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Abstract—Security protocols are essential building blocks of
modern IT systems. Subtle flaws in their design or implemen-
tation may compromise the security of entire systems. It is, thus,
important to prove the absence of such flaws through formal
verification. Much existing work focuses on the verification
of protocol models, which is not sufficient to show that their
implementations are actually secure. Verification techniques
for protocol implementations (e.g., via code generation or
model extraction) typically impose severe restrictions on the
used programming language and code design, which may lead
to sub-optimal implementations. In this paper, we present a
methodology for the modular verification of strong security
properties directly on the level of the protocol implementations.
Our methodology leverages state-of-the-art verification logics
and tools to support a wide range of implementations and
programming languages. We demonstrate its effectiveness by
verifying memory safety and security of Go implementations
of the Needham-Schroeder-Lowe and WireGuard protocols,
including forward secrecy and injective agreement for Wire-
Guard. We also show that our methodology is agnostic to
a particular language or program verifier with a prototype
implementation for C.

1. Introduction

Cryptographic protocols, such as TLS, WireGuard [1],
and Signal [2], are the cornerstones of today’s global
communication networks because they ensure crucial security
properties, such as participant authentication and data privacy.
With Lowe’s famous attack on the Needham-Schroeder
protocol [3], [4], it has become obvious that formal proofs are
necessary for verifying that cryptographic protocols actually
provide the desired properties.

Several approaches for automating protocol verification
have been proposed in the past. The vast majority of these
targets protocol models, i.e., abstract descriptions of the cryp-
tographic operations and message exchanges that constitute
a protocol. Verification of protocol models is useful to show
security of the protocol design, but does not guarantee that
concrete protocol implementations are also secure. Common
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programming errors (such as missing bounds checks in the
Heartbleed bug [5]) or incorrect implementations of the
design (such as accidentally omitted protocol steps in the
Matrix SDK [6]) may render the implementation insecure
even if the protocol design is secure. Additionally, formal
models may not always exist, or may not be in sync with
evolving implementations.

One approach at closing this gap is code generation
(e.g., [7]–[10]), where an executable implementation is
automatically generated from a verified model. With this
approach, verification is performed on the abstract protocol
level, without the need to involve potentially intricate pro-
gramming language semantics. A typical limitation of this
approach, however, is that the generated code often exhibits
sub-optimal performance, cannot interact easily with existing
code, and cannot be changed manually afterwards (e.g., to
optimize performance or upgrade dependencies) without
risking to compromise security. The opposite direction is
taken by model extraction (e.g., [11]–[15]), where security
properties are verified against a protocol model that is
extracted from code. To enable automatic model extraction,
implementations are often severely restricted by coding
disciplines. The same restriction applies to approaches with
executable models (e.g., [16], [17]), i.e., models written in
specific subsets of programming languages that facilitate
reasoning, but typically do not provide the low-level features
required for optimized implementations.

This work. In this paper, we present a methodology for
the verification of strong security properties (e.g., injective
agreement, forward secrecy) directly on the level of the proto-
col implementations. Our methodology leverages established
program verification techniques that are supported by a wide
range of existing automated1 tools (e.g., [18]–[22]), which
makes it readily applicable. It is based on separation logic
[23], [24], a program logic that supports the language features
used to write efficient implementations, such as, mutable heap
data structures and concurrency. As a result, our methodology
applies to realistic implementations written in mainstream
programming languages such as C, Go, JavaScript, and
Rust. Verification in our methodology is modular, that is,

1. The proof search is automatic but relies on user-provided annotations.
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one can verify each method (or protocol participant) in
isolation, without considering the implementations of other
methods. Modularity is crucial for scalability, to reduce re-
verification effort when the code evolves, and to provide
strong guarantees for libraries whose clients are not known.

As is common in protocol verification, we explicitly
model the global traces of a protocol, which allows us
to express security properties in ways familiar to security
experts. These traces are expressed and manipulated via ghost
code [25], that is, program code that is used for verification
purposes, but erased by the compiler before the program is
executed. The ghost code required to manipulate the global
protocol trace is encapsulated in the I/O and crypto libraries
used by an implementation to ensure, i.e., that each sent
message is correctly reflected in the trace.

Using ghost code allows us to cleanly separate the
global trace, which is necessary to prove protocol-wide
properties, from the data structures maintained locally by
each participant. Technically, we treat each participant of the
protocol (including a Dolev-Yao attacker [26]) as a thread
of a concurrent system, and the global trace as shared state
among these threads. This approach allows us to leverage
existing verification techniques for shared-data concurrency.

Our use of a global protocol trace is inspired by Bhar-
gavan et al.’s DY* framework [9], [10], [27]. However,
they perform code generation (from a functional implemen-
tation in F* [28] to OCaml and C), whereas we target
implementations directly. For soundness, their approach
requires a specific coding discipline (one method per protocol
step) that needs to be enforced manually; our methodology
requires no such restrictions. We also took inspiration from
Dupressoir et al. [29], who model the protocol trace as a
shared concurrent data structure. However, their verification
technique depends heavily on the intricacies of the used
language (e.g., C’s volatile fields) and verifier (VCC [30]).
In contrast, we present a generic methodology that applies to
a wide range of languages and verification tools. Moreover,
neither of the two approaches can prove injective agreement,
which our approach enables.

Contributions. We make the following contributions:

1) We present a modular verification methodology for
protocol implementations based on global traces
and concurrent separation logic that applies to a
wide range of programming languages, protocol
implementations, and verification tools.

2) We show how to use separation logic’s notion of
linear resources to prove injective agreement, i.e.,
the absence of replay attacks, which is difficult in
other logics.

3) We developed a reusable Go library that facilitates
the ghost code instrumentation to maintain the
global trace; protocol-independent properties are
verified once and for all for this library and can, thus,
be reused for different protocol implementations.

4) We demonstrate the practicality of our approach by
using the Gobra verifier [19] to verify memory safety

and security of Go implementations of Needham-
Schroeder-Lowe (NSL) [3], [4] and WireGuard [1].
A prototype of the reusable library for C and the
VeriFast verifier [18] shows that our approach relies
on only a few common program verifier features.

The Go and C implementations of our reusable verification
library and the case studies are available in our open-source
artifact [31].

Outline. Sec. 2 introduces background on trace-based verifi-
cation and our attacker model. In Sec. 3, we explain how we
encode the global trace of the protocol and how we relate it
formally to the local state of each participant. In Sec. 4, we
show how to prove important security properties based on a
suitable trace invariant, and how we use separation logic’s
linear resources to prove injective agreement. In Sec. 5, we
introduce our reusable verification library, which implements
our methodology, and substantially reduces the verification
effort per protocol. Sec. 6 describes our case studies, NSL
and WireGuard. We explain the trust assumptions underlying
our methodology in Sec. 7, discuss related work in Sec. 8,
and conclude in Sec. 9.

2. Trace-based Verification

A protocol’s security depends on the interplay of the
protocol participants in the presence of an attacker. A
standard technique to verify security is to record all relevant
actions of the participants and the attacker on a global trace
and to formulate the intended security properties as properties
of this trace. Verification then amounts to proving that all
possible traces of a protocol satisfy the intended properties.
In this section, we give a high-level overview of this approach
and provide the details in the later sections.

Attacker. We consider a Dolev-Yao attacker that has full con-
trol over the network and performs symbolic cryptographic
operations. These operations are modeled as function appli-
cations over symbolic values, so-called terms, and encode
the perfect cryptography assumption, e.g., that decryption
succeeds if and only if the correct decryption key is used.

An attacker can apply these functions to all terms in its
knowledge, which initially consists of all publicly-known
terms, including string and integer constants. An attacker
obtains additional knowledge by reading any message on the
network. Furthermore, an attacker can corrupt participants,
which adds all terms in the state of the corrupted participant
to the attacker knowledge. We model two kinds of corruption:
Corrupting a participant leaks all its long-term state, such as
long-term secret keys. Corrupting a participant session adds
session-specific short-term state, e.g., ephemeral secret keys,
or exchanged nonces.

Trace entries. The global trace is a sequence of events and
each event corresponds to a high-level operation performed
by a participant or the attacker. Each event has a name and
takes event-specific arguments. E.g., event CreateNonce(n)
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records that nonce n was created. This event is protocol-
independent; we also support protocol-specific events to
keep track of the progress within a protocol execution and
to express security properties. E.g., a protocol-specific event
may express which nonces or keys a participant uses to
communicate with a particular peer (cf. Sec. 4).

We use seven protocol-independent events, two of which
correspond to operations that are integral to virtually every
protocol: (1) a create nonce event records that a fresh nonce
has been generated, and (2) a send message event records that
a message has been sent on the network. Both events may
originate from a participant or the attacker. The remaining
five protocol-independent events model the capabilities of
the attacker. (3) The (unique) root event is the first event
on every trace and contains the initial attacker knowledge.
(4) an extend attacker knowledge event models that the
attacker learns additional terms, for instance, by applying
a cryptographic operation to a term already in the attacker
knowledge. Corruption is represented by (5) a participant
corruption or (6) a session corruption event. In both cases,
we use extend-events (4) to add the newly-learned terms
(from the corrupted state) to the attacker knowledge. At any
point during a protocol run, the total attacker knowledge is
therefore determined by the union of the root event (3), the
send-events (2), and the extend-events (4). Finally, (7) a drop
message event records that the attacker dropped a message
from the network.

Trace invariant. To reason modularly about the (unbounded)
set of all possible traces, we introduce a trace invariant,
a property that is satisfied for every prefix of each trace
produced by a protocol. Verification then consists of two main
steps: first, proving that each action of a participant or the
attacker (according to the above attacker model) maintains the
trace invariant and, second, showing that the trace invariant
implies the intended security properties.

An important component of a trace invariant are message
invariants, which characterize the content of a message. For
instance, a message invariant might express that a message
parameter is a nonce (as opposed to an arbitrary term).

3. Local Reasoning
In the previous section, we have summarized how we can

prove security properties based on a global trace of events,
with symbolic terms as arguments. In order to verify concrete
protocol implementations, we must relate this abstract view of
the protocol to the concrete representation of the system state
in the implementation. In particular, this state is distributed
over the protocol participants, such that each participant
has only a partial knowledge of the overall system state.
In this section, we show how to reason locally about the
implementations of the participants and how to relate their
local operations to the global trace.

3.1. Safety Verification

To support realistic protocol implementations, our ver-
ification technique needs to handle programming concepts

such as mutable heap data structures, asynchronous and
concurrent execution as well as closures, some of which
are necessary for efficient implementations, but difficult to
reason about. To this end, we employ separation logic [23],
[24], the de-facto standard for the modular verification of
imperative code. Separation logic is supported by existing
verifiers for many languages, including VeriFast [18] for C,
Prusti [22] for Rust, and Gobra [19] for Go. All of them
can be used in combination with our methodology.

We use separation logic to verify safety of each partic-
ipant, that is, memory safety (e.g., the absence of buffer
overflows), crash freedom, and the absence of standard
concurrency errors (e.g., data races). Where needed for our
safety or security proof, we also verify functional correctness
properties. We omit the details of safety proofs here because
they are routine work in separation-logic-based verification
and orthogonal to the focus of this paper. However, as we
will see in Sec. 4.1, separation logic also provides a simple
way to prove injective agreement.

3.2. Relating Bytes with Terms

Our global trace includes symbolic terms, such as keys,
nonces, and messages. In concrete implementations, these
terms are typically represented by (mutable) byte arrays. In
order to relate the two, we use a concretization function γ,
which maps a term to its byte representation. We use this
function in specifications; in particular, we have annotated
library functions, e.g., for cryptographic operations, to relate
the term representations of their inputs and outputs. E.g., a
hash function that maps the byte array xa (representing, for
instance, a message) to the byte array ra (representing, for
instance, a number) is specified by relating the corresponding
terms: ∃x, r.xa = γ(x) ∧ ra = γ(r) ∧ r = h(x), where h is
the symbolic hash operation on terms.

Parsing a received message often requires showing that
the parsed byte array b corresponds to a given term t:
b = γ(t). Proving this property generally requires that
each byte array corresponds to a unique term. However, this
requirement is typically not satisfied in realistic implementa-
tions where, e.g., a byte array of length four could store an
integer or an ASCII-encoded string, which have different term
representations. Enforcing a unique byte-level representation
for every term (for instance, by preceding it with a tag) is
not possible when targeting existing implementations with
fixed message formats.

To solve this problem, we adopt the pattern requirement
from Arquint et al. [32], which allows multiple terms to have
the same byte-level representation in general, but requires a
unique representation for the terms corresponding to protocol
messages. This requirement allows a participant to uniquely
determine the term for a parsed message. With the pattern
requirement, the concretization function γ is injective on the
byte arrays received as messages. The pattern requirement
is satisfied by many protocols because they include message
tags to distinguish the kinds of messages, which in turn
determines the unique relationship between a byte array
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M1 . A→ B : {〈1,na, A〉}pkB
M2 . B → A : {〈2,na,nb, B〉}pkA
M3 . A→ B : {〈3,nb〉}pkB

Figure 1. The NSL public key protocol, where na and nb are nonces, whose
generation is omitted. {m}pk and 〈· · · 〉 denote public key encryption of
plain text m under the public key pk and tupling, respectively. Creation and
distribution of the participants’ authentic keys is not part of the protocol.

and a term. At the same time, it allows clashes among the
representations of other terms, such as integers and strings.

We illustrate the approach using the NSL public key
protocol [3] in Fig. 1. After receiving message M1 , Bob
parses it as an encrypted triple. The specification of the parse
operation ensures ∃na.γ(m) = γ({1,na, A}pkB ). Since
{1,na, A}pkB is a protocol message, we can apply the pattern
requirement to derive the required information about m:
∃na.m = {1,na, A}pkB

3.3. Global Trace Encoding

As explained in Sec. 2, we use a global trace of events,
verify invariants over this trace, and finally prove that the
invariants imply the intended security properties. For this
approach to be sound, the global trace has to include all
relevant events performed by the protocol participants as
well as the attacker, which we ensure as follows.

We model each participant and the attacker as a thread in
a concurrent system and the global trace as a data structure
that is shared among, and manipulated by, these threads. The
concurrency reflects that participants have no control over
the scheduling of other participants and that the attacker
may perform its operations at any time. Since the global
trace exists only for the purpose of verification, we model it
as ghost state and all operations on it as ghost operations;
both are erased during compilation. The trace data structure
provides two operations: appending an event, and reading
the current state of the global trace. Fig. 2 illustrates how
participants and the attacker interact with the global trace.

Regarding the global trace as a shared data structure
in a concurrent execution allows us to employ any of the
established verification techniques for concurrency reasoning.
For concreteness, we use a ghost lock to reason about the
shared trace. Reasoning about ghost locks is completely
analogous to standard locks: the lock is associated with a
lock invariant, which needs to be established when the lock
is first created. This invariant may be assumed whenever the
lock is acquired and must be proved to hold upon release.
Since a ghost lock is erased during compilation, it does not
ensure mutual exclusion. Therefore, any non-ghost operation
performed between an acquire and a release must be atomic
to ensure that erasing the ghost lock does not create additional
thread interleavings. Since reasoning about ghost locks is
analogous to standard locks, they are supported by separation
logic program verifiers.

We use a single ghost lock to protect the global trace.
Its lock invariant is the trace invariant (see Fig. 2). By
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Figure 2. An overview of the main components of a protocol execution
in our methodology. The blue boxes are components of the protocol
implementation; green boxes denote ghost structures that are used for
verification. Blue and green arrows denote actual and ghost method calls,
respectively. The red dashed arrows denote invariants relating different
data structures. Participants and the attacker send and receive messages
by interacting with the network. The attacker can perform additional I/O
operations such as instructing the network to drop or modify messages.
All protocol-relevant operations (including I/O operations) are recorded
on a global trace. We prove (global) security properties for a protocol by
utilizing a trace invariant abstracting over all possible traces. We modularly
verify for each protocol implementation (e.g., two and one implementations
of Alice’s and Bob’s role, respectively) and the attacker that the trace
invariant is maintained. We enable verification of participants by relating
participant-local state with the trace via local ghost state that contains a
participant’s local snapshot, i.e., its last observed version of the trace.

formulating this invariant in separation logic, it can express
ownership of resources, which allows us to prove security
properties that is out of scope for existing invariant-based
related work, as we will see in Sec. 4.1.

Participants must record all protocol-relevant operations
on the global trace. That is, to perform an operation such as
sending a message or computing a hash, they must (1) acquire
the ghost lock, (2) perform the operation, (3) append the
corresponding event to the trace, and (4) release the ghost
lock (and at this point prove that the trace invariant is
preserved). For each relevant operation, we provide a library
wrapper (see Sec. 5 for details) that performs these four
steps2. Preconditions on the library functions ensure that
the performed operation indeed preserves the trace invariant.
Since the trace invariant (and, hence, the preconditions)
contain protocol-specific properties, our library is parametric
in the invariant, cf. Sec. 5. To ensure that all relevant
operations are recorded on the trace, it then suffices to
perform a simple syntactic check that relevant operations are
performed only via the wrapper library.

The attacker is handled similarly. We consider code that
(1) acquires the ghost lock, (2) determines which operations
the attacker could potentially perform based on its current

2. To avoid any runtime overhead, calls to this wrapper library could be
inlined (and ghost code is erased in any case).
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1 na /*@, naT @*/ := CreateNonce(/*@ s @*/)
2 //@ assert s.NonceOccurs(naT)

Figure 3. Excerpt from a NSL implementation for Alice creating a nonce
and demonstrating how to relate local state with the global trace. //@ and
/*@ ... @*/ mark ghost code that is used for verification only. We omit
the nonce’s secrecy label (Sec. 4.2) for simplicity.

attacker knowledge (which is recorded on the trace), (3) non-
deterministically chooses any of these operations and appends
the corresponding event to the trace, and (4) releases the
ghost lock (and at this point proves that the trace invariant
is preserved). Verifying this code ensures that all possible
attacker operations preserve the trace invariant. In other
words, the invariant may state only those properties that are
valid under our attacker model, a property we call attacker
completeness (sometimes referred to as attacker typability
by type-based approaches).

3.4. Local Snapshots

In order to prove that a protocol-relevant operation
preserves the trace invariant, we frequently need to relate
the arguments of the operation to earlier events on the trace.
For example, when sending the first message of the NSL
protocol (Fig. 1), Alice has to show that the message invariant
holds. The message invariant specifies that na is a nonce,
i.e., requires a prior CreateNonce(na) event on the trace.

Discharging such proof obligations requires that partici-
pants retain information about their prior operations on the
global trace. Since the global trace is a shared data structure
that may grow between any two accesses, participants may
soundly hold on to those facts that are stable under extensions
of the trace. For instance, if a CreateNonce(na) is present
on the trace at some program point, it will also be present
in all future versions of the trace.

We represent the stable information of a participant by
maintaining in each participant a local snapshot of the global
trace, that is, a local copy of the trace (see Fig. 2). Since the
global trace may evolve by actions of other participants and
the attacker, the local snapshot of a participant is generally
a prefix of the global trace.

The local snapshot of a participant is a ghost data
structure that is owned by this participant. Therefore, in
contrast to the shared global trace, the local snapshot is not
directly affected by operations of other participants and the
attacker. Whenever a participant performs a protocol-relevant
operation, we update its local snapshot to the current global
trace. The trace invariant ensures that the local snapshots
of all participants are prefixes of the global trace, and that
these updates are the only modifications of local snapshots.

By making snapshots a local data structure of each
participant, we can use standard sequential reasoning to
relate the content of the local snapshot to the concrete
data structures maintained by the participant (via local
invariants) and to prove the presence of an event on the
snapshot. The example in Fig. 3 illustrates that. Line 1
invokes the library function CreateNonce. Its regular

result na is the generated nonce; the additional ghost result
naT is the corresponding term. CreateNonce takes the
caller’s local snapshot s as ghost argument, which allows
the function to update the snapshot and to express in its
postcondition the existence of the create-nonce event on the
updated local snapshot. This postcondition allows the caller
to prove the assertion in line 2, without having to consider
any interleaving operations by other participants and the
attacker between line 1 and 2.

In summary, we have shown how we use separation logic
to verify safety properties and prove that all participants and
the attacker maintain a specified invariant over the global
trace of events. All of theses proofs are modular and can be
automated using existing separation-logic verifiers.

4. Proving Security Properties

Once we have verified that all participants and the attacker
maintain the trace invariant, it remains to prove that this
invariant implies the intended security properties. In this
section, we illustrate this for two important properties, authen-
tication and secrecy. Authentication means that two protocol
participants are indeed communicating with each other and
(depending on the particular authentication property) agree
on some common values. Secrecy holds if confidential data
remains unknown to the attacker. While we focus here on
the proof techniques for these two standard properties, our
methodology is applicable to more complex properties such
as forward secrecy, as demonstrated in Sec. 6.2.

4.1. Authentication

To prove authentication, we use protocol-specific events
to record additional information beyond the exchanged
messages, so that authentication properties can be expressed
in a familiar way: as correspondence between these events.
In this subsection, we show how to use trace invariants
expressed in separation logic to prove two strong and
common authentication properties: non-injective and injective
agreement.

We illustrate our methodology using the NSL example
from Fig. 1. We prove authentication using four protocol-
specific events: Before sending the first message, Alice
creates event Initiate(Alice,Bob,na) to record that she
wants to communicate with Bob, and use the nonce na in
the current protocol session. After receiving the first and
before sending the second message, Bob in turns creates event
Respond(Alice,Bob,na,nb), indicating the communication
partners and used nonces. Finally, the events FinishA and
FinishB , with the same parameters as Respond , indicate
successful completion of the protocol (i.e., runtime checks
such as nonce comparisons succeeded) from Alice’s and
Bob’s perspective, respectively. We focus on Alice’s perspec-
tive in the following. We prove authentication for the Bob’s
perspective Sec. 6.2, where we also discuss authentication
properties for WireGuard.
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1 let commit = FinishA(A,B,na,nb) in
2 t.Occurs(commit) &&
3 let prefix, i = t.GetPrefix(commit) in
4 (prefix.Occurs(Respond(A,B,na,nb)) &&
5 !(∃A′,B′,nb′,i′. i != i′ &&
6 t.OccursAt(FinishA(A′,B′,na,nb′),i′)
7 ) || prefix.IsCorrupted({A, B})

Figure 4. Non-injective (white background) and injective (all lines)
agreement from Alice’s perspective with Bob on the nonces na
and nb. t.Occurs(e) yields whether event e occurs on trace t;
t.GetPrefix(e) returns t’s prefix up to and including the most recent
occurrence of e, as well as the index of that occurrence (i.e., the length of
prefix minus 1). t.OccursAt(e,i) expresses that event e occurs at
index i in trace t.

1 match ev {
2 case FinishA(A, B, na, nb):
3 UniWit(FinishA, na) &&
4 (prefix.Occurs(Respond(A, B, na, nb)) ||
5 prefix.IsCorrupted({A, B}))
6 ...
7 }

Figure 5. A simplified fragment of the trace invariant for NSL-specific
events. This invariant is universally quantified over the events ev occurring
on the trace; prefix is the trace prefix up to event ev. The invariant
expresses that whenever a FinishA event occurs on the trace, a Respond
event with matching arguments must previously occur, unless one of the
participants has been corrupted. The highlighted line includes a separation
logic resource to express that the FinishA event is unique w.r.t. to the
nonce na , which allows us to prove injective agreement. The conjunction
&& is interpreted as separation logic’s separating conjunction *.

Non-injective Agreement. The fact that Alice agrees with
Bob on the nonces na and nb, known as non-injective
agreement [33], is shown in Fig. 4 (ignore the conjunct
highlighted in blue for now). This trace-based property states
that the FinishA event occurs on the trace (line 2) and that
either Respond with matching arguments occurs earlier on
the trace (line 4) or one of the participants has been corrupted
before an agreement was reached (line 7).

To prove agreement for NSL, we include the NSL-
specific property from Fig. 5 (ignore line 3 for now) into
the trace invariant. It states that for every FinishA event, a
corresponding Respond event occurred prior on the trace, or
one of the participants has been corrupted. Maintaining this
invariant requires us to show the occurrence of a suitable
Respond event (or of corruption) when Alice creates the
FinishA event.

We discharge this proof obligation by extending the
trace invariant with a message invariant for NSL’s second
message, which requires that the Respond event occurs on
the trace or the message comes from the attacker. Hence,
an implementation for Bob has to create a Respond event
before sending the second message. When Alice receives
the message, she may assume its message invariant (since it
is part of the trace invariant). Since her local snapshot gets
updated upon the receive-operation, the received message
is also recorded on the local snapshot, such that Alice can
retain the message invariant as part of her stable knowledge.
Consequently, when Alice is about to add the FinishA event

to the trace, she knows that either the Respond event occurs
on the trace, or the second NSL message comes from the
attacker. In the latter case, Alice can derive that corruption
must have occurred because the attacker was able to construct
a message containing the nonce na , which is only accessible
to Alice and Bob (unless corrupted).

Once we established the trace invariant, it remains to
show that. for all traces, the invariant from Fig. 5 implies
non-injective agreement (Fig. 4). This proof is a standard
entailment check, which is performed automatically by
program verifiers.

Injective Agreement. The stronger property injective agree-
ment holds only for implementations that detect if the
attacker replays messages from other protocol sessions. If
successful, such a replay attack could trick participants into
reusing outdated nonces (in general, key material), thereby
weakening security. Proving injective agreement modularly
is challenging; to the best of our knowledge, we present
here the first trace-based verification technique for injective
agreement in protocol implementations (see also Sec. 8).

The conjunct highlighted in blue in Fig. 4 strengthens
non-injective to injective agreement, by mandating that there
is no second FinishA event on the trace with the same
nonce na. The uniqueness of the event/nonce-pair enforces a
one-to-one correspondence between Respond and FinishA
events and, thus, excludes replay attacks.

To prove injective agreement, we need to strengthen our
trace invariant to imply the highlighted property in Fig. 4. We
could in principle include a conjunct that specifies uniqueness
by quantifying over the indexes into the trace. However,
such an invariant would be difficult to maintain modularly.
The necessary proof obligation for adding a FinishA event
requires that no such event with the same first nonce already
exists on the trace. However, each participant has only partial
information about the trace stored in its local snapshot.
Consequently, the absence of an event on the local snapshot
does not imply its absence on the trace, such that the proof
obligation cannot be discharged.

To obtain a modular verification technique for injective
agreement, we leverage separation logic’s linear resources
(non-duplicable facts) to enforce event uniqueness. In sepa-
ration logic, like in linear logic, conjoining a linear resource
R with itself is equivalent to false. So if an assertion (such
as an invariant) includes two resources R1 and R2, we can
conclude that R1 and R2 must be different. We use this
mechanisms as follows.

Conceptually, we tie event uniqueness to nonces because
nonces are, by assumption of perfect cryptography, unique.
Based on this idea, we enforce event uniqueness through
the following machinery, which is implemented in our
verification library (technical details follow in Sec. 5): When
a protocol-specific event is declared, it can be specified as
unique w.r.t. a specific nonce parameter. E.g., in NSL, event
FinishA is unique w.r.t. its third parameter na . Subsequently,
when a nonce is generated, users state (via annotations) for
which events they want to use the nonce (e.g., FinishA).
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1 !t.AttackerKnows(s) || t.IsCorrupted({A, B})

Figure 6. Secrecy of a term s states that the attacker does not know s
except after corrupting a participant that is allowed to read s (here A or
B ). We prove this property for all traces t satisfying the trace invariant.

The library call returns not only the fresh nonce (na), but
also a linear resource per event type and nonce.

This resource—called an event’s uniqueness witness—
then needs to be given up when the corresponding event is
appended to the trace. That is, ownership of the resource is
transferred from the participant to the ghost lock by conjoin-
ing the resource to the trace invariant. E.g., for NSL, Alice
obtains the witness UniWit(FinishA,na) when creating
nonce na. When she appends the event FinishA( , ,na, )
to the trace, the witness is transferred to the trace invariant,
as expressed by the highlighted conjunct in Fig. 5. Due to
the linearity of the resource, any attempt to append another
FinishA event with na would fail to verify because the trace
invariant (which would then be equivalent to false) would
not be preserved.

Consequently, the invariant from Fig. 5 implies that the
FinishA event with na is unique, which allows a standard
separation logic verifier to prove the highlighted conjunct in
the definition of injective agreement (Fig. 4).

In summary, our discussion shows how the combination
of a global trace and local snapshots allows us to prove
authentication modularly, and how we can leverage the
expressive power of separation logic to express a trace
invariant that lets us prove injective agreement.

4.2. Secrecy

Secrecy of a term s , e.g., a key or a nonce, states that the
attacker does not learn this term except when corrupting one
of the protocol participants that know the term. As shown
in Fig. 6, we can express secrecy as a property of the global
trace because we can extract both the attacker knowledge
and corruption events from the trace.

Instead of directly reasoning over the concrete attacker
knowledge, we follow Bhargavan et al. [27], [34] by over-
approximating the concrete attacker knowledge to classes
of terms that the attacker (possibly) knows. This over-
approximation enables modular reasoning about secrecy:
we impose proof obligations that prevent secrets from being
leaked to the attacker by checking for every send operation
that the sent message belongs to a class already known
to the attacker. For instance, if a participant tried to send
a (unencrypted) secret term over the network, the send
operation would be rejected by the verifier. Consequently,
sending a message does not change the over-approximated
attacker knowledge. This knowledge is extended only when
the attacker corrupts a participant or protocol session. In this
case, we add the class of terms readable by the corrupted
participant or protocol session to the knowledge.

We classify terms based on their allowed recipients by
assigning them a secrecy label. Secrecy labels range from

public (i.e., everyone including the attacker) over a set of
participants to a set of particular protocol sessions. The latter
is useful to classify ephemeral private keys, e.g., in our
WireGuard case study, because only a participant running a
particular protocol session is allowed to read these keys.

As a consequence of proactively enforcing secrecy labels,
the secrecy labels of all terms in the (concrete) attacker
knowledge are either public or contain a participant or
protocol session that has been corrupted in the past. Hence,
a term s with a non-public secrecy label is either not in the
attacker knowledge or the attacker has corrupted a participant
or protocol session that is allowed to read s . We prove this
lemma once and for all as part of our reusable verification
library (cf. Sec. 5).

5. Reusable Verification Library

We implement our methodology as a reusable verifi-
cation library, which significantly reduces the verification
effort per protocol: the library encapsulates the global trace
and provides a convenient API for common network and
cryptographic operations that automates trace updates. In
addition, the library provides various lemmas, in particular
attacker completeness (Sec. 2), that are proved only once and
hold for all protocols. To enable verification of a wide range
of protocols, the global trace is parametric in the events it
can record, and the trace invariant is parametric to account
for protocol-specific properties.

To demonstrate that our methodology is widely applica-
ble, we developed a library for the Go verifier Gobra [19],
and one for the C verifier VeriFast [18]. Both library imple-
mentations are available in our open-source artifact [31]. In
this section, we give an overview of the library and highlight
some of the technical solutions we used to implement it.

5.1. Overview

In the following, we describe the library’s structure and
components, explain how the library can be instantiated
for different protocols, and provide data on its size and
verification time.

Components. Fig. 7 illustrates the structure of our library
(lower box) and a protocol implementation that uses it (upper
box). The library provides the abstractions introduced in
Sec. 3: terms and events abstract over concrete data structures
(e.g., byte arrays) and participant operations, respectively.
Events are recorded on the global trace, whose content is
specified by the trace invariant. The concurrent data structure
(CDS) fully encapsulates the trace, to govern shared access
and maintain the invariant. Local snapshots are prefixes of
the global trace, which also satisfy the trace invariant, but
are owned locally by the protocol participants.

The library also provides a convenient API for common
network I/O and cryptographic operations: each function
performs the corresponding concrete operation (e.g., sending
a message or creating a nonce) and also adds the corre-
sponding event to the trace. Suitable preconditions ensure
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Figure 7. Structure of our reusable verification library (RVL). The library
provides implementations for the abstractions used in our methodology:
terms, events, the global trace, and local snapshots. Both the trace and all
local snapshots are governed by the trace invariant. The trace is encapsulated
inside a concurrent data structure (CDS) that permits shared access. The APIs
for I/O and cryptographic operations apply these operations and also register
the corresponding events on the trace. The RVL also provides several lemmas
that have been proved for all protocols. These include attacker completeness
and also lemmas that are useful to verify participant implementations. Many
components of the library are parametric to accommodate protocol-specific
events and invariants (and the corresponding preconditions for the I/O and
crypto API). We indicate parametric components using a tab symbol near
the top of the box. The parameters are supplied for a concrete protocol
(here, NSL), as indicated by the tab at the bottom of the box.

that the operation preserves the trace invariant; they lead to
proof obligations for clients using the API. Clients typically
discharge these with the help of stable knowledge about the
trace, which is recorded in their local snapshots.

Note that almost the entire library consists of ghost code
that is used for verification, but will be erased by the compiler.
The only non-ghost operations are the calls from the I/O and
crypto APIs. These calls can be inlined in the participant
implementation, such that the entire library can be removed
from the executable program. Consequently, it does not cause
any runtime overhead.

Parametricity. As we discussed earlier, some events and
aspects of the trace invariant (and consequently the precon-
ditions of the I/O and crypto API) are protocol-specific. To
capture them, we designed our library to be parametric, such
that clients using the library can instantiate it for a given
protocol.

Despite being parametric, our library nonetheless pro-
vides lemmas that are proven once and for all protocols, in
particular, attacker completeness (Sec. 2) and the secrecy
lemma (Sec. 4.2). Attacker completeness can be proved once
and for all because the library is not parametric in the kinds
of term abstractions it provides. Secrecy directly follows
from the protocol-independent parts of the trace invariant,
which enforce for all protocols that implementations do not

1 pred TraceInv[P](t: Trace) {
2 foreach e: Entry of t:
3 let pre = ... in // trace prefix up to e
4 match e {
5 case Send(msg):
6 MsgInv[P](msg, pre)
7 case PEvent(pe):
8 P::PEventInv(pe, pre)
9 ...

10 }
11 }

Figure 8. Excerpt of the parametric trace invariant (in separation logic),
defined via pattern matching over individual trace entries. All cases may
refer to earlier events on the trace via the prefix parameter pre. The case
for a Send event enforces the message invariant, which is partly defined by
the library, but itself parametric. A PEvent represents any protocol-specific
event pe. The corresponding case of the trace invariant comes entirely from
the protocol interface instance P.

leak secrets to the attacker, i.e., messages have to be public.
The library provides also several utility lemmas (e.g., that
event existence is a stable trace property) that can be used
when verifying a participant implementation.

Fig. 8 shows a small excerpt of our trace invariant. The
parameter P provides protocol-specific events and invariants.
Besides various properties of the entire trace (not shown
in the figure), the trace invariant also include event-specific
invariants. We show here the invariants for Send events and
protocol-specific events. A Send event requires the message
invariant, which itself can be parameterized by clients. We
prove that the generic part of the message invariant is weak
enough to be preserved by the attacker; it states, in particular,
that the terms occurring in the message do not leak secrets.
The protocol-specific part of the message invariant may
constrain only encrypted data and must allow the possibility
that the encrypted data was fabricated by the attacker out
of terms in the attacker knowledge. This ensures that it is
maintained by all attacker actions. For a protocol-specific
event, the invariant is supplied entirely by the parameter P. In
the following, we explain how this parameter is represented
in our library implementations.

In the Go implementation of the library, we achieve
parametricity by using Go interfaces. In particular, the
generic protocol interface declares mathematical functions
(e.g., isUnique to indicate that an event is unique), separation
logic predicates (e.g., protocol-specific event invariants), and
lemmas. Clients may then supply different implementations
of this interface with different definitions for these functions,
predicates, and lemmas. Gobra checks via suitable proof
obligations that any concrete implementation satisfies key
properties specified in the interface (e.g., that protocol-
specific invariants provide uniqueness witness resources
for unique events). These properties can thus soundly be
assumed while verifying the parametric library. Analogously,
parametricity w.r.t. events is enabled by declaring an Event
interface that protocol-specific events extend.

In VeriFast, we use its generic types (e.g., for events),
abstract mathematical functions (e.g., isUnique), and abstract
lemmas (e.g., that the event invariant is stable) to achieve
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Library LOC LOS Verification time [s]
Go/Gobra 210 6,601 123.0
C/VeriFast 326 2,340 0.9

Figure 9. Lines of code (LOC) and lines of specification (LOS) (incl. ghost
code) for the code constituting the library, together with the average
verification time in Gobra and VeriFast.

parametricity and verify the library once for all protocols.
When verifying implementations of a particular protocol,
these abstract functions and lemmas are concretized by
providing function and lemma definitions via an automated
syntactic transformation. We prove that these definitions are
not present while verifying the library, that is, we indeed
verify the parametric version of the library, not a concrete
instantiation.

Statistics. Fig. 9 shows the size and verification time for
the two implementations of our library. As explained above,
the library consists mostly of ghost code; only around 3%
is executable code. All methods and lemmas together are
verified in ca. 2 minutes. The library for VeriFast is currently
less complete than the one for Gobra, and lacks several
useful lemmas, which explains the smaller amount of ghost
code. It verifies in 1 second (VeriFast is usually faster than
Gobra, but provides less automation). We have measured
the verification times by averaging over 30 verifier runs on
a 2020 Apple Mac mini with M1 processor and macOS
Ventura 13.0.1. Since the library is verified once for all
protocols, this effort does not have to be repeated when
verifying a concrete protocol implementation.

5.2. Technical Solutions

In the following, we summarize the features of a verifi-
cation technique and tool required to implement the main
abstractions (e.g., terms, events, global traces) provided by
our library.

Custom Mathematical Theories. Verification techniques
frequently represent information as values of mathematical
theories, such as sets, tuples, sequences, etc. In contrast to the
corresponding data types of a programming language, these
values are immutable and their operations have a direct
representation in the verification logic, which simplifies
reasoning.

We use mathematical theories to represent the abstrac-
tions we use in specifications and ghost code: events, the
global trace (Sec. 2 to 3), secrecy labels (Sec. 4), and
terms with equational theories. Conceptually, events form
an algebraic data type (ADT), as does the global trace (it is a
functional Nil/Cons list). Labels and terms are also algebraic
structures, but with additional properties (e.g., labels have a
commutative join operator).

In the Gobra implementation of the library, we represent
all these structures as uninterpreted functions with appropri-
ate axioms (analogous to how custom theories are encoded to
SMT solvers). E.g., for the ADT of events, we emit axioms

that ADT constructors are injective in their arguments, and
that different constructors produce different events. For terms,
on the other hand, we emit additional axioms to encode
cryptographic equational theories, e.g., gxy = gy

x, where
gx denotes Diffie-Hellman exponentiation with generator g.
VeriFast supports ADTs natively, which we use to represent
events and the global trace. For labels and terms, we again use
uninterpreted functions and axioms (called “auto-lemmas”)
to express equational theories for terms.

Linear Resources. Our novel support for proving injec-
tive agreement (cf. Sec. 4) requires reasoning about the
uniqueness of certain protocol-specific events. We enable
this reasoning by building on separation logic’s notion
of linear resources. Some separation logic verifiers allow
programs to declare custom resources; otherwise, one can
introduce a (ghost) memory location and use this location
as linear resource, since all separation logic verifiers support
(exclusive) ownership of heap locations.

In Gobra, ownership of a single heap location is
expressed as acc(p) (for a pointer p), in VeriFast
as p |-> _. Since ownership is exclusive, we get
acc(p) && acc(q) ==> p != q in Gobra (and anal-
ogously in VeriFast). Building on this, we can use separation
logic’s predicates [35] to construct linear resources with arbi-
trary parameters by mapping the parameter tuples injectively
to a pointer, e.g., acc(map(a1, a2)), where map is an
injective function. We use such resources to represent the
uniqueness witnesses from Sec. 4.

Concurrency Reasoning. As discussed in Sec. 3.3, we
model the global trace as a concurrent data structure. Our
approach is compatible with any verification technique that is
able to reason about shared accesses to such a data structure
and to maintain an invariant over it. Moreover, to encode local
snapshots (cf. Sec. 3.4), we require support for reasoning
about properties that are stable under concurrency, which
are offered by separation logic verifiers.

We model the global trace as a data structure that is
protected by a ghost locks. Neither Gobra nor VeriFast
support ghost locks directly, but both offer standard locks.
Reasoning about ghost locks and standard locks is almost
identical, with one exception: Any non-ghost operations
performed between acquiring and releasing a ghost lock
must be atomic (because the lock will be erased by the
compiler, so it does not actually provide mutual exclusion).
This property is trivially satisfied in our library, where ghost
locks are used only around ghost code.

Conceptually, snapshots are owned locally by each
participant. To allow the trace invariant to relate the global
trace and the snapshots, we technically share ownership
of each snapshot between the participant and the shared
concurrent data structure using separation logic’s fractional
ownership [36]. Fractional ownership is supported by both
Gobra and VeriFast.
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Case Studies LOC LOS Verification time [s]
NSL 197 908 91.7
WireGuard 550 5,346 238.3

Figure 10. Lines of code (LOC) and lines of specification (LOS) (incl. ghost
code) for the NSL and WireGuard case studies, together with the average
verification time in Gobra. We have performed the measurements in the
same way as in Fig. 9.

6. Case Studies

We apply our methodology to Go implementations of the
NSL and the WireGuard VPN protocols that achieve strong
security properties. This demonstrates that our methodology
scales to real-world and interoperable protocol implementa-
tions. Our case studies are part of our artifact [31].

6.1. NSL

We have implemented the initiator and responder roles
for the NSL protocol (cf. Fig. 1) in Go for the Gobra verifier.
We implemented the core of the protocol as one method per
participant; we also verified an alternative implementation
of the initiator that contains one method per message to
demonstrate that verification is not sensitive to the code
structure. Both protocol roles store their program state in a
struct and use an invariant to relate the struct fields via the
term abstraction to their local snapshot and, thereby, to the
global trace.

Fig. 11 illustrates the interplay between the local state
and the local snapshot for the initiator, Alice. Alice manages
her program state in a struct Alice. The local invariant in
lines 10–21 relates Alice’s local state to her local snapshot
(and, thus, indirectly to the global trace). This invariant
expresses ownership of the heap locations for the struct fields,
which is omitted in the figure. More importantly, it specifies
properties about the struct fields depending on Alice’s
progress within the protocol execution, which we keep track
of via the Step field. E.g., Alice is in Step 2 after creating
the nonce naT and sending the first message. In this case,
the invariant includes the uniqueness witness (line 14), which
allows Alice to create the FinishI event in a later protocol
step. The invariant relates the concrete nonce field Na to its
term representation naT using the concretization function γ
(line 16). This term is used in the events on the global trace.
In particular, the CreateNonce event for naT must occur on
Alice’s local snapshot a.Snap() (line 17) and, thus, on the
global trace. Once Alice’s protocol run has reached the final
Step 3, it adds the FinishI event to the trace. The invariant
reflects this by stating that the event is on the local snapshot
(line 20). Knowledge about FinishI ’s existence on the trace
entails (via the trace invariant) properties about the Respond
event created by Bob (recall Fig. 5). This knowledge, together
with FinishI ’s uniqueness witness (now stored in the trace
invariant), allows us to prove injective agreement with Bob
as explained in Sec. 4.1.

We prove for all participant implementations that they
achieve (at the end of a protocol execution) injective agree-

1 struct Alice {
2 SkA: byte[]
3 PkB: byte[]
4 Na: byte[]
5 Nb: byte[]
6 /*@ Step: uint @*/
7 ...
8 }
9

10 /*@ pred LocalInvariant(a: Alice) {
11 ∃naT,nbT.
12 ... && // memory omitted
13 (a.Step == 2 ==>
14 UniWit(FinishA, naT)) &&
15 (a.Step >= 2 ==>
16 γ(naT) == a.Na &&
17 a.Snap().NonceOccurs(naT)) &&
18 (a.Step >= 3 ==>
19 γ(nbT) == a.Nb &&
20 a.Snap().Occurs(FinishI(A, B, naT, nbT)))
21 } @*/

Figure 11. The struct used for Alice’s local state in the NSL implementation,
and an excerpt from the local invariant that relates this state to Alice’s local
snapshot and, thereby, to the global trace. The Step field is a ghost field
that is used to track Alice’s progress in the protocol.

ment on, and secrecy for, both nonces na and nb. Addition-
ally, we verify initialization code that creates an empty trace,
generates public/private key pairs for the participants, and
spawns two participants as Go routines (similar to threads)
to demonstrate that key distribution (although not part of the
protocol) can be modeled using our methodology. Fig. 10
reports the size of the implementation and specification, as
well as the verification time in Gobra. The specification and
verification time exclude our reusable verification library and
the alternative initiator implementation, but includes 362 LOS
to instantiate the library.

6.2. WireGuard

As our main case study, we have picked the WireGuard
VPN protocol as a real-world protocol achieving even
stronger security properties than NSL. WireGuard is a
modern, open-source, and cross-platform VPN that uses state-
of-the-art cryptography and has received a lot of attention
lately. It has not only been integrated into the Linux kernel.
The protocol’s core, the WireGuard protocol, has been well
studied [37], [38]. The WireGuard protocol performs an
authenticated key exchange. It consists of a handshake and
transport phase. During the handshake phase, the protocol
participants agree on two session keys kIR and kRI , one
per direction, that are used to symmetrically encrypt VPN
packets in the transport phase.

Implementation. We have taken the existing Go implementa-
tion from Arquint et al. [39], which is based on WireGuard’s
official Go implementation [40]. Advanced VPN features
such as DDoS protection are not part of the implementa-
tion. Nevertheless, the implementation is interoperable with
other WireGuard implementations and supports tunneling IP
packets via the established VPN connection to and from the
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1 !t.AttackerKnows(s) ||
2 t.GetHs(ASess, PSess).IsCorrupted({ A, P}) ||
3 t.IsSessionCorrupted({ASess, PSess})

Figure 12. Strong (unhighlighted-only parts) and weak forward secrecy
(entire property) for a session key s on trace t. A and P identify the actor
and peer that derive the key in their protocol sessions ASess and PSess,
respectively. t.GetHs(ASess, PSess) returns a prefix of t up to
and including the corresponding handshake’s completion from the actor’s
perspective. The key is protected against (future) participant corruption after
the handshake’s completion.

operating system. Since each IP packet is encrypted using a
distinct counter value, a new handshake must be performed
before the counter reaches its upper limit, which is not yet
implemented. Instead, the implementation stops forwarding
IP packets at that point. Thanks to our reusable verification
library’s parametric design, instantiating the library with
the existing networking library was straightforward. We
have annotated the cryptographic functions from the original
implementation with suitable postconditions to express our
cryptographic assumptions.

The implementations of the initiator and responder roles
are located in different Go packages. We have factored
out role-independent specifications into packages that are
imported by both roles. E.g., one such package defines the
WireGuard-specific events and trace invariant. We report
on statistics after presenting the security properties that we
prove for the implementations.

Security Properties. Since the session keys are based on
ephemeral as well as long-term key material that is con-
tributed by both protocol participants, WireGuard achieves
strong security properties. In particular, we prove forward
secrecy and injective agreement, both with actor key com-
promise (AKC) security. While WireGuard optionally incor-
porates a pre-shared symmetric key into the handshake to
increase security, we prove all security properties in this
section without considering this pre-shared key, i.e., we treat
the pre-shared key as a term known to the attacker. In the
following, we call the initiator actor and the responder peer
when proving a property from the initiator’s perspective, and
vice versa for the responder’s perspective.

Forward secrecy protects sessions against future corrup-
tion of the long-term secret keys. I.e., an attacker cannot
compute the session keys of an already established session
after learning the long-term secret keys. However, sessions
that get established after corrupting the long-term secret
keys are not protected because the attacker can impersonate
participants by knowing their secret keys. The literature
distinguishes between weak and strong forward secrecy. We
were able to reuse formalizations from existing work [10],
[41], [42], which are phrased as trace-based security proper-
ties and, thus, directly supported by our methodology.

Weak forward secrecy for a session key s (cf. entire
Fig. 12) holds if at any point in time, one of the following
tree properties hold: (1) The attacker does not know s (line 1),
(2) the actor or its peer has been corrupted before completing
the handshake at timepoint j (line 2), or (3) the actor’s or

peer’s session has been corrupted (line 3). In the last case,
the attacker gets to read the session state of the corrupted
participant. This session state contains the long-term secret
key and also the session keys if the session is established.
Hence, the attacker either directly obtains the session keys
if the session is already established or otherwise uses the
long-term secret key to impersonate the actor or its peer
while establishing a session in the future. Session keys of
sessions established in the past, i.e., before time point j ,
remain secret.

Compared to weak forward secrecy, session keys sat-
isfying strong forward secrecy are additionally protected
against corrupting the actor, i.e., the highlighted actor is
removed from line 2 in Fig. 12. In particular, having access
to the actor’s long-term secret key does not allow the attacker
to obtain the established session keys. This resilience has
been formalized as actor key compromise (AKC) by Basin
et al. [43], generalizing the more widely known notion of
key compromise impersonation (KCI).

In WireGuard, we prove strong forward secrecy for
the two session keys from the initiator’s perspective after
completing the handshake and after receiving each transport
message. In contrast, the responder achieves only weak
instead of strong forward secrecy at the end of the handshake.
We prove strong forward secrecy for the session keys from
the responder’s perspective after receiving the first transport
message and after sending each transport message. The
forward secrecy property is strengthened by receiving and
successfully processing the first transport message because
this message acts as a key confirmation. I.e., the responder
checks that it derived the same session key kIR as the initiator,
which allows the responder to detect AKC attacks. Based on
strong forward secrecy for the session keys, we further prove
that the VPN payloads are treated with the same level of
secrecy. This induces proof obligations that a participant
sends VPN payloads to the network only in a way that they
can be read by participants allowed to read the session keys
(e.g., by encrypting the VPN payloads with one of the session
keys).

Confirming the session keys not only enables strong
forward secrecy for the session keys but also provides
additional authentication guarantees: Injective agreement
with AKC security (cf. Fig. 13) states that (1) an actor A
agrees with a peer P on a term m with a one-to-one
correspondence between the Commit and Running events
unless (2) the actor’s session or (3) the peer (session or
long-term state) has been corrupted. In particular, corrupting
the actor is not sufficient to satisfy this property. In contrast,
the NSL protocol only satisfies injective agreement without
AKC security (as presented in Sec. 4.1) from the initiator’s
perspective because having access to the initiator’s secret key
enables the attacker to decrypt the second message, obtain
the nonces na and nb, and construct a modified second
message containing na and nb′ with nb 6= nb′. Thus, there
is no correspondence between Commit and Running events
in the case of actor key compromise because the initiator
and respond do not agree on the nonces.

In WireGuard, we prove injective agreement on both
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1 let commit = Commit(A,P,ASess,PSess,m) in
2 let running = Running(A,P,ASess,PSess,m) in
3 t.Occurs(commit) &&
4 let prefix, i = t.GetPrefix(commit) in
5 (prefix.Occurs(running) &&
6 !(∃A′,P′,ASess′,PSess′,i′. i != i′ &&
7 t.OccursAt(Commit(A′,P′,ASess′,PSess′,m),i′)
8 ) || prefix.IsCorrupted({P})
9 || prefix.IsSessionCorrupted({ASess})

Figure 13. Injective agreement with AKC security on a term m from the
actor A’s perspective with a peer P. The conjunct with a blue background
indicates the Commit event’s uniqueness requirement for the given m.

session keys with AKC security from the initiator’s perspective
at the end of the handshake. From the responder’s perspective,
we prove the same agreement property after receiving the
first transport message, i.e., confirming the session keys.

Discussion. Finding a strong enough trace invariant to prove
the presented security properties was challenging. We had to
find suitable message invariants such that the secrecy labels
for the derived session keys kIR and kRI are sufficiently
strong to prove weak and strong forward secrecy. These
secrecy labels are related to the message invariants because
the session keys are derived by an eightfold application of
key derivation functions (KDFs) that factors in long-term and
ephemeral, i.e., session-specific, Diffie-Hellman key material
that is either locally generated or received from the peer.
Thus, each KDF application results in a new key with a secrecy
label that depends on the secrecy labels of the input key
material. To keep the annotations related to the secrecy labels
in the implementation to a minimum, we have implemented
a lemma for each KDF application that proves the result’s
secrecy label (or if suitable an over-approximation thereof).

Moreover, the invariant for protocol-specific events has to
be strong enough to prove injective agreement with KCI resis-
tance. Our reusable verification library facilitates strengthen-
ing the proven authentication property from non-injective to
injective agreement (with or without KCI resistance) because
it suffices to express the uniqueness witness for each protocol-
dependent event. Therefore, we were able to focus on finding
a suitable invariant to prove non-injective agreement with KCI
resistance. Afterwards, we expressed each event’s uniqueness
witness to strengthen the authentication property, which
required less than 40 additional LOS.

Verifying the initiator and responder implementations
takes ca. 4 minutes (cf. Fig. 10), which includes proving
WireGuard-specific lemmas. Overall, the verified WireGuard
codebase (excluding the reusable verification library) consists
of 550 LOC and 5,346 LOS, whereof 984 LOS instantiate the
reusable verification library with protocol-specific events and
a sufficiently strong trace invariant.

7. Trust Assumptions

Our methodology allows us to prove strong security
properties for implementations of security protocols. Like
with all verification techniques, these proof rely on several

assumptions about the implementation and the execution
environment.

We rely on the soundness of the used program verifier.
Since our methodology is compatible with standard sepa-
ration logic verifiers, we can mitigate this assumption by
using a mature, tool.

As is standard for symbolic cryptography, we assume per-
fect cryptographic operations (e.g., absence of hash collisions,
or that ciphertexts do not leak any information). We also
do not verify that the implementations of the cryptographic
primitives are functionally correct; while this is orthogonal to
our work, our methodology could be combined with verified
libraries like EverCrypt [44].

Furthermore, we assume that all output operations, i.e.,
sending messages, are reflected on the global trace by
corresponding events, which is the case when using the
I/O operations provided by our verification library. However,
if an implementation uses, e.g., inline assembly or third-
party libraries to send messages to the network, the global
trace has to reflect these messages nonetheless. Note that
omittance of all other events does not affect soundness, only
completeness.

Lastly, we assume that the protocol terms corresponding
to the byte arrays in a participant’s initial state, and those
obtained from operations outside of our library (e.g., read
from a config file), are readable at least by that participant
according to the terms’ secrecy labels (recall Sec. 4.2).
Otherwise, it would not be sufficient to model corruption of
a participant by adding the class of terms readable by that
participant to the attacker knowledge; the attacker could
learn even more. For all terms a participant can obtain
by interacting with our verification library (e.g., receiving
messages, generating nonces, applying encryption), we prove
in our library (via corresponding lemmas) that a participant
can read these terms (and thus the terms leak to the attacker
in case of corruption).

8. Related Work

Much prior work on the verification of cryptographic
protocols exists, and surveys such as [45]–[47] provide
an extensive overview of the field. We focus on modular
verification of symbolic security properties, and discuss the
most closely related work first: techniques for verifying
security of realistic protocol implementations.

Dupressoir et al. [29] use VCC [30] to verify memory
safety, non-injective agreement, and (via an external argument
in Coq) weak secrecy, of two protocols implemented in
C: RPC [34] and Otway-Rees [48]. To our knowledge,
they are the first to encode a global protocol trace (“log”)
as a concurrent data structure. We generalize this idea to
separation logic to make it much more widely applicable,
because their encoding relies on C’s volatile fields and a
VCC-specific program logic, neither of which are (widely)
available in other languages and verifiers. Moreover, since
their logic (unlike separation logic) does not provide linear
resources, proving injective agreement would require a
nontrivial extension of their work. Their set-based trace
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encoding prevents proving, e.g., forward secrecy (which we
do); and they account for principal corruption, but not session
corruption (we account for both). Polikarpova et al. [49]
extend this work by incorporating stepwise refinement to
formally connect a model to an existing implementation, all
encoded in VCC. This refinement decomposes the verification
into smaller, more goal-directed steps, but incurs additional
overhead. Moreover, they remove the need for external
arguments when proving weak secrecy. They verify the latter,
and a variant of authentication, for a small but stateful subset
of TPM 2.0.

Vanspauwen et al. [50], like us, use a separation-logic-
based verifier (VeriFast [18]), but they do not model a
global trace (which we do). Consequently, properties that
are commonly expressed over a trace potentially need to
be assembled from individual assertions. They propose
an extended symbolic model that strengthens attackers by
permitting byte-wise manipulations, such as splitting and
reconcatenating byte sequences, in addition to the usual
symbolic manipulations. Our attacker operates on terms
(standard for symbolic cryptography) but we could adapt their
extension. They specify PolarSSL’s API using this extended
model, and then verify secrecy and non-injective agreement
of an NSL-implementation (and a few less complex protocols)
that uses PolarSSL’s cryptographic primitives. Unlike us, they
do not consider session corruption.

Arquint et al. [32] suggest a two-step approach: First, a
protocol model is verified via Tamarin [51]. If successful,
a separation logic predicate (one per participant) with I/O
specifications [52] is generated, specifying which interactions
(sending and receiving messages) preserve the security
properties of the model. Second, existing implementations
of the protocol can be verified against these predicates; if
successful, the implementation is guaranteed to satisfy the
model’s properties. This two-step workflow achieves tool
reuse—Tamarin, and suitable separation logic verifiers—but
requires expertise in two different fields of formal reasoning,
and the existence of a Tamarin protocol model. Moreover,
limitations of Tamarin (e.g., difficulties when verifying
protocols with loops), and of the I/O specifications (unclear
how to generate specifications suitable for a concurrent
implementation from a sequential Tamarin model) may
prevent verifying corresponding implementations.

Bhargavan et al. [27] suggest DY*: a framework for
verifying protocols implemented in F* [28], a functional
language that enables type-system-based proofs, e.g., using
monadic effects and refinement types. DY* introduces the
idea of a parametric library for reducing per-protocol proof
effort; an idea we adopted. DY*’s type system is tailored
to F*, whereas our methodology supports a wide range
of languages and tools. Moreover, by building on separa-
tion logic, we are able to prove stronger properties such
as injective agreement. Our methodology can be applied
directly to existing implementations, as we demonstrate
in the WireGuard case study. In contrast, DY* supports
code generation, but additionally requires a hand-written
(and partly protocol-specific) runtime wrapper [9]. Included
in DY*’s case study is the first automated verification of

Signal [2] that proves forward and post-compromise security
over an unbounded number of protocol messages. Our main
case study is WireGuard, for which we prove, also for
an unbounded number of messages, forward secrecy and
injective agreement with KCI resistance. Soundness of DY*’s
global protocol trace depends on a specific coding discipline
(one method per protocol step) that is not automatically
enforced. If missed, the attacker is accidentally restricted,
and security properties can be proven incorrectly.

An earlier line of work (e.g., [34], [53], [54]) uses
the F7 type checker [53] to verify security of functional
programs written in F#, but does not integrate equational
theories, and has limited support for reasoning about mutable
state. Moreover, global protocol traces are not modelled, and
security properties therefore only implicitly stated.

Küsters et al. [55] share our goal of reusing existing
program analyzers and suggest an approach that enables
non-interference checkers to establish computational indistin-
guishability results for sequential programs. To account for
closed-system assumptions (typically made by such checkers)
in the presence of an attacker-controlled environment, they
restrict interaction with the latter to static, exception-free
methods, and primitive (i.e., value) types. How to extend their
approach to trace-based properties and concurrent programs
remains unclear.

Several security property verifiers exist that (unlike us)
do not reuse existing program analyzers, e.g., Csur [56] and
ASPIER [57] (for C), and JavaSec [58] (for Java). However,
to reduce development costs, such domain-specific tools
typically only implement semantics of a restricted language
subset and, e.g., assume crucial properties such as memory
safety (which may render implementations insecure, e.g., due
to buffer overflows as in the case of the Heartbleed bug [5]).

Prior work on verifying properties of WireGuard (our
main case study) includes [10], [37], [38], [41], [59], [60],
but is concerned with verifying models of the protocol, not
existing implementations.

Finally, a large body of work is concerned with mechaniz-
ing the verification of computational (rather than symbolic)
properties; see aforementioned surveys for details. This
line of work establishes stronger guarantees by making
weaker, more realistic cryptographic assumptions. However,
the necessary proofs are significantly harder to automate, e.g.,
due to probabilistic reasoning, and we are not aware of tools
for modularly verifying computational security properties of
realistic implementations. Recently, first separation logics for
probabilistic reasoning have been proposed (e.g., [61]–[63]),
but we are not aware of automated verifiers for such logics.

9. Conclusions

We presented a methodology for the verification of
security protocol implementations. It enables proving strong
security properties for realistic protocol implementations in
the presence of a network-controlling attacker. By employing
separation logic, we support efficient implementations using
heap data structures, side effects, concurrency, etc. Moreover,
separation logic allows us to specify resources in the trace
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invariant to express uniqueness of protocol-specific events.
This is key to modularly proving injective agreement; to
the best of our knowledge, our work is the first verification
technique for protocol implementations to achieve that.

We have instantiated our methodology for two languages
and separation logic verifiers. Our case studies on NSL
and WireGuard demonstrate that our methodology handles
existing and interoperable implementations of protocols
achieving strong security properties, such as forward secrecy
and injective agreement with AKC security.

For future work, we plan to integrate our methodology
with formally-verified cryptographic libraries to further re-
duce our trust assumptions. It would also be interesting to
advance towards the computational model of cryptography
by combining our work with probabilistic separation logic.
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