codebase.
For this part of the soundness proof, we assume that the entire codebase 𝑐
satisfies the Hoare triple

[
𝜙
]

𝑐 [true], where protocol-independent
I/O operations do not consume an I/O permission and, thus, can be
performed at arbitrary points within 𝑐 and independently of the I/O
specification 𝜙. Such a Hoare triple could be obtained by auto-actively
verifying the entire codebase 𝑐, which Diodon does not require.
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In Sec. 4.4.2, we show that we constructively obtain the Hoare triple[
𝜙
]

𝑐 [true] for an entire codebase 𝑐 using Diodon by auto-actively
verifying only parts thereof, namely the Core, and executing our static
analyses on 𝑐, if we assume crash freedom and absence of undefined
behavior for the parts of 𝑐 that are not auto-actively verified. Note
however that we need crash freedom only for satisfying the definition
of Hoare triples, which include crash freedom. Thus, crash freedom is
not an inherent requirement for Diodon as crashes do not invalidate our
security guarantees.

By combining both results, we obtain that applying Diodon to a codebase 𝑐
proves that 𝑐 refines a Tamarin model, despite the presence of protocol-
independent I/O operations, and auto-actively verifying the Core only,
as long as we discharge the side conditions using our static analyses.

4.4.1 I/O Independence

We show that we can soundly allow protocol-independent I/O operations
in a codebase by treating these I/O operations as a refinement of our
attacker model. For this purpose, we extend Arquint et al.’s soundness
proof [81, App. E] to accommodate such I/O operations, and we adopt
their notation for legibility. More specifically, we add these I/O operations
to the concrete system and show that this concrete system refines an
abstract system that is composed of only protocol roles and our attacker,
which corresponds to a protocol’s Tamarin model.

Since we permit a codebase 𝑐 to perform independent I/O operations
in addition to I/O operations permitted by an I/O specification 𝜙, we
adapt the verifier assumption [81, Asm. 1] to account for both types of
I/O operations.

Assumption 4.4.1 (Verifier Assumption)

⊢𝛼
[
𝜙
]
𝑐 [true] ∧ 𝕋 (𝑐, 𝑠) = true =⇒ 𝛼(C) ≼ 𝜙 ||| 𝛿.

I.e., we assume that successfully verifying a program 𝑐 against an I/O
specification 𝜙 and successfully executing the taint analysis 𝕋 with some
configuration 𝑠 specifying sources and sinks of tainted data implies
that the program’s traces abstracted under a relabeling function 𝛼 are
included in the parallel composition of the I/O specification’s traces 𝜙
and the traces of performing independent I/O operations 𝛿.

We assume that the program’s traces are described by the labeled tran-
sition system (LTS) semantics C, which is provided by the operational
semantics of the programming language in which 𝑐 is implemented3. 𝛼
abstracts the program’s traces, e.g., referring to specific function names,
to traces of operations that match the naming as used in 𝜙 and 𝛿. 𝛿
represents the set of traces resulting from generating fresh nonces and
using received payloads as well as public constants to construct and send
payloads, as will be made explicit in Def. 4.4.2.

Note that Asm. 4.4.1 expresses besides the trace inclusion itself that the
states of 𝜙 and 𝛿 are independent such that their parallel composition
is possible. We obtain this independence by successfully executing our
taint analysis. In particular, our taint analysis establishes that protocol-
independent I/O operations do not operate on tainted data. We configure
the taint analysis such that long-term and short-term secrets known by
a protocol role but not the attacker are a source of taint. Hence, these
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I/O operations and all steps necessary to compute their data are either
already part of 𝛿 or the necessary computation steps can be replicated
and added thereto, such that 𝛿 is independent of 𝜙.

The other direction, namely that the I/O specification 𝜙 is independent
of from 𝛿, holds by construction of 𝜙. Since we generate 𝜙 by a series of
transformations from a protocol role’s abstract model and use syntacti-
cally distinct elements to represent this protocol role’s state and express
the transitions that form 𝛿, as we shall see next, 𝛿 cannot influence 𝜙.

For a set of function symbols Σ operating over terms, MD denotes the
set of transition rules that the attacker can apply. K(𝑥) represents the
fact that the attacker knows the term 𝑥 and the fact symbols out and in
represent that a protocol participant sent and might receive a particular
term, respectively. Therefore, MD captures all operations available to
the attacker, namely receiving a sent term, sending a term, adding a
public constant to its knowledge, generating a fresh nonce, and applying
a function 𝑓 ∈ Σ.

Definition 4.4.1 (Attacker Message Deduction Rules) As defined in [81,
Def. 9] [81]: Arquint et al. (2022), Sound Verifi-

cation of Security Protocols: From Design
to Interoperable Implementations (extended
version)

, MDΣ denotes the set of message deduction rules representing our
DY attacker for Σ:

[out(𝑥)] []−→ [K(𝑥)]
[K(𝑥)] [K(𝑥)]−−−−→ [in(𝑥)]
[] []−→ [K(𝑥 ∈ pub)]

[Fr(𝑥 ∈ fresh)] []−→ [K(𝑥)]
[K(𝑥1), . . . , K(𝑥𝑘)]

[]−→ [K( 𝑓 (𝑥1 , . . . , 𝑥𝑘))] for 𝑓 ∈ Σ with arity 𝑘

Similarly, we define MDind
Σ

in Def. 4.4.2, which consists of the transition
rules a protocol-independent component can execute. These transition
rules represent sending known terms to the network and receiving
terms from the network, using public constants, generating nonces, and
applying functions to learn new terms. We assume that these transition
rules cover all operations that a protocol-independent component might
perform. In contrast to MD, MDind

Σ
operates on syntactically different,

reserved fact symbols. Avoiding these name clashes simplifies defining a
simulation relation for proving Lemma 4.4.1.

While ind represents knowledge of a particular term, outind and inind
represent a term sent to and received from the network, respectively. ind,
outind, and inind are in the same class of fact symbols as their analogous
counterparts K, out, and in, respectively. I.e., K and ind are persistent fact
symbols Σper capturing the property that knowledge is monotonically
increasing. This means that applying a transition rule does not consume
such facts and, thus, their multiplicity in the multiset comprising the state
is irrelevant. In contrast, out, in, outind, and inind are in the class of linear
fact symbols Σlin, meaning that applying a transition rule that states such
a fact in its premise will remove this fact from the state while such a fact
occurring in the rule’s conclusion adds it to the state. Additionally, outind
and inind are in the class of output and input fact symbols Σout and Σin,
respectively, as suggested by their intuitive semantics.
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Definition 4.4.2 (Protocol-Independent Message Deduction Rules)

[ind(𝑥)] []−→ [outind(𝑥)]
[inind(𝑥)]

[]−→ [ind(𝑥)]
[] []−→ [ind(𝑥 ∈ pub)]

[Fr(𝑥 ∈ fresh)] []−→ [ind(𝑥)]
[ind(𝑥1), . . . , ind(𝑥𝑘)]

[]−→ [ind( 𝑓 (𝑥1 , . . . , 𝑥𝑘))] for 𝑓 ∈ Σ with arity 𝑘

where ind, outind, and inind are reserved fact symbols and ind ∈ Σper, outind ∈
Σout ∩ Σlin, and inind ∈ Σin ∩ Σlin.

Although we present MDind
Σ

on the same abstraction level as the attacker
deduction rules MDΣ to make them more legible, these deduction rules
are not part of the MSR system R. Instead, we transform these rules
according to Sec. 2.3 and make them part of the component system as
described next.

We introduce buffered versions for the outind and inind facts and split
the rules in MDind

Σ
involving I/O into two separate rules each, which we

synchronize using transition labels. This split allows us to assign half
of the rules to the component executing protocol-independent opera-
tions Rind(rid) and assign the remaining rules R+io to the environment
forming R𝑒+

env. We use 𝜒+ to synchronize the execution of these now
separated rules.

Definition 4.4.3 (Rind(rid)) Rind(rid) consists of the following multiset
transition rules.

[ind(rid, 𝑥)]
[𝜆𝑠

outind
(rid, 𝑥)]

−−−−−−−−−−−−−→ []

[]
[𝜆𝑠

inind
(rid, 𝑥)]

−−−−−−−−−−−−−→ [ind(rid, 𝑥)]

[]
[]

−−−−−−−−−−−−−→ [ind(rid, 𝑥 ∈ pub)]

[]
[𝜆𝑠

Frind
(rid, 𝑥)]

−−−−−−−−−−−−−→ [ind(rid, 𝑥)]
ind(rid, 𝑥1),

. . . ,
ind(rid, 𝑥𝑘)


[]

−−−−−−−−−−−−−→ [ind(rid, 𝑓 (𝑥1 , . . . , 𝑥𝑘))]
for 𝑓 ∈ Σ with arity 𝑘

Definition 4.4.4 (R𝑒+
env) R𝑒+

env = R𝑒
env ⊎R+io where R𝑒

env is defined as in
Sec. 2.3.2 and R+io consists of the following multiset transition rules.

[]
[𝜆𝑒

outind
(rid, 𝑥)]

−−−−−−−−−−−−−→ [outind(𝑥)]

[inind(𝑥)]
[𝜆𝑒

inind
(rid, 𝑥)]

−−−−−−−−−−−−−→ []

[Fr(𝑥 ∈ fresh)]
[𝜆𝑒

Frind
(rid, 𝑥)]

−−−−−−−−−−−−−→ []

Definition 4.4.5 (𝜒+) We define the partial synchronization function 𝜒+ :
(⋃𝑖 ,rid(R𝑖

role(rid) ∪Rind(rid))) ×R𝑒+
env → E that synchronizes events of the
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two systems |||𝑖 ,rid
(
R𝑖

role(rid) ||| Rind(rid)
)

and R𝑒+
env, i.e.,

𝜒+(𝑒 , 𝑒′) =

[] if 𝑒 = 𝐹𝑠(rid, 𝑥) and 𝑒′ = 𝐹𝑒(rid, 𝑥)
𝜒(𝑒 , 𝑒′) if 𝑒 ≠ 𝐹𝑠(rid, 𝑥) and 𝑒′ ≠ 𝐹𝑒(rid, 𝑥)
undefined otherwise

where 𝐹 ∈ {𝜆outind ,𝜆inind ,𝜆Frind} and the partial function 𝜒 [81, App. E.5] [81]: Arquint et al. (2022), Sound Verifi-
cation of Security Protocols: From Design
to Interoperable Implementations (extended
version)

synchronizes labels occurring in R𝑖
role and R𝑒

env and [] denotes the empty
transition label.

Lemma 4.4.1 (Protocol-Independent Components Refine the Attacker)(
|||𝑖 ,rid

(
R𝑖

role(rid) ||| Rind(rid)
) )
∥𝜒+ R𝑒+

env

≼
(
|||𝑖 ,rid R𝑖

role(rid)
)
∥𝜒 R𝑒

env

Given Rind(rid) and R𝑒+
env, Lemma 4.4.1 states that we can treat the

system (on the first line) consisting of possibly unboundedly many
instances of components executing a protocol role and executing protocol-
independent operations as a refinement of the system on the second
line that does not have components executing protocol-independent
operations and uses an environment without the rules in R+io.

The following proof proceeds by setting up a simulation relation that
merges the states of components executing protocol-independent opera-
tions with the environment and renames certain fact symbols. Using this
simulation relation, we show that each transition in the concrete system
can be simulated by the abstract system. While this simulation is straight-
forward for transitions executed by components that are present in both,
the concrete and abstract system, concrete transitions corresponding to
protocol-independent operations are more insightful as we show that the
abstract environment, namely our DY attacker model, can simulate those
transitions.

Proof. We denote E and E′ the abstract and concrete systems, respectively,
and prove this lemma by establishing refinement with a stuttering
simulation relation R between states of the abstract system E and states
of the concrete system E′. I.e., E =

(
|||𝑖 ,rid R𝑖

role(rid)
)
∥𝜒 R𝑒

env and E′ =(
|||𝑖 ,rid

(
R𝑖

role(rid) ||| Rind(rid)
) )
∥𝜒+ R𝑒+

env. Using a stuttering simulation
relation in contrast to a standard simulation relation allows us to relate
the abstract and concrete states even if the concrete system performs
additional transitions that do not have a corresponding transition in
the abstract system, i.e., the abstract system can stutter as long as the
observable behaviors of the two systems remain the same. Accordingly,
we use

.−→E and
.−→E′ to denote a transition step in the abstract system E

and concrete system E′, respectively. Additionally, we use
.−→R𝑖

role(rid) and
.−→R𝑒

env for transitions performed by the individual components in the
abstract system and, similarly,

.−→R𝑖
role(rid),

.−→Rind(rid) and
.−→R𝑒+

env
for the

concrete system’s components.

The abstract states are of the shape ((𝑠𝑖 ,rid)1≤𝑖≤𝑛, for each rid , 𝑠𝑒). We use
primed variables for referring to concrete states, which are of the shape
((𝑠′

𝑖 ,rid , 𝑠
′
ind,𝑖 ,rid)1≤𝑖≤𝑛, for each rid , 𝑠

′
𝑒), i.e., they are composed of two multisets

of facts for each 𝑖, rid, and one for the environment. Each multiset 𝑠′
𝑖 ,rid

corresponds to the state of instance rid executing the protocol role 𝑖, while
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𝑠′ind,𝑖 ,rid corresponds to the state of the component executing protocol-
independent operations, which is conceptually co-located with 𝑠′

𝑖 ,rid but
guaranteed by our taint analysis to operate on distinct state.

We use a stuttering simulation relation R, such that (𝑠, 𝑠′) ∈ R iff

𝑠 = ((𝑠′𝑖 ,rid)1≤𝑖≤𝑛, for each rid , 𝑟((∪m
𝑖 ,rid𝑠

′
ind,𝑖 ,rid) ∪m 𝑠′𝑒)),

where 𝑠′ = ((𝑠′
𝑖 ,rid , 𝑠

′
ind,𝑖 ,rid)1≤𝑖≤𝑛, for each rid , 𝑠

′
𝑒) and 𝑟 is the identity func-

tion except for the cases specified below. We lift 𝑟 to operate on multiset
of facts. This lifted version removes duplicate K facts because K is a
persistent fact symbol.

𝑟(ind(rid, 𝑥)) = K(𝑥)
𝑟(outind(𝑥)) = K(𝑥)
𝑟(inind(𝑥)) = K(𝑥)

 for all rid, 𝑥.

I.e., to derive 𝑠𝑒 from 𝑠′, we, first, combine all facts in the states of
protocol-independent components 𝑠′ind,𝑖 ,rid with 𝑠′𝑒 by applying multiset
union ∪m and, second, rename and deduplicate these facts according to
the renaming function 𝑟.

It is clear that the initial states are related, i.e., (𝑠, 𝑠′) ∈ R with 𝑠 =

((∅, . . . , ∅), ∅) and 𝑠′ = ((∅, ∅), . . . , (∅, ∅), ∅). We now show that for all
states (𝑠1 , 𝑠

′
1) ∈ R and for all concrete transition steps 𝑠′1

𝑒−→E′ 𝑠
′
2 there

exists an abstract transition 𝑠1
𝑒−→E 𝑠2 such that (𝑠2 , 𝑠

′
2) ∈ R. We use the

following naming convention to refer to individual multisets within the
abstract and concrete states, respectively, for 𝑗 ∈ {1, 2}:

𝑠 𝑗 = ((𝑠 𝑗 ,𝑖 ,rid)1≤𝑖≤𝑛, for each rid , 𝑠 𝑗 ,𝑒)
𝑠′𝑗 = ((𝑠′𝑗 ,𝑖 ,rid , 𝑠

′
𝑗 ,ind,𝑖 ,rid)1≤𝑖≤𝑛, for each rid , 𝑠

′
𝑗 ,𝑒)

Based on the definition of the parallel and synchronizing composition, |||
and ∥𝜒+ , resp., we distinguish the following two cases for the transition
step 𝑠′1

𝑒−→E′ 𝑠
′
2:

▶ 𝑒 = 𝜒+(𝐹𝑠(rid, 𝑥), 𝐹𝑒(rid, 𝑥)) for 𝐹 ∈ {𝜆outind ,𝜆inind ,𝜆Frind}:
Since 𝑠′1

𝑒−→E′ 𝑠
′
2, we have:

𝑠′1,ind,𝑖 ,rid
𝐹𝑠 (rid,𝑥)−−−−−−→Rind(rid) 𝑠

′
2,ind,𝑖 ,rid

𝑠′1,𝑒
𝐹𝑒 (rid,𝑥)−−−−−−→R𝑒+

env
𝑠′2,𝑒

and all other component states remain unchanged, i.e.,

𝑠′2,𝑖 ,rid = 𝑠′1,𝑖 ,rid

𝑠′2, 𝑗 ,rid′ = 𝑠′1, 𝑗 ,rid′

𝑠′2,ind, 𝑗 ,rid′ = 𝑠′1,ind, 𝑗 ,rid′

for all (𝑗 , rid′) ≠ (𝑖 , rid). We now need to distinguish the cases
where 𝐹 = 𝜆outind , 𝐹 = 𝜆inind , and 𝐹 = 𝜆Frind .

• 𝐹 = 𝜆outind : By definition of the transition rule 𝐹𝑠 , we have
ind(rid, 𝑥) ∈ 𝑠′1,ind,𝑖 ,rid and 𝑠′2,ind,𝑖 ,rid = 𝑠′1,ind,𝑖 ,rid \𝑚 {|ind(rid, 𝑥)|}.
Similarly, by definition of 𝐹𝑒 , we have 𝑠′2,𝑒 = 𝑠′1,𝑒∪𝑚 {|outind(𝑥)|}.
By definition of 𝜒+, the transition label 𝑒 is the empty label [].
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We simulate this transition in E by stuttering, i.e., 𝑠2 = 𝑠1.
Since 𝑟 renames both facts ind(rid, 𝑥) and outind(𝑥) to K(𝑥) and
(𝑠1 , 𝑠

′
1) ∈ R, we have K(𝑥) ∈ 𝑠1,𝑒 . Additionally, the multiset

minus and multiset union operations cancel out after applying
𝑟 such that 𝑠2,𝑒 = 𝑠1,𝑒 . Therefore, (𝑠2 , 𝑠

′
2) ∈ R.

• 𝐹 = 𝜆inind : This case is analogous to 𝐹 = 𝜆outind .
• 𝐹 = 𝜆Frind : By definition of 𝐹𝑠 and 𝐹𝑒 , we have

Fr(𝑥 ∈ fresh) ∈ 𝑠′1,𝑒 ,

𝑠′2,𝑒 = 𝑠′1,𝑒 \𝑚 {|Fr(𝑥)|}, and
𝑠′2,ind,𝑖 ,rid = 𝑠′1,ind,𝑖 ,rid ∪𝑚 {|ind(rid, 𝑥)|}.

Since (𝑠1 , 𝑠
′
1) ∈ R, we obtain Fr(𝑥) ∈ 𝑠1,𝑒 enabling us to

apply the attacker’s message deduction rule (from MDΣ)

[Fr(𝑥 ∈ fresh)] []−→ [K(𝑥)], which results in 𝑠2,𝑒 = 𝑠1,𝑒\𝑚{|Fr(𝑥)|}∪𝑚
{|K(𝑥)|}. Due to the renaming function 𝑟 applied to 𝑠′2,ind,𝑖 ,rid,
we obtain (𝑠2 , 𝑠

′
2) ∈ R.

▶ 𝑒 = 𝜒(𝑒 , 𝑒′):
We consider the following four subcases based on the definition of
𝜒:

• 𝑒 = 𝜒(𝜆𝑠
𝐹,𝑖,rid(𝑚̄),𝜆

𝑒
𝐹,𝑖,rid(𝑚̄)) for some 𝐹, 𝑖, rid, 𝑚̄:

By definition, neither Rind(rid) nor R+io contain any transition
rule with a matching transition label. Hence, this transition
step synchronizes a step in R𝑖

role and R𝑒
env. By definition of

our composition operators and since 𝑠′1
𝑒−→E′ 𝑠

′
2, we have

𝑠′1,𝑖 ,rid

𝜆𝑠
𝐹,𝑖,rid(𝑚̄)−−−−−−−→

R
𝑖 ,rid
role (rid) 𝑠′2,𝑖 ,rid

𝑠′1,𝑒
𝜆𝑒
𝐹,𝑖,rid(𝑚̄)−−−−−−−→R𝑒

env 𝑠′2,𝑒

and
𝑠′2, 𝑗 ,rid′ = 𝑠′1, 𝑗 ,rid′

𝑠′2,ind,𝑖 ,rid = 𝑠′1,ind,𝑖 ,rid

𝑠′2,ind, 𝑗 ,rid′ = 𝑠′1,ind, 𝑗 ,rid′

for all (𝑗 , rid′) ≠ (𝑖 , rid).
Since the renaming function 𝑟 behaves like the identity func-
tion for facts occurring in the premise and conclusion of rules
𝜆𝑠
𝐹,𝑖,rid(𝑚̄) and 𝜆𝑒

𝐹,𝑖,rid(𝑚̄), the same rules can be applied in the
abstract states 𝑠1,𝑖 ,rid and 𝑠1,𝑒 . I.e., we have

𝑠1,𝑖 ,rid
𝜆𝑠
𝐹,𝑖,rid(𝑚̄)−−−−−−−→

R
𝑖 ,rid
role (rid) 𝑠2,𝑖 ,rid

𝑠1,𝑒
𝜆𝑒
𝐹,𝑖,rid(𝑚̄)−−−−−−−→R𝑒

env 𝑠2,𝑒

and (𝑠2 , 𝑠
′
2) ∈ R.

• 𝑒 = 𝜒(𝑒′, 𝑠𝑘𝑖𝑝) for some 𝑒′ ∈ R𝑖
role(rid):

Then, 𝑒′ = 𝑒 and by definition of our composition operators,
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we obtain 𝑠′1,𝑖 ,rid
𝑒−→R𝑖

role(rid) 𝑠
′
2,𝑖 ,rid and

𝑠′2, 𝑗 ,rid′ = 𝑠′1, 𝑗 ,rid′

𝑠′2,ind,𝑖 ,rid = 𝑠′1,ind,𝑖 ,rid

𝑠′2,ind, 𝑗 ,rid′ = 𝑠′1,ind, 𝑗 ,rid′

𝑠′2,𝑒 = 𝑠′1,𝑒

for all (𝑗 , rid′) ≠ (𝑖 , rid). Since (𝑠1 , 𝑠
′
1) ∈ R, we further have

𝑠1,𝑖 ,rid = 𝑠′1,𝑖 ,rid, 𝑠1,𝑖 ,rid
𝑒−→R𝑖

role(rid) 𝑠2,𝑖 ,rid, and, thus, 𝑠2,𝑖 ,rid =

𝑠′2,𝑖 ,rid. Therefore, (𝑠2 , 𝑠
′
2) ∈ R.

• 𝑒 = 𝜒(𝑒′, 𝑠𝑘𝑖𝑝) for some 𝑒′ ∈ Rind(rid):
𝑒′ ≠ 𝐹𝑠(rid, 𝑥) for 𝐹 ∈ {𝜆outind ,𝜆inind ,𝜆Frind} by definition of 𝜒+.
Therefore, 𝑒′ must be the transition adding a public constant
or applying a k-ary function 𝑓 to the state of Rind(rid). We
can simulate either transition in the abstract system E by
performing the corresponding message deduction rule in
MDΣ, which updates the abstract state in the same way after
merging the states of the environment and of the components
performing protocol-independent operations and applying
the renaming function 𝑟. Thus, (𝑠2 , 𝑠

′
2) ∈ R.

• 𝑒 = 𝜒(𝑠𝑘𝑖𝑝, 𝑒′) for some 𝑒′ ∈ R𝑒+
env:

Then, 𝑒′ = 𝑒 and, by definition of the composition operators,
we obtain 𝑠′1,𝑒

𝑒−→R𝑒+
env

𝑠′2,𝑒 , 𝑠
′
2,𝑖 ,rid = 𝑠′1,𝑖 ,rid, and 𝑠′2,ind,𝑖 ,rid =

𝑠′1,ind,𝑖 ,rid for all 𝑖 , rid. By definition of 𝜒+, 𝑒 cannot have the
shape 𝐹𝑒(rid, 𝑥) for some rid, 𝑥, and 𝐹 ∈ {𝜆outind ,𝜆inind ,𝜆Frind},
which rules out the transitions in R+io. Thus, 𝑒 ∈ R𝑒

env. Since
(𝑠1 , 𝑠

′
1) ∈ R, we have 𝑠′1,𝑒 ⊆𝑚 𝑠1,𝑒 . Since 𝑒’s guard is stable

under supermultiset, the rewrite rule 𝑒 can be applied in
state 𝑠1,𝑒 , i.e., 𝑠1,𝑒

𝑒−→R𝑒
env 𝑠2,𝑒 . As this abstract transition only

modifies the submultiset 𝑠′1,𝑒 by adding or removing facts
for which the renaming function 𝑟 behaves as the identity
function and leaves all other 𝑠1,𝑖 ,rid and 𝑠1,𝑒 \𝑚 𝑠′1,𝑒 unchanged,

we obtain 𝑠2,𝑒 = 𝑟((∪m
𝑖 ,rid𝑠

′
1,ind,𝑖 ,rid) ∪m 𝑠′2,𝑒). Thus, 𝑠1

𝑒−→E 𝑠2
and (𝑠2 , 𝑠

′
2) ∈ R.

Theorem 4.4.2 (Soundness) Suppose Asm. 4.4.1 holds and that we have
verified, for each role 𝑖, the Hoare triple ⊢𝜋′ext

[
𝜓𝑖(rid)

]
𝑐𝑖(rid) [true]. Then

(|||𝑖 ,rid 𝜋int(C𝑖(rid))) ∥𝜒′ E ≼𝑡 R.

Thm. 4.4.2 states that composing unboundedly many instances of each
role’s LTS C𝑖(rid)with the concrete environment E refines the protocol
model R. While this theorem is identical to Thm. 2.5.2, the proof differs
since C and each C𝑖(rid) contained therein describe larger sets of traces
in Asm. 4.4.1 than in Asm. 2.4.1.

Proof. We decompose the proof into a similar series of trace inclusions as
Sec. 2.5.2 but add an additional trace inclusion to abstract the protocol-
independent I/O operations to the environment, which contains the DY
attacker (cf. Lemma 4.4.1).
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The first trace inclusion is(
|||𝑖 ,rid 𝜋int(C𝑖(rid))

)
∥𝜒′ E

≼
(
|||𝑖 ,rid 𝜋(𝜋′ext(C𝑖(rid)))

)
∥𝜒+ 𝜋ext(𝜋′ext(E)),

(4.1)

where we obtain the first line from the second by pushing the relabel-
ing 𝜋ext ◦ 𝜋′ext into the parallel composition, thus changing the set of
synchronization labels from 𝜒+ to 𝜒′.

By combining Asm. 4.4.1, the assumption ⊢𝜋′ext

[
𝜓𝑖(rid)

]
𝑐𝑖(rid) [true],

and Thm. 2.3.3, we obtain

𝜋(𝜋′ext(C𝑖(rid))) ≼ R𝑖
role(rid) ||| Rind(rid), (4.2)

where Rind(rid) is a multiset rewriting (MSR) system capturing the execu-
tion of protocol-independent I/O operations. All facts in this MSR system
are instantiated with the thread id rid, which helps in distinguishing the
facts belonging to each Rind instance. Additionally, (4.2) implicitly spec-
ifies that the MSR systems R𝑖

role(rid) and Rind(rid) operate independently,
i.e., on different multisets of facts. By performing the taint analysis, we
ensure that R𝑖

role(rid) does not influence Rind(rid). Checking the opposite,
i.e., that Rind(rid) does not influence R𝑖

role(rid) by performing a second
taint analysis is not necessary. We explicitly track throughout code-level
verification the multiset of facts representing the state of R𝑖

role(rid), which
is only manipulated by internal and I/O library functions corresponding
to state updates permitted by R𝑖

role(rid). Therefore, this state cannot be
influenced by Rind(rid).
We can leverage a general composition theorem [71, Thm. 2.3] that implies
that trace inclusion is compositional for a large class of composition oper-
ators including ||| and ∥Λ. Applying this theorem to (4.2) and Prop. 2.5.1
establishes the trace inclusion(

|||𝑖 ,rid 𝜋(𝜋′ext(C𝑖(rid)))
)
∥𝜒+ 𝜋ext(𝜋′ext(E))

≼
(
|||𝑖 ,rid

(
R𝑖

role(rid) ||| Rind(rid)
) )
∥𝜒+ R𝑒+

env .
(4.3)

Applying Lemma 4.4.1 in connection with Lemma 2.3.1 and Lemma 2.3.2
completes the proof.

4.4.2 Combining Auto-Active Verification and Static
Analyses

In this subsection, we sketch soundness of our combination of auto-active
program verification and fully automatic static analyses by constructing a
proof in concurrent separation logic [25, 110] for the entire codebase. More
specifically, we give an invariant that is maintained by each statement
in our programming language and present proof rules that use, besides
certain side conditions, only this invariant in their premises and conclu-
sions. We use Diodon’s static analyses to discharge these side conditions.
Therefore, we can compose the proof rules to prove ⊢

[
𝜙
]
𝑐 [true] for an

I/O specification 𝜙 and an entire codebase 𝑐.

To focus on the main proof insights, we deliberately keep the considered
programming language simple (cf. Def. 4.4.6) and consider the case where
an execution of the codebase 𝑐 corresponds to at most one execution
of a protocol role, which is represented by the I/O specification 𝜙. We
discuss limitations and extensions lifting these restrictions at the end of
this subsection.



4: We assume the existence of some total
order for API functions, e.g., based on
their declarations’ syntactical ordering.
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Prerequisites. We consider an imperative, concurrent, and heap-man-
ipulating programming language as shown in Def. 4.4.6. For simplicity, we
omit function boundaries and statements creating complex control flow.
Furthermore, we assume that programs are in static single assignment
(SSA) form such that we do not have to consider variable reassignments for
the purpose of our proof. Besides statements to allocate, read, and write
a heap location, we make each auto-actively verified API function of the
Core a dedicated statement in the language even though these statements
are themselves implemented as sequences of statements, which are
considered by our static analyses. 𝑐 B CoreAlloc(𝑒) corresponds to
calling the Core’s constructor and creating a new Core instance 𝑐. We
use 𝑟 B CoreApi_k(𝑐, 𝑒) to represent invoking the 𝑘-th API function4

on a Core instance 𝑐 using input arguments 𝑒 and return arguments 𝑟.
𝑠1; 𝑠2 denotes standard sequential composition of two statements and
fork (𝑥̄) {𝑠} spawns a new thread executing statement 𝑠 while passing
variables 𝑥̄ to this thread. We syntactically require that the newly spawned
thread accesses only its own local variables and variables 𝑥̄.

Definition 4.4.6 (Basic Programming Language) We consider the follow-
ing programming language, where 𝑆 ranges over labeled statements, 𝑥 over
variables, ℓ over statement labels, and 𝑒 over expressions. We have the usual
side effect-free expressions. We use 𝑦̄ as a shorthand notation to denote lists of
kind 𝑦.

𝑆 ≜ 𝑈ℓ

𝑈 ≜ skip | 𝑥 B new() | 𝑥 B ∗𝑒 | ∗𝑥 B 𝑒 |
𝑐 B CoreAlloc(𝑒) | 𝑟 B CoreApi_k(𝑐, 𝑒) |
𝑆; 𝑆 | fork (𝑥̄) {𝑆}

We call 𝑆; 𝑆 and fork (𝑥̄) {𝑆} compound statements, while all other
statements in our language are called simple. When not relevant, we omit a
statement’s label ℓ , which uniquely identifies the statement in the program
text. We use these labels to refer to the program points before and after
each labeled statement. We abstractly treat 𝑐 B CoreAlloc(𝑒) and 𝑟 B
CoreApi_k(𝑐, 𝑒) as first-class statements in our language despite being
implemented as sequences of statement that are considered by our static
analyses and the auto-active program verifier. This is possible because we
can treat these statements as opaque boxes from a proof construction point of
view as we prove a Hoare triple for each such statement using the auto-active
program verifier.

We assume that all memory accesses in the unverified Application neither
cause crashes nor data races such that we can reason about their effects.
While we could have avoided assuming data race freedom by defining
that all heap operations in our language are atomic, we try to stay faithful
to most programming languages, which specify data races to cause
undefined behavior, thus, making this assumption necessary.

Assumption 4.4.2 (Crash Freedom) We assume that all heap accesses
within the Application, 𝑥 B ∗𝑒 and ∗𝑥 B 𝑒 do not crash5

5: We require Asm. 4.4.2 as we construct
a Hoare triple for the entire codebase,
whose definition includes that a program
does not crash. We could avoid this as-
sumption by altering the definition of a
Hoare triple to guarantee the postcondi-
tion only if the program does not crash.
This alternative definition would be suit-
able for programming languages like Go
in which dereferencing nil is defined be-
havior and results in a crash, which does
not invalidate our security guarantees.

, i.e., the
Application dereferences only pointers to allocated heap locations as opposed
to nil.
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Assumption 4.4.3 (Data Race Freedom) We assume that all heap accesses
within the Application, 𝑥 B ∗𝑒 and ∗𝑥 B 𝑒, are data race free. I.e., all accesses
to the heap locations to which 𝑒 and 𝑥, respectively, point are linearizable and,
thus, do not cause data races.

Note that Asm. 4.4.2 and Asm. 4.4.3 apply to heap accesses within the
Application only, as we auto-actively prove safety for the Core.

By auto-actively verifying the Core, we prove a Hoare triple for each API
function. This allows us to abstractly treat each API function as a statement
in our language as long as there are no callbacks; we discuss callbacks as
an extension at the end of this subsection. We syntactically restrict the
specification of Core API functions, i.e., the assertions occurring in the
auto-actively verified Hoare triples, such that we can discharge the side
conditions using static analyses and, thus, construct a proof for the entire
codebase. We state these restrictions immediately after introducing some
notational conventions.

Definition 4.4.7 (Notation) We introduce the following notation to simplify
forthcoming definitions, explanations, and proofs. accnil(𝑥) denotes full
permission for the heap location to which 𝑥 points but only if 𝑥 is non-nil.
Analogously, we define invnil(𝑥) for the Core invariant. Lastly, we lift
permissions for a heap location to lists thereof, internally using the iterated
separating conjunction ⋆𝑖 ranging over 𝑖.

accnil(𝑥) ≜ 𝑥 ≠ nil =⇒ acc(𝑥)
invnil(𝑥) ≜ 𝑥 ≠ nil =⇒ inv(𝑥)

acc(𝑥̄) ≜ ⋆0≤𝑖<len(𝑥̄)acc(𝑥̄[𝑖])
accnil(𝑥̄) ≜ ⋆0≤𝑖<len(𝑥̄)accnil(𝑥̄[𝑖])

where len(𝑥̄) returns the length of list 𝑥̄ and 𝑥̄[𝑖] the 𝑖-th element therein.

Assumption 4.4.4 (Syntactic Restrictions for Core Specification) We
make the following syntactical assumptions about the pre- and postconditions
of Core API functions, which ultimately enable us to apply static analyses.

𝑃CoreAlloc(𝑒) ≜ 𝜙 ★ 𝑅

𝑄CoreAlloc(𝑐, 𝑒) ≜ inv(𝑐)★ 𝑅′

𝑃CoreApi_k(𝑐, 𝑒) ≜ invnil(𝑐)★ 𝑆𝑘

𝑄CoreApi_k(𝑐, 𝑒 , 𝑟) ≜ invnil(𝑐)★ 𝑆′𝑘

where 𝑅, 𝑅′, 𝑆𝑘 , and 𝑆′
𝑘

are separation logic assertions that specify
permissions for the arguments 𝑒 and, if applicable, 𝑟. Preconditions are free of
functional properties and specify at most permissions for non-nil arguments,
i.e., accnil(𝑒) |= 𝑅 and accnil(𝑒) |= 𝑆𝑘 . Each postcondition needs to specify
the same or more permissions than the respective precondition, i.e., 𝑅′ |= 𝑅
and 𝑆′

𝑘
|= 𝑆𝑘 . Additionally, postconditions need to specify full permission

to every heap location that becomes accessible to the Application and that is
created within the corresponding Core function or any function transitively
called thereby. For simplicity, we disallow CoreAlloc(𝑒) to return such heap
locations other than the Core instance itself and, thus, permissions to such
heap locations can only occur in 𝑆′

𝑘
for the return arguments 𝑟. Furthermore,

we restrict the input arguments 𝑒 and output arguments 𝑟 to be shallow, i.e.,
their transitive closure of reachable heap locations is the singleton set, i.e.,
∀𝑒 ∈ 𝑒. 𝑒 ≠ nil =⇒ reach(𝑒) = {𝑒} and analogously for 𝑟. This restriction
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simplifies the reasoning about which heap locations are passed between the
Core and Application. However, lifting this restriction is possible and would
require that 𝑆𝑘 and 𝑆′

𝑘
specify the permission for every reachable heap location.

Program Invariant

In order to define composable proof rules for our language, we define a
program invariant that is maintained by each statement. Our invariant
conceptually partitions the heap among two dimensions, namely whether
a heap location is accessible by multiple threads and whether a heap
location is owned by the Application as opposed to the Core. As we
will formalize later, we call a heap location ℎ Application-managed if ℎ is
under the Application’s control, which means that it is not covered by
the Core invariant. Furthermore, we ensure that the Application only
accesses memory that is Application-managed.

We make the heap partitioning explicit by introducing ghost variables
tracking the heap locations belonging to each partition. We use a global
ghost set pointed to by ghs tracking the set of heap locations that
are accessible by multiple threads. The thread-local ghost variable lhs
tracks Application-managed heap locations that are only accessible by
the current thread. Lastly, the thread-local variable ihs tracks the Core
instance if it is already allocated.

Relying on these ghost variables, we can define the program invariants Π𝑙

and Π𝑔 that specify the separation logic permissions held by a thread at
each program point, as shown in Def. 4.4.8, where used is a pointer to a
boolean specifying whether the I/O permissions 𝜙 have already been
consumed to allocate a Core instance.

Definition 4.4.8 (Program Invariants)

Π𝑙 ≜
(
⋆𝑙∈lhsacc(𝑙)

)
★
(
⋆𝑖∈ihsinv(𝑖)

)
Π𝑔 ≜ acc(ghs)★

(
⋆𝑔∈∗ghsacc(𝑔)

)
★

acc(used)★
(
¬(∗used) =⇒ 𝜙

)
Π𝑙 specifies permissions that are exclusively owned by each thread. The
first conjunct specifies (full) permissions to every heap location in lhs,
which, as we will see, holds every heap location that is accessible only by
the current thread and is unrelated to Core instances. Additionally, Π𝑙

specifies that the Core invariant inv(𝑖) holds for each Core instance 𝑖.
Note that inv(𝑖) is a separation logic predicate that specifies permissions
for a subset of the transitively reachable heap locations starting from
𝑖 and possibly functional properties about these heap locations. While
the definition of inv(𝑖) matters for the Core’s auto-active verification,
we treat inv(𝑖) for the purpose of the program invariant as an opaque
separation logic resource.

Π𝑔 specifies permissions to heap locations that are potentially shared
among multiple threads. When accessing such a heap location, a thread
can temporarily acquire the corresponding permission from Π𝑔 , which is
justified as long as all accesses to this location are linearizable. Since we
assume absence of data races (cf. Asm. 4.4.3), there exists a linearization
of heap accesses such that permission for manipulating 𝑔, i.e., acc(𝑔),
can temporarily be obtained from Π𝑔 for the manipulation’s duration.
Furthermore, Π𝑔 specifies the I/O permissions 𝜙 if they have not been
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𝔸(skip){ skip
𝔸(𝑥 B new()){ 𝑥 B new(); lhs B lhs ∪nil {𝑥}

𝔸(𝑥 B ∗𝑒){
{

lhs B lhs \ {𝑒}; 𝑥 B ∗𝑒; lhs B lhs ∪nil {𝑒} if 𝑒 ∈ lhs
atomic {∗ghs B ∗ghs \ {𝑒}; 𝑥 B ∗𝑒; ∗ ghs B ∗ghs ∪nil {𝑒}} otherwise

𝔸(∗𝑥 B 𝑒){


lhs B lhs \ {𝑥}; ∗ 𝑥 B 𝑒; lhs B lhs ∪nil {𝑥} if 𝑥 ∈ lhs
atomic { ∗ ghs B ∗ghs \ {𝑥}; lhs B lhs \ (reach(𝑒) ∩ lhs);

∗ 𝑥 B 𝑒; ∗ ghs B ∗ghs ∪nil {𝑥} ∪ (reach(𝑒) ∩ lhs)} otherwise

𝔸(𝑐 B CoreAlloc(𝑒)){ atomic {∗used B true}; lhs B lhs \ 𝑒; 𝑐 B CoreAlloc(𝑒); lhs B lhs ∪nil 𝑒; ihs B ihs ∪nil {𝑐}
𝔸(𝑟 B CoreApi_k(𝑐, 𝑒)){ ihs B ihs \ {𝑐}; lhs B lhs \ 𝑒; 𝑟 B CoreApi_k(𝑐, 𝑒); lhs B lhs ∪nil 𝑒 ∪ 𝑟; ihs B ihs ∪nil {𝑐}

𝔸(𝑠1; 𝑠2){ 𝔸(𝑠1); 𝔸(𝑠2)
𝔸(fork (𝑥̄) {𝑠}){ lhs B lhs \ (reach(𝑥̄) ∩ lhs); ∗ ghs B ∗ghs ∪nil (reach(𝑥̄) ∩ lhs); fork (𝑥̄) {lhs B ∅; ihs B ∅; 𝔸(𝑠)}

Figure 4.8: Algorithm 𝔸 transforms a codebase by inserting ghost statements. We define this algorithm by cases, i.e., describe how 𝔸
transforms each statement 𝑠 to a statement 𝑠′, written as 𝔸(𝑠){ 𝑠′. reach(𝑒) computes the set of transitively reachable heap locations
from expression 𝑒. The set union operation ignores nil, as variables might be nil, i.e., 𝑆1 ∪nil 𝑆2 ≜ (𝑆1 ∪ 𝑆2) \ nil. This ensures that
nil is never contained in any ghost set.

used yet to create a Core instance, in which case the pointer used points
to a heap location storing the value false. As mentioned, we focus in this
proof on the case of creating at most one Core instance. However, this
conjunct can easily be adapted to provide a family of I/O permissions such
that the creation of arbitrarily-many Core instances becomes possible, as
we will detail at the end of this subsection.

Since the presented program invariants rely on ghost variables to specify
permissions, we have to ensure that these ghost variables stay in sync
with a program’s execution, i.e., the effects of each statement. Hence,
we present algorithm 𝔸 in Fig. 4.8 that augments a program with ghost
statements updating the ghost variables according to each statement’s
effects. These ghost statements manipulate only ghost variables and aid
verification without changing the input program’s runtime behavior.
Thus, these ghost variables and ghost statements can be erased before
compilation.

Common to all cases of algorithm 𝔸 is that for a statement 𝑠, first, the
current heap is partitioned into a heap 𝐻 on which 𝑠 possibly operates
and the remaining heap 𝐹 that 𝑠 leaves untouched by removing the
separation logic resources for 𝐻 via corresponding ghost set subtractions.
The separation logic resources belonging to heap 𝐹 remain in the ghost
sets. Afterwards, statement 𝑠 is executed that changes heap 𝐻 to 𝐻′,
followed by merging the heaps 𝐻′ and 𝐹 via ghost set union operations.

Allocating a heap location operates on an empty heap and produces a
new heap location, which is added to the set of local heap locations as
there is no way any other thread might already have gained access thereto.
Dereferencing a pointer 𝑒 and reading the corresponding heap location
requires a permission for the duration of this operation. Therefore, we
first subtract and afterwards add this location from the current heap
by manipulating either the ghost set of local or global heap locations
depending on whether this heap location is contained in lhs. In case the
heap location is in the ghost set of global heap locations, we insert an
atomic block, which is justified by Asm. 4.4.3 stating that accesses to this
heap location are linearizable.

Noteworthy are write operations to heap locations, especially in the case
that a heap location is accessible by other threads as the written value
becomes accessible by these threads. Hence, we first remove all local
heap locations that are transitively reachable from the written value and
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𝜔(𝑠simple)
(Simple)

Π𝑔 ⊢ [Π𝑙] 𝔸(𝑠simple) [Π𝑙]

Π𝑔 ⊢ [Π𝑙] 𝔸(𝑠1) [Π𝑙] Π𝑔 ⊢ [Π𝑙] 𝔸(𝑠2) [Π𝑙] (Seq)
Π𝑔 ⊢ [Π𝑙] 𝔸(𝑠1; 𝑠2) [Π𝑙]

Π𝑔 ⊢ [Π𝑙] 𝔸(𝑠) [Π𝑙] (Fork)
Π𝑔 ⊢ [Π𝑙] 𝔸(fork (𝑥̄) {𝑠}) [Π𝑙]

Figure 4.9: Proof rules. 𝑠simple ranges over all simple statements; 𝑠, 𝑠1, and 𝑠2 range over all statements. 𝜔 denotes a statement’s side
conditions (cf. Fig. 4.10).

Figure 4.10: Side conditions for our state-
ments, which are amenable to static anal-
yses. 𝜔 evaluates to true for all statements
not listed above and set(𝑙) returns the set
of elements in list 𝑙. We implicitly refer
to variables’ values, e.g., 𝑣 ∈ 𝑆 denotes
that the value of variable 𝑣 is contained
in set stored in variable 𝑆 as opposed to
the variables’ syntactical representation.

𝜔(𝑥 B ∗𝑒) ≜ 𝑒 ∈ lhs ∪ ∗ghs
𝜔(∗𝑥 B 𝑒) ≜ 𝑥 ∈ lhs ∪ ∗ghs

𝜔(𝑐 B CoreAlloc(𝑒)) ≜ ∗ used = false ∧
(set(𝑒) \ nil) ⊆ lhs ∧
disjoint(𝑒)

𝜔(𝑟 B CoreApi_k(𝑐, 𝑒)) ≜ (set(𝑒) \ nil) ⊆ lhs ∧
disjoint(𝑒) ∧
(𝑐 ∈ ihs ∨ 𝑐 = nil)

add them afterwards to the ghost set of global heap location as these
locations possibly escape the current thread via this write operation.
Similarly, when forking a thread, the heap locations that are reachable
from the variables 𝑥̄ escape the current thread and, thus, the sets of local
and global heap locations are updated accordingly.

For CoreAlloc(𝑒) and 𝑟 B CoreApi_k(𝑐, 𝑒), the algorithm 𝔸 adds and
subtracts only 𝑒 and 𝑟 as opposed to all transitively reachable heap
locations. This is sufficient because Asm. 4.4.4 restricts 𝑒 and 𝑟 to be
shallow and, thus, no other heap locations are reachable. However,
extending algorithm 𝔸 to support non-shallow arguments would be
straightforward by adding and removing reach(𝑒) and reach(𝑟) instead of
𝑒 and 𝑟 to and from lhs, respectively.

Proof Rules

Thanks to the program invariants and the ghost statements that algo-
rithm 𝔸 inserts into a program, we can define proof rules as shown in
Fig. 4.9. In particular, all proof rules share the same pre- and postcondi-
tion, namely the local and global program invariants Π𝑙 and Π𝑔 , resp.,
which allow us to compose the proof rules to obtain a whole program
proof. The proof rules’ simplicity is enabled by their side conditions (cf.
Fig. 4.10) that we discharge using our static analyses.

Besides containment of heap locations in particular ghost sets, the side
conditions rely on disjointness of input arguments, which we formally
define next. Informally, two arguments are disjoint if they point to
different heap locations or one of the arguments is nil.

Definition 4.4.9 (Variable Value) val𝜏(x) denotes the value of variable 𝑥
on trace 𝜏. Since we assume that our programs are in SSA-form, this definition
is independent of a particular program point. However, 𝑥 must be declared
such that val𝜏(x) is defined.
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Definition 4.4.10 (Disjointness) Two pointer variables 𝑥 and 𝑦 are disjoint
if their pointer value is different or nil for all traces 𝜏.

disjoint({𝑥, 𝑦}) ≜ ∀𝜏.val𝜏(x) = nil ∨ val𝜏(x) ≠ val𝜏(y)

We straightforwardly lift this definition to lists of variables 𝑧̄, where disjoint(𝑧̄)
denotes pairwise disjointness between every element in 𝑧̄.

Next, we sketch the proof rules’ soundness proof, which relies on the
side conditions 𝜔. Afterwards, we define what properties our static
analyses provide given that their execution succeeded and show that
these properties imply the side conditions 𝜔. We conclude by proving a
corollary stating that we construct a Hoare triple for the entire codebase.

Theorem 4.4.3 (Soundness of Proof Rules)

If Π𝑔 ⊢ [Π𝑙] 𝔸(𝑠) [Π𝑙] , then Π𝑔 |= [Π𝑙] 𝔸(𝑠) [Π𝑙]

Proof sketch. We perform structural induction over the input statement 𝑠
to algorithm 𝔸 and construct a proof tree in separation logic building
up on the proof rules by Vafeiadis [110]. We use a small caps font to
denote proof rules, such as Skip. All rules in this theorem’s proof are from
Vafeiadis [110], except Fork and Seq∗ that are straightforward extensions
from the parallel and sequential composition rules, respectively. Side
conditions arising in the proof trees are marked in blue and form 𝜔 (cf.
Fig. 4.10).

▶ 𝔸(skip): Since the algorithm𝔸does not insert any ghost commands
and skip does not alter the program state,Π𝑙 is trivially maintained.
The Skip rule is immediately applicable and completes the proof
tree.

▶ 𝔸(𝑥 B new()): Fig. 4.20 shows the proof tree that uses Fig. 4.11 as
a sub-proof for inserting a heap location into the ghost set of local
heap locations.

▶ 𝔸(𝑥 B ∗𝑒): The side condition 𝜔 ensures that 𝑒 ∈ lhs ∪ ∗ghs holds.
If 𝑒 ∈ lhs then Fig. 4.21 is a valid proof tree for this read operation.
Otherwise, 𝑒 ∈ ∗ghs holds and Fig. 4.22 shows the corresponding
proof tree.

▶ 𝔸(∗𝑥 B 𝑒): For write operations, we construct a proof tree similar
to read operations, as explained in the case above, except that we
extract permissions for 𝑥 instead of 𝑒 from the program invariants
and replace applications of the Read rule by Write. We can apply
these rules because we possess full permission (as opposed to only
partial permission) to the heap location (i.e., acc(𝑥)).

▶ 𝔸(𝑐 B CoreAlloc(𝑒)): Fig. 4.24 shows the proof tree extending the
subproof that the auto-active program verifier implicitly constructs
(in Fig. 4.23) while verifying the Hoare triple for CoreAlloc(𝑒).

▶ 𝔸(𝑟 B CoreApi_k(𝑐, 𝑒)): We construct a proof tree in Fig. 4.26
using Fig. 4.25 as a subtree that is similar to the one for the Core
allocation command with the main difference that the precondition
requires invnil(𝑐) instead of the I/O permissions 𝜙. The side
condition 𝑐 ∈ ihs ∨ 𝑐 = nil ensures that we can obtain invnil(𝑐)
from Π𝑙 within the proof.

▶ 𝔸(𝑠1; 𝑠2): We apply the standard Seq rule from separation logic to
combine the proof subtrees for 𝔸(𝑠1) and 𝔸(𝑠2) that we obtain by
applying our induction hypothesis.
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Assign
Π𝑔 ⊢ [∀𝑙 ∈ lhs ∪nil {𝑥}. acc(𝑙)] lhs B lhs ∪nil {𝑥} [∀𝑙 ∈ lhs. acc(𝑙)]

Conseq
Π𝑔 ⊢ [(∀𝑙 ∈ lhs. acc(𝑙))★ accnil(𝑥)] lhs B lhs ∪nil {𝑥} [∀𝑙 ∈ lhs. acc(𝑙)]

Frame
Π𝑔 ⊢ [Π𝑙 ★ accnil(𝑥)] lhs B lhs ∪nil {𝑥} [Π𝑙]

Figure 4.11: Proof tree for lhs B lhs ∪nil {𝑥}, where accnil(𝑒) ≜ 𝑒 ≠ nil =⇒ acc(𝑒).

Write
emp ⊢ [acc(ghs)★ ∗ghs = 𝑣] ∗ ghs B ∗ghs ∪nil {𝑥} [acc(ghs)★ ∗ghs = 𝑣 ∪nil {𝑥}]

Frame
emp ⊢ [acc(ghs)★ ∗ghs = 𝑣 ★ 𝑅] ∗ ghs B ∗ghs ∪nil {𝑥} [acc(ghs)★ ∗ghs = 𝑣 ∪nil {𝑥}★ 𝑅]

Conseq
emp ⊢

[
acc(ghs)★ (∀𝑔 ∈ ∗ghs. acc(𝑔))★ accnil(𝑥)

]
∗ ghs B ∗ghs ∪nil {𝑥}

[
acc(ghs)★ ∀𝑔 ∈ ∗ghs. acc(𝑔)

]
Frame

emp ⊢
[
Π𝑔 ★ accnil(𝑥)

]
∗ ghs B ∗ghs ∪nil {𝑥}

[
Π𝑔

]
with 𝑅 ≜ ∀𝑔 ∈ (𝑣 ∪nil {𝑥}). acc(𝑔)

Figure 4.12: Proof tree for ∗ghs B ∗ghs ∪nil {𝑥} given that Π𝑔 is already local, where 𝑣 is a fresh variable and the Write rule has been
naturally extended to internally perform a heap read operation returning the value 𝑣 for ∗ghs as specified in the precondition.

▶ 𝔸(fork (𝑥̄) {𝑠}): Fig. 4.28 shows the proof tree that applies the
induction hypothesis to 𝔸(𝑠). Since the algorithm 𝔸 removes the
permissions for heap locations only in reach(𝑥̄) ∩ lhs, the resulting
side condition ((reach(𝑥̄) ∩ lhs) ⊆ lhs) is trivial since these heap
locations are by definition contained in lhs.
The main proof insight is that we ensure that the global invariant
covers the permissions for all heap locations that become accessible
by the spawned thread and establish the local invariant for the
spawned thread by initializing the set of local heap locations and
(local) Core instances to the empty set. reach(𝑥̄) forms an upper
bound on the heap locations that command 𝑠 might access because
we syntactically require that 𝑠 accesses only 𝑥̄ and its own local
variables.

Static Analyses

Since our proof rules rely on the side conditions 𝜔 (cf. Fig. 4.10), we
introduce next our static analyses, cover the properties we assume they
provide, and show that these properties imply 𝜔. We end by proving a
corollary that we can construct a whole program proof for a codebase
given that we have auto-actively verified the Core and successfully
executed the static analyses.

Pointer Analysis. A pointer analysis computes for each pointer 𝑥 a
set of heap locations 𝐿 to where 𝑥 may point, which we formalize as
a judgement pts(x) = 𝐿. Each heap location in 𝐿 is identified by its
allocation site, which corresponds to the label of a particular statement
in the program’s text. Note that this analysis over-approximates the set
of heap locations that actually change when writing to 𝑥. The pointer

··· 𝐹𝑖𝑔. 4.12

emp ⊢
[
Π𝑔 ★ accnil(𝑥)

]
∗ ghs B ∗ghs ∪nil {𝑥}

[
Π𝑔

]
Atom

Π𝑔 ⊢ [accnil(𝑥)] ∗ ghs B ∗ghs ∪nil {𝑥} [emp]

Figure 4.13: Proof tree for ∗ghs B ∗ghs ∪nil {𝑥}.
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Assign
Π𝑔 ⊢ [∀𝑖 ∈ ihs ∪nil {𝑐}. inv(𝑖)] ihs B ihs ∪nil {𝑐} [∀𝑖 ∈ ihs. inv(𝑖)]

Conseq
Π𝑔 ⊢ [(∀𝑖 ∈ ihs. inv(𝑖))★ invnil(𝑐)] ihs B ihs ∪nil {𝑐} [∀𝑖 ∈ ihs. inv(𝑖)]

Frame
Π𝑔 ⊢ [Π𝑙 ★ invnil(𝑐)] ihs B ihs ∪nil {𝑐} [Π𝑙]

Figure 4.14: Proof tree for ihs B ihs ∪nil {𝑐}, where invnil(𝑐) ≜ 𝑐 ≠ nil =⇒ inv(𝑐).

𝑒 ∈ lhs

Assign
Π𝑔 ⊢ [∀𝑙 ∈ lhs \ {𝑒}. acc(𝑙)] lhs B lhs \ {𝑒} [∀𝑙 ∈ lhs. acc(𝑙)]

Frame
Π𝑔 ⊢ [(∀𝑙 ∈ lhs \ {𝑒}. acc(𝑙))★ acc(𝑒)] lhs B lhs \ {𝑒} [(∀𝑙 ∈ lhs. acc(𝑙))★ acc(𝑒)]

Conseq
Π𝑔 ⊢ [∀𝑙 ∈ lhs. acc(𝑙)] lhs B lhs \ {𝑒} [(∀𝑙 ∈ lhs. acc(𝑙))★ acc(𝑒)]

Frame
Π𝑔 ⊢ [Π𝑙] lhs B lhs \ {𝑒} [Π𝑙 ★ acc(𝑒)]

Figure 4.15: Proof tree for lhs B lhs \ {𝑒} if 𝑒 ∈ lhs.

𝑒 ∈ lhs ∨ 𝑒 = nil

Assign
Π𝑔 ⊢ [∀𝑙 ∈ lhs \ {𝑒}. acc(𝑙)] lhs B lhs \ {𝑒} [∀𝑙 ∈ lhs. acc(𝑙)]

Frame
Π𝑔 ⊢ [(∀𝑙 ∈ lhs \ {𝑒}. acc(𝑙))★ accnil(𝑒)] lhs B lhs \ {𝑒} [(∀𝑙 ∈ lhs. acc(𝑙))★ accnil(𝑒)]

Conseq
Π𝑔 ⊢ [∀𝑙 ∈ lhs. acc(𝑙)] lhs B lhs \ {𝑒} [(∀𝑙 ∈ lhs. acc(𝑙))★ accnil(𝑒)]

Frame
Π𝑔 ⊢ [Π𝑙] lhs B lhs \ {𝑒} [Π𝑙 ★ accnil(𝑒)]

Figure 4.16: Alternative proof tree for lhs B lhs \ {𝑒} that permits 𝑒 being nil.

𝑒 ∈ ∗ghs

Write
emp ⊢ [acc(ghs)★ ∗ghs = 𝑣] ∗ ghs B ∗ghs \ {𝑒} [acc(ghs)★ ∗ghs = 𝑣 \ {𝑒}]

Frame
emp ⊢ [acc(ghs)★ ∗ghs = 𝑣 ★ 𝑅] ∗ ghs B ∗ghs \ {𝑒} [acc(ghs)★ ∗ghs = 𝑣 \ {𝑒}★ 𝑅]

Conseq
emp ⊢

[
acc(ghs)★ ∀𝑔 ∈ ∗ghs. acc(𝑔)

]
∗ ghs B ∗ghs \ {𝑒}

[
acc(ghs)★ (∀𝑔 ∈ ∗ghs. acc(𝑔))★ acc(𝑒)

]
Frame

emp ⊢
[
Π𝑔

]
∗ ghs B ∗ghs \ {𝑒}

[
Π𝑔 ★ acc(𝑒)

]
with 𝑅 ≜ (∀𝑔 ∈ (𝑣 \ {𝑒}). acc(𝑔))★ acc(𝑒)

Figure 4.17: Proof tree for ∗ghs B ∗ghs \ {𝑒} that requires Π𝑔 to be local.

𝑐 ∈ ihs ∨ 𝑐 = nil

Assign
Π𝑔 ⊢ [∀𝑖 ∈ ihs \ {𝑐}. inv(𝑙)] ihs B ihs \ {𝑐} [∀𝑖 ∈ ihs. inv(𝑖)]

Frame
Π𝑔 ⊢ [(∀𝑖 ∈ ihs \ {𝑐}. inv(𝑙))★ invnil(𝑐)] ihs B ihs \ {𝑐} [(∀𝑖 ∈ ihs. inv(𝑖))★ invnil(𝑐)]

Conseq
Π𝑔 ⊢ [∀𝑖 ∈ ihs. inv(𝑖)] ihs B ihs \ {𝑐} [(∀𝑖 ∈ ihs. inv(𝑖))★ invnil(𝑐)]

Frame
Π𝑔 ⊢ [Π𝑙] ihs B ihs \ {𝑐} [Π𝑙 ★ invnil(𝑐)]

Figure 4.18: Proof tree for ihs B ihs \ {𝑐}.

¬(∗used)

Write
emp ⊢ [acc(used)] ∗used B true [acc(used)★ ∗used = 𝑡𝑟𝑢𝑒]

Frame
emp ⊢

[
acc(used)★ 𝜙

]
∗used B true

[
acc(used)★ ∗used = 𝑡𝑟𝑢𝑒 ★ 𝜙

]
Conseq

emp ⊢
[
acc(used)★¬(∗used) =⇒ 𝜙

]
∗used B true

[
acc(used)★ ∗used = 𝑡𝑟𝑢𝑒 ★ 𝜙

]
Conseq

emp ⊢
[
acc(used)★¬(∗used) =⇒ 𝜙

]
∗used B true

[
acc(used)★ (¬(∗used) =⇒ 𝜙)★ 𝜙

]
Frame

emp ⊢
[
Π𝑔

]
∗used B true

[
Π𝑔 ★ 𝜙

]
Atom

Π𝑔 ⊢ [emp] atomic {∗used B true}
[
𝜙
]

Frame
Π𝑔 ⊢ [Π𝑙] atomic {∗used B true}

[
Π𝑙 ★ 𝜙

]
Figure 4.19: Proof tree for atomic {∗used B true}.
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Alloc
Π𝑔 ⊢ [emp] 𝑥 B new() [acc(𝑥)]

Frame
Π𝑔 ⊢ [Π𝑙] 𝑥 B new() [Π𝑙 ★ acc(𝑥)]

··· 𝐹𝑖𝑔. 4.11
Π𝑔 ⊢ [Π𝑙 ★ accnil(𝑥)] lhs B lhs ∪nil {𝑥} [Π𝑙]

Conseq
Π𝑔 ⊢ [Π𝑙 ★ acc(𝑥)] lhs B lhs ∪nil {𝑥} [Π𝑙]

Seq
Π𝑔 ⊢ [Π𝑙] 𝑥 B new(); lhs B lhs ∪nil {𝑥} [Π𝑙]

Figure 4.20: Proof tree for 𝔸(𝑥 B new()).

··· 𝐹𝑖𝑔. 4.15
Π𝑔 ⊢ [Π𝑙] 𝑠1 [Π𝑙 ★ acc(𝑒)]

Read
Π𝑔 ⊢ [acc(𝑒)] 𝑠2 [acc(𝑒)]

Frame
Π𝑔 ⊢ [Π𝑙 ★ acc(𝑒)] 𝑠2 [Π𝑙 ★ acc(𝑒)]

··· 𝐹𝑖𝑔. 4.11
Π𝑔 ⊢ [Π𝑙 ★ accnil(𝑒)] 𝑠3 [Π𝑙]

Conseq
Π𝑔 ⊢ [Π𝑙 ★ acc(𝑒)] 𝑠3 [Π𝑙]

Seq∗
Π𝑔 ⊢ [Π𝑙] 𝑠1; 𝑠2; 𝑠3 [Π𝑙]

with 𝑠1 ≜ lhs B lhs \ {𝑒} 𝑠2 ≜ 𝑥 B ∗𝑒 𝑠3 ≜ lhs B lhs ∪nil {𝑒}

Figure 4.21: Proof tree for 𝔸(𝑥 B ∗𝑒) if 𝑒 ∈ lhs, where Seq∗ represents repeated application of the Seq rule. We discharge the side
condition from Fig. 4.15 as 𝑒 ∈ lhs holds by definition.

𝑒 ∈ ∗ghs
··· 𝐹𝑖𝑔. 4.17

emp ⊢
[
Π𝑔

]
𝑠1

[
Π𝑔 ★ acc(𝑒)

]
Read

emp ⊢ [acc(𝑒)] 𝑠2 [acc(𝑒)]
Frame

emp ⊢
[
Π𝑔 ★ acc(𝑒)

]
𝑠2

[
Π𝑔 ★ acc(𝑒)

]
··· 𝐹𝑖𝑔. 4.12

emp ⊢
[
Π𝑔 ★ accnil(𝑒)

]
𝑠3

[
Π𝑔

]
𝐹𝑖𝑔. 4.12

emp ⊢
[
Π𝑔 ★ acc(𝑒)

]
𝑠3

[
Π𝑔

]
Seq∗

emp ⊢
[
Π𝑔

]
𝑠1; 𝑠2; 𝑠3

[
Π𝑔

]
Atom

Π𝑔 ⊢ [emp] atomic {𝑠1; 𝑠2; 𝑠3} [emp]
Frame

Π𝑔 ⊢ [Π𝑙] atomic {𝑠1; 𝑠2; 𝑠3} [Π𝑙]

with 𝑠1 ≜ ∗ghs B ∗ghs \ {𝑒} 𝑠2 ≜ 𝑥 B ∗𝑒 𝑠3 ≜ ∗ghs B ∗ghs ∪nil {𝑒}

Figure 4.22: Proof tree for 𝔸(𝑥 B ∗𝑒) if 𝑒 ∉ lhs.

𝐴𝑠𝑚. 4.4.4

··· auto-active verification
Π𝑔 ⊢ [𝑃CoreAlloc(𝑒)] 𝑐 B CoreAlloc(𝑒) [𝑄CoreAlloc(𝑐, 𝑒)]

Frame
Π𝑔 ⊢ [𝑃CoreAlloc(𝑒)★ 𝐹] 𝑐 B CoreAlloc(𝑒) [𝑄CoreAlloc(𝑐, 𝑒)★ 𝐹]

Conseq
Π𝑔 ⊢

[
accnil(𝑒)★ 𝜙

]
𝑐 B CoreAlloc(𝑒) [accnil(𝑒)★ inv(𝑐)]

Frame
Π𝑔 ⊢

[
Π𝑙 ★ accnil(𝑒)★ 𝜙

]
𝑐 B CoreAlloc(𝑒) [Π𝑙 ★ accnil(𝑒)★ inv(𝑐)]

Figure 4.23: Proof tree for 𝑐 B CoreAlloc(𝑒) using the subproof that we extract from the auto-active program verifier. The side condition
(Asm. 4.4.4) states that 𝑃CoreAlloc(𝑒) = 𝜙★𝑅 and accnil(𝑒) |= 𝑅. We call 𝐹 the permissions that are framed around, i.e., accnil(𝑒) = 𝑅★ 𝐹.
The side condition further specifies that 𝑄CoreAlloc(𝑐, 𝑒) = inv(𝑐)★ 𝑅′ and 𝑅′ |= 𝑅 hold, allowing us to derive 𝑅′ ★ 𝐹 |= accnil(𝑒). Thus,
we can apply the Conseq rule. We abuse the notation accnil(𝑒) to denote the iterated separating conjunction expressing accnil(𝑒) for
each element 𝑒 in 𝑒, i.e., ∀𝑖. 0 ≤ 𝑖 < len(𝑒) =⇒ accnil(𝑒[𝑖]), where len(𝑒) and 𝑒[𝑖] return the length and the 𝑖-th element of the list 𝑒,
respectively.

¬(∗used)
··· 𝐹𝑖𝑔. 4.19

Π𝑔 ⊢ [Π𝑙] 𝑠1
[
Π𝑙 ★ 𝜙

]

(set(𝑒) \ nil) ⊆ lhs ∧
disjoint(𝑒)
··· 𝐹𝑖𝑔. 4.16

Π𝑔 ⊢ [Π𝑙] 𝑠2
[
𝑅′2

]
Frame

Π𝑔 ⊢
[
Π𝑙 ★ 𝜙

]
𝑠2 [𝑅2]

𝐴𝑠𝑚. 4.4.4
··· 𝐹𝑖𝑔. 4.23

Π𝑔 ⊢ [𝑅2] 𝑠3 [𝑅3]

··· 𝐹𝑖𝑔. 4.11

Π𝑔 ⊢
[
𝑅′2

]
𝑠4 [Π𝑙]

Frame
Π𝑔 ⊢ [𝑅3] 𝑠4 [𝑅4]

··· 𝐹𝑖𝑔. 4.14

Π𝑔 ⊢
[
𝑅′4

]
𝑠5 [Π𝑙]

Seq
Π𝑔 ⊢ [𝑅4] 𝑠5 [Π𝑙]

Seq∗
Π𝑔 ⊢ [Π𝑙] 𝑠1; 𝑠2; 𝑠3; 𝑠4; 𝑠5 [Π𝑙]

with

𝑠1 ≜ atomic {∗used B true} 𝑠2 ≜ lhs B lhs \ 𝑒 𝑠3 ≜ 𝑐 B CoreAlloc(𝑒) 𝑠4 ≜ lhs B lhs ∪nil 𝑒 𝑠5 ≜ ihs B ihs ∪nil {𝑐}
𝑅′2 ≜ Π𝑙 ★ accnil(𝑒) 𝑅2 ≜ 𝑅′2 ★ 𝜙 𝑅3 ≜ 𝑅′2 ★ inv(𝑐) 𝑅4 ≜ Π𝑙 ★ inv(𝑐) 𝑅′4 ≜ Π𝑙 ★ invnil(𝑐)

Figure 4.24: Proof tree for 𝔸(𝑐 B CoreAlloc(𝑒)). We naturally extend Fig. 4.11 and Fig. 4.15 to adding and removing lists of heap locations
to and from the ghost set lhs, respectively. The latter requires their disjointness.
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𝐴𝑠𝑚. 4.4.4

··· auto-active verification

Π𝑔 ⊢
[
𝑃CoreApi_k(𝑐, 𝑒)

]
𝑟 B CoreApi_k(𝑐, 𝑒)

[
𝑄CoreApi_k(𝑐, 𝑒 , 𝑟)

]
Frame

Π𝑔 ⊢
[
𝑃CoreApi_k(𝑐, 𝑒)★ 𝐹

]
𝑟 B CoreApi_k(𝑐, 𝑒)

[
𝑄CoreApi_k(𝑐, 𝑒 , 𝑟)★ 𝐹

]
Conseq

Π𝑔 ⊢ [invnil(𝑐)★ accnil(𝑒)] 𝑟 B CoreApi_k(𝑐, 𝑒) [invnil(𝑐)★ accnil(𝑒)★ accnil(𝑟)]
Frame

Π𝑔 ⊢ [Π𝑙 ★ invnil(𝑐)★ accnil(𝑒)] 𝑟 B CoreApi_k(𝑐, 𝑒) [Π𝑙 ★ invnil(𝑐)★ accnil(𝑒)★ accnil(𝑟)]

Figure 4.25: Proof tree for 𝑟 B CoreApi_k(𝑐, 𝑒).

𝑐 ∈ ihs ∨ 𝑐 = nil

··· 𝐹𝑖𝑔. 4.18
Π𝑔 ⊢ [Π𝑙] 𝑠1 [𝑅1]

(set(𝑒) \ nil) ⊆ lhs ∧
disjoint(𝑒)
··· 𝐹𝑖𝑔. 4.16

Π𝑔 ⊢ [Π𝑙] 𝑠2
[
𝑅′2

]
Frame

Π𝑔 ⊢ [𝑅1] 𝑠2 [𝑅2]

𝐴𝑠𝑚. 4.4.4
··· 𝐹𝑖𝑔. 4.25

Π𝑔 ⊢ [𝑅2] 𝑠3 [𝑅3]

··· 𝐹𝑖𝑔. 4.11

Π𝑔 ⊢
[
𝑅′3

]
𝑠4 [Π𝑙]

Frame
Π𝑔 ⊢ [𝑅3] 𝑠4 [𝑅1]

··· 𝐹𝑖𝑔. 4.14
Π𝑔 ⊢ [𝑅1] 𝑠5 [Π𝑙]

Seq∗
Π𝑔 ⊢ [Π𝑙] 𝑠1; 𝑠2; 𝑠3; 𝑠4; 𝑠5 [Π𝑙]

with

𝑠1 ≜ ihs B ihs \ {𝑐} 𝑠2 ≜ lhs B lhs \ 𝑒 𝑠3 ≜ 𝑟 B CoreApi_k(𝑐, 𝑒) 𝑠4 ≜ lhs B lhs ∪nil 𝑒 ∪nil 𝑟 𝑠5 ≜ ihs B ihs ∪nil {𝑐}
𝑅1 ≜ Π𝑙 ★ invnil(𝑐) 𝑅′2 ≜ Π𝑙 ★ accnil(𝑒) 𝑅2 ≜ 𝑅′2 ★ invnil(𝑐) 𝑅′3 ≜ 𝑅′2 ★ accnil(𝑟) 𝑅3 ≜ 𝑅′3 ★ invnil(𝑐)

Figure 4.26: Proof tree for 𝔸(𝑟 B CoreApi_k(𝑐, 𝑒)).

analysis we are using is context insensitive, i.e., ignores control flow and
ordering of statements. Thus, we omit the program location at which
such a judgement holds as it holds for all program locations within a
given codebase. If necessary, we could employ a context-sensitive pointer
analysis to increase precision.

To formalize what the pointer analysis computes, let us first state several
definitions before stating the pointer analysis’ soundness, which we
assume.

Definition 4.4.11 (Reachability) reachp
𝜏(𝑥) returns the set of addresses for

all heap locations that are transitively reachable from variable 𝑥 at program
point 𝑝 on trace 𝜏. Hence, ∀𝑥, 𝜏, 𝑝. val𝜏(x) ∈ reachp

𝜏(𝑥) holds for all program
points 𝑝 after 𝑥 is defined.

Definition 4.4.12 (Allocation Site) as𝜏(h) returns the allocation site for a
heap location ℎ on trace 𝜏, which is the label of the statement that allocated
this heap location.

Assumption 4.4.5 (Soundness of Pointer Analysis) The pointer analysis
computes for a variable 𝑥 the heap locations pts(x) to which 𝑥 may point
on all possible traces. These heap locations are identified by their allocation

Assign
Π𝑔 ⊢ [emp] lhs B ∅ [lhs = ∅]

Assign
Π𝑔 ⊢ [emp] ihs B ∅ [ihs = ∅]

Frame
Π𝑔 ⊢ [lhs = ∅] ihs B ∅ [lhs = ∅★ ihs = ∅]

Conseq
Π𝑔 ⊢ [lhs = ∅] ihs B ∅ [Π𝑙]

··· IH
Π𝑔 ⊢ [Π𝑙] 𝔸(𝑠) [Π𝑙]

Seq∗
Π𝑔 ⊢ [emp] lhs B ∅; ihs B ∅; 𝔸(𝑠) [Π𝑙]

Figure 4.27: Proof tree for the sequence of statements that is executed as the newly spawned thread, where 𝑠 represents an arbitrary
input statement and IH denotes an application of the induction hypothesis. We omit trivial applications of the Conseq rule.
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··· 𝐹𝑖𝑔. 4.15
Π𝑔 ⊢ [Π𝑙] 𝑠1 [Π𝑙 ★ 𝑅]

··· 𝐹𝑖𝑔. 4.13
Π𝑔 ⊢ [𝑅′] 𝑠2 [emp]

Conseq
Π𝑔 ⊢ [𝑅] 𝑠2 [emp]

··· 𝐹𝑖𝑔. 4.27
Π𝑔 ⊢ [emp] lhs B ∅; ihs B ∅; 𝔸(𝑠) [Π𝑙]

Fork
Π𝑔 ⊢ [emp] fork (𝑥̄) {lhs B ∅; ihs B ∅; 𝔸(𝑠)} [emp]

Seq
Π𝑔 ⊢ [𝑅] 𝑠2; fork (𝑥̄) {lhs B ∅; ihs B ∅; 𝔸(𝑠)} [emp]

Frame
Π𝑔 ⊢ [Π𝑙 ★ 𝑅] 𝑠2; fork (𝑥̄) {lhs B ∅; ihs B ∅; 𝔸(𝑠)} [Π𝑙]

Seq
Π𝑔 ⊢ [Π𝑙] 𝑠1; 𝑠2; fork (𝑥̄) {lhs B ∅; ihs B ∅; 𝔸(𝑠)} [Π𝑙]

with 𝑠1 ≜ lhs B lhs \ (reach(𝑥̄) ∩ lhs) 𝑠2 ≜ ∗ghs B ∗ghs ∪nil (reach(𝑥̄) ∩ lhs)
𝑅 ≜ ∀𝑙 ∈ (reach(𝑥̄) ∩ lhs). acc(𝑙) 𝑅′ ≜ ∀𝑙 ∈ (reach(𝑥̄) ∩ lhs). accnil(𝑙)

Figure 4.28: Proof tree for 𝔸(fork (𝑥̄) {𝑠}) that assumes the existence of a Fork rule. The side conditions stemming from Fig. 4.13 hold
trivially as reach(𝑥̄) ∩ lhs ⊆ lhs and since reach(𝑥̄) returns a set of heap locations, which is by definition free of duplicates and, thus, its
elements are pairwise disjoint.

site. We assume that the pointer analysis is sound, i.e., computes an over-
approximation of the heap locations to which 𝑥 actually points when looking
at concrete traces.

∀𝑥, 𝜏. val𝜏(x) ≠ nil =⇒ as𝜏(val𝜏(x)) ∈ pts(x)

Lemma 4.4.4 (Disjointness from Pointer Analysis) We can use the pointer
analysis’ may-point-to judgments to derive disjointness.

∀𝑥, 𝑦.pts(x) ∩ pts(y) = ∅ =⇒ disjoint({𝑥, 𝑦})

Proof sketch. If 𝑥 or 𝑦 store the valuenil, disjoint({𝑥, 𝑦})holds. Otherwise,
𝑥 and 𝑦 are non-nil. We apply Asm. 4.4.5 to our premise and obtain
∀𝜏. as𝜏(val𝜏(x)) ≠ as𝜏(val𝜏(y)). Since 𝑥 and 𝑦 point on all possible traces
to heap locations that were allocated at different allocation sites, the heap
locations themselves must be different, i.e., val𝜏(x) ≠ val𝜏(y).

Pass-Through Analysis. As hinted at by our ghost sets, we distinguish
two types of heap locations, namely heap locations that make up Core
instances and heap locations that the Application might access. Heap
locations of the former type are tracked by collecting the respective Core
instances in ihs. The latter type encompasses heap locations that are
either allocated within the Application by new() or allocated within the
Core and returned from a Core API call.

To distinguish these types of heap locations, we run a pass-through
analysis that provides the judgments ptp

Core(a, 𝜏) and ptp
ret(a, 𝜏) denoting

that a heap location allocated at allocation site 𝑎 passed through (pt)
the return argument 𝑐 of a 𝑐 B CoreAlloc(𝑒) statement and through
one of the return arguments 𝑟 of a 𝑟 B CoreApi_k(𝑐, 𝑒) statement,
respectively, between label 𝑎 and program point 𝑝 on trace 𝜏. I.e., we
have that ptp

Core(as𝜏(val𝜏(c)), 𝜏) and ∀𝑟 ∈ set(𝑟). ptp
ret(as𝜏(val𝜏(r)), 𝜏) hold

at the program point 𝑝 on trace 𝜏 after executing the statement 𝑐 B
CoreAlloc(𝑒) and 𝑟 B CoreApi_k(𝑐, 𝑒), respectively.

Definition 4.4.13 (Application-Managed Heap Locations) We call a
heap location ℎ Application-managed at program point 𝑝 on trace 𝜏 if
ℎ is either allocated within the Application or has been returned from a



4.4 Soundness 133

𝑟 B CoreApi_k(𝑐, 𝑒) statement.

amp
𝜏(h) ≜ is-app(as𝜏(h)) ∨ ptp

ret(as𝜏(h), 𝜏)

Escape Analysis. The goal of the escape analysis is to correctly place
heap locations into lhs, ∗ghs, and ihs. In particular, we want to establish
globally that an Application-managed heap location and a Core instance
are in lhs and ihs, respectively, if they are local.

We first define what it means for a heap location to be local (cf. Def. 4.4.15).
I.e., this definition takes all threads into account and states that a heap
location ℎ is local to a thread 𝑡 if and only if 𝑡 is the only thread that can
potentially access ℎ.

Locality of a heap location is approximated by our escape analysis. The
result of the escape analysis is formalized in a judgement localp(x) for
some variable 𝑥 and program point 𝑝. The intuition is that a variable that
is local points to heap locations (i.e., ∗𝑥) that are accessible only by the
current thread and, thus, can be modified or even referred to only by
the current thread. The escape analysis is sound in that no heap location
that is accessible by another thread will ever be reported as local (cf.
Asm. 4.4.6), but potentially imprecise in that some locations that are not
accessible by other threads will fail to be local.

Definition 4.4.14 (Accessibility) We write accessiblep
t (h) to denote that

heap location ℎ is accessible by thread 𝑡 at program point 𝑝. A thread
may access such a heap location either directly via variables or indirectly by
dereferencing other heap locations. We define accessibility independently of
variables and, thus, accessibility of ℎ does not change when variables go out
of scope. Instead, accessibility is monotonic for a thread’s execution.

Definition 4.4.15 (Locality) A heap location ℎ is local at program point 𝑝
if it is accessible by a single thread 𝑡.

localhlpt (h) ≜ accessiblep
t (h) ∧

(∀𝑡′. 𝑡′ ≠ 𝑡 =⇒ ¬accessiblep
t′(h))

Lemma 4.4.5 (Uniqueness of Locality) The thread 𝑡 having access to a
local heap location ℎ is unique, i.e.,

∀ℎ, 𝑡, 𝑡′, 𝑝.localhlpt (h) ∧ localhlpt′(h) =⇒ 𝑡 = 𝑡′.

Proof sketch. The lemma follows directly from Def. 4.4.15.

Lemma 4.4.6 (Locality is Reverse Monotonic) A local heap location ℎ
at program point 𝑝′ must be local at every earlier program point 𝑝 if ℎ is
accessible at 𝑝, i.e.,

∀ℎ, 𝑡, 𝑝, 𝑝′.𝑝 ⪯ 𝑝′ ∧ accessiblep
t (h) ∧ localhlp

′

t (h) =⇒
localhlpt (h).

Proof sketch. We prove this lemma by contradiction for arbitrary ℎ, 𝑡,
𝑝, and 𝑝′. ¬localhlpt (h) implies that ℎ is accessible by another thread 𝑡′,
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i.e., 𝑡′ ≠ 𝑡 ∧ accessiblep
t′(h). Since accessibility is monotonic, ℎ remains

accessible by 𝑡′ at 𝑝′ contradicting localhlp
′

t (h).

Lemma 4.4.7 (Locality is Reverse Transitive) If a local heap location ℎ′ is
transitively reachable from another heap location ℎ then ℎ must also be local.

∀ℎ, ℎ′, 𝑡 , 𝜏, 𝑝.localhlpt (h′) ∧ ℎ′ ∈ reachp
𝜏(ℎ) =⇒

localhlpt (h)

Proof sketch. We prove this lemma by contradiction for arbitrary ℎ, ℎ′, 𝑡, 𝜏,
and 𝑝. I.e., a thread 𝑡′ exists such that ℎ is accessible by 𝑡′. ℎ′ is accessible
by 𝑡′ via reachability from ℎ, thus, contradicting localhlpt (h′).

Assumption 4.4.6 (Soundness of Escape Analysis) We assume that the
escape analysis is sound, i.e., reports a heap location to which variable 𝑥 points
as being local only if the corresponding heap location is indeed local (or 𝑥 is
nil) for every possible trace 𝜏, i.e.,

∀𝑥, 𝜏, 𝑝.localp(x) =⇒
val𝜏(x) = nil ∨ ∃𝑡. localhlpt (val𝜏(x)).

Based on these definitions and the soundness of our analyses, we prove
several lemmata that relate accessible heap locations to our ghost sets and
corollaries that lift these properties to variables and the judgments we
obtain from our static analyses. We will later use these corollaries to show
that these judgments discharge our proof rules’ side conditions 𝜔.

Lemma 4.4.8 (Inaccessability Implies Set Absence) All heap locations
stored in the ghost sets are accessible by at least one thread.

∀ℎ, 𝜏, 𝑝.ℎ ≠ nil ∧ 𝑝 ∈ 𝜏 ∧ (∀𝑡.¬accessiblep
t (h)) =⇒

∀𝑡. ℎ ∉ (lhs𝑡 ∪ ∗ghs ∪ ihs𝑡)𝑝

where 𝑒𝑝 denotes evaluating expression 𝑒 at program point 𝑝.

Proof sketch. We prove this lemma by induction over program traces.
The base case for the empty trace holds trivially as lhs and ihs for every
thread 𝑡 and ∗ghs are initialized to the empty set. In the inductive step,
we prove this lemma for an arbitrary heap location ℎ′, program point 𝑝′,
and trace 𝜏. We assume the premise and apply the induction hypothesis
for the immediately preceding program point 𝑝 as ∀𝑡.¬accessiblep′

t (h′)
implies ∀𝑡.¬accessiblep

t (h′) due to monotonicity. We show that ∀𝑡. ℎ′ ∉
(lhs𝑡∪∗ghs∪ ihs𝑡)𝑝

′ holds by analyzing the ghost operations that𝔸 inserts
for a statement 𝑠. We assume without loss of generality that thread 𝑡𝑠
executes 𝔸(𝑠), which transitions from 𝑝 to 𝑝′. We observe that every
element that is added to lhs𝑡𝑠 , ∗ghs or ihs𝑡 is either the heap location to
which a variable accessible by 𝑡𝑠 points or a set of heap locations that are
reachable from such a variable. Since ℎ′ by assumption is not accessible
from any thread at 𝑝′, 𝔸 does not add ℎ′ to any ghost set.

The next lemmata depend on certain requirements for a codebase, which
we define next. As we will see, successfully executing the static analyses
implies that a codebase meets these requirements.
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rp
𝜏 ≜ (∀𝑠, 𝑥, 𝑒 , ℓ . 𝑠ℓ = ∗𝑥 B 𝑒 ∧ ℓ ≺ 𝑝 =⇒ ampre-ℓ

𝜏 (val𝜏(x))) ∧
(∀𝑠, 𝑐, 𝑒 , 𝑒 , ℓ . 𝑠ℓ = 𝑐 B CoreAlloc(𝑒) ∧ ℓ ≺ 𝑝 ∧ 𝑒 ∈ set(𝑒) =⇒

val𝜏(e) = nil ∨ ampre-ℓ
𝜏 (val𝜏(e)) ∧ localpost-ℓ (e)) ∧

(∀𝑠, 𝑘, 𝑐, 𝑒 , 𝑒 , 𝑟 , 𝑟 , ℓ . 𝑠ℓ = 𝑟 B CoreApi_k(𝑐, 𝑒) ∧ ℓ ≺ 𝑝 ∧ 𝑒 ∈ set(𝑒) ∧ 𝑟 ∈ set(𝑟) =⇒
(val𝜏(e) = nil ∨ ampre-ℓ

𝜏 (val𝜏(e)) ∧ localpost-ℓ (e)) ∧
(val𝜏(c) = nil ∨ ¬ampre-ℓ

𝜏 (val𝜏(c))) ∧
(val𝜏(r) = nil ∨ localpost-ℓ (r)))

Figure 4.29: rp
𝜏 expresses requirements that all statements in a codebase before program point 𝑝 on trace 𝜏 must satisfy. These requirements

allow us to relate properties of heap locations to containment in the ghost sets. In particular, heap write statements must write to
Application-managed heap locations only, arguments that are passed to the Core (i.e., 𝑒 in CoreAlloc(𝑒) and 𝑟 B CoreApi_k(𝑐, 𝑒)
statements) must be Application-managed and local after executing the statement unless they are nil, the Core instance 𝑐 must not be
Application-managed, and return arguments from the Core, i.e., 𝑟 in 𝑟 B CoreApi_k(𝑐, 𝑒), must be local or nil.

Lemma 4.4.9 (Locality Implies Set Containment for Applica-
tion-Managed Locations) An Application-managed heap location ℎ is in
thread 𝑡’s lhs at program point 𝑝 if ℎ is local, and in ∗ghs if ℎ is accessible by
multiple threads. Both cases hold if a codebase meets the requirements rp

𝜏 (cf.
Fig. 4.29).

∀ℎ, 𝑡,𝜏, 𝑝. (ℎ ≠ nil ∧ 𝑝 ∈ 𝜏 ∧ accessiblep
t (h) ∧

amp
𝜏(h) ∧ rp

𝜏) =⇒(
(∀𝑡′. 𝑡′ = 𝑡 ∨ ¬accessiblep

t′(h)) ⇐⇒ ℎ ∈ lhs𝑝𝑡
)
∧(

(∃𝑡′. 𝑡′ ≠ 𝑡 ∧ accessiblep
t′(h)) ⇐⇒ ℎ ∈ ∗ghs𝑝

)
Proof sketch. We prove this lemma by induction over program traces. The
base case for the empty trace holds trivially as there are no allocated
and, thus, accessible heap locations yet. In the inductive step, we prove
this lemma for an arbitrary heap location ℎ′, thread 𝑡, program point 𝑝′,
and trace 𝜏 by applying the induction hypothesis to the immediately
preceding program point 𝑝 and showing that we obtain the specified set
containment for 𝑝′. I.e., we assume the premise and show that

((∀𝑡′. 𝑡′ = 𝑡 ∨ ¬accessiblep′
t′ (h′)) ⇐⇒ ℎ′ ∈ lhs𝑝

′

𝑡 ) ∧
((∃𝑡′. 𝑡′ ≠ 𝑡 ∧ accessiblep′

t′ (h′)) ⇐⇒ ℎ′ ∈ ∗ghs𝑝
′)

(4.4)

holds. We case split on statement 𝑠 (before applying 𝔸) such that exe-
cuting 𝔸(𝑠) on thread 𝑡𝑠 transitions from 𝑝 to 𝑝′. We first note that the
restrictions 𝑟 are monotonic when going backwards on a trace, i.e., rp

𝜏

follows from rp′
𝜏 .

▶ 𝑠 = skip: Since skip does not allocate any heap locations and
leaves accessibility unchanged, we get accessiblep

t (h′) and apply the
induction hypothesis. Because algorithm 𝔸 leaves all ghost sets
unmodified, (4.4) holds.

▶ 𝑠 = 𝑥 B new(): If ℎ′ = val𝜏(x), then 𝑡 = 𝑡𝑠 as accessiblep′
t (h′) holds

and no other thread can access ℎ′ yet. 𝔸 adds ℎ′ to lhs𝑡 and (4.4)
holds as ℎ′ is in no other ghost set (by Lemma 4.4.8). Otherwise, ℎ′
is already allocated at 𝑝, and we apply the induction hypothesis
to obtain (4.4) as 𝔸 neither adds nor removes ℎ′ to and from any
ghost set.
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▶ 𝑠 = 𝑥 B ∗𝑒: Since 𝑠 neither allocates new heap locations nor
changes accessibility of ℎ′, accessiblep

t (h′) holds, and we apply the
induction hypothesis. If ℎ′ = val𝜏(e), then accessiblep

ts
(h′) and, thus,

ℎ′ ∈ (lhs𝑡𝑠 ∪ ∗ghs)𝑝 hold. Hence, 𝔸 ensures ∀𝑡′. lhs𝑝
′

𝑡′ = lhs𝑝𝑡′ and
lhs𝑝

′
= lhs𝑝 . Otherwise, 𝔸 neither adds nor removes ℎ′ to and from

any ghost set.
▶ 𝑠 = ∗𝑥 B 𝑒: Since 𝑠 does not allocate new heap locations, amp

𝜏(h′)
holds. If val𝜏(x) = ℎ′, then ℎ′ is accessible by 𝑡𝑠 , and we apply
the induction hypothesis. Since 𝔸 leaves ℎ′ in the same ghost set,
(4.4) holds. Otherwise, we focus on the case val𝜏(x) ∈ ∗ghs𝑝 ∧ ℎ′ ∈
reachp

𝜏(𝑒) ∩ lhs𝑝𝑡𝑠 as 𝔸 removes in this case ℎ′ from lhs𝑡𝑠 and for
all other cases guarantees that ℎ′ remains in the same ghost set.
From ℎ′ ∈ lhs𝑝𝑡𝑠 and our induction hypothesis, we get 𝑡 = 𝑡𝑠 as ℎ′

is accessible only by a single thread. Since accessiblep
ts
(val𝜏(x)) and

amp
𝜏(val𝜏(x)) (from rp′

𝜏 ) hold, we apply the induction hypothesis
and obtain that another thread 𝑡′ with 𝑡′ ≠ 𝑡𝑠 exists that can access
val𝜏(x). However, by writing 𝑒 to val𝜏(x), all from 𝑒 reachable heap
locations including ℎ′ become accessible from 𝑡′ at 𝑝′. Since ℎ′ is
accessible at 𝑝′ from at least two different threads, namely 𝑡𝑠 and
𝑡′, we have to show that ℎ′ ∈ ∗ghs𝑝

′ and that ℎ′ is removed from
lhs𝑡𝑠 , which is guaranteed by 𝔸.

▶ 𝑠 = 𝑐 B CoreAlloc(𝑒): If ∃𝑒. 𝑒 ∈ 𝑒 ∧ val𝜏(e) = ℎ′, we get localp
′(e)

from rp′
𝜏 . Thus, 𝑡𝑠 = 𝑡 as only a single thread can access ℎ′. From

Asm. 4.4.6 and Lemma 4.4.6, localhlpt (h′) holds, and we apply the
induction hypothesis to obtain ℎ′ ∈ lhs𝑝𝑡 . 𝔸 guarantees that ℎ′

remains in lhs𝑡 and that ℎ′ is not inserted into any other ghost
set since ℎ′ ≠ val𝜏(c). Otherwise, accessiblep

t (h′) holds because 𝑠
cannot change ℎ′’s accessibility as the arguments 𝑒 are shallow
(cf. Asm. 4.4.4) and, thus, 𝑠 internally does not have access to ℎ′.
We apply the induction hypothesis and observe that 𝔸 does not
change set containment of ℎ′.

▶ 𝑠 = 𝑟 B CoreApi_k(𝑐, 𝑒): We reason similarly as in the case of
CoreAlloc(𝑒) except that we consider a third case, namely ∃𝑟. 𝑟 ∈
𝑟 ∧ val𝜏(r) = ℎ′. In this case, rp′

𝜏 guarantees that ℎ′ is local and
from accessiblep′

t (h′) follows that 𝑡 = 𝑡𝑠 . ℎ′ is a heap location newly
allocated by 𝑠 and 𝔸 guarantees that ℎ′ is inserted into lhs𝑡 . From
Lemma 4.4.8, we get that ℎ′ is in no other ghost set.

▶ 𝑠 = fork (𝑥̄) {𝑠′}: Let us call the newly spawned thread 𝑡′𝑠 with
𝑡′𝑠 ≠ 𝑡𝑠 . Since 𝑡′𝑠 can access the variables 𝑥̄, we have ∀ℎ. ℎ ∈
reachp

𝜏(𝑥̄) =⇒ accessiblep′
ts
(h) ∧ accessiblep′

t′s
(h). If ℎ′ ∉ reachp

𝜏(𝑥̄), then
accessibility of ℎ′ does not change by executing 𝑠, and we apply
the induction hypothesis and note that 𝔸 does not modify set
containment of ℎ′. In particular, ℎ′ is not accessible by 𝑡′𝑠 and, thus,
ℎ′ ∉ lhs𝑝

′

𝑡′𝑠
holds as required by (4.4). Otherwise (ℎ′ ∈ reachp

𝜏(𝑥̄)),
we have to prove that ∀𝑡′. ℎ′ ∉ lhs𝑝

′

𝑡′ and ℎ′ ∈ ∗ghs𝑝
′ hold. Since

accessiblep
ts
(h′) holds, we apply the induction hypothesis and case

split on whether ℎ′ ∈ lhs𝑝𝑡𝑠 holds. If so,𝔸moves ℎ′ from lhs𝑡𝑠 to ∗ghs,
which is sufficient as ∀𝑡′. 𝑡′ ≠ 𝑡𝑠 =⇒ ℎ′ ∉ lhs𝑝𝑡′ holds. Otherwise,
ℎ′ ∈ ∗ghs𝑝 holds and 𝔸 ensures ℎ′ ∈ ∗ghs𝑝

′ .
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Corollary 4.4.10 (Set Containment in lhs ∪ ∗ghs) A variable 𝑥 is in a
thread 𝑡’s lhs𝑡 or ∗ghs at program point 𝑝 if 𝑥 is a defined variable, all heap
locations 𝑥 may point to are Application-managed, and the requirements rp

𝜏

hold.

∀𝑥, 𝑡,𝑝, 𝜏. 𝑝 ∈ 𝜏 ∧ definedp
t (x) ∧ rp

𝜏 ∧
(∀ℎ. as𝜏(h) ∈ pts(x) =⇒ amp

𝜏(h)) =⇒
val𝜏(x) = nil ∨ val𝜏(x) ∈ (lhs𝑡 ∪ ghs)𝑝

where definedp
t (x) expresses that 𝑥 is defined at 𝑝 for thread 𝑡.

Proof sketch. Let 𝑥, 𝑡, 𝑝, and 𝜏 be arbitrary and assume the corollary’s
premise. If val𝜏(x) = nil holds, then the corollary holds trivially. Other-
wise, 𝑥 points at 𝑝 to an allocated heap location, which we call ℎ′, that
is, thus, accessible from thread 𝑡 i.e., ℎ′ = val𝜏(x) ∧ accessiblep

t (h′). From
Asm. 4.4.5 we obtain as𝜏(h′) ∈ pts(x) and, thus, amp

𝜏(h′) holds. We apply
Lemma 4.4.9 and observe that one of the equivalences’ left-hand sides
must be satisfied. Therefore, ℎ′ is either in lhs𝑝𝑡 or ∗ghs𝑝 .

Lemma 4.4.11 (Locality Implies Set Containment for Core Instances)
A heap location ℎ at program point 𝑝 that corresponds to a Core instance
returned from an earlier CoreAlloc(𝑒) statement is in a thread 𝑡’s ihs if ℎ is
local and the restrictions rp

𝜏 (Fig. 4.29) hold.

∀ℎ, 𝑡, 𝜏, 𝑝.ℎ ≠ nil ∧ 𝑝 ∈ 𝜏 ∧ localhlpt (h) ∧
ptp

Core(h, 𝜏) ∧ rp
𝜏 =⇒ ℎ ∈ ihs𝑝𝑡

Proof sketch. We prove this lemma by induction over program traces. The
base case for the empty trace holds trivially as there are no allocated heap
locations yet. In the inductive step, we prove this lemma for an arbitrary
heap location ℎ′, thread 𝑡, program point 𝑝′, and trace 𝜏 by applying
the induction hypothesis to the immediately preceding program point 𝑝
and showing that we obtain the specified set containment for 𝑝′. I.e., we
assume the premise and show that ℎ′ ∈ ihs𝑝

′

𝑡 holds. We case split on
statement 𝑠 (before applying 𝔸) such that executing 𝔸(𝑠) on thread 𝑡𝑠
transitions from 𝑝 to 𝑝′. We first note that the restrictions 𝑟 are monotonic
when going backwards on a trace, i.e., rp

𝜏 follows from rp′
𝜏 .

▶ 𝑠 = skip: Since skip does not allocate Core instances and leaves
accessibility unchanged, we get localhlpt (h′) and apply the induction
hypothesis. We get ℎ′ ∈ ihs𝑝

′

𝑡 as 𝔸 leaves all ghost sets unmodified.
▶ 𝑠 = 𝑥 B new(): ℎ′ ≠ val𝜏(x) holds because 𝑥 points to a newly

allocated heap location that has not been passed through the return
argument of CoreAlloc(𝑒). Thus, localhlpt (h′) holds, and we apply
the induction hypothesis. We observe that 𝔸 leaves ihs𝑡 unchanged.

▶ 𝑠 = 𝑥 B ∗𝑒: Since 𝑠 does not allocate Core instances, ptp
Core(h′, t)

holds, and we apply the induction hypothesis. The lemma holds as
𝔸 does not modify ihs𝑡 .

▶ 𝑠 = ∗𝑥 B 𝑒: Identical reasoning as for reading a heap location.
▶ 𝑠 = 𝑐 B CoreAlloc(𝑒): If val𝜏(c) = ℎ′, then localhlp

′

t (h′) implies
𝑡 = 𝑡𝑠 . 𝔸 guarantees that ℎ′ ∈ ihs𝑝

′

𝑡 . Otherwise, localhlpt (h′) and
ptp

Core(h′, 𝜏) hold, and we apply the induction hypothesis. ℎ′ ∈ ihs𝑝
′

𝑡
holds as 𝔸 does not remove elements from ihs.
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▶ 𝑠 = 𝑟 B CoreApi_k(𝑐, 𝑒): Since 𝑠 does not allocate Core instances,
localhlpt (h′) and ptp

Core(h′, 𝜏) hold, and we apply the induction hy-
pothesis. Furthermore, 𝔸 does not remove elements from ihs𝑡′ for
any thread 𝑡′.

▶ 𝑠 = fork (𝑥̄) {𝑠′}: Let us call the newly spawned thread 𝑡′𝑠 with
𝑡′𝑠 ≠ 𝑡𝑠 . If accessiblet′s

p (h′), then 𝑡 = 𝑡′𝑠 as ℎ′ is local. However, ℎ′
can only be accessible to 𝑡′𝑠 if ℎ′ is reachable from 𝑥̄, which is
accessible from thread 𝑡𝑠 too. I.e., accessiblets

p (h′) holds contradicting
localhlp

′

t (h′). Otherwise, 𝔸 initializing ihs𝑡′𝑠 to the empty set does not
violate the lemma as 𝑡′𝑠 cannot access ℎ′. Furthermore, we apply
the induction hypothesis as ptp

Core(h′, 𝜏) holds, and we note that 𝔸
does not remove any element from ihs𝑡 .

Corollary 4.4.12 (Escape Analysis Implies Set Containment in ihs) A
variable 𝑥 is in a thread 𝑡’s ihs𝑡 at program point 𝑝 if 𝑥 is a defined variable,
local, all heap locations 𝑥 may point to passed through the return parameter
of some CoreAlloc(𝑒), and the requirements rp

𝜏 hold.

∀𝑥, 𝑡,𝑝, 𝜏. 𝑝 ∈ 𝜏 ∧ localp(x) ∧ definedp
t (x) ∧ rp

𝜏 ∧
(∀ℎ. as𝜏(h) ∈ pts(x) =⇒ ptp

Core(h, 𝜏)) =⇒
val𝜏(x) = nil ∨ val𝜏(x) ∈ ihs𝑝𝑡

Proof sketch. Let 𝑥, 𝑡, 𝑝, and 𝜏 be arbitrary and assume the corollary’s
premise. If val𝜏(x) = nil holds, then the corollary holds trivially. Other-
wise, 𝑥 points at 𝑝 to an allocated heap location, which we call ℎ′, which is,
thus, accessible from thread 𝑡, i.e., ℎ′ = val𝜏(x)∧accessiblep

t (h′). localhlpt (h′)
follows from Asm. 4.4.6. From Asm. 4.4.5 we obtain as𝜏(h′) ∈ pts(x) and,
thus, ptp

Core(h′, 𝜏). Applying Lemma 4.4.11 completes the proof.

Having defined the properties that successfully executing our static
analyses provides, we present next how we apply the static analyses in
Diodon (Def. 4.4.16) and prove in Lemma 4.4.14 that this application
discharges the side conditions 𝜔 (cf. Fig. 4.10).

As shown in Def. 4.4.16, we check for every heap read operation 𝑥 B
∗𝑒 that 𝑒 points to Application-managed heap locations, which are
identified by their allocation site 𝑎. Analogously, we check for heap
writes ∗𝑥 B 𝑒 that 𝑥 satisfies the same property. For every CoreAlloc(𝑒)
and 𝑟 B CoreApi_k(𝑐, 𝑒), we check that the arguments 𝑒 point to disjoint
heap locations and that these heap locations are local and Application-
managed. Additionally, we check for 𝑟 B CoreApi_k(𝑐, 𝑒) that 𝑐 points
to a local Core instance, i.e., a local heap location that has been returned
by an earlier Core allocation call, and that the outputs 𝑟 are local.

Definition 4.4.16 (Static Analyses for Diodon) In Diodon, we execute
the static analyses on a codebase to obtain the following judgments for every
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statement 𝑠 at label ℓ therein, denoted as j(𝑠ℓ ).

j(𝑥 B ∗𝑒) ≜ ∀𝑎, 𝜏. 𝑎 ∈ pts(e) =⇒ ampre-ℓ
𝜏 (a)

j(∗𝑥 B 𝑒) ≜ ∀𝑎, 𝜏. 𝑎 ∈ pts(x) =⇒ ampre-ℓ
𝜏 (a)

j(𝑐 B CoreAlloc(𝑒)) ≜ disjointas(e) ∧ localℓam(e)
j(𝑟 B CoreApi_k(𝑐, 𝑒)) ≜ disjointas(e) ∧ localℓam(e)

∧ localℓCore(c) ∧ localℓret(r)

where

disjointas(e) ≜ ∀𝑖 , 𝑗. 0 ≤ 𝑖 < 𝑗 < len(𝑒) =⇒ pts(e[i]) ∩ pts(e[j]) = ∅
localℓam(e) ≜ ∀𝑒 , ℎ, 𝜏. 𝑒 ∈ set(𝑒) ∧ as𝜏(h) ∈ pts(e) =⇒

localpost-ℓ (e) ∧ ampre-ℓ
𝜏 (h)

localℓCore(c) ≜ ∀ℎ, 𝜏. as𝜏(h) ∈ pts(c) =⇒ localpre-ℓ (c) ∧ ptpre-ℓ
Core(h, 𝜏)

localℓret(r) ≜ ∀𝑟, 𝜏. 𝑟 ∈ set(𝑟) =⇒ localpost-ℓ (r)

Lemma 4.4.13 (Discharging the Requirements) We show that the judg-
ments provided by our static analyses j(𝑠ℓ ) (cf. Def. 4.4.16) for every state-
ment 𝑠 at label ℓ before program point 𝑝 and our assumptions are sufficient to
discharge the requirements rp

𝜏 (cf. Fig. 4.29).

∀𝑝, 𝜏. 𝑝 ∈ 𝜏 ∧ (∀𝑠, ℓ . ℓ ≺ 𝑝 ∧ j(𝑠ℓ )) =⇒ rp
𝜏

Proof sketch. We prove this lemma by induction over program traces. The
base case for the empty trace holds trivially as there are no preceding
statements 𝑠ℓ . In the inductive step, we prove this lemma for an arbitrary
program point 𝑝′ and trace 𝜏 by applying the induction hypothesis to the
immediately preceding program point 𝑝. I.e., we show that ∀𝑠′, ℓ ′. ℓ ′ ≺
𝑝′ ∧ j(𝑠′ℓ ′) and rp

𝜏 imply rp′
𝜏 by case splitting on statement 𝑠ℓ , whose

execution transitions from 𝑝 to 𝑝′.

▶ 𝑠ℓ = ∗𝑥 B 𝑒: We have to prove that amp
𝜏(val𝜏(x)) holds. From j(𝑠ℓ )

and Asm. 4.4.5, we get val𝜏(x) = nil ∨ amp
𝜏(val𝜏(x)). 𝑥 ≠ nil holds

as the statement would otherwise crash (cf. Asm. 4.4.2).
▶ 𝑠ℓ = 𝑐 B CoreAlloc(𝑒): We have to show for an arbitrary argu-

ment 𝑒 ∈ set(𝑒) that val𝜏(e) = nil∨ amp
𝜏(val𝜏(e)) ∧ localp

′(e) holds. If
val𝜏(e) ≠ nil, then we apply Asm. 4.4.5 to obtain amp

𝜏(val𝜏(e)) from
localℓam(e).

▶ 𝑠ℓ = 𝑟 B CoreApi_k(𝑐, 𝑒): We proceed identically as in the
case of CoreAlloc(𝑒). Additionally, we have to show val𝜏(c) =
nil ∨ ¬amp

𝜏(val𝜏(c)) and val𝜏(r) = nil ∨ localp
′(r) for an arbitrary

return argument 𝑟 ∈ 𝑟, which we get from localℓCore(c) by applying
Asm. 4.4.5 and localℓret(r).

▶ Otherwise: rp′
𝜏 holds because no requirements for 𝑠ℓ must be met.

Lemma 4.4.14 (Discharging the Side Conditions 𝜔) We show that the
judgments provided by our static analyses j(𝑠) (cf. Def. 4.4.16) for every
statement 𝑠 in a codebase 𝑐 together with our assumptions are sufficient to
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Figure 4.30: Proof tree showing the ini-
tial establishment of Π𝑙 and Π𝑔 for a
codebase 𝑝. We assume that the ghost
statement 𝑠init initializes lhs and ihs to
the empty set, as stated in 𝑅𝑙 , and al-
locates two heap locations on the ghost
heap storing ∅ and false to which ghs and
used point, respectively (cf. 𝑅𝑔 ).

···
emp ⊢ [emp] 𝑠init

[
𝑅𝑔 ★ 𝑅𝑙

]
Frame

emp ⊢
[
𝜙
]
𝑠init

[
𝑅𝑔 ★ 𝑅𝑙 ★ 𝜙

]
Conseq

emp ⊢
[
𝜙
]
𝑠init

[
Π𝑔 ★Π𝑙

]

··· 𝐹𝑖𝑔. 4.9
Π𝑔 ⊢ [Π𝑙] 𝔸(𝑝) [Π𝑙]

Conseq
Π𝑔 ⊢ [Π𝑙] 𝔸(𝑝) [true]

Share
emp ⊢

[
Π𝑔 ★Π𝑙

]
𝔸(𝑝)

[
Π𝑔

]
Conseq

emp ⊢
[
Π𝑔 ★Π𝑙

]
𝔸(𝑝) [true]

Seq
emp ⊢

[
𝜙
]
𝑠init; 𝔸(𝑝) [true]

with 𝑅𝑙 ≜ lhs = ∅★ ihs = ∅ 𝑅𝑔 ≜ acc(ghs)★ ∗ghs = ∅★ acc(used)★ ∗used = false

discharge the side conditions 𝜔(𝑠) (cf. Fig. 4.10).

∀𝑠 ∈ 𝑐. (∀𝑠′ ∈ 𝑐. j(𝑠′)) =⇒ 𝜔(𝑠)

Proof sketch. We prove this lemma for an arbitrary statement 𝑠 at label ℓ
such that 𝑠 ∈ 𝑐, assume ∀𝑠′ ∈ 𝑐. j(𝑠′) and show that 𝜔(𝑠) holds by case
splitting on statement 𝑠. Throughout the proof, we use program point 𝑝 to
refer to 𝑠’s pre-state, i.e., 𝑝 ≜ pre-ℓ . We obtain ∀𝜏. rp

𝜏 from Lemma 4.4.13.

▶ 𝑠 = 𝑥 B ∗𝑒: From Cor. 4.4.10, we get val𝜏(e) = nil ∨ val𝜏(e) ∈
(lhs ∪ ghs)𝑝 . 𝑒 points to an allocated heap location and cannot be
nil as the statement would otherwise crash (cf. Asm. 4.4.2).

▶ 𝑠 = ∗𝑥 B 𝑒: Analogous to heap reads but for 𝑥 instead of 𝑒.
▶ 𝑠 = 𝑐 B CoreAlloc(𝑒): From disjointas(e), we obtain disjoint(𝑒) by

applying Lemma 4.4.4. localℓam(e) allows us to apply Lemma 4.4.9
providing ∀𝑒 ∈ set(𝑒). val𝜏(e) = nil∨ val𝜏(e) ∈ lhs𝑝 . Lastly, ∗used =

false holds by our assumption that we have a single Core allocation
statement in the codebase 𝑐. We lift this assumption at the end of
this subsection.

▶ 𝑠 = 𝑟 B CoreApi_k(𝑐, 𝑒): Likewise to the previous case, we obtain
disjoint(𝑒) and ∀𝑒 ∈ set(𝑒). val𝜏(e) = nil ∨ val𝜏(e) ∈ lhs𝑝 . Left to
show is val𝜏(c) = nil ∨ val𝜏(c) ∈ ihs𝑝 , which we obtain from
localℓCore(c) by applying Cor. 4.4.12.

▶ Otherwise: 𝜔(𝑠) = true and, thus, the lemma holds trivially.

Proof Construction

While we showed that we can compose the proof rules in Fig. 4.9 and
discharge their side conditions 𝜔, it remains to show that we initially
establish the global context Π𝑔 and the local program invariant Π𝑙 , such
that we obtain a proof for the entire codebase 𝑐. We close this gap in
Cor. 4.4.15.

Corollary 4.4.15 (Proof Construction) Successfully executing Diodon’s
static analyses on a codebase 𝑐 and the Core’s auto-active verification combined



4.4 Soundness 141

with our assumptions allow us to construct a separation logic proof for 𝑐.

If ∀𝑠, 𝑘. 𝑠 ∈ 𝑐 ∧ j(𝑠) ∧(
𝑠 = 𝑐 B CoreAlloc(𝑒) =⇒

Π𝑔 ⊢ [𝑃CoreAlloc(𝑒)] 𝑠 [𝑄CoreAlloc(𝑐, 𝑒)]
)
∧(

𝑠 = 𝑟 B CoreApi_k(𝑐, 𝑒) =⇒

Π𝑔 ⊢
[
𝑃CoreApi_k(𝑐, 𝑒)

]
𝑠
[
𝑄CoreApi_k(𝑐, 𝑒 , 𝑟)

] )
,

then emp ⊢
[
𝜙
]
𝑠init; 𝔸(𝑐) [true]

where 𝑠init is ghost code creating and initializing the thread-local ghost sets
lhs and ihs for the main thread, as well as the global ghost set ∗ghs and the
ghost flag ∗used.

Proof sketch. All our proof rules (cf. Fig. 4.9) have the same shape, namely
Π𝑔 ⊢ [Π𝑙] 𝔸(𝑠) [Π𝑙] for a statement 𝑠. As shown by Lemma 4.4.14,
the judgments obtained from the static analyses allow us to discharge
the side conditions that are associated with each proof rule (Fig. 4.10).
Therefore, left to show is that we initially establish Π𝑙 and Π𝑔 such that
we can compose the proof rules to form a proof for an entire codebase 𝑐.
The ghost statement 𝑠init creates and initializes the ghost sets lhs, ihs, and
∗ghs as well as the ghost flag ∗used. Thus, we can complete the proof tree
as shown in Fig. 4.30. This constitutes a proof for 𝑐 as neither 𝑠init nor the
statements added by 𝔸 modify 𝑐’s runtime behavior.

We show that we obtain the desired proof for the entire codebase, namely
that the codebase satisfies the I/O specification 𝜙 expressed as the
Hoare triple emp ⊢

[
𝜙
]

𝑠init; 𝔸(𝑐) [true]. This Hoare triple relies on
𝑠init that initializes lhs, ihs, and ∗ghs to empty sets, as well as sets the
ghost flag ∗used to false. 𝑠init is similar in spirit to the ghost statements
that algorithm 𝔸 inserts as these statements are necessary to construct
a proof for the codebase 𝑐. Cor. 4.4.15’s premise states that our static
analyses succeed on the codebase 𝑐, such that we obtain j(𝑠) for each
statement 𝑠 therein, and that we prove a Hoare triple for each Core
function satisfying the syntactic restrictions.

We combine the proof for the entire codebase that we obtain from
Cor. 4.4.15 with the result of Sec. 4.4.1 to obtain Diodon’s overall soundness
result. This result states that successfully executing our static analyses on
codebase 𝑐 and auto-actively verifying its Core suffices to prove that the
traces of executing 𝑐 together with other verified implementations and
the environment are contained in the traces described by the abstract
protocol model.

Theorem 4.4.16 (Overall Soundness) Suppose Asm. 4.4.1 holds and that we
have established, for each role 𝑖, I/O independence and Cor. 4.4.15’s antecedent
for a codebase 𝑐𝑖(rid) and I/O specification 𝜓𝑖(rid). Then

(|||𝑖 ,rid 𝜋int(C𝑖(rid))) ∥𝜒′ E ≼𝑡 R.

Proof sketch. To obtain emp ⊢
[
𝜓𝑖(rid)

]
𝑠init; 𝔸(𝑐𝑖(rid)) [true] for each

role 𝑖, we apply Cor. 4.4.15. Since we omitted the turnstile subscript 𝛼 (cf.
Asm. 4.4.1) throughout Sec. 4.4.2 for brevity and emp on the turnstile’s
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left-hand side is a notational difference only (Asm. 4.4.1 could be adapted
accordingly), we apply Thm. 4.4.2 to obtain the desired result.

Limitations

Our formalization defines a simple programming language to focus on the
main ideas of our soundness proof and to show that successfully executing
our static analyses discharges all side conditions. We believe this language
covers the most critical features like heap manipulations and concurrency
as these features are relevant for the results of our static analyses. In
addition, we abstract each function making up the Core’s API to a
dedicated statement in our language, and assume that the specification of
each such function satisfies our syntactic restrictions Asm. 4.4.4. However,
there is a slight risk that this language misses Go features that would be
a threat to soundness such as function boundaries, complex control flow,
and callbacks; the former two features would be straightforward to add,
and we discuss next how to add the latter.

To prove a Hoare triple for the entire codebase, we assume that the
Application is free of crashes Asm. 4.4.2and data races Asm. 4.4.3. While
our soundness proof does not make any statement in the case that the
program crashes, our compositional proof informally guarantees that
the trace inclusion holds for the program’s prefix up to the program
point at which a crash occurs, such that the crash freedom assumption
could be dropped, which we leave to future work. However, data race
freedom remains an assumption; more generally, we assume the absence
of undefined behavior for programming languages other than Go and
our formalized one. This assumption can be mitigated by performing
additional static analyses.

Extensions

Having covered the main soundness result, we discuss two extensions
to bridge the gap to realistic applications of Diodon as used in our case
studies. We first lift the restriction of at most one Core instance to allow a
codebase to create unboundedly many Core instances. Second, we allow
the Core to invoke callbacks into the Application and discuss the side
conditions that arise by this extension.

Unboundedly Many Core Instances. So far, our global program invari-
ant Π𝑔 contains the separating conjunct

acc(used)★ (¬(∗used) =⇒ 𝜙).

As explained in Sec. 4.4.1, each execution of a protocol role is parame-
terized by a unique rid. I.e., 𝜙 and all I/O permissions that 𝜙 internally
provides are parameterized by rid and, thus, are not interchangeable but
specific to a particular rid. Hence, we can change the separating conjunct
stated above to

acc(used)★ (∀rid ∉ ∗used =⇒ 𝜙(rid))

providing a family of I/O permissions, where used points to a ghost set
containing the rids that have already been used. In addition, we adapt
the entire program’s precondition from 𝜙 to ∀rid. 𝜙(rid) and change
the translation 𝔸(𝑐 B CoreAlloc(𝑒)) to, first, pick a fresh rid′ such that
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rid′ ∉ ∗used and, second, adding rid′ to ∗used. Picking such a fresh rid′ is
always possible since rid ranges over ℕ.

Adding Callbacks to the Core. So far, we have treated the statements
CoreAlloc(𝑒) and 𝑟 B CoreApi_k(𝑐, 𝑒) as atomic statements in our lan-
guage. These two statements are internally implemented as sequences of
statements, which we hereafter call Core statements. As these statements
constitute the Core, we auto-actively prove that a particular postcondition
holds when control transfers back to the Application after fully executing
these statements.

In the presence of callbacks, however, calling into the Core becomes
non-atomic and control flow might transfer to the Application before
reaching the post-state for which we know that the postcondition holds.
We can treat callbacks as temporarily pausing the execution of these
auto-actively verified Core statements to (sequentially) execute some
statements belonging to the Application before eventually resuming
execution of Core statements.

With respect to algorithm𝔸 and the ghost sets, interrupting the execution
of Core statements to execute certain Application statements 𝑠app means
that heap locations on which the Core statements operate are missing
from the ghost sets while executing 𝑠app as we remove them from the
ghost sets before executing Core statements and put them back only
after the Core statements’ postcondition holds. Missing permissions
include both arguments 𝑒 and the Core instance 𝑐. Therefore, we have to
make sure that 𝑠app neither accesses heap locations to which 𝑒 points nor
invokes API calls on the Core instance 𝑐 as the Core invariant might not
hold.

We can lift these restrictions by introducing additional proof obligations
for the auto-active verification. More specifically, if we auto-actively prove
that the Core statements satisfy a particular precondition for the callback,
then we can update the ghost sets accordingly. E.g., such a precondition
can specify permissions for heap locations passed to the callback or that
the Core invariant holds.

In our SSM Agent case study (Sec. 4.5.1), we make use of these proof obliga-
tions for the callback delivering incoming messages to the Application as
we specify that the Core transfers permission for the incoming message
to the Application. Conceptually, this allows us to add the corresponding
heap location to lhs before executing the statements constituting the
callback because the auto-active proof guarantees that no statement in
the Core thereafter accesses this heap location.

For our case studies, it was not necessary to transfer permissions from
a callback back to the Core via a callback’s postcondition. Extending
Diodon to allow such permission transfers would require an analysis of
the callback showing that the Application possesses these permissions
while executing the callback and that the corresponding heap locations
do not get accessed by the Application after the callback returns.

4.5 Case Studies

To demonstrate that Diodon scales to large codebases, we evaluate it on
the AWS Systems Manager Agent (SSM Agent) [132], a 100k+ LOC production
Go codebase. Furthermore, we apply Diodon to a small implementation
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Table 4.2: Execution time for running
each tool on the SSM Agent codebase
and approximate proof effort in person-
months (pms) for creating a protocol
model, adding specifications, and adapt-
ing the Argot analyses, respectively.

Tool Proof Effort Execution Time
Protocol Model Tamarin <2 pms 3.30 min
Core Refinement Gobra <3 pms 1.17 min
I/O Independence Argot <0.5 pm 0.48 min
Core Assumptions Argot <1.5 pms 2.12 min

of the signed Diffie–Hellman (DH) key exchange to showcase that our
methodology applies to other implementations and coding styles.

4.5.1 AWS Systems Manager Agent

The AWS Systems Manager Agent (SSM Agent) [132] provides features for
configuring, updating, and managing Amazon EC2 instances, and is
widely used by AWS customers. A fork of this codebase implements a novel
protocol which enables encrypted interactive shell sessions with remote
host machines, similar to the Secure Shell (SSH) protocol, without needing
to open inbound ports or manage SSH keys. This protocol establishes these
shell sessions with a handshake protocol involving a signed elliptic-curve
DH key exchange to derive sessions keys that are subsequently used in
the transport phase to encrypt the shell commands and their results.

We apply Diodon by first modeling the protocol in Tamarin and proving
secrecy and injective agreement. Second, we partition the codebase
into the code implementing the protocol (the Core) and the remaining
codebase (the Application), and prove I/O independence. Third, we auto-
actively verify the Core using Gobra to prove that the Core refines the SSM
Agent’s role. Finally, we apply the automatic static analyses Argot [135]
to discharge the assumptions within the Application on which the
auto-active proof relies.

Tab. 4.2 overviews each tool’s execution time, for which we use the 10 %
Winsorized mean of the wall-clock runtime across 10 verification runs,
measured on a 2023 Apple MacBook Pro with M3 Pro processor and
macOS 15.6.

Protocol Model

We model in Tamarin the security protocol for establishing a remote
shell session between an SSM Agent running on an EC2 instance and an
AWS customer. The protocol offloads all signature operations to the AWS
Key Management Service (KMS) [139] such that neither protocol role has
to manage their own signing keys. We model the connections to KMS as
secure channels. Furthermore, the SSM Agent sends the asymmetrically-
encrypted session keys to a trusted third party to monitor the transmitted
shell commands should this be necessary for regulatory reasons.

Full Protocol Description

Fig. 4.31 shows the protocol for establishing interactive shell sessions
between an SSM Agent (A) and a customer (B). The protocol includes
two additional roles namely KMS (S) and an optional, trusted moni-
tor (M) that is allowed to inspect the established shell sessions, e.g.,
for compliance reasons.
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M1. 𝐴⇒ 𝑆 : ⟨SignReq, IdskA , 𝑔
𝑥 , Id𝑀 , Id𝐵⟩

M2. 𝑆⇒ 𝐴 : ⟨SignResp, sig𝑥⟩
M3. 𝐴→ 𝐵 : ⟨SessReq, 𝑔𝑥 , sig𝑥 , IdskA , Id𝑀⟩
M4. 𝐵⇒ 𝑆 : ⟨VerReq, Id𝐴 , IdskA , 𝑔

𝑥 , Id𝑀 , Id𝐵 , sig𝑥⟩
M5. 𝑆⇒ 𝐵 : ⟨VerResp⟩
M6. 𝐵⇒ 𝑆 : ⟨SignReq, IdskB , 𝑔

𝑦 , Id𝐴⟩
M7. 𝑆⇒ 𝐵 : ⟨SignResp, sig𝑦⟩
M8. 𝐵→ 𝐴 : ⟨SessResp, 𝑔𝑦 , sig𝑦 , IdskB , ℎ(𝑔𝑥∗𝑦)⟩
M9. 𝐴⇒ 𝑆 : ⟨VerReq, Id𝐵 , IdskB , 𝑔

𝑦 , Id𝐴 , sig𝑦⟩
M10. 𝑆⇒ 𝐴 : ⟨VerResp⟩
M11. 𝐴⇒ 𝑆 : ⟨SignReq, IdskA , 𝑐ss , Id𝐵⟩
M12. 𝑆⇒ 𝐴 : ⟨SignResp, sigss⟩
M13. 𝐴→ 𝑀 : ⟨SSKey, 𝑐ss , sigss , Id𝐴 , IdskA , Id𝐵⟩
M14. 𝐴→ 𝐵 : ⟨HSDone, 𝑐ss , senc(⟨HSPay, 𝑧⟩, kdf1(𝑔𝑥∗𝑦))⟩
M15. 𝐴→ 𝐵 : ⟨Msg, senc(𝑧, kdf1(𝑔𝑥∗𝑦))⟩
M16. 𝐵→ 𝐴 : ⟨Msg, senc(𝑧, kdf2(𝑔𝑥∗𝑦))⟩

where sig𝑥 ≜ sign(⟨𝑔𝑥 , Id𝑀 , Id𝐵⟩, sk𝐴)
sig𝑦 ≜ sign(⟨𝑔𝑦 , Id𝐴⟩, sk𝐵)
𝑐ss ≜ enc(⟨kdf1(𝑔𝑥∗𝑦), kdf2(𝑔𝑥∗𝑦)⟩, pk𝑀)
sigss ≜ sign(⟨𝑐ss , Id𝐵⟩, sk𝐴)

Figure 4.31: Signed DH key exchange for
deriving the symmetric keys kdf1(𝑔𝑥∗𝑦)
and kdf2(𝑔𝑥∗𝑦) that are used during the
transport phase, i.e., in messages M15
and M16. We use → and ⇒ to denote
communication via the untrusted net-
work and a secure channel, respectively.

Since A and B do not personally possess their secret keys for creating
signatures, we explicitly model the presence of and the interactions
with KMS that remotely creates and checks signatures. We model
these interactions as happening on a secure channel, indicated by⇒,
because each role instance of A and B establishes a TLS connection to
KMS.

On a high-level, this protocol performs a signed elliptic-curve DH key
exchange establishing two symmetric keys kdf1(𝑔𝑥∗𝑦) and kdf2(𝑔𝑥∗𝑦).
These keys are used in the transport phase, i.e., M15 and M16, to sym-
metrically encrypt (senc) payloads for sending in a particular direction.
In Tamarin, we model the transport phase as a non-deterministic
loop that allows each role A and B to send and receive an unbounded
number of transport messages and interleave them arbitrarily.

More specifically, the protocol proceeds as follows. Role A first gen-
erates an elliptic-curve public-private key pair, which we model in
Tamarin as generating a fresh term 𝑥 and computing the correspond-
ing public key via modular exponentiation denoted by 𝑔𝑥 . Then, A
sends message M1 to instruct KMS to use a particular signing key be-
longing to A, identified by IdskA, to sign the triple ⟨𝑔𝑥 , Id𝑀 , Id𝐵⟩. This
triple includes the monitor’s and B’s identity to prevent Mallory-in-
the-middle (MITM) attacks. KMS checks whether the requested signing
key actually belongs to A before creating and sending the signature
in M2 back to A. This allows A to send a session request (M3) to B,
which includes 𝑔𝑥 , the signature, and the signing key’s and monitor’s
identities.

After receiving a session request, B first checks the received signa-
ture via KMS. For this purpose, B sends the signature itself and the
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components over which the signature is computed in a signature
check request (M4) to KMS. If the signature is valid, KMS replies with
a signature check response (M5). Otherwise, KMS aborts the protocol,
which we model as not sending any response. Afterwards, B generates
its elliptic-curve public-private key pair (𝑔𝑦 , 𝑦) and uses KMS to sign
𝑔𝑦 and A’s identity. B then sends a session response (M8) to A that
contains B’s public curve point, the signature, the identity of B’s
signing key, and a hash of the shared secret ℎ(𝑔𝑥∗𝑦). The latter allows
A to detect early on if A and B computed different shared secrets, e.g.,
due to an attempted replay attack.

After receiving a session response, A computes the shared secret
and checks that it derives the same shared secret’s hash value. Ad-
ditionally, A checks the received signature using KMS and derives
the two symmetric session keys from the shared secret by applying
two different key derivation functions (KDFs) kdf1 and kdf2. To enable
a trusted monitor M to audit the shell session, A computes 𝑐ss by
asymmetrically encrypting the two session keys using the monitor’s
public key pk𝑀 . Next, role A requests a signature from KMS for 𝑐ss and
B’s identity to bind these identities to the session keys. The handshake
ends by sending the encrypted session keys to the monitor (M13) and
confirming the session keys to B (M14). The latter message includes
some version information, which we model as an attacker-chosen
payload z.

Message M13 enables M, a trusted third party, to monitor the transmit-
ted shell commands should this be necessary for regulatory reasons
(otherwise sending message M13 can simply be skipped). For this
purpose, role A sends the asymmetrically encrypted session keys to
the monitor M such that M can obtain the session keys and, thus,
decrypt and audit the transport messages. Note that the monitor does
not need to be online during the handshake or transport phase; it is
sufficient for the monitor to come online at a later time as an untrusted
log server could store message M13 and all messages sent during the
transport phase until M becomes online and fetches these messages
from the log server.

In Tamarin, we prove secrecy for the two symmetric session keys, i.e.,
the attacker does not learn these keys unless the SSM Agent’s or cus-
tomer’s signing key or the monitor’s secret key is corrupted. Additionally,
we prove that the SSM Agent injectively agrees with the customer, and
vice versa, on their identities and the session keys, unless one of the
three aforementioned corruption cases occurs.

The abstract protocol model amounts to 319 LOC and is automatically
verified by Tamarin 1.10.0 in 3.30 min using an auxiliary oracle consisting
of 75 lines of Python code.

Proving I/O Independence

We perform a taint analysis to prove I/O independence. We configure the
taint analysis to consider all generated elliptic-curve secret keys as sources
of protocol secrets. We assume that only the Core uses the SSM Agent’s
signing keys and do not treat KMS responses as taint sources because
KMS only sends us signatures and never key material. As described in
Sec. 4.3.1, we use Capslock’s capability information to automatically
configure the taint analysis’ sinks.
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We annotated some branching operations, instructing the taint analysis
to ignore that the branch condition is tainted. We identified two classes
of such branching operations. The first class is justified by cryptography.
E.g., we allow branching on the success of decrypting a transport message
because leakage is minimal. The second class results from imprecisions
of the taint analysis and corresponds to false positives, i.e., the analysis
deems a branch condition tainted although it is not. To avoid another
source of false positives, we configured the taint analysis to ignore taint
escaping the current thread (which would otherwise always lead to
errors). Such cases could be handled precisely by marking certain struct
fields as potentially storing concurrently-accessed, tainted data, such that
the analysis can track the taint.

The taint analysis succeeds for the SSM Agent codebase in 29.0 s, proving
that there are no taint flows.

Core Refinement

The SSM Agent contains a Go package called datachannel that implements
the protocol. More precisely, this package contains struct definitions that
together store all necessary internal state. Additionally, this package
exposes publicly accessible functions to initialize the internal state,
perform a handshake, and send a payload, which internally rely on several
private functions. We refer to these struct definitions and functions as
the Core. For backward compatibility, the Core also implements a legacy
protocol; we assume that this legacy protocol is disabled.

Implementation. Each Core instance corresponds to one run of the
protocol with a particular AWS customer. During initialization of a new
Core instance, the Core starts a new thread, responsible for receiving and
processing incoming packets for this protocol run, similar to the running
example. If an incoming packet contains a transport phase payload, this
payload is delivered by a callback to the Application. Thus, the Core
uses two different threads, one for sending messages and another one
for receiving messages, which both operate on shared state. This shared
state keeps track of the progress within the protocol and the secret data
involved in the protocol, such as the elliptic-curve DH points and the
resulting session keys.

Since the shared state is modified during the handshake, accesses must be
synchronized to avoid data races. Hence, the Core employs Go channels,
i.e., lightweight message passing, to signal a transfer of the shared
state’s ownership from one thread to another. During the handshake
phase, exclusive ownership is transferred such that the threads have
synchronized write access to the shared state. Afterwards, the shared
state, which includes the established session keys, is used in a read-only
way permitting both threads to concurrently read the shared state while
sending and receiving transport messages.

Auto-Active Refinement Proof. We verify the Core using Gobra, which
proves that the Core refines the Tamarin model’s SSM Agent role. This
proof encompasses safety, i.e., we prove that the Core does not crash
and has sufficient permissions for every heap access, thus, guaranteeing
absence of data races. In particular, this forces us to reason precisely
about the accesses to shared state that the two threads within the Core
perform.
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Due to the intricate interplay of these threads, the resulting safety proof is
substantial and requires Gobra’s expressivity. We isolate and axiomatize
operations that Gobra does not yet support such as simultaneously receiv-
ing on multiple channels and functionally reasoning about serialization
and deserialization. For the purpose of the proof, we treat the Core as a
state machine consisting of 12 different states. This allows us to refer to
these states in the Core’s invariant and precisely express for each state
the permissions and progress w.r.t. the abstract protocol model.

Although the entire complexity of the proof is encapsulated in the Core’s
invariant, function calls to the Core must respect its state machine. To
avoid exposing the state machine in these functions’ preconditions and
imposing additional restrictions on callers, we slightly changed the im-
plementation to perform a dynamic check consisting of a comparison
with nil and a single integer comparison ensuring that the state machine
is in a correct state; otherwise, these Core functions return a descriptive
error. Thus, the Core functions’ specifications are similar to those of our
running example, i.e., mention only the invariant and specify permis-
sions for parameters without referring to the state machine. While most
parameters are of primitive type or shallow, there are a few non-shallow
input parameters, which the Core treats as opaque. Similarly, the callback
from the Core to the Application delivers a non-shallow struct for which
we ensure that the Core passes permissions for all transitively reachable
heap locations to the Application.

We prove safety and refinement of the Core in 1.17 min for 749 lines of code
requiring 3825 lines of specification and proof annotations; 1064 thereof
are related to the I/O specification and generated automatically by
Tamarin.

Analyzing the Application

The auto-active proof for the Core relies on callers satisfying the spec-
ified preconditions, which we establish using a combination of static
analyses. We implemented automatic checks as described in Sec. 4.3.3
for conditions (C1)–(C4) and (C6)–(C8). Condition (C5) requires a more
precise call graph than is currently available in our tool and is, thus, left
as future work.

We implemented our analyses by forking and extending the existing
Argot tool. Most of our analyses are obtained by interpreting the output
of an existing analysis; e.g., the parameter alias check uses the off-the-shelf
pointer analysis to show parameters do not alias one another.

For some conditions, our static analyses were not able to validate the
Application due to tool limitations. For example, the escape analysis
cannot reason about which fields are accessed after a struct escapes. This
can cause the tool to raise alarms when a struct stores a Core instance
in a field. We found it was straightforward to rewrite the Core and
Application to eliminate these failures. For example, the struct leakage
can be fixed by moving the relevant field accesses before thread creation,
so that the new thread has access only to the values of those fields and
not the entire struct, and by extension the Core instance.

By running our escape analysis, we observed that Core instances escape
the thread in which they are created because the Application creates
a closure that closes over an object that points to a Core instance. This
capture is incidental in that the closure does not access the captured
Core instance, which we verified by manual inspection. This capture can
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be eliminated by rewriting the application to reference only the state
necessary in this closure, rather than the full object. This change would
result in a more defensive implementation by reducing the scope of
possibly concurrent accesses.

Our pass-through analysis is a prototype that succeeds on our second case
study. However, for the SSM Agent, we obtain false positives due to
allocations in functions called from both Core and Application, which
could be addressed by adding calling context information.

Some Core functions take a pointer to a logger object as a parameter,
which is internally thread-safe and shared between threads. We can
safely ignore escape errors due to these parameters because the Core
does not access any memory of the logger object; the pointer is just
used as an opaque reference to invoke log functions that are part of the
Application.

In summary, this case study demonstrates that Diodon allows one to
obtain strong security guarantees for a production codebase that was not
designed with formal verification in mind. The remaining limitations
(manual overrides of false positives in the static analyses, checking
condition (C5), extremely lightweight dynamic checks enforcing non-
nilness and correct ordering of API calls, and minor code changes) are
modest compared to the complexity of the overall verification challenge
and we conjecture that we can lift them by employing more precise static
analyses.

4.5.2 Signed Diffie–Hellman (DH) Key Exchange

We also apply our approach to a codebase employing inverted I/O, i.e.,
has a Core that only produces and consumes byte arrays corresponding
to protocol messages while the Application performs all I/O operations.
We adapted the Tamarin model and Go implementation of the signed
DH key exchange from Sec. 2.6 and extended both by a transport phase
that uses the established session key to send and receive unboundedly
many payloads. Tamarin verifies the abstract model with 177 lines of
code in 3.2 s while Gobra verifies the Core consisting of 178 lines of code
in 14.2 s requiring 1726 LOS. Executing all static analyses including the
taint analysis takes 9.7 s.

This case study clearly exhibits the concept of virtual I/O. The Core
performs a virtual input operation for messages that the Application
received from the network and forwarded to the Core. Similarly, we
perform a virtual output operation for every message that the Core
produces before returning this message to the Application. Therefore, we
prove that the Tamarin model permits sending this message and in return,
we sanitize the message from a taint analysis’ perspective such that the
Application can send the message without causing a false-positive taint
flow.

Diodon separates the justification of sending a particular message from
the actual I/O operation. This is important for tackling realistic codebases
because identifying the actual send operation in a call stack is typically
difficult as a message passes through several functions that, e.g., add
additional protocol headers before a message is handed to the network
interface controller.
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4.5.3 Discussion

Our evaluation demonstrates that Diodon enables us to efficiently prove
that an entire codebase refines a protocol model and therefore is secure. To
obtain the security properties as proven in Tamarin for a deployment of
this protocol, we have to prove the implementations of all other protocol
roles analogously against the same model using Diodon.

As shown in Tab. 4.2, the efforts for applying Diodon to the SSM Agent is
manageable. Thanks to I/O independence, the Tamarin model is concise
and can focus on the relevant interactions between the protocol roles. In
addition, I/O independence allows us to apply automatic static analyses
at the code-level to reason about all protocol-irrelevant I/O operations.
This contrasts existing approaches that would auto-actively verify the
entire codebase and prove that every I/O operation is explicitly permitted
by the model, which is completely impractical for this codebase.

To evaluate Diodon’s effectiveness at preventing security vulnerabilities,
we deliberately introduce bugs in our case studies. E.g., our taint analysis
correctly fails if the Core’s internal state, which includes the established
session keys, is logged after the handshake. Additionally, sending the
DH secret key in plaintext correctly results in Gobra failing to prove
refinement w.r.t. the abstract protocol model. The tools’ execution time
in the presence of these bugs remains comparable to that for the secure
implementations.

By applying Diodon we not only obtain security properties for the SSM
Agent codebase but we also discovered and fixed bugs along the way.
Tamarin allowed us to quickly locate and fix a MITM attack in an earlier
and unreleased version of the protocol, which is possible if the intended
recipient’s identity is omitted in the signatures (sig𝑥 and sig𝑦 in Fig. 4.31).
On the code level, we identified and fixed a potential data race in an earlier
and unreleased version of the Core caused by insufficient synchronization
between the two threads that send and receive handshake messages. We
uncovered this data race because completing the safety proof for the
Core’s earlier version is not possible as an additional synchronization
point is necessary to transfer separation logic permissions between
these threads. This demonstrates the power of applying formal methods
because detecting this data race with testing techniques would require to
precisely time the reception of a handshake message such that the faulty
memory access occurs and, thus, can be observed.

4.6 Alternative Approach to Verifying the Core

Diodon and its soundness proof in Sec. 4.4 expect that the Core is
auto-actively verified using our approach from Chapter 2, i.e., w.r.t. to
a Tamarin model. Instead, in this section, we sketch an alternative that
auto-actively verifies the Core using our approach from Chapter 3.

As we have seen in Chapter 3, we have to prove that all operations
appending trace entries to the global trace maintain the trace invariant.
Since the Application can, e.g., generate random numbers and perform
I/O operations, proof obligations that the trace invariant is maintained
arise in the Core and the Application. By auto-actively verifying the
Core using a protocol-specific instantiation of the trace invariant, we
discharge proof obligations for trace-relevant operations within the Core.
This auto-active verification uses the Core invariant (Inv in Fig. 4.2) but



4.6 Alternative Approach to Verifying the Core 151

instead of containing an I/O specification, this invariant must maintain
sufficient knowledge about the local snapshot to discharge these proof
obligations, as described in Sec. 3.3.4.

We discharge proof obligations for trace-relevant operations within the
Application by relying on I/O independence, without requiring auto-
active verification. Following the same high-level idea of our soundness
proof in Sec. 4.4.1, we can treat the Application’s operations and the
corresponding trace entries that the Application conceptually appends to
the global trace as refining our DH attacker. Since we prove attacker com-
pleteness (cf. Sec. 3.3.3) once and for all protocols as part of our reusable
verification library, all operations performed by the DH attacker provably
maintain the trace invariant, independently of a concrete protocol-specific
instantiation of the trace invariant that the Core uses to prove security
properties. Considering, e.g., send operations within the Application,
this means more specifically that (1) we assume that the Application’s
I/O independence implies that the DH attacker can construct and send
the same payloads. Thanks to (2) attacker completeness, we already
proved as part of our library that sending these payloads maintains the
trace invariant, i.e., that these payloads have a secrecy label indicating
that the attacker already knows the class of terms corresponding to these
payloads (cf. Sec. 3.4.2). Combining (1) and (2), we can conclude that the
Application’s send operations (and analogously all other trace-relevant
operations) maintain the trace invariant. In particular, this once-and-
for-all conclusion does not require us to discharge any additional proof
obligation for each trace-relevant operation within the Application, ex-
cept for showing that the Application satisfies I/O independence. Hence,
the Application remains amenable to static analyses.

To ensure sound composition of the Core and Application, we perform
the same checks by executing static analyses as described in Sec. 4.3.3,
which guarantee that the Application respects the Core’s separation
logic specification. A detail on the interactions between the Core and
Application worth mentioning regards virtual I/O, i.e., exchanged data.
Since we treat the Application as an instance of the DH attacker, all
data that the Application can freely use, i.e., data that our taint analysis
considers being untainted, must be readable (according to its secrecy
label) by the attacker, which corresponds to the trace invariant for
messages. Thus, we can either explicitly model these data exchanges by
appending trace entries in the Core representing receiving data from
the Application and sending data to the Application, which is similar
to virtual I/O operations explained in Sec. 4.2, or place appropriate
statements in the Core assuming and asserting message invariants for
the exchanged data.

To summarize, the Diodon methodology is not specific to refinement-
based verification of the Core but the insight of treating the Application
as an instance of the DH attacker generalizes to other approaches for
verifying the Core. To retain Diodon’s ability to scale to large codebases,
we require that no auto-active verification of the Application is necessary
and the specifications of Core functions exposed to the Application fall
into the supported class of specifications (cf. Asm. 4.4.4), which is the
case for our invariant-based methodology from Chapter 3.
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4.7 Related Work

Much prior work on verifying security protocols exists, as covered in the
previous chapters. Hence, we focus on approaches for verifying security
properties for implementations and their applicability to large and real-
world codebases. We end by comparing Diodon to approaches proving
strong isolation guarantees and performing dynamic verification.

Implementation and Model Generation. One approach to obtain verified
protocol implementations generates secure-by-construction implementa-
tions from an abstract model, e.g., [39, 46, 47, 51, 52]. Besides previously
mentioned drawbacks of generated implementations, OwlC [52] is the
only work that considers embedding a generated implementation into a
larger codebase. OwlC assumes that protocol secrets occur only in the
generated implementation and relies on the Rust type system to shield
these secrets from the rest of the codebase. In contrast, we do not adopt
this restriction and, instead, check I/O independence for the Application.
Furthermore, OwlC guarantees that generated functions can be called
in arbitrary order and uses Rust types to ensure that, e.g., a session
key established during a handshake is passed to a function that sends
or receives a transport message. Instead, we use the Core invariant to
maintain separation logic properties between Core API calls, which is
more expressive.

An alternative approach extracts an abstract model from an implemen-
tation, e.g., [12, 53, 56–58]. However, for this extraction to work, an
implementation typically has to follow restrictive coding disciplines
such that relevant protocol steps can be identified and extracted. To
achieve isolation between a verified component and potentially malicious
code, Kobeissi et al. [58] build on process isolation provided by operat-
ing systems and, thus, require verifying the entire critical process. We
cannot adopt this approach because it requires changing the codebase
heavily to split it into several processes and results in an, for our use
case, unacceptable overhead, since each process includes its copy of the
Go runtime and the Go standard library. Bhargavan et al. [12] impose
substantial restrictions on the API of verified code, e.g., disallowing state
preservation between API calls. Codebases do not normally satisfy these
restrictions, including all our case studies. E.g., they use a session key for
sending a transport message in one API call that was established during
the handshake, i.e., a previous API call.

Existing Implementations. Dupressoir et al. [64] and our invariant-
based (Chapter 3) and refinement-based (Chapter 2) methodologies
require verifying the entire codebase using an auto-active verifier (which
Diodon does not). We build on the latter methodology and, to the best
of our knowledge, are the first to relax this requirement to verifying
just the Core and reason about the Application using lightweight static
analyses.

Verified Isolation. Outside the security protocol implementation com-
munity, several approaches verify strong isolation guarantees for kernels
and hypervisors. E.g., Murray et al. [140] prove information flow security
for the seL4 microkernel using Isabelle/HOL, while Li et al. [141] prove
similar properties for a modified version of the Linux KVM hypervisor
in Coq. Common to both approaches is that they prove isolation of the
kernel and hypervisor with respect to arbitrary (untrusted) user-space
programs and virtual machines, respectively. Such a proof is possible as
kernels and hypervisors run in a higher privilege level than the untrusted
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components, which is enforced by the underlying hardware. To enable
verification, Li et al. [141] move all non-essential functionality of the
original hypervisor into untrusted services, reducing the codebase from
more than 2M to under 4000 LOC, which is in spirit similar to our manual
decomposition of a codebase. Applying their approaches to our case
studies is not possible because the Core does not run in a higher privilege
level than the Application and, thus, is not sufficiently isolated from the
Application, which necessitates statically analyzing the Application.

Dynamic Verification. Several approaches employ dynamic checks at
runtime to allow for partially verified codebases. Agten et al. [142] target
single-threaded C code and generate runtime checks at the boundary
between verified and unverified code to test that the verified code’s spec-
ification holds. To detect violations of properties expressed in separation
logic such as ownership (via permissions) and aliasing, this approach
tracks the heap locations accessed by the verified codebase at runtime and
computes cryptographic hashes thereover. It remains unclear whether
these checks only at the boundary remain sufficient when targeting
concurrent codebases or whether the runtime overhead increases further.
To avoid tracking heap locations at runtime, Ho et al. [41] copy all heap
data at this boundary to rule out aliasing.

Gradual verification (e.g., [143, 144]) combines auto-active verification
with dynamic checks but aims at helping the proof developer by allowing
incomplete specifications. I.e., gradual verification enables incremental
verification where each function’s specification is extended over time to
eventually obtain a fully specified and verified codebase. However, as
long as a codebase is not fully specified and verified, gradual verification
requires tracking heap locations at runtime, which results in noticeable
runtime overhead.

SCIO★ [145] is an F★ transpiler that injects dynamic checks not only at the
boundary between verified and unverified code but also at call sites of
I/O operations. While they can enforce access policies for I/O operations,
it remains unclear how this approach extends to cryptographic message
payloads. To be applicable in our context, we would need to dynamically
check whether a message sent by our Application is indeed protocol-
irrelevant and, thus, does not contain any secrets from the Core—not even
in encrypted form. Like our work, SecRef★ [146] considers the problem
of verifying only a subset of a codebase due to the otherwise prohibitive
proof effort. While they also allow pre- and postconditions at the bound-
ary between verified and unverified code, they rely on dynamic checks
to enforce these conditions for heap locations accessible by unverified
code. For a verified component like our Core, this means that they check
the entire invariant at runtime for each API call (which we do not), as
they treat the unverified code as potentially modifying a Core instance’s
entire state. By targeting a single-threaded language (F★), SecRef★ does
not have to consider concurrent memory accesses (which we do).

By contrast, Diodon performs only extremely lightweight dynamic checks
enforcing non-nilness and correct ordering of API calls, and checks all
other constraints statically to avoid runtime overhead while simultane-
ously requiring minimal code changes.
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Conclusions 5
In this dissertation, we have presented two methodologies for the verifica-
tion of security protocol implementations and a sound combination with
static analyses to scale them to large codebases. Our methodologies and
our program verifier Gobra contribute to making practically deployed
implementations safe and secure by enabling the proof of strong security
properties for implementations that are actually executed by users around
the globe to communicate securely with online services—as opposed to
models or crafted reference implementations commonly used in related
work.

If an abstract protocol model exists, the refinement-based methodol-
ogy from Chapter 2 exploits the automation offered by Tamarin, a
state-of-the-art protocol model verifier, to produce protocol-role-specific
specifications describing permitted I/O operations. This novel link allows
us to independently verify an implementation against the specification
of a protocol role using off-the-shelf program verifiers. One challenge
we overcame is bridging the gap between symbolic terms, arising in the
model, and concrete data types like byte arrays used in implementations.
Successful verification establishes a trace inclusion relation between
the verified implementation and the corresponding role in the protocol
model, thus, implying that the implementation satisfies the same security
properties as the protocol model. Furthermore, the program verifier’s
proof encompasses a safety proof, i.e., that an implementation is free
of crashes, undefined behavior, and memory errors, which rules out
a large class of implementation-level errors such as buffer overflows.
The work in Chapter 2 had an impact on Morio and Künnemann’s Spec-
Mon [95], which adopts our decomposition of a Tamarin model for
runtime monitoring.

If an accurate, abstract protocol model does not exist or the trust as-
sumptions and number of different formalisms should be minimized,
our invariant-based methodology (Chapter 3) proves security properties
directly on the level of implementations. Since we deal with multiple
implementations for different protocol roles that, at runtime, execute
concurrently and communicate over an untrusted network with each
other, we prove each implementation against a trace invariant, which
captures the proof-relevant behavior of all communication partners.
More specifically, we model this distributed system as a concurrent
program with threads, in which each thread represents such an imple-
mentation or the attacker. Building on established verification techniques
for concurrency reasoning, we prove that every trace-relevant operation
maintains the trace invariant—without requiring particularly structured
code (so-called coding disciplines) as assumed by related work. As we
use a trace invariant in separation logic, our methodology supports
proving strong security properties including injective agreement—a first
for invariant-based approaches. Our parameterized, reusable verification
library exploits commonalities between security protocols to reduce the
per-protocol proof effort and annotation overhead.

Finally, Chapter 4 presents a novel methodology to soundly reduce
the auto-active verification effort and, thus, annotation overhead of the
two aforementioned methodologies as, without Diodon, both these
methodologies require an auto-active proof spanning the entire codebase.
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Diodon’s high-level idea is to focus expressive but laborious proof tech-
niques on small, security-critical parts of a codebase, which implement a
security protocol. These parts require expressive proof techniques like
auto-active verification as security depends, e.g., on the precise payloads
of sent messages. However, all other parts of a codebase cannot be ignored
as they may violate security properties that would otherwise hold for the
security-critical parts. We identify and check I/O independence, which
enables this partitioning of the codebase and, furthermore, results in
more concise protocol models. In addition to checking I/O independence,
we apply a novel combination of fully-automatic static analyses to the
entire codebase ensuring that the entire codebase satisfies the assump-
tions made by the security-critical parts. We carefully pick a class of
supported assumptions that are amenable to static analyses as the proof
effort needed to apply static analyses scales to large codebases, although
at the cost of less precise (but still sound) results compared to auto-active
program verification. Since static analyses and auto-active program verifi-
cation use vastly different formalisms, we present a blueprint in Diodon’s
soudness proof that lets us combine their respective guarantees.

While we have successfully applied all our methodologies to real-world
codebases using heap-manipulating programming languages and proved
strong security properties including forward secrecy and injective agree-
ment, there are several avenues for future work.

Stronger Security Properties. We have focused on proving commonly
used security properties. However, with the raise of post-quantum
cryptography, stronger attacker models and properties guaranteeing
protection against these stronger attackers are being proposed.

Recent work by Linker et al. [17] has shown that certain post-quantum
attackers can be encoded in the symbolic model of cryptography, more
precisely in Tamarin. While it is likely that our refinement-based method-
ology is immediately applicable, it would be interesting to explore how to
extend our invariant-based methodology, possibly by making the entire
attacker model or at least some of the attacker’s capabilities parametric.
Going even further, we could consider a probabilistic polynomial-time
attacker as used in the computational model of cryptography. In this
attacker model, we could treat programs probabilistically, e.g., using
dedicated program verifiers like Caesar [147], or devise a possibilistic
verification approach that provides probabilistic guarantees. Owl [51]
demonstrates that the latter approach is feasible by devising a type
checker that guarantees that a security property holds with overwhelm-
ing probability, however, without providing concrete bounds on the
probabilities. The latter approach is attractive as it would allow us
to reuse existing program verifiers like Gobra and to target existing
implementations.

Staying in the DY attacker model, Sec. 3.9 hinted at stronger guarantees in
the context of secure deletion. While our current approach does not store
a protocol session’s current epoch on the trace but stores it locally in the
respective verification library’s instance, future work could investigate
which security properties can be proven if the current epoch is stored
on the global trace. In particular, storing the current epoch on the trace
provides two benefits. First, we can allow multiple library instances per
protocol session as the authority to transition to the next epoch could get
shared between these instances. Second, as a protocol session’s current
epoch is stored on the trace, this epoch becomes logically accessible to,
e.g., instances of other protocol roles. More specifically, a trace invariant
can refer to the current epoch of, e.g., a message’s sender, which allows
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us to prove stronger security properties, namely secrecy labels that refer
to an epoch of another protocol role instance.

Privacy Properties. All our methodologies target security properties,
each stating a trace property, and we prove that every possible trace of
executing a security protocol’s implementations satisfies a given security
property; i.e., a security property is a proposition that depends on an
individual trace. In contrast, privacy properties are typically defined
as an equivalence relation between two or more traces, which is not
a trace property. E.g., anonymity mandates that the security protocol
does not reveal the identities of involved protocol participants, which
is usually formalized as the attacker’s inability to distinguish between
two scenarios in which the security protocol is executed by protocol
participants with different identities. While several advances have been
made in the context of protocol model verifiers to verify such properties,
as surveyed by Delaune and Hirschi [148], we are not aware of any work
that verifies privacy properties for implementations of security protocols.
Straightforwardly applying our refinement-based methodology to utilize
Tamarin’s support for observational equivalence [149] is unfortunately
not possible as observational equivalence is not preserved by refinement.
In particular, refinement guarantees only trace inclusion and not trace
equivalence, which means that a protocol model may describe more
traces than actually possible by executing the implementations. Thus,
ongoing work extends our invariant-based methodology, where the key
challenge lies in modularly proving the existence of particular traces
satisfying the equivalence relation.

Extending Diodon. Diodon, as described in Chapter 4, is a first take at
soundly combining proof systems of different expressive power, namely
auto-active verification and static analyses. The employed static analyses
and the supported class of specifications for Core methods that an
Application may call was driven by the availability of static analyses in Go
and the production codebase we used to evaluate Diodon. While Diodon
is a solid first step, it provides several exciting directions for future work.

First, we can implement the remaining static analyses, increase precision
of existing static analyses for instance by making more of them context-
sensitive, and extend Diodon with further static analyses to enable
stronger specifications for Core methods. E.g., a sound analysis for
nilness would broaden the supported class of specifications as such an
analysis could guarantee non-nil arguments in calls to Core methods,
which would allow us to strengthen their preconditions and, thus, we
could drop the nil checks in the Core.

Second, since Diodon is not inherently limited to Go, future work could
apply it to codebases written in other programming languages. Rust
would be particularly interesting as its strong type system would allow us
to drop several static analyses and assumptions like data race freedom.

Third, the Application’s relation to the attacker model could be explored
more formally. Currently, we assume in the soundness proof that the
Application performs only operations that are abstractable to operations
represented by the so-called protocol-independent message deduction
rules (cf. Def. 4.4.2) and prove that these operations refine the attacker
model. Since I/O independence guarantees that the Application does
not send tainted data, i.e., data that depends on protocol secrets, it would
be interesting to embed I/O independence into these message deduction
rules. E.g., the message deduction rules could explicitly track taint and
constrain send operations to send only untainted data. This treatment
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could foster a deeper understanding of the boundary between the Core
and Application and, thus, provide a solid foundation for the proof
obligations concerning virtual I/O operations.

Finally, we see applications of Diodon outside the context of security
protocol implementations. It is common for program verification efforts
to axiomatize libraries, i.e., proof engineers equip library functions
with trusted specifications that are used to verify client code. These
specifications are sound if they suffice to verify the library functions’
implementations. However, due to the high proof effort, library functions
often remain unverified. Therefore, it would be interesting to adapt
Diodon to these library functions. I.e., we could execute static analyses
on the implementations of library functions to increase trust in the
correctness of their specifications.
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AC associativity and commutativity. 33, 34
ADEM The Authentic Digital EMblem (ADEM) is an authentication mechanism for digital assets. 12, 43–45,
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ADT algebraic data type. 66
AEAD authenticated encryption with associated data. 40, 64, 93
AKC actor key compromise. 69, 71, 72
API application programming interface. 63, 64, 97, 104, 112–115, 124, 125, 134, 144, 145, 151, 154, 155
attacker completeness A property of trace invariants stating that a trace invariant remains valid under the

full set of operations available to the attacker, as defined by the attacker model. This property is also
known as robust safety [102] or attacker typability [39]. 58, 63, 64, 153

AWS Amazon Web Services. xi, 10, 12, 103, 104, 145, 146, 149

CA certificate authority. 44
CDS concurrent data structure. 63, 70
CT Certificate Transparency. 44, 45

DH Diffie–Hellman. 12, 17, 18, 39, 40, 52, 66–68, 73, 93–95, 101, 103, 104, 109, 145–147, 149, 151–153
DoS denial of service. 40, 42, 69
DY Dolev–Yao. 2, 17, 18, 35, 37, 51, 53, 103, 104, 108, 109, 114, 117, 119, 122, 158

equational theory A set of equations that is used to axiomatize the behavior of otherwise uninterpreted
functions. 11, 17, 33, 34, 66, 68, 74, 75, 98

forward secrecy A property of security protocols stating that the compromise of long-term keys does not
compromise past session keys. See Sec. 3.6.3 for details. 11, 51, 59, 69, 71–73, 87, 89, 93, 97–99, 101, 158

fractional permissions A common permission model in separation logic readily supported by many program
verifiers. One or a full permission grants read and write access to a heap location, which is created
at allocation time of this heap location. Any fraction strictly larger than zero grants read-only access.
Separating conjunction adds up fractions of permissions to the same heap location. 58, 88, 90, 104, 113

functional property An implementation-specific property of a program describing its desired behavior, e.g.,
that a sorting algorithm’s result is a sorted permutation of the input. 3, 55, 73, 74, 109, 113, 125, 126, 150

ghost code Auxiliary program code asserting intermediate properties and manipulating auxiliary program
state to facilitate reasoning about a program. Ghost code does not affect a program’s runtime behavior
and is erased before compilation. See Filliâtre et al. [97] for details. 5, 11, 30–33, 37, 51, 56–59, 62, 64–67,
70, 73, 75, 77, 81, 88, 91, 95, 96, 99, 101, 126–129, 132, 134, 136–139, 142–145

goroutine A lightweight thread in the Go programming language. 5, 45–47, 68, 70, 71, 104, 105, 107

I/O independence A property of I/O operations stating that an I/O operation that is classified as protocol-
irrelevant does not depend on any secret data involved in the protocol. In Diodon, we prove this
property by performing a static taint analysis. 101–103, 106, 108, 109, 115, 143, 146, 148, 152–154, 158, 159

I/O separation logic A logic for reasoning about I/O behavior of programs. 19, 28, 49, 95
ICRC International Committee of the Red Cross. 44
IHL International Humanitarian Law. 44
injective agreement An authentication property of security protocols stating that two parties injectively agree

on their identities and certain values. In contrast to non-injective agreement, this property additionally
rules out replay attacks. See Sec. 3.4.1 for details. 10, 11, 51, 52, 60–62, 66, 68, 69, 71–73, 97–99, 101, 103,
146, 148, 157, 158

IP Internet Protocol. 69, 70
ITree interaction tree. 48

KCI key compromise impersonation. 72
KDF key derivation function. 40, 73, 87, 92–94, 148
KMS Key Management Service. 146–148



LOC line of code. 28, 145, 148, 155
LOS line of specification. 73, 151
LTS labeled transition system. 17, 25, 27, 29, 30, 37, 49, 116

MAC message authentication code. 40, 104, 105
MITM Mallory-in-the-middle. 147, 152
MLS Messaging Layer Security. 6, 8
MSR multiset rewriting. 17, 18, 20–23, 25–28, 31, 41, 42, 50, 118, 123

non-injective agreement An authentication property of security protocols stating that two parties agree on
their identities and certain values. This property is typically expressed as a correspondence between
events on a trace. See Sec. 3.4.1 for details. 60, 61, 69, 73, 97, 98

NSL Needham–Schroeder–Lowe. 12, 52, 56, 58, 60–62, 67, 68, 72, 73, 87, 98

permission accounting An alternative permission model to fractional permissions in separation logic. This
model is based on a factory resource from which so-called shares (another separation logic resource)
can be split off. The factory resource keeps track of how many shares have been split off and allows to
recollect shares. 88

PKI public key infrastructure. 44
post-compromise security A property of security protocols stating that the compromise of long-term keys

does not compromise future session keys. 87, 89, 93, 98
protected party A party that is protected under International Humanitarian Law (IHL) in the context of

ADEM. Examples include humanitarian organisations like UNICEF and Médecins Sans Frontières. 44,
45, 47

safety A property of programs guaranteeing that a program does cause neither runtime exceptions nor
undefined behavior. In particular, it covers the absence of memory errors, which include buffer
overflows, data races, use-after-free errors, and reading from uninitialized memory. 3, 4, 7, 42, 46, 52,
54, 55, 69, 73, 97, 98, 101, 109, 125, 149, 150, 152, 157

SDK software development kit. 2
separation logic A logic for reasoning about programs with mutable state.
SMT satisfiability modulo theories. 4, 66, 103
SSA static single assignment. 124, 128
SSH Secure Shell. 146
SSM Agent Systems Manager Agent. 103, 145, 146, 148, 149, 151, 152

TCP Transmission Control Protocol. 69
TLS Transport Layer Security. 1, 2, 7, 8, 47, 48

VMI association of scientific staff of the Department of Computer Science at ETH Zurich. xii
VPN Virtual Private Network. 5, 10, 16, 39, 42, 67–72, 96
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