
ACM CCS ’23 Artifact Appendix: A Generic Methodology for the
Modular Verification of Security Protocol Implementations

Linard Arquint
Department of Computer Science

ETH Zurich, Switzerland

Malte Schwerhoff
Department of Computer Science

ETH Zurich, Switzerland

Vaibhav Mehta
Cornell University
Ithaca, NY, USA

Peter Müller
Department of Computer Science

ETH Zurich, Switzerland

Keywords
Protocol implementation verification, Symbolic security, Separation
logic, Automated verification, Injective agreement, Forward secrecy.

A Artifact Appendix
A.1 Abstract
Security protocols are essential building blocks of modern IT sys-
tems. Subtle flaws in their design or implementation may compro-
mise the security of entire systems. It is, thus, important to prove
the absence of such flaws through formal verification. Much ex-
isting work focuses on the verification of protocol models, which
is not sufficient to show that their implementations are actually
secure. Verification techniques for protocol implementations (e.g.,
via code generation or model extraction) typically impose severe
restrictions on the used programming language and code design,
which may lead to sub-optimal implementations. In this paper,
we present a methodology for the modular verification of strong
security properties directly on the level of the protocol implemen-
tations. Our methodology leverages state-of-the-art verification
logics and tools to support a wide range of implementations and
programming languages. We demonstrate its effectiveness by ver-
ifying memory safety and security of Go implementations of the
Needham-Schroeder-Lowe, Diffie-Hellman key exchange, andWire-
Guard protocols, including forward secrecy and injective agreement
for WireGuard. We also show that our methodology is agnostic to
a particular language or program verifier with a prototype imple-
mentation for C. Hence, our work comprises a reusable verification
library implementing our methodology in Go and prototypically in
C, a pen-and-paper sketch of our soundness proof, and four verified
implementations of security protocols: Needham-Schroeder-Lowe
implemented in C and Go implementations of Needham-Schroeder-
Lowe, the Diffie-Hellman key exchange, and WireGuard protocols.

A.2 Description & Requirements
This appendix describes the artifact that accompanies our paper [1]
and provides all necessary information to evaluate our artifact. We
provide all necessary tools and dependencies as a ready-to-use
Docker image. Hence, we only require a system on which Docker is
already installed. However, longer verification times than reported
in the paper are to be expected because Docker adds a significant
virtualization overhead compared to natively running the program
verifiers.

A.2.1 Security, privacy, and ethical concerns
There are no security, privacy, and ethical concerns because the pro-
gram verifiers all run in Docker environments and do not perform
destructive operations.

A.2.2 How to access
All source code is available open-source on Zenodo [3] and addi-
tionally on GitHub with an appropriate tag [4] for a better browsing
experience of the source code and continuous integration for our
proofs. The Docker image is hosted on GitHub and provides a re-
producible build and verification environment ensuring that our
results are reproducible. The pen-and-paper sketch of our sound-
ness proof is part of the paper’s extended version, which we have
published on arXiv [2].

A.2.3 Hardware dependencies
None.

A.2.4 Software dependencies
We require an installation of Docker. The following steps have been
tested on macOS 14.0 with the latest version of Docker Desktop,
which is at time of writing 4.24.2 and comes with version 24.0.6 of
the Docker CLI.

A.2.5 Benchmarks
In the paper, we report performance of our program verifiers veri-
fying the verification libraries and protocol implementations. As
such, no additional data besides the source code is necessary.

A.3 Set-up
A.3.1 Installation

(1) We recommend to adapt the Docker settings to provide
sufficient resources to Docker. We have tested our artifact
on a 2019 16-inch MacBook Pro with 2.3 GHz 8-Core Intel
Core i9 runningmacOS Sonoma 14.0 and configured Docker
to allocate up 16 cores (which includes 8 virtual cores), 6 GB
of memory, and 1 GB of swap memory. In case you are
using an ARM-based Mac, enable the option "Use Rosetta
for x86/amd64 emulation on Apple Silicon" in the Docker
Desktop Settings, which is available on macOS 13 or newer.
Measurements on an Apple M1 Pro Silicon have shown
that performing this additional emulation results in 20-25%
longer verification times compared to those reported in the
remainder of this artifact appendix.

1

https://orcid.org/0000-0002-6230-8014
https://orcid.org/0000-0003-2569-9121
https://orcid.org/0000-0003-2357-3023
https://orcid.org/0000-0001-7001-2566

Linard Arquint, Malte Schwerhoff, Vaibhav Mehta, and Peter Müller

1 docker run -it --platform linux/amd64 --volume $PWD/C-sync:/gobra/C --volume $PWD/Go-sync:/gobra/Go
ghcr.io/viperproject/securityprotocolimplementations-artifact:latest

Figure 1: Docker command to download and start the artifact.

(2) Navigate to a convenient folder, in which directories can
be created for the purpose of this artifact evaluation.

(3) Open a shell at this folder location.
(4) Create two new folders named Go-sync and C-sync by

executing:
mkdir Go-sync && mkdir C-sync

(5) Download and start the Docker image containing our ar-
tifact by executing the command provided in Fig. 1. Note
that this command results in the Docker container writing
files to the two folders Go-sync and C-sync on your host
machine. Thus, make sure that these folders are indeed
empty and previous modifications that you have made to
files in these folders (by following the evaluation workflow
below) have been saved elsewhere!

(6) The Docker command above not only starts a Docker con-
tainer and provides you with a shell within this container
but it also synchronizes all files constituting our artifact
with the two folders Go-sync and C-sync on your host
machine. I.e., the local folders Go-sync and C-sync are
synchronized with /gobra/Go and /gobra/C within the
Docker container, respectively.

A.3.2 Basic Test
Our artifact uses the Go verifier called Gobra and C verifier called
VeriFast. To ensure that these verifiers work as intended, please
execute the following commands in the shell within the started
Docker container:

(1) /gobra/verify-nsl-alternative.sh executes Gobra and
verifies an initiator implementation in Go of the Needham-
Schroeder-Lowe (NSL) protocol. This command takes about
1.5 min and should result in zero verification errors. Verifi-
cation warnings can safely be ignored.

(2) /gobra/verify-c-library.sh executes VeriFast and ver-
ifies the reusable verification library for C. This command
takes about 1 sec and should result in an output stating for
eleven C files that zero errors were found for each file.

A.4 Evaluation workflow
A.4.1 Major Claims
(C1): We demonstrate with several case studies in Go and C that

our methodology is generic, i.e., is protocol-independent,
programming language-independent, and program verifier-
independent only requiring some common separation logic
reasoning features. In the paper, these case studies are de-
scribed in Sec. 6 and Fig. 14 provides lines of code, lines of
specification, and verification times for these case studies.
Experiments (E3 - E7) reproduce this figure.

(C2): Our methodology is reusable because the methodology
can be implemented as a verification library that can be
reused for verifying different protocol implementations. We
implemented our methodology in a library for Go and as a

prototype in C. In the paper, Sec. 5 describes this reusable
verification library including the requirements that must
be met by a program verifier. Our artifact contains the
reusable verification library in Go for the Gobra verifier
and the prototype in C for the VeriFast verifier. Fig. 9 reports
the corresponding lines of code, lines of specification, and
verification time. Experiments (E1) and (E2) reproduce the
numbers stated in the paper’s Fig. 9 for Gobra and VeriFast,
respectively.

(C3): Our methodology is sound, i.e., verification correctly fails
for implementations that do not achieve the intended secu-
rity properties. The paper’s extended version [2] provides a
pen-and-paper sketch of our soundness proof. Additionally,
experiment (E8) provides empirical evidence that verifica-
tion correctly fails for faulty implementations by seeding a
bug on purpose.

(C4): Our methodology handles existing implementations be-
cause we support arbitrary code structures and support
various programming language features such as heap data
structures and concurrency. Additionally, verification is per-
formed directly on the level of the source language. Thus,
the verified implementations can be compiled and executed
without having to generate source code first, which dis-
tinguishes us from related work. Experiments (E9 - E12)
compile and execute our case studies in C and Go. All case
studies store application state on the heap and the initiator
implementation of WireGuard uses Go routines, i.e., light-
weight threads, to send and receive transport packets in
parallel.

A.4.2 Experiments
(E1): [Go reusable verification library]

[1 human-minute + 6 compute-minutes]: Verify our reusable
verification library in Go using the Gobra program verifier.

Preparation: Open a shell within the provided artifact Docker con-
tainer, as explained in Sec. A.3.1.

Execution: Execute the following command within the Docker
container, which invokes Gobra to verify each Go pack-
age constituting the library:
time /gobra/verify-library.sh

Results: Gobra reports the verification result for each verified
Go package. Additionally, Gobra provides at the end
a summary over all verified packages listing some
verification warnings, which can be safely ignored,
zero verification errors, and the information that a re-
port containing all the details has been written to a
JSON file. After Gobra’s output, the time command
provides timing information. We use the time reported
as real, representing the elapsed wall-clock time. Note
that we see significant differences between machines
and whether we run the commands in the Docker con-
tainer or natively. For example, this experiment takes

2

ACM CCS ’23 Artifact Appendix: A Generic Methodology for the Modular Verification of Security Protocol Implementations

Case Study Command Est. verification time [s]
Go/Gobra

NSL (E3) time /gobra/verify-nsl.sh 315.4
NSL (alt.) (E4) time /gobra/verify-nsl-alternative.sh 86.0
Signed DH (E5) time /gobra/verify-dh.sh 330.7
WireGuard (E6) time /gobra/verify-wireguard.sh 769.3

C/VeriFast
NSL (E7) time /gobra/verify-c-nsl.sh 7.5

Figure 2: Commands to execute experiments (E3) - (E7) and estimated verification time when executing the command within
the Docker container. Note that these verification times vary based on the resources that are made available to Docker and are
noticeably higher than reported in the paper due to Docker’s virtualization overhead.

a bit more than 2 min on an M1 Mac mini when exe-
cuted natively versus 5.75 min on an Intel MacBook
Pro within the provided Docker container.

(E2): [C reusable verification library]
[1 human-minute + 1 compute-minute]: Verify our prototype
of the reusable verification library in C using the VeriFast
program verifier.

Preparation: Open a shell within the provided artifact Docker con-
tainer, as explained in Sec. A.3.1.

Execution: Invoke the VeriFast program verifier by executing
the command time /gobra/verify-c-library.sh
within the Docker container, which verifies each C file
constituting the library.

Results: VeriFast reports the number of errors and the number
of statements verified for each C file. VeriFast should
report zero verification errors for all files. Similarly to
(E1), we use the real time as reported by time and
we also see an increase in verification time compared
to natively running VeriFast (0.9 sec in the Docker
container vs 0.8 sec natively as stated in the paper).

(E3)-(E7): [Verify case studies]
[5 human-minutes + 26 compute-minutes]: Verify all our
case studies in Go and C. Since the instructions for veri-
fying our Needham-Schroeder-Lowe (NSL), signed Diffie-
Hellman (DH) key exchange, andWireGuard case studies in
Go and NSL in C are similar, we combine their descriptions.

Preparation: Open a shell within the provided artifact Docker con-
tainer, as explained in Sec. A.3.1.

Execution: Execute the command as listed in Fig. 2 within the
Docker container, which invokes the Gobra or VeriFast
program verifier. Experiments (E3), (E5), (E6), and (E7)
include verification of the initiator and responder im-
plementations of the corresponding protocol, protocol-
specific lemmas, and trace invariant. Experiment (E4)
verifies an alternative implementation of the NSL ini-
tiator implementation, which splits the implementa-
tion into several methods to demonstrate that our
methodology is not sensitive to a particular code struc-
ture, as explained in Sec. 6.1 in the paper.

Results: Similarly to experiments (E1) and (E2), no verification
errors should occur and we consider the real time as
reported by time as verification time. These verifica-
tion times can again be noticeably higher compared to

those reported in the paper due to the virtualization
overhead introduced by Docker.

(E8): [Seed a verification bug]
[5 human-minutes + 2 compute-minutes]: Introduce a bug
into our DH case study, which correctly results in a verifi-
cation error. We demonstrate in this experiment that our
methodology successfully catches programming mistakes
that would otherwise result in a violation of a security
property. We do so by attempting to send a Diffie-Hellman
private key (instead of the corresponding public key) to the
network. Note that we limit this experiment to our DH case
study to keep the efforts needed to evaluate our artifact
reasonably low. However, similar bugs can be seeded in all
our case studies.

Preparation: Open a shell within the provided artifact Docker con-
tainer, as explained in Sec. A.3.1, and open in a text
editor of your choice the following file in your local
filesystem (relative to the directory chosen in step (2) in
Sec. A.3.1): Go-sync/dh/initiator/initiator.go

Execution: Change line 142 by replacing X, i.e., the initiator’s DH
public key, to x, which is the corresponding DH secret
key. Additionally, change line 150 by replacing XTwith
xT. XT and xT are the symbolic term representation of
X and x, respectively. We pass these symbolic term
representations to library calls such as Send because
we reason about the attacker and security properties
symbolically, i.e., assuming perfect cryptography.
Line 142 creates the protocol’s first message, which is
serialized on line 144 and then sent on line 150. Thus,
using the DH secret key instead of the corresponding
DH public key during message construction will result
in a violation of the DH secret key’s secrecy. Save
these modifications and execute the command time
/gobra/verify-dh.sh within the Docker container.

Results: The verification of the responder implementation and
the protocol-specific lemmas and trace invariant would
still succeed because we have only touched the initia-
tor implementation. Thanks to modularity, changes
to a method body only affect the verification result
of the modified method. However, since verifying the
initiator results in a verification error, the script is con-
figured to exit after encountering verification errors
within a package and thus the script does not invoke

3

Linard Arquint, Malte Schwerhoff, Vaibhav Mehta, and Peter Müller

1 Error at: </gobra/Go/dh/initiator/initiator.go:150:8 >
Precondition of call a.llib.Send(a.IdA , a.IdB ,
msg1Data , xT) might not hold.

2 Assertion tri.messageInv(l.Ctx(), idSender ,
idReceiver , msgT , l.Snapshot ()) might not hold.

Figure 3: Expected verification error for experiment (E8),
which seeds a bug in the Diffie-Hellman case study.

Gobra to verify the responder and the protocol-specific
lemmas and trace invariant.
Gobra correctly reports the verification error (after
about 73 s) as shown in Fig. 3 on line 150 while veri-
fying the initiator implementation because the faulty
message does not satisfy the send operation’s precon-
dition, which requires that any message satisfies the
message invariant. The message invariant ensures that
no secrets leak to the network.
Note that performing only one of the two described
modifications to the source file also correctly results in
a verification error on line 150 because the serialized
message passed to Send does not match its symbolic
term representation.

(E9)-(E12): [Execute case studies]
[2 human-minutes + 2 compute-minutes]: Execute our Needham-
Schroeder-Lowe (NSL), signed Diffie-Hellman (DH) key ex-
change, and WireGuard case studies in Go and NSL in C.
Our case studies are fully executable. These experiments
demonstrate how to compile and execute the case studies.

Preparation: Open a shell within the provided artifact Docker con-
tainer, as explained in Sec. A.3.1. If you’ve just con-
ducted experiment (E8), please remember to undo your
modifications. Oneway to do so is to restart the Docker
container, i.e., execute exit within the Docker con-
tainer and then the command provided in Fig. 1. Note
that this overwrites all changes performed to the fold-
ers $PWD/C-sync and $PWD/Go-sync.

Execution: Execute the command as listed in Fig. 4 within the
Docker container, which invokes the Go or C compiler
and then runs the resulting binaries.

Results: The experiments (E9) and (E12) output the two ran-
dom numbers na and nb that the initiator and respon-
der obtain by running the protocol with each other.
Both should agree on the same values for na and nb.
Experiment (E10) prints the shared Diffie-Hellman se-
cret that the initiator and responder compute, which
should be identical. Experiment (E11) executes Wire-
Guard, i.e., first establishes a WireGuard VPN connec-
tion between the initiator and responder and then uses
this VPN connection to send ASCII strings. In partic-
ular, the initiator sends "Hello", "World!", and ""
while the responder sends "Hello back", "I’m the
responder", and "". Upon reception of such a mes-
sage, the corresponding receiver prints the message to
standard output. After receiving an empty string, the
implementations exit their run loop and terminate.

Case Study Command
Go

NSL (E9) /gobra/test-nsl.sh
Signed DH (E10) /gobra/test-dh.sh
WireGuard (E11) /gobra/test-wireguard.sh

C
NSL (E12) /gobra/test-c-nsl.sh

Figure 4: Commands to execute experiments (E9) - (E12)
within the Docker container.

A.5 Notes on Reusability
Our work is reusable by other researchers thanks to three reasons
we would like to point out: First, Sec. 5 in the paper provides sev-
eral insights we gained by implementing our reusable verification
library for two different programming languages and program ver-
ifiers. These insights should speed up adding support for a third
programming language or program verifier because this third pro-
gram verifier is likely to share some reasoning features with one
of the currently support program verifiers, e.g., regarding para-
metricity. Second, we make our reusable verification library (in
Go and C) and case studies available open-source (with the per-
missive Mozilla Public License (MPL) 2.0) on Zenodo and GitHub.
Third, our GitHub repository features full continuous integration,
i.e., compiles, verifies, and runs all reusable verification libraries
and case studies. Additionally, we also build and test the Docker
image representing our artifact. Hence, other researches cannot
only use the same Docker image as used for artifact evaluation but
they can also inspect our scripts and fully reproduce our build and
verification environment. We hope this further eases adoption of
our work.

A.6 Version
Based on the LaTeX template for Artifact Evaluation V20231005.
Submission, reviewing and badging methodology followed for the
evaluation of this artifact can be found at https://secartifacts.github.
io/acmccs2023/.

References
[1] L. Arquint, M. Schwerhoff, V. Mehta, and P. Müller, “A generic methodology for

the modular verification of security protocol implementations,” in CCS. ACM,
2023, pp. 1377–1391.

[2] ——, “A generic methodology for the modular verification of security
protocol implementations (extended version),” 2023. [Online]. Available:
https://arxiv.org/abs/2212.02626

[3] ——, “A generic methodology for the modular verification of security protocol
implementations,” Dec. 2023, artifact containing the reusable verification libraries
and the case studies. [Online]. Available: https://doi.org/10.5281/zenodo.8330913

[4] ——, “A generic methodology for the modular verification of security
protocol implementations,” Dec. 2023, artifact on GitHub containing the
reusable verification libraries and the case studies. [Online]. Available:
https://github.com/viperproject/SecurityProtocolImplementations/tree/CCS_23

4

https://secartifacts.github.io/acmccs2023/
https://secartifacts.github.io/acmccs2023/
https://arxiv.org/abs/2212.02626
https://doi.org/10.5281/zenodo.8330913
https://github.com/viperproject/SecurityProtocolImplementations/tree/CCS_23

	A Artifact Appendix
	A.1 Abstract
	A.2 Description & Requirements
	A.3 Set-up
	A.4 Evaluation workflow
	A.5 Notes on Reusability
	A.6 Version

