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ABSTRACT

Security protocols are essential building blocks of modern IT sys-
tems. Subtle flaws in their design or implementation may compro-
mise the security of entire systems. It is, thus, important to prove the
absence of such flaws through formal verification. Much existing
work focuses on the verification of protocolmodels, which is not suf-
ficient to show that their implementations are actually secure. Veri-
fication techniques for protocol implementations (e.g., via code gen-
eration or model extraction) typically impose severe restrictions on
the used programming language and code design, whichmay lead to
sub-optimal implementations. In this paper, we present a method-
ology for the modular verification of strong security properties
directly on the level of the protocol implementations. Our method-
ology leverages state-of-the-art verification logics and tools to sup-
port a wide range of implementations and programming languages.
We demonstrate its effectiveness by verifying memory safety and
security of Go implementations of the Needham-Schroeder-Lowe,
Diffie-Hellman key exchange, and WireGuard protocols, including
forward secrecy and injective agreement for WireGuard. We also
show that our methodology is agnostic to a particular language or
program verifier with a prototype implementation for C.
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1 INTRODUCTION

Cryptographic protocols, such as TLS, WireGuard [1], and Sig-
nal [2], are the cornerstones of today’s global communication net-
works because they ensure crucial security properties, such as
participant authentication and data privacy. With Lowe’s famous
attack on the Needham-Schroeder protocol [3, 4], it has become
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obvious that formal proofs are necessary for verifying that crypto-
graphic protocols actually provide the desired properties.

The vast majority of existing work on automated protocol ver-
ification targets protocol models, i.e., abstract descriptions of the
cryptographic operations and message exchanges that constitute
a protocol. The verification of protocol models is useful to show
the security of the protocol design, but does not guarantee that
concrete protocol implementations are also secure. Common pro-
gramming errors (e.g., missing bounds checks in the Heartbleed
bug [5]) or incorrect implementations of the design (e.g., acciden-
tally omitted protocol steps in the Matrix SDK [6]) may render the
implementation insecure even if the protocol design is secure.

Verifying protocol implementations is substantially more com-
plex than verifying models. Targeting realistic implementations
requires reasoning, for instance, about mutable data structures,
intricate control-flow (e.g., dynamic dispatch), concurrency, and
performance-optimized code. Moreover, implementations are sig-
nificantly larger than abstract models, and change more frequently,
which requires modular verification techniques to decompose the
verification task and reduce the re-verification effort when code
evolves. Modular reasoning is more difficult than the non-modular
analyses typically used to verify protocol models.

One approach at obtaining verified protocol implementations
is to generate an executable implementation automatically from a
verified model (e.g., [7–11]). For instance, Bhargavan et al.’s DY*
framework [9–11] generates OCaml or C code from a functional
implementation in F* [12]. The generated code is secure by construc-
tion (provided the code generator is correct). However, changing the
code manually (e.g., to optimize performance) forfeits any security
guarantees. To achieve modular verification, DY* relies on a specific
coding discipline (at most one protocol step per F* function), which
must be enforced manually, and is in general not adhered to by
existing implementations. A violation of this discipline unwittingly
restricts the capabilities of the attacker and, thus, may cause DY*
to miss attacks.

An alternative approach is to verify security properties for a
protocol model that is extracted automatically from an implemen-
tation (e.g., [13–17]). However, automatic model extraction often
requires that implementations follow restrictive coding disciplines.
Similar restrictions apply to approaches based on executable models
(e.g., [18,19]), i.e., models written in specific subsets of programming
languages that facilitate reasoning, but typically do not provide the
low-level features required for optimized implementations.
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Instead of automatically generating an implementation or ex-
tracting amodel, Arquint et al. [20] prove refinement between an ex-
isting verified model and a corresponding existing implementation.
Their approach supports realistic implementations, but requires
expertise in and relies on the soundness of two tools (a model and
a program verifier). Moreover, formal models may not always exist,
or may not be in sync with an evolving implementation.
This work.We present a methodology for the verification of strong
security properties (e.g., injective agreement, forward secrecy) di-
rectly on the level of the protocol implementations. Our method-
ology leverages established program verification techniques that
are supported by a wide range of existing automated1 tools (e.g.,
[21–25]), which makes it readily applicable. It is based on separation
logic [26, 27], a program logic that supports the language features
used to write efficient implementations, such as mutable heap data
structures and concurrency. As a result, our methodology applies
to realistic implementations written in mainstream programming
languages such as C, Go, JavaScript, and Rust. Verification in our
methodology is modular, that is, one can verify each method (or
protocol participant) in isolation. Modularity is crucial for scalabil-
ity, to reduce the re-verification effort when the code evolves, and
to provide strong guarantees for libraries.

As is common in protocol verification, we explicitly model the
global trace of a protocol execution, which allows us to express
security properties in ways familiar to security experts. This trace
is expressed and manipulated via ghost code [28], that is, program
code that is used for verification purposes, but erased by the com-
piler before the program is executed. The ghost code required to
manipulate the global protocol trace is encapsulated in the I/O and
crypto libraries used by an implementation to ensure, e.g., that each
sent message is correctly reflected on the trace.

Using ghost code allows us to cleanly separate the global trace,
which is necessary to prove protocol-wide properties, from the
data structures maintained locally by each participant. We treat
each participant instance of a protocol (including a Dolev-Yao at-
tacker [29]) as a concurrent thread, and the global trace as shared
state among these threads. This approach allows us to reason about
unboundedly many participant instances and to leverage existing
verification techniques and tools for shared-data concurrency.
Contributions.We make the following contributions:

(1) We present a modular verification methodology for protocol
implementations, based on global traces and concurrent sep-
aration logic, that applies to a wide range of programming
languages, protocol implementations, and verification tools.

(2) We show how to use separation logic’s linear resources to
modularly prove injective agreement, i.e., the absence of
replay attacks. To the best of our knowledge, we present the
first invariant-based verification technique for this property.

(3) We developed a reusable Go library that facilitates main-
taining the global trace; protocol-independent properties are
verified once and for all for this library and can, thus, be
reused for different protocol implementations.

(4) We demonstrate the practicality of our approach by using the
Gobra verifier [22] to verify memory safety and security of

1The proof search is automatic but relies on user-provided annotations.

Go implementations of three protocols: Needham-Schroeder-
Lowe (NSL) [3,4], signed Diffie-Hellman (DH) [30], andWire-
Guard [1]. We show that our approach supports different
programming languages and verifiers by additionally imple-
menting a prototype of the reusable library for C and the
VeriFast verifier [21], and using it to verify a C implementa-
tion of NSL. The implementations of our reusable verification
library and the case studies are open-source [31].

(5) We prove soundness of our approach, in particular, that the
global trace correctly reflects all relevant protocol steps and,
thus, any security property proved for the trace indeed holds
for the protocol implementation.

We build on and substantially extend two lines of prior work: Our
use of a global trace and security labels to prove secrecy is inspired
by Bhargavan et al. [9], but our approach achieves modularity with-
out relying on a coding discipline (cf. earlier discussion of DY*),
and thus handles existing protocol implementations soundly. Our
encoding of the global trace as a concurrent data structure is in-
spired by Dupressoir et al. [32]. Their work depends on specific
features of the used programming language (e.g., C’s volatile fields)
and verifier (VCC [33]), while we present a separation-logic-based
methodology applicable across different programming languages
and verifiers, as demonstrated by our case studies. The use of sep-
aration logic allows us to verify concurrent, heap-manipulating
programs and prove security properties that so far were out of
reach for invariant-based approaches.
Outline. Sec. 2 introduces background on trace-based verification
and our attacker model. In Sec. 3, we explain how we encode the
global trace and how we relate it formally to the local state of each
participant. In Sec. 4, we show how to prove important security
properties based on a suitable trace invariant, and how we use sepa-
ration logic’s linear resources to prove injective agreement. In Sec. 5,
we introduce our reusable verification library, which implements
our methodology, and substantially reduces the verification effort
per protocol. Sec. 6 describes our case studies. We explain the trust
assumptions underlying our methodology and sketch its soundness
proof in Sec. 7, discuss related work in Sec. 8, and conclude in Sec. 9.

2 TRACE-BASED VERIFICATION

A protocol’s security depends on the interplay of the protocol par-
ticipants in the presence of an attacker. A standard technique to
verify security is to record all relevant actions of the participants
and the attacker on a global trace and to formulate the intended
security properties as properties of this trace. Verification then
amounts to proving that all possible traces of a protocol satisfy the
intended properties. In this section, we give a high-level overview
of this approach; we provide the details in the later sections.
Attacker. We consider a Dolev-Yao attacker that has full control
over the network and performs symbolic cryptographic operations.
These operations are modeled as functions over symbolic values,
so-called terms, and encode the perfect cryptography assumption,
e.g., that decryption succeeds if and only if it uses the correct key.

An attacker can apply these functions to all terms in its knowl-
edge, which initially consists of all publicly-known terms, including
string and integer constants. An attacker obtains additional knowl-
edge by reading messages on the network. Furthermore, an attacker
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(Write)
Γ ⊢ [𝑝 ↦→ _] *𝑝 := 𝑒 [𝑝 ↦→ 𝑒]

Γ ⊢ [𝑃1] 𝐶1 [𝑄1] Γ ⊢ [𝑃2] 𝐶2 [𝑄2]
(Par)

Γ ⊢ [𝑃1 ∗ 𝑃2] 𝐶1 | | 𝐶2 [𝑄1 ∗𝑄2]
Γ ⊢ [𝑃 ∗ 𝐼𝑟 ] 𝐶 [𝑄 ∗ 𝐼𝑟 ]

(With)
Γ, 𝑟 : 𝐼𝑟 ⊢ [𝑃] with (𝑟 ) {𝐶} [𝑄]

Figure 1: Selected separation logic proof rules: heap writes (cf. Sec. 3.1) along with parallel composition and lock-protected

critical sections (cf. Sec. 3.3). Side-conditions are omitted for simplicity.

may corrupt participants, which adds all terms in the state of the cor-
rupted participant to the attacker knowledge. We model two kinds
of corruption: Corrupting a participant leaks its long-term state,
which is common to all instances of this participant, such as long-
term secret keys. Corrupting a participant session additionally leaks
short-term state, e.g., ephemeral secret keys, or exchanged nonces2.
Trace entries. The global trace is a sequence of events. Each event
corresponds to a high-level operation performed by a participant
or the attacker. It has a name and takes event-specific arguments.
E.g., event CreateNonce(n) records that nonce n was created. This
event is protocol-independent; we also support protocol-specific
events to keep track of the progress within a protocol execution
and to express specific security properties. E.g., a protocol-specific
event may express which nonces or keys a participant uses to
communicate with a peer (cf. Sec. 4).

We use seven protocol-independent events: (1) A create nonce
event records that a fresh nonce has been generated. (2) A send
message event records that a message has been sent on the network.
Both events may originate from a participant or the attacker. The
remaining five protocol-independent events model the capabilities
of the attacker. (3) The (unique) root event is the first event on
every trace and contains the initial attacker knowledge. (4) An
extend attacker knowledge event models that the attacker learns
additional terms, e.g., by applying a cryptographic operation to a
term already in the attacker knowledge. Corruption is represented
by (5) a participant corruption or (6) a session corruption event. In
both cases, we use extend-events (4) to add the newly-learned terms
(from the corrupted state) to the attacker knowledge. At any point
during a protocol run, the total attacker knowledge is therefore
determined by the union of the root event (3), the send-events (2),
and the extend-events (4). Finally, (7) a drop message event records
that the attacker dropped a message from the network.
Trace invariant. To reason modularly about the (unbounded) set
of all possible traces, we introduce a trace invariant, a property that
must hold for every prefix of each trace produced by a protocol.
Verification then consists of two main steps: first, proving that
each action of a participant or the attacker (according to the above
attacker model) maintains the trace invariant and, second, showing
that the trace invariant implies the intended security properties.

An important component of a trace invariant are message in-
variants, which characterize the content of a message. For instance,
a message invariant might express that a message parameter is a
nonce (as opposed to an arbitrary term).

3 LOCAL REASONING

In the previous section, we have summarized how we can prove
security properties based on a global trace of events. In this section,

2Session corruption affects the entire short-term state of a participant instance, which
might participate in multiple protocol sessions; a more fine-grained treatment of
individual sessions is possible, but omitted for simplicity.

we show how to verify concrete protocol implementations by relat-
ing the global trace of the protocol to the local state and operations
of each protocol participant. This verification is modular and can
be automated using existing verification tools.

3.1 Safety Verification

To support realistic, efficient, and existing protocol implementa-
tions, our verification technique needs to handle programming
concepts such as mutable heap structures and concurrency. To this
end, we employ separation logic [26, 27], the de-facto standard
for the modular verification of imperative code. Separation logic
is supported by existing verifiers for many languages, including
VeriFast [21] for C, Prusti [25] for Rust, and Gobra [22] for Go. All
of them can be used in combination with our methodology.

In separation logic, each heap location is conceptually owned
by a single function execution (similar to Rust). Attempting to
access a location without owning it results in a verification failure.
Ownership prevents data races in concurrent programs (since at
most one function may access a location at any point in time) and
facilitates reasoning about side effects (as long as one function owns
a location, no other function can possibly modify it).

In specifications, the points-to assertion 𝑝 ↦→ 𝑒 expresses owner-
ship, i.e., that the current function has an exclusive permission to
access location 𝑝 and that 𝑝 has value 𝑒 (we write _ if the value is ir-
relevant). For instance, the proof rule for heap updates (ruleWrite
in Fig. 1) enforces via its precondition that the current function exe-
cution may update 𝑝 only if it holds the corresponding permission.

Permissions are initially obtained when allocating a heap loca-
tion, and are transferred between function executions upon call and
return according to the callee function’s specification. Permissions
may also be transferred between threads, see Sec. 3.3.

Verifying a protocol implementation in separation logic ensures
that it is memory safe (e.g., does not cause null-pointer dereferences
or buffer overflows), does not abort (e.g., due to division by zero),
and does not exhibit data races. Where needed for our safety or
security proof, we also verify functional correctness properties. We
omit the details of safety proofs here because they are routine work
in and orthogonal to the focus of this paper.

3.2 Relating Bytes with Terms

Our global trace includes symbolic terms, such as keys, nonces, and
messages. In concrete implementations, these terms are typically
represented by (mutable) byte arrays. In order to relate the two, we
use a concretization function 𝛾 , which maps a term to its byte repre-
sentation. We use this function in specifications; in particular, we
have annotated library functions, e.g., for cryptographic operations,
to relate the term representations of their inputs and outputs. E.g.,
a hash function that maps the byte array xa (representing, e.g., a
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M1. 𝐴 → 𝐵 : {⟨1, na, 𝐴⟩}pkB
M2. 𝐵 → 𝐴 : {⟨2, na, nb, 𝐵⟩}pkA
M3. 𝐴 → 𝐵 : {⟨3, nb⟩}pkB

Figure 2: The NSL public key protocol, where na and nb are

nonces, whose generation is omitted. {𝑚}pk and ⟨· · · ⟩ denote
public key encryption of plain text𝑚 under the public key pk
and tupling, respectively. Creation and distribution of the

participants’ authentic keys is not part of the protocol.

message) to the byte array ra (representing, e.g., a number) is spec-
ified by relating the corresponding terms: ∃𝑥, 𝑟 . xa = 𝛾 (𝑥) ∧ ra =

𝛾 (𝑟 ) ∧ 𝑟 = ℎ(𝑥), where ℎ is the symbolic hash operation on terms.
Parsing a received message often requires showing that the

parsed byte array 𝑏 corresponds to a given term 𝑡 : 𝑏 = 𝛾 (𝑡). Proving
this property generally requires that each byte array corresponds to
a unique term. However, this requirement is typically not satisfied
in realistic implementations where, e.g., a byte array of length four
could store an integer or an ASCII-encoded string, which have dif-
ferent term representations. A possible solution [9,34] is to enforce
a unique byte-level representation for every term (for instance,
by preceding it with a tag). However, this is not possible when
targeting existing implementations with fixed message formats.

Therefore, we adopt a less restrictive solution here. We use the
pattern requirement from Arquint et al. [20], which allows multiple
terms to have the same byte-level representation in general, but
requires a unique representation for the terms corresponding to pro-
tocol messages. This requirement allows a participant to uniquely
determine the term for a parsed message. It ensures that the con-
cretization function 𝛾 is injective on the byte arrays received as
messages. The pattern requirement is satisfied by many protocols
because they include message tags to distinguish the kinds of mes-
sages, which in turn determines the unique relationship between a
byte array and a term. At the same time, it allows clashes among
the representations of other terms, such as integers and strings.

We illustrate the approach using the NSL public key protocol [3]
in Fig. 2. After receiving messageM1, Bob parses it as an encrypted
triple. The specification of the parse operation ensures ∃na. 𝛾 (𝑚) =
𝛾 ({1, na, 𝐴}pkB ). Since {1, na, 𝐴}pkB is a protocol message, we can
apply the pattern requirement to derive the required information
about𝑚: ∃na.𝑚 = {1, na, 𝐴}pkB .

3.3 Global Trace Encoding

As explained in Sec. 2, we use a global trace of events, verify in-
variants over this trace, and finally prove that the invariants imply
the intended security properties. For this approach to be sound,
the global trace has to include all relevant events performed by the
protocol participants and the attacker, which we ensure as follows.

We model each participant instance potentially participating in
a protocol session, and the attacker, as a thread in a concurrent sys-
tem. Each thread maintain its own (mutable) local state, which may
contain short-term, session-specific data and long-term data that is
shared by all instances of the participant. Multiple instances of the
same protocol role are modeled as threads that execute the same
code. Soundness of separation logic ensures that any verified prop-
erty holds for all possible interleavings between the threads, that is,

for all possible interactions between the participant instances and
the attacker. Moreover, since separation logic is modular, it verifies
the implementation of each participant in isolation, independent
of the other threads potentially running in the system (assuming
only that their implementations are also verified). Consequently,
the verified properties hold for an arbitrary, unbounded number of
participant instances.

Separation logic achieves thread-modular reasoning by ensuring
that different threads operate on disjoint memory, which prevents
data races and eliminates interference between threads (see below
for shared state). The proof rule for parallel composition (Par in
Fig. 1) illustrates this approach. The threads 𝐶1 and 𝐶2 can be
verified independently. They operate on the heap locations for
which they obtain permissions via their preconditions 𝑃1 and 𝑃2,
resp. Separation logic’s separating conjunction ∗ in the precondition
of the parallel composition expresses that the permissions in 𝑃1 and
𝑃2 are disjoint. Note that we show the rule for a structured parallel
composition statement for simplicity; our technique also supports
dynamic thread creation.

Each thread needs to manipulate its own local data structures
and the global trace data structure that is shared among all threads.
To support mutable shared state, we can use any of the established
verification techniques for concurrency reasoning. For concreteness,
we use a global lock, which is associated with a lock invariant that
needs to be established when the lock is first created. This invariant
may then be assumed whenever the lock is acquired and must be
proved to hold upon release. Proof ruleWith in Fig. 1 illustrates
this reasoning for a critical section𝐶 that is protected by the lock 𝑟 .
𝐼𝑟 is the invariant associated with lock 𝑟 , as specified by 𝑟 : 𝐼𝑟
in the proof context. Conceptually, a lock owns the permissions
expressed in 𝐼𝑟 and temporarily lends these permissions to a thread
on entering the critical section.

Since the global trace exists only for the purpose of verification,
we model it as ghost state and all operations on it as ghost opera-
tions; both are erased during compilation. Consequently, the lock
protecting this ghost data structure can also be erased. Reasoning
about ghost locks is completely analogous to standard locks (and
supported by separation logic program verifiers). However, since a
ghost lock is erased during compilation, it does not ensure mutual
exclusion. Therefore, any non-ghost operation performed between
an acquire and a release must be atomic to ensure that erasing
the ghost lock does not create thread interleavings that were not
considered during verification.

The trace data structure provides two operations: appending
an event, and reading the current state of the global trace. Fig. 3
illustrates how participants and the attacker interact with the global
trace. The lock invariant for the global trace is the trace invariant.
By formulating this invariant in separation logic, it can express
ownership of heap locations and other resources, which allows
us to prove security properties that are out of reach for existing
invariant-based related work, as we will see in Sec. 4.1.

Participants must record all protocol-relevant operations on the
global trace. That is, to perform an operation such as sending a
message or creating a nonce, they must (1) acquire the ghost lock,
(2) perform the operation, (3) append the corresponding event to
the trace, and (4) release the ghost lock (and at this point prove
that the trace invariant is preserved). For each relevant operation,
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Figure 3: An overview of the main components of a proto-

col execution in our methodology. The blue boxes are com-

ponents of the protocol implementation; green boxes de-

note ghost structures that are used for verification. Blue

and green arrows denote actual and ghost method calls,

resp. The red dashed arrows denote invariants relating dif-

ferent data structures. Participants and the attacker send

and receive messages by interacting with the network. The

attacker can perform additional I/O operations such as in-

structing the network to drop or modify messages. All

protocol-relevant operations (including I/O operations) are

recorded on a global trace. We verify (global) security prop-

erties by proving modularly that each protocol implemen-

tation (e.g., two and one implementations of Alice’s and

Bob’s role, resp.) and the attacker maintain a trace invari-

ant, and that the trace invariant implies the security proper-

ties. We enable the verification of participants by relating

participant-local state with the trace via local ghost state

that contains a participant’s local snapshot, i.e., its last ob-

served version of the trace.

we provide a library wrapper (see Sec. 5 for details) that performs
these four steps3. Preconditions on the library functions ensure
that the performed operation indeed preserves the trace invariant.
Since the trace invariant (and, hence, the preconditions) contain
protocol-specific properties, our library is parametric in the invari-
ant (cf. Sec. 5). To ensure that all relevant operations are recorded
on the trace, it then suffices to perform a simple syntactic check
that relevant operations are performed only via the wrapper library.

The attacker is handled similarly. We model it as code that (1) ac-
quires the ghost lock, (2) determines which operations the attacker
could potentially perform based on its current attacker knowledge
(which is recorded on the trace), (3) non-deterministically chooses
any of these operations and appends the corresponding event to the
trace, and (4) releases the ghost lock (and at this point proves that
the trace invariant is preserved). Verifying this code ensures that all

3To avoid any runtime overhead, calls to this wrapper library could be inlined (and
ghost code is erased in any case).

possible attacker operations preserve the trace invariant. In other
words, the invariant may state only those properties that are valid
under our attacker model, a property we call attacker completeness
(sometimes referred to as attacker typability).

Participant and session corruption are two of the possible at-
tacker operations in step 2 above. In both cases, step 3 adds all
symbolic terms possibly present in the participant’s (long-term or
short-term) state to the attacker knowledge, and step 4 checks that
the invariant about the attacker knowledge is maintained.

3.4 Local Snapshots

To prove that a protocol-relevant operation preserves the trace in-
variant, we frequently need to relate the arguments of the operation
to earlier events on the trace. For example, when sending the first
message of the NSL protocol (Fig. 2), Alice has to show that the
message invariant holds. The message invariant specifies that na is
a nonce, i.e., requires a prior CreateNonce(na) event on the trace.

Discharging such proof obligations requires that participants
retain information about their prior operations on the global trace.
Since the global trace is a shared data structure that may grow
between any two accesses, participants may soundly hold on to
those facts that are stable under extensions of the trace. For instance,
if a CreateNonce(na) is present on the trace at some program point,
it will also be present in all future versions of the trace.

We represent the stable information of a participant by main-
taining in each participant a local snapshot (i.e., a local copy) of the
global trace (see Fig. 3). Since the global trace may evolve by actions
of other participants and the attacker, the local snapshot of a partici-
pant is generally a prefix of the global trace. Whenever a participant
performs a protocol-relevant operation, we update its local snap-
shot to the current global trace. The trace invariant ensures that the
local snapshots of all participants are prefixes of the global trace,
and that these updates are the only modifications of local snapshots.

With this design, local snapshots need to be owned by the par-
ticipants (to ensure their values are retained across operations of
other threads), and they must also be owned by the ghost lock (to
allow the lock invariant to relate the local snapshots to the global
trace). To express this notion of shared ownership, we use fractional
permissions [35], which are supported by many separation logics.
Conceptually, fractional permissions allow one to split a permis-
sion into several fractions; a non-zero fraction permits read access,
whereas the full permission is required for write access. Separating
conjunction adds the fractions in both conjuncts and yields false if
the sum for any location exceeds a full permission.

We split the permission to a local snapshot into two halves: One
half is part of the trace invariant and lets it express properties of the
local snapshot. The other half remains with the corresponding par-
ticipant and enables the participant to retain information about the
global trace. After acquiring the ghost lock, a participant temporar-
ily obtains exclusive permission to its local snapshot by adding the
half it holds with the half from the trace invariant (through the
precondition 𝑃 ∗ 𝐼𝑟 in ruleWith in Fig. 1) and can, thus, update the
local snapshot.

By letting each participant retain a non-zero permission to its
snapshot, we can rule out interference from other threads and,
thus, use standard sequential reasoning to relate the content of the

5



CCS ’23, November 26–30, 2023, Copenhagen, Denmark Linard Arquint, Malte Schwerhoff, Vaibhav Mehta, and Peter Müller

1 na /*@, naT @*/ := CreateNonce(/*@ s @*/)
2 //@ assert s.NonceOccurs(naT)

Figure 4: Excerpt fromaNSL implementation forAlice creat-

ing a nonce and demonstrating how to relate local state with

the global trace. //@ and /*@ ... @*/mark ghost code that is

used for verification only. We omit the nonce’s secrecy label

(Sec. 4.2) for simplicity.

local snapshot to the concrete data structures maintained by the
participant (via local invariants) and to prove the presence of an
event on the snapshot. The example in Fig. 4 illustrates that. Line 1
invokes the library function CreateNonce. Its regular result na is
the generated nonce; the additional ghost result naT is the corre-
sponding term. CreateNonce takes the caller’s local snapshot s as
ghost argument, which allows the function to update the snapshot
and to express in its postcondition the existence of the create-nonce
event on the updated local snapshot. This postcondition allows the
caller to prove the assertion in line 2, without having to consider
any interleaving operations by other participants or the attacker.

4 PROVING SECURITY PROPERTIES

In this section, we show how to define a trace invariant that lets
us verify two important security properties, authentication and
secrecy. Authentication means that two protocol participants are
indeed communicating with each other and (depending on the
particular authentication property) agree on some common values.
Secrecy holds if confidential data remains unknown to the attacker.
While we focus here on the proof techniques for these two standard
properties, our methodology is also applicable to more complex
properties such as forward secrecy, as demonstrated in Sec. 6.3.

4.1 Authentication

To prove authentication, we use protocol-specific events to record
additional information beyond the exchanged messages, so that
authentication properties can be expressed in a familiar way: as
correspondence between these events. In this subsection, we show
how to use trace invariants expressed in separation logic to prove
two strong and common authentication properties: non-injective
and injective agreement.

We illustrate our methodology using the NSL example from Fig. 2.
We prove authentication using four protocol-specific events: Before
sending the first message, Alice creates event Initiate(Alice, Bob, na)
to record that she wants to communicate with Bob, and use the
nonce na in the current protocol session. After receiving the first
and before sending the second message, Bob in turn creates event
Respond (Alice, Bob, na, nb), indicating the communication partners
and used nonces. Finally, the events FinishA and FinishB, with the
same parameters as Respond, indicate successful completion of the
protocol (i.e., runtime checks such as nonce comparisons succeeded)
for Alice and Bob, resp. We focus on Alice’s perspective in the
following. We prove authentication for Bob’s perspective in Sec. 6.3,
where we also discuss authentication properties for WireGuard.
Non-injective Agreement. The fact that Alice agrees with Bob
on the nonces na and nb, known as non-injective agreement [36], is
specified in Fig. 5 (ignore the conjunct highlighted in blue for now).

1 let commit = FinishA(A,B,na,nb) in
2 t.Occurs(commit) =⇒
3 let prefix , i = t.GetPrefix(commit) in
4 (prefix.Occurs(Respond(A,B,na,nb)) &&
5 !(∃A′,B′,nb′,i′. i != i′ &&
6 t.OccursAt(FinishA(A′,B′,na,nb′),i′))
7 ) || prefix.IsCorrupted ({A, B})

Figure 5: Non-injective (white background) and injective

(all lines) agreement from Alice’s perspective with Bob on

the nonces na and nb. t.Occurs(e) yields whether event e
occurs on trace t; t.GetPrefix(e) returns t’s prefix up to

and including the most recent occurrence of e, and the in-

dex of that occurrence (i.e., the length of prefix minus 1).

t.OccursAt(e,i) expresses that event e occurs at index i on
trace t.

1 match ev {
2 case FinishA(A, B, na, nb):
3 UniWit(FinishA , na) &&
4 (prefix.Occurs(Respond(A, B, na, nb)) ||
5 prefix.IsCorrupted ({A, B}))
6 ...
7 }

Figure 6: A simplified fragment of the trace invariant for

NSL-specific events. This invariant is universally quantified

over the events ev occurring on the trace; prefix is the trace
prefix up to event ev. The invariant expresses that when-

ever a FinishA event occurs on the trace, a Respond event with

matching arguments must previously occur, unless one of

the participants has been corrupted. The highlighted line in-

cludes a separation logic resource to express that the FinishA
event is unique w.r.t. to the nonce na, which allows us to

prove injective agreement. The conjunction && is interpreted
as separation logic’s separating conjunction *.

This trace-based property states that if a FinishA event occurs on the
trace (line 2) then either a Respond event with matching arguments
occurs earlier on the trace (line 4) or one of the participants has
been corrupted before an agreement was reached (line 7).

To prove agreement for NSL, we include the NSL-specific prop-
erty from Fig. 6 (ignore line 3 for now) into the trace invariant. It
states that for every FinishA event, a corresponding Respond event
occurred prior on the trace, or one of the participants has been
corrupted. Maintaining this invariant requires us to show the oc-
currence of a suitable Respond event (or of corruption) when Alice
creates the FinishA event.

We discharge this proof obligation by extending the trace in-
variant with a message invariant for NSL’s second message, which
requires that the Respond event occurs on the trace or the message
comes from the attacker. Hence, an implementation for Bob has to
create a Respond event before sending the second message. When
Alice receives the message, she may assume its message invariant
(as part of the trace invariant). Since her local snapshot gets updated
upon the receive-operation, the received message is recorded on the
local snapshot and the message invariant becomes part of Alice’s
stable knowledge. So when Alice adds the FinishA event to the trace,
she knows that either the Respond event occurs on the trace, or the
second NSL message comes from the attacker. In the latter case,
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Alice can derive that corruption must have occurred because the
attacker was able to construct a message containing the nonce na,
which is accessible only to Alice and Bob (unless corrupted).

Once we established the trace invariant, it remains to show
that for all traces, the invariant from Fig. 6 implies non-injective
agreement (Fig. 5). This proof is a standard entailment check, which
is performed automatically by program verifiers.

Injective Agreement. The stronger property injective agreement
holds only for implementations that detect if the attacker replays
messages from other protocol sessions. If successful, such a replay
attack could trick participants into reusing outdated nonces (in gen-
eral, key material), thereby weakening security. Proving injective
agreement modularly is challenging; to the best of our knowledge,
we present here the first invariant-based verification technique for
injective agreement in protocol implementations (see also Sec. 8).

The highlighted conjunct in Fig. 5 strengthens non-injective to
injective agreement by mandating that there is no second FinishA
event on the trace with the same nonce na. The uniqueness of the
event/nonce-pair enforces a one-to-one correspondence between
Respond and FinishA events and, thus, excludes replay attacks.

To prove injective agreement, we strengthen our trace invariant
to imply this property. We could in principle include a conjunct
that specifies uniqueness by quantifying over the indexes into the
trace. However, such an invariant would be difficult to maintain
modularly. The necessary proof obligation for adding a FinishA
event would require that no such event with the same first nonce
already exists on the trace. However, each participant has only
partial information about the trace stored in its local snapshot. So
even if we proved the absence of an event on the local snapshot,
we could not conclude its absence on the trace, such that the proof
obligation cannot be discharged.

To obtain a modular verification technique for injective agree-
ment, we leverage separation logic’s permissions to encode arbi-
trary linear resources (non-duplicable facts). Due to the meaning of
separating conjunction, 𝑝 ↦→ _★ 𝑝 ↦→ _ is equivalent to false (be-
cause the permissions of the two conjuncts are not disjoint). That
is, the points-to assertion 𝑝 ↦→ _ is a non-duplicable (i.e., unique)
resource. We can use this fact to model the uniqueness of an event
by representing the event as a separation logic permission. We use
this mechanism as follows.

Conceptually, we tie event uniqueness to nonces because nonces
are, by assumption of perfect cryptography, unique.When a protocol-
specific event is declared, it can be specified as unique w.r.t. a spe-
cific nonce parameter. E.g., in NSL, event FinishA is unique w.r.t. its
third parameter na. Subsequently, when a nonce is generated via
a call to our verification library, a program annotation states for
which events this nonce will be used (e.g., FinishA). The library call
returns not only the fresh nonce (na), but also a linear resource for
each indicated event type (technical details follow in Sec. 5).

This resource—called an event’s uniqueness witness—then needs
to be given up when the corresponding event is appended to the
trace. That is, ownership of the resource is transferred from the par-
ticipant to the ghost lock by conjoining the resource to the trace in-
variant. E.g., for NSL, Alice obtains the witnessUniWit (FinishA, na)
when creating nonce na. This witness is transferred to the trace
invariant when she appends the event FinishA(_, _, na, _) to the

trace, as expressed by the highlighted conjunct in Fig. 6. Due to the
linearity of the resource, any attempt to append another FinishA
event with na would fail to verify because the required witness
cannot be provided a second time, which would be necessary to
preserve the trace invariant.

Consequently, the invariant from Fig. 6 implies that the FinishA
event with na is unique, which allows a standard separation logic
verifier to prove the highlighted conjunct in the definition of injec-
tive agreement (Fig. 5).

Our discussion shows how the combination of a global trace and
local snapshots allows us to prove authentication modularly, and
how we can leverage the expressive power of separation logic to
specify a trace invariant that lets us prove injective agreement.

4.2 Secrecy

Secrecy of a term s, e.g., a key or a nonce, states that the attacker
does not learn this term except when corrupting one of the protocol
participants that know the term. We can express secrecy as a prop-
erty of the global trace because we can extract both the attacker
knowledge and corruption events from the trace.

Instead of directly reasoning about the concrete attacker knowl-
edge, we follow Bhargavan et al. [9, 37] by over-approximating the
concrete attacker knowledge to classes of terms that the attacker
(possibly) knows. This over-approximation enables modular rea-
soning about secrecy: we impose proof obligations that prevent
secrets from being leaked to the attacker by checking for every
send operation that the sent message belongs to a class already
known to the attacker. For instance, if a participant tried to send
a (unencrypted) secret term over the network, the send operation
would be rejected by the verifier. Consequently, sending a message
does not change the over-approximated attacker knowledge. This
knowledge is extended only when the attacker corrupts a partici-
pant or session. In this case, we add the class of terms readable by
the corrupted participant or session to the knowledge.

We classify terms based on their allowed recipients by assigning
them a secrecy label. Secrecy labels range from public (i.e., everyone
including the attacker) over a set of participants to a set of particular
protocol sessions. The latter is useful to classify ephemeral private
keys, e.g., in our WireGuard case study, because only a participant
running a particular protocol session is allowed to read these keys.

By proactively enforcing secrecy labels, we ensure that the (con-
crete) attacker knowledge may contain only public terms and terms
whose secrecy label contains a participant or protocol session that
is allowed to read the term and that has been corrupted in the past.
We prove this property once and for all as part of our reusable
verification library (cf. Sec. 5).

5 REUSABLE VERIFICATION LIBRARY

We implement our methodology as a reusable verification library,
which significantly reduces the verification effort per protocol: the
library encapsulates the global trace and provides a convenient API
for common network and cryptographic operations that automates
trace updates. In addition, the library provides various lemmas, such
as attacker completeness (Sec. 2), which are proved once and hold
for all protocols. To enable verification of a wide range of protocols,
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Figure 7: Structure of our reusable verification library (RVL).

The library provides implementations for the abstractions

used in ourmethodology: terms, events, the global trace, and

local snapshots. Both the trace and all local snapshots are

governed by the trace invariant. The trace is encapsulated

inside a concurrent data structure (CDS) that permits shared

access. The APIs for I/O and cryptographic operations apply

these operations and also register the corresponding events

on the trace. The RVL also provides several lemmas that have

been proved for all protocols, e.g., attacker completeness.

Many components of the library are parametric to accom-

modate protocol-specific events and invariants (and the cor-

responding preconditions for the I/O and crypto API).We in-

dicate parametric components using a tab symbol near the

top of the box. The parameters are supplied for a concrete

protocol (here, NSL), as indicated by the tab at the bottom of

the box.

the global trace is parametric in the events it records, and the trace
invariant is parametric to account for protocol-specific properties.

To demonstrate that our methodology is widely applicable, we
developed a library for the Go verifier Gobra [22], and one for the C
verifier VeriFast [21]. Both library implementations are available in
our open-source artifact [31]. In this section, we give an overview
of the library and highlight some of its technical solutions.

5.1 Overview

In the following, we describe the library’s structure and compo-
nents, explain how the library can be instantiated for different
protocols, and provide data on its size and verification time.

Components. Fig. 7 illustrates the structure of our library (lower
box) and a protocol implementation that uses it (upper box). The
library provides the abstractions introduced in Sec. 3: terms and
events abstract over concrete data structures (e.g., byte arrays) and
participant operations, respectively. Events are recorded on the
global trace, whose content is constrained by the trace invariant.
The concurrent data structure (CDS) fully encapsulates the trace, to
govern shared access and maintain the invariant. Local snapshots

are prefixes of the global trace, which also satisfy the trace invariant,
but are owned locally by the protocol participants.

The library also provides a convenient API for common network
I/O and cryptographic operations: each function performs the cor-
responding concrete operation (e.g., sending a message or creating
a nonce) and also adds the corresponding event to the trace. Suit-
able preconditions ensure that the operation preserves the trace
invariant; they lead to proof obligations for clients using the API.
Clients typically discharge these with the help of stable knowledge
about the trace, which is recorded in their local snapshots.

In terms of cryptographic operations, our library currently offers
asymmetric encryption, authenticated encryption with associated
data (AEAD), signatures, and modular exponentiation, but can eas-
ily be extended by additional cryptographic operations. As a refer-
ence, adding the latter two features and proving the corresponding
lemmas took about two person days.

Note that almost the entire library consists of ghost code that
is used for verification, but will be erased by the compiler. The
only non-ghost operations are the calls to the underlying I/O and
crypto libraries. This has two important consequences. First, these
calls can be inlined in the participant implementation, such that
the entire library can be removed from the executable program and
does not cause any runtime overhead. Second, existing protocol
implementations do not have to be modified to use the library. The
library provides a convenient way to systematically annotate an
implementation with ghost code and proof obligations, but other
forms of annotations are also possible.

Parametricity.As we discussed earlier, some events and aspects of
the trace invariant (and consequently the preconditions of the I/O
and crypto API) are protocol-specific. To capture them, we designed
our library to be parametric, such that clients using the library can
instantiate it for a given protocol.

Despite being parametric, our library nonetheless provides lem-
mas that are proven once and for all protocols, in particular, attacker
completeness (Sec. 2) and the secrecy lemma (Sec. 4.2). Attacker com-
pleteness can be proved once and for all because the library is not
parametric in the kinds of term abstractions it provides. Secrecy
directly follows from the protocol-independent parts of the trace
invariant, which enforce for all protocols that implementations do
not leak secrets to the attacker, i.e., messages have to be public.
The library provides also several utility lemmas (e.g., that event
existence is a stable trace property) that can be used when verifying
a participant implementation.

Fig. 8 shows a small excerpt of our trace invariant. The parameter
P provides protocol-specific events and invariants. Besides various
properties of the entire trace (not shown in the figure), the trace
invariant also includes event-specific invariants. We show here
the invariants for Send events and protocol-specific events. A Send
event requires the message invariant, which itself can be param-
eterized by library clients. We prove that the generic part of the
message invariant is weak enough to be preserved by the attacker;
it states, in particular, that the terms occurring in the message do
not leak secrets. The protocol-specific part of the message invariant
may constrain only encrypted data and must allow the possibility
that the encrypted data was fabricated by the attacker out of terms
in the attacker knowledge. This ensures that it is maintained by
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1 pred TraceInv[P](t: Trace) {
2 foreach e: Entry of t:
3 let pre = ... in // trace prefix up to e
4 match e {
5 case Send(msg):
6 MsgInv[P](msg , pre)
7 case PEvent(pe):
8 P:: PEventInv(pe, pre)
9 ...
10 }
11 }

Figure 8: Excerpt of the parametric trace invariant, defined

via pattern matching over individual trace entries. All cases

may refer to earlier events on the trace via the prefix param-

eter pre. The case for a Send event enforces the message in-

variant, which is partly defined by the library, but itself para-

metric. A PEvent represents any protocol-specific event pe.
The corresponding case of the trace invariant comes entirely

from the protocol parameter P.

Library LOC LOS Verification time [s]
Go/Gobra 83 6,932 126.1
C/VeriFast 343 3,837 0.8

Figure 9: Lines of code (LOC) and lines of specification (LOS)

(incl. ghost code) for the library code, together with the av-

erage verification times in Gobra and VeriFast.

all attacker actions. For a protocol-specific event, the invariant is
supplied entirely by the parameter P. In the following, we explain
how this parameter is represented in our library implementations.

In the Go implementation of the library, we achieve parametric-
ity by using Go interfaces. In particular, the generic protocol interface
declares mathematical functions (e.g., isUnique to indicate that an
event is unique), separation logic predicates (e.g., protocol-specific
event invariants), and lemmas. Clients may then supply different
implementations of this interface with different definitions for these
functions, predicates, and lemmas. Gobra checks via suitable proof
obligations that any concrete implementation satisfies key proper-
ties specified in the interface (e.g., that protocol-specific invariants
provide uniqueness witness resources for unique events). These
properties can thus soundly be assumed while verifying the para-
metric library. Analogously, parametricity w.r.t. events is enabled
by declaring an Event interface that protocol-specific events extend.

In VeriFast, we use its generic types (e.g., for events), abstract
mathematical functions (e.g., isUnique), and abstract lemmas (e.g.,
that the event invariant is stable) to achieve parametricity and verify
the library once for all protocols. When verifying implementations
of a particular protocol, these abstract functions and lemmas are
concretized by providing function and lemma definitions via an
automated syntactic transformation.We prove that these definitions
are not present while verifying the library, that is, we indeed verify
the parametric version of the library, not a concrete instantiation.
Statistics. Fig. 9 shows the size and verification time for the two
verified implementations of our library. As explained above, the
library consists mostly of ghost code; only around 1% is executable
code. All methods and lemmas together are verified in ca. 2 minutes.
The library for VeriFast is currently less complete than the one for

Gobra, and lacks several useful lemmas, which explains the smaller
amount of ghost code. It verifies in 1 second (VeriFast is usually
faster than Gobra, but provides less automation). We have measured
the verification times by averaging over 30 runs on a 2020 Apple
Mac mini with M1 processor and macOS Ventura 13.0.1. Since the
library is verified once for all protocols, this effort does not have to
be repeated when verifying a concrete protocol implementation.

5.2 Technical Solutions

In the following, we summarize the features of a verification tech-
nique and tool required to implement the main abstractions (e.g.,
terms, events, global traces) provided by our library.
CustomMathematical Theories.Verification techniques frequently
represent information as values of mathematical theories, such as
sets, tuples, sequences, etc. In contrast to the corresponding data
types of a programming language, these values are immutable and
their operations have a direct representation in the verification
logic, which simplifies reasoning.

We use mathematical theories to represent the abstractions we
use in specifications and ghost code: events, the global trace, secrecy
labels, and terms with equational theories. Conceptually, events
form an algebraic data type (ADT), as does the global trace (a func-
tional list). Labels and terms are also algebraic structures, but with
additional properties (e.g., labels have a commutative join operator).

The Gobra implementation of the library represents all these
structures as uninterpreted functions with appropriate axioms (anal-
ogous to how custom theories are encoded to SMT solvers). E.g., for
the ADT of events, we define axioms that ADT constructors are in-
jective in their arguments, and that different constructors produce
different events. For terms, we define additional axioms to encode
cryptographic equational theories, e.g., 𝑔𝑥 𝑦 = 𝑔𝑦

𝑥 , where 𝑔𝑥 de-
notes Diffie-Hellman exponentiation with generator 𝑔. VeriFast
supports ADTs natively, which we use to represent events and the
global trace. For labels and terms, we again use uninterpreted func-
tions and axioms (“auto-lemmas”) to express equational theories.
Linear Resources. Our novel support for proving injective agree-
ment (cf. Sec. 4) requires reasoning about the uniqueness of certain
protocol-specific events. For this purpose, we introduce (ghost)
memory locations and use separation logic’s (exclusive) permis-
sions to these locations as linear resources. Separation logic pred-
icates [38] allow us to construct linear resources with arbitrary
parameters by mapping the parameter tuples injectively to a heap
location. We use such predicates to represent the uniqueness wit-
nesses from Sec. 4.
Concurrency Reasoning. As discussed in Sec. 3.3, we model the
global trace as a concurrent data structure. Our approach is com-
patible with any verification technique that is able to reason about
shared accesses to such a data structure and to maintain an invari-
ant over it. Moreover, to encode local snapshots (cf. Sec. 3.4), we
require support for reasoning about properties that are stable under
concurrency, which are offered by separation logic verifiers.

We model the global trace as a data structure that is protected
by a ghost lock. Neither Gobra nor VeriFast support ghost locks
directly, but both offer standard locks. Reasoning about ghost locks
and standard locks is almost identical, with one exception: Any
non-ghost operations performed between acquiring and releasing

9



CCS ’23, November 26–30, 2023, Copenhagen, Denmark Linard Arquint, Malte Schwerhoff, Vaibhav Mehta, and Peter Müller

1 struct Alice {
2 SkA: byte[]
3 PkB: byte[]
4 Na: byte[]
5 Nb: byte[]
6 /*@ Step: uint @*/
7 ...
8 }

9
10 /*@ pred LocalInvariant(a: Alice) {
11 ∃naT ,nbT.
12 ... && // memory omitted
13 (a.Step == 2 ==>
14 UniWit(FinishA , naT)) &&
15 (a.Step >= 2 ==>
16 𝛾 (naT) == a.Na &&
17 a.Snap().NonceOccurs(naT)) &&
18 (a.Step >= 3 ==>
19 𝛾 (nbT) == a.Nb &&
20 a.Snap().Occurs(FinishI(A, B, naT , nbT)))
21 } @*/

Figure 10: The struct used for Alice’s local state in the Go

implementation of NSL, and an excerpt from the local in-

variant that relates this state to Alice’s local snapshot and,

thereby, to the global trace. The Step field is a ghost field

that is used to track Alice’s progress in the protocol.

a ghost lock must be atomic (because the lock will be erased by the
compiler, so it does not actually provide mutual exclusion). This
property is satisfied in our library.

6 CASE STUDIES

We applied our methodology to Go implementations of the NSL
public key protocol, signed Diffie-Hellman (DH) key exchange, and
the WireGuard VPN protocol, and prove strong security properties.
We also verified a C implementation of NSL, and obtained the same
security properties as for the Go implementation. Our case stud-
ies (included in our artifact [31]) thus demonstrate the portability
of our methodology across different protocols, programming lan-
guages, and verifiers, and its scalability to realistic, interoperable
implementations. In this section, we first summarize each of the
case studies and then discuss our experiences.

6.1 Needham-Schroeder-Lowe

We used Gobra to verify a Go implementation of the initiator and re-
sponder roles for the NSL protocol (cf. Fig. 2), and likewise VeriFast
for a C implementation thereof. We implemented the core of the
protocol as one method per participant; we also verified an alterna-
tive Go implementation of the initiator that contains one method
per message to demonstrate that verification is not sensitive to the
code structure. Both protocol roles store their program state locally
and use an invariant to relate the local state via the term abstraction
to their local snapshot and, thereby, to the global trace.

Fig. 10 illustrates the interplay between the local state and the
local snapshot for the initiator, Alice. Alice manages her program
state in a struct Alice. The local invariant in lines 10–21 relates
Alice’s local state to her local snapshot (and, thus, indirectly to
the global trace). This invariant expresses ownership of the heap
locations for the struct fields, which is omitted in the figure. More
importantly, it specifies properties about the struct fields depending

M1. 𝐴 → 𝐵 : 𝑔𝑥

M2. 𝐵 → 𝐴 : {|⟨0, 𝐵, 𝐴,𝑔𝑥 , 𝑔𝑦⟩|}skB
M3. 𝐴 → 𝐵 : {|⟨1, 𝐴, 𝐵, 𝑔𝑦, 𝑔𝑥 ⟩|}skA

Figure 11: The signed DH key exchange protocol, where 𝑔𝑥

and 𝑔𝑦 are DH public keys and {|𝑚 |}sk denotes cryptographi-

cally signing a payload𝑚 with a secret key 𝑠𝑘 .

on Alice’s progress within the protocol execution, which we keep
track of via the Step field. E.g., Alice is in Step 2 after creating the
nonce naT and sending the first message. In this case, the invari-
ant includes the uniqueness witness (line 14), which allows Alice
to create the FinishI event in a later protocol step. The invariant
relates the concrete nonce field Na to its term representation naT
using the concretization function 𝛾 (line 16). This term is used in
the events on the global trace. In particular, the CreateNonce event
for naT must occur on Alice’s local snapshot a.Snap() (line 17)
and, thus, on the global trace. Once Alice’s protocol run has reached
the final Step 3, it adds the FinishI event to the trace. The invari-
ant reflects this by stating that the event is on the local snapshot
(line 20). Knowledge about FinishI ’s existence on the trace entails
(via the trace invariant) properties about the Respond event cre-
ated by Bob (recall Fig. 6). This knowledge, together with FinishI ’s
uniqueness witness (now stored in the trace invariant), allows us
to prove injective agreement with Bob as explained in Sec. 4.1.

We prove for all participant implementations that they achieve
(at the end of a protocol execution) injective agreement on, and
secrecy for, both nonces na and nb. Additionally, we verify initial-
ization code that creates an empty trace, generates public/private
key pairs for the participants, and spawns two participant instances
as Go routines (similar to threads) to demonstrate that key distribu-
tion (although not part of the protocol) can be modeled using our
methodology.

6.2 Signed Diffie-Hellman

In the signed DH key exchange (cf. Fig. 11), Alice and Bob each
generate a DH secret key 𝑥 and 𝑦, respectively. By transmitting the
corresponding (signed) DH public keys 𝑔𝑥 and 𝑔𝑦 , they agree on
the shared key 𝑔𝑥 𝑦 after a successful protocol run.

We prove secrecy for, and injective agreement on, the shared key.
The proof is similar to the proof for NSL, which allowed us to reuse
substantial parts. One noticable difference is that proving that both
participants derive the same shared key requires the equational
theory for Diffie-Hellman exponentiation. Our reusable verifica-
tion library provides such custom theories, as discussed in Sec. 5.2.
Another difference is that the nonces 𝑥 and 𝑦 are not directly part
of the protocol messages (in contrast to 𝑛𝑎 and 𝑛𝑏 in NSL), but are
existentially quantified in the message invariants. A participant
instance can determine the values of these existentially-quantified
variables after receiving a protocol message, by connecting the
message invariant to its own Diffie-Hellman secret key.
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6.3 WireGuard

As our main case study, we have picked the WireGuard VPN proto-
col as a real-world protocol achieving even stronger security prop-
erties than NSL. WireGuard is a modern, open-source, and cross-
platform VPN that uses state-of-the-art cryptography and is part
of the Linux kernel. The WireGuard protocol, which performs an
authenticated key exchange, has been analyzed rigorously [39, 40].
It consists of a handshake and transport phase. During the hand-
shake phase, the protocol participants agree on two session keys kIR
and kRI , one per direction, that are used to symmetrically encrypt
VPN packets in the transport phase.

Implementation. We used the existing Go implementation from
Arquint et al. [41], whose memory safety proof we reused. Thanks
to our reusable verification library’s parametric design, instantiat-
ing our library with the concrete networking library used by the
WireGuard implementation was straightforward and only required
annotating cryptographic functions with suitable postconditions.

Arquint et al.’s implementation is a subset ofWireGuard’s official
Go implementation. It omits advanced VPN features such as DDoS
protection, session key renewal, and support for multiple concur-
rent VPN connections. Moreover, their implementation reduces
concurrency (which we partly re-introduced, as we discuss below),
and replaces a message buffer pool by single-use buffers. Our tech-
nique could handle the removed features with additional effort that
is mostly orthogonal to our methodology. For instance, the imple-
mentation of DDoS protection collects metrics (which does not
pose a challenge for program verification) and uses a slightly dif-
ferent handshake (whose verification is analogous to the standard
handshake; the differences are not relevant for authenticity and
secrecy). Supporting multiple VPN connections requires slightly
more complex data structures, as do buffer pools, which can easily
be handled in separation logic. Despite these simplifications, the
implementation is interoperable with other WireGuard implemen-
tations and supports tunneling IP packets via the established VPN
connection to and from the operating system. Since each IP packet
is encrypted using a distinct counter value, a new handshake must
be performed before the counter reaches its upper limit, which is
not yet implemented. Instead, the implementation stops forwarding
IP packets at that point.

Our case study goes substantially beyond of Arquint et al.’s,
which focuses on connecting Tamarin to code-level verification,
and proves weak forward secrecy and non-injective agreement in
the presence of long-term key corruption. We additionally con-
sider session corruption, i.e., the possibility for an attacker to ob-
tain ephemeral key material, and prove strong forward secrecy
and injective agreement with actor key compromise (AKC) security.
Furthermore, we have re-introduced (from the official WireGuard
implementation) and verified the ability to send and receive trans-
port messages in the initiator concurrently. This change increases
TCP throughput compared to Arquint et al.’s implementation by a
factor of 180, which illustrates how important such code optimiza-
tions are for real-world protocol implementations. The initiator
verified in our work reaches 72% of the official implementation’s
throughput; the additional concurrency needed to close the remain-
ing performance gap, requires standard concurrency reasoning in
separation logic, which is supported by our methodology.

1 !t.AttackerKnows(s) ||

2 t.GetHs(ASess , PSess).IsCorrupted ({ A, P}) ||

3 t.IsSessionCorrupted ({ASess , PSess})

Figure 12: Strong (without highlighted part) and weak for-

ward secrecy (entire property) for a session key s on trace t.
A and P identify the actor and peer that derive the key

in their protocol sessions ASess and PSess, respectively.

t.GetHs(ASess, PSess) returns a prefix of t up to and in-

cluding the corresponding handshake’s completion from

the actor’s perspective. The key is protected against (future)

participant corruption after the handshake’s completion.

Security Properties. Since the session keys are based on ephemeral
as well as long-term key material that is contributed by both pro-
tocol participants, WireGuard achieves strong security properties.
In particular, we prove forward secrecy and injective agreement,
both with actor key compromise (AKC) security. While WireGuard
optionally incorporates a pre-shared symmetric key into the hand-
shake to increase security, we prove all security properties in this
section without considering this pre-shared key, i.e., we treat the
pre-shared key as a term known to the attacker. In the following,
we call the initiator actor and the responder peer when proving
a property from the initiator’s perspective, and vice versa for the
responder’s perspective.

Forward secrecy protects sessions against future corruption of
the long-term secret keys. I.e., an attacker cannot compute the
session keys of an already established session after learning the
long-term secret keys. However, sessions that get established after
corrupting the long-term secret keys are not protected because
the attacker can impersonate participants by knowing their se-
cret keys. The literature distinguishes between weak and strong
forward secrecy. We were able to reuse formalizations from exist-
ing work [11, 42, 43], which are phrased as trace-based security
properties and, thus, directly supported by our methodology.

Weak forward secrecy for a session key s (cf. entire Fig. 12) holds
if at any point in time, one of the following three properties hold:
(1) The attacker does not know s (line 1), (2) the actor or its peer
has been corrupted before completing the handshake (line 2), or
(3) the actor’s or peer’s session has been corrupted (line 3). In the
last case, the attacker gets to read the long-term and short-term
state of the corrupted participant, that is, the long-term secret key
and also the session keys if the session is established. Hence, the
attacker either directly obtains the session keys if the session is
already established or otherwise uses the long-term secret key to
impersonate the actor or its peer while establishing a session in the
future. The session keys of all other sessions remain secret.

Compared to weak forward secrecy, session keys satisfying
strong forward secrecy are additionally protected against corrupting
the actor, i.e., the highlighted actor is removed from line 2 in Fig. 12.
In particular, having access to the actor’s long-term secret key does
not allow the attacker to obtain the established session keys. This
resilience has been formalized as actor key compromise (AKC) by
Basin et al. [44], generalizing the more widely known notion of key
compromise impersonation (KCI).

From the initiator’s perspective, WireGuard guarantees strong
forward secrecy for the two session keys once the handshake has
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1 let commit = Commit(A,P,ASess ,PSess ,m) in
2 let running = Running(A,P,ASess ,PSess ,m) in
3 t.Occurs(commit) =⇒
4 let prefix , i = t.GetPrefix(commit) in
5 (prefix.Occurs(running) &&
6 !(∃A′,P′,ASess′,PSess′,i′. i != i′ &&
7 t.OccursAt(Commit(A′,P′,ASess′,PSess′,m),i′))
8 ) || prefix.IsCorrupted ({P})
9 || prefix.IsSessionCorrupted ({ASess})

Figure 13: Injective agreement with AKC security on a term m
from the actor A’s perspective with a peer P. The highlighted
conjunct indicates the Commit event’s uniqueness require-

ment for the given m.

been completed. In contrast, the responder guarantees only weak
forward secrecy by the end of the handshake, but achieves strong
forward secrecy after receiving the first transport message. We
verified strong forward secrecy at the appropriate points in the
protocol for both roles.

The responder’s forward secrecy guarantee is strengthened by
receiving and successfully processing the first transport message
because this message acts as a key confirmation. I.e., the responder
checks that it derived the same session key kIR as the initiator,
which allows the responder to detect AKC attacks. Based on strong
forward secrecy for the session keys, we further prove that the VPN
payloads are treated with the same level of secrecy. This induces
proof obligations that a participant sends VPN payloads to the
network in a way that they can be read only by participants allowed
to read the session keys (e.g., by encrypting the VPN payloads with
one of the session keys).

Confirming the session keys not only enables strong forward
secrecy for the session keys but also provides additional authenti-
cation guarantees: Injective agreement with AKC security (cf. Fig. 13)
states that (1) an actor A agrees with a peer P on a term m with
a one-to-one correspondence between the Commit and Running
events unless (2) the actor’s session or (3) the peer’s (short-term or
long-term) state has been corrupted. In particular, corrupting the
actor is not sufficient to satisfy this property. In contrast, the NSL
protocol only satisfies injective agreement without AKC security
(as presented in Sec. 4.1) from the initiator’s perspective because
having access to the initiator’s secret key enables the attacker to
decrypt the second message, obtain the nonces na and nb, and
construct a modified second message containing na and nb′ with
nb ≠ nb′. Thus, there is no correspondence between Commit and
Running events in the case of actor key compromise because the
initiator and responder do not agree on the nonces.

6.4 Discussion

For each case study, Fig. 14 reports the size of the implementation
and its specification, along with the verification time. We exclude
the alternative NSL initiator implementation in Go, and the reusable
verification library (recall Fig. 9). However, the specifications do
include the (ghost) code instantiating our reusable verification li-
brary: it amounts to 374, 370, and 1,077 LOS in Gobra for NSL, DH,
and WireGuard, respectively, and 391 LOS in VeriFast for NSL.

Case Studies LOC LOS Verification time [s]
Go/Gobra

NSL 197 924 97.6
Signed DH 225 888 119.0
WireGuard 557 5,815 268.1

C/VeriFast
NSL 300 1,014 5.0

Figure 14: Lines of code (LOC) and lines of specification (LOS)

(incl. ghost code) for our case studies, together with the aver-

age verification times in Gobra and VeriFast. We performed

the measurements in the same way as in Fig. 9.

Overall, the annotation overhead for Gobra ranges between 3.9
and 10.4 LOS per line of code, and is in the typical range for mod-
ular program verification. For example, Wolf et al. [22] report a
ratio of 2.7 for a small example using concurrency in Gobra. VST-
Floyd [45], a separation logic-based verifier based on Coq, reports
an average ratio of 13.9 for small C programs. Both works verify
only memory safety and functional properties, but do not include
any (arguably much more complex) security properties, whereas
our numbers include safety and security. As another data point,
Arquint et al. [20] prove security properties for WireGuard in Go-
bra with a ratio of 6.5, in addition to a Tamarin model of 350 lines
and a Tamarin oracle implemented in Python, which ensures that
Tamarin’s proof search terminates. Counting the Tamarin model
and oracle as specification, the overall ratio is 7.1 (and requires the
use of three different languages).

The main challenge in our case studies was finding a sufficiently
strong trace invariant to prove the presented security properties.
For WireGuard, we had to find suitable message invariants such
that the secrecy labels for the derived session keys kIR and kRI are
sufficiently strong to prove weak and strong forward secrecy. These
secrecy labels are related to the message invariants because the
session keys are derived by an eightfold application of key deriva-
tion functions (KDFs) that factors in long-term and ephemeral, i.e.,
session-specific, Diffie-Hellman key material that is either locally
generated or received from the peer. Thus, each KDF application
results in a new key with a secrecy label that depends on the secrecy
labels of the input key material. To keep the annotations related to
the secrecy labels in the implementation to a minimum, we have
implemented a lemma for each KDF application that proves the
result’s secrecy label.

Moreover, the invariant for protocol-specific events has to be
strong enough to prove injective agreement with AKC resilience.
Our reusable verification library enables strengthening the proven
authentication property from non-injective to injective by adding
the uniqueness witness for each protocol-specific event. This al-
lowed us to focus on finding a suitable invariant for non-injective
agreement with AKC resilience first, and then strengthen the au-
thentication property, which required less than 40 additional LOS.

After completing the proofs for sequential code, we re-introduced
concurrency to the initiator’s transport phase (recall Sec. 6.3), which
entailed only minimal proof changes and was done in an afternoon.
This demonstrates that our separation-logic-based methodology en-
ables security proofs that are robust w.r.t. nontrivial code changes.
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7 TRUST ASSUMPTIONS AND SOUNDNESS

Our methodology allows us to prove strong security properties for
implementations of security protocols. Like with all verification
techniques, these proofs rely on several assumptions about the
implementation and the execution environment.

We rely on the soundness of the used program verifier. Since our
methodology is compatible with standard separation logic verifiers,
we can mitigate this assumption by using a mature tool.

As is standard for symbolic cryptography, we assume perfect
cryptographic operations (e.g., absence of hash collisions, or that
ciphertexts do not leak any information). We also do not verify that
the implementations of the cryptographic primitives are function-
ally correct; while this is orthogonal to our work, our methodology
could be combined with verified libraries like EverCrypt [46].

Furthermore, we assume that all output operations, i.e., sending
messages, are reflected on the global trace by corresponding events,
which is the case when using the I/O operations provided by our
verification library. However, if an implementation uses, e.g., inline
assembly or third-party libraries to send messages to the network,
the global trace has to reflect these messages nonetheless. Omitting
any other event does not affect soundness, only completeness.

Lastly, we assume that the protocol terms corresponding to the
byte arrays in a participant’s initial state, and those obtained from
operations outside of our library (e.g., read from a config file), are
readable at least by that participant according to the terms’ secrecy
labels (recall Sec. 4.2). Otherwise, it would not be sufficient to model
corruption of a participant by adding the class of terms readable by
that participant to the attacker knowledge; the attacker could learn
even more. For all terms a participant can obtain by interacting with
our verification library (e.g., receiving messages, generating nonces,
applying encryption), we prove in our library (via corresponding
lemmas) that a participant can read these terms (and thus the terms
leak as expected to the attacker in case of corruption).

We sketch soundness of our methodology in App. A by show-
ing that the global trace reflects all relevant protocol steps and,
thus, any security property proved for the trace indeed holds for
the protocol implementation. For this purpose, we define a core
programming language covering all protocol-relevant operations
(e.g., network I/O, cryptographic primitives), and those relevant for
modeling an attacker (e.g., corruption). The language’s operational
semantics supports thread-local state and explicitly maintains a
shared global trace. The thread-local state models the state of each
participant and is manipulated via assignments in the participants’
implementations. In contrast, the global trace is maintained au-
tomatically by our semantics and extended whenever a relevant
protocol operation is executed. We then define a Hoare logic to
enable modularly verifying each participant implementation. The
logic natively supports our methodology’s local snapshots and the
global trace. We prove that this logic is sound w.r.t. the operational
semantics using a standard rule induction. Thereby, we obtain the
guarantee that locally-verified participants, if composed with the
attacker to a concurrent system, maintain the global trace invariant
in all possible interleavings. As one would expect, obtaining this
global guarantee turned out to be the most challenging step in the
soundness proof. Formally connecting our dedicated Hoare logic

to a standard separation logic is straightforward, based on the en-
coding discussed throughout the paper (using the heap to store the
thread-local state, a ghost lock to synchronize access, and a lock
invariant to constrain the trace and all local snapshots).

8 RELATEDWORK

Much prior work on the verification of cryptographic protocols ex-
ists, and surveys [47–49] provide an extensive overview of the field.
We focus onmodular verification of symbolic security properties, and
discuss the most closely related work first: techniques for verifying
security of realistic protocol implementations.

Dupressoir et al. [32] use VCC [33] to verify memory safety, non-
injective agreement, and (via an external argument in Coq) weak
secrecy, of two protocols implemented in C: RPC and Otway-Rees.
To our knowledge, they are the first to encode a global protocol trace
(“log”) as a concurrent data structure. We generalize this idea to sep-
aration logic to make it much more widely applicable, because their
encoding relies on C’s volatile fields and a VCC-specific program
logic, neither of which are (widely) available in other languages and
verifiers. Moreover, since their logic (unlike separation logic) does
not provide linear resources, proving injective agreement would
require a nontrivial extension of their work. Their set-based trace
encoding prevents proving, e.g., forward secrecy (which we do);
they account for principal corruption, but not session corruption
(we account for both). Polikarpova et al. [50] extend this work by
incorporating stepwise refinement to formally connect a model to
an existing implementation, all encoded in VCC. This refinement
decomposes the verification into smaller steps, but incurs additional
overhead. Moreover, they remove the need for external arguments
when proving weak secrecy. They verify the latter, and a variant of
authentication, for a small stateful subset of TPM 2.0.

Vanspauwen et al. [51], like us, use a separation-logic-based
verifier (VeriFast [21]), but they do not model a global trace. Conse-
quently, properties that are commonly expressed over a trace poten-
tially need to be assembled from individual assertions. They propose
an extended symbolic model that strengthens attackers by permit-
ting byte-wise manipulations, such as splitting and reconcatenating
byte sequences, in addition to the usual symbolic manipulations.
Our attacker operates on terms (standard for symbolic cryptogra-
phy) but we could adapt their extension. They specify PolarSSL’s
API using this extended model, and then verify secrecy and non-
injective agreement of an NSL-implementation (and a few less com-
plex protocols). Unlike us, they do not consider session corruption.

Arquint et al. [20] suggest a two-step approach: First, a proto-
col model is verified via Tamarin [52]. If successful, a separation
logic predicate (one per participant) with I/O specifications [53]
is generated, specifying which I/O operations preserve the secu-
rity properties of the model. Second, existing implementations of
the protocol can be verified against these predicates; if successful,
the implementation is guaranteed to satisfy the model’s proper-
ties. This two-step workflow achieves tool reuse—Tamarin, and
suitable separation logic verifiers—but requires expertise in two
different fields of formal reasoning, and the existence of a Tamarin
protocol model. Moreover, limitations of Tamarin (e.g., difficulties
when verifying protocols with loops), and of the I/O specifications
(unclear how to generate specifications suitable for a concurrent
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implementation) may prevent verifying corresponding implemen-
tations. Similar limitations apply to Sprenger et al.’s work [34],
which connects protocol models verified in Isabelle/HOL [54] via
I/O specifications to separation logic verifiers.

Bhargavan et al. [9] suggest DY*: a framework for verifying pro-
tocols implemented in F* [12], a functional language that enables
type-system-based proofs, e.g., using monadic effects and refine-
ment types. DY* introduces the idea of a parametric library for
reducing the per-protocol proof effort; an idea we adopted. DY*’s
type system is tailored to F*, whereas our methodology supports a
wide range of languages and tools. Moreover, by building on sepa-
ration logic, we are able to prove stronger properties, in particular,
injective agreement. Our methodology can be applied directly to
existing implementations, as we demonstrate in the WireGuard
case study. In contrast, DY* supports code generation, but addition-
ally requires a hand-written (and partly protocol-specific) runtime
wrapper [10]. Included in DY*’s case study is the first automated
verification of Signal [2] that proves forward and post-compromise
security over an unbounded number of protocol messages. Our
main case study is WireGuard, for which we prove, also for an
unbounded number of messages, forward secrecy and injective
agreement with AKC resilience. Soundness of DY*’s global protocol
trace depends on a specific coding discipline (one method per pro-
tocol step) that is not automatically enforced. If missed, the attacker
is accidentally restricted, and security properties can be proven
incorrectly.

An earlier line of work (e.g., [37, 55, 56]) verifies security of
functional programs written in F# using the F7 type checker [55],
but does not integrate equational theories, and has limited support
for mutable state. Moreover, this work does not model the global
protocol traces and, thus, states security properties only implicitly.

Küsters et al. [57] share our goal of reusing existing program
analyzers and suggest an approach that enables non-interference
checkers to establish computational indistinguishability results for
sequential programs. To account for closed-system assumptions
(typically made by such checkers) in the presence of an attacker-
controlled environment, they restrict interaction with the latter to
static, exception-free methods, and primitive (i.e., value) types. How
to extend their approach to trace-based properties and concurrent
programs remains unclear.

Several security property verifiers exist that (unlike us) do not
reuse existing program analyzers, e.g., Csur [58] and ASPIER [59]
(for C), and JavaSec [60] (for Java). However, to reduce develop-
ment costs, such domain-specific tools typically only implement
semantics of a restricted language subset and, e.g., assume crucial
properties such as memory safety (which may render implementa-
tions insecure, e.g., due to buffer overflows).

Prior work [11, 39, 40, 42, 61, 62] on verifying properties of Wire-
Guard (our main case study) is concerned with verifying models of
the protocol, not existing implementations.

Finally, a large body of work is concerned with mechanizing
the verification of computational (rather than symbolic) properties;
see aforementioned surveys for details. This line of work estab-
lishes stronger guarantees by making weaker, more realistic cryp-
tographic assumptions. For instance, Owl [63] allows one to verify
computational security of protocols written in a dedicated language.
Like in our work, their proofs are automated and compositional.

However, due to probabilistic reasoning, verifying computational
security is generally more challenging than reasoning about sym-
bolic terms, and we are not aware of tools for modularly verifying
computational security properties of existing implementations. Re-
cently, the first separation logics for probabilistic reasoning have
been proposed [64–66], but we are not aware of automated verifiers
for such logics.

9 CONCLUSIONS

We presented a methodology for the modular verification of secu-
rity protocol implementations. It enables proving strong security
properties for realistic protocol implementations in the presence of
a network-controlling attacker. By employing separation logic, we
support efficient implementations using heap data structures, side
effects, concurrency, etc. Encapsulating the global trace in a concur-
rent ghost data structure and our use of invariants over local snap-
shots allow our methodology to support arbitrary code structures
and data representations, which is crucial for targeting existing im-
plementations. Separation logic also allows us to specify resources
in the trace invariant to express uniqueness of protocol-specific
events, which is key to modularly proving injective agreement.

We have instantiated our methodology for Go and C and two
corresponding verifiers. Our case studies on NSL, signed DH, and
WireGuard demonstrate that our methodology handles existing and
interoperable implementations of protocols with strong security
properties, such as forward secrecy and injective agreement.

For future work, we plan to integrate our methodology with
formally-verified cryptographic libraries to further reduce our trust
assumptions. It would also be interesting to advance towards the
computational model of cryptography by combining our work with
probabilistic separation logic.
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A SOUNDNESS PROOF SKETCH

Intuitively, we argue soundness of our methodology by showing
that, given a distributed system of verified protocol implementa-
tions and an arbitrary attacker, the systems’ set of possible exe-
cutions is a subset of the executions permitted by the verification
trace invariant, which in turn is a subset of the executions that
satisfy the desired security properties. To achieve this, we define a
minimal but concurrent programming language with primitives for
security-relevant operations such as sending messages or creating
nonces, and a corresponding operational semantics (Sec. A.1) that
reflects these operations on a global (i.e. system-wide shared) trace.
We then define an axiomatic semantics (Sec. A.2) parameterized
with a trace invariant that we prove sound w.r.t. the operational
semantics. I.e., we show that the axiomatic proof rules enforce the
trace invariant. Since the global trace maintained by the opera-
tional semantics reflects all relevant protocol steps, and because
our axiomatic semantics is proven sound, we can conclude that the
aforementioned trace inclusion holds (Sec. A.3). In each subsection,
we additionally relate the semantics defined for the proof sketch
with the verification performed by an off-the-shelf separation-logic
verifier (such as Gobra) against our reusable verification library.

A.1 Language and Operational Semantics

On a high-level, we consider a distributed system consisting of
multiple components: either instances of a protocol implementa-
tion, i.e. participants, or the attacker. Our programming language
does not support user-defined shared variables or a heap, and each
participant executes its commands in its own local state. However,
security-relevant commands additionally mutate the global trace
to reflect the performed operation.

Consequently, our system’s configurations comprise a local con-
figuration per component, and the global trace 𝜏 . A local config-
uration for a protocol participant 𝑖 is characterized by its local
command 𝐶𝑖 and local state 𝜎𝑖 . The local configuration for the at-
tacker is similar, but additionally contains a knowledge set 𝑘𝑎 that
stores all symbolic terms that are known to the attacker.

Definition 1. Local programstates. Local program states, ranged
over by 𝜎 , are total functions from local variables (in the set PVars)
to values (in the set PVals).

PStates ≜ PVars → PVals

We define our programming language such that it directly works
with symbolic terms instead of bytes, which avoids having to com-
plicate the semantics to reflect the orthogonal issue of mapping
between the bytes and terms.

Definition 2. System configurations. A configuration of our
distributed system has the shape

⟨⟨𝐶1, 𝜎1⟩, · · · , ⟨𝐶𝑛, 𝜎𝑛⟩, ⟨𝐶𝑎, 𝜎𝑎⟩, 𝑘𝑎, 𝜏⟩
where ⟨𝐶𝑖 , 𝜎𝑖 ⟩ denotes the local command and local state of partic-
ipant 𝑖 , ⟨𝐶𝑎, 𝜎𝑎⟩ denotes the local command and local state of the
attacker 𝑎, 𝑘𝑎 is the attacker’s knowledge set and 𝜏 denotes the sys-
tem’s global trace.

Observe that the attacker’s knowledge set 𝑘𝑎 is not part of the
attacker’s local configuration ⟨𝐶𝑎, 𝜎𝑎⟩, even though only commands
executed by the attacker possibly modify 𝑘𝑎 . By using the same

shape for local configurations of participants and the attacker, both
can apply the same operational semantics rules, e.g., for sequential
composition.

Definition 3. Programming language. We consider the fol-
lowing programming language, where 𝐶 ranges over commands, 𝑥
and ®𝑥 over variables and lists of variables in the set PVars, respectively,
and 𝑒 over expressions (modeled as total functions from PStates to
PVals):

𝐶 ≜ skip | 𝐶; 𝐶 | if (𝑒) {𝐶} else {𝐶} | while (𝑒) {𝐶} |
x B e | send (𝑒) | x B recv() | x B nonce() |
x B hash(𝑒) | x B pk(𝑒) | x B enc(𝑒, 𝑒) | x, x B dec(𝑒, 𝑒) |
drop(𝑒) | learn(𝑒) | x B choose() | corrupt (𝑒) |
fork ( ®𝑥) {𝐶}

Besides standard commands, such as sequential composition
and assignment, the programming language provides several com-
mands essential for protocol implementations: for sending and
receiving a network message, for generating a nonce, hashing a
term, generating a public key corresponding to a given secret key
(pk), and encrypting and decrypting a term with a key. Additionally,
the programming language provides commands only available to
the attacker: dropping a message from the network, adding the
value of a local variable to the attacker knowledge (learn), non-
deterministically obtaining a term from the attacker knowledge
(choose), and corrupting the state of specific participant (each par-
ticipant has a unique id/index).

Finally, fork starts a new thread executing the provided com-
mand, which corresponds to spawning a new participant or the
attacker. The new thread operates on its own local state, which
initially maps the variables in ®𝑥 to the same values as the state in
which the fork command is executed. This command is used to
bootstrap the distributed system, as discussed in Sec. A.3.

The expression language comprises symbolic terms for booleans
and integers, and the usual operations thereon. We assume well-
typed programs, e.g., that if-conditions are of type boolean.

Definition 4. Operational semantics Fig. 15 defines the small-
step operational semantics for our programming language.

The rules for standard commands such as sequential composition
and conditionals, are as expected, and we will thus only discuss
non-standard aspects of our programming language.

Global trace. Recall from Sec. 3.3 that in our verification method-
ology (as implemented in Gobra), we use a concurrent ghost data
structure with ghost locks to manage the global trace. In our opera-
tional semantics, we instead represent the trace as the dedicated
element 𝜏 in the system’s state. Irregardless of the technical im-
plementation we must ensure three crucial properties: (1) Each
operation may only append a single trace events. In our methodol-
ogy, this is checked via a suitable proof obligation upon lock release;
in our operational semantics, each rule adds at most one event. (2)
To ensure monotonicity, the trace may only grow. Checked upon
lock release in our methodology; in our operational semantics, no
rule shortens the trace. (3) Each single operation must preserve the
trace invariant. Checked upon lock release in our methodology; in
our operational semantics, this is part of the soundness theorem
(cf. Thm. 1).16
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⟨𝐶𝑖 , ⟨𝜎𝑖 , 𝜏⟩⟩ → ⟨𝐶 ′
𝑖 , ⟨𝜎

′
𝑖 , 𝜏

′⟩⟩
(Local)

⟨· · · , ⟨𝐶𝑖 , 𝜎𝑖 ⟩, · · · , 𝑘𝑎, 𝜏⟩ → ⟨· · · , ⟨𝐶 ′
𝑖 , 𝜎

′
𝑖 ⟩, · · · , 𝑘𝑎, 𝜏

′⟩
⟨𝐶𝑎, ⟨𝜎𝑎, 𝑘𝑎, 𝜏⟩⟩ → ⟨𝐶 ′

𝑎, ⟨𝜎 ′
𝑎, 𝑘

′
𝑎, 𝜏

′⟩⟩
(Attacker)

⟨· · · , ⟨𝐶𝑎, 𝜎𝑎⟩, 𝑘𝑎, 𝜏⟩ → ⟨· · · , ⟨𝐶 ′
𝑎, 𝜎

′
𝑎⟩, 𝑘 ′𝑎, 𝜏 ′⟩

(Skip)
⟨skip, ⟨𝜎, 𝜏⟩⟩ → ⟨𝜖, ⟨𝜎, 𝜏⟩⟩

⟨𝐶1, ⟨𝜎, 𝜏⟩⟩ → ⟨𝜖, ⟨𝜎 ′, 𝜏 ′⟩⟩
(Seq1)

⟨𝐶1; 𝐶2, ⟨𝜎, 𝜏⟩⟩ → ⟨𝐶2, ⟨𝜎 ′, 𝜏 ′⟩⟩

⟨𝐶1, ⟨𝜎, 𝜏⟩⟩ → ⟨𝐶 ′
1, ⟨𝜎

′, 𝜏 ′⟩⟩
(Seq2)

⟨𝐶1; 𝐶2, ⟨𝜎, 𝜏⟩⟩ → ⟨𝐶 ′
1; 𝐶2, ⟨𝜎 ′, 𝜏 ′⟩⟩

(If1)𝑒 (𝜎𝑖 )=True ()
⟨if (𝑒) {𝐶1} else {𝐶2}, ⟨𝜎, 𝜏⟩⟩ → ⟨𝐶1, ⟨𝜎, 𝜏⟩⟩

(If2)𝑒 (𝜎𝑖 )≠True ()
⟨if (𝑒) {𝐶1} else {𝐶2}, ⟨𝜎, 𝜏⟩⟩ → ⟨𝐶2, ⟨𝜎, 𝜏⟩⟩

(While)
⟨while (𝑒) {𝐶}, ⟨𝜎, 𝜏⟩⟩ → ⟨if (𝑒) {𝐶; while (𝑒) {𝐶}} else {skip}, ⟨𝜎, 𝜏⟩⟩

(Assign)
⟨x B e, ⟨𝜎, 𝜏⟩⟩ → ⟨𝜖, ⟨𝜎 [𝑥 ↦→ 𝑒 (𝜎)], 𝜏⟩⟩

(Send)
⟨send (𝑒), ⟨𝜎, 𝜏⟩⟩ → ⟨𝜖, ⟨𝜎 [snap ↦→ 𝜏 + Send (𝑒 (𝜎))], 𝜏 + Send (𝑒 (𝜎))⟩⟩

(Recv)𝑣∈msgs (𝜏)
⟨x B recv(), ⟨𝜎, 𝜏⟩⟩ → ⟨𝜖, ⟨𝜎 [𝑥 ↦→ 𝑣], 𝜏⟩⟩

(NonceGen)fresh(𝑣,𝜏)
⟨x B nonce(), ⟨𝜎, 𝜏⟩⟩ → ⟨𝜖, ⟨𝜎 [𝑥 ↦→ 𝑣, snap ↦→ 𝜏 + Nonce(𝑣)], 𝜏 + Nonce(𝑣)⟩⟩

(Hash)
⟨x B hash(𝑒), ⟨𝜎, 𝜏⟩⟩ → ⟨𝜖, ⟨𝜎 [𝑥 ↦→ Hash(𝑒 (𝜎))], 𝜏⟩⟩

(Pk)
⟨x B pk(𝑒), ⟨𝜎, 𝜏⟩⟩ → ⟨𝜖, ⟨𝜎 [𝑥 ↦→ Pk(𝑒 (𝜎))], 𝜏⟩⟩

(Enc)
⟨x B enc(𝑒1, 𝑒2), ⟨𝜎, 𝜏⟩⟩ → ⟨𝜖, ⟨𝜎 [𝑥 ↦→ Enc(𝑒1 (𝜎), 𝑒2 (𝜎))], 𝜏⟩⟩

(DecSucc)∃𝑣.𝑒2 (𝜎)=Enc (Pk (𝑒1 (𝜎)),𝑣)
⟨x, ok B dec(𝑒1, 𝑒2), ⟨𝜎, 𝜏⟩⟩ → ⟨𝜖, ⟨𝜎 [𝑥 ↦→ 𝑣, ok ↦→ True()], 𝜏⟩⟩

(DecFail)∀𝑣.𝑒2 (𝜎)≠Enc (Pk (𝑒1 (𝜎)),𝑣)
⟨x, ok B dec(𝑒1, 𝑒2), ⟨𝜎, 𝜏⟩⟩ → ⟨𝜖, ⟨𝜎 [ok ↦→ False()], 𝜏⟩⟩

(Drop)
⟨drop(𝑒), ⟨𝜎, 𝑘, 𝜏⟩⟩ → ⟨𝜖, ⟨𝜎 [snap ↦→ 𝜏 + Drop(𝑒 (𝜎))], 𝑘, 𝜏 + Drop(𝑒 (𝜎))⟩⟩

(Learn)
⟨learn(𝑒), ⟨𝜎, 𝑘, 𝜏⟩⟩ → ⟨𝜖, ⟨𝜎, 𝑘 ∪ {𝑒 (𝜎)}, 𝜏⟩⟩

(Choose)𝑣∈𝑘
⟨x B choose(), ⟨𝜎, 𝑘, 𝜏⟩⟩ → ⟨𝜖, ⟨𝜎 [𝑥 ↦→ 𝑣], 𝑘, 𝜏⟩⟩

(Corrupt)
⟨· · · , ⟨𝐶𝑖 , 𝜎𝑖 ⟩, · · · , ⟨corrupt (𝑖); 𝐶 ′

𝑎, 𝜎𝑎⟩, 𝑘𝑎, 𝜏⟩ → ⟨· · · , ⟨𝐶𝑖 , 𝜎𝑖 ⟩, · · · , ⟨𝐶 ′
𝑎, 𝜎𝑎⟩, 𝑘𝑎 ∪ val(𝜎𝑖 ), 𝜏 + Corrupt (𝑖, val(𝜎𝑖 ))⟩

(Fork)
⟨· · · , ⟨fork (𝑥1, · · · , 𝑥𝑛) {𝐶}; 𝐶 ′, 𝜎𝑖 ⟩, · · · , 𝑘𝑎, 𝜏⟩ → ⟨· · · , ⟨𝐶 ′, 𝜎𝑖 ⟩, · · · , ⟨𝐶, [𝑥1 ↦→ 𝜎𝑖 (𝑥1), · · · , 𝑥𝑛 ↦→ 𝜎𝑖 (𝑥𝑛), snap ↦→ 𝜎𝑖 (snap)]⟩, 𝑘𝑎, 𝜏⟩

Figure 15: Small-step semantics. Since expressions are functions from states to values, 𝑒 (𝜎) denotes the evaluation of expression

𝑒 in state 𝜎 . 𝜎 [𝑥1 ↦→ 𝑣1, · · · , 𝑥𝑛 ↦→ 𝑣𝑛] denotes state update: a state that, for all 𝑖, 1 ≤ 𝑖 ≤ 𝑛, yields 𝑣𝑖 for 𝑥𝑖 , and the value in 𝜎 for

all other variables. Appending to a trace is denoted by +, e.g., 𝜏 + Nonce(𝑣). ⟨𝜖, ⟨𝜎, 𝜏⟩⟩ denotes a terminal state.
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Local snapshots. Recall from cf. Sec. 3.4 that each participant has
a trace snapshot, which enables participants to keep local invari-
ants of trace prefixes. To enable corresponding assertions in our
program logic (Sec. A.2), our operational semantics provide a local
variable snap that is treated special in two ways: local states 𝜎 map
snap to a sequence of trace events (not to a value in PVals), and
program commands may not use (in particular, modify) snap (a
straightforward syntactical constraint).

Projecting system configurations. The Local and Attacker rule
project project a system configuration down to a participant- and
attacker-local configuration, respectively. Besides Corrupt and
Fork, all other rules then operate on either a participant- or attacker-
local configuration, depending on whether a command can be exe-
cuted by participants and the attacker, or only by the attacker.

Network messages. All operations modifying the network state,
i.e., sending and dropping a message, are recorded on the global
trace 𝜏 , and we can thus compute the set of receivable messages as
follows:

Definition 5. Messages on the network.

msgs(𝜏) ≜ {𝑚 | ∀𝑚. Send (m) ∈ 𝜏 ∧ Drop(m) ∉ 𝜏}

Consequently, functionmsgs(𝜏) occurs in ruleRecv’s side-condition
to constrain the set of messages to receive from Without loss of
generality, this side-condition implies that we consider only non-
blocking traces, i.e., where recv() is invoked when msgs(𝜏) is non-
empty.

Nonce freshness. NonceGen rule’s side condition captures our
perfect cryptography assumption that generated nonces are always
fresh.

Definition 6. Freshness of nonces. Since all previously gener-
ated nonces have been recorded on the trace 𝜏 , we can define freshness
of a nonce 𝑣 on the global trace 𝜏 as follows:

fresh(𝑣, 𝜏) ≜ 𝑣 ∉ {𝑛 | ∀𝑛, 𝑙 .Nonce(n, l) ∈ 𝜏}

Corruption. The Corrupt rule expresses that the attacker knowl-
edge is extended by all terms in the state 𝜎𝑖 of the corrupted partic-
ipant 𝑖 . The attacker can make use of these newly learnt terms by
executing x B choose() that non-deterministically picks a term in
the attacker knowledge and assigns it to the local variable 𝑥 .

Note that the Corrupt rule requires command corrupt () to be
followed by another command, skip. Baking in sequential composi-
tion avoids the need for further sequential rules that only differ in
the kind of configuration (system vs. local) they operate on. Rule
Fork is defined analogously.

Forking. Rule Fork extends the system configuration by another
local configuration with the forked command to execute and the
new thread’s initial state. This new state maps the variables 𝑥1 to
𝑥𝑛 and snap to the same value as 𝜎𝑖 , i.e., the state in which the fork
command is executed, which enables, e.g., the sharing of public
keys.

A.2 Program Logic

We now present a program logic that enables local reasoning about
each participant, while guaranteeing that the trace invariant is

maintained even when composing arbitrarily many verified par-
ticipants and the attacker to a distributed system. We first present
several auxiliary definitions and lemmas, and then the logic’s proof
rules.

Definition 7. Trace prefix. We define the following predicate
over two traces expressing that 𝜏1 is a prefix of 𝜏2

prefix (𝜏1, 𝜏2) ≜ ∃𝑝. 𝜏1 + 𝑝 = 𝜏2

where 𝑝 is a possibly empty sequence of trace events.

Lemma 1. Prefix reflexivity.

∀𝜏 . prefix (𝜏, 𝜏)

Proof sketch. Pick 𝑝 to be the empty sequence in Def. 7. □

Lemma 2. Prefix transitivity.

∀𝜏1, 𝜏2, 𝜏3 . prefix (𝜏1, 𝜏2) ∧ prefix (𝜏2, 𝜏3) =⇒ prefix (𝜏1, 𝜏3)

Proof sketch.

prefix (𝜏1, 𝜏2) ∧ prefix (𝜏2, 𝜏3)
def⇐⇒ ∃𝑝1, 𝑝2 . 𝜏1 + 𝑝1 = 𝜏2 ∧ 𝜏2 + 𝑝2 = 𝜏3

=⇒ ∃𝑝1, 𝑝2 . 𝜏1 + 𝑝1 + 𝑝2 = 𝜏3

def⇐⇒ prefix (𝜏1, 𝜏3)
where we pick in the last step 𝑝 in Def. 7 to be 𝑝1 + 𝑝2. □

Inspired by Vafeiadis [67], we express the semantics of judge-
ments in our logic in terms of configuration safety, which we define
next. Intuitively, safe𝑛 (𝑖,𝐶, 𝜎,𝑄, 𝜏) expresses that it is safe to exe-
cute command 𝐶 , as the 𝑖th component of the distributed system,
and for 𝑛 execution steps starting in a state 𝜎 ; and if the command
is fully executed, the predicate 𝑄 holds in the resulting final state.
Furthermore, if new threads have been forked as part of execut-
ing 𝐶 then it is safe to execute these forked components, too. Since
we are ultimately interested in the effects on the global trace 𝜏 ,
configuration safety includes trace invariant 𝜌 maintenance. A
judgement |= [𝑃] 𝐶 [𝑄] then expresses that it is safe to execute
the command 𝐶 for an arbitrary number of execution steps and
from any initial state satisfying the predicate 𝑃 .

Definition 8. Configuration safety.

safe0 (𝑖,𝐶, 𝜎,𝑄, 𝜏) holds always.
safe𝑛+1 (𝑖,𝐶, 𝜎,𝑄, 𝜏) holds if and only if

(i) 𝐶 = 𝜖 =⇒ 𝑄 (𝜎) and

(ii) ∀ ®𝐶, ®𝐶 ′, ®𝜎, ®𝜎 ′, 𝑘𝑎, 𝑘 ′𝑎, 𝜏
′. 𝑖 ≤ | ®𝐶 | = | ®𝜎 | ≤ | ®𝐶 ′ | = | ®𝜎 ′ | ∧

®𝐶𝑖 = 𝐶 ∧ ®𝐶 ′
𝑖
≠ 𝐶 ∧ ®𝜎𝑖 = 𝜎 ∧

𝜌 (𝜏) ∧ prefix (snap(𝜎), 𝜏) ∧

⟨
−−−−→
⟨𝐶, 𝜎⟩, 𝑘𝑎, 𝜏⟩ → ⟨

−−−−−−→
⟨𝐶 ′, 𝜎 ′⟩, 𝑘 ′𝑎, 𝜏 ′⟩

=⇒ 𝜌 (𝜏 ′) ∧ prefix (𝜏, 𝜏 ′) ∧ prefix (snap( ®𝜎 ′
𝑖
), 𝜏 ′) ∧

𝑘𝑎 ⊆ 𝑘 ′𝑎 ∧ safe𝑛 (𝑖, ®𝐶 ′
𝑖
, ®𝜎 ′

𝑖
, 𝑄, 𝜏 ′) ∧

©«
∧

| ®𝐶 |< 𝑗≤ | ®𝐶′ |

safe𝑛 ( 𝑗, ®𝐶 ′
𝑗
, ®𝜎 ′

𝑗
, True(), 𝜏 ′) ∧ prefix (snap( ®𝜎 ′

𝑗
), 𝜏 ′)
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(Skip)
⊢ [𝑃] 𝑠𝑘𝑖𝑝 [𝑃]

⊢ [𝑃] 𝐶1 [𝑅] ⊢ [𝑅] 𝐶2 [𝑄]
(Seq)

⊢ [𝑃] 𝐶1; 𝐶2 [𝑄]
𝑃 |= 𝑃 ′ 𝑄 ′ |= 𝑄 ⊢

[
𝑃 ′
]
𝐶

[
𝑄 ′]

(Cons)
⊢ [𝑃] 𝐶 [𝑄]

⊢ [𝑒 ∧ 𝑃] 𝐶1 [𝑄] ⊢ [¬𝑒 ∧ 𝑃] 𝐶2 [𝑄]
(If)

⊢ [𝑃] if (𝑒) {𝐶1} else {𝐶2} [𝑄]
⊢ [𝑒 ∧ 𝑃] 𝐶 [𝑃]

(While)
⊢ [𝑃] while (𝑒) {𝐶} [¬𝑒 ∧ 𝑃]

(Assign)
⊢ [𝑃 [𝑒/𝑥]] x B e [𝑃]

(Send)
⊢ [ext (Send (𝑒), snap) ∧ ∀𝑝. 𝑃 [snap + 𝑝 + Send (𝑒)/snap]] send (𝑒) [𝑃]

(Recv)
⊢ [∀𝑥 . 𝑃] x B recv() [𝑃]

(NonceGen)
⊢ [ext (Nonce(𝑥), snap) ∧ ∀𝑝, 𝑥 . 𝑃 [snap + 𝑝 + Nonce(𝑥)/snap]] x B nonce() [𝑃]

(Hash)
⊢ [𝑃 [Hash(𝑒)/𝑥]] x B hash(𝑒) [𝑃]

(Pk)
⊢ [𝑃 [Pk(𝑒)/𝑥]] x B pk(𝑒) [𝑃]

(Enc)
⊢ [𝑃 [Enc(𝑒1, 𝑒2)/𝑥]] x B enc(𝑒1, 𝑒2) [𝑃]

(Dec)
⊢ [∀𝑥 . 𝑃 [True()/ok] [𝑒2/Enc(Pk(𝑒1), 𝑥)] ∧ 𝑃 [False()/ok]] x, ok B dec(𝑒1, 𝑒2) [𝑃]

(Drop)
⊢ [ext (Drop(𝑒), snap) ∧ ∀𝑝. 𝑃 [snap + 𝑝 + Drop(𝑒)/snap]] drop(𝑒) [𝑃]

(Learn)
⊢ [𝑃] learn(𝑒) [𝑃]

(Choose)
⊢ [∀𝑥 . 𝑃] x B choose() [𝑃]

(Corrupt)
⊢ [(∀𝑣 . ext (Corrupt (𝑒, 𝑣), snap)) ∧ (∀𝑝, 𝑣 . 𝑃 [snap + 𝑝 + Corrupt (𝑒, 𝑣)/snap])] corrupt (𝑒) [𝑃]

fv(𝑅) ⊆ ®𝑥 𝑃 |= 𝑅 ⊢ [𝑅] 𝐶 [True()] ⊢ [𝑃] 𝐶 ′ [𝑄]
(Fork)

⊢ [𝑃] fork ( ®𝑥) {𝐶}; 𝐶 ′ [𝑄]

Figure 16: The proof rules.

where | ®𝑉 | and ®𝑉𝑖 denote the length and element at index 𝑖 of a vector𝑉 ,

resp., and
−−−−→
⟨𝐶, 𝜎⟩ is syntactic sugar for ⟨ ®𝐶1, ®𝜎1⟩ · · · ⟨ ®𝐶 | ®𝐶 |, ®𝜎 | ®𝜎 |⟩.

Definition 9. Validity.

|= [𝑃] 𝐶 [𝑄] ≜ ∀𝑛, 𝑖, 𝜎, 𝜏 . 𝑃 (𝜎) =⇒ safe𝑛 (𝑖,𝐶, 𝜎,𝑄, 𝜏)

Executing zero steps is vacuously safe. Executing 𝑛 + 1 steps
is safe (𝑖) if the command is already fully executed and the pred-
icate 𝑄 satisfied; and otherwise (𝑖𝑖) if there is a transition to ®𝐶 ′

𝑖
that maintains the trace invariant 𝜌 , the necessary monotonicity
properties (on snapshot, trace, and the attacker’s knowledge set),
and allows continued safe execution of all components (i.e., of com-
mands ®𝐶 ′) in the system, including newly forked ones (the last,
iterated conjunct in the definition).

Fig. 16 shows the proof rules for our logic. Our assertion lan-
guage is a first-order logic (for brevity not a separation logic) with
the usual logical connectives and quantifiers, and access to local
program variables. Pre- and postconditions can therefore refer to
the local snapshot, but they cannot refer to the global trace. The
latter corresponds to our methodology (recall Sec. 3.4), where pre-
and postconditions also cannot directly express properties about
the trace because access to it is governed by our library’s ghost lock.
Instead, properties about the global trace, such as the existence of a

particular trace event, must always be expressed via the local snap-
shot. This ensures that pre- and postconditions are stable under
potential environment interference, which is needed to prove our
proof rules sound.

Similar to the discussion of the operational semantics, we discuss
only non-standard proof rules. Proof rules corresponding to com-
mands that modify the global trace, e.g., Send, enforce that the trace
invariant is maintained under potential environment interference.
For this purpose, we define an extensibility predicate specifying
that appending a trace 𝑛 event to an arbitrary extension of a trace 𝜏
maintains the trace invariant.

Definition 10. Extensibility. A trace 𝜏 is extensible by a trace
event 𝑛 if the trace invariant 𝜌 is maintained for any possible trace 𝜏 ′,
given that 𝜏 is a prefix thereof:

ext (𝑛, 𝜏) ≜ ∀𝜏 ′. prefix (𝜏, 𝜏 ′) ∧ 𝜌 (𝜏 ′) =⇒ 𝜌 (𝜏 ′ + 𝑛)

Recall from Fig. 15 that commands modifying the global trace,
e.g., send, also update the local snapshot to the most recent ver-
sion of the trace. Analogous to the proof rule for assignments, the
proof rules for trace-modifying command thus require that the
syntactically substituted postcondition ∀𝑝. 𝑃 [snap + 𝑝 + 𝑛/snap]
holds in the state before executing the command, where n is a trace
event (e.g., Send (𝑒)). The quantified 𝑝 accounts for all possible trace
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extensions that could have been made by the environment since
the local snapshot was last updated, and thus accounts for arbitrary
interleavings of participants and the attacker.

For the sake of presentation we have omitted additional assump-
tions that are available when discharing preconditions of snapshot-
updating commands: e.g., in proof rule NonceGen we may addi-
tionally use nonce freshness, and in proof rule Recvwemay assume
that a received message was previously sent and not dropped in
the meantime.

Theorem 1. Soundness of proof rules.

If ⊢ [𝑃] 𝐶 [𝑄] then |= [𝑃] 𝐶 [𝑄]

We proof this theorem in the usual way, by structural induction
on the shape of the proof tree given by the theorem’s left-hand side
of the implication. We proceed by a case distinction on the last rule
applied, and may assume the theorem (i.e., our induction hypothe-
sis) for this rule’s premises. In our proof sketch we focus on a few
interesting cases – send, sequential composition, and fork – and
we present these cases further down, as individual lemmas. Send
is interesting because it illustrates a trace-updating proof rule, for
which we have to show that the trace invariant is maintained. The
challenge for sequential composition is to show that our definition
of configuration safety allows us to prove that each transition in
the system maintains the trace invariant. The Fork proof rule is
of interest because it is the only command that extends the system
configuration with additional components.

We begin by sketching the proofs for several auxiliary lemmas
about configuration safety that will be useful later on.

Lemma 3. The empty command satisfies configuration safety given
that the predicate 𝑄 holds.

∀𝑛, 𝑖, 𝜎,𝑄, 𝜏 .𝑄 (𝜎) =⇒ safe𝑛 (𝑖, 𝜖, 𝜎,𝑄, 𝜏)

Proof sketch. We show for arbitrary 𝑛, 𝑖 , 𝜎 , 𝜏 , and assuming
𝑄 (𝜎), that safe𝑛 (𝑖, 𝜖, 𝜎,𝑄, 𝜏) holds. Case (𝑖) from the definition of
safe holds straightforwardly. Case (𝑖𝑖) is satisfied because there is
no transition starting in command 𝜖 and resulting in a different
command. Hence, this case vacously holds. □

Lemma 4. A command𝐶 satisfying configuration safety for 𝑛 exe-
cution steps is safe to execute for fewer execution steps.

∀𝑚,𝑛, 𝑖,𝐶, 𝜎,𝑄, 𝜏 .𝑚 ≤ 𝑛 ∧ safe𝑛 (𝑖,𝐶, 𝜎,𝑄, 𝜏)
=⇒ safe𝑚 (𝑖,𝐶, 𝜎,𝑄, 𝜏)

Proof sketch. Straightforward induction on𝑚. □

Next, we present soundness lemmas for the aforementioned
interesting proof rules: send, sequential composition, and fork.
Send. Soundness for the proof rule Send directly follows from the
following safety lemma:

Lemma 5.

∀𝑛, 𝑖, 𝜎,𝑄, 𝜏 . ext (Send (𝑒 (𝜎)), snap(𝜎)) ∧
(∀𝑝.𝑄 [snap + 𝑝 + Send (𝑒)/snap] (𝜎))

=⇒ safe𝑛 (𝑖, send (𝑒), 𝜎,𝑄, 𝜏)

Proof sketch. We prove this lemma by induction on 𝑛 using
the following induction hypothesis:

IH (𝑛) ≜ ∀𝑖, 𝜎,𝑄, 𝜏 . ext (Send (𝑒 (𝜎)), snap(𝜎)) ∧
(∀𝑝.𝑄 [snap + 𝑝 + Send (𝑒)/snap] (𝜎))

=⇒ safe𝑛 (𝑖, send (𝑒), 𝜎,𝑄, 𝜏)
In the base case (𝑛 = 0), safe0 (𝑖, send (𝑒), 𝜎,𝑄, 𝜏) holds by defi-
nition. For the induction step, we assume IH (𝑛) and show that
IH (𝑛 + 1) holds. I.e., we further assume ext (Send (𝑒 (𝜎)), snap(𝜎))
and ∀𝑝.𝑄 [snap + 𝑝 + Send (𝑒)/snap] (𝜎) for arbitrary 𝑖 , 𝜎 , 𝑄 , and
𝜏 . We have to prove that safe𝑛+1 (𝑖, send (𝑒), 𝜎,𝑄, 𝜏) holds. Case (𝑖)
from the definition of safe holds trivially because send (𝑒) ≠ 𝜖 . To
prove case (𝑖𝑖), we assume the implication’s left-hand side and show
that the right-hand side holds. In particular, we consider a transi-
tion that executes command send (𝑒). According to the operational
semantics, only the transition rule Local with an application of the
Send rule in its premise is applicable and modifies the command in
the 𝑖th component’s configuration. This allows us to conclude that
the considered transition must have the following shape:

⟨
−−−−→
⟨𝐶, 𝜎⟩, 𝑘𝑎, 𝜏⟩ → ⟨

−−−−−−→
⟨𝐶 ′, 𝜎 ′⟩, 𝑘 ′𝑎, 𝜏 ′⟩

where

| ®𝐶 ′ | = | ®𝐶 | ∧ 𝑘 ′𝑎 = 𝑘𝑎 ∧ 𝜏 ′ = 𝜏 + Send (𝑒 (𝜎)) ∧
®𝐶 ′
𝑖
= 𝜖 ∧ ®𝜎 ′

𝑖
= ®𝜎𝑖 [snap ↦→ 𝜏 + Send (𝑒 (𝜎))] ∧

(∀𝑗 . 𝑖 ≠ 𝑗 =⇒ ®𝐶 ′
𝑗
= ®𝐶 𝑗 ∧ ®𝜎 ′

𝑗
= ®𝜎 𝑗 )

and 𝜌 (𝜏) ∧ prefix (snap( ®𝜎𝑖 ), 𝜏) holds. We have to prove that (1)
𝜌 (𝜏 ′), (2) prefix (𝜏, 𝜏 ′), (3) prefix (snap( ®𝜎 ′

𝑖
), 𝜏 ′), (4) 𝑘𝑎 ⊆ 𝑘 ′𝑎 , and (5)

safe𝑛 (𝑖, ®𝐶 ′
𝑖
, ®𝜎 ′

𝑖
, 𝑄, 𝜏 ′) hold. Note that no additional local configura-

tions have been added by this command because | ®𝐶 ′ | = | ®𝐶 | holds.
(1) follows directly by definition of Def. 10. (2) holds by choosing
𝑝 = Send (𝑒 (𝜎)) as witness in Def. 7. (3) holds by reflexivity (cf.
Lemma 1). (4) holds because the attacker knowledge is unchanged.
Finally, (5) follows from Lemma 3 via the following derivation to
obtain 𝑄 ( ®𝜎 ′

𝑖
):

∀𝑝.𝑄 [snap + 𝑝 + Send (𝑒)/snap] ( ®𝜎𝑖 )
=⇒ 𝑄 [𝜏 + Send (𝑒)/snap] ( ®𝜎𝑖 )

⇐⇒ 𝑄 ( ®𝜎𝑖 [snap ↦→ 𝜏 + Send (𝑒 ( ®𝜎𝑖 ))]) ⇐⇒ 𝑄 ( ®𝜎 ′
𝑖
)

where the implication is justified by the fact that prefix (snap( ®𝜎𝑖 ), 𝜏)
holds. □

Seq. In the case where the last rule applied in our proof tree is Seq,
we may assume the induction hypothesis for the rule’s premises,
i.e., |= [𝑃] 𝑆1 [𝑅] and |= [𝑅] 𝑆2 [𝑄]. Soundness for this case, i.e.,
showing |= [𝑃] 𝑆1; 𝑆2 [𝑄], then follows from the following safety
lemma:

Lemma 6.

∀𝑛, 𝑖, 𝑆1, 𝑆2, 𝜎1, 𝑅,𝑄, 𝜏 . safe𝑛 (𝑖, 𝑆1, 𝜎1, 𝑅, 𝜏) ∧
(∀𝑚,𝜎2, 𝜏

′.𝑚 ≤ 𝑛 ∧ 𝑅(𝜎2) =⇒ safe𝑚 (𝑖, 𝑆2, 𝜎2, 𝑄, 𝜏 ′))
=⇒ safe𝑛 (𝑖, 𝑆1; 𝑆2, 𝜎1, 𝑄, 𝜏)
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1 func main(num_initiators , num_responders int) {
2 ... // initialization code
3 while (num_initiators > 0) {
4 fork (initiator_args) {
5 initiator(initiator_args)
6 }
7 num_initiators := num_initiators - 1
8 }
9 while (num_responders > 0) {
10 fork (responder_args) {
11 responder(responder_args)
12 }
13 num_responders := num_responders - 1
14 }
15 fork() { attacker () }
16 }

Figure 17: Sketch of a program𝐶system bootstrapping the dis-

tributed system by first executing sequential initialization

code to, e.g., generate public/private keypairs and then fork-

ing several instances of an initiator and responder imple-

mentation and the highly non-deterministic attacker imple-

mentation. initiator_args and responder_args are abbrevi-
ations for a list of arguments that are passed to the initia-

tor and responder implementations, respectively. E.g., the

initiator’s public/private keypair and the responder’s public

key might constitute initiator_args.

Proof sketch. We perform induction on 𝑛 using the following
induction hypothesis:

IH (𝑛) ≜ ∀𝑖, 𝑆1, 𝑆2, 𝜎1, 𝑅,𝑄, 𝜏, .
safe𝑛 (𝑖, 𝑆1, 𝜎1, 𝑅, 𝜏) ∧
(∀𝑚,𝜎2, 𝜏

′.𝑚 ≤ 𝑛 ∧ 𝑅(𝜎2) =⇒ safe𝑚 (𝑖, 𝑆2, 𝜎2, 𝑄, 𝜏 ′))
=⇒ safe𝑛 (𝑖, 𝑆1; 𝑆2, 𝜎1, 𝑄, 𝜏)

The base case (𝑛 = 0) holds by definition. In the induction step, we
may assume IH (𝑛) to prove IH (𝑛 + 1). For arbitrary 𝑖 , 𝑆1, 𝑆2, 𝜎1,
𝑅, 𝑄 , and 𝜏 we assume the left-hand side, i.e., safe𝑛+1 (𝑖, 𝑆1, 𝜎1, 𝑅, 𝜏)
and ∀𝑚,𝜎2, 𝜏 ′.𝑚 ≤ 𝑛 + 1 ∧ 𝑅(𝜎2) =⇒ safe𝑚 (𝑖, 𝑆2, 𝜎2, 𝑄, 𝜏 ′). It
remains to prove that safe𝑛+1 (𝑖, 𝑆1; 𝑆2, 𝜎1, 𝑄, 𝜏) holds. The proof
proceeds similarly to the proof of Lemma 5 except that in case (𝑖𝑖)
the Local rule’s premise is fulfilled by an application of either the
Seq1 or Seq2 rule:

• Case Seq1: According to this transition’s premise, there ex-
ists a transition ⟨𝑆1, ⟨𝜎𝑖 , 𝜏⟩⟩ → ⟨𝜖, ⟨𝜎 ′

𝑖
, 𝜏 ′′⟩⟩ for some 𝜏 ′′.

Thus, we obtain by definition of safe𝑛+1 (𝑖, 𝑆1, 𝜎𝑖 , 𝑅, 𝜏) that
𝜌 (𝜏 ′′), prefix (𝜏, 𝜏 ′′), prefix (snap(𝜎 ′

𝑖
), 𝜏 ′′), 𝑘𝑎 ⊆ 𝑘 ′𝑎 , and

safe𝑛 (𝑖, 𝜖, 𝜎 ′
𝑖
, 𝑅, 𝜏 ′′) hold. We distinguish two cases, namely

𝑛 = 0 and 𝑛 > 0. In the first case, we obtain by definition
safe0 (𝑖, 𝑆2, 𝜎 ′

𝑖
, 𝑄, 𝜏 ′′). In the second case, we obtain by defi-

nition of safe𝑛 (𝑖, 𝜖, 𝜎 ′
𝑖
, 𝑅, 𝜏 ′′) that 𝑅(𝜎 ′

𝑖
) holds. Therefore, we

can instantiate𝑚, 𝜎2, and 𝜏 ′ with 𝑛, 𝜎 ′
𝑖
, and 𝜏 ′′, respectively,

in the quantifier above. Thus, we obtain safe𝑛 (𝑖, 𝑆2, 𝜎 ′
𝑖
, 𝑄, 𝜏 ′′).

This concludes the proof for both cases 𝑛 = 0 and 𝑛 > 0
showing that safe𝑛+1 (𝑖, 𝑆1; 𝑆2, 𝜎𝑖 , 𝑄, 𝜏) holds.

• Case Seq2: This transition’s premise specifies that a tran-
sition ⟨𝑆1, ⟨𝜎𝑖 , 𝜏⟩⟩ → ⟨𝑆 ′1, ⟨𝜎

′
𝑖
, 𝜏 ′′⟩⟩ for some 𝜏 ′′ exists. We

apply the definition of safe𝑛+1 (𝑖, 𝑆1, 𝜎𝑖 , 𝑅, 𝜏) to obtain 𝜌 (𝜏 ′′),
prefix (𝜏, 𝜏 ′′), prefix (snap(𝜎 ′

𝑖
), 𝜏 ′′), 𝑘𝑎 ⊆ 𝑘 ′𝑎 , and

safe𝑛 (𝑖, 𝑆 ′1, 𝜎
′
𝑖
, 𝑅, 𝜏 ′′). By applying the induction hypothesis

for 𝑛, we obtain safe𝑛 (𝑖, 𝑆 ′1; 𝑆2, 𝜎
′
𝑖
, 𝑄, 𝜏 ′′). Thus, we showed

safe𝑛+1 (𝑖, 𝑆1; 𝑆2, 𝜎𝑖 , 𝑄, 𝜏).
□

Fork. Soundness of the Fork proof rule follows from the following
safety lemma:

Lemma 7.

∀𝑛, 𝑖, ®𝑥, 𝑆1, 𝑆2, 𝜎1, 𝑄, 𝜏 . safe𝑛 (𝑖, 𝑆1, 𝜎1, 𝑄, 𝜏) ∧

(∀𝑗, 𝜎2 . [𝜎1 ∼ 𝜎2] ®𝑥∪snap =⇒ safe𝑛 ( 𝑗, 𝑆2, 𝜎2, True(), 𝜏))
=⇒ safe𝑛 (𝑖, fork ( ®𝑥) {𝑆2}; 𝑆1, 𝜎1, 𝑄, 𝜏)

where [𝜎1 ∼ 𝜎2] ®𝑥∪snap denotes that 𝜎1 maps the variables in ®𝑥 and
variable snap to the same values as 𝜎2 does.

Proof sketch. We perform induction on 𝑛 and use the follow-
ing induction hypothesis:

IH (𝑛) ≜ ∀𝑖, ®𝑥, 𝑆1, 𝑆2, 𝜎1, 𝑄, 𝜏, .
safe𝑛 (𝑖, 𝑆1, 𝜎1, 𝑄, 𝜏) ∧

(∀𝑗, 𝜎2 . [𝜎1 ∼ 𝜎2] ®𝑥∪snap =⇒ safe𝑛 ( 𝑗, 𝑆2, 𝜎2, True(), 𝜏))
=⇒ safe𝑛 (𝑖, fork ( ®𝑥) {𝑆2}; 𝑆1, 𝜎1, 𝑄, 𝜏)

For 𝑛 = 0, safe0 (𝑖, fork ( ®𝑥) {𝑆2}; 𝑆1, 𝜎1, 𝑄, 𝜏) holds by definition. In
the induction step, we assume 𝐼𝐻 (𝑛) to show 𝐼𝐻 (𝑛+1). We assume
the left-hand side, i.e.,

safe𝑛+1 (𝑖, 𝑆1, 𝜎1, 𝑄, 𝜏) ∧ (1)

(∀𝑗, 𝜎2 . [𝜎1 ∼ 𝜎2] ®𝑥∪snap =⇒ safe𝑛+1 ( 𝑗, 𝑆2, 𝜎2, True(), 𝜏)) (2)

and seek to show safe𝑛+1 (𝑖, fork ( ®𝑥) {𝑆2}; 𝑆1, 𝜎1, 𝑄, 𝜏). Similar to
the proof of Lemma 5, the interesting case is (𝑖𝑖) in which we
only consider the inference rule Fork. Based on the operational
semantics, we obtain

( ®𝐶 ′
𝑖
= 𝑆1) ∧ (𝜎1 = ®𝜎𝑖 = ®𝜎 ′

𝑖
) ∧ (| ®𝐶 ′ | = | ®𝐶 | + 1) ∧

( ®𝐶 ′
| ®𝐶′ | = 𝑆2) ∧

[
𝜎1 ∼ ®𝜎 ′

| ®𝐶′ |

] ®𝑥∪snap
∧

(∀𝑗 . 1 ≤ 𝑗 ≤ | ®𝐶 | =⇒ ®𝜎 ′
𝑗
= ®𝜎 𝑗 ) ∧

(∀𝑗 . 1 ≤ 𝑗 ≤ | ®𝐶 | ∧ 𝑖 ≠ 𝑗 =⇒ ®𝐶 ′
𝑗
= ®𝐶 𝑗 )

Since the attacker knowledge 𝑘𝑎 and global trace 𝜏 remain un-
changed by the application of this inference rule, we have to prove
that (a) safe𝑛 (𝑖, 𝑆1, 𝜎1, 𝑄, 𝜏) and (b) safe𝑛 ( | ®𝐶 ′ |, 𝑆2, ®𝜎 ′

| ®𝐶′ |, True(), 𝜏)
hold. (a) follows from applying Lemma 4 to safe𝑛+1 (𝑖, 𝑆1, 𝜎1, 𝑄, 𝜏).
Since (2)’s left-hand side is satisfied for 𝜎2 = ®𝜎 ′

| ®𝐶′ | , we obtain

safe𝑛+1 ( | ®𝐶 ′ |, 𝑆2, ®𝜎 ′
| ®𝐶′ |, True(), 𝜏) by instantiating the quantifier 𝑗

with | ®𝐶 ′ |. We also obtain (b) by applying Lemma 4. □

A.3 Trace Inclusion

We can now show the desired trace inclusion (recall Sec. A), which
directly follows from Thm. 1.

Theorem 2. If we boostrap the distributed system from a single
component, with no precondition, a trace invariant that holds for the
empty trace, and an initial attacker knowledge set, then the trace
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invariant always holds, regardless of how many transitions are per-
formed, and additional components (participants and the attacker)
are forked.

∀𝐶, ®𝐶 ′, 𝑄, 𝜎, ®𝜎 ′, 𝑘 ′𝑎, 𝜏
′. ⊢ [True()] 𝐶 [𝑄] ∧ 𝜌 (∅) ∧

⟨⟨𝐶, 𝜎⟩, 𝑘 init𝑎 , ∅⟩ →∗ ⟨
−−−−−−→
⟨𝐶 ′, 𝜎 ′⟩, 𝑘 ′𝑎, 𝜏 ′⟩

=⇒ 𝜌 (𝜏 ′)

where 𝑘 init𝑎 is the initial attacker knowledge consisting of all public
terms.

Proof sketch. We prove this theorem by first applying sound-
ness of our proof rules (Thm. 1) and expanding Def. 8 because all
states 𝜎 satisfy True(). We proceed by induction over the length
of transition sequences. Since the trace invariant holds initially, is
maintained by each transition, and each command in every compo-
nent of the system satisfies configuration safety, we obtain 𝜌 (𝜏 ′) for
every trace 𝜏 ′ that is possible after executing 𝑛 transitions, where
𝑛 is the induction variable. □

Thm. 2 implies the following trace inclusion property where 𝜙
is a security property implied by the trace invariant 𝜌 , i.e., 𝜌 |= 𝜙 :

∀𝐶,𝑄. ⊢ [True()] 𝐶 [𝑄] ∧ 𝜌 (∅) =⇒ Tr (𝐶) ⊆ Tr (𝜌) ⊆ Tr (𝜙)
where Tr (𝐶) denotes the set of all traces that result from executing
arbitrary many transitions according to the small-step operational
semantics. Tr (𝜌) and Tr (𝜙) are the sets of traces satisfying 𝜌 and
𝜙 , respectively. I.e., Tr (𝜌) = {𝜏 | ∀𝜏 . 𝜌 (𝜏)} and Tr (𝜙) analogously.

In our verification case studies we prove Thm. 2 in three steps:
in step 1, we once-and-forall verify our reusable verification library,
including a most-general attacker implementation (an iterated non-
deterministic choice between all executable commands) against a
partially abstract (thus sufficiently general) trace invariant. I.e., the
judgement ⊢ [𝑡𝑟𝑢𝑒] 𝐶𝑎 [𝑡𝑟𝑢𝑒] we obtain for the attacker holds for
all possible attackers and protocol-specific instantiations of this
abstract trace invariant. In step 2, we implement each participant
in its own program 𝐶𝑖 ; verifying these effectively yield a judge-
ment ⊢ [𝑃𝑖 ] 𝐶𝑖 [𝑄𝑖 ] per participant.

In step 3, we combine these separate judgements for the protocol
participants and the attacker by constructing a program𝐶system that
first performs some sequential initialization code and then forks sev-
eral instances of protocol participants and the attacker, as illustrated
in Fig. 17. By taking the number of participant instances as uncon-
straint input parameters, we obtain a result for unboundedly-many
instances. Functions and non-deterministic choices are straightfor-
ward extensions to our programming language. The initialization
code’s purpose is to establish the participants’ preconditions. E.g., in
our NSL case study we implement initialization code that generates
public-private keypairs and passes the relevant keys to the individ-
ual protocol participants. In the case of WireGuard, the correspond-
ing initialization code remains an assumption, which is typical for
security protocol verification and corresponds to assuming that
there exists a mechanism to authentically distribute public keys.
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