

DISS. ETH NO. 24074

Envision: Reinventing the
Integrated Development

Environment

A thesis submitted to attain the degree of

Doctor of Sciences of ETH Zurich
(Dr. sc. ETH Zurich)

presented by

Dimitar Dimov Asenov
MSc ETH CS, ETH Zurich

born on 24.12.1986
citizen of Bulgaria

accepted on the recommendation of

Prof. Dr. Peter Müller, examiner
Prof. Dr. Otmar Hilliges, co-examiner
Prof. Dr. Brad Myers, co-examiner
Dr. Robert DeLine, co-examiner

2017

Abstract

For decades, professional programmers have been reading and writing programs
using a text editor to directly view and modify source files. Despite the ubiquity of
this approach, it suffers from three inherent limitations caused by the tight coupling
of the editing interface and the information stored on disk. First, programming
notations are limited to text, even though people have additional capacities to
process information such as visual and spatial perception. Text editors also preclude
the use of established graphical notations from specific domains such as math or
electrical engineering. Second, the content of source files is limited to what is
comfortably readable by developers, even if additional information can help program
comprehension or improve tools. For example, storing unique identifiers for each
syntax token can help improve tracking code in version control systems or identifying
code fragments between tools, but will result in a complete loss of readability. Third,
many development tools such as version control systems process data on the textual
level of source files, disregarding the structure of programs. This not only misses
opportunities to improve the results of such tools, but also makes it harder to share
data on a logical level between tools. These three limitations prevent a wide range
of improvements in the efficiency of software construction. In this dissertation,
we challenge the established practice of reading and writing programs as text by
building a development environment in which programming interfaces are not tightly
bound to the content of source files. Our approach removes the inherent limitations
discussed above and enables us to explore new and more efficient ways of creating
programs:

To help programmers more quickly understand programs, we explore visually rich
presentations of code as an alternative to syntax highlighted text. Even though syntax
highlighting is the main presentation used for improving code readability today, its
effects and the effects of richer presentations of code have not been systematically
evaluated. We provide additional evidence for the effects of rich code presentations
by conducting a user study with developers, comparing syntax high-lighted text
to two richer presentations of code. Our results show that richer visualizations
help developers to more quickly understand code structure without causing visual
overload, contrary to the subjective opinion of most participants in our study. We
also explore how code presentation can be customized according to different types of
context and domains, such as the nature of a developer’s current task or what APIs
are being used. We demonstrate customizations allowing domain-specific APIs from
a library to use non-standard notations, thereby making domain code easier to read.

To enable programmers to efficiently and directly edit rich visual notations
of code, we introduce novel interaction techniques for structured and visual code

i

editors. Such editors have traditionally suffered from poor usability due to disallowing
syntactically or semantically invalid program states or requiring many extraneous
actions when making local changes to code, a problem known as high viscosity. We
design and evaluate a set of interaction techniques specifically created to tackle these
problems. Results of CogTool simulations suggest that our interaction techniques
permit programming with visually rich notations in a structured editor to be as
efficient as editing text in a modern text editor.

To provide programmers with more precise information and additional automation
during version control operations, we designed a version control system that uses
additional meta-data saved directly in program sources. Mainstream version control
systems work directly with the text of a program, disregarding the rich structure of
code, resulting in inaccurate and confusing diffs, unnecessary conflicts, and incorrect
merges, that waste developers’ time. In order to eliminate these issues, we have
designed version control algorithms that work with the tree structure and semantics of
programs supported by additional automatically-generated meta-data stored within
the program’s source code. Unlike other research prototypes of advanced version
control systems, our algorithms are designed to interoperate with existing version
control tools and infrastructure such as GitHub, making them more practical. An
evaluation of our approach on popular Java projects shows substantially improved
merge results compared to Git.

To enable developers to effectively combine information from different sources
and tools, we embed a scriptable information system directly in the development
environment. Despite the fact that developers regularly work with many different
sources of information such as the program code, version repositories, issue trackers,
or profilers, tool support for combining, visualizing, and acting on such information
is lacking. Our approach overcomes these deficiencies by enabling developers to
write information queries in order to process and combine information from arbitrary
sources, visualize the results in diverse forms (e.g., using highlights, diagrams, tables,
or custom visualizations), and automatically perform actions (e.g., changing the code
or filing a bug report). We demonstrate the versatility of our information system by
applying it to a number of practical scenarios encountered by developers.

To explore how the techniques above can complement each other, we have built
Envision – an open-source IDE that we used as a vehicle for our research and that
integrates all of our work. Envision is highly extensible and customizable in order
to suit the needs of both professional programmers who need to fine-tune their
environment and researchers who need a framework for rapid experimentation.

ii

Zusammenfassung

Seit Jahrzehnten lesen und schreiben professionelle Softwareentwickler Programme
mit einem Texteditor der es ermöglicht Quelldateien direkt anzusehen und zu ändern.
Trotz der Allgegenwart dieses Ansatzes leidet er unter drei inhärenten Einschränkun-
gen, die durch die enge Kopplung der Editierschnittstelle und die auf der Festplatte
gespeicherten Informationen verursacht werden. Erstens, Programmnotationen sind
auf Text beschränkt, obwohl Menschen zusätzliche Kapazitäten zur Verarbeitung
von Informationen haben, wie, z.B. visuelle und räumliche Wahrnehmung. Texte-
ditoren schliessen auch die Verwendung von etablierten grafischen Notationen aus
bestimmten Bereichen wie Mathematik oder Elektrotechnik aus. Zweitens, der Inhalt
der Quelldateien ist beschränkt auf das, was von Entwicklern bequem lesbar ist, auch
wenn zusätzliche Informationen das Verständnis des Programms oder die Verbesse-
rung der Werkzeuge unterstützen könnten. Beispielsweise kann das Speichern von
eindeutigen Identifikatoren für jedes Syntax-Token dazu beitragen, das Verwalten
des Codes in Versionskontrollsystemen zu verbessern oder Codefragmente zwischen
Werkzeugen zu identifizieren. Allerdings führt die Einführung dieser Metadaten zu ei-
nem vollständigen Verlust der Lesbarkeit. Drittens, viele Entwicklungswerkzeuge wie
Versionskontrollsysteme verarbeiten Daten auf der textlichen Ebene von Quelldateien
und ignorieren die Struktur von Programmen. Dies versäumt nicht nur Möglichkeiten,
die Ergebnisse solcher Entwicklungswerkzeuge zu verbessern, sondern macht es auch
schwieriger, Daten auf einer logischen Ebene zwischen den Werkzeuge zu teilen.
Diese drei Einschränkungen verhindern eine breite Palette an Verbesserungen bei der
Effizienz der Softwareentwicklung. In dieser Dissertation fordern wir die etablierte
Praxis des Lesens und Schreibens von Programmen als Text heraus, indem wir eine
Entwicklungsumgebung entwickeln, in der Programmnotationen nicht eng an den
Inhalt der Quelldateien gebunden sind. Unser Ansatz entfernt die inhärenten, oben
diskutiert Einschränkungen und ermöglicht es uns, neue und effizientere Wege der
Entwicklung von Programmen zu erkunden:

Um Programmierern zu helfen, Programme schneller zu verstehen, erforschen
wir visuell vielfältige Präsentationen von Code als eine Alternative zu syntax-
hervorgehobenem Text. Obwohl die Syntax-Hervorhebung die Hauptpräsentation ist,
die heute zur Verbesserung der Codelesbarkeit verwendet wird, wurden ihre Effekte
und die Effekte vielfältigerer Darstellungen von Code nicht systematisch ausgewertet.
Wir bieten zusätzliche Beweise für die Auswirkungen von vielfältigen Codedarstellun-
gen, durch eine Anwenderstudie mit Entwicklern, wobei wir syntax-hervorgehobenen
Text mit zwei vielfältigen Codedarstellungen vergleichen. Unsere Ergebnisse zeigen,
dass vielfältige Visualisierungen den Entwicklern helfen, Codestrukturen schneller
zu verstehen, ohne visuelle Überlastung zu verursachen, im Gegensatz zu der sub-

iii

jektiven Meinung der meisten Teilnehmer in unserer Studie. Wir erkunden auch,
wie die Codedarstellungen an verschiedene Kontexte und Anwendungsdomänen
angepasst werden können, z.B. die Art der aktuellen Aufgabe eines Entwicklers oder
welche APIs verwendet werden. Wir zeigen Anpassungen, die es ermöglichen, dass
domänenspezifische APIs aus einer Bibliothek nicht standardmässige Notationen
verwenden, wodurch der Domänencode einfacher zu lesen ist.

Um es Programmierern zu ermöglichen, vielfältige Codedarstellungen effizient
und direkt zu bearbeiten, führen wir neuartige Interaktionstechniken für strukturierte
und visuelle Code-Editoren ein. Solche Editoren haben traditionell eine schlechte
Nutzbarkeit, weil sie syntaktisch oder semantisch ungültige Programmzustände nicht
zulassen oder bei lokalen Änderungen am Code viele eigentlich unnötige Aktionen
erfordern; ein Problem, das als „hohe Viskosität“ bekannt ist. Wir entwerfen und
bewerten eine Reihe von Interaktionstechniken, die speziell entwickelt wurden, um
diese Probleme anzugehen. Von uns durchgeführte CogTool-Simulationen lassen
vermuten, dass unsere Interaktionstechniken die Programmierung mit visuell vielfäl-
tigen Notationen in einem strukturierten Editor so effizient wie die Bearbeitung von
Text in einem modernen Texteditor sein lassen.

Um Programmierern präzisere Informationen und zusätzliche Automatisierung
während der Versionskontrolle zu bieten, haben wir ein Versionskontrollsystem
entwickelt, das zusätzliche Metadaten verwendet, die direkt in den Programmquellen
gespeichert werden. Standard-Versionskontrollsysteme arbeiten direkt mit dem Text
eines Programms, ohne Rücksicht auf die vielfältige Struktur des Codes, was zu
ungenauen und verwirrenden Diffs, unnötigen Konflikten und fehlerhaften Merges
führt, die die Zeit der Entwickler vergeuden. Um diese Probleme zu beseitigen,
haben wir Versionskontrollalgorithmen entwickelt, die mit der Baumstruktur und der
Semantik von Programmen arbeiten und die durch zusätzliche automatisch generierte
Metadaten unterstützt werden, die im Code des Programms gespeichert sind. Anders
als andere Forschungsprototypen von fortschrittlichen Versionskontrollsystemen sind
unsere Algorithmen darauf ausgelegt, mit bestehenden Versionskontrollwerkzeugen
und Infrastrukturen wie GitHub zusammenzuarbeiten, was sie praxistauglicher macht.
Eine Auswertung unseres Ansatzes bei gängigen Java-Projekten zeigt deutlich bessere
Ergebnisse bei Merges im Vergleich zu Git.

Um Entwicklern die effiziente Kombination von Informationen aus verschiedenen
Quellen und Werkzeugen zu ermöglichen, haben wir ein skriptfähiges Informati-
onssystem direkt in die Entwicklungsumgebung eingebettet. Trotz der Tatsache,
dass Entwickler regelmässig mit vielen unterschiedlichen Informationsquellen wie
Programmcode, Versionsrepositories, Fehlerverfolgungssystemen oder Profilern ar-
beiten, fehlt es an Werkzeugunterstützung für die Kombination, Visualisierung und
Handhabung solcher Informationen. Unser Ansatz überwindet diese Defizite, indem
er es Entwicklern ermöglicht, Informationsabfragen zu schreiben, um Informatio-
nen aus beliebigen Quellen zu verarbeiten und zu kombinieren, die Ergebnisse in
unterschiedlichen Formen zu visualisieren (z.B. mit Hilfe von Highlights, Diagram-
men, Tabellen oder benutzerdefinierten Visualisierungen) und automatisch Aktionen
durchzuführen (z.B. Änderung des Codes oder Einreichung eines Fehlerberichts).
Wir demonstrieren die Vielseitigkeit unseres Informationssystems, indem wir es auf
eine Reihe von Szenarien anwenden auf die Entwickler in der Praxis regelmässig
stossen.

Um zu erforschen, wie die oben genannten Techniken einander ergänzen können,
haben wir Envision entwickelt — eine Open-Source-Entwicklungsumgebung, die wir

iv

als Vehikel für unsere Forschung verwendet haben und die alle unsere Arbeit integriert.
Envision ist flexibel erweiterbar und anpassbar, um sowohl auf die Bedürfnisse von
professionellen Programmierern einzugehen die ihre Entwicklungsumgebung frei
konfigurieren möchten, als auch auf die von Forschern, die ein Framework für
schnelle Experimente benötigen.

v

vi

Acknowledgements

Many people have influenced my work and myself, showing me new horizons and
making me a better researcher. I am grateful for their support, dedication, wisdom,
and inspiration. I would like to acknowledge:

My advisor, Peter Müller, who not only took a leap of faith by allowing me to
dive into an area away from his core expertise, but also stood by me throughout this
endeavor. He was always a solid support and a source of encouragement, leaving
me energized to press onwards after each of our meetings. Through his wisdom
and experience, I learned much from him: how to conduct proper research, to
communicate clearly, and to inspire. Thank you, Peter, for believing in me, for
our motivating discussions, for your advice and alternative perspectives, and for
teaching the most engaging and thought-provoking course I have ever attended,
which brought us together in the first place.

My co-advisor, Otmar Hilliges, for his invaluable insights on statistics and
experiment design and for finding the time to comment on my dissertation.

The co-examineers of my dissertation, Brad Myers and Rob DeLine, whose
research and the tools they have built have inspired me greatly. Thank you for
taking the time out of your busy schedules to attend my defense and provide valuable
insight and comments on my work.

My colleagues Hermann Lehner and Marco Eilers, for finding the time to read
early drafts of this dissertation and providing me with critical and very helpful
feedback.

My wife, Lucia, for reading and commenting on early drafts of this dissertation
and for supporting me throughout my studies. Thank you for your interest in
this project, your insights of an experienced software engineer, and your continued
encouragement.

My colleague Malte Schwerhoff, for giving me valuable feedback on the introduc-
tion of this dissertation and for proofreading the German version of the abstract.

My students who helped make Envision what it is today: Lukas Vogel, for our
collaboration on Envision’s information system, for his work on debugging support
and C++ importing functionality, and for being so dedicated, systematic, and
supportive; Patrick Lüthi, for his work on semantic zoom and self-hosting Envision
and for his dedication and attention to detail; Balz Guenat, Martin Otth, and
Vaishal Shah, for our collaboration on Envision’s version control system and their
dedication to the project; Manuel Galbier, for his hard work on Envision’s code review
functionality and for being persistent, systematic, and putting in the extra effort to
polish Envision’s version-control visualizations; Andrea Helfenstein, for designing
the declarative framework for Envision’s visualizations; Cyril Steimer, for improving

vii

Envision’s support for tasks, views and exploration; and Jonas Trappenberg and
Sascha Dinkel, for implementing Envision’s rich comment support.

John Boyland, for our fruitful discussions on version control and automatic proof
systems.

All members of the Chair of Programming Methodology at ETH for providing a
stimulating and friendly work environment, which made me happy to go to work
every morning. I would like to especially thank Ioannis Kassios, Alex Summers, Uri
Juhasz, Malte Schwerhoff, Lucas Brutschy, Valentin Wüstholz, Maria Christakis,
Milos Novacek, Caterina Urban, Marco Eilers, Arshavir Ter-Gabrielyan, and Jérôme
Dohrau for our many stimulating discussions on the design of programming languages
and tools; and Marlies Weissert, for making sure that everything in the office runs
smoothly and for providing invaluable insights about Switzerland.

My parents, Ginka and Dimo, for their open-mindedness, unconditional support,
and infinite patience. I am forever grateful to have grown up with your sage advice
in the peaceful and empowering environment that you created.

Thank you.

viii

Contents

1 Introduction 1
1.1 Issues of programming as creating text 2
1.2 Improving the programming experience 5

1.2.1 Approach . 5
1.2.2 Challenges . 6

1.3 Contributions and outline . 9
1.3.1 Envision as a platform for experimentation 9
1.3.2 Flexible visual notations for programming 10
1.3.3 Efficient interactions in structured editors 10
1.3.4 Fine-grained and precise version control of trees 10
1.3.5 Scriptable information system within the IDE 11

2 A quick tour of Envision 13
2.1 Writing code from scratch . 13
2.2 Working with a big project . 19
2.3 A note on learnability . 20

3 Design principles of Envision 23
3.1 Rich information and smarter tools 23

3.1.1 Decouple information structures from interfaces 23
3.1.2 Support processing and integration of diverse types of information 24
3.1.3 Use and share rich information to make tools smarter 24

3.2 Better programming interfaces for people 25
3.2.1 Design flexible interfaces that adapt to context 25
3.2.2 Leverage expert developers’ existing skills with languages and

using the keyboard . 26
3.2.3 Make better use of people’s perceptual and cognitive abilities 26

3.3 Support for general-purpose languages and large-scale projects . . . 27
3.3.1 Design a tool that can be used conveniently for extended

periods of time . 27
3.3.2 Enable a high degree of customization and flexibility 28
3.3.3 Support a wide range of project domains and sizes 28

4 The architecture of Envision 31
4.1 Overview . 31
4.2 Extensibility and customization . 34
4.3 Performance and scalability . 37

ix

5 Rich and customizable zprogram presentations 41
5.1 The visualization framework of Envision 42

5.1.1 Key concepts of flexible visualizations 42
5.1.2 Creating and customizing visualizations in Envision 43
5.1.3 Composing and rendering visualizations 45

5.2 The design and evolution of Envision’s program visualizations 47
5.2.1 Basics of rendering code structure 47
5.2.2 Design and evolution . 49

5.3 The effects of rich code presentations on code comprehension 56
5.3.1 Evaluation method . 57
5.3.2 Results . 62
5.3.3 Discussion . 62

5.4 Using context-sensitive customizations 67
5.4.1 Code Contracts for .NET . 68
5.4.2 Custom visualizations for contract methods 69
5.4.3 Custom visualizations for interfaces 70
5.4.4 Custom interactions for contract methods 71
5.4.5 Discussion and limitations . 72

5.5 Related work . 73
5.5.1 Evaluating code visualizations 73
5.5.2 Tools with rich code presentations 74
5.5.3 Visualization customizations 74

6 Efficient interactions in a structured editor 77
6.1 Challenges and requirements of interactions in structured editors . . 77
6.2 Interaction components . 79

6.2.1 Interaction framework basics 79
6.2.2 Universal visual cursor . 80
6.2.3 Context-sensitive command prompt 84
6.2.4 Text-like expression editing 86

6.3 Evaluation . 92
6.4 Related work . 95

7 Precise version control of tree structures 99
7.1 Challenges of versioning trees . 99
7.2 Tree versioning with a line-based VCS 101

7.2.1 Textual encoding of valid trees 103
7.2.2 Diff algorithm . 104

7.3 Merging trees . 105
7.3.1 Change graph and merge algorithm 106

7.4 Domain-specific merge customizations 109
7.4.1 List-merge customization . 110
7.4.2 Conflict unit customization 111

7.5 Evaluation and discussion . 113
7.6 Related work . 115

x

8 The IDE as a scriptable information system 117
8.1 Problems developers encounter when working with information . . . 117
8.2 Motivating examples . 118

8.2.1 Investigating a regression . 118
8.2.2 Heatmap of code execution 119

8.3 Approach . 121
8.3.1 Query execution model . 121
8.3.2 Query types . 122
8.3.3 Inter-query data exchange . 124
8.3.4 Query prompt . 125
8.3.5 Extensibility via scripts and native queries 126

8.4 Evaluation and case studies . 127
8.4.1 Callgraph of selected method 128
8.4.2 Recently changed recursive methods 130
8.4.3 Why is this code the way it is? 130
8.4.4 Which upstream changes possibly conflict with mine? 132
8.4.5 Instability metric . 132
8.4.6 Modifying recursive methods 134

8.5 Implementation . 135
8.6 Related work . 136

8.6.1 Questions developers ask . 136
8.6.2 Tools for seeking information 136
8.6.3 Visualization of information 137
8.6.4 Scripting actions and refactoring 138

9 Conclusion and future work 139

Appendices 161

A Supplementary material for user-study participants 163

B Python and Javascript files for interactive rendering of graphs 169

xi

1Introduction

What do architects, music producers, animators, and software engineers have in
common? They are people who use tools to produce complex digital artifacts
by creating and manipulating information structures of their respective domain.
Information structures are objects and relations between objects, which are used in
the process of creating a digital artifact and for expressing the final artifact itself.
For example, animators may use a 3D-modeling tool such as Autodesk 3ds Max
[3ds] to make a 3D animated movie, using information structures like a script, key
frames, object deformations, and surface shaders. Analogously, software engineers use
integrated development environments (IDEs) such as Eclipse [Ecl] or code editors such
as Vim [Vim] to make an application by manipulating structures like specifications,
documentation, classes, tests, and build rules. The ever-increasing complexity of
some types of digital artifacts, such as software, necessitates an improvement in
the efficiency with which the artifacts can be constructed. For experts in any given
domain, significant improvements in efficiency do not come from further education
or experience, but only from improved information structures and better tools.

Improving information structures means to introduce new types of structures or
tweak existing types so that it becomes easier or possible to create digital artifacts
with desired properties. Such improvements typically happen when our under-
standing about a domain improves or when the domain evolves. For example, in
architecture, the increasing development of telecommunications led to the introduc-
tion of structured cabling, which standardizes complex network infrastructure [LL96],
making it easier to create blueprints for buildings with advanced networking needs.
An example from software engineering is the transition from goto statements to
structured programming [Dij68], which made it easier to write more understandable
and correct code.

Improving the tools for creating digital artifacts means to make it easier to
create digital artifacts using existing types of information structures and to facilitate
the understanding of these structures: their properties, their relationships, and
their behaviors. For example, the development of powerful graphics rendering
hardware enabled animators to more quickly experiment with different materials
[Kil00], making it easier to achieve the look they want. In software engineering, the
introduction of interactive debuggers [ED66] made it easier to understand and fix
the behavior of programs in certain situations.

Improving information structures and creating better tools are interrelated. On
the one hand, when information structures evolve, new tools are often needed
to handle the new structures, for example, introducing lambda expressions to a
programming language requires an update to the compiler. On the other hand, some

1

2 CHAPTER 1. INTRODUCTION

tools require additional information structures in order to function. For example,
a program verifier may require code to be annotated with specifications, which
introduce new information related to the code. As a consequence, if either the
information structures or the tools in a given domain are inflexible or slow to evolve,
this can hinder improvement in both and prevent more efficient ways of creating
digital artifacts in that domain. We argue that this is the case in software engineering.
Next, we explain how the continued use of a text-editor to directly read and write
textual source files impedes improvements in the efficiency of creating software.

1.1 Issues of programming as creating text
Why, in the early 21st century, do programmers still insist that their
tools have to draw exactly one glyph on the screen for each byte in
their source files? No one expects AutoCAD or Microsoft Word to do
this; even grizzled old Unix fanatics don’t expect to be able to open a
relational database with Vi or Emacs. One of the great ironies of the
early 21st century is that secretaries can easily put organizational charts
or cubicle floor plans in e-mail messages, but the programmers who made
that possible can’t put class diagrams in their code.

Gregory V. Wilson [Wil04]

Today, like in the past several decades, developers still use a text editor to read and
edit source files directly. While programming languages have evolved and text editors
have received many improvements such as syntax highlighting, text decorations, code
folding, or integration with other development tools, the fundamental experience
of programming as writing and reading text has not changed. Source files are the
central container for information structures in software engineering, and the fact
that their contents is coupled to a specific type of tool creates three fundamental
issues: limited information, rigid notation, and basic tools.

Limited information structures in source files

One limitation of source files is that they contain, almost exclusively information
that is conveniently expressed as text. Even though diagrams, tables, and other
non-textual artifacts are very useful in software engineering, such artifacts are rarely
included in source files. Even when they are included, non-textual artifacts are
limited to what is possible to express as static ASCII characters, e.g., the table in
Figure 1.1. Non-textual and other artifacts typical for software engineering projects
such as requirements, design descriptions, diagrams, models, and user documentation
are, thus, created and maintained separately from source code. This separation often
prevents effective links between code and other artifacts and creates inconsistencies.
For example, a rename refactoring may not be propagated to a table like the one
from Figure 1.1 and is almost certainly not reflected in any files outside of source
code.

Another limitation of source files is that they are unable to contain dense
annotations and meta-data without a catastrophic reduction in readability. Dense
annotations and meta-data are pieces of information that are associated with arbitrary

1.1. ISSUES OF PROGRAMMING AS CREATING TEXT 3

/* list of SSA commands
*
* I use three address code (TAC) as low -level IR.
* It will be implemented with indirect triples.
*
* +------------------+------+------+---------+
* | command | arg1 | arg2 | op |
* +------------------+------+------+---------+
* | t = a + b | a | b | + |
* +------------------+------+------+---------+
* | t = a - b | a | b | - |
* +------------------+------+------+---------+
...

Figure 1.1: A diagram in source code using ASCII symbols [Jus].

nodes of the AST or text tokens and are orthogonal to the syntax of the used
programming language. An example of dense meta-data are unique IDs for each
node of a program’s AST (see Figure 1.2). Such dense data is desirable, for example,
to improve the operation of tools (e.g., version control as we show in Chapter 7).
Dense annotations and meta-data require specialized tool support, in order to remain
hidden from the user and be properly maintained when the program is edited. Using
a text editor that directly shows the underlying sources is infeasible – imagine trying
to read a Java file shown as in Figure 1.2.

a /* db7cd599 -596e-4caf -b1e9 -ebb165ccc2e4 */
> /* c787ca8e -29f8 -466c-93c3 -aec52139788c */
b /* 8bb2d61e -31d2 -4d5b -9410 - dea50da30b02 */
? /* 6807c9a8 -732a-4b2d -bf6b -0 f79f151837b */
a /* 8413cdc6 -4b05 -4991-a94e -ebd9c5cea56f */
: b /* 3fa8c837 -37ee -486c-94cf -605 edee106a5 */

Figure 1.2: The expression a>b?a:b with a 128-bit unique ID for each AST
node.

Rigid notation

The users of a text editor directly observe and manipulate the underlying files, which
forces programmers to mostly work with a textual notation. However, depending
on the current task of the developer a visual notation might be more effective
[WNF06]. Kosar et al. [KMC12] show that for specific tasks programmers are
more productive using domain-specific languages compared to general-purpose ones.
While their study looked at textual languages, some domains have a natural and
established visual notation (e.g., music, electrical circuits, state machines, etc.), which
is, however, incompatible with text-based editors. Acknowledging the usefulness
of visual notations, modern IDEs provide tools to visualize class hierarchies and
other parts of the code, and research prototypes such as Code Bubbles [BRZ`10]
and Code Canvas [DR10] even offer ways to visually structure code fragments on a
two-dimensional canvas. While these are important advances, all of these approaches

4 CHAPTER 1. INTRODUCTION

still feature a standard text-editor and a fixed textual notation for the majority of
programming tasks. As we will show in Chapter 5, even if only the basic structures
of code are considered, such as expressions, statements, and methods, a text-only
presentation is inferior to richer presentations that mix text and graphics based on
the program’s structure. The rigid notation imposed by text-editors precludes more
efficient notations.

Another issue with textual source files is that developers need to deal with
formatting and to precisely spell out code according to a language syntax, as if
semicolons and curly braces were an inherent part of describing computation. While
novices are more significantly affected by these issues, experts also waste time on
them – a recent study at Microsoft [ABBS14] finds that 9% of code reviews contain
comments related to formatting. Encoding ASTs in a compact textual syntax
may also lead to cumbersome notations when programming languages evolve. For
example, recent extensions of the C++ language add the new keywords nullptr,
co_await, and co_yield. These keywords are suboptimal and not the ones language
designers would have picked for a new language, but the preferred alternatives null,
await, and yield could not be used, because they would clash with a large number
of existing identifier names. Such a compromise in notation would not have been
necessary if token types were explicitly stored in the source file, as opposed to
deduced from the syntax. However, token types are dense meta-data, which is
infeasible when using a text-editor, as we have seen above.

Basic and isolated tools

Textual source files are the lowest common denominator across all development tools.
While there are tools which work with the structure and semantics of a program (e.g.,
compilers or static analyzers), many frequently used tools in software engineering
remain on the textual level. A prominent example is the version control system,
which completely disregards the code’s real structure. For example, Figure 1.3 shows
a merge conflict reported by Git. Because Git sees code as lines of text, inserting
different lines at the same location is a conflict, even though in this case the order is
irrelevant and the two changes can be automatically merged. A developer would
have to manually resolve such conflicts, wasting time.

Using a lowest common data format as basic as text makes it harder to create

import rx.subscriptions.BooleanSubscription;
import rx.subscriptions.Subscriptions;
<<<<<<< master
import rx.util.BufferClosing;
import rx.util.BufferOpening;
=======
import rx.util.OnErrorNotImplementedException;
>>>>>>> dev
import rx.util.Range;
import rx.util.Timestamped;

Figure 1.3: A merge conflict where two branches insert import declarations at
the same location in the file. The developer resolved the conflict by using all
three imports [Rea].

1.2. IMPROVING THE PROGRAMMING EXPERIENCE 5

smarter development tools because it is more difficult for tools to share data on
a high-level. Thus, even when smart tools are built, they often exist in isolated
silos and the developer has to manually combine information from such tools. For
example, Kuhn [Kuh12] reports on his experience developing an Eclipse plug-in that
shows a code map. Even though the information needed to construct the map (call
hierarchies) was already computed by another standard Eclipse plug-in, there was no
convenient way to access this information, and it was ultimately retrieved by scraping
the user interface components of the standard plug-in. This is an unnecessarily
complex and error-prone solution, though it is still preferable to computing the
information from scratch. Kuhn’s further analysis reveals that almost none of the
default Eclipse plug-ins have mechanisms for sharing data.

Resolving the issues above can result in substantial productivity gains for devel-
opers. Next, we outline our approach and the open challenges for achieving these
gains.

1.2 Improving the programming experience
1.2.1 Approach
We can observe that virtually all domains where digital artifacts are produced,
except programming, share a common property: information structures and their
containers (files) are independent of tool interfaces. For example, even though SVG
images are stored on disk as XML files, graphics designers do not use a text-editor
to create SVG images, but rather a dedicated graphical interface. The decoupling
of information structures and editing interfaces achieves two goals. First, there are
no longer any restrictions on what type of data the information structures contain.
For example, SVG files can contain dense meta-data, because there is no need for a
human to read the raw XML code directly. Second, interfaces are not bound to a
particular notation and can selectively show information, offering a variety of user
experiences to match the current task. For example, when aligning objects, SVG
editors may show additional guides directly on the canvas to enable a designer to
visually achieve the look they want by dragging; with complex images, designers can
hide certain layers, which lets them focus on particular visual elements.

We argue that using rich information structures and interfaces that offer ded-
icated support for different tasks, unlocks many possibilities for making software
construction more efficient, such as making more tools aware of code structure
and enabling new ways to understand programs. For example, meta-data enables
grouping scattered pieces of code together to form working sets for particular kinds
of tasks, as suggested by Storey et al. [SCBR06] and dense meta-data, such as
node IDs, allows fine-grained and accurate version control, which, in the absence of
such meta-data, can only be approximated with time-consuming tree-matching algo-
rithms [Bil05, FWPG07, Rei08, FMB`14]. To guide the design of rich information
structures and dedicated interfaces, we ask the following questions:

� What information structures are needed to describe programs and the software
engineering process? Developers work daily with many types of information
structures. Source code holds, perhaps, the most important ones such as
expressions, statements, methods, classes, packages, tests, build rules, etc.

6 CHAPTER 1. INTRODUCTION

Others are found in external sources such as bug reports, software versions,
profile and test results, software architecture and design documents, etc.

� How are these structures connected and used, in what context, and for what
purpose? There are many different dimensions along which this question can
be answered. One dimension is the context of a developer’s current activity:
fixing a bug, creating a new feature, profiling, exploring unfamiliar code,
writing documentation, creating a high-level design, etc. Another dimension
is the target domain of a piece of code: e.g., physics simulations, network
communications, or accounting. Yet another dimension is the familiarity
of the developer with a particular code base, implementation language, or
organization. An important aspect of how developers use information is that
different information types are interlinked and developers often need to combine
information from various sources [KDV07, SMDV08, FM10].

� What presentations of the information structures enable quick comprehension?
Different notations for the same concepts can be more or less effective depending
on the task of a user [GP92, WNF06]. Thus a good tool should be able to
provide appropriate, and possibly rather different, notations depending on the
context. The context might even include the developer, so that the presentation
of code may be automatically derived from code structure and customized to
each developer’s individual preferences.

� What interactions and interfaces enable efficient creation and manipulation
of each information structure? As we have seen, a dedicated interface is
preferred over a generic one. A dedicated interface is one that fits a particular
information structure well and provides intuitive and direct interactions for
manipulating it on a logical level.

These questions show that the space for designing rich information structures and
interfaces for software development is vast, which poses many challenges.

1.2.2 Challenges
It is our goal to support the majority of professional programmers today. This means
designing general-purpose techniques and tools that can be used efficiently, scale
well to large projects, can be customized, and are realistically adoptable. Achieving
all of these qualities is non-trivial even with traditional programming approaches,
and poses a number of additional challenges in the context of novel programming
interfaces and rich information structures.

Code presentation

Programming interfaces that are not bound to a textual presentation of code offer
a huge space for exploring programming notations. Despite decades of research on
visual programming, there is little evidence to guide the design of visually-enhanced
notations for wide-spread programming languages and paradigms such as object-
oriented programming. Recent tools such as JASPER [CKM06], Code Bubbles
[BRZ`10, BZR`10], Code Canvas [DR10], and Debugger Canvas [DBR`12] only
wrap a standard code notation (syntax-highlighted text) in a visual shell. Other,
more visual tools are either designed for specific domains (e.g., LabView [Lab]),

1.2. IMPROVING THE PROGRAMMING EXPERIENCE 7

target novice programmers (e.g., Scratch [MRR`10], MIT App Inventor [Wol11],
or Alice [Coo10]), or are primarily used by end-users (e.g., spreadsheets). Barista
by Ko and Myers [KM06] introduces richer notations for programming, but to our
knowledge these notations and the usability of the system have not been evaluated.
In general, there is only scarce empirical research about the notation of wide-spread
programming languages and paradigms [MSH`16] and most of it focuses on aspects
of textual syntax (e.g., [McI01, SS13]) or performance of novice programmers (e.g.,
[AB15]). In their seminal work on the Cognitive Dimensions framework [GP96],
Green and Petre discuss many different aspects of notations, but only compare
a traditional programming language (Basic) to visual languages using a different
programming paradigm (data-flow programming), and do not investigate different
notations for the same paradigm. Generally, the Cognitive Dimensions framework
cannot be used to directly guide us in creating visually-enhanced notations for code.

Efficient editor interactions

In order to prevent information overload, rich information structures require code
editors that can work with selected logical fragments of the program. Thus, such
editors must operate on code structure – so called structured editors. There is
considerable amounts of research of structured and visual program editors as an
alternative to text [TR81, HN86, Cow87, GKM90, RW91, MPMV94, SH06, KM06,
VSBK14]. Unlike text editors, structured editors do not see code as a sequence of
characters, but rather as a structure and provide an interface that lets developers
edit the units of this structure in order to modify the program at a logical level.

While many of the useful features of modern text editors can be easily transferred
to structured editors (e.g., syntax highlighting, text decorations, auto-completion),
structured editors typically suffer from significantly lower usability compared to text-
editors, due to the severe restrictions structured editing imposes on the way programs
are edited, resulting in cumbersome and slow interactions [MPMV94]. Visual
programming environments, which are a particular kind of structured editors, have
been shown to have a much higher viscosity compared to textual languages [Gre90,
GP96]. A high viscosity means that making local changes to the program requires
a lot of operations, thereby reducing programmer efficiency. The high viscosity of
structured and visual programming environments presents a major usability barrier
for professional developers who prefer the unconstrained manipulation of textual
code.

Successful blocks programming environments [MRR`10, Coo10, Wol11] sidestep
the issue of high viscosity, since their target audience is novice programmers who have
different interaction patterns, which are much less affected by viscosity compared
to professionals. Professional programmers are especially deterred by the strong
focus on mouse-based interactions typical of visual and blocks environments. Stride
[McK12, PBL`16] is a structured editor for novices that achieves good usability with
keyboard-based interactions, but it is limited to a fixed set of code presentations
and does not allow customization. Barista [KM06] also enables editing of graphical
code presentations with the keyboard by converting them to text, which prevents
interactive graphical interfaces. Overcoming high viscosity for expert developers
is the central challenge in designing practical structured editors. Providing good
usability becomes even more challenging if an editor should support a diverse set of
customizable and directly editable notations.

8 CHAPTER 1. INTRODUCTION

Working with diverse information

Despite the fact that developers use many different types of information daily [FM10,
KDV07, SMDV08], modern IDEs are not designed to function as information systems
and lack good support for storing, querying, combining, and visualizing arbitrary
information. Since IDEs do not offer sufficient channels for sharing information
between tools, IDE plug-ins are typically isolated [Kuh12], preventing effective
collaboration between tools. Research tools such as Ferret [dAM08] or the information
fragments model [FM10] provide the ability to pose questions directly within an
IDE, but are often limited to only a few types of information, a fixed set of output
visualizations, or read-only queries. Other tools such as JunGL [VEdM06] and
Rascal [HKV12] offer the ability to automate actions, but are limited to working
with source code and do not integrate other information sources. It is a challenge
to create extensible data formats and tools that can store and process arbitrary
information, while still allowing flexible visualizations, data exchange between tools,
and automated actions.

Interoperability with the textual ecosystem

Apart from requiring new program editors, enhancing the information structures
for programs introduces another challenge — how to interoperate with the rich
ecosystem of existing text-based tools that developers rely on. Converting rich
information structures to text could work for legacy tools that only read the text
such as compilers and debuggers: the output messages of such tools could be mapped
back to objects in the richer structures. However, tools that perform changes to
the code (e.g., search and replace via regular expressions, or merging files in the
version control system) need to be adapted or redesigned. Systems that work with
structured data often use a dedicated set of tools and backends (e.g., EMFStore
[KH10], Odyssey [MCPW08, OMW05], TouchDevelop [PBMM15] or MolhadoRef
[DMJN07]), which prevents developers from using widely-available and cost-effective
infrastructure such as GitHub. The challenge here is to benefit from rich information
structures while utilizing existing tools and infrastructure whenever possible.

Integrating a new generation of tools

In addition to solving the individual problems discussed previously, a major challenge
is to provide a platform that integrates all of these solutions and enables them to
interoperate effectively, forming a powerful toolbox — an IDE. Such an IDE could
be used by a broad group of researchers for rapidly prototyping and testing new
ideas and by tool designers as a model for a next-generation programming system.
We are not aware of any ongoing research efforts in this direction.

In our work we tackle these challenges in order to create a next-generation IDE
that works with rich information structures and features a visual structured code
editor. Next, we list the contributions that we make in this dissertation.

1.3. CONTRIBUTIONS AND OUTLINE 9

1.3 Contributions and outline
In our work, we have designed and evaluated novel techniques for building program-
ming environments. Inspired by modern tools in other domains, we offer an advanced
interface that works with structures richer than traditional source files and supports
diverse domains and context-sensitive notations. We provide keyboard-based inter-
actions throughout the program editor, enabling expert developers to write code as
efficiently as they can in traditional systems. Our approach enables new visualization
and information capabilities for IDEs, turning them into information systems for
software development.

The product of our ideas is Envision – a prototype IDE which we designed
to match the usability of text editors, to overcome their deficiencies, and to offer
advanced features for constructing, understanding, and maintaining software in a
professional setting. We designed Envision from the ground up using a holistic
approach that considers both the human experience and the technical requirements
of scalability, extensibility, and versatility in professional settings. Our design allows
us to combine a significant number of visualization, interaction, and information
processing techniques, achieving a level of integration not often seen in research
tools. We have evaluated our work on Envision using various methods such as case
studies, simulations, and a user study.

We make the following five key contributions.

1.3.1 Envision as a platform for experimentation
To enable comprehensive research of rich information structures and of dedicated
interfaces for software development, we designed and created the Envision open-source
IDE. Envision is a stand-alone tool, not based on any existing IDE. Unlike existing
IDEs, Envision is built from the ground up to support non-textual and dedicated
interfaces for programming and make use of a rich and flexible source code model that
may hold any types of data (in particular, dense meta-data and annotations discussed
in Section 1.1). This design has enabled us to explore programming interfaces more
diverse than those of mainstream IDEs and to enhance source-code with data that
helps to improve typical programming activities such as version control. Unlike
other approaches that use structured and visual editors such as Intentional Software
[SCC06] or MPS [VSBK14], Envision is not a language workbench and supports
enhanced interfaces for general-purpose languages. We see Envision as an essential
research platform that has enabled our research and may serve as a foundation for
additional explorations of programming interfaces and tools, both our own and the
explorations of other researchers.

In Chapter 3 we list the fundamental principles that guided the design of Envision
to make it an effective platform for our research. These principles were derived
from our research goals: to enrich the software structures contained in source files;
to improve the programming interface; and to design a scalable and flexible tool,
suitable for professional developers. The principles can guide the design of any
system with a purpose similar to the goals of our research.

In Chapter 4, we describe the architecture of Envision [AM14a] and explain
how it reflects the fundamental principles. Two highlights of our approach are
its modularity and extensibility, which have enabled us to explore a diverse set of

10 CHAPTER 1. INTRODUCTION

research topics and integrate various tools into a single system, for example, domain-
specific visual notations for software, scalable code maps, fine-grained version control,
and information integration systems. The tool and its developer documentation are
available at github.com/dimitar-asenov/Envision.

1.3.2 Flexible visual notations for programming
In Chapter 5 we address a key limitation of text-based editors: their limited notation.
We describe an alternative editor approach that allows textual and graphical notations
to be freely mixed [AM14b]. This provides a number of benefits to programmers.
First, it enables the presentation and integration of non-textual artifacts of software
engineering within the program code. For example, code comments in our system
can use rich formatting and support elements such as embedded diagrams (editable
directly in the IDE), tables, and interactive HTML/Javascript fragments. Second,
the flexibility of notations makes it possible to better support embedded domain-
specific languages [AM13]. For example, libraries can customize the notations and
interfaces of APIs the libraries provide. Third, even for standard code structures
such as expressions or statements, our approach enables notational improvements
by using richer visualizations that enable developers to more quickly understand
the structure of code. In a user study [AHM16], developers were able to answer
questions about the structure of Java methods up to four times faster when using
rich visualization compared to using standard syntax-highlighted text. We achieve
these benefits without sacrificing the scalability of traditional editors and show how
our approach is applicable to large code bases.

1.3.3 Efficient interactions in structured editors
In Chapter 6 we introduce a set of efficient interaction techniques for structured
editors. As we described in Section 1.2, usability is a central issue with structured
editors. To improve usability for expert programmers, we introduce a standard
two-part interaction mechanism that uses the keyboard for fast input and applies
across all notations. On the one hand, our system enables command-prompt-like
interactions for controlling the IDE and for creating top-level code structures such
as classes or methods. On the other hand, developers can type statements and
expressions freely in a way that mimics text-based entry, even though all fragments
of the program are maintained in a fully-structured form. In addition to these
standard interactions, our system can be enhanced with custom interactions for
each programming construct or domain-specific notation, which we also demonstrate.
Using CogTool [JPSK04, BJRT10] we perform simulations of expert users and show
that our approach allows code manipulation in structured editors as fast as in a text
editor [AM14b].

1.3.4 Fine-grained and precise version control of trees
In Chapter 7 we describe version control algorithms that we designed specifically
to support rich information structures represented as trees [AGMO17]. Version
control of tree structures, ubiquitous in software engineering, is typically performed
on a textual encoding of the trees (e.g., source code), rather than the trees directly.
However, applying standard line-based diff and merge algorithms to such encodings

https://github.com/dimitar-asenov/Envision

1.3. CONTRIBUTIONS AND OUTLINE 11

leads to inaccurate diffs, unnecessary conflicts, and incorrect merges. Traditional
encodings are also unsuitable for rich information structures and dense data. To
address these problems, we propose a novel format for storing trees on disk and
novel algorithms for computing precise diffs between two versions of a tree, and for
three-way merging of trees. Unlike most other approaches for version control of
structured data, our approach integrates with mainstream version control systems
such as Git. Our merge algorithm can be customized for specific application domains
to further improve the quality of merge results. An evaluation of our approach on
abstract syntax trees from popular Java projects shows substantially improved merge
results compared to Git.

1.3.5 Scriptable information system within the IDE
In Chapter 8 we describe an approach for searching, integrating, and visualizing
information from diverse sources directly within the IDE. Developers work with
information from numerous sources such as the source code itself, compiler output,
debugging and program analysis tools, version control information, issue trackers,
project and API documentation, project wiki pages, and community resources like
wikipedia.org and stackoverflow.com. In trying to meet their information needs,
developers are faced with three issues. First, they often need to combine information
from more than one source, but tool support for piecing information together is
lacking [SMDV08] and developers are forced to manually connect the different pieces
of information, which is an error-prone and time-consuming process. Second, most
tools present information in a fixed form, which is not always a good match for a
developer’s specific information need (e.g., a visual call graph is better suited for
detecting recursion than a long stack trace). Third, even after a developer finds
the information they need, they often have to take action manually, for example,
to make a change to the code or create a new bug report. Repeatedly performing
an action manually is time-consuming, error-prone, and frustrating. Our approach
[AMV16] solves these three problems by allowing developers to write queries that
combine information from source code with external sources such as the file system,
version control system, web services, etc. Combining different types of information is
possible thanks to a unified data exchange format, which allows queries to be piped
together. To improve the comprehension of query results, the results can be displayed
in diverse ways, including entirely custom visualizations created by the developer
using HTML and Javascript. The system can be extended with arbitrary data
sources or computations thanks to an integrated support for Python scripts. Our
approach provides a significantly more powerful alternative to standard text-based
tools like searching with regular expressions, and it enables smart tools to more
easily share high-level data with each other.

In the next chapter, we familiarize the reader with Envision’s interface by means
of a brief guided tour showcasing the tool’s notation and interactions.

https://wikipedia.org
https://stackoverflow.com

12 CHAPTER 1. INTRODUCTION

2A quick tour of Envision

In this chapter we introduce the user interface of Envision and showcase key design
features of our approach. Getting familiar with Envision’s visualizations and inter-
action flow will facilitate the understanding of the core contributions of our work.
For a video introduction to Envision, please see youtu.be/5YMaCQEoPe0. We will
explore Envision in two different scenarios – creating a simple Java program from
scratch and exploring an existing larger Java project. While Java is currently the
best-supported language in Envision, the tool also allows support for other languages.
For more details regarding Envision’s architecture and implementation we refer the
reader to Chapter 4.

2.1 Writing code from scratch
In this section we will explore Envision’s code editing features by creating a simple
application, step by step.

When Envision is started, the user is presented with the minimal interface shown
in Figure 2.1. It consists of a white canvas where the program’s code will later
appear, and a command prompt, which is a central input mechanism in Envision.
The interface is purposefully minimal, avoiding components such as menus, toolbars,

Figure 2.1: The initial screen a developer sees after starting Envision.

13

https://youtu.be/5YMaCQEoPe0

14 CHAPTER 2. A QUICK TOUR OF ENVISION

public class Hello#

public class Hello
Create a public class called 'Hello'

Figure 2.2: The class command creates a class called Hello.

Hello

Figure 2.3: A newly created class with the name Hello. The font size is de-
liberately large, so that it contrasts well with the font size of method names
(medium) and the font size of statements and expressions (small).

and other views. This is reminiscent of terminal text editors like vim or graphical
editors with “zen” or minimal distractions mode such as Atom [Ato] or Visual Studio
Code [Visb]. As Envision was designed primarily for expert programmers, we enable
them to focus on the code and offer access to all IDE features via keyboard shortcuts
or the command prompt. This focus on keyboard interactions enables developers to
quickly access any IDE function, without having to navigate hierarchical menus or
lift their hands from the keyboard. For a discussion regarding the learnability of
this interface we refer the reader to Section 2.3.

The command prompt not only provides access to IDE functions (e.g., loading a
project or searching for code), but also offers commands for creating code. We will
start by creating the Hello class, by invoking the class command, as illustrated in
Figure 2.2. A command may have optional arguments, like public and Hello in
this case, and its name does not need to appear in the first position in the prompt.
This enables flexible input text, for example, to mimic familiar declarations in
programming languages. The prompt also provides an auto-completion menu for
commands, making it easier to remember available commands and quicker to type
them. Pressing Enter executes the command and creates the corresponding class,
which will then be displayed on the canvas, as shown in Figure 2.3. The prompt can
be shown or hidden at any time by pressing ESC . The prompt is context-sensitive,
and the available commands depend on the currently selected object, which, right
now, is the freshly created class. When a class is selected, it is possible to create a
method using the method command as shown in Figure 2.4.

In that figure, we show another feature of the prompt – its support for abbreviated
commands. As long as the input string is unambiguous, command and argument
names do not have to be spelled in full, and with ambiguous input the auto-completion
menu can be used to select the desired command. Support for abbreviated commands
makes it even quicker to execute IDE functions and create code.

Executing the method command creates the corresponding method shown in
Figure 2.5. After the method is created, we can use the keyboard to select its various

2.1. WRITING CODE FROM SCRATCH 15

Hello
pub st met main#

pub st met main
Create a public static method called 'main'

Figure 2.4: A usage of the method command. The command is abbreviated to
met along with its arguments public and static.

Hello

main

Figure 2.5: The newly created method main.

elements and add additional code. To do this we use a fundamental component of
Envision’s keyboard-focused interactions – a flexible cursor for making selections.
Using the arrow keys (or, alternatively, the mouse), this cursor can be moved
anywhere within the code in order to select existing code entities, placeholders for
optional code elements, or the space between elements in vertical or horizontal
sequences. These various selections are illustrated in Figure 2.6. The selection

Hello

main

Hello

main

Hello

main add type argumentHello

main add argument

Hello

main add result

Hello

main

add statement

Figure 2.6: The cursor selecting various parts of the main method: icon, name,
generic type arguments, arguments, result type, or body.

16 CHAPTER 2. A QUICK TOUR OF ENVISION

cursor’s ability to take different forms and move to any position enables developers
to reach and modify any code location using only the keyboard, regardless of how
textual and graphical objects are composed on the canvas.

The command prompt is convenient for creating top-level code structures like
classes or methods, which are mostly independent of peer constructs and are created
infrequently. The prompt would offer poor usability for creating low-level code
structures, like statements or expressions, which are more frequently manipulated
and have a specific location with respect to their peers and context. Envision features
another input mechanism for easily creating low-level code structures directly within
the canvas. Expressions can simply be typed, left-to-right, as in a traditional text
editor. Figure 2.7 illustrates expression entry. The input is parsed on each keystroke
and converted to the corresponding AST nodes. All input sequences, including
invalid ones, are accepted and stored as AST nodes – special error nodes are used
to encode invalid fragments of the input. This allows for a flexible manipulation of
expressions, where intermediate states are not restricted to error-free ASTs.

main

Sys

main

System .

main

printlnoutSystem. . (

main

printlnoutSystem. . ("Hello worldε

main

printlnoutSystem. . ()"Hello world"

Figure 2.7: Typing an expression from left to right. During this process, syntac-
tically incomplete operators are shown with a yellow background and text which
is not understood, such as unfinished literals or unknown operators, is shown
with a red background.

Most expressions in Envision are arranged horizontally as in the example above,
but the visualizations are not limited to a horizontal arrangement. For example,
names of method parameters appear above the corresponding parameter type as
illustrated in Figure 2.8 and nested array initializers can be shown using a matrix
notation as shown in Figure 2.9.

Many code components in Envision can be arranged in a two-dimensional layout,

main args
String[]

printlnoutSystem. . ()"Hello world"

Figure 2.8: A main method with the usual args parameter. The parameter
name appears above the parameter type.

2.1. WRITING CODE FROM SCRATCH 17
test

identityint [][] ←()1 0
0 1

s

Figure 2.9: A two-dimensional array rendered as a matrix. The matrix is editable.
The textual equivalent is int[][] identity = {{1,0},{0,1}}.

Hello

main args
String[]

printlnoutSystem. . ()"Hello world"

foo

factorial x
int

int

resultint ← 1

result i

iint ← 2 i≤x i⁺⁺

x>1

result

Figure 2.10: The Hello class holding three methods in a semi-grid: to reduce
wasted space, by default all objects from the same column are vertically stacked
independently of other columns.

similar to a grid. Work by Henley and Fleming [HF14] suggests that arranging code
in a grid allows faster navigation compared to the traditional sequential arrangement
in files, or to freely positioning code elements anywhere on the screen, e.g., as in
Code Bubbles [BRZ`10]. To demonstrate the usage of grid arrangement in Envision,
we add two additional methods to the Hello class, as shown in Figure 2.10. The
cursor can be moved between the elements in a column and in between columns in
order to create new elements or columns, respectively.

As can be seen on the different figures so far, and especially in Figure 2.10, Envi-
sion uses a visually richer presentation of code that is a mixture of text and graphics,
unlike the purely textual presentations of traditional development environments.
In Section 5.3 we discuss a user-study, which shows that these visualizations make
it easier for developers to understand code structure. To explain Envision’s code
presentation, we contrast it to traditional syntax-highlighted text in Figure 2.11,
which shows a factorial method as rendered by Eclipse and by Envision’s default
visualizations. To reduce syntactic noise, Envision eliminates semicolons at the
end of statements, uses outlines instead of curly braces for showing scope, and
shows alternating background colors instead of commas or semicolons for separating
list elements. To improve structure detection, Envision uses icons instead of some
keywords, and colored backgrounds for some statements and expressions. For a

18 CHAPTER 2. A QUICK TOUR OF ENVISION

public int factorial(int x)
{

int result = 1;
if (x > 1) {

for (int i = 2; i <= x; i++) {
result *= i;

}
}
return result;

}

Hello

main args
String[]

printlnoutSystem. . ()"Hello world"

foo

factorial x
int

int

resultint ← 1

result i

iint ← 2 i≤x i⁺⁺

x>1

result

Figure 2.11: An identical method that computes the factorial of x, rendered by
Eclipse and Envision, using default settings in both cases.

detailed discussion of the visual design of Envision we refer the reader to Section 5.2.

Despite their visual nature, the presentations can be created entirely using the
keyboard. Creating the factorial method from Figure 2.11 in Envision is done
with keystrokes that are almost identical to the ones used for creating the textual
version. For example, to create a “for” loop we can type for and press Space – the
original for text is automatically converted in a visual loop structure and the cursor
is placed in the loop’s initialization step element. We can then type an expression
that initializes the loop variable and press ; , which will automatically place the
cursor in the loop condition. After we finish writing the loop condition and step
expressions, pressing Enter will position the cursor at the beginning of the loop’s
body, ready to create additional statements or expressions. Such a keyboard-based
code entry is familiar to developers and helps to more quickly create code compared
to, for example, dragging and dropping code constructs from a palette.

In addition to the default visualizations, any code fragment in Envision can also
be displayed using custom visualizations. To demonstrate this we developed a control-
flow visualization for method bodies, shown in Figure 2.12. Custom visualizations
may be explicitly selected by the user, or automatically chosen, based on context.
This enables support for customizing the presentation of code for specific tasks or
domains as we show in Section 5.4.

Envision’s flexible visualizations enable non-textual artifacts to be embedded
directly in the source of a program. Thus, the program’s source is not restricted to
executable code and can be enhanced with rich information such as documentation,
diagrams, and others. For example, we can enhance the factorial method with
a rich comment like the one shown in Figure 2.13. This opens the possibilities for
improved documentation in code and allows the integration of different artifacts from
software engineering such as requirements, diagrams, design, documentation, and
code, which could be processed together by tools, e.g., when performing a refactoring.

We have seen how Envision’s interface enables working with a small code fragment.
In the next section, we will explore a larger code-base.

2.2. WORKING WITH A BIG PROJECT 19

Hello

main args
String[]

printlnoutSystem. . ()"Hello world"

foo

factorial x
int

int

result i

iint ← 2

i⁺⁺

i≤x

x>1

result

resultint ← 1

Figure 2.12: The factorial method, rendered using an alternative visualization,
which highlights the control flow.

2.2 Working with a big project
We have designed Envision’s visualization framework so that it can simultaneously
display millions of visual objects (representing information from more than 100 000
lines of code) while still remaining responsive and permitting interactions. This is
useful, for example, to view a map of an entire project, as illustrated in Figure 2.14.
The figure shows the entire source code of the jEdit text editor – about 170 000 lines
of code, all rendered at once. The map contains package, class, and method labels
to make it easier to spot the different components. We can zoom in and pan the
map to focus on a particular part of the code as shown in Figure 2.15. The map
uses the standard presentation of the program and also allows the usual interactions
for editing code when the view is sufficiently zoomed in.

The user can enable a mini-map in the lower left-corner. The mini-map shows
the entire project; a red rectangle highlights the currently displayed part of the
project, helping the developer to stay oriented. The mini-map can also be used for
navigation – clicking on it will pan the screen to the corresponding location.

Envision offers the developer the possibility to use different views of the same
code base simultaneously. From the code-map, shown in one view, a developer
can find code fragments of interest and open them in another uncluttered view for
inspection or editing.

20 CHAPTER 2. A QUICK TOUR OF ENVISION

Hello

main args
String[]

printlnoutSystem. . ()"Hello world"

foo

factorial x
int

int

This method computes the factorial of a number

Returns
1 if x is negative is 0.
x! otherwise.

Examples

Wiki

x 0 1 2 3 5

x! 1 1 2 6 120

Factorial

Selected	members	of	the	factorial
sequence	(sequence	A000142	in	the
OEIS);	values	specified	in	scientific

notation	are	rounded	to	the
displayed	precision

n n!

From	Wikipedia,	the	free	encyclopedia

In	mathematics,
the	factorial	of	a
non-negative
integer	n,	denoted
by	n!,	is	the
product	of	all

Article Talk Read Edit View	history Search

Main	page
Contents
Featured	content
Current	events
Random	article
Donate	to	Wikipedia
Wikipedia	store

Not	logged	in Talk Contributions Create	account Log	in

resultint ← 1

result i

iint ← 2 i≤x i⁺⁺

x>1

result

Figure 2.13: The factorial method with a rich comment header that includes
rich text-formatting, a table, and an embedded browser.

2.3 A note on learnability
In our research, we have deprioritized learnability so that we can focus our efforts on
exploring programming interfaces for power users that we assume are familiar with
Envision’s interface. Thus, the current version of Envision has a steep learning curve
and its minimal user interface does not provide many aids to help its users discover
various features. This can be compared to power tools such as the vim editor and
the Unix command line. Implementing features to improve learnability and feature
discovery is possible, but would require significant effort. For example, the system
could offer users who are new to its interface an initial tutorial explaining how to

2.3. A NOTE ON LEARNABILITY 21

Figure 2.14: A map view of the entire source of the jEdit open-source text
editor.

write programs and listing common shortcuts. More common functionality could be
included in a traditional menu or toolbar.

Similarly, we assume that users of Envision would already know how to program
in a supported language (currently, only Java). It would be interesting to explore how
Envision’s visual interface might be used to help teach programming to novices. For
example, the tool could provide drag-and-drop interactions to construct programs
from visual templates and it could help prevent mistakes by disallowing structurally
incorrect code. Once again, we defer such explorations to future work.

22 CHAPTER 2. A QUICK TOUR OF ENVISION

Figure 2.15: Different stages of zooming in on the actionPerformed method of
the NewSearchAction inner class, part of the HyperSearchResults class, which
belongs to the search package. The mini-map in the lower-left corner shows
which portion of the project is currently displayed.

3Design principles of Envision

In this chapter we outline the principles that have guided the development of
Envision. They are organized in three sections corresponding to the high-level goals
that motivate them. We define each principle, describe the motivation behind it,
and point to its consequences.

3.1 Rich information and smarter tools
In order to improve the efficiency of software development, our approach advocates
the use of enhanced information structures throughout all types of development
tools. The following three principles promote a design facilitating this approach.

3.1.1 Decouple information structures from interfaces
Definition and examples

The information structures that define a program should be independent from the
interfaces that people use to observe, modify, and create the structures. In particular,
the amount and kind of information stored on disk or exchanged between tools
should not be limited in any way by the operation of an interface.

For example, the amount of meta-data should not be restricted due to the inability
of an interface to hide such information when it is not needed.

Motivation and consequences

The decoupling of information structures and interfaces is at the core of our approach.
It is contrary to the established practice of writing, reading, and storing programs
as text files. The direct benefit of this decoupling is that information structures
can be expanded to include additional concepts and meta-data that facilitate the
development process. For example, as we show in Chapter 7, adding unique identifiers
to all AST nodes enables improved version control by allowing perfect tracking of code
locations as opposed to approaches based on heuristics and approximations [Flu08,
Rei08, FMB`14]. Others [KM06] have also recognized the utility of associating
meta-data with code elements.

As a consequence of richer information structures, interfaces have to be adapted to
enable developers to selectively see the information they need. This opens an exciting
opportunity for the redesign of programming interfaces, since they are no longer
bound to showing a particular textual encoding of the underlying structures. Thus,

23

24 CHAPTER 3. DESIGN PRINCIPLES OF ENVISION

interfaces may be designed using a wide variety of options to present information, for
example, using graphics, text, multiple-dimensions, animations, and other, non-visual
means. This variety makes it challenging to explore the design space for interfaces,
which is needed in order to maximize their efficiency.

3.1.2 Support processing and integration of diverse types of infor-
mation
Definition and examples

Software engineers work with many different types of information and tools should
support developers by acting as information systems. This means enabling the
storage, integration, querying, and manipulation of all types of information that are
part of the software engineering process, not just executable program code.

For example, developers should be able to store design decisions and diagrams
with a program or write a single information query that combines data from a
dynamic analysis with data from the version control system.

Motivation and consequences

This principle is about taking an information perspective on software engineering
and seeing the development process as a way to communicate and refine ideas,
not simply as a means to make a computer perform a specific computation. When
performing their daily tasks, developers ask a variety of questions that require diverse
information [KDV07, SMDV08, LM10, FM10]. Characterizing the information needs
of developers poses challenging questions, e.g.: what information is needed; how
should information be presented; how can information be combined? Since there are
no fixed constraints on developers’ information needs, IDEs should be designed with
general and extensible support for information processing. For example, information
work can be facilitated by enabling a variety of visualizations or by providing a
data-model that can easily be extended when the need arises. The development
environment should not impose barriers to information by limiting its scope or
preventing its collection.

3.1.3 Use and share rich information to make tools smarter
Definition and examples

An IDE should provide tools with easy access to rich information and enable tools
that produce useful information to share it with other tools, to make it easier to
build on top of existing functionality.

For example, the AST and type information should be easily accessible to a
tool that performs type-checking; a tool that computes a call graph should make it
possible for other tools to use the final call-graph information, say, to visualize it on
the screen.

Motivation and consequences

The key goal of this principle is to make it easier to create smart development tools.
Smart tools are those that make extensive use of a program’s structure and semantics,

3.2. BETTER PROGRAMMING INTERFACES FOR PEOPLE 25

and of additional information, such as meta-data.
As a foundation for creating smart tools, basic access to the information they

require needs to be provided. However, to make it easier to create such tools, they
should have access to appropriate data models. For example, if a tool needs to
perform semantic analysis of a code fragment, providing the tool with a raw textual
encoding of the code is inefficient. Not only will the tool author need to develop a
preprocessing step to parse and understand the encoding, but this computation will
also happen independently of other similar efforts, wasting time. In this example,
it would be much more convenient to create the analysis starting from an AST
and type information provided directly by the IDE or another tool. Once the
analysis is complete, it should be sharable with other tools and with the user who
might want to also annotate the analysis. Such user annotations are an example
of meta-data which should be preserved and processed by tools in subsequent tool
runs, essentially sharing meta-data across different runs of the same tool. Sharing
high-level information between tools in an IDE is also considered essential by Kuhn
[Kuh12] who was forced to scrape the visual interface of the Call Hierarchies plug-in
in Eclipse, because there was no other way to extract the information from the
plug-in. We share Kuhn’s view that IDEs should act as open data platforms in
order to facilitate information exchange and make it easier to create tools like his
Codemap. This could be achieved, for example, by defining a unified format for
exchanging data between different tools and plug-ins.

3.2 Better programming interfaces for people
People are the second big focus point of our approach to building programming
environments. Building tools for people means to carefully evaluate and craft
interfaces that facilitate understanding and agency. The next three principles reflect
this goal, and provide concrete guidelines for achieving it.

3.2.1 Design flexible interfaces that adapt to context

Definition and examples

For optimal efficiency, a developer should observe and manipulate information at a
level of abstraction that matches their current needs. An interface should adapt to
the current context, which includes what the current task is, who is working on the
task, what the domain is, what APIs are used, etc.

For example, when debugging a state machine, it might be helpful to see a visual
depiction of the transitions that took place, but when creating a new state machine
the developer might prefer a tabular presentation.

Motivation and consequences

The context of a developer’s task dictates the information and the amount of detail
they need. The task and the programming language are two types of context, that
are traditionally supported by IDEs, e.g., by the various perspectives in Eclipse such
as Java or Debug. However, context has many facets that could be used to improve
the efficiency of an interface, such what else is currently shown on the screen, or

26 CHAPTER 3. DESIGN PRINCIPLES OF ENVISION

what part of the code a fragment is located in. The same piece of information,
say, a code fragment, may need to be presented differently in different contexts.
For example, when exploring the public interface of a class, it is enough to see the
signature of its methods, but when implementing the class, the developer needs to
work with the full code. To support this variability, an IDE needs two features:
a finer notion of context that enables the IDE to select an appropriate interface;
and support for a diverse set of visualizations and interactions in order to enable
context-specific interfaces. Supporting only textual notations, for example, severely
limits the possibilities for visualizing information.

3.2.2 Leverage expert developers’ existing skills with languages
and using the keyboard
Definition and examples

In order to be practical for a wide range of professional developers an IDE should
improve the programming experience for common programming paradigms, instead
of imposing new ones, and should focus on keyboard-based input.

For example, the IDE should support popular object-oriented languages and
enable developers to continue to type to create and edit programs.

Motivation and consequences

This principle is about meeting developers where they are and working with their ex-
isting skills, instead of designing a programming environment that imposes completely
new workflows or habits.

First, our goal is to enhance the programming experience of a wide range of
professional developers using richer information and better interfaces, not to make
programmers express computation in a different way. This is in contrast to other
programming tools with non-traditional interfaces such as LabView [Lab], which is
built around a data-flow programming paradigm, or MPS [MPS], which is a language
workbench, in which developers define and use their own domain-specific languages.

Second, the majority of expert developers type their programs and use command-
line tools. It is not surprising that the keyboard is the central input device for
experts – it offers much quicker input compared to other common input devices
such as mice and enables developers to quickly translate their intentions to actions
or precise code changes. This is why keyboard-based interactions are crucial for
any interface that needs to be efficient and appeal to experts. This is in contrast
to interfaces for beginners, such as the block environments offered by Scratch or
Mit AppInventor, which offer palettes and drag-and-drop interactions to improve
the discoverability of language or tool features at the expense of slower program
construction.

3.2.3 Make better use of people’s perceptual and cognitive abili-
ties
Definition and examples

Programming interfaces should make use of well developed human abilities, for
example, visual perception or spatial cognition.

3.3. GENERAL-PURPOSE LANGUAGES AND LARGE PROJECTS 27

Motivation and consequences

To communicate information more efficiently, interfaces should make use of the full
range of human abilities. Unlike mainstream programming tools, which focus heavily
on the textual presentation, programming tools could use richer presentations that
offer a mix of text and graphics in order to make more thorough use of people’s visual
perception capabilities. Such presentations could also include code and information
maps that utilize people’s spatial cognition.

A consequence of this principle is that a development environment should provide
a framework that enables diverse ways to interact with people. Thus, interfaces
should not be rooted in a particular presentation (e.g., text), but rather be based
on the structure of the underlying data and offer flexibility of form. In our work
we explore only rich visual interfaces, but other modalities are also possible, for
example, tactile or aural for visually impaired developers.

3.3 Support for general-purpose languages and
large-scale projects
The last group of principles stems directly from the target audience of our research
and their needs. First, we are targeting professional developers who spend most of
their time using an IDE. They require a flexible tool that can be customized to suit
their particular needs. Second, we are not targeting professionals from any particular
domain, but are interested in designing tools for general-purpose programming.
Third, our tool should support large-scale projects, and not only toy examples, which
means that the interfaces and performance should scale well.

3.3.1 Design a tool that can be used conveniently for extended
periods of time
Definition and examples

Programming interfaces should allow developers to work in a state of flow and be
productive. Cumbersome or unintuitive interfaces and unnecessary distractions
should be avoided.

For example, rarely used interface elements should not be shown by default.

Motivation and consequences

This principle is about being mindful of the usability of a tool and how the usability
is affected by the design of a particular interface or interaction. Poor usability is
bad for any tool, but professionals can be especially demanding when it comes to
their code editor. The lack of a particular feature, cumbersome interactions, or too
much bloat can lead to the failure of an otherwise great tool.

Professionals use a development environment during most of their day, and they
need to be comfortable with it. As a crude check for usability we have found it
helpful to continuously ask the following question:

Do we imagine that professional developers or even we can create software using
such an environment every day, all the time, and be comfortable and efficient?

28 CHAPTER 3. DESIGN PRINCIPLES OF ENVISION

In a number of cases, we have rejected a particular interface because it failed to
pass even this basic test. For example, an initial prototype of Envision’s expression
editor, while technically advanced and elegant, did not allow text-like input and was
scrapped because we were not comfortable with its usability.

3.3.2 Enable a high degree of customization and flexibility
Definition and examples

A tool should support customization and extensibility at every level of its design,
in order to satisfy the needs of professionals and to facilitate research explorations.
Particular features and design choices that might be affected by strong personal
preferences, or which need scientific exploration, should be easily configurable.

For example, color schemes or icons should not be hard-coded, but it should be
possible for users to pick their own, and for researchers to experiment with different
schemes.

Motivation and consequences

Professional developers require tools that can be molded to fit their own prefer-
ences and work environment. Unlike most professional development tools, research
prototypes are rarely customizable, skipping over the challenges of providing cus-
tomizability, but also losing the benefits it provides. Researchers can also benefit
from highly customizable tools, which help to more easily implement and evaluate
new ideas. This principle is about supporting both professionals and researchers with
flexible tools. Making tools flexible means making existing features customizable
and adding support for making new extensions.

To facilitate extensibility, there should be clear boundaries between the different
components of the environment and its design should be modular. A key boundary
in Envision is between the model of a program and its presentation, which helps
us extend each of the two independently of the other. Existing components should
be configurable without recompiling the tool, wherever possible. To facilitate this,
the environment can provide a standard framework that handles the processing of
configuration files and user preferences.

3.3.3 Support a wide range of project domains and sizes
Definition and examples

In order to be applicable in a wide range of contexts, a programming environment
should support programming in general-purpose languages and allow both small and
large software projects.

For example, the IDE design should not be limited to a particular programming
language or use case.

Motivation and consequences

Our aim is to improve the tools of mainstream developers, regardless of the par-
ticularities of their projects. The development environment can permit extensions
that provide specializations for a particular domain, programming language, or

3.3. GENERAL-PURPOSE LANGUAGES AND LARGE PROJECTS 29

company-specific processes, but should not be limited to them or to specific kinds of
programming tasks.

In particular, one important aspect of a software project is its size. Our aim is
to support projects of millions of lines of code and associated information. This
poses two challenges: On the one hand, interfaces need to provide meaningful
information and interactions at large scale. For example, simply writing a million
lines of code with a tiny font on the screen is unhelpful, but presenting a visual
summary of the major components of the entire project can be useful. On the other
hand, there is the technical challenge of making interfaces perform well with huge
code-bases. This requires regular performance evaluations, identifying bottlenecks,
and developing scalability solutions, such as partial and lazy loading of program
models. Performance issues could also be caused by third-party libraries and be
challenging to work around.

30 CHAPTER 3. DESIGN PRINCIPLES OF ENVISION

4The architecture of Envision

In this chapter, we provide more details about Envision’s architecture and important
system design aspects. We show what mechanisms form the foundation of the tool’s
flexibility, which makes it suitable for exploring novel programming interfaces and
rich information integration. We also discuss performance-related details and provide
guidelines for achieving good performance in complex visualizations.

4.1 Overview
Envision is implemented in C++ and is a stand-alone IDE, rather than an extension
for another IDE or code editor. Because existing IDEs and code editors for general-
purpose languages utilize text-based editors, Envision does not reuse any of their
interface components and instead has a visual editing interface implemented from
scratch using low-level drawing routines provided by the Qt Graphics View framework
[QGV]. All text-like editing interactions in Envision’s interface, including the cursor’s
behavior, are also implemented from scratch in order to better integrate with
Envision’s visually-rich presentations of code. At present, Envision’s implementation
spans more than 160 000 lines of C++ code in over 950 classes.

Envision is built using a modular plug-in architecture — virtually all of Envision’s
functionality is implemented via plug-ins, each of which is a dynamically loadable
library that is automatically discovered and loaded at run-time. We logically separate
the different plug-ins into layers: plug-ins may only use services from their own
layer and layers underneath. The layers of Envision’s architecture and the currently
implemented plug-ins are shown in Figure 4.1. Next, we provide a brief description
of each layer and some of the plug-ins contained within.

At the bottom of all the layers is the Initialization layer. It contains the Launcher,
which is the executable that starts Envision and the Core library, which provides a
few basic utility functions and manages plug-in loading and unloading. The main task
of this layer is to scan for available plug-ins and load them dynamically. Practically
all of the functionality of Envision is implemented by plug-ins from higher layers.

The next layer is Development Support. It includes two plug-ins that provide
services for logging warnings and errors and for performing unit-tests. These are
primarily useful during the development of Envision itself.

The functionality in the first two layers is completely generic and does not yet
have features specific to a tool for software development. The IDE Base layer
establishes the foundations of Envision’s development features and interface. It is
the first layer with IDE-specific functionality. Plug-ins from this layer are completely

31

32 CHAPTER 4. THE ARCHITECTURE OF ENVISION

Initialization

IDE Base

Development Support

Object-Oriented
Languages Core

OO Extensions

Launcher Core

SelfTestLogger

OOModel OOVisualization OOInteraction

ModelBase VisualizationBase InteractionBase

CommentsExportFilePersistence

VersionControlUI

ContractsLibrary

Alloy

ControlFlowVis CustomMethodCall

CodeReview

CppExport

CppImport

InfoScripting JavaExport

JavaImportOODebug

PythonWrapper

Demos

stand-alone tool layer boundaryEnvision plug-in

Figure 4.1: The layers of Envision’s architecture including all current plug-ins
and stand-alone tools.

independent of any programming language or programming paradigm and define
generic versions of basic programming concepts such as literals or code versions.
The three most important plug-ins in this layer implement the different parts of a
Model-View-Controller (MVC) framework that is the foundation of Envision. The
ModelBase plug-in implements generic functionality for specifying a program tree. A
program tree is similar to an AST, but supports rich information and non-executable
tree nodes. The VisualizationBase plug-in implements Envision’s visualization
engine using Qt’s Graphics View framework [QGV]. The InteractionBase plug-in
implements the generic interactions available in the system, such as the selection
cursor and the command prompt. The remaining plug-ins from this layer provide
support for: rich comments, exporting a program tree as traditional programming
language text, saving and loading program trees directly in Envision’s custom file
format, and version control for program trees (Chapter 7). This layer provides
services that higher layers can use for supporting any programming language or
paradigm. Our work has focused exclusively on object-oriented (OO) languages,
because they are prevalent in the mainstream. However, it is possible to support other
types of programming such as scripts, data-flow programming, or logic programming.

Next comes the Object-Oriented Languages Core layer. It features three plug-
ins which are the OO extensions of the generic MVC implementations: OOModel,

4.1. OVERVIEW 33

OOVisualization, and OOInteraction. These plug-ins define standard AST nodes for
OO programs (e.g., classes, methods, and expressions), their default visualizations,
and interactions. It is worth pointing out that each of these plug-ins provides a
dedicated set of services and the plug-ins do not have to be used in an all-or-nothing
fashion. For example, it is possible to load only the OOModel plug-in, which will
enable the loading and semantic analysis of programs, but not their OO-specific
visualizations or convenient manipulation by the user. If also the OOVisualization
plug-in is loaded, but not OOInteraction, then a program can be visualized using
dedicated OO presentations, but there will be no OO-specific interactions. Such
a configuration may be used for exploring code, but will not permit efficient code
manipulation. Of course, the full functionality of the OO-specific interfaces will be
available if all three plug-ins are loaded. This clear separation of concerns gives
us additional flexibility for defining the code model independently of the way it is
visualized and the way it is manipulated.

The OO Extensions layer builds on top of the core OO functionality and provides
a wide variety of features. There are plug-ins for debugging, code reviews, accessing
and combining information from diverse sources (Chapter 8), and for importing and
exporting Java and C++ code to and from Envision’s program tree. To import
textual source code into Envision, we use the parser of Eclipse’s Java compiler [JDT]
for Java sources, and the clang parser [Cla] for C++ sources.

Finally, there is the Demos layer, which features four projects that illustrate the
flexibility of Envision’s interfaces. ControlFlowVis is a plug-in that implements the
alternative control-flow visualization of method bodies that we showed in Section 2.1.
The control-flow visualization works for any method and can be manually selected
by the user. CustomMethodCall is a plug-in that implements custom visualizations
for method calls to four specific methods, illustrating how code-presentation can be
customized based on the context of the code – in this case the target of a method
call. The customized visualizations are configured to be used automatically by
the IDE whenever they are applicable. The ContractsLibrary provides interface
customizations for efficiently working with the APIs of Microsoft’s Code Contracts.
We provide more detail on this use case in Section 5.4. The Alloy plug-in builds on
top of the ContractsLibrary plug-in. It extracts code contracts written using the
Code Contracts API and uses MIT’s Alloy tool to visualize data structure models
that satisfy the contracts.

Envision’s architecture promotes a clear separation of concerns and facilitates
extensibility. The separation into layers and plug-ins makes it easy to identify where
a new feature should be implemented. The overhead of implementing new features is
reduced by the reuse of existing building blocks, plug-in services, and customization
concepts. For example, throughout Envision, we use a declarative API to create new
visualizations by combining existing ones.

Envision’s design has also been beneficial for us as researchers. It has allowed
us to quickly experiment with a variety of interfaces and information processing
techniques. For example, when creating a new visualization, we can define many of
its properties such as colors, shapes, distances, font properties, icons, etc. using the
built-in styles API, defined in VisualizationBase. Using the API, property values are
automatically read from an XML file on disk and can be changed without recompiling
the program. Next, we highlight more of Envision’s customization and extensibility
features that make it a good research vehicle and enable personalized customization
by users.

34 CHAPTER 4. THE ARCHITECTURE OF ENVISION

4.2 Extensibility and customization
Support for extensibility and customization permeates the entire design of Envision
and is evident on several levels.

At the architecture level, the fundamental extension mechanism is the modular
plug-in system, which allows for unlimited functionality to be added to Envision.
Users of Envision can choose what set of plug-ins should be loaded in order to
customize what features are available.

At the plug-in level, extensibility and customization are facilitated in two primary
ways. First, plug-ins provide a large amount of functionality that can be readily
reused by others. This often includes generic and parametric components that are
specifically designed to be used in extensions. Second, many plug-ins’ operations may
be extended to new contexts, using dedicated customization APIs and extensible class
hierarchies. For example, the generic reference-to-declaration binding mechanism
can be configured to work with different programming languages and type systems.

At the configuration level, many plug-ins rely on external files that can be easily
modified or provided by the user to customize Envision without compiling code.
This ranges from XML files that define visual styles, to the configuration of keyboard
shortcuts, to Python scripts, e.g., as we show in detail in Chapter 8. For example, by
modifying visual style files, it is possible to achieve significant variation in Envision’s
interfaces, changing colors, icons, visual arrangement, and even behavior. This
allowed us, for example, to easily create the two alternative visual styles of Envision
shown in Figure 4.2, which we used for the user study described in Section 5.3.

tiny-legend
langjava.

Legend

method String foo x
int

y
int

str
String

prodint ← x*y

return str

if prod≤0

return valueOfString. ()y
else if x>42

throw newError()"error"

tiny-legend
langjava.

Legend

String foo x
int

y
int

str
String

prodint ← x*y

str

prod≤0

valueOfString. ()y
x>42

throw newError()"error"

Figure 4.2: Two alternative visual styles for displaying methods in Envision.

Finally, some plug-ins also allow customization by including annotations in code
in projects that are developed in Envision. This enables library designers to tweak
specific IDE aspects for APIs of their libraries. For example, in Section 5.4 we use
annotations in a library to make the APIs it provides look like native language
features.

The customization and extension mechanisms in Envision cross-cut all aspects of
the MVC framework, in order to enable extension to new types of information and
support for dedicated interfaces. For example:

� The ModelBase plug-in implements a framework for defining types of nodes
for a program’s tree. It uses the framework to define some basic AST node

4.2. EXTENSIBILITY AND CUSTOMIZATION 35

types such as text literals or lists, but other plug-ins can contribute additional
types, e.g., Class, contributed by OOModel.

� The VisualizationBase plug-in enables existing visualizations to be extended
with new snippets of information. This can be done either inline using the
concept of visualization slots (a pre-determined visual space associated with any
visual item, where other plug-ins can inject additional visual objects) or using
visual overlays, which are independent of the underlying visualization. We use
the former in Section 5.4 to inject a visualization of a method’s contracts in
its signature, and the latter in Section 8.4.3 to display information associated
with a statement.

� The InteractionBase plug-in offers a general hook for processing keyboard and
mouse events from the user, which enables other plug-ins to register custom
handlers for these events. InteractionBase also enables others to contribute
new commands for the command-prompt, or fine-tune the behavior of the
cursor in specific interfaces.

Throughout Chapters 5, 6, 7, and 8 we will demonstrate many specific use cases of
customizations in Envision. The effort to create such customizations and the intended
customization designer depend on the complexity and type of a customization:

� Modifying a style file can be done by anyone, including ordinary users of
Envision, but is limited to adjusting predefined parameters of visualizations
and interactions. Such customizations are very simple as style files are mostly
self-explanatory and typically do not require any knowledge about the inner
workings of Envision.

� Adding annotations to code is intended for library designers who want to
change certain predefined aspects of the look and feel of library APIs. Library
designers need to know what customization annotations are available, but
using them is as simple as annotating the library code.

� Writing an external script is intended for power users of Envision. Scripting
offers a lot of flexibility, but script designers would need to be familiar with
Envision’s scripting APIs and would have to invest time creating and testing
the scripts.

� Writing a plug-in for Envision is intended for power users and plug-in designers.
This method offers unlimited extension capabilities, but requires the most
effort and knowledge. Plug-in designers need to be familiar with Envision’s
C++ API and the APIs of other plug-ins they want to use and would need
to use an environment configured for compiling the Envision codebase. To
make creating new plug-ins easier, we support plug-in writers in two ways:
First, we offer a plug-in generator that, in a few seconds, creates a functional
generic plug-in ready to be specialized. Second, we provide many simple APIs
designed specifically to make customization easier. To illustrate this point,
next, we present two customization examples in more detail.

Adding attributes to program nodes

The program model defined by the ModelBase plug-in allows other plug-ins to not
only contribute new node types, but also enhance existing types with new attributes

36 CHAPTER 4. THE ARCHITECTURE OF ENVISION

on the fly. For example, the OOVisualization plug-in adds two optional x- and
y-position attributes to the Class and Method types, allowing classes and methods
to be visually positioned on a two-dimensional grid, which itself is implemented by
the VisualizationBase plug-in. We make this process as straight-forward as possible:

First one must define the Position extension as shown in Figure 4.3. This

// In Position.h
class Position
{

DECLARE_EXTENSION(Position)

EXTENSION_ATTRIBUTE_VALUE(Model::Integer, x, setX, int)
EXTENSION_ATTRIBUTE_VALUE(Model::Integer, y, setY, int)

};

// In Position.cpp
DEFINE_EXTENSION(Position)
DEFINE_EXTENSION_ATTRIBUTE(Position,x,Integer,false,false,true)
DEFINE_EXTENSION_ATTRIBUTE(Position,y,Integer,false,false,true)

Figure 4.3: The definition of a Position class that lists two new integer at-
tributes, which can be attached to arbitrary node types from the program model.
The different macros are used to declare the name and type of the new attributes
and specify whether they are partially loadable, optional, and persisted to disk.

definition consists of the usual split between header and source files in C++, but is
otherwise minimal thanks to the use of custom macros that help to quickly declare
the desired attributes.

After the Position class is declared, any plug-in can register this extension to
any existing node type, as shown in Figure 4.4.

Class::registerNewExtension<Position>();
Method::registerNewExtension<Position>();

Figure 4.4: The registration of the Position class as an extension to the existing
Class and Method nodes. Registration code can appear in any plug-in.

Finally, any code that is aware of the extension can use it as shown in Figure 4.5.

auto pos = someClass->extension<Position>();
pos->setY(42);
assert(pos->y() == 42);

Figure 4.5: An example usage of the newly registered extension.

4.3. PERFORMANCE AND SCALABILITY 37

Declaring new visualizations

The VisualizationBase plug-in defines a framework for creating visualizations by
using a declarative C++ API. Plug-ins are free to create visualizations with or
without using this framework, but its use simplifies development significantly. Thus,
this framework is used by many other plug-ins, e.g., by OOVisualizations, in order to
create new interfaces. An example of declaring the visual layout for the components
of a for-each loop is shown in Figure 4.6.

4.3 Performance and scalability
In order to support work on large software projects, we have designed dedicated
performance features such as a dead-lock free concurrent access scheme for the
program model or a variety of rendering optimizations. As many techniques for
scaling to large projects are known from existing IDEs (e.g., incremental compilation),
in the discussion below we focus our attention on Envision’s most performance critical
novel aspect – the rich visual presentation of programs.

Envision’s code visualizations scale well to large programs with millions of visual
objects on the screen. For example, the user could load a code-map like the one
from Section 2.2, and smoothly zoom-in and out and navigate around the entire
code base – a visual rendering of 170 000 lines of Java code in that example. We
have also experimented with bigger code bases, and the interactions remain fluid, at
the expense of increased RAM usage. We achieve scalability thanks to Envision’s
performance-sensitive design and optimizations. Some of these optimizations are
inspired by video game rendering techniques; others, such as reducing the number
of memory allocations, are made possible by the technology we use to implement
Envision. Below we formulate the most important performance aspects as guidelines
for tool designers.

Performance guidelines

Structure visualizations in a visual tree. Envision renders a large amount of
two-dimensional visual objects using drawing functionality from the Qt library. Qt
itself uses collision detection algorithms for a number of tasks related to rendering
and input handling, for example, to determine which objects are under the mouse
cursor or which objects are currently not visible on the screen and thus, do not
need to be repainted. Although visual objects in Qt are logically organized as a
tree, by default the bounding box of each object depends only on what the object
draws itself and disregards children. Thus, to calculate collisions, Qt iterates over all
objects, which is slow. Collision detection can be much faster if the bounding box of
each item completely encompasses all of its children, because this enables efficient
spatial partitioning of the visual tree. Qt has support for restricting the visual extent
of child items to their parents, but enforcing this restriction incurs a significant
overhead due the use of clipping operations. We contributed a new feature to Qt to
skip this enforcement, while still assuming that children are fully contained in their
parents. The enforcement is not necessary in Envision, because all visualizations are
within their parent’s bound by construction. This resulted in significant performance
benefits when drawing a large number of objects at once. Note that this optimization

38 CHAPTER 4. THE ARCHITECTURE OF ENVISION

void VForEachStatement::initializeForms()
{

// The loops’s header is a linear sequence of elements:
// An icon, the loop variable’s type and name, and the
// collection to iterate over.
auto header = (new GridLayoutFormElement{})

->setHorizontalSpacing(3)->setColumnStretchFactor(3, 1)
->setVerticalAlignment(LayoutStyle::Alignment::Center)
->put(0, 0, item<Static>(&I::icon_,

[](I* v) {return &v->style()->icon();}))
->put(1, 0, item<NodeWrapper>(&I::varType_,

[](I* v){return v->node()->varType();},
[](I* v){return &v->style()->varType();}))

->put(2, 0, item<VText>(&I::varName_,
[](I* v){return v->node()->varNameNode();},
[](I* v){return &v->style()->varName();}))

->put(3, 0, item<NodeWrapper>(&I::collection_,
[](I* v){return v->node()->collection();},
[](I* v){return &v->style()->collection();}));

auto body = (new GridLayoutFormElement{})
->setNoBoundaryCursors([](Item*){return true;})
->setNoInnerCursors([](Item*){return true;})
->setColumnStretchFactor(0, 1)
->put(0, 0, item(&I::body_,

[](I* v){return v->node()->body();}));

// The shape is the visual background of the loop.
auto shapeElement = new ShapeFormElement{};

// The header, body and shape are arranged using a
// a layout based on position and size constraints.
addForm((new AnchorLayoutFormElement{})

->put(TheTopOf, body, 3, FromBottomOf, header)
->put(TheTopOf, shapeElement, AtCenterOf, header)
->put(TheLeftOf, shapeElement, -10, FromLeftOf, header)
->put(TheLeftOf, shapeElement, 5, FromLeftOf, body)
->put(TheRightOf, header, AtRightOf, body)
->put(TheRightOf, shapeElement, 3, FromRightOf, header)
->put(TheBottomOf, shapeElement, 3, FromBottomOf, body)
->put(TheRightOf, shapeElement, 3, FromRightOf, body));

}

Figure 4.6: The complete definition of the visual layout of the components that
form the presentation of a for-each loop. This code defines how elements are
arranged, but their look is loaded from styles, which are either explicitly selected
or automatically determined by the system.

4.3. PERFORMANCE AND SCALABILITY 39

does not restrict the flexibility of Envision’s visualizations, since peer objects are
allowed to overlap.

Draw only what is necessary. Qt already provides support for culling off-screen
objects by using collision detection to decide what is not visible. However, when
observing a canvas with many visual objects at a high zoom level, most of the objects
are within the visible region and therefore drawn. This is especially of concern to
Envision, since the mini-map that we provide in the tool (see Section 2.2) is actually
just a second rendering of the same canvas, where all objects are always visible.
With millions of objects, the standard Qt approach was too slow and unusable. At
a very high zoom level, many visual objects are extremely small and practically
invisible, but were nevertheless drawn. We made a further contribution to Qt’s
drawing routines – an option to skip the drawing of any visual item whose size in any
dimension is less than a configurable value, for example, half a pixel. Note that this
also automatically skips the drawing of all child items. This results in a significant
speedup when drawing a large number of objects, like in the mini-map.

Together the first two optimizations effectively make the rendering performance
independent of the size of the visual canvas and the number of objects. Only objects
that are truly visible on screen need to be rendered and the amount of such objects
is influenced by other factors such as screen resolution.

Cache text renderings. At medium zoom levels, thousands of objects could be
within the visible region of the screen and not small enough to be discarded by the
optimizations discussed so far. This is especially a problem for textual elements
(labels, expressions, etc.) as drawing so much anti-aliased text at once can be slow.
We used the functionality of Qt’s QStaticText class to speed up text drawing by
caching results of drawing operations. In this way, text has to be redrawn only when
it is updated or when the zoom level changes. This resulted in a noticeable speed-up,
without a significant memory cost.

Decouple updates from rendering. Modern graphics frameworks minimize the
number of painting operations, but painting still occurs quite often, for example,
when zooming or panning. In many of these cases, all or almost all objects on the
visual canvas remain unchanged and do not need to be updated. For achieving good
performance, it is essential that updates are decoupled from the regular painting
operations, and are only performed when necessary. When the user modifies a
program, only visualizations that are affected should be updated. When using a tree
organization for visualizations, an edit typically affects only a particular visualization
and all of its ancestors in the tree.

Avoid recreating objects. Constant allocation and deallocation of memory can
significantly slow down a program. We experienced this a number of times in
Envision and had to implement optimizations that keep objects around and reuse
them if possible. This was especially useful for loading large programs from disk —
using manual memory management enabled by C++, we were able to reduce loading
times by half. We also preserve visual objects with most updates.

Use mature, open-source graphics frameworks designed for performance. Envision
is based on the Qt framework, which features a mature rendering engine. It has a large
community of users and is updated frequently with new features and optimizations.
This choice has had a big impact on Envision’s performance. The fact that Qt is open-
source was also crucial for developing Envision – before our custom patches, which
implemented the first two optimizations mentioned above, rendering a mini-map or
huge code maps was not possible with bigger code bases.

40 CHAPTER 4. THE ARCHITECTURE OF ENVISION

5Rich and customizable zpro-
gram presentations

In this chapter we present and evaluate Envision’s visually rich program interfaces
that can be customized for different contexts.

First, we outline key flexibility concepts of our approach and show how they shape
the design of Envision’s visualization engine. In contrast to many existing approaches
to code visualizations or visually enhanced IDEs [BZR`10, DR10], Envision does
not simply use rich visualizations to complement or decorate textually rendered
code. Instead, rich visualizations are at the core of our code editor, allowing
arbitrary compositions of textual and graphical elements to be used at all levels of
code presentation: from literals and expressions, to methods and classes, to entire
software projects. Our approach also supports customizing visual notations and
interactions based on different types of context such as what is currently shown
on the screen or what domain a particular part of the code pertains to. Interface
customizations can be helpful, especially in large software projects, which use a
variety of libraries that: provide APIs for particular domains such as writing database
queries, staging, constraint solving or define an embedded domain-specific language
(eDSL). Our approach enables presentations of APIs and eDSLs to be customized in
order to improve comprehension.

Second, we discuss the current design of Envision’s presentations of programing
constructs. We ground the design in findings from cognitive psychology and visual
perception theories and show how the design has evolved over time.

Third, we show two different alternatives for visually rich code presentations
enabled by Envision’s design and compare them to mainstream syntax highlighting
in a user study [AHM16]. Syntax highlighting is the main visual lens through which
developers perceive their code today, and yet its effects and the effects of richer code
presentations on code comprehension have not been evaluated systematically. Our
study helps to fill this knowledge gap; the results of the study show that Envision’s
richer code visualizations reduce the time necessary to answer questions about code
structure, and that contrary to the subjective perception of developers, richer code
visualizations do not lead to visual overload. Based on our results we outline practical
recommendations for tool designers.

Finally, we explore how Envision’s support for customizations can be applied to
improve comprehension of code in a specific domain. We demonstrate the benefits of
our approach by customizing Envision for the .NET Code Contracts API [AM13]. Our
case study shows in particular that we can customize many aspects of visualization
and interaction with little effort.

41

42 CHAPTER 5. PROGRAM PRESENTATIONS

5.1 The visualization framework of Envision
Guided by the principles we outlined in Chapter 3, in this section, we define key
concepts for enabling flexible visualizations in a code editor and use them to motivate
and describe Envision’s visualization engine.

5.1.1 Key concepts of flexible visualizations
The following concepts enable visually rich code presentations and the customization
of the look and feel of interfaces in a programming environment:

1. Decouple the storage format from visualization and interaction. As we
described in Chapter 1 the strong coupling of source files to text editors greatly
restricts flexibility. A prerequisite for flexible visualizations is, thus, to decouple
the storage format of a program from the representation that is used for rendering
and editing. Editors should operate on a program model or an AST, even when the
visualization and interactions are textual.

2. Provide basic building blocks for visualizations and use them to create
reasonable default presentations that others can build on. Once a program is
not viewed just as text, there are many options for visualizing it. Editors must
provide a toolbox for easily creating visualizations from basic elements such as text,
shapes, outlines, images, icons, layouts, etc. These elements should be used to create
suitable default visualizations that serve as a stepping stone and facilitate further
customizations. A first choice might be to just represent program elements with the
text they are usually associated with. Graphical and hybrid notations can also be
used.

3. Show only information necessary for the current task. Programmers have
to deal with a lot of information in terms of source code, documentation, tool and
program output, etc. To avoid information overload programming tools should
display only what is needed for the current task and remove distractions. For
example, a developer that is debugging a method might want to see a slice that
contains the relevant statements. Everything which is not part of the slice could be
completely hidden. The visualization mechanism needs to be flexible and allow only
partial visualization of program fragments or constructs.

4. Choose visualizations based on context. In a customizable editor, program
fragments and language constructs can be visualized in different ways. The kind of
construct being rendered should not be the sole determinant of the visualization to
use. Customization designers should have the freedom to define suitable visualizations
based on the following additional factors:

� Construct instance: What is the specific instance or value of the programming
construct? For example, a method call could be rendered differently based on
its target method; a string constant that represents a URL might be rendered
as a hyperlink, permitting additional interactions.

� AST context: Where in the structure of the program is this construct? For
example, a stand-alone list can be rendered as a sequence, whereas if the list
is nested in another list, both can be rendered as a matrix.

� Visualization context: What visualizations will appear alongside the construct
that is being rendered? For example, when rendering a sequence of variable

5.1. THE VISUALIZATION FRAMEWORK OF ENVISION 43

assignments, their corresponding parts could be visually aligned.

� Visualization purpose: Why is this construct being rendered, what is the
purpose of the current task? For example, when debugging, variable references
could show the current value of the variable in addition to the variable’s name.

� Personal preferences: Has the developer requested a particular visualization?
For example, they might prefer to represent regular expressions as automata
instead of text.

5. Allow customization of interactions and make each visualization interac-
tive. It is essential that customization designers are able to define interactions
for the visualizations they create such as new shortcuts, options, context-menus,
commands, etc. Providing merely “read-only” visualizations might help with program
comprehension, but not with manipulation; programmers would need to switch to
the default representation of the host language for editing, which is cumbersome and
reduces the benefits of customizations. Existing visualizations may also benefit from
new, customized interactions. For example, one could create a new interaction for
string literals that simplifies the input of file paths by overriding the TAB key to
perform a name match, like a command terminal.

6. Make creating simple customizations easy, facilitate composition, and
enable advanced customizations. The editor should permit customization designers
to develop visualizations and interactions, and ship them together with their libraries.
These customizations should go beyond simple style files for syntax highlighting and
not require detailed knowledge of the editor implementation. For instance, designers
should be able to quickly implement common visualizations such as text, boxes,
icons, and lists, and create new visualizations by composing existing ones. The
interactions of new compositions should automatically emerge as the aggregation
of the interactions of their parts. This will greatly reduce the efforts required to
implement customizations. Moreover, developers who are well familiar with the APIs
provided by the editor should be empowered to create advanced customizations.

We designed Envision’s visualization system by adhering to these concepts. Next,
we provide an overview of how single visualizations can be added to Envision and
how the system uses them to show code.

5.1.2 Creating and customizing visualizations in Envision
Program fragments (AST nodes) in Envision can be visualized in arbitrary ways.
The default is to use text for low-level constructs such as expressions, and graphical
notations for top-level constructs such as classes and methods. A visualization is
a C++ class and new visualizations can be added to Envision by plug-ins, which
we discussed in Section 4.2. Registering a new visualization in the system includes
specifying the context in which it is applicable. All factors specified in concept 4
from Section 5.1.1 can be used to determine the context. When rendering an AST
node, Envision chooses a visualization by scoring all visualizations applicable in the
current context and picking the best one.

Figure 5.1 shows all factors that determine what visualization is used to render
an AST node. Visualizations are associated with a specific node type and are
chosen from the visualization pool. One node type may have multiple alternative
visualizations. In addition to the node type, a visualization might also depend on

44 CHAPTER 5. PROGRAM PRESENTATIONS

Model

‣AST context
‣value

Visualization
Pool

‣available
 visualizations

Renderer – chooses the best visualization based on all factors

Visualization
Context

‣visualization
 tree

Visualization
Purpose

e.g., default,
debugging

Zoom
Level

2x 1x 0.5x …

Figure 5.1: Factors that determine what visualization is used for an AST node.

the current context, which has many facets. First, the entire program model can be
used to determine the AST context. For example, inner classes may be rendered
differently from top-level ones, and calls to special methods can use a dedicated
style that differentiates them from standard method calls. Second, the visualization
context is determined by all other visualizations that are currently on the visual
canvas (e.g., parent visualization). For example, if a method is rendered within its
enclosing class, only the method’s simple name could shown, but if the method is
rendered on its own, a fully qualified name might be rendered. Third, the context of
a visualization includes the visualization purpose. A visualization purpose is simply
a string that describes what the developer is currently doing or what they want to
see, e.g., “default”, “debug”, or “control-flow”. The purpose can be set globally for all
visualizations, or locally for individual code fragments. The user can manually choose
a purpose, or it can be set automatically when the user performs certain actions
(e.g., start the debugger). Plug-ins can register new types of purpose and provide
corresponding visualizations. Fourth, a visualization’s context also includes the
current zoom level, which enables visualizations to be dynamically adjusted when
the user zooms in and out. All of this information is fed into the renderer, which
decides what visualizations should be used by scoring all visualizations applicable in
the current context and picking the best one. For a given programming construct
and context, only a single visualization will be used and there is no support for
composing multiple available visualizations.

Each visualization has a handler that defines its interactions. Like visualizations,
handlers are also C++ classes and can be reused and extended, making it easier
to create new visualizations. For example, in Chapter 6 we describe Envision’s
selection cursor and expression parsing functionality, which can be used by any
visualization. We use them to enable the manipulation of expression AST nodes
using the keyboard, like a standard text editor, and customization designers can use
the same mechanism to enable text-like editing for their visualizations. We describe
handlers and Envision’s interaction components in detail in Chapter 6.

To take advantage of Envision’s customization mechanisms for visualizations,
designers have two options. First, predefined properties of visualizations are easy
to tweak by any user by modifying style files or inserting annotations in code as
we show in Section 5.4. However, this approach is limited. Second, power users of
Envision and language and library designers may define advanced customizations
in a separate plug-in. This approach is very flexible, but requires familiarity with

5.1. THE VISUALIZATION FRAMEWORK OF ENVISION 45

Envision’s visualization framework and APIs. However, based on our own experience
and that of students using and improving Envision’s implementation, we find that
once a programmer is familiar with Envision’s visualization framework, they require
little effort to implement new visualizations and interactions. For example, when
composing visualizations, the system automatically provides a cursor that enables
keyboard-based navigation and selection. Typically this desired behavior requires
no extra code in new visualizations, therefore reducing their implementation effort,
in line with concept 2.

Next, we show how visualizations in Envision can be composed to create a rich
code presentation on screen.

5.1.3 Composing and rendering visualizations
Envision’s visualization engine builds on three key components of Qt’s graphics view
framework [QGV] for composing and rendering visualizations: Items, Scenes, and
Views. The relation between the three components is illustrated in Figure 5.2 and
we explain them in more detail below.

Scenes and items

A scene is an off-screen staging area that consists of arbitrary items (visualizations),
which are composed in a tree hierarchy. A scene corresponds to a large two-

1Icons made by Freepik from www.flaticon.com are licensed by CC BY 3.0.

program models and
other data sources

scene (logical views) views

d1

d2

d4

d3

d5

d6

s1

s2

s3

v1

v2

v3

v4

Figure 5.2: An illustration of composing and rendering visualizations in Envision.
There are six (d)ata sources; three (s)cenes; and four (v)iews.1

http://www.freepik.com
http://www.flaticon.com
http://creativecommons.org/licenses/by/3.0/

46 CHAPTER 5. PROGRAM PRESENTATIONS

Hello

main args
String[]

printlnoutSystem. . ()"Hello world"

foo

factorial x
int

int

resultint ← 1

result i

iint ← 2 i≤x i⁺⁺

x>1

resultFigure 5.3: An item rendering an if-statement. The item draws the yellow
background shape and is comprised of child items: the icon, the condition
and the body of the then-branch. The then-branch itself contains an item
representing a for-loop.

dimensional canvas which contains many different “drawings”, its items. Scenes in
Envision correspond to different logical views of collections of code fragments. For
example, one scene might contain a map of the code, laid out according to the
containment hierarchy of the various code fragments, while another scene might
contain just a few different methods that the developer put together to form a
working set for a particular task.

An item is a single visual unit, which may draw content on the scene and may
have child items. The visualization framework is completely agnostic to how complex
an individual item is and what it draws on the scene. For example, an item could
draw a piece of text, a shape, an image, or even a dynamic HTML/Javascript
page. Items that have children, can compose their children in a specific layout
(e.g., horizontal, grid, constraint-based) in order to achieve a desired look on the
scene. This is illustrated in Figure 5.3, where the item representing an if-statement
both draws its background shape directly on the canvas and contains child items
representing the elements of the if-statement.

Envision’s visualization framework is very flexible with respect to how items are
created and combined into a tree structure in order to form a scene. Figure 5.2
illustrates this flexibility with four use cases.

First, a common case is when the structure of the item tree closely matches the
one of a corresponding program model fragment. This is illustrated by s1 and d1
and could result in a rendering like the one from Figure 5.3.

Second, a single tree of visual items might be constructed from multiple program
models, e.g., s2 is constructed from d2, d3, and d4. This enables combining informa-
tion from different parts of a program or even from different programs and is useful,
for example, when a developer is working on a task that spans several projects.

Third, a single model fragment might be visualized using different types of items
or it might be visualized in multiple scenes (e.g., d4 and d5 in s2 and s3, respectively)
or both. This enables the same code to be rendered differently depending on context.

Fourth, item trees are not limited to visualizing only programming models.
An item can also represent data from other information source such as the file
system, databases, analysis results, etc. Such items can be freely mixed with items
representing code as illustrated by d5 and d6. This is useful to integrate information
and code, for example, to help developers answer questions as we show in Chapter 8.

Views

Views are the physical projections of a scene on the screen. A view can render an
entire scene (v3 in Figure 5.2) or just a part of a scene (v1, v2, and v4). A view
can also be scaled (v3), which enables zooming in and out. Multiple views can be

5.2. THE DESIGN AND EVOLUTION OF ENVISION’S PROGRAM
VISUALIZATIONS 47

displayed at once (v2 and v3). We use this feature in Envision to provide a mini-map
– a scaled-down rendering of the entire scene which helps the developer stay oriented
when panning and zooming the main view.

Combining different types of items in a scene rendered by one or more views
is the uniform way to display all information and interfaces in Envision, including
the program code, messages and visualizations from other tools (e.g., compilers
or profilers), and even UI elements such as the command prompt. This uniform
visualization space combined with the high flexibility of items enable the creation
of rich and context-specific interfaces. Next, we discuss the evolution and current
design of the standard presentations of code in Envision.

5.2 The design and evolution of Envision’s pro-
gram visualizations
In this section, we show and motivate our designs for visualizing the structure of
object-oriented programs in Envision. We discuss the evolution of the visualizations
and outline possible avenues for future improvement. The presentations shown here
are the ones that we created for our research and are just one particular design
enabled by Envision’s visualization framework. In this section, we discuss only
Envision’s standard presentations of code applicable to all contexts. For an example
of context specific presentations, see Section 5.4.

5.2.1 Basics of rendering code structure
Our primary goal when designing the standard program presentation of Envision is
to make the program structure more apparent and easy for developers to understand
at all levels. Our aim is twofold:

� to further improve on the usefulness of traditional syntax highlighting for
understanding the structure of methods.

� to provide visualizations that facilitate the understanding of global aspects of
a project, e.g., the classes and packages that comprise the project.

To achieve these two goals we utilize a mixture of text and graphics for presenting
code elements.

We purposefully include a wide range of graphical elements, because findings from
cognitive psychology [WKL`06] and visual perception theories such as the Semiology
of Graphics [Ber83] suggest that increasing the variety of visual elements used to
represent a composition of objects can enable the different objects to be more quickly
identified. The Semiology of Graphics theory defines key visual variables (e.g., shape,
luminosity, color, size, and containment) and explores which of these are selective. A
selective variable is one that enables differences in its values to be perceived instantly
by a human. Finding a particular object in a visual composition requires a linear
scan of all objects, if the target object has no distinguishing visual variables that
are selective. If, however, the object has distinguishing selective variables, it can
be found much more quickly, without performing a scan of all other objects. This

48 CHAPTER 5. PROGRAM PRESENTATIONS

if N == 1:
 return 1
ret = int(N**0.5)
return ret
low = 0
high = N/2 + 1
while low+1<high:
 mid=low+(high-low)/2
 square=mid**2
 if square==N:
 return mid
 elif square<N:
 low=mid
 else:
 high=mid
return low

if N == 1:
 return 1
ret = int(N**0.5)
return ret
low = 0
high = N/2 + 1
while low+1<high:
 mid=low+(high-low)/2
 square=mid**2
 if square==N:
 return mid
 elif square<N:
 low=mid
 else:
 high=mid
return low

if N == 1:
 return 1
ret = int(N**0.5)
return ret
low = 0
high = N/2 + 1
while low+1<high:
 mid=low+(high-low)/2
 square=mid**2
 if square==N:
 return mid
 elif square<N:
 low=mid
 else:
 high=mid
return low

Figure 5.4: Three different presentations of the same code. Left: plain text.
Middle: text with highlighted keywords. Right: text with highlighted keywords
and colored containment boxes.

is best illustrated with the example in Figure 5.4. If a developer is interested in
whether there are nested loops in a piece of code, using the presentation on the
left in Figure 5.4, the developer would have to scan the entire text to find where
there are loop statements and if they are nested. Traditional syntax highlighting
(middle of Figure 5.4) makes this task easier, because now the developer needs
to look only at the keywords. Since color is a selective visual variable, humans
can instantly tell apart objects that have sufficiently different colors. However,
with syntax highlighting the developer would still need to do a linear scan over all
keywords. In the right of Figure 5.4, the syntax-highlighted code is enriched with
additional color boxes for compound statements, indicating containment – another
selective visual variable. Using this representation it is almost instant to see that
there are no two nested loops, because there are no two nested blue boxes. Clearly
showing the containment hierarchy obviates the need to scan over all keywords when
searching for compound statements.

Guided by these findings, we attempted to maximize the visual variety of Envi-
sion’s visualizations by using the following graphical elements:

� Color: We use a wide range of colors to highlight different parts of code
structure. Light colors are used as backgrounds for compound statements, and
some expressions. Dark colors are used for text or as the background for the
names of top-level elements such as methods, classes, or packages. Icons used
throughout the system also come in different colors.

� Outlines and containment: We use outlines to indicate scope and containment,
which directly reflect the structure of object-oriented programs. Packages,
classes, methods, compound statements, and some types of lists are all clearly
delineated using an outline. These outlines feature different properties: width,
color, padding to the content, corner radius, and the presence of a shadow.

� Icons and decorations: We use colored icons to indicate the type of various
objects on screen. This includes all top-level constructs such as projects,

5.2. DESIGN AND EVOLUTION 49

packages, classes and methods, as well as many low-level constructs such
as statements and some expressions. We occasionally use other graphical
decorations to make the structure of a construct clearer. For example, a
dashed line separates a method’s body from its signature and methods have
small squares to the right of their name that serve as placeholders for adding
arguments and results, if these have not been added to the method already.

� Texture: Texture represents the “roughness” of an object’s appearance. Differ-
ent icons often have different texture. A solid background color has a different
texture than a striped background. Another possibility for texture is a smooth
gradient. Envision primarily uses texture as part of icons and as gradients for
the backgrounds of some compound statements.

� Grouping and layout: We use grid-based layouts to position top-level objects
within their parent, e.g., classes within packages or methods within classes. We
use sequential layouts to represent lists, e.g., statements or method arguments.
In all cases, we group objects by proximity – objects within a layout are
separated by a visible gap and the gap is larger for more top-level objects.

� Text style: We use text as a component of many visualizations, e.g., the names
of types and variables and for most expressions. In addition to text properties
that are often customized by traditional syntax highlighting systems such as
color, weight, or slant, we also use variations of font and size.

By combining different graphical elements in a single programing construct we strive
to make the construct quick to identify in different contexts. For example, an
if-statement has a distinctive icon, a background color shared among conditional
branching structures (if- and switch-statements), and an outline typical for compound
statements. This enables if-statements to be selectively recognized based on different
information needs, e.g., containment of statements or conditionality of execution.

Next, we discuss specific examples of Envision’s visualizations and how they have
evolved over the course of our work.

5.2.2 Design and evolution
Envision’s code visualizations are entirely designed by the author of this dissertation,
including all color, shape, and layout choices. In earlier versions of Envision, most
icons were sourced from [Ope], whereas the current design includes many custom-
drawn icons. The initial design goal was to use the full capabilities of Envision’s
visualization framework to maximize visual variety. Designing a large amount of
diverse visualizations from scratch is challenging and doing so without the help of a
trained designer or the capacity to test each individual choice inevitably led to some
poor design choices and mistakes. After we conducted the user study discussed in
Section 5.3, some of these design flaws became apparent to us. Using feedback from
the study and new design insight, we have improved some aspects of Envision’s code
visualizations, though there is certainly potential for additional improvements.

Below, we will explore noteworthy elements of Envision’s code presentations and
discuss their evolution. Figure 5.5 shows a toy method exemplifying a diverse set of
programming constructs as they were rendered when we carried out the user study
from Section 5.3. Figure 5.6 shows the same method with Envision’s updated design.
We will look at each individual part of this method in turn.

50 CHAPTER 5. PROGRAM PRESENTATIONS

Figure 5.5: A method consisting of diverse programming constructs rendered
using an early Envision visual design.

5.2. DESIGN AND EVOLUTION 51

exp1
langjava.

Legend
LegendBase

visualizationLegend arg1
int

arg2
String

arg3
SomeClass

int

@ Override()
throws MyException

local1int
local1 ← 42

local2String ← arg2

printlnoutSystem. . ()"Arg1 is greater or equal 4"

1

arg1≥5

arg1<0

()arg1≥0∧ arg1<5

printoutSystem. . ()"Arg1 is within the proper range."

printlnoutSystem. . ()"Arg1 is negative"

⁺⁺arg1
fooarg3. ()arg1 local2

arg1<0

local3int ← bararg3. ()this local1

continue
i - 10%5 = 0

printlnoutSystem. . ()i
printlnoutSystem. . ()k

kint ← i k>0 k⁻⁻

iint ← 0 i<local3 i⁺⁺

foobararg3. ()arg1

throw newMyException()"State is invalid"

isInvalidarg3. ()

this

scSomeClass ← newSomeClass()
baz_resultObject ← bazsc. ()local1 this ∅ 0 arg2

local1 ← value()()Cell baz_result .

printlnoutSystem. . ()"Run-time exception"

eRuntimeException

printlnoutSystem. . ()"General exception exception"

eException

cleanuparg3. ()

local1

printlnoutSystem. . ()"10"
break

0

printlnoutSystem. . ()"20"

20

1

printlnoutSystem. . ()"Something else"

0

LegendBase

visualizationLegend arg1
int

arg2
String

arg3
SomeClass

int

throws MyException

0

SomeClass

foo arg1
int

arg2
String

void

bar l
Legend

value
int

int

0

foobar i
int

void

baz arg1
int

arg2
Legend

arg3
Legend

arg4
int

arg5
String

Cell

∅

isInvalid bool

true

cleanup void

Cell

int value

MyException
Throwable

MyException message
String

super()message

long serialVersionUID← 1L

Figure 5.6: The method from Figure 5.5 rendered using Envision’s current visual
design.

52 CHAPTER 5. PROGRAM PRESENTATIONS

Method outline and signature

Figure 5.7 shows the rendering of method signatures in Envision. In order to make
methods stand out and, thus, the code structure more apparent, we use outlines to
surround the method body. Initially we used a thin rectangle with rounded corners
surrounding the method. To reduce clutter in the current version of Envision, we
remove the left border of the outline, which was superfluous due to two factors.
First, the method’s contents already creates a strong visual boundary on the left
of the method since all the content is left-aligned. Second, all methods have a
white background, whereas the background of classes and other top-level constructs
is typically non-white. This contrast produces a natural border at the boundary
of methods within classes or other constructs. In the current design, we have
also simplified the method’s outline by using straight instead of rounded corners.
Additionally, to make methods stand out, they cast a slight shadow on the underlying
object.

exp1
langjava.

Legend
LegendBase

visualizationLegend arg1
int

arg2
String

arg3
SomeClass

int

@ Override()
throws MyException

local1int
local1 ← 42

local2String ← arg2

printlnoutSystem. . ()"Arg1 is greater or equal 4"

1

arg1≥5

arg1<0

()arg1≥0∧ arg1<5

printoutSystem. . ()"Arg1 is within the proper range."

printlnoutSystem. . ()"Arg1 is negative"

⁺⁺arg1
fooarg3. ()arg1 local2

arg1<0

local3int ← bararg3. ()this local1

continue
i - 10%5 = 0

printlnoutSystem. . ()i
printlnoutSystem. . ()k

kint ← i k>0 k⁻⁻

iint ← 0 i<local3 i⁺⁺

foobararg3. ()arg1

throw newMyException()"State is invalid"

isInvalidarg3. ()

this

scSomeClass ← newSomeClass()
baz_resultObject ← bazsc. ()local1 this ∅ 0 arg2

local1 ← value()()Cell baz_result .

printlnoutSystem. . ()"Run-time exception"

eRuntimeException

printlnoutSystem. . ()"General exception exception"

eException

cleanuparg3. ()

local1

printlnoutSystem. . ()"10"
break

0

printlnoutSystem. . ()"20"

20

1

printlnoutSystem. . ()"Something else"

0

LegendBase

visualizationLegend arg1
int

arg2
String

arg3
SomeClass

int

throws MyException

0

SomeClass

foo arg1
int

arg2
String

void

bar l
Legend

value
int

int

0

foobar i
int

void

baz arg1
int

arg2
Legend

arg3
Legend

arg4
int

arg5
String

Cell

∅

isInvalid bool

true

cleanup void

Cell

int value

MyException
Throwable

MyException message
String

super()message

long serialVersionUID← 1L

Figure 5.7: A method () signature using an early (top) and the current (bot-
tom) Envision visual design.

We use a non-textual method header to enable programmers to more quickly
scan for methods. A typical feature for methods, as well as many other objects in
Envision, is the icon in the top-left corner, which is unique for a given programming
construct. Designing an icon for an abstract object like a method or a class is
challenging, because such an object typically has no inherent or commonly-accepted
representation that is easily recognized by people. For methods, we chose an icon
representing two interlocked gears, symbolizing the inner workings of a machine. To
the right of the icon come the method’s name, arguments, and return type. The
visual design of these objects has also evolved to reflect the design principle of
contrast. Initially the name used the same font size as the rest of the objects in
the method. The current version uses a much bigger font size, white text, and a
dark background, that make the name easy to read even when the view is zoomed
out and the body of the method is no longer readable. The list of arguments of the
method uses an alternating white-gray background, instead of commas, in order to
visually delineate the different list elements. By generally employing visual elements
such as outlines and colors, instead of textual symbols such as braces and commas,
we expect to enable parts of the code to be perceived more quickly thanks to the
well-developed human visual system. To further increase visual variety, we display an
argument’s name above the argument’s type, which also makes the list of arguments

5.2. DESIGN AND EVOLUTION 53

more compact.
Under the method header we place the rest of the components that comprise the

method’s logical signature. This is the list of annotations on the method and the
list of exceptions the method may throw. We separate the method’s signature from
its body with a dashed line.

Simple statements and expressions

Figure 5.8 shows the rendering of a few simple (non-compound) statements. They
resemble very closely how expressions are rendered in standard syntax-highlighted
text.

exp1
langjava.

Legend
LegendBase

visualizationLegend arg1
int

arg2
String

arg3
SomeClass

int

@ Override()
throws MyException

local1int
local1 ← 42

local2String ← arg2

printlnoutSystem. . ()"Arg1 is greater or equal 4"

1

arg1≥5

arg1<0

()arg1≥0∧ arg1<5

printoutSystem. . ()"Arg1 is within the proper range."

printlnoutSystem. . ()"Arg1 is negative"

⁺⁺arg1
fooarg3. ()arg1 local2

arg1<0

local3int ← bararg3. ()this local1

continue
i - 10%5 = 0

printlnoutSystem. . ()i
printlnoutSystem. . ()k

kint ← i k>0 k⁻⁻

iint ← 0 i<local3 i⁺⁺

foobararg3. ()arg1

throw newMyException()"State is invalid"

isInvalidarg3. ()

this

scSomeClass ← newSomeClass()
baz_resultObject ← bazsc. ()local1 this ∅ 0 arg2

local1 ← value()()Cell baz_result .

printlnoutSystem. . ()"Run-time exception"

eRuntimeException

printlnoutSystem. . ()"General exception exception"

eException

cleanuparg3. ()

local1

printlnoutSystem. . ()"10"
break

0

printlnoutSystem. . ()"20"

20

1

printlnoutSystem. . ()"Something else"

0

LegendBase

visualizationLegend arg1
int

arg2
String

arg3
SomeClass

int

throws MyException

0

SomeClass

foo arg1
int

arg2
String

void

bar l
Legend

value
int

int

0

foobar i
int

void

baz arg1
int

arg2
Legend

arg3
Legend

arg4
int

arg5
String

Cell

∅

isInvalid bool

true

cleanup void

Cell

int value

MyException
Throwable

MyException message
String

super()message

long serialVersionUID← 1L

Figure 5.8: Simple expressions in an early (left) and the current (right) Envision
visual design.

Envision allows improved visualizations of some symbols, independently of how
an expression is typed. For example, an assignment is shown using a left arrow (Ð),
an intuitive symbol that indicates the direction of data transfer and also used in
many textbooks for showing the pseudo code of algorithms. Users can continue to
type = to create assignments – the keystroke is independent of the visualization.
If this is confusing for a user, the presentation of assignments or the way to type
them can be customized on an individual basis.

In addition to using specialized symbols, we also eliminate semicolons as they are
unnecessary in a structured programming environment. To further increase visual
variety in the current design of Envision, we highlight variable declarations by using
a bold font.

Compound statements

All compound statements (e.g., if-statements, loops, or try-catch-blocks) in Envision
feature an outline, header, and a body. The outline and distinct background color
serve to indicate a new scope and visually separate the compound statement from its
surrounding statements. The header consists of a distinct icon in the top-left corner
and other expressions that are not part of the body, for example the condition of an
if-statement, or the initialization of a for-loop. While this basic design has persisted
throughout the different versions of Envision, we have iterated on particular details
of the design.

Figure 5.9 shows an if-statement with an else-if part and a final else branch.
From the user study we discuss in Section 5.3, we learned that the early design of
the if-statement’s rendering was confusing to users. In that design, then branches
and else-if branches had a green background color, while an else branch had a red
background. More problematic was the fact that an else branch had no icon. Instead,
else branches were separated with a dashed line from the then branch. While this
design has good visual variety, it confused programmers because it lacked consistency:
then and else-if branches could be identified by a distinct icon, whereas there was

54 CHAPTER 5. PROGRAM PRESENTATIONS

exp1
langjava.

Legend
LegendBase

visualizationLegend arg1
int

arg2
String

arg3
SomeClass

int

@ Override()
throws MyException

local1int
local1 ← 42

local2String ← arg2

printlnoutSystem. . ()"Arg1 is greater or equal 4"

1

arg1≥5

arg1<0

()arg1≥0∧ arg1<5

printoutSystem. . ()"Arg1 is within the proper range."

printlnoutSystem. . ()"Arg1 is negative"

⁺⁺arg1
fooarg3. ()arg1 local2

arg1<0

local3int ← bararg3. ()this local1

continue
i - 10%5 = 0

printlnoutSystem. . ()i
printlnoutSystem. . ()k

kint ← i k>0 k⁻⁻

iint ← 0 i<local3 i⁺⁺

foobararg3. ()arg1

throw newMyException()"State is invalid"

isInvalidarg3. ()

this

scSomeClass ← newSomeClass()
baz_resultObject ← bazsc. ()local1 this ∅ 0 arg2

local1 ← value()()Cell baz_result .

printlnoutSystem. . ()"Run-time exception"

eRuntimeException

printlnoutSystem. . ()"General exception exception"

eException

cleanuparg3. ()

local1

printlnoutSystem. . ()"10"
break

0

printlnoutSystem. . ()"20"

20

1

printlnoutSystem. . ()"Something else"

0

LegendBase

visualizationLegend arg1
int

arg2
String

arg3
SomeClass

int

throws MyException

0

SomeClass

foo arg1
int

arg2
String

void

bar l
Legend

value
int

int

0

foobar i
int

void

baz arg1
int

arg2
Legend

arg3
Legend

arg4
int

arg5
String

Cell

∅

isInvalid bool

true

cleanup void

Cell

int value

MyException
Throwable

MyException message
String

super()message

long serialVersionUID← 1L

Figure 5.9: An if-statement (?) with an else-if (?) and else branches () in
an early (left) and the current (right) Envision visual design.

no icon for signaling else branches. The current design of Envision corrects this
inconsistency by using an icon for else branches.

To improve the aesthetics of Envision, which participants in our study found
unappealing, we familiarized ourselves with basic graphic design principles [Wil14]
and applied them to the renderings of various programming constructs, includ-
ing compound statements. To improve consistency, we redesigned the icons of
if-statements and loops (Figure 5.10), removing text from the icons and giving them
a flatter appearance. We also adopted a universal line and icon separator design
for compound statements with multiple branches or bodies, such as if-statements,
switch-statements (Figure 5.11), or try-catch-finally blocks (Figure 5.12). Each
branch or body now appears under the previous one, separated by an uninterrupted
line, and marked with an icon to the left of the line. We deliberately made constructs
that serve similar semantic purpose look similar, while still giving them distinct icons,
for example, an if-statement with several else-if branches and switch-statements. To
improve the appeal of the design, we adjusted background and outline colors to a
more consistent palette, removing neon yellow colors, and the red/green backgrounds
of if-statements.

exp1
langjava.

Legend
LegendBase

visualizationLegend arg1
int

arg2
String

arg3
SomeClass

int

@ Override()
throws MyException

local1int
local1 ← 42

local2String ← arg2

printlnoutSystem. . ()"Arg1 is greater or equal 4"

1

arg1≥5

arg1<0

()arg1≥0∧ arg1<5

printoutSystem. . ()"Arg1 is within the proper range."

printlnoutSystem. . ()"Arg1 is negative"

⁺⁺arg1
fooarg3. ()arg1 local2

arg1<0

local3int ← bararg3. ()this local1

continue
i - 10%5 = 0

printlnoutSystem. . ()i
printlnoutSystem. . ()k

kint ← i k>0 k⁻⁻

iint ← 0 i<local3 i⁺⁺

foobararg3. ()arg1

throw newMyException()"State is invalid"

isInvalidarg3. ()

this

scSomeClass ← newSomeClass()
baz_resultObject ← bazsc. ()local1 this ∅ 0 arg2

local1 ← value()()Cell baz_result .

printlnoutSystem. . ()"Run-time exception"

eRuntimeException

printlnoutSystem. . ()"General exception exception"

eException

cleanuparg3. ()

local1

printlnoutSystem. . ()"10"
break

0

printlnoutSystem. . ()"20"

20

1

printlnoutSystem. . ()"Something else"

0

LegendBase

visualizationLegend arg1
int

arg2
String

arg3
SomeClass

int

throws MyException

0

SomeClass

foo arg1
int

arg2
String

void

bar l
Legend

value
int

int

0

foobar i
int

void

baz arg1
int

arg2
Legend

arg3
Legend

arg4
int

arg5
String

Cell

∅

isInvalid bool

true

cleanup void

Cell

int value

MyException
Throwable

MyException message
String

super()message

long serialVersionUID← 1L

Figure 5.10: Nested for-loops () in an early (left) and the current (right)
Envision visual design.

Miscellaneous

To further increase the visual variety of Envision’s visualizations we enhanced some
expressions with two additional visual components. First, we added background

5.2. DESIGN AND EVOLUTION 55

exp1
langjava.

Legend
LegendBase

visualizationLegend arg1
int

arg2
String

arg3
SomeClass

int

@ Override()
throws MyException

local1int
local1 ← 42

local2String ← arg2

printlnoutSystem. . ()"Arg1 is greater or equal 4"

1

arg1≥5

arg1<0

()arg1≥0∧ arg1<5

printoutSystem. . ()"Arg1 is within the proper range."

printlnoutSystem. . ()"Arg1 is negative"

⁺⁺arg1
fooarg3. ()arg1 local2

arg1<0

local3int ← bararg3. ()this local1

continue
i - 10%5 = 0

printlnoutSystem. . ()i
printlnoutSystem. . ()k

kint ← i k>0 k⁻⁻

iint ← 0 i<local3 i⁺⁺

foobararg3. ()arg1

throw newMyException()"State is invalid"

isInvalidarg3. ()

this

scSomeClass ← newSomeClass()
baz_resultObject ← bazsc. ()local1 this ∅ 0 arg2

local1 ← value()()Cell baz_result .

printlnoutSystem. . ()"Run-time exception"

eRuntimeException

printlnoutSystem. . ()"General exception exception"

eException

cleanuparg3. ()

local1

printlnoutSystem. . ()"10"
break

0

printlnoutSystem. . ()"20"

20

1

printlnoutSystem. . ()"Something else"

0

LegendBase

visualizationLegend arg1
int

arg2
String

arg3
SomeClass

int

throws MyException

0

SomeClass

foo arg1
int

arg2
String

void

bar l
Legend

value
int

int

0

foobar i
int

void

baz arg1
int

arg2
Legend

arg3
Legend

arg4
int

arg5
String

Cell

∅

isInvalid bool

true

cleanup void

Cell

int value

MyException
Throwable

MyException message
String

super()message

long serialVersionUID← 1L

Figure 5.11: A switch-statement (?) with two specified cases () and a default
case () in an early (left) and the current (right) Envision visual design.

exp1
langjava.

Legend
LegendBase

visualizationLegend arg1
int

arg2
String

arg3
SomeClass

int

@ Override()
throws MyException

local1int
local1 ← 42

local2String ← arg2

printlnoutSystem. . ()"Arg1 is greater or equal 4"

1

arg1≥5

arg1<0

()arg1≥0∧ arg1<5

printoutSystem. . ()"Arg1 is within the proper range."

printlnoutSystem. . ()"Arg1 is negative"

⁺⁺arg1
fooarg3. ()arg1 local2

arg1<0

local3int ← bararg3. ()this local1

continue
i - 10%5 = 0

printlnoutSystem. . ()i
printlnoutSystem. . ()k

kint ← i k>0 k⁻⁻

iint ← 0 i<local3 i⁺⁺

foobararg3. ()arg1

throw newMyException()"State is invalid"

isInvalidarg3. ()

this

scSomeClass ← newSomeClass()
baz_resultObject ← bazsc. ()local1 this ∅ 0 arg2

local1 ← value()()Cell baz_result .

printlnoutSystem. . ()"Run-time exception"

eRuntimeException

printlnoutSystem. . ()"General exception exception"

eException

cleanuparg3. ()

local1

printlnoutSystem. . ()"10"
break

0

printlnoutSystem. . ()"20"

20

1

printlnoutSystem. . ()"Something else"

0

LegendBase

visualizationLegend arg1
int

arg2
String

arg3
SomeClass

int

throws MyException

0

SomeClass

foo arg1
int

arg2
String

void

bar l
Legend

value
int

int

0

foobar i
int

void

baz arg1
int

arg2
Legend

arg3
Legend

arg4
int

arg5
String

Cell

∅

isInvalid bool

true

cleanup void

Cell

int value

MyException
Throwable

MyException message
String

super()message

long serialVersionUID← 1L

Figure 5.12: A try-catch-finally statement () with two catch blocks () and
a finally block () in an early (left) and the current (right) Envision visual
design.

colors for expressions that manipulate the heap, such as new-expressions, and
potentially dangerous expressions, such as casts. The former has a blue background
that can be seen in the first line of Figure 5.12 and the last line of Figure 5.13,
whereas the latter has a brown background that can be seen in the third line of
Figure 5.12. Second, we automatically increase blank spaces in more complex
expressions to indicate precedence. For example, the assert statement () near the
end of Figure 5.9 has a complex condition rendered with varying spaces. Since the
and-expression (shown as ^) binds less strongly than ě and ă, it is separated by
additional white space from its operands compared to the ě and ă operators.

Another noteworthy point regarding the evolution of Envision’s design is the
arrangement of top-level constructs such as methods, classes, or packages, within
their parent. Originally, Envision allowed such constructs to be freely positioned
at any point within the body of their parent. The parent and its shape would
automatically resize to fit all its children. While this design enabled higher visual
variety, it suffered from a flaw: children could overlap, which frequently occurred
inadvertently when adding more code to a child that had been placed near another
child. To avoid overlap, we could either automatically push children or use a more
restrictive, grid-based layout to dictate the position of children. Based on findings
by Henley and Fleming [HF14], we chose the latter design. They compared their
Patchworks code editor that has a 2ˆ 3 scrollable grid for showing code fragments
to the Code Bubbles [BZR`10] editor that allows free positioning of code fragments

56 CHAPTER 5. PROGRAM PRESENTATIONS

exp1
langjava.

Legend
LegendBase

visualizationLegend arg1
int

arg2
String

arg3
SomeClass

int

@ Override()
throws MyException

local1int
local1 ← 42

local2String ← arg2

printlnoutSystem. . ()"Arg1 is greater or equal 4"

1

arg1≥5

arg1<0

()arg1≥0∧ arg1<5

printoutSystem. . ()"Arg1 is within the proper range."

printlnoutSystem. . ()"Arg1 is negative"

⁺⁺arg1
fooarg3. ()arg1 local2

arg1<0

local3int ← bararg3. ()this local1

continue
i - 10%5 = 0

printlnoutSystem. . ()i
printlnoutSystem. . ()k

kint ← i k>0 k⁻⁻

iint ← 0 i<local3 i⁺⁺

foobararg3. ()arg1

throw newMyException()"State is invalid"

isInvalidarg3. ()

this

scSomeClass ← newSomeClass()
baz_resultObject ← bazsc. ()local1 this ∅ 0 arg2

local1 ← value()()Cell baz_result .

printlnoutSystem. . ()"Run-time exception"

eRuntimeException

printlnoutSystem. . ()"General exception exception"

eException

cleanuparg3. ()

local1

printlnoutSystem. . ()"10"
break

0

printlnoutSystem. . ()"20"

20

1

printlnoutSystem. . ()"Something else"

0

LegendBase

visualizationLegend arg1
int

arg2
String

arg3
SomeClass

int

throws MyException

0

SomeClass

foo arg1
int

arg2
String

void

bar l
Legend

value
int

int

0

foobar i
int

void

baz arg1
int

arg2
Legend

arg3
Legend

arg4
int

arg5
String

Cell

∅

isInvalid bool

true

cleanup void

Cell

int value

MyException
Throwable

MyException message
String

super()message

long serialVersionUID← 1L

Figure 5.13: A synchronized-statement () in an early (left) and the current
(right) Envision visual design.

on the screen and automatically pushes code aside to avoid overlaps. In their
experiments, Henley and Fleming found that developers could navigate more quickly
and precisely using Patchworks and that having a restricted set of positions (i.e.,
the grid) where code could be placed actually reduced the burden on developers to
arrange code on the screen.

Envision’s grid-based layout does not implement a traditional grid, but has a
major axis (usually the horizontal axis) and a minor axis (usually the vertical one).
The major axis determines in which list (column) a child element should be, while
the minor axis determines the position of the child within its list (column). An
example is illustrated in Figure 5.14. Unlike a traditional grid, the height of a row
in a column is independent from the heights of rows in other columns. Such a design
still enables developers to easily choose a slot for child elements like in Patchworks,
while producing a more compact overall appearance.

Figure 5.14: An example of Envision’s grid-based layout for arranging the chil-
dren of top-level programming constructs such as classes and packages.

Next, we present a user study that evaluated the early version of Envision’s rich
visualizations by comparing them to traditional syntax-highlighted text.

5.3 The effects of rich code presentations on
code comprehension
To evaluate whether the kinds or rich code presentations enabled by Envision can
be helpful to developers, in this section, we show two alternative presentations for
Java code in Envision and compare them to the default syntax highlighted text of
Eclipse. Our evaluation provides important evidence in an area that has scarcely
been empirically investigated. While recent research in programming environments

5.3. THE EFFECTS OF RICH CODE PRESENTATIONS 57

[BZR`10, DBR`12, HF14, LBM14, OLDR11, OVH15] has explored a variety of
novel techniques for visually navigating, augmenting, decorating, or abstracting code
fragments, all of these enhancements pertain either to visualizations external to
the code or to code fragment decorations, leaving the presentation of the actual
code unchanged, unlike Envision’s rich code presentations. To our knowledge no
study compared different visual code presentations of the same source code, while
keeping the programming paradigm and language constant across conditions. To
investigate improvements to code presentation as a way to complement other research
on development environments we pose the following research questions:

� RQ1: Do richer code visualizations affect the speed with which code features
can be detected?

� RQ2: Do richer code visualizations affect the ability to correctly answer
questions about code structure?

� RQ3: Do visually enhanced code constructs impair the readability of unen-
hanced ones (e.g., due to visual overload)?

Understanding code structure is part of more complex programming activities
that developers perform regularly. Therefore, we asked 15 questions about code
structure in a controlled study with 33 developers and compared their performance
when using traditional syntax highlighting to two richer code visualizations from
Envision. The results strongly indicate that Envision’s richer visualizations reduce
response times on a wide range of questions about code structure and do not lead to
visual overload, contrary to developers’ feedback.

5.3.1 Evaluation method
To determine if enhanced code presentations can help developers to more quickly
comprehend code, we conducted a controlled within-subjects experiment comparing
three different levels of visual variety. Below we provide details about the participants
and the various components of the experiment.

Experimental conditions

We showed participants screenshots of methods rendered with three different levels
of visual variety:

� v-low corresponds to the default Java syntax highlighting in Eclipse.

� v-med is a presentation from Envision, which adds additional visual enhance-
ments over v-low.

� v-high is also a presentation from Envision, which further increases visual vari-
ety over v-mid. This presentation is the early design discussed in Section 5.2.2.

Figure 5.15 illustrates the most important differences between the three levels. At the
time we conducted the experiment, v-high was Envision’s default code presentation,
and v-med was created by modifying only XML style files, without writing C++
customizations.

58 CHAPTER 5. PROGRAM PRESENTATIONS

String foo(int x, int y, String str)
{
 int prod = x*y;
 if (prod <= 0)
 return str;
 else if (x>42) {
 return String.valueOf(y);
 }

 throw new Error("error");
}

(a) v-low (Eclipse - default settings)

tiny-legend
langjava.

Legend

method String foo x
int

y
int

str
String

prodint ← x*y

return str

if prod≤0

return valueOfString. ()y
else if x>42

throw newError()"error"

A

B

C

D

(b) v-med (Envision - alternate settings)

tiny-legend
langjava.

Legend

String foo x
int

y
int

str
String

prodint ← x*y

str

prod≤0

valueOfString. ()y
x>42

throw newError()"error"

A

B

C

DE
F

G
H

(c) v-high (Envision - default settings)

Figure 5.15: A Java method rendered using three different levels of visual en-
hancements. v-low shows Eclipse using default settings. v-med shows a variant
of Envision with the following enhancements over v-low : (A) all lists use alter-
nating white and gray background instead of commas; (B) the names of formal
parameters appear above the types; (C) a dashed line separates the method
body from its signature; (D) blocks are visually outlined instead of showing curly
braces. v-high also shows a variant of Envision, with the following additional en-
hancements over v-med : (E) some constructs, like compound statements have
a background color; (F) many (but not all) keywords are replaced with icons;
(G) method and constructor calls have orange text; (H) some expressions have
a specific background color. The visualizations shown here are the ones from
our evaluation, but they use an outdated visual style; see Section 5.2 for more
details on Envision’s visual design.

5.3. THE EFFECTS OF RICH CODE PRESENTATIONS 59

Method screenshots

For each level, we took screenshots of 298 methods from the open-source Java text
editor jEdit. We chose the jEdit project in order to increase the ecological validity
of the experiment. We used all methods from the jEdit codebase that are complex,
but still fit on one screen, by selecting the ones that matched the following criteria:

� belong to the core jEdit packages: org.jedit or org.gjt.sp.jedit.

� have at least 2 parameters.

� have at least 3 block statements.

� screenshots in all three conditions have a size of at most 1920x1080 pixels so
that they fit fully on a standard monitor.

� do not have any syntactical features that are not yet supported by Envision
(anonymous classes, labels, final variables, long hex literals).

Some of the 298 methods that we selected required minor adjustments:

� All comments including Javadoc were removed, since Envision did not yet
support comments at arbitrary code locations (e.g., in the middle of expressions).
We have subsequently implemented support for Javadoc comments of methods
and comments of constructs within method bodies.

� Annotations that suppress warnings were removed.

� Rarely, a few lines inside of a method were manually rearranged in order to
make the method fit on the screen.

Participants

For our within-subjects study, we recruited 33 non-color blind participants with
at least 1 year of Java experience. Demographics and experience data about the
participants are shown in Table 5.1 and Figure 5.16.

min average (SD) max
Age (32 responses) 21 28 (5.1) 42
Experience with Java 1 5.5 (4.2) 20
Experience with any language 3 11 (6.2) 28
Professional experience 0 2 (2.7) 12
Experience with Eclipse 0 3.5 (2.2) 8

Table 5.1: The age and programming experience of participants in years. Except
for the first row, n “ 33.

60 CHAPTER 5. PROGRAM PRESENTATIONS

<2 2−5 5−10 10−20 20−40 >40

pa

rt
ic

ip
an

ts

0
4

8

Figure 5.16: Weekly average number of hours that participants spent program-
ming in the last 6 months.

Questions and experimental procedure

Each participant was presented with the 15 yes/no questions shown in Table 5.2 in
random order. Within each question, we showed participants 15 method screenshots
for each of the three visual variety levels. The order of the levels was randomized,
but all screenshots from one level were shown in succession. Thus participants saw
45 screenshots per question, all of which were of randomly chosen methods from
our pool of 298. In total we recorded 15 ˆ 3 ˆ 15 “ 675 answers per participant.
For each combination of question and visual variety level, we drop the first three
answers and average the remaining 12 for each participant in order to account for the
learning curve. The choice to remove 3 samples was made before the experiment was
conducted. We guarantee that the 45 methods that participants see for a particular
question are all different, but participants may see screenshots of the same method
in different questions. However, we believe this repetition has no effect, because
participants see each method only for a few seconds.

We iteratively designed the 15 questions so that they match the following criteria:

� simple: we ask only questions about method structure that can be answered
within several seconds without complex reasoning. This enables us to attribute
any differences to the speed of comprehension even when developers have very
different experience;

� matching visual enhancements: to test our hypotheses we need questions
pertaining to constructs that are either enhanced differently or unenhanced by
v-mid and v-high;

� practical and representative: Each question is a component of a practical
programming activity and similar low-level questions are typical when reading
code.

Such questions appear, for example, as parts of more complex questions that develop-
ers frequently ask during maintenance tasks as observed by Sillito et al. [SMDV06].
For instance, imagine a developer who is inspecting a method in order to improve its
performance. The developer is looking for time-consuming operations, such as loops,
especially nested loops (Q8), and calls to other methods, especially within loops
(Q13). Generally, questions about code structure occur frequently as sub-tasks of
many programming activities, such as looking up APIs (Q7, Q9), searching for errors
or exceptions (Q1, Q2, Q3, Q15), tracing local definitions (Q2, Q5), understanding
method structure and control flow (Q6, Q8, Q10, Q12, Q13, Q14), optimizing code
(Q8, Q13), and tracking object life-times and state (Q4, Q11).

5.3. THE EFFECTS OF RICH CODE PRESENTATIONS 61

Id Question

Q1 Does the method throw exceptions directly in its body using a throw statement?
Q2 Are all local variables immediately initialized (assigned) as part of their

declaration?
Q3 Is subtraction (-) used in an expression? Any use counts, for example: a-b, -1,

–i, x -= 3.
Q4 Is the ’this’ identifier used in the method?
Q5 Is there a local variable (not a method parameter) of type String?

Q6 Is there an if statement with an else branch? Both else, and if else count.
Q7 Is the type of the second method parameter ’int’?
Q8 Is there a loop nested inside another loop?
Q9 Does the method have exactly 3 parameters?
Q10 Is there a top-level loop (not nested inside any other statement) that appears

after some code containing an if-statement? The if-statement may be nested.

Q11 Does the method explicitly create new objects of any type, including arrays or
exceptions.

Q12 Does the method catch any exceptions?
Q13 Is there a loop that contains two or more method/constructor calls? The calls

can be anywhere inside the loop, including in nested statements, or arguments.
Q14 Are there multiple points from which the method can return (the end of the

body is usually one such point)? Throwing exceptions does not count.
Q15 Does the method use an explicit type cast?

Table 5.2: The questions about code structure that we asked in our study. These
are divided in three categories based on which visual variety levels enhance the
fragments of code relevant for answering: Q1-Q5: all visual variety levels use
the same textual (unenhanced) presentation; Q6-Q10: both v-med and v-high
provide substantial enhancements; Q11-Q15: only v-high provides a substantial
enhancement.

Before the study, participants received a brief introduction to the three code
presentations and were given four sheets (see Appendix A) that serve as a visual
legend that participants could use during the entire study. The study itself is
implemented as an OpenSesame [MST12] script, which also includes a brief tutorial
explaining the experiment and the interface of the experimental software. After the
main part of the study, participants were asked to rank the three different code
presentations, answer several Likert scale questions, provide demographics data,
and optionally provide free-form feedback. At the end we gave each participant a
chocolate bar as a gratitude for their efforts. To enable replication or additional
analysis, all data and scripts are available for download from [Env].

We make the following hypotheses:

� H1: Response times are faster in questions that pertain to visually enhanced
constructs (Q6-Q15).

� H2: Response times in questions pertaining to unenhanced constructs (Q1-Q5)
are unaffected by richer visualizations of other constructs.

� H3: Correctness is unaffected by richer visualizations.

62 CHAPTER 5. PROGRAM PRESENTATIONS

5.3.2 Results
Figure 5.17 shows a plot of the raw data we collected for both time and correctness,
whereas Figure 5.18 presents an estimation analysis of the response time. This
analysis avoids null-hypothesis significance testing, following Cumming [Cum14] and
Dragicevic [Dra16]. Null-hypothesis testing has been shown to yield imprecise results
in certain circumstances, where the resulting p-values could incorrectly suggest
significance or insignificance. This may happen when an experiment’s sample data
distribution does not precisely match the distribution of the real population. In
such cases, it is preferable to report confidence intervals, since they provide more
information about the experimental sample and a more informed basis for comparison
between samples. As the data of our experiment is not normally distributed we
use Wilcox’ robust bootstrapped estimation with trimmed means (B=2000, γ=.2)
[Wil12]. Response times across all visualizations are similar for questions Q1-Q5,
as expected, but also for Q6, even though it pertains to visually enhanced code.
This supports H2. For Q7-Q10, we observe that both v-med and v-high outperform
v-low. The reduction in mean response time is substantial and varies between 21%
and 63%. For Q11-Q15, we observe that v-high outperforms v-low and, except
for Q14, also v-med. Again, the reduction in mean response time is substantial:
between 29% and 75%. Except for Q6 the data supports H1.

Due to a clear ceiling effect, the correctness data is inconclusive. H3 seems to
hold for the simple questions that we asked, but this cannot be generalized for more
complex ones.

Participant Feedback

Overall, participants preferred v-med, which received the best average rank (2.4) on
a 1 to 3 scale, followed by v-high (2.0) and v-low (1.7). The participants commented
that v-med was helpful while still feeling more familiar than v-high.

Figure 5.19 shows responses to three Likert scale questions regarding the default
visualizations of Envision. Participants found Envision’s icons and symbols easy to
remember, but gave a mixed assessment for how easy it is to remember Envision’s
colors. Overall, participants reported that Envision’s visualizations make method
feature understanding easier compared to Eclipse.

30 out of the 33 participants provided textual feedback. 20 users found some
aspects of v-med and v-high helpful. A clear theme from 23 responses is that v-high
can sometimes feel overwhelming. 9 participants indicated that they would prefer
a version that is a mix between v-med and v-high, primarily toning down (but
not completely removing) colors and icons. 3 participants said they imagine using
enhanced visualization levels, but only for viewing code (e.g., code review) and they
would rather write code using a traditional notation. 5 participants stated that the
rendering of else branches, using a dashed lined instead of an icon, is confusing,
which might explain the insignificant differences in Q6. We have since improved the
visualization of if-statements in Envision as discussed in Section 5.2.2.

5.3.3 Discussion
RQ1: In every question we investigated, increasing visual variety over v-low either
had no effect, or substantially reduced the time to detect structural features of
methods. The same effect was also observed when switching from v-med to v-high.

5.3. THE EFFECTS OF RICH CODE PRESENTATIONS 63

unenhanced

X

enhanced
by v-med
and v-high

enhanced
mainly by
v-high

response time [s] % correct

40 60 80 1000 5 10 15

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

Q9

Q10

Q11

Q12

Q13

Q14

Q15

v-low

v-high
v-med

Figure 5.17: Box plots (n “ 33) of response time and correctness per question
and tool. The ˆ indicates two out-of-graph outliers at 19.4s and 17.3s. We
observe that increasing the level of visual variety lowers response times and does
not affect correctness due to a clear ceiling effect. The whiskers represent the
lowest/highest data points still within 1.5 ˆ interquartile range (IQR) of the
lower/upper quartile.

64 CHAPTER 5. PROGRAM PRESENTATIONS

unenhanced

enhanced
by v-med
and v-high

enhanced
mainly by
v-high

Q11

Q12

Q13

Q14

Q15

Q6

Q7

Q8

Q9

Q10

Q1

Q2

Q3

Q4

Q5

1 2 3 4 5 6 7 8 9

v−low

v−med

v−high

response time [s]

Figure 5.18: Estimated mean response times and 95% confidence intervals. A
bootstrapped, trimmed means approach was used (B=2000, γ=.2).

The results show a medium to large reduction in response time (21%-75% or 0.5 - 5
seconds) in Q7-Q15. We believe that developers will ask similar low-level questions
often, resulting in a tangible benefit. Richer visualizations can help to more quickly
detect method features and we speculate that this might help developers maintain a
state of flow and improve productivity.

RQ2: For the simple questions that we asked, participants almost always provided
a correct answer, which resulted in a strong ceiling effect in the correctness data.
This suggests that for such simple questions, traditional and richer visualizations
are equally able to guide developers to the correct answer. It remains to be further
investigated, what effect richer visualizations might have for more complex questions.

RQ3: The most interesting finding is that richer visualizations did not cause any
measurable visual overload, even in Q1-Q5, where answers pertain to unenhanced
constructs. This finding represents a mismatch between the performance of partici-
pants, which was best with v-high, and their overall preference for v-med as well as
the feedback of 23 participants, who reported some sort of subjective visual overload

5.3. THE EFFECTS OF RICH CODE PRESENTATIONS 65

re

sp
on

se
s

10

0

10

20

30

icons colors Eclipse
−2 (very difficult) −1 0 1 2 (very easy)

Figure 5.19: Responses for the three likert scale questions about v-high (Envi-
sion’s default visualizations): “How easy was it to remember Envision’s icons
and symbols?”; “How easy was it to remember Envision’s colors?”; “Overall,
how easy was it to understand Envision’s visualizations compared to Eclipse?”

or confusion. The open-ended feedback reveals three main factors that contribute to
the participants’ preference of v-med over v-high:

� Aesthetics: icons and colors in v-high were often criticized for being unappealing
and messy.

� Else visualization: some participants specifically pointed out the inconsistent
visualization of if-statements with else branches.

� Familiarity: v-med is closer to standard syntax highlighting and participants
found v-med more intuitive.

This suggests that aesthetics and the users’ feeling about a design are important for
adoption: an unappealing design will likely not be used even if it can be helpful. It
is worth investigating whether a visualization that is more aesthetically appealing
than v-high, but with a similar visual variety, will be more popular. Since we
conducted the study, we have updated Envision’s design to make it more appealing
and consistent, but we have not evaluated this new version.

Limitations

Our study has several limitations.
First, we tested the participants’ responses on a limited number of questions in

a controlled setting. We observed a ceiling effect in that developers almost always
answered our simple questions about code structure correctly. It is possible that
richer visualizations may make it harder to answer other types of questions or high-
level questions about code. To increase the applicability of our findings we picked
questions that occur as components of more high-level regular programming tasks.
Thus, we believe that it is unlikely that other types of questions will be negatively
affected by our richer visualizations of code.

66 CHAPTER 5. PROGRAM PRESENTATIONS

Second, we draw all our sample methods from a particular Java code base, and
results might not generalize to other code or other languages. To increase ecological
validity we used an established, large, and actively maintained open-source project.
Participants used v-low screenshots of the code as it was formatted by the developers
of jEdit. Formatting is important for comprehension and it is possible that a different
formatting style will significantly affect the responses. The original formatting of the
code only slightly affects v-med and v-high, as only empty lines from the original
sources are preserved and everything else is automatically laid out by Envision’s
visualization framework.

Third, as Envision does not fully support Java yet and does not allow comments
in arbitrary places in the code, we had to filter and slightly alter the source code as
described earlier. To mitigate any consequences of this limitation, we performed all
code manipulations for all three visual variety levels.

Fourth, we measure only code comprehension. Nevertheless, reading code is an
inherent part in most programming activities including writing, debugging, and
testing, which suggests that improved visualizations could have an overall productivity
benefit.

Fifth, more generally, rich presentations of code need to be studied further. The
two such presentations that we evaluated performed well overall, but participants
identified issues with the readability of specific programming constructs (e.g., else
blocks) and there was a general consensus that the visualizations were not aes-
thetically appealing. While our code presentations included a variety of graphical
elements such as outlines, colors, icons, and non-linear layouts, we only evaluated the
presentations as a whole and cannot directly determine how individual graphical ele-
ments affect performance. Our findings should guide further exploration of rich code
presentations. First, it is worth carrying more fine-grained experiments investigating
the effect of individual graphical improvements, for example, outlines. Second, it
is worth experimenting with more appealing visualizations. We speculate that as
the visual appeal and coherence of code presentations increases, the visualizations
will be better accepted by programmers and would yield even higher efficiency gains.
Since the study, we have updated the visual design of Envision to make it more
appealing and consistent, but we have not yet evaluated the improved visual design.

Recommendations for tool designers

Based on our results we make two recommendations for tool designers.
Our results show that v-high outperformed v-med. This is in line with Bertin’s

SoG theory [Ber83] which suggests that increased color variety can improve percep-
tion, and extensive use of color is the major difference between v-med and v-high.
Based on these findings we recommend that designers of text editors boost the syntax
highlighting capabilities of their tools by using a wider variety of colors by default
and enabling the highlighting of more constructs. For example, designers could
enable different highlighting for different keywords, identifiers, and code blocks. Our
recommendation is practical since syntax highlighting is universal and improving
it requires only marginal effort while being risk-free: one could simply revert to a
classical coloring theme.

Generally, tool designers are encouraged to experiment with non-textual visu-
alizations or visually-rich editors that allow flexible program rendering and, thus,
increased visual variety. Our results show that using more visual elements such

5.4. USING CONTEXT-SENSITIVE CUSTOMIZATIONS 67

as colors, icons, outlines, and non-linear arrangement of constructs can speed up
detection of code features. Visually-enhanced programming environments can also
provide advantages beyond the single methods which we evaluated in our study, for
example, by improving navigation [BZR`10, HF14] or by enabling context-specific
visualizations for domain-specific APIs and languages as we show next.

5.4 Using context-sensitive customizations
In this section, we demonstrate one of the more advanced aspects of Envision’s
context-sensitive visualizations: customizing the presentation of code that uses a
specific API or DSL. Large software systems frequently make use of specialized
APIs or DSLs to describe specific aspects of the system in a concise way. Examples
include DSLs for specifying database queries, business processes, or security policies.
Generally, there are two approaches to using domain-specific functionality:

� Use an external DSL (e.g., SQL in the domain of database queries), which allows
programmers to concisely express high-level concepts from a particular domain
in a (textual or graphical) notation that is suitable for that domain. Code
written in such DSLs has been shown to be easier to comprehend [KMC12] than
equivalent code in a general-purpose language. However, external DSLs require
their own tool support such as parsers, code generators, etc., which makes their
development costly. Additionally, external DSLs cannot be easily intermixed
with code from other languages and domains, which makes interoperability
more difficult.

� Use domain-specific abstractions, APIs, and embedded DSLs implemented as
libraries in a general-purpose language, such as Querydsl [Que] for database
queries in Java. This approach leverages the tool infrastructure of the host
language, but also restricts the syntax and IDE support to that of the host
language. Even though some host languages such as Python and Scala provide
ways to customize syntax for embedded DSLs, for instance, through operator
overloading, they do not fully support specialized notations. For instance,
SQL’s WHERE clause is implemented as a method call in Querydsl and treated
as such by the IDE. Therefore, the IDE offers neither specific visualizations
nor interactions for domain-specific code, missing potential opportunities to
improve productivity.

Envision’s support for customizations enables developers to combine both ap-
proaches: to implement domain-specific functionality as a library, but still design
customized interfaces for accessing this functionality. For example, it is possible
to display and edit a call to Querydsl’s where method in the familiar SQL syntax.
Domain-specific interfaces give library APIs and embedded DSLs much of the flexibil-
ity of external DSLs, while retaining the benefits of operating inside a host language
supported by an IDE.

In the remainder of this section, we demonstrate the usefulness of Envision’s
context-sensitive interfaces by customizing the tool’s visualizations and interac-
tions for Microsoft’s Code Contracts library for .NET. A video demonstrating our
customizations can be seen at youtu.be/GD0W5HEteu8.

https://youtu.be/GD0W5HEteu8

68 CHAPTER 5. PROGRAM PRESENTATIONS

5.4.1 Code Contracts for .NET
The .NET Code Contracts library [FBL10, Codb] allows programmers to annotate
code with assertions such as method pre and postconditions. Most assertions are
expressed via calls to static methods of a class Contract as illustrated by Figure 5.20.
Due to the library approach, the code annotated with Code Contracts remains
standard C# code and can be handled by the standard compiler. Additional tools
support documentation generation, run-time checking, static analysis, and automatic
test case generation.

public int factorial(int x) {
Contract.Requires(x >= 0);
Contract.Ensures(Contract.Result<int>()>0);
return x <= 1 : 1 ? x * factorial(x - 1);

}

CustomizationDemo

Client
ContractCodeContracts.

Car

travel numPassengers
int

int

RequiresContract. ()fuel>0
RequiresContract. ()numPassengers>0
EnsuresContract. ()fuel< OldValueContract. ()fuel
EnsuresContract. ()ResultContract. ⟨ ⟩int ()>0

int fuel

SelfDrivingCar
Car

travel numPassengers
int

int

RequiresContract. ()numPassengers≥0

SelfDrivingBus
SelfDrivingCar

travel numPassengers
int

int

ICalc
ContractClassContract. ()ICalcContracts

op x
int

y
int

int

ICalcContracts
ICalc

ContractClassForContract. ()ICalc

op x
int

y
int

int

RequiresContract. ()x≠y

0

Paper

min_max a
int

b
int

min↲

int
max↲

int

EnsuresContract. ()ValueAtReturnContract. ()min ≤ ValueAtReturnContract. ()max

max ← a
min ← b

a>b

max ← b
min ← a

factorial x
int

int

RequiresContract. ()x≥0
EnsuresContract. ()ResultContract. ⟨ ⟩int ()>0

x≤1 ? 1 : x*factorial()x-1

append x
int

EnsuresContract. ()elements [size-1] = x
EnsuresContract. ()size = OldValueContract. ()size +1

elements[size⁺⁺] ← x

CodeContracts

Contract

Requires precondition
bool

@ EnvisionKeywordVisualization()"contracts/requires"
EnvisionShortcut()"requires"

Ensures postcondition
bool

@ EnvisionKeywordVisualization()"contracts/ensures"
EnvisionShortcut()"ensures"

Result T

@ EnvisionKeywordVisualization()"contracts/result"
EnvisionShortcut()"result" 1

OldValue T variable
T

@ EnvisionKeywordVisualization()"contracts/old"
EnvisionShortcut()"old"

ValueAtReturn T argument
T

@ EnvisionKeywordVisualization()"contracts/out"

ContractClass class
Class

ContractClassFor class
Class

ForAll T collection
IEnumerable⟨ ⟩T

predicate
Predicate⟨ ⟩T

ForAll begin
int

end
int

predicate
Predicate⟨ ⟩int

Exists T collection
IEnumerable⟨ ⟩T

predicate
Predicate⟨ ⟩T

Exists begin
int

end
int

predicate
Predicate⟨ ⟩int

Figure 5.20: A C# factorial method using a standard textual notation and the
equivalent (non-customized) presentation in Envision. The first two statements
are calls to Code Contract methods to express the pre and postcondition of the
method. The call to Result in the postcondition refers to the return value of
the method; its type argument is needed to satisfy the type system of the host
language.

The small example in Figure 5.20 already demonstrates three issues of Code
Contracts’ APIs:

� (A) Code Contracts are quite verbose compared to contract languages with
designated syntax such as Eiffel.

� (B) The notation is sometimes inconvenient since it needs to satisfy the rules
of the host language; for instance, the call to Result requires a type argument
even though it is always the result type of the enclosing method. Even bigger
inconvenience occurs for interfaces and out-parameters, as we illustrate later.

� (C) Calls encoding pre and postconditions occur within the method body,
although conceptually they belong to the client-visible method signature.

In the rest of this section, we will show how to customize Envision in three steps to
address these issues and to give Code Contracts the convenience of native language
support despite being just a library.

5.4. USING CONTEXT-SENSITIVE CUSTOMIZATIONS 69

5.4.2 Custom visualizations for contract methods
Following concept 1 from Section 5.1.1, we do not simply visualize calls to contract
methods in C# syntax, but apply custom visualizations (here, based on the target
method of the call). To address issue (C) above, we visualize these calls as part
of the method signature, separated from the body by a dashed line. Associating
contracts with the method signature is not only conceptually sound, but may also
have other positive effects. For example, a special view with an overview purpose
that shows only method signatures would now also include the contracts. Moreover,
to address issue (A) above, we visualize calls to contract methods using a keyword
style. The effect of these customizations is shown in Figure 5.21.

CustomizationDemo

Client
ContractCodeContracts.

Car

travel numPassengers
int

int

requires fuel>0
requires numPassengers>0
ensures fuel< OLDfuel
ensures result >0

int fuel

SelfDrivingCar
Car

travel numPassengers
int

int

requires numPassengers≥0

SelfDrivingBus
SelfDrivingCar

travel numPassengers
int

int

ICalc

op x
int

y
int

int

requires x≠y

ICalcContracts
ICalc

op x
int

y
int

int

requires x≠y

0

Paper

min_max a
int

b
int

min↲

int
max↲

int

ensures ↲min ≤ ↲max

max ← a
min ← b

a>b

max ← b
min ← a

factorial x
int

int

requires x≥0
ensures result >0

x≤1 ? 1 : x*factorial()x-1

append x
int

ensures elements [size-1] = x
ensures size = OLDsize +1

elements[size⁺⁺] ← x

CodeContracts

Contract

Requires precondition
bool

@ EnvisionKeywordVisualization()"contracts/requires"
EnvisionShortcut()"requires"

Ensures postcondition
bool

@ EnvisionKeywordVisualization()"contracts/ensures"
EnvisionShortcut()"ensures"

Result T

@ EnvisionKeywordVisualization()"contracts/result"
EnvisionShortcut()"result" 1

OldValue T variable
T

@ EnvisionKeywordVisualization()"contracts/old"
EnvisionShortcut()"old"

ValueAtReturn T argument
T

@ EnvisionKeywordVisualization()"contracts/out"

ContractClass class
Class

ContractClassFor class
Class

ForAll T collection
IEnumerable⟨ ⟩T

predicate
Predicate⟨ ⟩T

ForAll begin
int

end
int

predicate
Predicate⟨ ⟩int

Exists T collection
IEnumerable⟨ ⟩T

predicate
Predicate⟨ ⟩T

Exists begin
int

end
int

predicate
Predicate⟨ ⟩int

Figure 5.21: The factorial method from Figure 5.20 with custom visualizations.
Contracts are visualized using keywords and visually separated from the method
body. Contracts remain editable directly in this new form and new contracts
can be created using shortcut keywords as described in Section 5.4.4.

Displaying contracts as part of the method signature is achieved by composing
customizations according to concept 6. All visualizations in Envision have slots for
optional add-ons, which are simply other visual items. Add-ons allow one to display
additional information within a visualization. For contracts, we created an add-on
for methods that displays additional items in the signature. This add-on reuses
the existing visualization of the (entire) method body. To avoid that the method
body is visualized twice, we apply list filtering as a second customization. Envision
allows visualizations of list nodes to filter which elements get displayed. For method
contracts, we installed a filter for statement lists that is sensitive to the visualization
context (see concept 4 from Section 5.1.1): If the visualization appears in a method
signature, only contract calls are displayed; otherwise, everything except contract
calls is shown. Together, these two customizations render contracts as part of the
method signature. The customizations are implemented in the ContractsLibrary
plug-in, which needs to be distributed together with the library.

To apply the keyword style for contract methods, we apply a built-in visualization
that shows method calls as keywords instead of using the normal method name. To
change the visualization of all calls to a method, the method’s definition simply
needs to be annotated with the attribute EnvisionKeywordVisualization(style
). Here, style identifies a style in an XML file that allows visualizations to be
easily configured without recompilation. It is possible to change the text, font, color,
background, placement, and other parameters. It is also possible to specify an icon
instead of text. The complete style for preconditions is shown in Figure 5.22; it
specifies the keyword requires and uses defaults for all other parameters of the
style.

70 CHAPTER 5. PROGRAM PRESENTATIONS

<style prototypes="default"><keyword>
<symbol>requires</symbol>

</keyword></style>

Figure 5.22: The style for precondition visualizations.

To illustrate the flexibility of visualization styles, consider the example in Fig-
ure 5.23. The second postcondition refers to the value of the size field, at the time
of the method call, the so-called old value of size. In C# syntax, the old value
is denoted by Contract.OldValue(size). Again, we apply a context-dependent
visualization, which renders calls to OldValue using the superscript keyword OLD.

CustomizationDemo

Client
ContractCodeContracts.

Car

travel numPassengers
int

int

requires fuel>0
requires numPassengers>0
ensures fuel< OLDfuel
ensures result >0

int fuel

SelfDrivingCar
Car

travel numPassengers
int

int

requires numPassengers≥0

SelfDrivingBus
SelfDrivingCar

travel numPassengers
int

int

ICalc

op x
int

y
int

int

requires x≠y

ICalcContracts
ICalc

op x
int

y
int

int

requires x≠y

0

Paper

min_max a
int

b
int

min↲

int
max↲

int

ensures ↲min ≤ ↲max

max ← a
min ← b

a>b

max ← b
min ← a

factorial x
int

int

requires x≥0
ensures result >0

x≤1 ? 1 : x*factorial()x-1

append x
int

ensures elements [size-1] = x
ensures size = OLDsize +1

elements[size⁺⁺] ← x

CodeContracts

Contract

Requires precondition
bool

@ EnvisionKeywordVisualization()"contracts/requires"
EnvisionShortcut()"requires"

Ensures postcondition
bool

@ EnvisionKeywordVisualization()"contracts/ensures"
EnvisionShortcut()"ensures"

Result T

@ EnvisionKeywordVisualization()"contracts/result"
EnvisionShortcut()"result" 1

OldValue T variable
T

@ EnvisionKeywordVisualization()"contracts/old"
EnvisionShortcut()"old"

ValueAtReturn T argument
T

@ EnvisionKeywordVisualization()"contracts/out"

ContractClass class
Class

ContractClassFor class
Class

ForAll T collection
IEnumerable⟨ ⟩T

predicate
Predicate⟨ ⟩T

ForAll begin
int

end
int

predicate
Predicate⟨ ⟩int

Exists T collection
IEnumerable⟨ ⟩T

predicate
Predicate⟨ ⟩T

Exists begin
int

end
int

predicate
Predicate⟨ ⟩int

Figure 5.23: A keyword visualization with a different style – old is rendered as
a superscript.

Note that all of these visualizations are fully interactive following concept 5:
contracts can be added, edited, and removed directly in the signature. To add
a contract, the user can either type the method call as usual or use the shortcut
shown in Section 5.4.4, after which the call will be automatically visualized using
the keyword presentation. Once this presentation is used by the system, the pre and
postcondition expressions can be edited normally using the keyboard.

5.4.3 Custom visualizations for interfaces
Since interface methods do not have bodies, there is no place in the interface definition
where one could write calls to contract methods. To work around this limitation,
Code Contracts force developers to create a dummy contract class that implements
the interface and whose sole purpose is to contain the contracts. This special contract
class and the interface are linked by attributes as shown in Figure 5.24. This solution
requires a lot of boilerplate code and makes reading the contracts of an interface
difficult.

To address issue (B) above and shield the programmer from this inconvenient
notation, we perform two customizations. First, we create another add-on for
methods. It is active within the context of interface method declarations and
displays the contracts from the associated contract class, as shown in Figure 5.25.
This example illustrates that visualizations may depend on the entire AST (see
concept 4 from Section 5.1.1), in this case, code contained in a different class. Again,
this visualization is fully interactive according to concept 3: programmers may edit
the contracts using the add-on, as if the contracts were specified in the interface
itself. Second, in line with concept 3, we hide the contract class entirely as it is no

5.4. USING CONTEXT-SENSITIVE CUSTOMIZATIONS 71

[ContractClass(typeof(ICalcContract))]
interface ICalc {

int op(int x, int y);
}

[ContractClassFor(typeof(ICalc))]
abstract class ICalcContract : ICalc
{

int ICalc.op(int x, int y)
{

Contract.Requires(x != y);
return 0;

}
}

Figure 5.24: An interface with an associated contract class. The attributes
in square brackets link the interface and the class. The return statement is
necessary to satisfy the C# compiler.

longer necessary and also omit the attribute in the interface referring to that class.
Both of these customizations are implemented in the ContractsLibrary plug-in.

5.4.4 Custom interactions for contract methods
In order to help with writing contracts, we have also introduced new interactions.

First, contract method calls can be created by simply typing a keyword preceded
by a backslash, e.g., \requires for preconditions. This feature resembles code
snippets in modern IDEs, but registering such shortcuts in Envision can be done by
library developers by simply annotating the method for which they want a shortcut.

CustomizationDemo

Client
ContractCodeContracts.

Car

travel numPassengers
int

int

requires fuel>0
requires numPassengers>0
ensures fuel< OLDfuel
ensures result >0

int fuel

SelfDrivingCar
Car

travel numPassengers
int

int

requires numPassengers≥0

SelfDrivingBus
SelfDrivingCar

travel numPassengers
int

int

ICalc

op x
int

y
int

int

requires x≠y

ICalcContracts
ICalc

op x
int

y
int

int

requires x≠y

0

Paper

min_max a
int

b
int

min↲

int
max↲

int

ensures ↲min ≤ ↲max

max ← a
min ← b

a>b

max ← b
min ← a

factorial x
int

int

requires x≥0
ensures result >0

x≤1 ? 1 : x*factorial()x-1

append x
int

ensures elements [size-1] = x
ensures size = OLDsize +1

elements[size⁺⁺] ← x

CodeContracts

Contract

Requires precondition
bool

@ EnvisionKeywordVisualization()"contracts/requires"
EnvisionShortcut()"requires"

Ensures postcondition
bool

@ EnvisionKeywordVisualization()"contracts/ensures"
EnvisionShortcut()"ensures"

Result T

@ EnvisionKeywordVisualization()"contracts/result"
EnvisionShortcut()"result" 1

OldValue T variable
T

@ EnvisionKeywordVisualization()"contracts/old"
EnvisionShortcut()"old"

ValueAtReturn T argument
T

@ EnvisionKeywordVisualization()"contracts/out"

ContractClass class
Class

ContractClassFor class
Class

ForAll T collection
IEnumerable⟨ ⟩T

predicate
Predicate⟨ ⟩T

ForAll begin
int

end
int

predicate
Predicate⟨ ⟩int

Exists T collection
IEnumerable⟨ ⟩T

predicate
Predicate⟨ ⟩T

Exists begin
int

end
int

predicate
Predicate⟨ ⟩int

Figure 5.25: The ICalc interface from Figure 5.24 with a contract visualization
add-on. The corresponding contract class is hidden as it is no longer needed.

72 CHAPTER 5. PROGRAM PRESENTATIONS

CustomizationDemo

Client
ContractCodeContracts.

Car

travel numPassengers
int

int

requires fuel>0
requires numPassengers>0
ensures fuel< OLDfuel
ensures result >0

int fuel

SelfDrivingCar
Car

travel numPassengers
int

int

requires numPassengers≥0

SelfDrivingBus
SelfDrivingCar

travel numPassengers
int

int

ICalc

op x
int

y
int

int

requires x≠y

ICalcContracts
ICalc

op x
int

y
int

int

requires x≠y

0

Paper

min_max a
int

b
int

min↲

int
max↲

int

ensures ↲min ≤ ↲max

max ← a
min ← b

a>b

max ← b
min ← a

factorial x
int

int

requires x≥0
ensures result >0

x≤1 ? 1 : x*factorial()x-1

append x
int

ensures elements [size-1] = x
ensures size = OLDsize +1

elements[size⁺⁺] ← x

CodeContracts

Contract

Requires precondition
bool

@ EnvisionKeywordVisualization()"contracts/requires"
EnvisionShortcut()"requires"

Ensures postcondition
bool

@ EnvisionKeywordVisualization()"contracts/ensures"
EnvisionShortcut()"ensures"

Result T

@ EnvisionKeywordVisualization()"contracts/result"
EnvisionShortcut()"result" 1

OldValue T variable
T

@ EnvisionKeywordVisualization()"contracts/old"
EnvisionShortcut()"old"

ValueAtReturn T argument
T

@ EnvisionKeywordVisualization()"contracts/out"

ContractClass class
Class

ContractClassFor class
Class

ForAll T collection
IEnumerable⟨ ⟩T

predicate
Predicate⟨ ⟩T

ForAll begin
int

end
int

predicate
Predicate⟨ ⟩int

Exists T collection
IEnumerable⟨ ⟩T

predicate
Predicate⟨ ⟩T

Exists begin
int

end
int

predicate
Predicate⟨ ⟩int

(a)

HelloWorld

CodeContracts

Contract

Requires precondition
bool

Ensures postcondition
bool

Result T

OldValue T variable
T

ContractClass class
Class

ContractClassFor class
Class

ValueAtReturn T argument
T

Car

fuel int
travel numPassengers

int

int requires fuel>0
requires numPassengers>0
ensures fuel< OLDfuel
ensures result>0

SelfDriv ingCar Car

travel numPassengers
int

int requires numPassengers≥0

MinMax

minMax x
int

y
int

min
int

max
int

ensures ↲min ≤ ↲max

a>b

←max a
←min b

←max b
←min a

ensures mi
ensures ↲min
ensures mini

ICalc

op x
int

y
int

int requires x≠y

ContractClassContractCodeContracts. . ()ICalcContracts

ICalcContracts ICalc

op x
int

y
int

int requires x≠y

ContractClassForContractCodeContracts. . ()ICalc

(b)

Figure 5.26: Wrapped references to the min and max out-parameters (a) and
automatic wrapping/unwrapping during typing (b).

In the case of preconditions the annotation is EnvisionShortcut("requires"). If
multiple libraries register the same shortcut the current implementation simply uses
the last registered one, though it is possible to implement better conflict management.

Second, we customize expression editing to reduce typing in certain cases. Post-
conditions in Code Contracts may refer to out-parameters. Since postconditions
appear at the beginning of the method bodies, the C# compiler complains that
the value of an out-parameter appears to be read before it is initialized. The Code
Contracts solution is to wrap all such accesses to out-parameters in a call to the
Contract.ValueAtReturn method. In our custom visualization, we omit these calls,
but we make them explicit in Figure 5.26a using a ’ê’ icon for better illustration.
The same icon is used to indicate which parameters are out-parameters. To ad-
dress issue (B) above and avoid the inconvenience of calls to the ValueAtReturn
method, Envision does not only omit them in visualizations, but also inserts them
automatically when the programmer types an out-parameter within a postcondition.
Following concept 5 from Section 5.1.1, we achieve this by adding a listener for
expression modifications implemented in the ContractsLibrary plug-in. If a method
call to the Ensures method is edited, its arguments are “sanitized”: all accesses to
output arguments are wrapped, all other accesses are unwrapped. For instance,
assume a programmer types mini within a postcondition of the min_max method
as shown in Figure 5.26b. When the programmer types the ‘n’ key, the symbol is
resolved to an out-parameter and automatically wrapped. As soon as the second ‘i’
is typed, the symbol will be unwrapped as it no longer refers to an out-parameter.

5.4.5 Discussion and limitations
One of the major goals for Envision is to make the environment very customizable.
We believe our design largely achieves this goal. Even though we demonstrated only
a single use case for customization, we used a variety of techniques and were able to
customize visualizations as we wanted, without modifying the underlying program
model in any way.

A second design goal for Envision is making customization easy. Here, we achieve
mixed results. While Envision offers many abstractions that simplify customizations,

5.5. RELATED WORK 73

most customizations need to be implemented via plug-ins, which requires customiza-
tion designers to be familiar with Envision’s C++ implementation and APIs. This
makes especially personal customzations less practical. Further effort is needed to
support additional customization methods that enable ordinary users to personalize
their environment without the need to write plug-ins.

Finally, the context-sensitive nature of visualizations may also cause ambiguities at
times when there is no most specific context. For example, if a programming construct
has a specialized visualization for zoomed-out views and also has a specialized
visualization for the debug purpose, it is not clear which of these two visualizations
should be used in a zoomed-out debug view. We currently resolve this in Envision
by prioritizing some context types over others in the visualization scoring strategy
and by enabling users to manually pick a visualization. The scoring strategy can
be configured, but there is no clear priority order between the different contexts
and perhaps there are even more suitable ways to disambiguate between available
visualizations.

5.5 Related work
5.5.1 Evaluating code visualizations
Green and Petre [GP92, GP96] and Whitley et al. [WNF06] show that the usability of
notations varies with the programmer’s task, and neither textual nor visual notations
are generally superior. However, they analyze notations for distinct programming
models, and do not compare different notations for a single programming language.
Hendrix et al. [HCM02] show that a control structure diagram of the code, embedded
in the indentation area to the left of the text, can improve comprehension. However,
the code itself is presented as plain text without even syntax highlighting. Feigenspan
et al. [FKA`13] investigate a specific use of color showing that different backgrounds
for the components of a software product line help to identify which component
some code belongs to.

In the first study of syntax highlighting that we are aware of, Hakala et al. [HNS06]
investigate users’ performance using the default coloring scheme of the Vim code
editor, code without highlighting, and one other coloring scheme. Surprisingly, they
found no overall difference between the three schemes. The only other two studies
of syntax highlighting that we know of, focus on eye tracking [Sar15] and a specific
programming domain [Dim15]. Both suggest benefits of syntax highlighting, but they
only compare plain text to syntax highlighting, unlike our study which compares
syntax highlighting to richer visualizations.

Conversy [Con14] proposed a framework based on the Semiology of Graphics
(SoG) [Ber83] to model the visual perception of code. SoG recognizes seven visual
variables: shape, luminosity, color, position, size, orientation, and linking marks. In
our work, increasing levels of visual variety correspond to more extensive use of these
visual variables, which Conversy suggests can improve the performance of readers.

Nuñez and Kiczales [NK12] conducted a study on registration based abstractions
(RBAs). Using an RBAs enabled code-editor, certain patterns in the source code are
shown with an alternative visualization. These alternative visualizations are typically
more concise and express the pattern more directly. RBAs can be used to emulate
additional syntactical features, not present in the underlying language. While

74 CHAPTER 5. PROGRAM PRESENTATIONS

Envision does support a similar mechanism, it can also enhance code presentation
without mimicking new language features.

Petre [Pet95] discusses the importance of secondary notation in electrical engi-
neering drawings and source code. In both domains, good use of secondary notation
is important in facilitating comprehension, and misuse of secondary notation can even
lead to confusion and misunderstanding. An important characteristic of Envision
compared to traditional text-editors is the automatic handling of almost all forms
of secondary notation. Users can only insert new lines in method bodies and write
comments. Other forms of secondary notation, such as indentation and alignment,
are part of the built-in, automatic visualizations. This simultaneously assures that
secondary notation is always available and that it is never misleading.

Wiedenbeck [Wie91] shows that code beacons, which are “key features that
typically indicate the presence of a particular structure or operation” - facilitate the
initial stages of high-level understanding of code. Similarly, visually enhancing code
can serve as a “structural beacon”, that facilitates the early understanding of the
local structure of code on a low-level. This might even improve the speed at which
code beacons are detected.

5.5.2 Tools with rich code presentations
Researchers have investigated many tools for making code more readable and easy
to understand. Early efforts [BM86] focused on typographic improvements and
pretty printing. Recent work on programming environments [BZR`10, DBR`12,
DR10, HF14, OVH15] shows that visual enhancements in IDEs can also be beneficial.
However, all of these recent tools still use standard syntax highlighting for presenting
code. Barista [KM06] is a research prototype of structured code editors that allows
flexible visualization of code fragments. The initial prototype of the system shares
many ideological similarities with Envision, but that prototype was not developed
any further and has not been empirically evaluated. Unlike Envision, Barista does
not explicitly focus on supporting customizations.

Lieber et al. [LBM14] developed Theseus, an IDE extension which augments
code with additional coloring and statistics based on run-time information, such
as how many times a method is called. A quantitative study shows no effect when
using Theseus, but qualitative studies are favorable. Such an approach to enhancing
code visualizations using run-time data is complementary to our work, which focuses
on making static structures more explicit.

Caserta and Zendra [CZ11] compiled a survey of tools for visualizing software.
These and similar tools present an abstracted view of the code and fulfill a different
role than syntax highlighting and rich code presentations.

5.5.3 Visualization customizations
Modern development environments have advanced customizations that go beyond
syntax highlighting using external plug-ins. For instance, the Code Contracts Editor
Extensions [Coda] for Visual Studio enhance a method declaration by showing
inherited contracts and, for interfaces, contracts from contract classes using keywords.
However, unlike our work, these visualizations are not editable—changes must still
be made at the source location where contracts appear as normal method calls. The

5.5. RELATED WORK 75

Editor Extensions also do not support the other customizations presented in this
paper.

Eisenberg and Kiczales [EK07] describe an approach for presentation extensions
using an Eclipse plug-in as a way to achieve language extensions. Their tool allows
one to embed graphical notations inside an Eclipse editor, using annotations to
mark code fragments that are extended. These annotations are used by their editor
for custom presentations, and by a preprocessor to generate standard Java code
corresponding to the extensions. In contrast, our work requires no preprocessing,
and no changes to the code using an embedded DSL to achieve custom presentation.

Davis and Kiczales [DK10] describe an approach to recognize syntactical patterns
in code and visualize them with a more convenient notation. Our approach similarly
allows the editor to choose an appropriate visualization for some code, but the
decision is not just based on syntax and name bindings—the entire AST can be used
together with the visual context and purpose. We also support customization of
interactions.

Intentional software [SCC06] and MPS [Fow05] are language workbenches that
allow developers to create new textual and visual DSLs, integrated with a specially
designed host language. To our knowledge neither tool supports the automatic
context-sensitive visualization of program components based on the wide range of
contexts supported by Envision, and unlike these tools, our approach works without
introducing new languages or changing the host language.

Erwig and Meyer propose a framework for mixing textual and visual languages
[EM95]. They use a text editor for the host language that allows language constructs
to be created using graphical notations, particularly for specialized domains. Unlike
our work, their approach does not allow the user to simply customize the appearance
of arbitrary language constructs. Moreover, parsing a program with mixed notations
requires user-defined visual grammars.

76 CHAPTER 5. PROGRAM PRESENTATIONS

6Efficient interactions in a struc-
tured editor

In the previous chapter we explored Envision’s visualization framework and showed
how it enables rich and customizable visualizations. In this chapter we look at
the second major component of Envision’s interface, the interactions that enable
developers to efficiently create and edit programs. First, we describe the main
challenges in designing efficient interactions for structured and visual code editors.
Next, we provide detailed descriptions of the key interaction components that enable
efficient manipulation of programs in Envision. Our approach is sufficiently general
to address interaction issues also in other structured editors or visual programming
tools. Lastly, we use CogTool [JPSK04, BJRT10] to compare Envision to Eclipse
on three typical code editing tasks. The results of the CogTool simulations show
that our code manipulation techniques enable program edits as efficient as edits in
Eclipse [AM14b], thus overcoming a major usability barrier for structured editors
for expert developers.

We remind the readers of Envision’s introductory video (youtu.be/5YMaCQEoPe0),
which shows the interactions we discuss in this chapter.

6.1 Challenges and requirements of interac-
tions in structured editors
A key strength of text editors is that they provide a universal set of interactions
that developers are well familiar with and can use efficiently. Thanks to these
efficient interactions, editing code is fluid, takes only a small fraction of the overall
development time, and requires only little cognitive overhead to think about the
mechanics of editing. In contrast, structured and visual code editors are typically
characterized by cumbersome interactions that impede efficient program manipulation
and are only rarely used by professional developers. There are three main usability
issues with such editors:

� AST-based editing and navigation are slow: Structured editors typically
restrict developers to make edits that always leave the AST in a valid state.
This limits how programs can be constructed, for example, by forcing program
elements to be created in a top-down order according to the AST [MPMV94,
VSBK14], which can be cumbersome, especially for constructs like expressions.
Navigation might also be limited to follow the AST structure [MPMV94],
which causes unintuitive cursor movement that does not allow users to directly
navigate between objects as they see them on the screen.

77

https://youtu.be/5YMaCQEoPe0

78 CHAPTER 6. EFFICIENT INTERACTIONS

test

identityint [][] ←()1 0
0 1

s

(a)

Hello

main args
String[]

printlnoutSystem. . ()"Hello world"

foo

factorial x
int

int

result i

iint ← 2

i⁺⁺

i≤x

x>1

result

resultint ← 1

(b)

Figure 6.1: Different visual notations in Envision: (a) textual (declaration of
identity), mathematical (matrix initialization); and (b) graphical.

� Visual program editors have high viscosity: Visual editors such as LabView
[Lab] suffer from high viscosity [Gre89, Gre90, GP96], which means that local
modifications of code are difficult and require many more operations than
creating new code. For example, in LabView, inserting a new block on the
visual canvas requires that the developer first clear space for the new block by
rearranging existing blocks or wires.

� Complex visualizations are often not edited directly: Some tools such as
Barista [KM06] offer flexible read-only visualizations of code and revert to
a textual representation to allow edits. This approach works around the
usability issues above, but prevents developers from always working with
optimal notations.

To be successful with a broad range of professional programmers, a visual
structured code editor must allow users to edit code structures at least as fast as
the users can do this with a text editor. It should allow developers to edit the
code quickly and directly. As we have seen, designing such efficient interactions
is challenging in itself, and it becomes even more difficult to achieve in a highly
customizable environment such as Envision. For example, supporting a mixture of
different types of notations (e.g., the ones from Figure 6.1) necessitates some notation-
independent interaction mechanisms. However, to allow the intuitive manipulation
of each notation, it should be possible to also provide specialized interactions where

6.2. INTERACTION COMPONENTS 79

needed, for example, text-like notations should be editable as in a text editor for
optimal efficiency.

To support different notations for programming interfaces and interface cus-
tomization like we have seen in Section 5.4, and to enable efficient program edits,
we define four key interaction requirements for visual structured editors:

� Requirement of keyboard-based interactions: All edits should be achievable
by using just the keyboard, like in a standard text editor. This includes
creating new structures such as methods, editing expressions, and navigating
between different parts of the visualization. Developers can be very efficient
using the keyboard and it should be the primary input device in programming
tools for experts.

� Requirement of direct interactions: All visualizations should be editable
directly, without the need to switch between simpler, but editable, visualizations
and more elaborate ones that are read-only. In particular, it should be possible
to directly edit non-linear and graphical visualizations. Using a consistent set
of visualizations reduces the cognitive burden on users.

� Requirement of genericity: Built-in generic interactions, such as copy, paste,
undo, and redo should work across all programming constructs regardless
of how a construct is visualized. Having a set of core interactions makes
the system more intuitive and transparent for the user. Furthermore, generic
interactions reduce the implementation overhead for new visualizations, thereby
promoting alternatives.

� Requirement of customizability: In addition to the functionality provided
by generic interactions, it should be possible to create custom interactions.
In this way, existing visualizations could be adapted to user preferences or
new domains, and new visualizations with complex behavior could be created.
Customizability also facilitates direct manipulation.

Next, we describe the key interaction components of Envision, which satisfy the
requirements above.

6.2 Interaction components
In this section, we provide an overview of the basic interaction framework of Envision
and explain its key components.

6.2.1 Interaction framework basics
In Chapter 5 we showed how Envision’s program model is decoupled from its
visualizations and explained that visualizations are created from elementary visual
units called items that are connected in a tree structure to form a scene. Items are
also the basic interaction unit in Envision. Whenever the user presses a key on the
keyboard or clicks a mouse button, the currently focused item receives a notification
of this low-level event. Events are not directly processed by the item, but rather by
an event handler associated with the item. Handlers are C++ classes that can be
associated with items in three ways of increasing priority:

80 CHAPTER 6. EFFICIENT INTERACTIONS

1. not specified: If no handler is explicitly registered for an item type, the item
will use the handler associated with the item’s supertype. The supertype of all
items uses a default handler.

2. per-type: If a particular handler is registered for an item’s type, this handler
will be used.

3. per-instance: It is also possible to register a dedicated handler for a particular
item instance. In this case, this most-specific handler is used.

A single handler may be associated with multiple items or item types. Using different
handlers is the first of two means of supporting context-sensitive event processing in
Envision. The ability to assign handlers to items in three different ways makes it
easier to customize input processing to specific domains or interfaces.

The default handler implements many basic features such as copy and paste
support, undoing and redoing actions, arrow key navigation (see Section 6.2.2),
standard command handling over the command prompt (see Section 6.2.3), and
others. The current implementation maintains only a single undo stack for all code.
To better support developers’ fine-grained needs for undo [YM15] the implementation
would need to maintain separate undo stacks for more fine-grained code fragments.
Other handlers may reuse the functionality of the default handler, which facilitates
the creation of interaction extensions.

If an item’s associated handler is unable to process an event, this event is
forwarded to another handler. This forwarding is the second means of context-
sensitive event processing in Envision. First, the event is sequentially forwarded to
the handlers of the item’s ancestors in the visual tree of the scene, until the event is
processed. For example, if a user issues a command while the icon of an if-statement
is selected, this command event will be propagated first to the if-statement handler,
then to the handler of the body that contains the if-statement (e.g., a method or
another statement), then to the encompassing method, then to the encompassing
class, etc. If none of these handlers process the event, it is forwarded to the handler
of the current view, which enables view-specific functions to be invoked, e.g., zooming
or scrolling. Finally, if the event remains unhandled, it is forwarded to the global
event handler, which provides access to basic IDE functions such as loading and
saving projects or switching views.

A handler has full access to the items from the scene, the program model, and
generally all data from the IDE. Based on this information a handler may, for
example, ignore the event, perform an action that changes the model (e.g., create
a new statement), alter the visualizations (e.g., change the focus to another item,
which will receive the next input), or invoke other functionality provided by plug-ins.
This flexibility allows completely dedicated interfaces to be implemented for each
different context. Building on top of the handler infrastructure, we created the three
key higher-level interaction components that we describe next.

6.2.2 Universal visual cursor
A prerequisite for any application that uses keyboard input is the cursor. In
textual environments, it indicates where the text that the user types will appear
and developers can directly position the cursor anywhere on screen, providing two
essential freedoms of interaction:

6.2. INTERACTION COMPONENTS 81

� Freedom of placement: Where the cursor can be placed is independent of the
syntax or semantics of the underlying text.

� Freedom of movement: Navigating from one cursor position to another can be
done directly on the presentation without having to understand the structure
of the underlying program.

Visual and structured editors typically do not offer these freedoms: the cursor is often
limited to selecting whole visual objects or manipulating text fields and navigation
might be tightly coupled to the structure of the program. In contrast, we designed a
cursor that provides the freedoms of a text editor in a visual setting.

Using the keyboard arrows or mouse clicks, it is possible to position the cursor
virtually anywhere on the canvas:

� On top of an item, thus selecting the item, which is a typical interaction in
visual tools. For example, we can select a method’s icon (to the left of the
method name) to copy or delete the method:

Hello

main args
String[]

printlnoutSystem. . ()"Hello world"

foo

factorial x
int

int

resultint ← 1

result i

iint ← 2 i≤x i⁺⁺

x>1

result

� Inside text. This is typical for text editors and text box widgets. For example,
we can place the cursor in the middle of a method’s name:

Hello

main args
String[]

printlnoutSystem. . ()"Hello world"

foo

factorial x
int

int

resultint ← 1

result i

iint ← 2 i≤x i⁺⁺

x>1

result

� Selecting placeholders. Using placeholders is useful to remind the users of
available options for creating additional code fragments. For example, we can
place the cursor after a method’s name, selecting a placehoder that allows us
to enter the method’s generic type arguments:

82 CHAPTER 6. EFFICIENT INTERACTIONS

Hello

main args
String[]

printlnoutSystem. . ()"Hello world"

foo

factorial add type argument
x
int

int

resultint ← 1

result i

iint ← 2 i≤x i⁺⁺

x>1

result

� Between items, in empty spaces. This is an unusual cursor location for visual
editors, even though it provides a lot of possibilities for interactions. Being
able to mark empty space is especially useful for creating new structures. For
example, we can place the cursor between statements in a method, or argu-
ments in a list, allowing us, with a single key press, to create new statements
or arguments, respectively:

Hello

main args
String[]

printlnoutSystem. . ()"Hello world"

foo

factorial x
int

int

resultint ← 1

result i

iint ← 2 i≤x i⁺⁺

x>1

result

Almost all of the cursor’s functionality is provided by the default handler in conjunc-
tion with the visualization framework. No code is required for the cursor to work in
a standard way with new types of visualizations. Next, we describe how the cursor
works and how it may be customized for specialized interfaces.

Each visual item in Envision has a bounding rectangle and can declare regions
within this rectangle that can be occupied by the cursor. For example, an item
showing a piece of text will have cursor regions between characters as well as before
and after the text. Typically, regions occupied by child items (e.g., the icon in
the visualization of a method) are automatically declared so that children can be
selected. Regions, such as between children or at the corners or edges, can also be
declared to enable additional interactions, such as removing a child by pressing Del .
Pressing an arrow key moves the cursor in the desired direction to the closest cursor
region within the same item. If the cursor is already at the edge, it is moved to the
visually closest region of the closest item in the desired direction. For example, in
Figure 6.2, if the cursor is at the end of the println expression of the main method,
pressing Ñ will move the cursor to the right. Since there are no other characters
to the right of the cursor in the current method, the cursor will be moved to the
visually closest position rightwards that declares a cursor region – the beginning of
int result Ð 1 in the factorial method. This mechanism also works for more
complex visualizations like the control-flow from Figure 6.1b. This behavior allows
users to navigate based on what they see on the screen, regardless of the underlying
code structure.

6.2. INTERACTION COMPONENTS 83

main args
String[]

printlnoutSystem. . ()factorial()5

Hello

main args
String[]

printlnoutSystem. . ()"Hello world"

foo

factorial x
int

int

resultint ← 1

result i

iint ← 2 i≤x i⁺⁺

x>1

result

Figure 6.2: Two methods in Envision with the cursor at the end of the statement
in the left method. Pressing Ñ will move the cursor to the closest cursor region
on the right: the beginning of int result Ð 1 in the factorial method.

In many common cases, appropriate regions can be automatically declared even
for new visualizations. For example, when creating a visualization that uses the
standard list layout provided by Envision, the layout will automatically declare
cursor regions for list items and for empty spaces in the list. This automatic behavior
supports generic interactions that work across visualizations. It is also possible to
manually define cursor regions in a visualization to achieve a custom interaction.
This is done within the definition of a visualization within a C++ plug-in.

When using the arrow keys to move the cursor, there are two interesting situations
that need special treatment. The first one arises when objects are placed far apart
and the next cursor position could be quite far away on the screen. Large jumps in
the location of the cursor can confuse the user, so we limit the distance the cursor
is allowed to move when a key is pressed, that is, the key press is ignored if the
cursor would jump too far away from its current position. Originally, Envision never
ignored navigation cursor presses and would instead scroll the view to show the
cursor at its new location. However, we found this behavior undesirable when the
cursor moved large distances, because scrolling the view to a completely new code
location would change all the code on the screen, which was highly disorienting for
us.

The second situation arises with adjacent cursor regions. A common case is
illustrated in Figure 6.3. It is an expression consisting of four items: two identifiers
(base and offset); the + operator; and the parent container. Each item has a
number of cursor regions. Imagine, for example, that the cursor is positioned after
the letter “a” and a user wants to use the keyboard to position the cursor after the “o”.
Going through all the cursor regions will take 8 key presses instead of the desirable
4. To eliminate this issue, Envision provides a way to mark adjacent cursor regions
as equivalent and treat them as one region during navigation. Using this feature,
moving the cursor in the case from Figure 6.3 behaves as desired. Many of Envision’s
default visualizations and layouts automatically mark edge cursors as equivalent to
any adjacent cursors. With some existing visualizations, equivalent cursors regions
can be manually tweaked using XML style files, but generally, non-standard cursor
region equivalence is specified in the definition of visualizations, in plug-ins.

The cursor is solely based on the structure of the visual items in a scene and
is independent of the program model. Thus, the cursor’s behavior and movement
are predictable and intuitive, and the user needs no knowledge of how a program’s

84 CHAPTER 6. EFFICIENT INTERACTIONS

base + offset

base + offset

base + offset
item bounding box

equivalent cursor regions
cursor region

Figure 6.3: Four visual items representing the expression base+offset wrapped
in a container. Top: the items’ bounding boxes; middle: cursor regions without
equivalent regions; bottom: cursor regions with equivalent regions.

internal model is structured, unlike structured editors such as Gnome [GM84].
Because it only relates to visualizations, the cursor can also be used in dedicated
interfaces for rich data or interfaces that work with information other than the
program model. This makes the cursor a universal tool for editing in Envision. The
cursor enables three fundamental interactions in Envision:

� Marking positions for the insertion or deletion of objects via a single key press
such as Enter or BackÐ .

� Selecting a context for invoking a context-sensitive command prompt.

� Providing a familiar text-like edit functionality for objects that resemble text,
such as expressions.

We present the latter two next.

6.2.3 Context-sensitive command prompt
Envision offers a context-sensitive command prompt which is a universal mechanism
for controlling the environment. The prompt provides access to actions specific to
the currently selected item as well as all of the IDE functionality available in the
current context. Unlike context-sensitive menus that are typical in visual tools, the
prompt can be invoked and used entirely using the keyboard and does not restrict
the actions available to the user to what can comfortably fit in a menu. The prompt
functions similarly to a shell terminal or the command mechanisms in text editors
like Vim or Emacs, all of which are tools that enable experts to be very efficient in
controlling their environment.

We also use prompt commands to create high-level AST structures. Compared
to expressions, high-level AST nodes such as classes and methods are created less
frequently and usually in a top-down fashion, for example, developers first create
a class and only then its fields, methods, and method bodies. These interaction
patterns can be performed efficiently on a structural level, which makes it possible
to keep high-level AST nodes always in a consistent state, and eliminates the need
for error nodes, unlike when editing expressions, which need to support transient
invalid states as we discuss in Section 6.2.4.

6.2. INTERACTION COMPONENTS 85

public class Hello#

public class Hello
Create a public class called 'Hello'

Figure 6.4: A command for creating a class.

special class Hello#
Unknown command 'special class Hello'

Figure 6.5: An error message in the prompt.

Prompt commands are registered with one or more event handlers. Each handler
supports an extensible set of commands. What commands are available in a particular
prompt instance is determined by the handler of the currently focused item (the
item that has the cursor). Pressing Esc or clicking the right mouse button shows
the command prompt right below the cursor and allows the execution of:

� commands associated with the handler of the focused item. For example, the
handler of a class has commands for creating methods, fields, and inner classes.

� commands associated with the handlers of the item’s ancestors in the contain-
ment hierarchy. For example, if a class is selected, the available commands will
also include a command for creating a package within the parent package of
the class. This command comes from the handler of the class’ parent package.

� IDE commands such as find, save project, or switch view.

Like any event handler, a command has access to the entire program model, all items
from the scene, and all other IDE data. Therefore, there are no restrictions on what
a command does: it can manipulate the program, change properties of visualizations,
or even execute a function of the operating system.

When typing commands, Envision provides a list of auto-completion suggestions
and a brief description of each command as can be seen in Figure 6.4. This helps
explore the available commands and reduces the need to remember the list of
arguments. If the user invokes an incorrect command, an error message will be
displayed directly in the prompt as shown in Figure 6.5.

A further feature simplifying command entry and reducing the need to remember
the precise syntax of commands is the support for abbreviations as we demonstrated
in Chapter 2. For example, instead of typing the complete form of the method
command to create a method (e.g., public static method main), it is sufficient
to abbreviate the command name and arguments as long as the abbreviations
are not ambiguous (see Figure 6.6). In case an abbreviation is ambiguous, the
auto-completion menu can be used to select the desired command.

pub st met main#

pub st met main
Create a public static method called 'main'

Figure 6.6: An abbreviated command for creating a method.

86 CHAPTER 6. EFFICIENT INTERACTIONS

The prompt works across all visualizations and fulfills the requirement for generic
interactions. Envision provides a number of built-in commands, but it is also possible
to register new ones, according to the customizability requirement. New commands
can be added to existing and new handlers by implementing the commands in
plug-ins. A command is a C++ class that defines execution actions and also how
the command can be auto-completed in the prompt.

6.2.4 Text-like expression editing
In a text editor, edits are unrestricted and allow the developer to temporarily
break the code structure to quickly achieve the desired results with only a few
keystrokes. For example, typing {{a,b},{c,d}} from left to right goes through many
invalid states such as {{a,b and {{a,b},. Providing such a quick interaction has
traditionally been a problem for visual editors, especially if non-linear visualizations
like the one from Figure 6.7 must be editable. Quick editing is crucial for expressions
since they are the leaves of ASTs, the larger and frequently edited part of a program.
Unlike top-level AST nodes such as classes or methods, expressions are not usually
created in a top-down fashion, for example, typing a++, first creates the child
node (the reference to a) and then its parent node (the ++ operator). Enabling
convenient editing of expressions in Envision requires an interaction mechanism with
the following properties:

� Expressions can be typed with the keyboard, from left to right, like in a text
editor.

� Expressions that are currently focused (contain the cursor) can be modified
directly for any position of the cursor.

� No user input is ignored, even if that input results in invalid AST fragments.

� The number and size of invalid AST fragments is minimized, because such
fragments can use only suboptimal generic visualizations.

� Free expression editing works even for complex, non-textual and non-linear
visualizations (e.g., the matrix from Figure 6.7).

To achieve these properties, we use two ingredients. First we use special error
nodes to represent incorrect and partial tokens resulting from user input, similarly
to how JPie [BG05] and Barista [KM06] relax the edit-time grammar. This enables
users to create expressions quickly by temporarily going through invalid program
states. Second, we use a dedicated event handler for expression items. This handler
processes user input to change Envision’s program model, creating error nodes if
necessary. Because the handler needs to work with arbitrary code visualizations and
also allow linear left-to-right input, it works by linearizing visualizations to text,

HelloWorld
java

int global +long global2

CodeSomeLibrary.

AnotherLibrary

AllImport.

MainFunctionality

HelloWorld
outSystem.

main args
String[]

printlnoutSystem. . ()"Hello World"

HelloWorld

Super
42

name
"hi" 10

~HelloWorld

factorial x
int

int

This is an iterative implementation of a factorial function

resultint ← 1

result i

iint ← 1 i≤x i +← 1

x≥0

result ← -1

result

additional

newTypeName ≡ int

templateAlias S ≡ Template⟨ ⟩S

templateAlias⟨ ⟩long
someGlobalVariable.

sizeof()int
alignof()float
typeid()double

var14 2
continue
break

i<x

aLongTestMethod x
int

y
int

epsilon
float

int

throws MyException

someValue

pSystemSystem*
outpSystem.

var1int
var2long ← 42
var3bool ← true
var4char ← 'r'

var5double ← 1.12311e+11
var6+long ← 1000

var7void ← ∅
var8int ← getId()
var9void ← this
var92void ← super

var10int ← ()int epsilon
var10_1bool ← var10 instanceof String
var11void ← new int
var12int[] ← new int[]5
var13bool ← ¬false

var14const int ← 10⁺⁺
var15volatile int ← ()41+1 /3

var16const volatile bool ← 41≤1
var17String[] ← "this" "looks" "good"

vassssssssssssssssssssssssssfdfr18int[][] ←()a b
c d

var19int ← 6≤10 ? 42 : 0
throw AnException
delete pSystem
delete[] pSystem

var20auto ← new HelloWorld
var21()

var22()valint nameString
var23() ()int→

var24()valint nameString ()xint yint→
var25auto ← new int[]42 3 6

var26auto ← new int[]2 2()1 2
3 4

var14⁺⁺

var14≠10

var14⁻⁻

var14⁺⁺

var14≠10

var14≠10

var14⁺⁺

someVar

0

⁺⁺result
break

1

⁻⁻result

var1 ← someArray[4]

var14 2
continue
break

iint ← 0 i<x i +← 1

var1 /← elem

+int elem SomeCollection

var1

var2

someExpDecl

var3

someOtherExpDecl

var4

var22

someMonitor

42

Generic
P

Q
subP

R
superP

Specialized
≡int

foo T

This is an add-on text

bar S
U

subS
V

superS

foobar

varGeneric⟨ ⟩A B C
foo⟨ ⟩A ()
bar⟨ ⟩A B C ()

int index← 42
P data

AnnotatedWithFriends
SomeAnnotation

Generic

Boo.Foo

foo
This is an add-on text
@ SomeAnnotation2

SomeAnnotation3

bodyVarint ← 42

Colors
RED GREEN BLUE ← 5

Annotation

Outer

InnerStruct

InnerInterface

comment_foo foo
int

bar
int

int

Envision's comments support several useful features:

Baisc markdown syntax and rich text.
Lists
Diagrams
Embeded source code
Tables
Embedded HTML/Javascript

Diagrams!
A diagram can be drawn directly in the code

Model

View Controller

Sourcecode!

Tables!
The code Details Notes

some text

Images
Images can be resized with Shift + Right click & Drag.

Browsers

Inline HTML to Browser
Try	it

Quicksort

Quicksort

From	Wikipedia,	the	free	encyclopedia

Quicksort	(sometimes	called
partition-exchange	sort)	is	an
efficient	sorting	algorithm,	serving	as	a
systematic	method	for	placing	the
elements	of	an	array	in	order.
Developed	by	Tony	Hoare	in	1959,[1]
with	his	work	published	in	1961,[2]	it	is
still	a	commonly	used	algorithm	for
sorting.	When	implemented	well,	it	can
be	about	two	or	three	times	faster	than

Article Talk Read Edit View	history Search

Main	page
Contents
Featured	content
Current	events
Random	article
Donate	to	Wikipedia
Wikipedia	store

Interaction
Help
About	Wikipedia
Community	portal

Not	logged	in Talk Contributions Create	account Log	in

foo+bar

LambdaAndAnonymous
int common

This is the Lambda-Module. The following classes are available

IUnary
IBinary
INoReturn
LambdaTest

Here you find some more information about Classes

english wikipedia

Welcome	to	Wikipedia
the	free	encyclopedia	that	anyone	can	edit

5,264,464	articles	in	English

From
today's
featured
article

In	the
news

Main	Page Talk

Read View	source More

Search

Main	page
Contents
Featured	content
Current	events
Random	article
Donate	to	Wikipedia
Wikipedia	store

Not	logged	in Talk
Contributions Create	account
Log	in

IUnary

op x
int

int

IBinary

op x
int

y
int

int

INoReturn

op x
int

TestClass

test

unary()()int x x+1

binary()()int x int y x+y

noreturn()()int x someOp()x

new

IUnary

op x
int

int

42

unary x
IUnary

binary x
IBinary

noreturn x
INoReturn

Java

String
Object

System

PrintStreamio. out

io
JavaSubLib1

JavaSubLib2

PrintStream

println x
String

(a)

HelloWorld
java

int global +long global2

CodeSomeLibrary.

AnotherLibrary

AllImport.

MainFunctionality

HelloWorld
outSystem.

main args
String[]

printlnoutSystem. . ()"Hello World"

HelloWorld

Super
42

name
"hi" 10

~HelloWorld

factorial x
int

int

This is an iterative implementation of a factorial function

resultint ← 1

result i

iint ← 1 i≤x i +← 1

x≥0

result ← -1

result

additional

newTypeName ≡ int

templateAlias S ≡ Template⟨ ⟩S

templateAlias⟨ ⟩long
someGlobalVariable.

sizeof()int
alignof()float
typeid()double

var14 2
continue
break

i<x

aLongTestMethod x
int

y
int

epsilon
float

int

throws MyException

someValue

pSystemSystem*
outpSystem.

var1int
var2long ← 42
var3bool ← true
var4char ← 'r'

var5double ← 1.12311e+11
var6+long ← 1000

var7void ← ∅
var8int ← getId()
var9void ← this
var92void ← super

var10int ← ()int epsilon
var10_1bool ← var10 instanceof String
var11void ← new int
var12int[] ← new int[]5
var13bool ← ¬false

var14const int ← 10⁺⁺
var15volatile int ← ()41+1 /3

var16const volatile bool ← 41≤1
var17String[] ← "this" "looks" "good"

vassssssssssssssssssssssssssfdfr18int[][] ←()a b +
c d

var19int ← 6≤10 ? 42 : 0
throw AnException
delete pSystem
delete[] pSystem

var20auto ← new HelloWorld
var21()

var22()valint nameString
var23() ()int→

var24()valint nameString ()xint yint→
var25auto ← new int[]42 3 6

var26auto ← new int[]2 2()1 2
3 4

var14⁺⁺

var14≠10

var14⁻⁻

var14⁺⁺

var14≠10

var14≠10

var14⁺⁺

someVar

0

⁺⁺result
break

1

⁻⁻result

var1 ← someArray[4]

var14 2
continue
break

iint ← 0 i<x i +← 1

var1 /← elem

+int elem SomeCollection

var1

var2

someExpDecl

var3

someOtherExpDecl

var4

var22

someMonitor

42

Generic
P

Q
subP

R
superP

Specialized
≡int

foo T

This is an add-on text

bar S
U

subS
V

superS

foobar

varGeneric⟨ ⟩A B C
foo⟨ ⟩A ()
bar⟨ ⟩A B C ()

int index← 42
P data

AnnotatedWithFriends
SomeAnnotation

Generic

Boo.Foo

foo
This is an add-on text
@ SomeAnnotation2

SomeAnnotation3

bodyVarint ← 42

Colors
RED GREEN BLUE ← 5

Annotation

Outer

InnerStruct

InnerInterface

comment_foo foo
int

bar
int

int

Envision's comments support several useful features:

Baisc markdown syntax and rich text.
Lists
Diagrams
Embeded source code
Tables
Embedded HTML/Javascript

Diagrams!
A diagram can be drawn directly in the code

Model

View Controller

Sourcecode!

Tables!
The code Details Notes

some text

Images
Images can be resized with Shift + Right click & Drag.

Browsers

Inline HTML to Browser
Try	it

Quicksort

Quicksort

From	Wikipedia,	the	free	encyclopedia

Quicksort	(sometimes	called
partition-exchange	sort)	is	an
efficient	sorting	algorithm,	serving	as	a
systematic	method	for	placing	the
elements	of	an	array	in	order.
Developed	by	Tony	Hoare	in	1959,[1]
with	his	work	published	in	1961,[2]	it	is
still	a	commonly	used	algorithm	for
sorting.	When	implemented	well,	it	can
be	about	two	or	three	times	faster	than

Article Talk Read Edit View	history Search

Main	page
Contents
Featured	content
Current	events
Random	article
Donate	to	Wikipedia
Wikipedia	store

Interaction
Help
About	Wikipedia
Community	portal

Not	logged	in Talk Contributions Create	account Log	in

foo+bar

LambdaAndAnonymous
int common

This is the Lambda-Module. The following classes are available

IUnary
IBinary
INoReturn
LambdaTest

Here you find some more information about Classes

english wikipedia

Welcome	to	Wikipedia
the	free	encyclopedia	that	anyone	can	edit

5,264,464	articles	in	English

From
today's
featured
article

In	the
news

Main	Page Talk

Read View	source More

Search

Main	page
Contents
Featured	content
Current	events
Random	article
Donate	to	Wikipedia
Wikipedia	store

Not	logged	in Talk
Contributions Create	account
Log	in

IUnary

op x
int

int

IBinary

op x
int

y
int

int

INoReturn

op x
int

TestClass

test

unary()()int x x+1

binary()()int x int y x+y

noreturn()()int x someOp()x

new

IUnary

op x
int

int

42

unary x
IUnary

binary x
IBinary

noreturn x
INoReturn

Java

String
Object

System

PrintStreamio. out

io
JavaSubLib1

JavaSubLib2

PrintStream

println x
String

(b)

HelloWorld
java

int global +long global2

CodeSomeLibrary.

AnotherLibrary

AllImport.

MainFunctionality

HelloWorld
outSystem.

main args
String[]

printlnoutSystem. . ()"Hello World"

HelloWorld

Super
42

name
"hi" 10

~HelloWorld

factorial x
int

int

This is an iterative implementation of a factorial function

resultint ← 1

result i

iint ← 1 i≤x i +← 1

x≥0

result ← -1

result

additional

newTypeName ≡ int

templateAlias S ≡ Template⟨ ⟩S

templateAlias⟨ ⟩long
someGlobalVariable.

sizeof()int
alignof()float
typeid()double

var14 2
continue
break

i<x

aLongTestMethod x
int

y
int

epsilon
float

int

throws MyException

someValue

pSystemSystem*
outpSystem.

var1int
var2long ← 42
var3bool ← true
var4char ← 'r'

var5double ← 1.12311e+11
var6+long ← 1000

var7void ← ∅
var8int ← getId()
var9void ← this
var92void ← super

var10int ← ()int epsilon
var10_1bool ← var10 instanceof String
var11void ← new int
var12int[] ← new int[]5
var13bool ← ¬false

var14const int ← 10⁺⁺
var15volatile int ← ()41+1 /3

var16const volatile bool ← 41≤1
var17String[] ← "this" "looks" "good"

vassssssssssssssssssssssssssfdfr18int[][] ←()a b+1
c d

var19int ← 6≤10 ? 42 : 0
throw AnException
delete pSystem
delete[] pSystem

var20auto ← new HelloWorld
var21()

var22()valint nameString
var23() ()int→

var24()valint nameString ()xint yint→
var25auto ← new int[]42 3 6

var26auto ← new int[]2 2()1 2
3 4

var14⁺⁺

var14≠10

var14⁻⁻

var14⁺⁺

var14≠10

var14≠10

var14⁺⁺

someVar

0

⁺⁺result
break

1

⁻⁻result

var1 ← someArray[4]

var14 2
continue
break

iint ← 0 i<x i +← 1

var1 /← elem

+int elem SomeCollection

var1

var2

someExpDecl

var3

someOtherExpDecl

var4

var22

someMonitor

42

Generic
P

Q
subP

R
superP

Specialized
≡int

foo T

This is an add-on text

bar S
U

subS
V

superS

foobar

varGeneric⟨ ⟩A B C
foo⟨ ⟩A ()
bar⟨ ⟩A B C ()

int index← 42
P data

AnnotatedWithFriends
SomeAnnotation

Generic

Boo.Foo

foo
This is an add-on text
@ SomeAnnotation2

SomeAnnotation3

bodyVarint ← 42

Colors
RED GREEN BLUE ← 5

Annotation

Outer

InnerStruct

InnerInterface

comment_foo foo
int

bar
int

int

Envision's comments support several useful features:

Baisc markdown syntax and rich text.
Lists
Diagrams
Embeded source code
Tables
Embedded HTML/Javascript

Diagrams!
A diagram can be drawn directly in the code

Model

View Controller

Sourcecode!

Tables!
The code Details Notes

some text

Images
Images can be resized with Shift + Right click & Drag.

Browsers

Inline HTML to Browser
Try	it

Quicksort

Quicksort

From	Wikipedia,	the	free	encyclopedia

Quicksort	(sometimes	called
partition-exchange	sort)	is	an
efficient	sorting	algorithm,	serving	as	a
systematic	method	for	placing	the
elements	of	an	array	in	order.
Developed	by	Tony	Hoare	in	1959,[1]
with	his	work	published	in	1961,[2]	it	is
still	a	commonly	used	algorithm	for
sorting.	When	implemented	well,	it	can
be	about	two	or	three	times	faster	than

Article Talk Read Edit View	history Search

Main	page
Contents
Featured	content
Current	events
Random	article
Donate	to	Wikipedia
Wikipedia	store

Interaction
Help
About	Wikipedia
Community	portal

Not	logged	in Talk Contributions Create	account Log	in

foo+bar

LambdaAndAnonymous
int common

This is the Lambda-Module. The following classes are available

IUnary
IBinary
INoReturn
LambdaTest

Here you find some more information about Classes

english wikipedia

Welcome	to	Wikipedia
the	free	encyclopedia	that	anyone	can	edit

5,264,464	articles	in	English

From
today's
featured
article

In	the
news

Main	Page Talk

Read View	source More

Search

Main	page
Contents
Featured	content
Current	events
Random	article
Donate	to	Wikipedia
Wikipedia	store

Not	logged	in Talk
Contributions Create	account
Log	in

IUnary

op x
int

int

IBinary

op x
int

y
int

int

INoReturn

op x
int

TestClass

test

unary()()int x x+1

binary()()int x int y x+y

noreturn()()int x someOp()x

new

IUnary

op x
int

int

42

unary x
IUnary

binary x
IBinary

noreturn x
INoReturn

Java

String
Object

System

PrintStreamio. out

io
JavaSubLib1

JavaSubLib2

PrintStream

println x
String

(c)

Figure 6.7: Editing an expression visualized in a matrix form.

6.2. INTERACTION COMPONENTS 87

event data
(pressed key)

focused
item

string and
offset provider

textold

offsetold

textnew

offsetnew

parser

expressionnew

operator
declarations

item visualizing
expressionnew

edit is
finished

key is
pressed

computing text
and offset from

original item

setting cursor
in new item

node→string
map

item↔offset
map

configuration objectsprocessing componentinput/output

Figure 6.8: The process of editing an expression after a key has been pressed.

performing linear edits on this text, and reparsing the text to create new expressions.
Next, we explain in more detail the operation of the expression handler, which is
illustrated in Figure 6.8.

On every keystroke, the visualization of the edited expression is first mapped to
a corresponding text string and an integer offset that represents the current position
of the cursor in the string. For example, in Figure 6.7a, the matrix visualization is
mapped to the string {{a,b},{c,d}} and the offset of the cursor is 5 (just after
the b). This mapping is done by the string and offset provider component which
we describe in more detail later. Next, a new string and offset are computed based
on what key is pressed. For example, pressing a letter inserts it into the string
and increments the offset, whereas pressing BackÐ removes the symbol before the
offset and decrements the offset. In Figure 6.7a, pressing + results in the new
text {{a,b+},{c,d}} and offset 6. The new text is then parsed to produce a new
expression and corresponding visualization items. We provide more details about
the parser later. The new expression visualizations and the new offset are fed
into the string and offset provider, which moves the visual cursor inside the new
visualization to a location that matches the specified textual offset. For example,
in Figure 6.7b the visual cursor appears right after the +. Moving the cursor in
this way allows uninterrupted left-to-right typing even in complex visualizations.
Despite having multiple processing steps, the entire editing process lasts under a
few milliseconds. The slowest component is the parser, which we have specifically
optimized to efficiently process large expressions.

Next, we describe the two processing components involved in expression edits.

String and offset provider (SOP)

The SOP has two functions.
First, it can map a visual item to a string (but not the other way around). In

Figure 6.8, this first function of the SOP is used to compute textold. Any item,
no matter how complex, can be mapped to a string, provided that an appropriate
mapping is registered by a plug-in. To make providing such a mapping easier, we

88 CHAPTER 6. EFFICIENT INTERACTIONS

Σ
10

0

i→foo(i) Σ

10

0

i→foo(i)

cursor/offset

sum(0,10, i=>foo(i))

Figure 6.9: An example of the intermediate mapping to a virtual grid that
facilitates the bi-directional mapping between a visual cursor’s position and a
textual offset.

include defaults for many of Envision’s existing visual items. For example, visual
items that represent AST nodes use the mapping of the corresponding node and
visual items that represent lists are mapped to a concatenation of the mappings of
their children. Thus, for editing expressions, it is sufficient to provide a mapping
from each type of expression AST node to a string. For example, a throw expression
E is mapped to "throw $E->expr$", where "$E->expr$" is recursively substituted
for the mapping of that expression.

Second, the SOP can map the current visual cursor to an offset into the textual
representation of the current item and vice-versa. In Figure 6.8, this second function
of the SOP is used to compute offsetold and to reposition the visual cursor after
the new expression is visualized. A mapping between the visual cursor and a
textual offset can be computed regardless of the complexity of a visualization, if an
appropriate mapper procedure is registered with the SOP. To facilitate creating
these bi-directional mappings, we introduce an intermediate mapping to a virtual
grid as illustrated in Figure 6.9. An item’s child elements are mapped to separate
cells in a grid. Each such cell is in turn mapped to a substring from the item’s
textual representation computed by the SOP. To determine the textual offset that
corresponds to a visual cursor, the SOP uses the cell that corresponds to the child
item that has the cursor. If the cursor is not on an edge of the cell, the SOP
recursively explores the child element to determine the correct offset. If the cursor is
on an edge, like in Figure 6.9, then it is mapped differently depending on what key
was pressed. If the user has pressed a key that inserts a symbol (e.g., Q or *),
the cell to the right of the cursor is used. This cell can be either the current cell,
if the cursor is on that cell’s left edge as in Figure 6.9, or the adjacent cell, if the
cursor is at the right edge of the current cell. Analogously, if the user has pressed a
key that removes a symbol (e.g., BackÐ), the cell to the left of the cursor is used.
The final offset is either the start or the end of the substring that corresponds to
the chosen cell, depending on whether the cursor is on the left or right edge of the
cell, respectively.

Note that not all cells have adjacent cells. For example, in Figure 6.9, there is
no cell to the left of the cursor. In such cases, the current cell is used regardless of
the key that was pressed. This enables fine-grained control over the cursorØoffset
mapping. For example, pressing BackÐ in the situation from Figure 6.9 would
remove the comma before i=>foo(i), bringing this expression to the top of the sum,

6.2. INTERACTION COMPONENTS 89

right after the 10. While this may seem like a strange outcome, it is a mechanism
that allows developers to temporarily break the expression structure when making
edits and more directly write the expression they want. For example, in Figure 6.9,
a developer typing quickly might write “19, i=> foo” before realizing that they
meant to type 10 on top. The grid setup from Figure 6.9 would allow this developer
to simply delete the last few characters using BackÐ until they delete the 9 and
retype the rest of the expression correctly, just like they might do in a text editor.
Alternative grid configurations are also possible for the Σ visualization, for example,
if we removed the empty column in the middle of the virtual grid, pressing BackÐ

would remove the m of sum, because the sum cell would now be adjacent to the left
of the cursor. Another alternative is to have two cursor regions: one at the left of
the i=>foo(i) cell as shown in Figure 6.9, and one on the right of the Σ cell. This
would enable finer-grained control of the edit behavior.

The reverse mapping from offset to visual cursor position is performed in an
analogous fashion, also taking the type of the pressed key into account. Visualization
designers are free to provide alternative mapping mechanisms for their custom items.
The recursive nature of the SOPs operation enables different mapping strategies to be
transparently composed. For example, we provide a specialized mapping for purely
textual items, which directly return an offset based on the currently selected cursor
region. Visualization designers can customize the SOP and associated mappings
for new visualizations by writing an Envision plug-in using two SOP-related APIs:
simpler mapping declarations for common cases and full SOP specialization for
maximum flexibility.

The bi-directional mapping performed by the SOP is essential for providing
flexibility of notations in Envision and enabling all notations to be directly editable
using the keyboard, without the need for separate textual interfaces for performing
edits. This is in contrast to other tools like Gnome or Barista, which have a tighter
coupling between syntax and editable visualizations.

Parser

The parser component needs to accept any input and produce error nodes for input
fragments that are not understood. A key requirement towards the parser is that
when the input string is not syntactically correct or complete, only a minimal number
of error nodes should be produced, and each node should span as small a substring of
the input as possible. This assures that as a user is typing an expression, well-formed
parts of it remain well-formed and are visualized according to their meaning. More
precisely, we distinguish two types of AST nodes for recording malformed input:
error nodes, for parts of the input that are not understood (e.g., the symbol # where
an identifier is expected), and unfinished operator nodes, for parts of the input that
include fragments of an operator, but are not yet fully complete (e.g., the partly
finished plus operator b+ from Figure 6.7b). Our parser algorithm prefers unfinished
operators to errors.

When parsing malformed input strings, to find a parsing with minimal error and
unfinished operator nodes, the parser essentially processes the input string in all
possible ways by inserting error and unfinished operator nodes in different positions.
As exploring all options for longer inputs can be very expensive, we use a number of
heuristics and rules to speed up parsing. For example, we score each parsing based on
the number and size of errors and unfinished expressions it contains and we use the

90 CHAPTER 6. EFFICIENT INTERACTIONS

best discovered parsing to prune the search of worse parsings. Additionally, we treat
expressions wrapped in matching parenthesis independently of other expressions.
For example, the input
foo(a+b) + objects [23] + bar(c

will trigger three independent parser runs:

� sub1 “ a+b

� sub2 “ 23

� and foo(sub1) + objects[sub2] + bar(c, where sub1 and sub2 are consid-
ered atomic entities and are not recursively processed.

These optimizations make the parser sufficiently fast so that it can be invoked on
every key press, even for large and deep expressions. In our experience parsing
usually takes only a few milliseconds. In exceptional cases, for example, an expression
representing a list of millions of bytes, parsing could take significant time. However,
all such expressions that we have encountered have always been automatically
generated and not edited by the user.

Our parser employs a hybrid of regional and global recovery schemes as described
by Hammond and Rayvvard-Smith [HRS84]: parsing errors are detected locally
and are “corrected” by backtracking and exploring multiple parallel forward parses
similar to Lévy’s approach [Lév75]. While parallel parsing approaches like Lévy’s
are normally considered impractical, our specific optimizations and the fact that
we parse only expressions (as opposed to entire programs), make such an approach
feasible.

This parser design makes it possible to provide accurate and context-sensitive
visualizations immediately after a key press, even for incomplete or erroneous
expressions. Additionally, syntactic issues with an expression are focused on small
fragments of it and are clearly visualized, guiding the developer in finishing the edit.

The string offset provider and the parser are not limited to operating together
or to editing only expressions. Any other visualization that requires text-like
interactions can use these components. For example, we use the string offset provider
with a simple regular-expression-based parser to provide convenient typing of the
information queries discussed in Chapter 8.

The presented techniques for fluid expression editing are our second attempt at
achieving efficient interactions in a structured editor. Initially we designed an editor
without parsing or mapping to text, guided by the findings of Ko et al. [KAM05b]
about the editing behavior of developers. In this first prototype, we implemented
a “pure” structured editor where syntactic consistency would always be assured
and quick editing was achieved through specialized support for frequent kinds of
edit interactions, e.g., automatically creating a complete list by typing only its left
delimiter. This is a similar approach to the built-in editor in MPS [VSBK14]. This
first design suffered from two major issues, which ultimately caused us to abandon
it. First, developers would still have to learn to use a somewhat unusual editor
with unintuitive cursor behavior, even within textual notations. Second, providing
appropriate interactions required many specialized rules for each different kind

6.2. INTERACTION COMPONENTS 91

of expression visualization, an approach that would be difficult to extend to new
visualizations.

Editing complex visualizations

While complex visualizations do use the expression handler that we described above,
they may provide additional interactions to make edits easier. We will illustrate this
by creating and editing the specialized matrix notation for two-dimensional arrays
that we showed in Figure 6.7a.

To create the initial matrix, the user can directly type {{a,b},{c,d}}. Note
that before the user types the last }, the matrix visualization is not yet used. The
visualization is automatically chosen by Envision (instead of the more generic array
initializer visualization) only once two nested array initializers are detected, which
happens when the user completes the outer initializer. This is shown in Figure 6.10.

long-method-name

int[][] ← { a,b , c d

(a)

long-method-name

int[][] ←()a b
c d

(b)

Figure 6.10: Typing a matrix (two-dimensional array) from left to right: before
(a) and after (b) the final } is typed.

If the user prefers to use the specialized notation earlier, they may choose to
initially type only {{}} thereby making Envision detect and show an empty matrix:

long-method-name

int[][] ← ()ε

Once nested array initializers (a two-dimensional matrix) are detected and the
specialized matrix visualization is shown, the user may continue editing using
this specialized notation. Edits to individual elements of this notation work via
linearization as described earlier in this section. For example, to add a new element
x, the user needs to type “,x” after an existing element, or “x,” before an existing
element, just like they would do in a text editor. This is illustrated in Figure 6.11.

long-method-name

int[][] ←()a b
c d

(a)

long-method-name

int[][] ←()a b
c,d ,

(b)

long-method-name

int[][] ←()a b
c d x

(c)

Figure 6.11: Adding an element to a matrix row: before (a) and after (b) typing
“,”, and after typing “x” (c).

The handler of a complex (or indeed any) visualization may also provide additional
interactions that bypass linearization and directly change the underlying AST in
order to enable quick edits specific to the visualization. For example, if a user presses
Enter in the matrix visualization, a new row is created under the currently selected
one, as shown in Figure 6.12. Indeed, there is no other way to create new rows in
the matrix visualization, since there is no cursor position that is equivalent to the
space between the inner arrays of the nested array initializer underlying the matrix.
A matrix visualization with such a cursor region could be designed and edits would

92 CHAPTER 6. EFFICIENT INTERACTIONSlong-method-name

int[][] ←()a b
c d x

(a)

long-method-name

int[][] ←()a b
c d x
ε

(b)

long-method-name

int[][] ←()a b
c d x

foo

(c)

Figure 6.12: Adding a new row to a matrix: before (a) and after (b) pressing
Enter , and after adding a new element foo to the row (c).

work using linearization as usual, but we believe the current behavior is preferable
and provides a cleaner look.

As described above, custom visualizations for specific code constructs are only
used when the corresponding construct is detected by Envision. Custom visualiza-
tions will be used for as long as their required code pattern (or other contextual
requirements) are met. Some edits may eliminate required contextual conditions
and cause Envision to use default visualizations once again. For example, if a cursor
is placed just after a matrix visualization and the user presses BackÐ , this will
delete the closing brace of the outer array initializer and there will no longer be
two nested array initializers. As a consequence Envision will switch to using default
visualizations. This is illustrated in Figure 6.13.

long-method-name

int[][] ←()a b
c d x

foo

(a)

long-method-name

int[][] ← { a,b , c d x , foo

(b)

Figure 6.13: Deleting the last brace of a two-dimensional array initializer shown
in matrix form: before (a) and after (b) pressing BackÐ .

6.3 Evaluation
To evaluate the efficiency of edits in Envision, we used CogTool [JPSK04, BJRT10].
Our goal is to show that the speed of edits in Envision is comparable to text-based
tools and, therefore, editing in Envision, remains an insignificant part of software
development. Our evaluation resembles what Green and Petre did for their Cognitive
Dimensions framework [GP96] when they measured the high viscosity of visual
programming tools. CogTool is well suited for such an evaluation. In CogTool, one
creates a model of several user interfaces and specifies how a task can be achieved
using each one. The tool then uses a cognitive model to simulate the performance
of expert users, who know how to achieve the given task without hesitation. The
CogTool models used for this evaluation can be downloaded from [Env].

We modeled how three typical code editing tasks are accomplished in Envision
and Eclipse, similarly to what other researchers have done in the past [BJRT10].
The steps to complete each task and the final results are assumed to be known to
the developer — the programs just need to be edited without the need to deliberate.

6.3. EVALUATION 93

The models assume correct text entry and bug-free coding. Next, we briefly describe
the three tasks.

HelloWorld — This task involves the creation of a new project, a class within
the project, and a simple main method that prints the string “Hello world”. In
Envision, we create the project, class, and the method using the command prompt
and abbreviated commands. The call to the println method is created without using
auto-completion. In Eclipse, we use the main menu to create the new project and a
context menu to create the new class. We did not use the option to automatically
create the main method in the class wizard dialog, as this is not a part of the usual
Eclipse interactions and will skew the results. Envision does not have such a shortcut,
but one could be easily added. When editing the main method, we used Eclipse’s
built-in code snippet facility to speed up writing. As in the Envision case, we did
not use auto-completion.

Rocket — This task is an adaptation of a task from the work on Cognitive
Dimensions of Green and Petre [GP96] and is originally based on work by Curtis et
al. [CSKB`89]. The task is to modify a method that computes the trajectory of a
rocket to account for air resistance. It requires the addition of five new statements
to a method. Using this task, Green and Petre showed that visual programming
environments can suffer from high viscosity: users of visual environments were up to
8 slower compared to users of a textual environment. We adapted the task to the
Java programming language and modeled it in Eclipse and Envision. The actions
required to complete the task in both tools are almost identical.

Tetris — In this task, a new shape is added to a game of Tetris. This consists of
adding a new element to an existing enumeration and editing a three-dimensional
array, a loop condition, and another array. In Envision, the three-dimensional array
is edited as a matrix of arrays, and there is no need to manually insert space breaks
to align array elements. The mini-map is used to navigate from one edit location to
another. In Eclipse, space breaks are inserted to nicely align the elements in the
three-dimensional array. Navigation between different edit locations is done via the
file tabs and the scroll bar.

Results

The simulation results in Figure 6.14 show that for all tasks the differences in
completion times between Eclipse and Envision are within the empirically observed
error margin of ˘10% in CogTool’s underlying KLM cognitive model. The results
indicate that editing code in Envision is as fast as in a text editor, and therefore
remains an insignificant part of software development. We are not aware of another
visual code editor that provides such efficient interactions and offers visualizations
as flexible as the ones in Envision.

Our own experience with editing code in Envision

We have some limited experience with editing code using Envision, mostly from
testing the implementation and developing toy examples. Generally, writing code
feels natural and quick. The automatic formatting and code layout is a welcome
change compared to text, as it allows us to directly type without worrying about the
whitespace within expressions. Creating visual structures (e.g., for loops) by just
typing their keyword is easy to get accustomed to and is also convenient because it

94 CHAPTER 6. EFFICIENT INTERACTIONS

HelloWorld

Eclipse model

Envision model

90

completion time [s]

70

80

30

60

50

40

10

20

0
Rocket Tetris

Figure 6.14: CogTool estimations of task completion times. The boxes indicate
a ˘ 10% range of each estimated time.

automatically establishes a visual scope.
The implementation suffers from two main problems that prevent long sessions of

editing. First, Envision can occasionally crash due to incorrectly handled input. This
happens primarily with infrequently used visualizations whose interaction handlers
are not well tested and contain bugs. Second, custom visualizations are sometimes
lacking specific interactions that would be useful for a specific case, making it hard
to perform that edit. Both of these issues can be resolved if more development time
is invested in polishing the implementation of interactions in Envision.

Limitations

Below we discuss four limitations of our evaluation and our interaction approach.
We have evaluated Envision’s interaction mechanisms on only three CogTool

models. The performance might differ on models of other programming tasks or in a
user study. To improve the relevance of the simulations we modeled long tasks that
test a combination of all edit interactions. The empirical results also match our own
experience of using Envision, so we speculate that a user study with experienced
Envision users would yield similar results.

Envision’s interaction design enables a diverse set of programming notations and
interfaces. However, in some cases there is no single best way to define more complex
interaction flows. For example, when editing non-linear expression visualizations,
such as the one from Figure 6.9, it is not always clear how the graphical visualizations
should be linearized. In the discussion of Figure 6.9, we mentioned three possibilities
for configuring the virtual grid and cursor regions and different users might have
different preferences. While Envision supports all these configurations, each must be
separately implemented in plug-ins, which is beyond what we expect of ordinary users
of the system. Thus, designers of complex visualizations need to provide reasonable

6.4. RELATED WORK 95

default interactions and perhaps anticipate different interaction preferences in order
to provide easily configurable alternatives through styles.

The support for complex and editable visualizations may also hinder the perfor-
mance of inexperienced users. Unlike plain text, where it is clear how to achieve
any edit, users of complex visualizations might be unaware of what interactions
are available or how to achieve an edit efficiently. While a complex visualization
may enable left-to-right typing and edits similar to text, oftentimes it can provide
additional interactions specific to its domain to make certain tasks simpler. Users
unaware of these interactions might struggle. Further research is needed to make
interactions with complex visualizations more transparent.

Generally, most interaction customizations can only be performed via Envision
plug-ins. Such customizations need to be implemented by power users or Envision
developers with knowledge of Envision’s interaction APIs. A further inconvenience
with customizations is that, unlike standard text-editing, Envision’s interactions
mechanisms are more complex, which makes interaction customizations harder to
debug and prone to bugs. In order to allow wider and more robust personalization
of the programming environment, it is necessary to develop additional mechanisms
that enable a larger set of customizations to be performed by ordinary users in a
more controlled manner, without the need to write Envision plug-ins.

6.4 Related work
Miller et al. [MPMV94] describe early structured editors used in education. Early
systems such as the Cornell Program Synthesizer [TR81], Gandalf [HN86], or Gnome
[GM84] rendered programs in a textual form that looked like a standard programming
language syntax, but these editors eliminated syntax errors by imposing constraints
on how the program is manipulated: edits are always made in a top-down fashion
according to the program’s AST and invalid AST states are impossible. Navigation
was also performed along AST nodes as opposed to the text structure on screen. This
navigation mode meant that students need to map from movements on the text to
movements in terms of AST nodes, which further reduced usability. Such interactions
may be admissible when educating novice programmers, but they are prohibitive for
advanced developers. In particular, the constraint of always syntactically-correct
programs is severe, because it prohibits quick edits via invalid states, an edit pattern
developers frequently use: Omar et al. [OVH`16] report that in data of character-
level edits collected over 1460 hours by Yoon and Myers [YM14], 44.2% of the states
of source files were not syntactically valid. Structured editors, such as MacGnome
[CGG`85] or ACSE [PM93], addressed some of these usability issues by focusing
more on mouse-based interaction (e.g., for navigation) and by allowing the program
to be edited also using a standard text-editor, thus also negating some of the benefits
of structured editing. Unlike Envision, none of these editors were aimed at expert
programmers.

Ko et al. [KAM05b] analyzed the code edit patterns of Java programmers and
found that the full flexibility of text editors is not used. They proposed a set of
common code edit patterns that, if supported by structured editors, might provide
good usability. The MPS [Fow05, VSBK14] commercial programming system features
a modern structured editor, which can be considered to support specific interactions
as suggested by Ko et al. MPS offers many features that improve usability, but

96 CHAPTER 6. EFFICIENT INTERACTIONS

editing code in MPS is constrained to valid ASTs. Users of MPS report that editing
feels unfamiliar at first and takes significant time to learn. More proficient MPS users
are generally satisfied with the usability of the tool, but still experience situations
where the constrained editing imposes specific ways to write code, for example,
classes or interfaces need to be defined before they can be used. Intentional software
[SCC06] is another commercial programming system with a structured editor, which,
to the best of our knowledge, seems to work similarly to the one in MPS. In
contrast to Envision, which targets mainstream programming languages, both MPS
and Intentional software are language workbenches, which take a non-standard
approach to software engineering in which programmers define and compose their
own domain-specific languages.

Barista [KM06] is an implementation framework for creating visual code editors.
It has features similar to Envision, such as augmenting code with HTML documen-
tation, the ability to present source code in different ways, keyboard navigation, and
text-like editing. Our work goes beyond Barista in a number of important aspects.
Firstly, not all visualizations in Barista are editable. The tool’s authors demonstrate
pretty-printed views of mathematical operators, but for editing revert to visualiza-
tions that closely match the tokens of the concrete language. This is not necessary
in Envision, since its interaction framework enables any visualization to be directly
editable, provided the visualization’s designer implements the appropriate handlers.
Secondly, we focus strongly on customizability, through explicit mechanisms in the
existing implementation and through our plug-in based architecture. Thirdly, to our
knowledge Barista has not been evaluated.

LabView is perhaps the most successful visual programming tool used by profes-
sionals. Unlike Envision, LabView targets the domain of measurement automation
and control systems, and is based on a non-mainstream, data-flow driven program-
ming model. LabView and other visual programming environments have been
studied extensively by Green and Petre [Gre89, Gre90, GP96], who identify the
major usability issue of high viscosity. For example, due to high viscosity in LabView
it might be difficult to modify an existing expression, because the developer has
to rearrange existing subexpressions on the visual canvas. Visual programming
environments typically have a strong focus on mouse-based interactions, in contrast
to Envision.

Many visual programming tools such as Alice [Coo10], Scratch [MRR`10], MIT
App Inventor [Wol11], and JPie [BG05] are designed for students learning to program.
Such tools focus on easily constructing executable programs via visual means and
displaying a live execution while programming. Users can use drag and drop
gestures to put different program fragments together, which eliminates most if not
all syntactical errors. Unlike tools designed for experts such as Envision, visual
tools for novices typically have no strong focus on keyboard interactions, freedom of
editing the program via invalid states, or customizability.

The Stride structured editor [McK12, PBL`16], which is part of the Greenfoot
tool, has been designed to help novices program in a language that is semantically
identical to Java. Evaluations show that editing code in Stride is at least as fast
as editing in a standard text editor. Unlike Envision, Stride uses a specific visual
structure to present code and does not support arbitrary editable visualizations.

Eco [DT14] is a recent tool that allows language composition, which is achieved
by using an editor based on language boxes. Within a language box developers
can freely type text corresponding to one language and also insert language boxes

6.4. RELATED WORK 97

of other languages. Each box is edited independently of other boxes and is not
restricted to a text editor. Unlike Eco, Envision makes it possible to customize the
appearance and edit interactions of individual language constructs, not just of entire
languages.

Code Bubbles [BZR`10, BRZ`10], Code Canvas [DR10, DVR10], and Debugger
Canvas [DBR`12] are recent programming tools that visually enhance professional
IDEs. Building on the well-established Eclipse and Visual Studio platforms, these
tools provide alternative ways to navigate code in a two-dimensional canvas, but
neither provides a structured editor or rich and flexible visualizations of arbitrary
code fragments.

Another big group of visual programming tools are applications designed for
end-users, for example, spreadsheets. While the interfaces of such systems can be
very efficient, these environments mostly use their own programming model and
workflows and lack support for general software engineering.

98 CHAPTER 6. EFFICIENT INTERACTIONS

7Precise version control of tree
structures

In the previous two chapters, we addressed the issue of limited notations of main-
stream programming tools. We presented flexible visual interfaces that are decoupled
from the underlying program model. This decoupling allows us to enrich the in-
formation structures of source files, and in particular to include dense data. In
this chapter we investigate a specific application of dense data – improving version
control algorithms for trees.

Version control of tree structures, ubiquitous in software engineering, is typi-
cally performed on a textual encoding of the trees, disregarding the tree structure.
Applying standard line-based diff and merge algorithms to such encodings leads
to inaccurate diffs, unnecessary conflicts, and incorrect merges. To address these
problems, we have designed novel algorithms for computing precise diffs between
two versions of a tree and for three-way merging of trees [AGMO17]. Unlike most
other approaches for version control of structured data, our approach integrates with
mainstream version control systems. Our merge algorithm can be customized for
specific application domains to further improve merge results. An evaluation of our
approach on abstract syntax trees from popular Java projects shows substantially
improved merge results compared to Git. While the algorithms we present can be
used with traditional source files, the algorithms are much more efficient and produce
better diffs and merges with source files that include dense data.

7.1 Challenges of versioning trees
Tree structures such as XML, JSON, and source code are ubiquitous in software
engineering, but support for precise version control of trees is lacking. Mainstream
version control systems (VCSs) such as Git, Mercurial, and SVN treat all data as
sequences of lines of text. Standard diff and merge algorithms disregard the structure
of the data they manipulate, which has three major drawbacks for versioning trees.
First, standard line-based diff algorithms may lead to inaccurate and confusing diffs,
for instance when differences in formatting (e.g., added indentation) blend with real
changes or when lines are incorrectly matched across different sub-trees (e.g., across
method boundaries in a program, as illustrated in Figure 7.1). Inaccurate diffs do
not only waste developers’ time, but may also corrupt the result of subsequent merge
operations. Second, standard merge algorithms may lead to unnecessary conflicts,
which occur for incompatible changes to the formatting (e.g., breaking a line at
different places), but also for more substantial changes such as merging two revisions
that each add an element to an un-ordered list (for instance, a method at the end of

99

100 CHAPTER 7. PRECISE VERSION CONTROL OF TREES

1 parent f2ede75 commit 600d38c8ce0b6d16fc1d94e2e7a1f5fc522d7741

Refactor to only have a single addEdge method in graph
Most code between directed and undirected was duplicated anyway

development (#122)

lukedirtwalker committed on 5 Aug 2015

Showing 4 changed files with 21 additions and 45 deletions.

dimitar-asenov / Envision

Code Issues 29 Pull requests 0

Browse files

Unified Split

InformationScripting/src/graph/Graph.cpp

27 27

28 28

29 29

30

31 30

32 31

33 32

58 57

59 58

60 59

61

60

61

62 62

63 63

64 64

65 65

66

66 67

67 68

68

69

70

71

72

73

69 74

70 75

71

76

72 77

73 78

74 79

75 80

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

81

97 82

98 83

99 84

View35

@@ -27,7 +27,6 @@

 #include "Graph.h"

 #include "InformationNode.h"

-#include "InformationEdge.h"

namespace InformationScripting {

@@ -58,42 +57,28 @@ InformationNode* Graph::add(InformationNode* node)

return existingNode;

 }

-InformationEdge* Graph::addDirectedEdge(InformationNode* from, InformationNode* to, const QString& name)

+InformationEdge* Graph::addEdge(InformationNode* from, InformationNode* to, const QString& name,

+ InformationEdge::Orientation orientation)

 {

// We only allow existing nodes:

Q_ASSERT(from == findNode(from));

Q_ASSERT(to == findNode(to));

+ // TODO this might be a possible performance hit if we have many edges.

for (auto edge : edges_)

 {

- if (edge->from() == from && edge->to() == to && edge->name() == name)

+ // TODO if directed only this condition

+ bool directedMatch = edge->from() == from && edge->to() == to;

+ bool undirectedMatch = edge->from() == to && edge->to() == from;

+ if (edge->name() == name && ((orientation == InformationEdge::Orientation::Directed && directedMatch)

+ || (orientation == InformationEdge::Orientation::Directed && (directedMatch || undirectedMatch))))

 {

auto existingEdge = edge;

- Q_ASSERT(existingEdge->isDirected());

+ Q_ASSERT(existingEdge->orientation() == orientation);

 existingEdge->incrementCount();

return existingEdge;

 }

 }

- auto edge = new InformationEdge(from, to, name);

- edges_.push_back(edge);

- return edge;

-}

-

-InformationEdge* Graph::addEdge(InformationNode* a, InformationNode* b, const QString& name)

-{

- // We only allow existing nodes:

- Q_ASSERT(a == findNode(a));

- Q_ASSERT(b == findNode(b));

- for (auto edge : edges_)

- {

- if ((edge->from() == a || edge->from() == b) && (edge->to() == b || edge->to() == a) && edge->name() == name)

- {

- auto existingEdge = edge;

- Q_ASSERT(!existingEdge->isDirected());

- existingEdge->incrementCount();

- return existingEdge;

- }

- }

- auto edge = new InformationEdge(a, b, name, InformationEdge::Orientation::Undirected);

+ auto edge = new InformationEdge(from, to, name, orientation);

 edges_.push_back(edge);

return edge;

 }

Pricing Blog Support This repository SearchPersonal Open source Business Explore Sign upSign upSign in

4 34 19

 Projects 0 Wiki Pulse Graphs

 Watch Star Fork

Figure 7.1: A confusing diff shown by GitHub. On first sight, the large red
section in middle gives the impression that the developer removed this code,
including the closing brace, to merge the two addEdge methods into one. How-
ever, upon closer inspection one notices that the last two statements of both
methods are identical (shown in blue boxes). A more intuitive diff would show
the bottom method as fully deleted, the second to last statement of the top
method as modified, and the last two statements of the top method, including
the closing brace, as unchanged.

7.2. TREE VERSIONING WITH A LINE-BASED VCS 101

the same class). Unnecessary conflicts could be merged automatically, but instead
require manual intervention from the developer. Third, standard merge algorithms
may lead to incorrect merges; for instance, if two developers move the same tree
node to two different places, a line-based merge might incorrectly duplicate the node.
Incorrect merges lead to errors that developers need to detect and fix manually.

To solve these problems, we have developed a novel approach to versioning trees.
Our approach builds on a standard line-based VCS (in our case, Git), but provides
diff and merge algorithms that utilize the tree structure to provide accurate diffs,
conflict detection, and merging. In contrast to VCSs that require a dedicated backend
for trees [KH10, KHvWH10, MCPW08, NMB05, NNPN10], employing a standard
VCS allows developers to use established infrastructures and workflows (such as
GitHub or BitBucket) and to version trees and text files such as documentation
in the same VCS. Our diff algorithm relies on the optimized line-based diff of
the underlying VCS, but utilizes the tree structure to accurately report changes,
including moved sub-trees, which line-based algorithms do not track as illustrated in
Figure 7.2. Building on the diff algorithm, we designed a three-way merge algorithm
that reduces unnecessary conflicts and incorrect merges by using the tree structure
and, optionally, domain knowledge such as whether the order of elements in a list is
relevant.

Diff and merge algorithms rely on matching different revisions of a tree to
recognize commonalities and changes. The optimal way to obtain such a matching
is to associate each tree node with a unique ID, which is dense data that remains
unchanged across revisions. This approach yields precise matchings and makes
it very efficient to recognize changed and moved nodes, but requires a custom
storage format that supports dense data and a corresponding editor such as Envision.
Alternatively, one can use traditional textual encodings of trees without IDs (e.g.,
source code to represent an AST) and compute matchings using an algorithm such
as ChangeDistiller [FWPG07] or GumTree [FMB`14]. However, such algorithms
require significant time and produce results that are approximate and, thus, lead to
less precise diffs and merges. Our approach supports both options; it benefits from
the precise matchings provided by node IDs when available, but can also utilize the
results of matching algorithms and, thus, be used with standard editors. We will
present the approach for a storage format that includes node IDs, but our evaluation
shows that even with approximate matchings computed on standard Java code, our
approach achieves substantially better results than a standard line-based merge.

In the remainder of this chapter, we will first present a textual encoding of generic
trees that includes node IDs and that enables precise version control of trees within
standard line-based VCSs such as Git. Afterwards, we will describe an algorithm for
computing the difference between two versions of a tree based on the diff reported
by a line-based VCS. Following the diff algorithm, we will describe an algorithm
for a three-way merge of trees, which allows the customization of conflict detection
and resolution. Finally, we will discuss an evaluation of the algorithms on several
popular open-source Java code bases.

7.2 Tree versioning with a line-based VCS
The algorithms we designed work on a general tree structure. In order to enable
precise version control of trees, we assume, without loss of generality, that each tree

102 CHAPTER 7. PRECISE VERSION CONTROL OF TREES

This repository Search Pull requests Issues Gist

1 parent 57f6ebc commit 140493648b05c2ed84da656ac74ce4bcfa54d648

Extended getFileContent with flag to choose if name matching must be …
…exact.

Behavior of CDiff and CMerge unchanged

development (#361)

mgalbier committed on 5 Apr

Showing 5 changed files with 31 additions and 11 deletions.

dimitar-asenov / Envision

Code

FilePersistence/src/simple/SimpleTextFileStore.cpp

347 347

348 348

349 349

350

351 350

352 351

353 352

View1

@@ -347,7 +347,6 @@ Model::LoadedNode SimpleTextFileStore::loadNewPersistenceUnit(const QString& nam

 }

else if (fileGetter_)

 {

- Q_ASSERT(relativeFilePath.isEmpty());

const char* data = nullptr;

int dataLength = 0;

bool success = fileGetter_(name, data, dataLength);

FilePersistence/src/version_control/Commit.cpp

71 71

72 72

73 73

74

74

75 75

76

77

76

77

78 78

79

80

79

80

81

82

83

81 84

82

85

86

83 87

88

84 89

85

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

86 105

87 106

88 107

View33

@@ -71,18 +71,37 @@ void Commit::addFile(QString relativePath, qint64 size, std::unique_ptr<char[],

 files_.insert(relativePath, new CommitFile{relativePath, size, std::move(content)});

 }

-bool Commit::getFileContent(QString fileName, const char*& content, int& contentSize) const

+bool Commit::getFileContent(QString fileName, const char*& content, int& contentSize, bool exactFileNameMatching) const

 {

- QHash<QString, CommitFile*>::const_iterator iter = files_.find(fileName);

- if (iter != files_.constEnd())

+ // name of file must match fileName exactly

+ if (exactFileNameMatching)

 {

- contentSize = iter.value()->size_;

- content = iter.value()->content();

+ QHash<QString, CommitFile*>::const_iterator iter = files_.find(fileName);

+ if (iter != files_.constEnd())

+ {

+ contentSize = iter.value()->size_;

+ content = iter.value()->content();

- return true;

+ return true;

+ }

 }

+ // name of file contains fileName

else

- return false;

+ {

+ QHash<QString, CommitFile*>::const_iterator iter = files_.constBegin();

+ while (iter != files_.constEnd())

+ {

+ if (iter.key().contains(fileName))

+ {

+ contentSize = iter.value()->size_;

+ content = iter.value()->content();

+

+ return true;

+ }

+ iter++;

+ }

+ }

+ return false;

 }

 }

FilePersistence/src/version_control/Commit.h

78 78

79 79

View2

@@ -78,7 +78,7 @@ class FILEPERSISTENCE_API Commit

void addFile(QString relativePath, qint64 size, std::unique_ptr<char[]> content);

void addFile(QString relativePath, qint64 size, std::unique_ptr<char[], CommitFileContentDeleter> content);

Issues 29 Pull requests 0

Browse files

Unified Split

34 194

 Projects 0 Wiki Pulse Graphs Settings

 Unwatch Unstar Fork

Figure 7.2: An undetected move making a diff harder to understand. At first
sight, it seems that the entire method body was replaced with new code. In
fact, most of the old body was simply moved into a newly inserted if-statement.

node is a tuple with the following elements:

� id : a globally unique ID. This ID is used to match and compare nodes from
different versions and track node movement. IDs can be stored on disk with
source files that support dense data, or generated on demand for traditional
source files, as long as matching nodes from different versions have the same ID,
which can be achieved by using a tree-matching algorithm such as GumTree
[FMB`14]. We use a standard 128-bit universally unique identifier (UUID).

� parentId : the ID of the parent node. The parent ID of the root node is a
null UUID. All other nodes must have a parentId that matches the ID of an
existing node.

7.2. TREE VERSIONING WITH A LINE-BASED VCS 103

� label : a name that is unique among sibling nodes. The label is essentially
the name of the edge from parent to child node. This could be any string or
number, e.g., 1, 2, 3, ... for the children of nodes representing lists.

� type: an arbitrary type name from the target domain. For example, types
of AST nodes could be Method or IntegerLiteral. Types enable additional
customization of the version control algorithms, used to improve conflict
detection and resolution. In domains without different node types, one type
can be used for all nodes.

� value: an optional value, e.g., the text of string literals.

A valid tree is a set of nodes which form a tree and meet the requirements above.

7.2.1 Textual encoding of valid trees
In order to efficiently perform version control of trees within a line-based VCS, we
encode trees in a specific text format, which enables using the existing line-based
diff in the first of two stages for computing the changes between two tree versions.
A valid tree is encoded into text files as illustrated in Figure 7.3. The key property
of the encoding is that a single line contains the encoding of exactly one tree node
with all its elements. In Figure 7.3, each line encodes a node’s label, type, UUID,
the UUID of the parent node, and the optional value in that order. A reserved node
type External indicates that a subtree is stored in a different file (Figure 7.3b).

This encoding allows two versions of a set of files to be efficiently compared using
a standard line-based diff. The different lines reported by such a diff correspond
directly to a set of nodes that is guaranteed to be an overapproximation of the nodes
that have changed between the two versions of the encoded tree.

The order of lines within a file and their indentation has no meaning, but for
efficient parsing, we indent each child node and insert children after their parents
(Figure 7.3), enabling simple stack-based parsing. The names of the files that
comprise a single tree is irrelevant, but for quickly finding subtrees, it is advisable to
include the UUID of the root of each file’s subtree in the file name.

2 Method {9c2c...} {e0b6...}
modifiers Modifier {8842...} {9c2c...} 1
name Name {3269...} {9c2c...} foo
body StatementList {1023...} {9c2c...}

0 If {f3c2...} {1023...}
condition BinOp {b0a0...} {f3c2...}

left Text {f7c3...} {b0a0...} two\nlines

(a)

12 Class {5414...} {425d...}
methods List {e0b6...} {5414...}

0 External {e239...} {e0b6...}
1 External {5db1...} {e0b6...}
2 External {9c2c...} {e0b6...}

(b)

Figure 7.3: (a) An example encoding of an AST fragment in Envision’s file
format. For brevity, only the first 2 bytes of UUIDs are shown here. (b) A file
that references external files, which contain the subtrees of a class’s methods.
The last line refers to the file from (a). At most two lines in different files may
have the same ID, and one of them must be of type External.

104 CHAPTER 7. PRECISE VERSION CONTROL OF TREES

7.2.2 Diff algorithm
The diff algorithm computes the delta between two versions of a tree (Told and Tnew).
The delta is a set of changes, where each change represents the evolution of one node
and is a tuple consisting of:

� oldNode: the node tuple from Told, if it exists (node was not inserted).

� newNode: the node tuple from Tnew, if it exists (node was not deleted).

� kind : the kind of the change – one of Insertion, Deletion, Move (change of
parent and possibly label, type, or value), Stationary (no change of parent,
but change in at least one of label, type, or value).

These elements provide the full information necessary to report precisely how a
node has changed. The encoding from Section 7.2.1 enables an efficient two-stage
algorithm for computing the delta between two versions of a tree. The operation of
the algorithm is illustrated in Figure 7.4.

The first stage computes two sets of nodes oldNodes Ď Told and newNodes Ď
Tnew, which overapproximate the nodes that have changed between Told and Tnew.
The sets are computed by comparing the encodings of Told and Tnew using a standard
line-based diff [MM85, Mye86, Ukk85]. Given two text files, a line-based diff computes
a longest common subsequence (LCS), where each line is treated as an atomic element.
The LCS is a subset of all identical lines between Told and Tnew. The diff outputs
the lines that are not in the LCS, thus overapproximating changes: lines from the
“old” file are marked as deleted and lines from the “new” file are marked as inserted.
In the middle of Figure 7.4, lines B, E, G, H, and D on the left are marked as
removed and lines B1, E1, G, H, and X on the right are marked as inserted. The
combined diff output for all files is two sets of removed and inserted lines. The nodes
corresponding to these two sets, ignoring nodes of type External, are the inputs to
the second stage of the diff algorithm.

The second stage (Algorithm 7.2.1) filters the overapproximated nodes and
computes the final, precise delta between Told and Tnew. The algorithm essentially
compares nodes with the same id from oldNodes and newNodes and if they are
different, adds a corresponding change to the delta. A node from oldNodes might be
identical to a node from newNodes, for example, if its corresponding line has moved,

A

B C D

E F

G H

A

B′ C

F

Told

E′

G H

Tnew

X

A

G
H

E

F

B
C

D

A

E′
G

F

H

B′
C

X

line-based diff final delta

(B, B′, Stationary)

(E, E′, Move)

(D, -, Deletion)

(-, X, Insertion){ {
Figure 7.4: A tree modification and the outputs of the two stages of the diff
algorithm.

7.3. MERGING TREES 105

1: function TreeDiffStageTwo(oldNodes, newNodes)
2: changes ÐH

3: for all {(old, new) P (oldNodes ˆ newNodes) | old.id=new.id ^ old‰new}
do

4: if old.parentId = new.parentId then
5: changes Ð changes Y {(old, new, Stationary)}
6: else
7: changes Ð changes Y {(old, new, Move)}
8: end
9: end

10: for all {old P oldNodes | old.id R IDs(newNodes)} do
11: changes Ð changes Y {(old, NIL, Deletion)}
12: end
13: for all {new P newNodes | new.id R IDs(oldNodes)} do
14: changes Ð changes Y {(NIL, new, Insertion)}
15: end
16: return changes
17: end

Algorithm 7.2.1: The second stage of the TreeDiff algorithm. IDs is the set
of all identifiers of nodes from the input set. A more detailed version of this
algorithm and a proof of correctness can be found in [Gue15].

but is otherwise unchanged. This is the case for nodes G and H in Figure 7.4, where
the final delta consist only of real changes to the nodes B, D, E, an X. This is
in contrast to a line-based diff, which will also report G and H as changed, even
though they have not.

In the absence of unique IDs stored with the tree, it is possible to compute
matching nodes using a tree match algorithm, enabling our diff and merge algorithms
to be used for traditional encodings of trees, such as Java files. To achieve this, the
first stage needs to be replaced so that it parses the input files, computes a tree
matching, and assigns new IDs according to the matching. However, this will greatly
reduce the efficiency of the diff, and will reduce the precision of the final delta, since
the node matchings are heuristic.

The described diff algorithm eliminates (with unique IDs), or greatly reduces
(using a tree matching algorithm) inaccurate diffs. This is because the formatting of
the encoding is irrelevant, changes are expressed in term of tree nodes, and moved
nodes are tracked, even across files. The diff provides a basis for improved merges,
discussed next.

7.3 Merging trees
Building on the diff algorithm from Section 7.2.2, we designed an algorithm for
merging two tree revisions TA and TB given their common ancestor Tbase. At the
core of the merge is the change graph – a graph of changes performed by the two
revisions, which includes conflicts and dependencies. In this section, we describe the
change graph and how it is used to merge generic trees; in Section 7.4, we will outline

106 CHAPTER 7. PRECISE VERSION CONTROL OF TREES

A

B C D

L

E

A

B′ C

L

base

X

Y Z

revision P

1

revision Q change graph

D′

E

1 2

A

C D

L′

E V
1 2

P: insert X

P: insert Y

P: insert Z Q: insert V

Q: move L Q: delete B

P: edit B

P: relabel E

P: move D

d1

d3

d2

c1

c2

Figure 7.5: A base tree with two modifying revisions and the corresponding CG.
Each edge in the CG is labeled with the dependency or conflict type that the
edge represents.

additional merge customizations, which use knowledge about the domain of a tree
to improve conflict detection and resolution. Unlike the diff algorithm, the merge
does not build on its line-based analog, which is unaware of the tree structure and
may produce invalid results. For example, if two revisions move the same node (line)
to two different parents, which are located in different parts of a file or in different
files, a line-based algorithm would simply keep both lines, incorrectly duplicating
the subtree, whereas our algorithm will report a conflict.

7.3.1 Change graph and merge algorithm
The purpose of the change graph (CG) is to bring together changes from two diverging
revisions and facilitate the creation of a merged tree. The nodes of the CG are
changes, similar to the ones reported by the diff. The changes are connected with two
types of edges, which constrain when changes may be applied. A change may require
another change to be applied first, expressed as a directed dependency edge. For
example, a change inserting a node might depend on the change inserting the parent
node. Two changes may be in conflict with each other, expressed as an undirected
conflict edge. For example, if both revisions change the same node differently, these
changes will be in conflict. An example change graph is illustrated in Figure 7.5.

To merge TA and TB into a tree Tmerged, first an inverse topological ordering of
the CG is computed using the dependency edges. Changes are applied according
to this ordering, if possible. A change is applicable if it does not depend on any
other change and has no conflict edges. Changes that form cycles in the CG may be
applied together, in one atomic step, provided that all changes (i) have no conflict
edges; (ii) are made by the same revision or by both revisions simultaneously; and
(iii) do not depend on any change outside the cycle. Essentially, changes in such
cycles are independent of other changes and are compatible with both revisions,
making them safe to apply. These restrictions ensure that each application of a
change preserves the validity of the tree. Applied changes are removed from the CG
along with any incoming dependency edges. Once all applicable changes have been
applied, any remaining changes represent conflicts and will be reported to the user.
Next, we explain how the CG is constructed.

7.3. MERGING TREES 107

Merge changes

A merge change is a tuple that extends the change tuple from the diff algorithm with
one new element, revisions, which indicates which revisions make this change: RevA,
RevB, or Both. The nodes of the CG are the merge changes obtained by running
the diff algorithm twice to compute the delta between Tbase and TA and between
Tbase and TB , respectively. First, each change from the two deltas is associated with
either RevA or RevB to create a corresponding merge change. Then, we organize
the elements of a tree node into two element groups: (i) parent and label; and (ii)
type and value. Each group contains tuple elements whose modification by different
revisions is a conflict. Any merge changes that modify both element groups are
split into two merge changes: one for each element group. For example, if a node is
moved to a new parent and its value is modified, this will appear as two separate and
independent merge changes within the CG. This separation reduces conflicts and
dependencies in the CG, since the two groups are independent. Finally, any identical
changes made by different revisions are combined into a single merge change with
revisions=Both, which ensures that identical changes are applied only once.

Dependencies between merge changes

A dependency X Ñ Y means that change X cannot be applied before Y , and is the
first of two means that restrict applicable changes. Dependencies prevent three cases
of tree structure violations.

(d1) orphan nodes: (a) Before a change IM inserts or moves a node N , N ’s
parent destination node P must exist. If P does not already exist in Tbase, then
there must be an insertion change I, which inserts it. An edge IM Ñ I is added to
indicate that I must be applied before IM can be applied. In Figure 7.5, nodes Y
and Z depend on the insertion of X. (b) Before a change D deletes a node N , all
of N ’s children must be deleted or moved. An edge D Ñ DM is added between D
and each change DM that moves or deletes a child of N . In both (a) and (b), the
changes I and DM are guaranteed to exist if they are necessary, because the merge
changes were computed from the deltas of valid trees. Note that dependencies that
prevent orphan nodes cannot form cycles on their own.

(d2) clashing labels: Before a change IMR inserts, moves, or relabels (modifies
the label of) a node N , there must be no sibling at the destination of N with the
same label. If a node with the same label as N ’s final label exists in Tbase at the
destination parent of N then there must be a change DMR that deletes, moves, or
relabels that sibling. An edge IMR Ñ DMR is added to the CG. In Figure 7.5,
node X depends on the relabeling of E. Such dependencies may form cycles. For
example, swapping two elements in a list yields two relabel changes, where each
change depends on the other.

(d3) cycles: If a change MN moves a node N , N must not become its own
ancestor. Such a situation occurs, for example, if a revision A moves an if-statement
IF 1 into an if-statement IF 2, and revision B moves IF 2 into IF 1. To prevent such
issues, move changes are applied only if the destination subtree does not need to be
moved. This is enforced using dependencies. If MN moves N to a subtree that needs
to be moved, let MP be the change that moves the subtree. An edge MN Ñ MP

is added to the CG. Move changes from different revisions may create dependency
chains that form a cycle in the CG. For example, the move of IF 1 will depend on
the move of IF 2, which will itself depend on the move of IF 1. Such a cycle means

108 CHAPTER 7. PRECISE VERSION CONTROL OF TREES

that the two revisions perform incompatible moves and the changes from the cycle
cannot be applied. Move changes from different revisions do not always result in a
cycle. For example, in Figure 7.5, the move of L depends on the move of D, which
is independent.

Conflicting merge changes

Conflicts that would result in a node becoming its own ancestor are indirectly
represented in the CG in the form of dependency cycles described above. Other
conflicts cannot be expressed with dependencies and appear directly as conflict edges,
which are the second means for restricting change application. There are three cases
of direct conflicts.

(c1) same node: If two revisions make non-identical changes X and Y to the
same node, these changes may be conflicting. Deletions conflict with all other changes.
Other changes conflict only with changes of the same element group. Conflicting
changes are connected with an undirected edge X „ Y in the CG. An example of
such a conflict is the modification and deletion of B in Figure 7.5.

(c2) label clash: If a change IMRN inserts, moves, or relabels a node N , and
another change IMRQ inserts, moves, or relabels a node Q such that N and Q have
identical final labels and parent nodes, the two changes are in conflict. An edge
IMRN „ IMRQ is added to the CG. In Figure 7.5, such a conflict is the relabeling
of E and the insertion of V .

(c3) deletion clash: If a change DN deletes a node N , and another change
IMQ inserts or moves a node Q as a child of N , the two are in conflict. An edge
DN „ IMQ is added to the CG.

Validity of merge changes application

Below we argue why applying a change from the CG always results in a valid tree.
We justify each of the properties of a valid tree separately:

� One root, no other nodes without a parent: Without loss of generality, we
assume that the root node of a tree is never moved and thus, remains the root
node in all revisions. Move and Insert changes require a non-null ID as the
target parent node, and thus cannot introduce an additional root. Edges of
types d1 and c3 ensure that no nodes are left without a parent when inserting
or deleting nodes.

� No cycles: For a cycle to occur in a tree, a change would have to move a node
into its own subtree. Dependencies of type c3 effectively prohibit this. Within
a single revision, these dependencies dictate a specific change application order,
which guarantees that at no step there are cycles in the tree. With two tree
revisions, conflicting changes might exist such that there is no application
order that prevents a cycle. In such cases, would-be tree cycles correspond to
cycles in the CG that prevent the corresponding changes from being applied.

� One parent per node, except for the root: Each tree revision includes at
most one change that may affect the parent of a node. If both revisions have
changes affecting the parent of a node, these changes will either be merged,
if they are identical, or form a conflict of type c1 and neither will be applied.
Thus a node may not accidentally get more than one parent.

7.4. DOMAIN-SPECIFIC MERGE CUSTOMIZATIONS 109

� Unique IDs: Only insertions introduce new node IDs. Two insertion changes
for the same ID must come from different revisions, and are either merged into
a single merge change, if they are identical, or are marked with a conflict of
type c1. Thus, there cannot be two different nodes with the same ID.

� Unique labels for siblings: Within a single revision, dependencies of type d2
prevent changes from introducing a duplicate label. With two revisions, at
most two changes introduce the same label within a parent node. If these
changes pertain to the same child node, they are either identical and therefore
merged, or they are conflicting according to c1. If these changes pertain to
different child nodes, they are conflicting according to c2.

In contrast to line-based merges, applying changes using the CG prevents incorrect
merges by taking the tree structure into account. The algorithm, as described so far,
does not have any knowledge about the domain of the tree, and misses opportunities
for improved merges and better error reporting. Next, we explain customizations,
that improve the merge results and inform the developer of potential semantic issues.

7.4 Domain-specific merge customizations
Merging two tree revisions without any domain knowledge, as described so far, can
lead to suboptimal merges. Figures 7.5 and 7.6 illustrate one such example, where
revision P inserts a node X in the beginning of list L and revision Q inserts a node
V at the end. These two changes conflict, because the label of E in P is identical to
the label of V in Q. Despite this conflict, intuitively these changes can be merged
by relabeling V . To achieve better merge results, we allow the merge process to be
customized by taking domain knowledge into account. Customizations use domain
knowledge, such as the semantics of specific node types or values, to tweak the CG,
eliminating conflicts and dependencies, and thus, enabling additional changes to
be applied. Customizations may also produce review items, which are messages
that inform the user of a potential semantic issue with the final merge. Review
items have two advantages over conflicts. First, unlike changes in a conflict or their
depending changes (even if not in a conflict), which are not applicable, review items
are not part of the CG and do not prevent the application of changes. Applying more

A

B C

D

L

E

merge outcome before customizations

1

customized merge outcome

P: insert X

P: insert Y

P: insert Z Q: insert V

Q: delete B

P: edit B

P: relabel E

A

B C

D

L

E
2

Z

X

Y

V
1 3

Q: delete B

P: edit B

Figure 7.6: The resulting Tmerged and CG after applying all possible changes
from Figure 7.5 (left) and after additional customizations (right).

110 CHAPTER 7. PRECISE VERSION CONTROL OF TREES

changes is desirable because the final merge more closely represents both revisions
and the user has to review issues with only a selected group of nodes, instead of
manually exploring many unapplied changes. Second, review items provide semantic
information to the user, making it easier to take corrective action, unlike conflicts,
which represent generic constraints on the tree structure. Similarly, review items are
preferable to conflicts in line-based merges, because review items are more focused
and provide semantic information. Next, we present two examples of customizations,
which we have found useful for achieving high-quality merges.

7.4.1 List-merge customization
Data from many domains (e.g., ASTs, UML models) has list entities. Merging lists is
challenging [KK14, SUW15], as it is not trivial to determine the order of the merged
elements and to detect and resolve conflicts. In addition, the CG often contains
label clash conflicts in lists (e.g., for nodes E and V in Figure 7.6), which are usually
easy to resolve automatically. We developed the List-merge customization, which is
crucial for merging list nodes well. Essentially, the customization computes a total
order of all list elements from both revisions. This total order is used to relabel all
elements, giving each element a unique label. Thus, all conflicts or dependencies due
to previously clashing labels are removed from the CG, allowing many more changes
to be merged. Next, we describe at a high-level the computation of the total order
and how ambiguities are handled.

The total order is computed in three steps as illustrated in Figure 7.7. In the first
step, a three-way longest common subsequence (LCS) between LBase, LA, and LB is
computed and used to create an alternating sequence of stable and unstable chunks.
The stable chunks are a partition of the LCS – elements in a single chunk are adjacent
in all lists. There are two stable chunks in Figure 7.7: rAs and rDs. An unstable
chunk consists of one element span per list, each span containing elements that are
not in the LCS. There are two unstable chunks in Figure 7.7: rXB,BC,CY s and
rV, ε,W s. Elements from different chunks are totally ordered using the order of the
chunks, e.g., A before X and D. Elements from the same stable chunk are totally
ordered using their order within the chunk. In the second step, for each unstable
chunk C, two two-way LCSs lcsa “ LCSpCbase, Caq and lcsb “ LCSpCbase, Cbq are
computed. Elements from lcsa are totally ordered with respect to elements from
lcsb using the order in Cbase. In Figure 7.7 these are B and C. The remaining
elements from Ca and Cb are ordered with respect to elements from lcsa and lcsb,

LA A X B D V
A B C D
A C Y D W

LBase

LB

order

A X B D V
A B C D
A C Y D W

A⬅X⬅B⬅D⬅V
A⬅C⬅Y⬅D⬅W⬉
⬋

⬋
⬉ X⬅B V

 C⬅Y W⬉
⬋

⬋
⬉⬅A D⬋

⬉
⬉
⬋

A X B D V
A B C D
A C Y D W

V
W⬉

⬋
⬋
⬉⬅A⬅X⬅B⬅C⬅Y⬅D

A X B D V
A B C D
A C Y D W

⬅A⬅X⬅B⬅C⬅Y⬅D⬅V⬅W⬅
rev. item

input lists 3-way LCS 2 x 2-way LCS per chunk final linearization

Figure 7.7: Computing a total order for the elements of a merged list. Stable
chunks have a light-gray background. At the end, V and W are linearized and
added to a review item. In the merged list, B and C will be removed to reflect
changes from revisions.

7.4. DOMAIN-SPECIFIC MERGE CUSTOMIZATIONS 111

respectively. Such elements are totally ordered using the order from one revision, if
there are no elements from the other revision in the corresponding chunk (X and
Y in Figure 7.7). Otherwise, the elements are not totally ordered (V and W in
Figure 7.7). In the third step, unordered elements are linearized in an arbitrary
order. If the list represents an ordered collection within the domain, a review item
is created to inform the user of the ambiguity. The detailed pseudocode of this
algorithm is shown in Algorithm 7.4.1, which we explain next.

The final total order of the elements of a list L is represented by a mapping from
IDs of children of the list, to fractional labels in the CG. The idea is to use a unique
label for all current (in Tbase) and potential future list elements (from changes in the
CG). Each list element mapping is from a node ID to a node label, and also includes
information from which tree version the mapping was inferred. All elements from the
list Lbase (L as it appears in Tbase) are mapped once to their corresponding labels
from Lbase. Then, independently for each revision, each element E that is newly
inserted, relabeled, or moved into the list, is mapped to a fractional label consisting
of a base index and an offset (e.g., 8.3). The base index indicates after which element
from Lbase an element E should be located, and the offset determines the order
of elements with the same base index. Intuitively, this makes the labels of new
elements relative to labels of elements in Lbase. Considering only a single revision, it
is guaranteed that no labels will clash. Considering both revision, some fractional
labels might clash (e.g., if both revision insert a new element at the same position).
The IDs of such elements are included in a domain conflict, and are remapped to
new labels by adding “.a” and “.b” suffixes corresponding to each element’s revision,
in order to allow them to be merged into the list. Note that an element may be
associated with up to three different positions (e.g., an element from Lbase, that
both revisions relabel to different locations). In such cases all of the possible labels
are “reserved” for that element and subsequent applications of changes from the CG
will determine the final label of the element. If both revisions map the same element
to the same or adjacent locations, the mappings are merged.

The List-merge customization brings essential domain knowledge about lists to the
merge algorithm. The customization not only resolves many conflicts automatically,
but also reports merge ambiguities on a semantic level. Thus, it lets developers deal
with less conflicts and do so more easily, saving time.

7.4.2 Conflict unit customization
Our merge algorithm is able to merge changes at the very fine-grained level of tree
nodes, which is not desirable in some domains. For example, if x ă y in an AST is
changed to x ď y in one revision, and to x ă y` 1 in another, these two changes can
be merged as x ď y ` 1, which is not intended. A common case where fine-grained
merges might result in semantic issues is when changes affect nodes that are “very
close” according to the semantics of the tree domain. We designed the Conflict
unit (CU) customization to detect such situations. In essence, the customization
partitions the tree into small regions called CUs and creates review items for each
CU that is changed by both revisions. The customization does not alter the change
graph.

The CU customization is parametrized by a set of node types – the CU types.
The conflict root of a node N is its closest reflexive ancestor that is of a CU type.
The tree root is always a conflict root. The set of nodes that have the same conflict

112 CHAPTER 7. PRECISE VERSION CONTROL OF TREES

1: function UniqueListLabelsMap(Lbase, LA, LB)
2: labelMap Ð IdsToLabelsFrom(Lbase, Base)
3: baseIndex Ð 0
4: topLevelChunks Ð LCS(Lbase, LA, LB)
5: for all top P topLevelChunks do
6: if top is stable then
7: baseIndex Ð top.Elements(Base).last.label
8: else
9: offset = 1

10: for all rev P {RevA, RevB} do
11: subChunks Ð LCS(top.Elements(Base), top.Elements(rev))
12: for all sub P subChunks do
13: if sub is stable then
14: baseIndex Ð sub.Elements(Base).last.label
15: offset Ð 1
16: else
17: for all e P sub.Elements(rev) do
18: labelMap.add(e.id Ñ baseIndex + “.” + offset, rev)
19: offset Ð offset + 1
20: end
21: end
22: end
23: end
24: end
25: end
26: for all mA,mB P labelMap | mA.id=mB.id ^ Adjacent(mA.label,mB.label)

do
27: labelMap.Replace(mA, mA.id Ñ mA.label, RevA + RevB)
28: labelMap.Remove(mB)
29: end
30: for all mA, mB P labelMap | mA.label = mB.label do
31: AddDomainConflict(“Clashing list elements”, { mA.id, mB.id })
32: labelMap.Replace(mA, mA.id Ñ mA.label + “.a”, mA.rev)
33: labelMap.Replace(mB, mB.id Ñ mB.label + “.b”, mB.rev)
34: end
35: return labelMap
36: end

Algorithm 7.4.1: The UniqueListLabelsMap function that returns a unique map-
ping between list element IDs and labels. LCS computes the longest common
subsequence (lcs) of two or three lists, and returns a series of alternating stable
and unstable chunks. Stable chunks contain the elements from the lcs, whereas
unstable chunks contain the uncommon elements in-between.

root constitute a CU (see Figure 7.8). If two revisions make changes to nodes from
the same CU, there is a potential for a semantic issue and this is reported with a
review item.

With an appropriate choice of CU types, the CU customization can be useful

7.5. EVALUATION AND DISCUSSION 113

if

assign while

>

size 0

i -

statements

size 1 i

≥

0

statements

type conflict root

conflict unit

Figure 7.8: A tree with three conflict units.

in identifying potential semantic issues. For example, in ASTs, if statements are
CU types, like in Figure 7.8, a change in one statement is semantically independent
from a change in another statement, but two changes in the subtree of the same
statement will result in a review item. In this setting, if a developer changes one
part of the i ě 0 expression, while another developer changes another part, these
changes will no longer be silently merged, but a semantic issue will be reported.

Structure- and semantics-based review items are more precise and meaningful
than the line-based conflicts produced by standard algorithms. A line-based conflict
might incorrectly arise due to compatible changes (e.g., moving a declaration in one
revision and adding a comment in another revision) or it might be due to formatting
(e.g., changing a method name in one revision and moving the opening brace to a
new line in another revision). In contrast, our CU approach is precise, predictable,
and uses domain knowledge to report issues on a semantic level.

7.5 Evaluation and discussion
Even though Envision supports unique node IDs, we use Gumtree [FMB`14] to
evaluate our approach on large existing Java projects to show its applicability on
large trees with a long history. We inspected the default branch of the most popular
(having more than 10000 stars) Java projects on GitHub, 19 in total. Six of the
projects did not contain any merges of Java files. In the remaining 13 projects, we
evaluate each merge of a Java file by comparing the merge results of Git and our
implementation. We focus on the merge here since the merge operation depends on
the diff and thus, reflects its quality. The results are presented in Table 7.1. All tests
were run on an Intel i7-2600K CPU running at 3.4 GHz, 32GB RAM, and an SSD.

A divergent merge (DM) is one that results in conflicts (C) or one where the
automatically merged file is different from the file committed by the developer. One
exception are successful automatic merges in Envision that only differ from the
developer committed version by the order of methods or import declarations. Since
this order is semantically irrelevant, we do not consider such merges divergent – they
are counted as order difference (OD). For Envision, we also list the number of files
whose merge produced review items due to linearized list elements (RIl) or changes
to the same conflict unit by two revisions (RIcu). For conflict unit types we use
all statement and declaration node types. The total and average merge times are

114 CHAPTER 7. PRECISE VERSION CONTROL OF TREES

Table 7.1: Comparison between merges by Git (G) and Envision (E). DM –
divergent merge; C – merge with conflicts; OD – merge where only order differs;
RI – review item (l – due to linearized list elements, cu – due to multiple changes
in a CU).

project
number of files merge ovrhd. avg.merge

all DM C OD RIl RIcu [s] [min] [ms]
merges G E G E E E E G E E G E

ReactiveX/RxJava 354 82 46 74 12 19 22 38 3 125 122 9 353
elastic/
elasticsearch 2677 863 547 821 281 29 157 525 10 276 266 4 103
square/retrofit 49 14 13 12 10 0 3 12 0 3 4 3 53
square/okhttp 163 4 4 4 1 0 1 11 1 23 22 4 138
nostra13/Android-
Universal-Image-
Loader

56 15 10 14 6 0 4 8 0 2 4 5 36
iluwatar/java-
design-patterns 59 2 1 2 0 0 1 1 0 0 3 5 3
JakeWharton/
butterknife 18 0 0 0 0 0 0 0 0 1 2 6 73
greenrobot/
EventBus 10 4 3 4 2 0 0 4 0 1 1 7 54
square/picasso 40 0 0 0 0 0 0 3 0 3 4 5 75
PhilJay/
MPAndroidChart 169 32 35 24 20 0 9 21 1 13 15 4 76
square/leakcanary 13 1 0 1 0 0 0 2 0 0 1 7 31
bumptech/glide 76 69 54 69 29 2 22 32 0 3 6 3 39
spring-
projects/spring-
framework

339 14 4 14 1 0 3 5 1 2 19 3 5

total 4023 1100 717 1039 362 50 222 662 16 452 469 5 80

reported for both tools (merge and avg. merge). Merging Java sources with Envision
incurs a significant overhead (ovrhd.) in addition to the merge time, because (i) the
sources have to be parsed, (ii) the different revisions have to be matched to the base
using Gumtree, and (iii) these two-way matchings are tweaked to enable a three-way
merge. Almost all of this overhead can be avoided by using IDs directly stored on
disk.

Tree-based merging results in significantly fewer divergent merges, 717, compared
to the standard line-based approach, 1100. The difference in conflicts is even more
substantial, with 362 for the tree-based approach, and 1039 for Git. Our approach
also reports a significant number of files with review items for lists, 222, and conflict
units, 662. Unlike textual conflicts, review items describe the semantic issue they
reflect and report the minimal set of tree nodes that are affected, which makes it
easier for developers to understand review items, and act accordingly.

To get more insight, we manually investigated all 46 cases of Envision’s diverging
merges in the RxJava project. All of these merges also diverge when using Git. There
are 34 merges with real conflicts or merges where the developer made a semantic
change, neither of which can be automatically handled. In the remaining 12 cases,
we observed two reasons for divergence in Envision.

First, in six cases the result of a tree merge was, in fact, correct, but the version
committed by the developer was incorrect. This occurred when a manual merge via
Git results in a conflict which the developer resolves incorrectly, even though the
resulting code compiles. For example, a conflict marker (<<<<<<< HEAD) inserted

7.6. RELATED WORK 115

by Git was forgotten in the middle of a block comment. Another example is the
accidental omission of an @Test annotation which appeared just before a conflict
marker. This omission potentially disabled one of the test cases in the code and went
unnoticed for nearly three years until the RxJava developers accepted our patch for
fixing it. Using our approach, all of these cases are automatically merged correctly.

Second, six merges diverge due to the suboptimal matchings produced by
GumTree. For example, if a particular Java import declaration is present in the base
version, but is deleted in both revisions, GumTree may match the deleted import
to two different newly inserted imports from the different revisions. Our merge
algorithm detects this as a conflict and fails to merge the file.

In terms of run-time, merging files with Envision is, on average, 16 times slower
compared to Git. Nevertheless, Envision still allows merging at a rate of 12.5 files a
second, which is significantly faster than manually resolving conflicts.

However, if the files are not stored using the format we described in Section 7.2.1,
and require parsing and tree-matching, there is significant overhead, which further
slows down Envision by a factor of 60. In this case merging a single file could
take about one minute. To further investigate the effect of the matching on the
merge result, we implemented a simple tree-matching algorithm and used it instead
of Gumtree on the RxJava project. Our tree-matching produces worse matchings
compared to GumTree, but incurs less overhead (81 minutes instead of 122). The
simpler matcher resulted in more divergent merges (70) and more conflicts (40),
compared to using GumTree, but the results are still better than using Git. These
results suggest that our approach is most useful for storage formats that support
dense data and include unique node IDs such that matching algorithms are avoided
altogether.

Threats to validity

We evaluated our implementation on 13 Java repositories. Our results might not
apply to other projects, other languages, or trees that are not ASTs. Nevertheless,
the code bases we used provide a wide variety of tree-merge situations, and we used
popular projects in order to increase the ecological validity of the results.

The tool we used to convert Java files into files encoded as we described in
Section 7.2.1 omits some rarely-used Java constructs such as multiple type bounds
for generic types. It is possible that a conflict in Git is due to a part of the code,
which is missing in the new encoding. We are not aware of such cases.

We discard the text formatting and some comments. To handle such unstructured
data with our approach the data would have to be encoded as part of the AST, e.g.,
by attaching a textual prefix node to each AST node.

7.6 Related work
Researchers have proposed a number of systems for version control of structured data.
Molhado [NMB05] is a powerful stand-alone framework for versioning object-oriented
data. It is based on an extensible model that could be used to version arbitrary types
of objects. Molhado requires deep integration with the development environment,
making Molhado the “heart of the environment”, in contrast to our more lightweight
approach. OperV [NNPN10] is another approach for versioning of structured tree

116 CHAPTER 7. PRECISE VERSION CONTROL OF TREES

data with fine granularity, which, unlike our system, is operation-based, thereby
requiring additional data and more complex tool support. Unlike our approach, both
Molhado and OperV introduce a custom storage backend and do not integrate with
an existing VCS.

Altmanninger has surveyed various systems for versioning models [ASW09]. One
of the most popular model repositories is EMFStore [KH10], part of the Eclipse
Modeling Framework. There is continued interest in the research community in
improving EMFStore, e.g., by formalizing merging for models [Wes10] or performing
semantics-based mering [ASK10]. Odyssey [MCPW08, OMW05] is another model
VCS, which targets UML models and features advanced merge capabilities. EMFS-
tore, Odyssey, and most systems for versioning models are not often used to version
trees, and unlike our approach, they use a custom backend and do not integrate
with standard line-based VCSs. Our approach may be applied to graph models, e.g.,
by expressing them as containment trees, similar to Mikhaiel et al. [MTN`13].

Mens [Men02] provides an overview of different approaches for merging program
sources. Newer approaches based on the full [ALL12] or partial structure [ALB`11]
of source files have been proposed by Apel et al. These approaches improve on the
merge results of Git, and can be fast and practical, but unlike our approach they do
not work with unique IDs stored as part of the files, and thus may be inaccurate.
Other approaches, rely on storing unique IDs, for example, the version control system
of TouchDevelop [PBMM15] or MolhadoRef [DMJN07]. However, TouchDevelop is
designed for a specific language and automatically resolves conflicts by ignoring one
of the revisions, and MolhadoRef is an operation-based system, in contrast to our
approach. Neither of the two integrate with a standard VCS like our approach.

There are also approaches to enhance VCSs for software with additional knowledge
about the semantics of code and refactoring in order to improve merging [DMJN07,
EA04, NND`15]. Our customization mechanism can also be used to provide similar
semantics-based improvements to the merge.

Ghezzi et al. [GWGG12] propose that a pluggable framework be built on top of
traditional VCSs in order to provide additional services and analysis capabilities.
Our algorithms can be seen as an instance of their suggestion.

Lorenz and Rosenan [LR13] propose a JSON format for storing structured data
and integrating it with a traditional VCS. Their proposal however uses the VCS
only for storage and performs versioning on its own – one version of the JSON file in
the VCS stores itself all previous versions of the objects that comprise it. In contrast,
our approach uses the underlying VCS for both storage and versioning.

Lindholm [Lin04] proposes a way to merge XML documents using the XML tree
structure. Their approach focuses on the particular class of document-oriented XML
files, whereas our approach is designed for arbitrary trees.

MPS [VSBK14] is a commercial system which stores programs as XML files and
implements custom merge hooks to integrate with traditional VCSs. It relies on
IDs for precise merging, but the system does not seem to be customizable or easily
usable for other data.

Schwägerl et al. have designed a graph-based algorithm [SUW15] for merging
ordered collections. Unlike our List-merge customization, their algorithm only works
with inserted, deleted, and relabeled elements, and there is no treatment for elements
which are moved in or out of the list to another subtree and possible conflicts with
these operations.

8The IDE as a scriptable infor-
mation system

In this chapter we bring together aspects of the flexible interfaces which we explored
in Chapters 5 and 6 and smarter tools working on rich data as we have seen in
Chapter 7, in order to help developers work with diverse information such as the
source code, version repositories, issue trackers, or web resources. Existing tools for
working with these different kinds of information lack good support for three key
activities:

� combining information from different sources

� flexibly presenting collected information to enable easier comprehension

� automatically acting on collected information, for example, to perform a
refactoring

Poor support for these activities makes many common development tasks time-
consuming and error-prone. We propose an approach that directly addresses these
three issues by integrating a flexible query mechanism into the development environ-
ment, turning the IDE into an information system, in which tools share data to help
the user. Our approach enables diverse ways to process and visualize information
and can be extended via scripts. We demonstrate how an implementation of the
approach can be used to rapidly write queries that meet a wide range of information
needs.

8.1 Problems developers encounter when work-
ing with information
Software development is an information-intense activity. While programming and
designing software, developers ask a wide variety of questions [FM10, KDV07, LM10,
SMDV08] and seek information from numerous sources such as the source code itself,
compiler output, debug and program analysis tools, version control information,
issue tracker, project and API documentation, colleagues, project wiki pages, and
community resources like wikipedia.org and stackoverflow.com. In trying to meet
their information needs, developers are faced with three issues.

First, developers often need to combine information from more than one source,
but tool support for piecing information together is lacking [SMDV08]. For example,
in order to understand a performance regression, it is useful to combine information
from the source code (code structure and control flow), the version control system

117

https://wikipedia.org
https://stackoverflow.com

118 CHAPTER 8. THE IDE AS AN INFORMATION SYSTEM

(recent commits and changes to affected code), performance analysis tools (run-time
measurements), and an issue tracker (bugs associated with relevant commits). In
situations that require diverse information, developers are forced to manually connect
the different pieces of information, which is an error-prone and time-consuming
process. Such an information search is also tedious to refine as this usually requires
the developer to manually repeat a part of the process.

Second, tools most often present information in a fixed form. Typical presenta-
tions include a list of items, a tree-view, or a visual graph. For example, searching
with regular expressions results in a list of matches; querying a program with Ferret
[dAM08] results in a hierarchical tree-view. These one-size-fits-all presentations
are not always a good match for a developer’s specific information need (e.g., a
visual call graph is better suited for detecting recursion than a hierarchical list),
but there is very little or no flexibility for customizing the presentation in existing
tools. This could hinder the comprehension of the results and makes domain- and
project-specific visualizations impossible.

Third, even after a developer finds the information they need, they often have to
take action manually. For example, to understand how a set of methods are called,
one has to manually set breakpoints or insert print statements in the code. Another
example is a developer manually creating bug reports as a result of an analysis
that detects certain code patterns. Repeatedly performing an action manually is
time-consuming, error-prone, and frustrating. While some tools support automation
(e.g., JunGL [VEdM06] and Rascal [HKV12] for refactoring), they cannot integrate
arbitrary information sources and are usually limited to certain modifications of
source code.

To address these three issues, we designed a query system that integrates directly
with the IDE. We integrated the system in Envision, but the approach is also
applicable to other IDEs. The system supports the integration of diverse information
resources, flexible result presentations, extensibility via scripts, and automated
execution of actions. Our evaluation shows that the system is applicable in a wide
range of use cases with diverse information needs. A video demonstrating the system
can be seen at youtu.be/kYaRKuUy9rA.

Next, we motivate our approach with two practical examples.

8.2 Motivating examples
8.2.1 Investigating a regression
Suppose that a developer is investigating a recently reported regression, where the
incorrect behavior occurs after a specific button is pressed. To investigate this
problem the developer will need two main pieces of information:

� The source code, more specifically, the code that is executed after the handler
of the button click.

� The version repository, to see what recent changes could cause this issue.

With current tools, the developer will likely first explore what code is being
called from the button handler and manually correlate that to recent changes. This
could be a rather time-consuming task if a lot of code is potentially reachable from

https://youtu.be/kYaRKuUy9rA

8.2. MOTIVATING EXAMPLES 119

the handler or if there are many changes that have happened in the mean time.
In particularly hard cases, it might pay off to design a specific test case for this
regression and run a binary search on the version repository in order to find the
offending commit (e.g., using git bisect). Both of these approaches are rather
time-consuming due to ineffective ways of combining source code information (the
call graph) with version information (what changed recently).

Our approach offers an alternative solution. The developer can select the handler
of the button in the source code, bring up a query prompt and type:
callgraph -nodes | changes -c 5 -nodes

The callgraph query returns the nodes (methods) in the callee graph of the currently
selected method. The bug is likely among these methods, but there may be many
of them. To narrow down the search, the methods from the callee graph are piped
into the changes query, which returns only those methods from the graph that have
changed in the last five commits. After the query is executed, the relevant source
code fragments will be highlighted and help the developer to more quickly find the
issue.

Enabling this workflow are three key components of our approach:

� A context-sensitive query prompt that enables developers to quickly type
and combine queries.

� Diverse queries that can access arbitrary data resources such as the program’s
source code or version repository.

� A unified data format that enables queries to be combined in order to refine
searches.

8.2.2 Heatmap of code execution
Imagine that a developer wants to get a visual overview of the often-executed parts
of the code. The goal is not to optimize specific code, but rather gain a general
understanding of which classes are relevant for performance and what is their general
function. Thus, it is preferable to see frequently executed methods in a broader
context.

Profiling tools typically provide timing information in the form of a chart, graph,
or a list. However none of these presentations fits the developer’s need in this
example, as the code around performance critical methods is also important. The
developer will have to manually switch between the profiler and the code they want
to explore.

This is one example where the presentation of information is critical for under-
standing and where our approach’s support for flexible visualizations can help. The
developer could, for example, export the timings to a CSV file and use a query to
import it into the IDE and visualize the results:
importProfileCSV profile.csv | heatmap

The first time they do this, they will have to write the importProfileCSV Python script
shown in Figure 8.1. The script reads the CSV file into the data format understood
by our system and is straight-forward to write, thanks to the freely available csv
Python library. The read data is piped into the heatmap query, which highlights

120 CHAPTER 8. THE IDE AS AN INFORMATION SYSTEM

import csv

Returns the AST node corresponding to the provided method name
def findMethod(methodName):

name = methodName.split(’(’)[0]
Execute another Envision query that returns matching methods
astTuples = Query.methods([’-g’, ’-n={}’.format(name)],[])[0]
for astTuple in astTuples.tuples(’ast’):

return astTuple.ast

Read the CSV file and associate methods with a count
with open(Query.args[0]) as csvfile:

CSVReader = csv.reader(csvfile, delimiter=’;’, quotechar=’"’)
next(CSVReader, None)
for row in CSVReader:

m = findMethod(row[0])
count = int(float(row[1]))
values = [(’count’, count), (’ast’, m)]
Query.result.add(Tuple(values))

Figure 8.1: A Python script that imports profile files generated by Visual VM.

different parts of the code with a color in the red-green spectrum based on the value
of a number. An example heatmap is shown in Figure 8.2.

This example illustrates two more essential components of our approach:

� Tight integration with a mainstream scripting language, allowing easy exten-carmodel
langjav a.

CarModel

BufferedReaderiojav a. .

IOExceptioniojav a. .

InputStreamReaderiojav a. .

main args
String[]

void

throws IOException

LINE_SEPARATORString ← getPropertySystem. ()"line.separator"
BORDER_CHAR_LENGTHint ← 40
UNREF_OBJ_CREATEDint ← 10

menuStringBuffer ← newStringBuffer()
carCarModel ← newCarModel()

Create the menu

appendmenu. ()''-''

for iint ← 0 i<BORDER_CHAR_LENGTH i⁺⁺

appendappendmenu. ()LINE_SEPARATOR . ()" (1) Simulate car usage"
appendappendmenu. ()LINE_SEPARATOR . ()" (2) Create unreferenced objects"
appendappendmenu. ()LINE_SEPARATOR . ()" (q) Quit"

appendmenu. ()LINE_SEPARATOR

appendmenu. ()''-''

for iint ← 0 i<BORDER_CHAR_LENGTH i⁺⁺

Display the menu
printlnoutSystem. . ()"CarModel started"+LINE_SEPARATOR+"Menu:"
printlnoutSystem. . ()toStringmenu. ()
printlnoutSystem. . ()"Choose an option:"

inBufferedReader ← newBufferedReader()new InputStreamReader()inSystem.
inputString ← trimreadLinein. (). ()

Accept input for the desired option

printlnerrSystem. . ()"Wrong option"
input ← trimreadLinein. (). ()
continue

input=∅∨ lengthinput. ()≠1∨ ¬ isDigitCharacter. ()charAtinput. ()0

intValuevalueOfInteger. ()input . ()

simulateCarUsage()car
break

1

newCarModel()
for iint ← 0 i<UNREF_OBJ_CREATED i⁺⁺

printlnoutSystem. . ()UNREF_OBJ_CREATED+" unreferenced objects of CarModel has been created"
break

2

printlnerrSystem. . ()"Wrong option"

input ← trimreadLinein. (). ()

for ¬ equalsIgnoreCaseinput. ()"q"

CarModel

wheel[i] ← newWheel()
for iint ← 0 i<4 i⁺⁺

simulateCarUsage car
CarModel

void

rollupwindowleftcar. . . ()
startenginecar. . ()
revenginecar. . ()
alignwheelcar. [0]. ()

stopenginecar. . ()

Engine engine← newEngine()
Wheel[] wheel ← newWheel []4
Door left← newDoor()
Door right← newDoor()

Engine
BufferedReaderiojav a. .

IOExceptioniojav a. .

InputStreamReaderiojav a. .

start void

printlnoutSystem. . ()"Start the car."

rev void

printlnoutSystem. . ()"Rev the engine."

stop void

printlnoutSystem. . ()"Car stopped."

Wheel
BufferedReaderiojav a. .

IOExceptioniojav a. .

InputStreamReaderiojav a. .

align void

printlnoutSystem. . ()"Tires aligned."

Window
BufferedReaderiojav a. .

IOExceptioniojav a. .

InputStreamReaderiojav a. .

rollup void

printlnoutSystem. . ()"Rollup the window."

rolldown void

printlnoutSystem. . ()"Rolldown the window."

Door

BufferedReaderiojav a. .

IOExceptioniojav a. .

InputStreamReaderiojav a. .

open void

printlnoutSystem. . ()"Open()"

close void

printlnoutSystem. . ()"Close()"

Windowwindow ← newWindow()

Figure 8.2: A heatmap overlayed on top of Envision’s usual code presentation.
The heatmap is visualized as a set of translucent overlays on top of methods;
each overlay has a color in the spectrum between red and green, indicating how
often a method was executed.

8.3. APPROACH 121

sion to new information resources and highly-customized queries.

� Flexible visualizations, which enable task-specific rendering of information to
facilitate comprehension.

Next, we describe our approach and its components in more detail.

8.3 Approach
Our goal was to design a system that is highly expressive and extensible by the user
in order to satisfy a wide range of information needs. The architecture of our system
is shown in Figure 8.3. Using a query prompt, a developer can invoke and combine
queries. Queries can access diverse information resources, make computations, and
produce visualizations, and can be either native or implemented via scripts. A
unified data exchange format facilitates the cooperation between multiple queries.
An execution engine orchestrates query execution and the information flow between
queries. Below, we discuss each component in detail.

query
prompt

data exchange

visualization
native

queries

scripts

execution engine

Figure 8.3: The architecture of our information system.1

8.3.1 Query execution model
The core of our approach is the ability to compose and execute queries. This function-
ality is provided by the execution engine, which implements a simple computation
model. It enables queries to be connected in a directed acyclic graph, where the
edges between queries represent data flow. Such a network of queries is illustrated
in Figure 8.4.

The execution engine provides each query with a context, which is the AST node
(e.g., a method) on which the command prompt was invoked. A query has two
additional ways to access information.

First, a query may be connected to the output of other queries via any number
of required or optional inputs, which comprise the inter-query data exchange. For
example, a query might receive on its input a set of method AST nodes, and output

1The git logo by Jason Long and icons made by Freepik from www.flaticon.com are licensed by
CC BY 3.0.

http://www.freepik.com
http://www.flaticon.com
http://creativecommons.org/licenses/by/3.0/

122 CHAPTER 8. THE IDE AS AN INFORMATION SYSTEM

inter-query data exchange

external data access

queryX

i0
i1

o0

Figure 8.4: A query network with seven interconnected queries. queryX is shown
in detail. It has two inputs (i0, which is the union of two outputs from other
queries and i1, which is unused here), and one output (o0, which is duplicated).

their names as a set of strings. To enable communication between queries, it is key
that the data format flowing between queries is unified (see Section 8.3.3).

Second, a query may access (that is, read and modify) external resources (see
Section 8.3.2), such as the program’s source code (e.g., to perform a refactoring), call
a method of the IDE (e.g., to access the AST or show a message), read from a file
(e.g., to import external data), or use a REST service (e.g., to create a bug report).

A query is executed only after all of its inputs are read. When a query is run,
it can perform arbitrary computation, which typically includes accessing external
resources and computing outputs. Once a query has finished executing, its outputs
are forwarded to any downstream queries.

8.3.2 Query types
In principle a query can perform arbitrary computation and use many information
resources. However, to facilitate composition, we divide queries into three types
(Figure 8.5): resource-access, visualization, and operator. Below, we define each
type and explain how we designed corresponding queries in order to improve usability.

Resource access

Resource-access queries are used to read and modify resources external to the
execution engine. They connect a network of queries to the AST and external
tools and data. A resource-access query can be a source of data for other queries.
For example, a query may read the contents of a file or it may extract version
information from the project’s repository and provide them as inputs to other
queries for processing. A resource-access query may also modify external data. For
example, it could create a new record in a database, or modify the program. There
is no limit on the type of external resources a query may access; some common
ones are the program code or AST, the version repository, the issue tracker, the file
system, and on-line services.

To facilitate composability, we designed resource-access queries according to
the following guidelines. First, a resource-access query provides access to only

8.3. APPROACH 123

R R R V R VO

Figure 8.5: The three common types of queries: (R) resource-access, (V) vi-
sualization, and (O) operator. On the left a resource-access query extracts
information from an AST and forwards it to another query, which writes it to
a file. In the middle, this information is being visualized instead of written to
file. On the right, an additional filter is inserted to refine what information is
displayed.

one resource. This restriction allows accessing one resource without imposing
requirements on another one. Second, complex resources are accessed by multiple
queries, which enables each query to focus on a particular aspect of the resource. For
example, when reading the program’s AST, one query is used to select nodes while
another provides control-flow information. Third, when integrating tools that have
a command line interface, we created queries with a similar interface. This enables
developers to transfer some of their existing knowledge from the terminal command
to the query. For example, in a query that accesses a Git repository, commits can
be specified by commit id, branch name, or reference like the git command allows.

A noteworthy class of resources available through resource-access queries is
external programming tools and the IDE itself. A query may call available IDE APIs
to get information or to perform IDE functions. For example, most IDEs maintain
a code model that provides easy access to the program’s AST. Such queries are
not limited to extracting information. Depending on available IDE APIs, queries
might be used for navigation between code fragments, setting breakpoints, running
tests, displaying warnings or errors, and refactoring code, all of which and more are
supported by Envision. Combining queries effectively provides a user-controlled way
for sharing data between different development tools.

Visualization

Visualization queries are used to render information on the screen. Different visu-
alization queries can be used to render the same piece of information in different
ways in order to better match the specific information needs of the developer. For
example, Envision supports three ways to visualize relations between code elements:

� Show the relations using a textual notation – useful for a dense summary.

� Highlight on screen all code elements that appear in the relations – useful
when searching for particular patterns.

� Show the relations using arrows between code elements – useful when exploring
call graphs or data flow.

124 CHAPTER 8. THE IDE AS AN INFORMATION SYSTEM

Visualizations can be provided by the underlying IDE or via external tools. Common
visualizations in mainstream IDEs are highlighting a program fragment, showing a list
or a tree of result entries, and displaying error messages and warnings. More visual
IDEs, such as Envision, could provide a map of the code that enables intuitive arrow
overlays to explore connections between elements or even a heatmap visualization
similar to Figure 8.2.

Our approach imposes no limit on how information can be visualized. If an IDE
exposes general drawing routines, a query could use those to implement an entirely
custom visualization. Some IDEs, such as Envision or Eclipse, provide a built-in
HTML rendering engine, which could be used to easily and quickly implement new
ways for visualizing information. Using a combination of HTML5 and Javascript, it is
even possible to create interactive visualizations as we demonstrate in Section 8.4.1.
This high degree of flexibility is indispensable for domain- and project-specific
visualizations.

We designed visualization queries according to the following guidelines in order
to make them easier to use. First, each available visualization mechanism has its
own query, which makes it clear what will appear on the screen when it is invoked.
Second, visualizations impose as few requirements on the input data as possible, so
that one visualization can be easily swapped for another. Third, if a visualization
query is not explicitly provided by the user, but there is unconsumed data at the
end of a query-network execution, a visualization is automatically chosen based on
the structure of the result. This frees developers from the need to always explicitly
specify a visualization that could be automatically inferred.

Operator

Operator queries (operators) are used to perform internal computation, for example,
to refine results. Operators do not access any external resources, but rather help
filter and combine data in complex query networks. They work solely with the
unified data format, which we discuss in Section 8.3.3. As operators work with
sets and relations, they naturally map to operations from set and relational algebra
such as union, intersect, select, and join. Building on these primitives, we have
also pre-defined more elaborate operators in order to simplify common cases. For
example, in Section 8.4.2, we demonstrate the reachable operator, which filters out
elements unreachable from a starting point via a relation – in essence a combination
of transitive closure and selection. Such a convenience operator is very useful in
answering reachability questions, which are very common [LM10].

8.3.3 Inter-query data exchange
To enable query composition, all queries communicate using a simple unified structure
for exchanging data. This unified exchange structure is a set of tuples, because it is
sufficiently expressive and provides a simple mental model for developers to work
with.

Each input and output of a query is a set of tuples, and each tuple consists of
an arbitrary number of named elements. The names of elements within a single
tuple have to be unique. The elements of a tuple may be strings, integers, and
references to AST nodes. Each tuple has a tag, which is an identifier that is either
explicitly provided or is identical to the name of the tuple’s first element. This

8.3. APPROACH 125

minimal structure allows us to conveniently encode and access typical structures
such as sets, lists, and graphs. For example, the set of all methods whose name
starts with get could be:

{ (node: getAge), (node: getAddress) }

The tuple tags could also be provided explicitly:

{ node: (node: getAge), node: (node: getAddress) }

It is also easy to express relations. For example, all methods transitively called from
rest could be expressed using the calls relation:

{ calls: (caller: rest, callee: watchTV),
calls: (caller: rest, callee: sleep),
calls: (caller: sleep, callee: dream) }

Since there is no restriction on what the set contains, we could also merge the two
sets above:

{ (node: getAge), (node: getAddress),
calls: (caller: rest, callee: watchTV),
calls: (caller: rest, callee: sleep),
calls: (caller: sleep, callee: dream) }

It is also easy to relate information from different data sources. For example, in:

{ (commit: "bcdef01", author: "John"),
changes: (commit: "bcdef01", node: sleep),
calls: (caller: rest, callee: watchTV),
calls: (caller: rest, callee: sleep),
calls: (caller: sleep, callee: dream) }

We can see that John made a change to sleep, which is called by rest.
Filtering and combining can be easily done based on the name or value of elements,

or the tags of tuples. Result visualizations can be automatically selected based on
the tags and tuples present in the final output. For example, a tuple with the tag
message could be shown as a message associated with a code location.

8.3.4 Query prompt
In order to make information access quick and convenient, we designed a specialized
input mechanism for invoking queries – the query prompt. The query-prompt
resembles the standard command prompt of Envision, but provides functionality
specific for queries. Below, we list the key features of this interface.

The prompt is normally hidden and does not take space on screen. Using a
keyboard shortcut, the developer can show the prompt on top of an arbitrary code
fragment. Like the command prompt, the query prompt is context-sensitive — it
records the location of the cursor inside the source code at the time the prompt was
shown and forwards it to queries. The queries can then use this context (e.g., a class
or a method) to implement their behavior.

To use the prompt, developers simply type the queries they want to execute.
This keyboard-based input allows experienced developers to efficiently invoke queries.

126 CHAPTER 8. THE IDE AS AN INFORMATION SYSTEM

foo -a -b
bar 1 2

baz -x

foobar y
queryX -arg

vis1
vis2

?

Figure 8.6: A complex composition of queries in the query prompt. The outputs
of foo and bar are merged and forwarded to baz, whose output is merged
with the output of foobar and forwarded to queryX. The output of queryX is
duplicated and forwarded to both vis1 and vis2. The resulting network is the
one from Figure 8.4.

Multiple queries can be composed by typing the pipe character ‘|’. The similarity of
this interface to a typical Unix command prompt ensures that developers are already
familiar with the interaction flow and composition using pipes.

The query prompt is also used for displaying errors. First, on a more basic level,
if the user tries to execute a nonexistent query or a query with incorrect arguments,
the prompt will display an error message shown in red. Second, on a more logical
level, each query from a network of queries can halt execution and return an error
message if it encounters a run-time error or an unexpected condition. If no errors
are encountered all queries are executed silently, producing only the side effects that
the user requested. If the user incorrectly composed queries, which nevertheless
resulted in a full execution, the users will need to manually detect and handle the
logical error in their query composition.

The input field of the prompt is not a standard text box, but a custom widget
that allows non-linear queries. Figure 8.6 shows an example of non-linear input.
The prompt does not allow the creation of an arbitrary query network, and uses at
most one input and one output per query. Developers can create parallel paths by
pressing a keyboard shortcut and can direct data flow using multi-line pipes. There
are currently two multi-line pipes: joining and subtracting. Both types have a single
output that is duplicated among all downstream queries. A joining multi-line pipe
outputs a union of all of its inputs. A subtracting multi-line pipe subtracts from its
first input all remaining inputs and outputs the result. Even though this mechanism
cannot construct an arbitrary query network, we find that it is sufficiently expressive
for many practical tasks.

While we find the query prompt a convenient mechanism, the rest of our system
is independent of it and there are other ways for invoking queries. For example,
a lighter approach could be to show a text-input on right click and parse linear
commands. This could also be extended with support for named pipes. On the other
hand, for creating truly custom queries, a graphical editor could be created, which
allows manually wiring queries in a complex network.

8.3.5 Extensibility via scripts and native queries
Using our system, the simplest way to access and manipulate information is to
compose existing queries directly on the query prompt and get results immediately.
Query composition covers a broad range of common needs with minimal effort, but
inevitably, developers will need specialized behavior where composition will not be
enough. To support custom information processing we provide two extensibility
mechanisms.

8.4. EVALUATION AND CASE STUDIES 127

for node in Query.input.tuples(’ast’):
if isinstance(node.ast, IfStatement):

if node.ast.elseBranch.size() > 0:
Query.result.add(node)

Figure 8.7: A Python script that filters input nodes.

The first one is to implement new queries as light-weight scripts, in our case
using Python. Scripts allow orchestrating complex query flows and provide access
to specialized resources, which is made easier by existing libraries for the scripting
language. Scripts have access to a limited API: the context, inputs, and outputs
of the query they represent, and the program’s AST. This API is enough to make
scripts versatile while keeping them extremely simple. For example, Figure 8.7
shows the complete script for selecting only if statements that have else branches
from the input. Implementing a query via a script is as easy as writing the script
file. As Envision does not support Python yet, scripts have to be implemented in
another editor. Envision has no dedicated support for debugging Python scripts,
but script writers can use standard visualizations to display intermediate results
directly in Envision during a script’s execution. Any available scripts are directly
invokable on the query prompt and scripts are seamlessly composable with other
queries. The execution engine translates the inter-query data format to and from
the native environment and the scripting language’s virtual environment.

The second extension mechanism is to create new native queries within the host
IDE of our information system, in our case within Envision. Native queries give
the developer unlimited power to perform specialized computation and allow deep
IDE integration — unlike scripts, native queries have access to all IDE APIs. The
drawback of this approach is that it is more demanding and time-consuming than
writing a script, since developers will have to, essentially, extend the host IDE (e.g.,
by writing a plug-in).

In practice, native queries, which provide deep IDE integration, and scripts,
which access a custom resource, complement each other well, as we show next.

8.4 Evaluation and case studies
Vogel [Vog15] evaluated an implementation of our query approach in Envision
by using it to answer questions that developers frequently ask. He investigated
89 questions compiled from the works of Fritz and Murphy [FM10], Hajiyev et
al. [HVM06], and Urma and Mycroft [UM15]:

� 64 questions pertained to information sources for which support is not yet
implemented in Envision, and thus, could not be answered. All remaining
questions could be answered.

� 20 questions could be answered using only built-in queries.

� 5 questions could be answered by writing additional scripts.

128 CHAPTER 8. THE IDE AS AN INFORMATION SYSTEM

All queries and scripts can be found in [Vog15]. These results suggest that our
approach is effective at covering the information needs of developers for implemented
information sources.

Below, we show the applicability of our approach by demonstrating its use in a
variety of practical programming scenarios. For each case, we motivate its practical
relevance, show a possible solution, and discuss how our approach addresses the
needs of programmers. All examples can be expressed in Envision.

8.4.1 Callgraph of selected method
Programmers frequently need to understand control flow and, in particular, follow
paths through several method calls [LM10]. IDEs often have built-in call graph
views, and there is a number of research tools that further facilitate the exploration
of call graphs [KKD`11, KKKB12, LM11]. Let’s examine a simple scenario:

What is the callgraph of this method?

As this is a commonly needed piece of information, we provide a native query:
callgraph

Because it is context-sensitive, this query will automatically return the callee graph
of the method that contains the cursor. The query itself just returns a set of tuples
and does not produce any visualization. As no visualization is explicitly provided,
the execution engine automatically chooses one based on the structure of the result.
By default, results that represent relations between AST nodes are visualized as
arrows connecting the nodes’ representations on screen as shown on Figure 8.8(a).
Alternatively, the developer could show all result tuples in a table (Figure 8.8(b)):
callgraph | table

or highlight visually the methods that are part of the call graph without showing
arrows (Figure 8.8(c)):
callgraph -nodes

Here, the execution engine will detect that the output is a set of AST nodes and
will highlight them on the screen. These three visualization options illustrate
an important aspect of our approach: the results of queries are decoupled from
their visualizations. This decoupling enables flexible visualizations that allow the
presentation of the results to more accurately match the information need of the
developer. Common presentations such as highlights, graphs, arrows, and tables can
be readily provided by the IDE. As we show next, developers can also add their own
visualizations.

In some projects or domains, specialized visualizations enable better information
comprehension. A very convenient way of achieving custom visualizations is to
quickly create them by using HTML and existing developer skills. Most full-fledged
IDEs and also Envision come with a built-in HTML rendering engine, and our
approach allows visualization queries to utilize such capabilities. For example, we
used the freely available open-source vis.js Javascript library and a custom Python
script to implement the visualization from Figure 8.8(d). With a total of 80 lines of
Javascript and Python code we can run the query:
callgraph | toHtmlGraph

8.4. EVALUATION AND CASE STUDIES 129

(a)

Dreams

Bed

rest

sleep()
watchTv()

sleep

dream()

dream

watchTv
goToWork

(b)

Dreams

Person

rest

sleep()
watchTv()

sleep

dream()

dream

watchTv
goToWork

calls
callee caller

Person.watchTv Person.rest
Person.sleep Person.rest
Person.dream Person.sleep

(c)

Dreams

Bed

rest

sleep()
watchTv()

sleep

dream()

dream

watchTv
goToWork

(d)

Figure 8.8: Different ways of visualizing results that describe a relation: (a)
arrows between related elements; (b) a table; (c) highlighting relation elements;
(d) a custom HTML visualization: in this case, an interactive graph rendered
using the vis.js Javascript library.

130 CHAPTER 8. THE IDE AS AN INFORMATION SYSTEM

and get an interactive HTML view of a graph that enables users to select and
rearrange nodes. The toHtmlGraph script converts the tuple set from our system into
an HTML page that uses vis.js, which in turn provides the rendering and interactions.
See Appendix B for the complete script and the wrapper HTML page.

8.4.2 Recently changed recursive methods
Sillito et al. [SMDV08] identify the lack of support for writing refined queries and
combining information as two of the three major gaps in tool support for answering
developers’ questions. One such question is:

Which recursive methods have changed recently?

This question is a refinement of the questions we showed in both Section 8.2.1
and Section 8.4.1. Compared to the former, it adds the requirement of recursive
methods. Compared to the latter, it adds the need for another information source,
the version repository. Our approach enables answering this question directly:
callgraph -global | reachable -self | changes -c 5 -nodes

The -global argument makes callgraph return the call graph of the entire program,
ignoring context. The result is then piped into the reachable query, which filters
AST nodes that cannot reach themselves following the relations from the input. The
output contains only recursive methods. Finally, we use the changes query to select
only those methods from the input that have changed in the last 5 commits.

Two things are noteworthy. First, it was possible to easily refine the call graph
query by inserting the reachable filter in order to get a set of recursive methods.
And second, it was also easy to combine the result with another information source.
Other research tools rarely provide both of these features, and mainstream tools
such as regular expression search are thoroughly inadequate for such tasks.

8.4.3 Why is this code the way it is?
Programmers often need to know the reason some code exists or looks the way it
does (e.g., questions 8-10 from Fritz and Murphy [FM10]). There are multiple ways
to interpret and answer this question, but a common approach is to connect a piece
of code with version control and bug database information. Here is how a query
answering this question could look:
ast -type Statement -topLevel
| changes -intermediate
| join change.id,commit.message ,ast

-as data
| associatedBugs

This is a more complex query, but building it piece by piece is rather straight-
forward. We want information about each statement in a method, so we first get
all top-level (non-nested) statements using ast -type Statement -topLevel. The result
is piped into the changes query, which yields change information about all commits
that modify any of the input statements. The result consists of two different kinds
of tuples: the first one associating each node with the id of the commit where it
changed, the second associating a commit id with the commit’s meta data (e.g., the
commit message). Using the join query, we merge those two different kinds of tuples

8.4. EVALUATION AND CASE STUDIES 131

import re
from github3 import GitHub

gh = GitHub()
repo = gh.repository(’username’, ’repository’)

def referencedIssues(commit):
for issueId in re.findall(’#(\d+)’, commit):

yield repo.issue(issueId)

Build an HTML message from commit and issue data
for data in Query.input.tuples(’data’):

text = ’Commit
{}
’.format(
data.message.replace(’\n’, ’
’))

for issue in referencedIssues(data.message):
text += ’Issue #{}
{}
’.format(

issue.number, issue.title)

t = Tuple([(’message’, text),
(’ast’, data.ast), (’type’, ’info’)])

Query.result.add(t)

Figure 8.9: A Python script that fetches issue information from a GitHub repos-
itory.

why
langjav a.

TopLevel

ArrayListutiljav a. .

Listutiljav a. .

ssssssssssssssssssssssssssssssssssstest items
Item[]

void

dataItemData ← getDataitems[i]. ()
addallData. ()data

detachdata. ()

for iint ← 0 i< lengthitems. ⁺⁺i

resetItemCount()lengthitems.

resetItemCount newCount
int

void

List⟨ ⟩ItemData allData← new ArrayList()

ItemData
ArrayListutiljav a. .

Listutiljav a. .

detach void

Item

ArrayListutiljav a. .

Listutiljav a. .

getData ItemData

data

ItemData data

Commit
Add support for multiple items

This resolv es issue #3 and should also help with bug #6

Issue #3
Only a single item is supported
Issue #6
Can't establish connection using a proxy

Commit
Fix #11 - incorrect item count

This was just an off-by-one error

Issue #11
The app crashes if I try to use the last item

Figure 8.10: A for-loop and a method call with corresponding explanations for
why they were last changed. The information bubbles are standard visualizations
in Envision.

132 CHAPTER 8. THE IDE AS AN INFORMATION SYSTEM

into a single kind that relates nodes and commit messages and that we call data.
We use this name in the associatedBugs script (Figure 8.9), which is invoked next.
This script scans the text of each commit message, looking for references to issue
numbers and fetches the corresponding issues’ descriptions from the GitHub issue
tracker using a REST request. It uses the freely available GitHub3 Python library to
communicate with GitHub. The output of the script is a set of tuples representing
info messages, which are automatically shown using standard Envision information
bubbles next to the corresponding code as shown in Figure 8.10. Developers might
want to execute this query often. They can conveniently create an alias to it and
use this name to call it in the future. The alias may also appear as a subquery in
other even more complex queries.

Functionality for explaining the reason for a piece of code is also available in
other tools like the blame command for version control systems, or the Eclipse
annotate feature. However, our approach allows building this information from
elementary blocks and precise controlling of what is included. Developers can also
link to arbitrary additional sources to fit the answer of this question to their needs.

8.4.4 Which upstream changes possibly conflict with mine?
This question might arise in fast moving projects where developers’ local branches
may quickly diverge from the development branch. Answering this question precisely
is impossible in general, but one way to get an approximate answer is to compare
local changes to changes from the remote branch. One possible query to perform
this comparison and the corresponding result are illustrated in Figure 8.11.

(a) changes HEAD..master -nodes color blue
changes origin/master..master -nodes color red

?

(b)

Test

MyClass

foo x
int

y
int

int

return 0

x*y = 0

return ()x-y /()x*y

Figure 8.11: (a) Two parallel queries that will highlight local changes and
changes between the master branch and the origin repository in different colors.
(b) The resulting highlights on part of the code. The current implementation ig-
nores changes for AST nodes that are not currently displayed, but this behavior
can be adjusted in the future, e.g., to show such nodes in an additional view.

We run two queries in parallel that fetch the latest changes and highlight the
changed nodes in different colors. The query prompt’s support for non-linear queries
enables the flow of query results to be split and joined to form a more complex
query graph, and can often yield a simpler and more intuitive solution compared to
a linear approach.

8.4.5 Instability metric
A common application of program query tools is to compute software metrics

[AHR11, MSV`08]. To illustrate the computation of metrics using our approach,

8.4. EVALUATION AND CASE STUDIES 133

Returns the fully qualified package of a node
def packageOf(node):

package = ’’
node = node.parent
while node:

if type(node) is Module:
package = node.symbolName() + ’.’ + package

node = node.parent
return package

Returns a list of all packages a class imports
def dependsOnPackages(aClass):

result = []
for decl in aClass.subDeclarations:

if type(decl) is NameImport:
package = ’’
name = decl.importedName
while type(name) is ReferenceExpression:

package = name.name + ’.’ + package
name = name.prefix

result.append(package)
return result

allPackages = set()
eff = {}
aff = {}

Loop over input classes to collect
package dependencies
for tuple in Query.input.take(’ast’):

p = packageOf(tuple.ast)
allPackages.add(p)
deps = dependsOnPackages(tuple.ast)
if deps:

eff[p] = 1 + (eff[p] if p in eff else 0)
for dep in deps:

aff[dep] = 1 + (aff[p] if p in aff else 0)

Compute the instability of each package
for p in allPackages:

e = eff[p] if p in eff else 0
a = aff[p] if p in aff else 0
i = str(e/(e+a)) if e+a > 0 else 1
t = Tuple([(’package’, p), (’instability’, i)])
Query.result.add(t)

Figure 8.12: A Python script that computes instability of all packages.

134 CHAPTER 8. THE IDE AS AN INFORMATION SYSTEM

we will compute an instability metric [Mar94]. The instability I of a Java package
could be defined as:

I “
Efferent Couplings

Efferent Couplings `Afferent Couplings

Where Efferent Couplings is the number of classes inside the package that depend
on (import) classes outside the package, and Afferent Couplings is the number of
classes outside of the package that depend on classes within the package. The higher
the instability, the easier it is to change a package without affecting other packages.
To compute this metric we could use the following query:
ast -type Class -global | instability | table

This query fetches all Class AST nodes, forwards them to the instability script, and
displays the results in a table. The instability script (Figure 8.12) iterates over
all classes, collecting dependency information in order to compute the metric. Our
approach’s support for scripts enables the easy computation of metrics and more
generally of code analyses.

8.4.6 Modifying recursive methods
Programmers often have to change existing code at scale. Development tools typically
provide a limited set of refactoring options, and one is lucky if one’s use case is
covered by these. The fallback solution is most often textual search and replace using
regular expressions. However, many situations are non-standard and are simply not
expressible using regular expressions. Let’s consider one such example – a variation
of Section 8.4.2:

Modify the program so that each recently changed recursive method prints the values
of its arguments when called.

This modification is for instance useful if a program crashes due to a stack
overflow after recent changes and one wants to better understand what code is being
executed. We could add the necessary print statements using the query:
callgraph -global
| reachable -self
| changes -c 5 -nodes
| insertArgPrinting

Like we showed in Section 8.4.2, the first three queries get all recursive methods
that have changed recently. Then we pass these methods to the insertArgPrinting
script (Figure 8.13), which inserts code that prints the name and lists all arguments
of each method.

To help deal with accidental changes to the code during the development of
refactoring scripts, code changes performed via scripts can be undone just like manual
changes by pressing Ctrl + Z . A further help with developing refactoring scripts
would be to also display a preview of the potential code changes, but Envision’s
current design does not support this.

Three things are worth noting here. First, we executed a query which modified a
resource, in this case the source code. Second, this modification uses both non-trivial
program properties (recursion) and information other than the source code itself
(version information). Thus, it is outside the reach of regular expressions and also

8.5. IMPLEMENTATION 135

for t in Query.input.tuples(’ast’):
m = t.ast
if type(m) is Method:

call = ’System.out.println("calling ’ +
m.name + ’: "’

for a in m.arguments:
call += ’ + "’ + a.name + ’=" + ’ + a.name

call += ’)’

m.beginModification(’add print statement’)
nodeExpr=AstModification.buildExpression(call)
printStmt = Node.createNewNode(

’ExpressionStatement’, None)
printStmt.expression = nodeExpr
m.items.prepend(printStmt)
m.endModification()

Figure 8.13: A Python script that inserts code to print all arguments at the
beginning of a method.

impossible in typical refactoring languages such as JunGL [VEdM06] or Rascal
[HKV12], which cannot integrate additional information sources into refactoring
decisions. Third, the support for scripts makes it easy to perform program edits
within the overall query mechanism. Just like any other query, edits can also depend
on input from other queries and external data resources, which enables data-driven
changes to the code.

8.5 Implementation
We implemented our information system approach as a plug-in for Envision. Each
native query is implemented as a single C++ class, which has access to our frame-
work’s infrastructure as well as all IDE APIs. Additional native queries can be added
by creating new query classes in new plug-ins. We use existing Envision features to
implement queries that show highlights, arrows, and information messages, and to
render HTML. The advanced features of the changes query (e.g., version information
on a per-AST node basis), are enabled by Envision’s own fine-grained version control
system, which we discussed in Chapter 7.

To enable advanced interactions and non-linear queries in the query prompt, we
parse the user’s input on every keystroke and create a parse tree of the current input.
This interface uses the string offset provider, which we discussed in Section 6.2.4,
and a simple regular-expression-based parser. The parse tree is used to create and
render parallel queries, and it is mapped to a string representation that enables
copying and pasting. This string representation allows users to share queries as text
and is also used when creating aliases to queries.

Queries are executed sequentially by a simple data-flow programming engine,
which can be easily extended to parallel execution and streaming of data.

136 CHAPTER 8. THE IDE AS AN INFORMATION SYSTEM

We use boost.python to integrate Python scripting. Python scripts have access
to the inputs, outputs, and context of a query, as well as Envision’s AST model.
A few helper features are also available, such as the ability to invoke other queries
and to modify the program. Access to all these features is provided via the Query
namespace which is automatically made available in each script.

8.6 Related work
8.6.1 Questions developers ask
A number of recent studies investigate what questions developers ask and how they
seek answers to these questions.

Ko et al. [KDV07] observed 17 professional developers in 90-minute sessions and
recorded the information they needed and how they acquired it. They present a
list of 21 information types and associated questions that developers often asked.
The authors suggest that tools should be able to share information and let users
transform it as needed, both of which our system directly supports.

Sillito et al. [SMDV08] observed 27 developers during two studies and compiled
a list of 44 questions that were frequently asked during program evolution. They list
three areas for improvement of information seeking tools:

� support for asking more precise and refined questions

� using context when searching for information and displaying results

� support for combining information

Our approach directly addresses these three gaps with the ability to pipe queries, to
use context for queries and show results in-line with the program, and to combine
information from different sources.

In three separate studies LaToza and Myers [LM10] observed that developers
often asked reachability questions and suggest that answering such questions is
difficult and time-consuming in large code bases. Reachability questions are about a
feasible path through a program, for example, in the program control flow or data
flow graphs. Our approach directly supports reachability questions.

Fritz and Murphy [FM10] interviewed 11 professional developers about questions
they face frequently and learned 78 questions that span different domains such as the
source code, bug database, version history, test cases, etc. Most of these questions
require linking different information together, which is supported by our approach.

Sadowski et al. [SSE15] collected data from in-browser code search queries of
27 developers at Google and characterized their search behavior. One of their
observations is that developers frequently perform quick searches to navigate code
and the authors suggest the integration of search tools directly within the IDE
to facilitate quick searches without context switching. Our system enables this
workflow.

8.6.2 Tools for seeking information
Researchers have developed a variety of languages and techniques for querying source
code [DRNKJ11, JDV03, MSV`08, SEHM06], which have also been analyzed in

8.6. RELATED WORK 137

comparative studies [AHR11, dAMR07]. Some tools also offer a natural language
interface [KMM11, WGRG10]. Such query tools offer powerful and efficient ways to
query program properties, but many are restricted to the program source and do not
integrate additional information resources. Such query engines could be integrated
as a single information resource in our platform, which will enable the combination
of their output with additional information. For such an integration, it is important
that query results are reified with other entities (e.g., AST nodes) so that they are
usable in the rest of the system [DRNKJ11].

A number of tools do allow the combination of different data sources. ABSINTHE
[KDRN`11] was designed specifically to enable queries over different versions of
software. More generally, as the basis of the Ferret tool, Alwis and Murphy [dAM08]
present a model for integrating information from different sources, which they call
Spheres. For example, one sphere could represent source code, while another could
capture run-time information such as a call stack. Two spheres can be linked if
they contain matching elements, and these matchings have to be predefined by the
tool designers. Later, Fritz and Murphy [FM10] proposed another approach for
integrating data from different sources – the information fragment model. Unlike
Ferret, the information fragment model allows the automatic inference of links
between different kinds of information so that it can be easily composed. Our
approach is different from these approaches in several ways. First, the link between
different sources does not need to be predefined, but the developer has full control
over what information is linked. Second, the simple tuple set interface of queries
allows for the easy addition of a wide range of information resources. Third, result
visualizations are flexible to better match specific information needs.

Recognizing the importance of accessing and combining information from different
sources, Myers [Mye98] suggests using open data models for IDEs. Similarly, Schiller
and Lucia [SL12] formalize an open model for inter-plug-in communication and
cooperation within an IDE. They suggest that plug-ins should share data and should
allow users to put information from plug-ins together via pipes and filters similarly
to the Unix Shell and the Windows Powershell. Our system is also inspired by the
Unix shell, but additionally is concerned with visualizations and allows more flexible
plug-in and script mixtures. In a similar spirit, Kuhn [Kuh12] suggests that IDEs
should become open platforms that facilitate the data exchange between plug-ins. In
his vision, plug-ins should make all data they compute public and available to other
plug-ins for consumption. To share data, he suggests that plug-ins use meta-models
to describe the data they produce in a unified system. Our approach also features a
unifying component – the tuple set exchange format – which we believe is easier for
developers to understand and use to compose complex queries.

8.6.3 Visualization of information
There is a wealth of tools for visualizing information related to software. However
these are typically coupled to a specific kind of inquiry. Most tools that provide
general query capabilities provide only a single way to view results or only basic
visualization flexibility. Common result presentations are list or tree views [dAM08,
DRNKJ11, FM10, JDV03, KMM11, WGRG10] and graphs [LM11, SEHM06]. Some
tools allow configurable views or advanced interfaces. The prototype implementation
for Fritz and Murphy’s information fragment model [FM10] presents the results in
a tree view, which allows different projections of the data affecting the hierarchy

138 CHAPTER 8. THE IDE AS AN INFORMATION SYSTEM

of objects in the tree. SemmleCode [MSV`08] can present results as a list or as a
number of predefined chart types. Reacher [LM11], Stacksplorer [KKD`11], and
Blaze [KKKB12] enable the interactive exploration of call graphs. Our approach
is more general and, unlike these other tools, offers flexible and easily extensible
visualizations. We believe it is possible to implement such specialized visualizations
and interfaces within Envision.

8.6.4 Scripting actions and refactoring
Existing program querying tools that go beyond displaying information are typically
limited to refactoring code. To support the implementation of complex or project-
specific refactorings, researchers have designed scripting languages for refactoring
such as JunGL [VEdM06] or Rascal [HKV12], which offer powerful capabilities to
analyze and transform the source code. Our system also enables complex refactorings
via Python scripts and it offers two major advantages. First, scripts can use external
resources in addition to the source code, enabling data-driven refactorings. Second,
modifying code is just a special-case for our system’s general support for automating
arbitrary actions.

9Conclusion and future work

In this dissertation, we have presented techniques for overcoming notational, infor-
mation, and tooling deficiencies of state-of-the-art IDEs. We have challenged the
well-established practice of developing software by directly editing text files and
demonstrated an alternative approach that enables expert developers to understand
code more easily and to work more flexibly with information, thanks to smart and
collaborating tools. To validate our approach, we have developed the Envision IDE,
which integrates all proposed techniques, demonstrating their usability and synergies
between them.

Summary

Decoupling the programming interface from the way programs are stored on disk
unlocks a number of opportunities for transforming programming environments and
potentially improving the efficiency of software development. In a lab study, we
observed that a visually rich code notation that mixes textual and graphical elements
can reduce the time that programmers need to answer questions about method
structure by up to 75%. Contrary to the subjective opinion of most participants from
our evaluation, we did not measure any visual overload with richer code notations.
These results provide an important and counterintuitive insight about code notations,
and offer a new direction for tool designers and researchers to explore, beyond the
ubiquitous and decades-old syntax highlighting. We also demonstrated an approach
for customizing code visualizations according to context, e.g., the domain of an API.
To make these highly customizable and visual program notations directly editable,
we introduced a number of keyboard-based interaction techniques and evaluated
them using CogTool simulations. The simulations show that expert users can be as
efficient when typing in a structured editor, as they can be in a text editor. Thus, our
proposed programming interface combines high flexibility and usability, which makes
it a promising step towards developing practical visual interfaces for professional
developers.

Taking advantage of unrestricted information structures, we designed accurate
version control algorithms that can use dense data (AST node IDs) stored within
source files. Our diff algorithm tracks moved pieces of code and efficiently computes
precise and fine-grained deltas between code versions, preventing inaccurate or
confusing diffs. Our merge algorithm and domain-specific customizations eliminate
merges leading to incorrect program structures, reduce unnecessary conflicts, and
report semantic issues, improving the merge result. Our evaluation shows that our
approach achieves a substantial improvement in merge quality, automation, and
error reporting compared to a standard line-based version control tool. These results

139

140 CHAPTER 9. CONCLUSION AND FUTURE WORK

show not only that essential programming practices can be improved by enriched
information structures, but also that such improvements can be achieved while
continuing to use existing infrastructure, such as GitHub, making our approach more
practical than alternatives requiring a dedicated storage backend.

Finally, we showed an approach for turning the IDE into a powerful and cus-
tomizable information system that integrates diverse information sources and tools.
Due to its familiar command interface, flexible visualizations, and scripting support,
our system allows composing built-in queries and custom extensions with minimal
effort, in order to answer their questions and automate actions. To achieve this result
we had to integrate many aspects of our system, demonstrating that the various
techniques we designed fit together well.

In addition to providing insight and novel techniques to tool designers and
researchers, our work has also focused on developing the Envision IDE as a platform
for experimentation. We have purposefully developed an open-source tool with a
coherent vision for extensibility and modularity, so that we and others can easily
use it to prototype and evaluate novel ideas. Envision has served us extremely well,
allowing us to effectively integrate all of our work in a single system and to get
a more complete understanding of the advantages and open challenges of such a
next-generation integrated development environment.

Future work

Our work provides a basis for the future exploration of several directions.
In order to further validate our approach, we would like to achieve self-hosting for

Envision, allowing us to develop the system using Envision itself and obviating the
need for a separate IDE. Self-hosting is an important milestone for any development
tool, as it establishes the tool’s practicality and applicability to real-world problems.
We have already invested significant effort in the biggest conceptual challenge for
self-hosting: enabling Envision to import its own code-base of over 150 000 lines
of code written in C++. Unlike languages such as Java, C++ relies on a textual
preprocessor for achieving modularity (via #include directives) and for achieving
certain kinds of genericity (e.g., macros and conditional compilation). Because
Envision’s tree-based program model does not support such purely textual features,
we implemented a high-level meta-programming facility [Lüt15] modeled after the
structured macro systems of languages such as Scala and also developed a C++
import plug-in for Envision, which automatically translates C++ preprocessor
features to meta-programming constructs on a case-by-case basis. Many additional
engineering challenges still remain until Envision can be self-hosting, e.g., supporting
the full expressiveness of C++ within Envision’s program model, and improving
support for smart services such as code completion for C++.

A promising area for future research is further improving programming inter-
faces. To maximize improvements in efficiency, it is worth exploring additional
context-specific interfaces and also evaluating the effects of richer visualizations on
programming activities other than comprehension, such as writing and debugging
code, code review, and live coding. Classifying the information needs of developers
in different contexts could be used to guide the design of appropriate programming
visualizations and interfaces. Not only the information available in interfaces, but
also their visual appeal needs to be investigated. In our user study, many participants
expressed concerns with the aesthetics of Envision’s visualizations. To gain a better

141

understanding of the role of aesthetics, it is worth further improving Envision’s
visualizations with the help of experienced graphical designers and experimenting
with these updated code presentations.

Decoupling programming interfaces from text also enables the exploration of novel
non-visual interfaces, for example, for visually impaired developers. Such developers
currently rely mostly on screen readers that work directly with the program’s text,
but an approach that works with the logical structure of the program, while still
focusing on keyboard-based input, might yield better interfaces. Such interfaces would
work with the additional information available from the semantics and structure
of a program, which enables further interface customization to suit the needs of
visually impaired developers. Envision is well suited for exploring interfaces for such
developers, since the visual abilities of a user can be considered another type of
context to which interfaces could be adapted.

Finally, another avenue for future research is additional enhancement of infor-
mation structures within programs, allowing additional information integration and
more semantic tools. For example, in order to reduce duplication and inconsistencies,
program fragments could be automatically generated from integrated documentation
such as tables or diagrams. To help understanding and maintenance, it is worth
exploring information structures for recording system design decisions and their
rationale directly within the code. Working directly with a rich program structure
opens many opportunities for better semantic tools. For example, we have started
exploring a merge customization that can detect renamings of declarations in an AST
in one revision and apply them automatically to another on merge. Such high-level
merge customizations might help to further reduce conflicts and detect additional
semantic incompatibilities between revisions. An alternative might even be to record
meta-operations such as renamings directly in Envision’s rich program structure
and make these accessible to version control tools. Such meta-data would help with
selective undo and provenance, needed by tools for advanced navigation over program
versions, e.g., [YM15]. Richer information structures could also be used to improve
navigation within the IDE, which takes a significant time for developers [KAM05a].
Navigation information could be directly stored as part of the program and may
include, for example, waypoints similar to tagSEA [SCBR06], but also groups of
code locations that pertain to some feature, a table of contents for programs, or even
guided tutorials that introduce new programmers to a particular part of a program
or show the steps for a routine task. Smart tools are not limited to working with
only static data, and static and run-time information can be mixed. For example, we
have done preliminary experiments with setting breakpoints from within interactive
queries, pausing the queries mid-way in order to allow the program to run, and
collecting data during its execution when a breakpoint is hit. This ability to collected
run-time data effectively makes this data available as another information source for
queries and paves the way for execution-based refactorings or algorithm visualizations
that enhance classical approaches such as Incense [Mye83] and BALSA [BS84] with
support for customization and query refinement. We see the continuing transfor-
mation of IDEs into full-fledged information systems as promising and inevitable
given the high complexity of today’s software. As approaches for integrating data
resources like Envision’s information system evolve, we speculate that standards will
emerge. These standards should make it easier to integrate information, breaking
down barriers to cooperation between tools and making developers more productive.

142 CHAPTER 9. CONCLUSION AND FUTURE WORK

Bibliography

[3ds] Autodesk 3ds Max – official website. http://www.autodesk.com/
products/3ds-max/overview. Accessed: 2017-02-02.

[AB15] A. Altadmri and N. C. Brown. 37 million compilations: Investigating
novice programming mistakes in large-scale student data. In Proceedings
of the 46th ACM Technical Symposium on Computer Science Education,
SIGCSE ’15, 522–527 (ACM, New York, NY, USA, 2015). ISBN 978-
1-4503-2966-8. doi:10.1145/2676723.2677258. URL http://doi.acm.
org/10.1145/2676723.2677258.

[ABBS14] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton. Learning nat-
ural coding conventions. In Proceedings of the 22Nd ACM SIG-
SOFT International Symposium on Foundations of Software Engi-
neering, FSE 2014, 281–293 (ACM, New York, NY, USA, 2014).
ISBN 978-1-4503-3056-5. doi:10.1145/2635868.2635883. URL http:
//doi.acm.org/10.1145/2635868.2635883.

[AGMO17] D. Asenov, B. Guenat, P. Müller, and M. Otth. Precise version
control of trees with line-based version control systems. In Fundamental
Approaches to Software Engineering (FASE) (2017). To appear.

[AHM16] D. Asenov, O. Hilliges, and P. Müller. The effect of richer visualizations
on code comprehension. In Proceedings of the 2016 CHI Conference on
Human Factors in Computing Systems, CHI ’16, 5040–5045 (ACM, New
York, NY, USA, 2016). ISBN 978-1-4503-3362-7. doi:10.1145/2858036.
2858372. URL http://doi.acm.org/10.1145/2858036.2858372.

[AHR11] T. Alves, J. Hage, and P. Rademaker. A comparative study of code
query technologies. In Source Code Analysis and Manipulation (SCAM),
2011 11th IEEE International Working Conference on, 145–154 (2011).
doi:10.1109/SCAM.2011.14.

[ALB`11] S. Apel, J. Liebig, B. Brandl, C. Lengauer, and C. Kästner. Semistruc-
tured merge: Rethinking merge in revision control systems. In Proceed-
ings of the 19th ACM SIGSOFT Symposium and the 13th European
Conference on Foundations of Software Engineering, ESEC/FSE ’11,
190–200 (ACM, New York, NY, USA, 2011). ISBN 978-1-4503-0443-6.
doi:10.1145/2025113.2025141. URL http://doi.acm.org/10.1145/
2025113.2025141.

143

http://www.autodesk.com/products/3ds-max/overview
http://www.autodesk.com/products/3ds-max/overview
http://doi.acm.org/10.1145/2676723.2677258
http://doi.acm.org/10.1145/2676723.2677258
http://doi.acm.org/10.1145/2635868.2635883
http://doi.acm.org/10.1145/2635868.2635883
http://doi.acm.org/10.1145/2858036.2858372
http://doi.acm.org/10.1145/2025113.2025141
http://doi.acm.org/10.1145/2025113.2025141

144 BIBLIOGRAPHY

[ALL12] S. Apel, O. Leßenich, and C. Lengauer. Structured merge with auto-
tuning: Balancing precision and performance. In Proceedings of the
27th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2012, 120–129 (ACM, New York, NY, USA, 2012).
ISBN 978-1-4503-1204-2. doi:10.1145/2351676.2351694. URL http:
//doi.acm.org/10.1145/2351676.2351694.

[AM13] D. Asenov and P. Müller. Customizing the visualization and interaction
for embedded domain-specific languages in a structured editor. In Visual
Languages and Human-Centric Computing (VL/HCC), 2013 IEEE
Symposium on, 127–130 (2013). ISSN 1943-6092. doi:10.1109/VLHCC.
2013.6645255.

[AM14a] D. Asenov and P. Müller. Envision: A fast and flexible visual code editor
with fluid interactions. Technical report, ETH-Zürich, 2014. doi:10.
3929/ethz-a-010140807. Available at www.pm.inf.ethz.ch/publications.

[AM14b] D. Asenov and P. Müller. Envision: A fast and flexible visual code
editor with fluid interactions (overview). In Visual Languages and
Human-Centric Computing (VL/HCC), 2014 IEEE Symposium on,
9–12 (2014). doi:10.1109/VLHCC.2014.6883014.

[AMV16] D. Asenov, P. Müller, and L. Vogel. The ide as a scriptable information
system. In Proceedings of the 31st IEEE/ACM International Conference
on Automated Software Engineering, ASE 2016, 444–449 (ACM, New
York, NY, USA, 2016). ISBN 978-1-4503-3845-5. doi:10.1145/2970276.
2970329. URL http://doi.acm.org/10.1145/2970276.2970329.

[ASK10] K. Altmanninger, W. Schwinger, and G. Kotsis. Semantics for accurate
conflict detection in smover: Specification, detection and presentation
by example. IJEIS, 6(1):68–84, 2010. doi:10.4018/jeis.2010120206. URL
http://dx.doi.org/10.4018/jeis.2010120206.

[ASW09] K. Altmanninger, M. Seidl, and M. Wimmer. A survey on model
versioning approaches. International Journal of Web Information Sys-
tems, 5(3):271–304, 2009. doi:10.1108/17440080910983556. http:
//dx.doi.org/10.1108/17440080910983556, URL http://dx.doi.
org/10.1108/17440080910983556.

[Ato] Atom Zen mode. https://atom.io/packages/zen. Accessed: 2017-
02-06.

[Ber83] J. Bertin. Semiology of graphics: diagrams, networks, maps (University
of Wisconsin press, 1983).

[BG05] B. E. Birnbaum and K. J. Goldman. Achieving flexibility in direct-
manipulation programming environments by relaxing the edit-time
grammar. In Proceedings of the 2005 IEEE Symposium on Visual
Languages and Human-Centric Computing, 259–266 (IEEE Computer
Society, Washington, DC, USA, 2005). ISBN 0-7695-2443-5. doi:
10.1109/VLHCC.2005.15. URL http://dl.acm.org/citation.cfm?
id=1092357.1092400.

http://doi.acm.org/10.1145/2351676.2351694
http://doi.acm.org/10.1145/2351676.2351694
http://doi.acm.org/10.1145/2970276.2970329
http://dx.doi.org/10.4018/jeis.2010120206
http://dx.doi.org/10.1108/17440080910983556
http://dx.doi.org/10.1108/17440080910983556
http://dx.doi.org/10.1108/17440080910983556
http://dx.doi.org/10.1108/17440080910983556
https://atom.io/packages/zen
http://dl.acm.org/citation.cfm?id=1092357.1092400
http://dl.acm.org/citation.cfm?id=1092357.1092400

BIBLIOGRAPHY 145

[Bil05] P. Bille. A survey on tree edit distance and related problems. Theor.
Comput. Sci., 337(1-3):217–239, 2005. ISSN 0304-3975. doi:10.1016/j.
tcs.2004.12.030. URL http://dx.doi.org/10.1016/j.tcs.2004.12.
030.

[BJRT10] R. Bellamy, B. John, J. Richards, and J. Thomas. Using CogTool to
model programming tasks. In Evaluation and Usability of Programming
Languages and Tools, PLATEAU ’10, 1:1–1:6 (ACM, New York, NY,
USA, 2010). ISBN 978-1-4503-0547-1. doi:10.1145/1937117.1937118.
URL http://doi.acm.org/10.1145/1937117.1937118.

[BM86] R. Baecker and A. Marcus. Design principles for the enhanced presen-
tation of computer program source text. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’86, 51–58
(ACM, New York, NY, USA, 1986). ISBN 0-89791-180-6. doi:10.1145/
22627.22348. URL http://doi.acm.org/10.1145/22627.22348.

[BRZ`10] A. Bragdon, S. P. Reiss, R. Zeleznik, S. Karumuri, W. Cheung,
J. Kaplan, C. Coleman, F. Adeputra, and J. J. LaViola, Jr. Code
Bubbles: rethinking the user interface paradigm of integrated devel-
opment environments. In Proceedings of the 32nd ACM/IEEE In-
ternational Conference on Software Engineering - Volume 1, ICSE
’10, 455–464 (ACM, New York, NY, USA, 2010). ISBN 978-1-
60558-719-6. doi:http://doi.acm.org/10.1145/1806799.1806866. URL
http://doi.acm.org/10.1145/1806799.1806866.

[BS84] M. H. Brown and R. Sedgewick. A system for algorithm animation. In
Proceedings of the 11th Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH ’84, 177–186 (ACM, New York,
NY, USA, 1984). ISBN 0-89791-138-5. doi:10.1145/800031.808596.
URL http://doi.acm.org/10.1145/800031.808596.

[BZR`10] A. Bragdon, R. Zeleznik, S. P. Reiss, S. Karumuri, W. Cheung,
J. Kaplan, C. Coleman, F. Adeputra, and J. J. LaViola, Jr. Code
Bubbles: a working set-based interface for code understanding and
maintenance. In Proceedings of the 28th international conference on
Human factors in computing systems, CHI ’10, 2503–2512 (ACM,
New York, NY, USA, 2010). ISBN 978-1-60558-929-9. doi:http:
//doi.acm.org/10.1145/1753326.1753706. URL http://doi.acm.org/
10.1145/1753326.1753706.

[CGG`85] R. Chandhok, D. Garlan, D. Goldenson, P. Miller, and M. Tucker.
Programming environments based on structure editing: The gnome
approach. Managing Requirements Knowledge, International Workshop
on, 00(undefined):359, 1985. doi:doi.ieeecomputersociety.org/10.1109/
AFIPS.1985.47.

[CKM06] M. J. Coblenz, A. J. Ko, and B. A. Myers. Jasper: an eclipse plug-
in to facilitate software maintenance tasks. In Proceedings of the
2006 OOPSLA workshop on eclipse technology eXchange, eclipse ’06,

http://dx.doi.org/10.1016/j.tcs.2004.12.030
http://dx.doi.org/10.1016/j.tcs.2004.12.030
http://doi.acm.org/10.1145/1937117.1937118
http://doi.acm.org/10.1145/22627.22348
http://doi.acm.org/10.1145/1806799.1806866
http://doi.acm.org/10.1145/800031.808596
http://doi.acm.org/10.1145/1753326.1753706
http://doi.acm.org/10.1145/1753326.1753706

146 BIBLIOGRAPHY

65–69 (ACM, New York, NY, USA, 2006). ISBN 1-59593-621-1. doi:
http://doi.acm.org/10.1145/1188835.1188849. URL http://doi.acm.
org/10.1145/1188835.1188849.

[Cla] clang: a C language family frontend for LLVM. https://clang.llvm.
org/. Accessed: 2017-02-02.

[Coda] Code Contracts editor extensions for Microsoft Visual Stu-
dio. https://visualstudiogallery.msdn.microsoft.com/
02de7066-b6ca-42b3-8b3c-2562c7fa024f. Accessed: 2017-02-
02.

[Codb] Microsoft Code Contracts – official website. https://www.microsoft.
com/en-us/research/project/code-contracts/. Accessed: 2017-
02-02.

[Con14] S. Conversy. Unifying textual and visual: A theoretical account of
the visual perception of programming languages. In Proceedings of the
2014 ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming & Software, Onward! 2014, 201–
212 (ACM, New York, NY, USA, 2014). ISBN 978-1-4503-3210-1.
doi:10.1145/2661136.2661138. URL http://doi.acm.org/10.1145/
2661136.2661138.

[Coo10] S. Cooper. The design of Alice. Trans. Comput. Educ., 10:15:1–
15:16, 2010. ISSN 1946-6226. doi:http://doi.acm.org/10.1145/1868358.
1868362. URL http://doi.acm.org/10.1145/1868358.1868362.

[Cow87] M. Cowlishaw. Lexx - a programmable structured editor. IBM Journal
of Research and Development, 31(1):73–80, 1987. ISSN 0018-8646.
doi:10.1147/rd.311.0073.

[CSKB`89] B. Curtis, S. B. Sheppard, E. Kruesi-Bailey, J. Bailey, and D. A. Boehm-
Davis. Experimental evaluation of software documentation formats. J.
of Systems and Software, 9(2):167 – 207, 1989. ISSN 0164-1212. doi:
http://dx.doi.org/10.1016/0164-1212(89)90019-8. URL http://www.
sciencedirect.com/science/article/pii/0164121289900198.

[Cum14] G. Cumming. The new statistics: Why and how. Psychological
Science, 25(1):7–29, 2014. doi:10.1177/0956797613504966. http://
pss.sagepub.com/content/25/1/7.full.pdf+html, URL http://
pss.sagepub.com/content/25/1/7.abstract.

[CZ11] P. Caserta and O. Zendra. Visualization of the static aspects of software:
A survey. Visualization and Computer Graphics, IEEE Transactions
on, 17(7):913–933, 2011. ISSN 1077-2626. doi:10.1109/TVCG.2010.110.

[dAM08] B. de Alwis and G. Murphy. Answering conceptual queries with
ferret. In Software Engineering, 2008. ICSE ’08. ACM/IEEE 30th
International Conference on, 21–30 (2008). ISSN 0270-5257. doi:
10.1145/1368088.1368092.

http://doi.acm.org/10.1145/1188835.1188849
http://doi.acm.org/10.1145/1188835.1188849
https://clang.llvm.org/
https://clang.llvm.org/
https://visualstudiogallery.msdn.microsoft.com/02de7066-b6ca-42b3-8b3c-2562c7fa024f
https://visualstudiogallery.msdn.microsoft.com/02de7066-b6ca-42b3-8b3c-2562c7fa024f
https://www.microsoft.com/en-us/research/project/code-contracts/
https://www.microsoft.com/en-us/research/project/code-contracts/
http://doi.acm.org/10.1145/2661136.2661138
http://doi.acm.org/10.1145/2661136.2661138
http://doi.acm.org/10.1145/1868358.1868362
http://www.sciencedirect.com/science/article/pii/0164121289900198
http://www.sciencedirect.com/science/article/pii/0164121289900198
http://pss.sagepub.com/content/25/1/7.full.pdf+html
http://pss.sagepub.com/content/25/1/7.full.pdf+html
http://pss.sagepub.com/content/25/1/7.abstract
http://pss.sagepub.com/content/25/1/7.abstract

BIBLIOGRAPHY 147

[dAMR07] B. de Alwis, G. Murphy, and M. Robillard. A comparative study of
three program exploration tools. In Program Comprehension, 2007.
ICPC ’07. 15th IEEE International Conference on, 103–112 (2007).
ISSN 1092-8138. doi:10.1109/ICPC.2007.6.

[DBR`12] R. DeLine, A. Bragdon, K. Rowan, J. Jacobsen, and S. P. Reiss. De-
bugger Canvas: industrial experience with the Code Bubbles paradigm.
In Proceedings of the 2012 International Conference on Software En-
gineering, ICSE 2012, 1064–1073 (IEEE Press, Piscataway, NJ, USA,
2012). ISBN 978-1-4673-1067-3. URL http://dl.acm.org/citation.
cfm?id=2337223.2337362.

[Dij68] E. W. Dijkstra. Letters to the editor: Go to statement considered
harmful. Commun. ACM, 11(3):147–148, 1968. ISSN 0001-0782. doi:
10.1145/362929.362947. URL http://doi.acm.org/10.1145/362929.
362947.

[Dim15] G. M. Dimitri. The impact of syntax highlighting in sonic pi. In Proceed-
ings of the 26th Annual Conference of the Psychology of Programming
Interest Group (PPIG 2015) (2015).

[DK10] S. Davis and G. Kiczales. Registration-based language abstractions. In
Proceedings of the ACM international conference on Object oriented
programming systems languages and applications, OOPSLA ’10, 754–
773 (ACM, New York, NY, USA, 2010). ISBN 978-1-4503-0203-6.
doi:10.1145/1869459.1869521. URL http://doi.acm.org/10.1145/
1869459.1869521.

[DMJN07] D. Dig, K. Manzoor, R. Johnson, and T. N. Nguyen. Refactoring-
aware configuration management for object-oriented programs. In 29th
International Conference on Software Engineering (ICSE’07), 427–436
(2007). ISSN 0270-5257. doi:10.1109/ICSE.2007.71.

[DR10] R. DeLine and K. Rowan. Code canvas: zooming towards better
development environments. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - Volume 2, ICSE
’10, 207–210 (ACM, New York, NY, USA, 2010). ISBN 978-1-60558-
719-6. doi:http://doi.acm.org/10.1145/1810295.1810331. URL http:
//doi.acm.org/10.1145/1810295.1810331.

[Dra16] P. Dragicevic. Fair statistical communication in HCI. In J. Robert-
son and M. Kaptein (editors), Modern Statistical Methods for HCI
(Springer, 2016). In press.

[DRNKJ11] C. De Roover, C. Noguera, A. Kellens, and V. Jonckers. The soul tool
suite for querying programs in symbiosis with eclipse. In Proceedings
of the 9th International Conference on Principles and Practice of
Programming in Java, PPPJ ’11, 71–80 (ACM, New York, NY, USA,
2011). ISBN 978-1-4503-0935-6. doi:10.1145/2093157.2093168. URL
http://doi.acm.org/10.1145/2093157.2093168.

http://dl.acm.org/citation.cfm?id=2337223.2337362
http://dl.acm.org/citation.cfm?id=2337223.2337362
http://doi.acm.org/10.1145/362929.362947
http://doi.acm.org/10.1145/362929.362947
http://doi.acm.org/10.1145/1869459.1869521
http://doi.acm.org/10.1145/1869459.1869521
http://doi.acm.org/10.1145/1810295.1810331
http://doi.acm.org/10.1145/1810295.1810331
http://doi.acm.org/10.1145/2093157.2093168

148 BIBLIOGRAPHY

[DT14] L. Diekmann and L. Tratt. Eco: A language composition editor. In
B. Combemale, D. Pearce, O. Barais, and J. Vinju (editors), Software
Language Engineering, volume 8706 of Lecture Notes in Computer
Science, 82–101 (Springer International Publishing, 2014). ISBN 978-3-
319-11244-2. doi:10.1007/978-3-319-11245-9_5. URL http://dx.doi.
org/10.1007/978-3-319-11245-9_5.

[DVR10] R. DeLine, G. Venolia, and K. Rowan. Software development with
code maps. Commun. ACM, 53:48–54, 2010. ISSN 0001-0782. doi:
http://doi.acm.org/10.1145/1787234.1787250. URL http://doi.acm.
org/10.1145/1787234.1787250.

[EA04] T. Ekman and U. Asklund. Refactoring-aware versioning in eclipse.
Electron. Notes Theor. Comput. Sci., 107:57–69, 2004. ISSN 1571-0661.
doi:10.1016/j.entcs.2004.02.048. URL http://dx.doi.org/10.1016/
j.entcs.2004.02.048.

[Ecl] Eclipse – official website. https://eclipse.org. Accessed: 2017-02-
02.

[ED66] T. G. Evans and D. L. Darley. On-line debugging techniques: A
survey. In Proceedings of the November 7-10, 1966, Fall Joint Computer
Conference, AFIPS ’66 (Fall), 37–50 (ACM, New York, NY, USA, 1966).
doi:10.1145/1464291.1464295. URL http://doi.acm.org/10.1145/
1464291.1464295.

[EK07] A. D. Eisenberg and G. Kiczales. Expressive programs through pre-
sentation extension. In Proceedings of the 6th international con-
ference on Aspect-oriented software development, AOSD ’07, 73–84
(ACM, New York, NY, USA, 2007). ISBN 1-59593-615-7. doi:
http://doi.acm.org/10.1145/1218563.1218573. URL http://doi.acm.
org/10.1145/1218563.1218573.

[EM95] M. Erwig and B. Meyer. Heterogeneous visual languages-integrating
visual and textual programming. In Proceedings of the 11th Interna-
tional IEEE Symposium on Visual Languages, VL ’95, 318–325 (IEEE
Computer Society, Washington, DC, USA, 1995). ISBN 0-8186-7045-2.
URL http://dl.acm.org/citation.cfm?id=832276.834317.

[Env] Envision webpage at ETH Zurich. http://www.pm.inf.ethz.ch/
research/envision.html. Accessed: 2017-02-02.

[FBL10] M. Fähndrich, M. Barnett, and F. Logozzo. Embedded contract
languages. In Proceedings of the 2010 ACM Symposium on Ap-
plied Computing, SAC ’10, 2103–2110 (ACM, New York, NY, USA,
2010). ISBN 978-1-60558-639-7. doi:10.1145/1774088.1774531. URL
http://doi.acm.org/10.1145/1774088.1774531.

[FKA`13] J. Feigenspan, C. Kästner, S. Apel, J. Liebig, M. Schulze, R. Dachselt,
M. Papendieck, T. Leich, and G. Saake. Do background col-
ors improve program comprehension in the #ifdef hell? Empir-
ical Software Engineering, 18(4):699–745, 2013. ISSN 1382-3256.

http://dx.doi.org/10.1007/978-3-319-11245-9_5
http://dx.doi.org/10.1007/978-3-319-11245-9_5
http://doi.acm.org/10.1145/1787234.1787250
http://doi.acm.org/10.1145/1787234.1787250
http://dx.doi.org/10.1016/j.entcs.2004.02.048
http://dx.doi.org/10.1016/j.entcs.2004.02.048
https://eclipse.org
http://doi.acm.org/10.1145/1464291.1464295
http://doi.acm.org/10.1145/1464291.1464295
http://doi.acm.org/10.1145/1218563.1218573
http://doi.acm.org/10.1145/1218563.1218573
http://dl.acm.org/citation.cfm?id=832276.834317
http://www.pm.inf.ethz.ch/research/envision.html
http://www.pm.inf.ethz.ch/research/envision.html
http://doi.acm.org/10.1145/1774088.1774531

BIBLIOGRAPHY 149

doi:10.1007/s10664-012-9208-x. URL http://dx.doi.org/10.1007/
s10664-012-9208-x.

[Flu08] B. Fluri. Change distilling. Enriching software evolution analysis with
fine-grained source code change histories. Ph.D. thesis, 2008. URL
http://www.zora.uzh.ch/16421/.

[FM10] T. Fritz and G. C. Murphy. Using information fragments to answer
the questions developers ask. In Proceedings of the 32Nd ACM/IEEE
International Conference on Software Engineering - Volume 1, ICSE
’10, 175–184 (ACM, New York, NY, USA, 2010). ISBN 978-1-60558-
719-6. doi:10.1145/1806799.1806828. URL http://doi.acm.org/10.
1145/1806799.1806828.

[FMB`14] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Montperrus.
Fine-grained and accurate source code differencing. In Proceedings of
the 29th ACM/IEEE International Conference on Automated Software
Engineering, ASE ’14, 313–324 (ACM, New York, NY, USA, 2014).
ISBN 978-1-4503-3013-8. doi:10.1145/2642937.2642982. URL http:
//doi.acm.org/10.1145/2642937.2642982.

[Fow05] M. Fowler. A language workbench in action - mps. [Online] Available:
http://martinfowler.com/articles/mpsAgree.html, 2005.

[FWPG07] B. Fluri, M. Wuersch, M. Pinzger, and H. Gall. Change distilling: Tree
differencing for fine-grained source code change extraction. IEEE Trans.
Softw. Eng., 33(11):725–743, 2007. ISSN 0098-5589. doi:10.1109/TSE.
2007.70731. URL http://dx.doi.org/10.1109/TSE.2007.70731.

[GKM90] E. P. Glinert, M. E. Kopache, and D. W. McIntyre. Exploring the
general-purpose visual alternative. JVLC, 1(1):3 – 39, 1990. ISSN
1045-926X. doi:10.1016/S1045-926X(05)80032-1. URL http://www.
sciencedirect.com/science/article/pii/S1045926X05800321.

[GM84] D. B. Garlan and P. L. Miller. Gnome: An introductory programming
environment based on a family of structure editors. In Proceedings of
the First ACM SIGSOFT/SIGPLAN Software Engineering Symposium
on Practical Software Development Environments, SDE 1, 65–72 (ACM,
New York, NY, USA, 1984). ISBN 0-89791-131-8. doi:10.1145/800020.
808250. URL http://doi.acm.org/10.1145/800020.808250.

[GP92] T. Green and M. Petre. When visual programs are harder to read
than textual programs. In Human-Computer Interaction: Tasks and
Organisation, Proceedings ECCE-6 (6th European Conference Cognitive
Ergonomics), 57 (Citeseer, 1992).

[GP96] T. Green and M. Petre. Usability analysis of visual programming envi-
ronments: A "Cognitive Dimensions" framework. JVLC, 7(2):131 – 174,
1996. ISSN 1045-926X. doi:10.1006/jvlc.1996.0009. URL http://www.
sciencedirect.com/science/article/pii/S1045926X96900099.

[Gre89] T. R. G. Green. Cognitive dimensions of notations. 443–460, 1989.
URL http://dl.acm.org/citation.cfm?id=92968.93015.

http://dx.doi.org/10.1007/s10664-012-9208-x
http://dx.doi.org/10.1007/s10664-012-9208-x
http://www.zora.uzh.ch/16421/
http://doi.acm.org/10.1145/1806799.1806828
http://doi.acm.org/10.1145/1806799.1806828
http://doi.acm.org/10.1145/2642937.2642982
http://doi.acm.org/10.1145/2642937.2642982
http://dx.doi.org/10.1109/TSE.2007.70731
http://www.sciencedirect.com/science/article/pii/S1045926X05800321
http://www.sciencedirect.com/science/article/pii/S1045926X05800321
http://doi.acm.org/10.1145/800020.808250
http://www.sciencedirect.com/science/article/pii/S1045926X96900099
http://www.sciencedirect.com/science/article/pii/S1045926X96900099
http://dl.acm.org/citation.cfm?id=92968.93015

150 BIBLIOGRAPHY

[Gre90] T. R. G. Green. The cognitive dimension of viscosity: A sticky
problem for hci. In Proceedings of the IFIP TC13 Third Inter-
ational Conference on Human-Computer Interaction, INTERACT
’90, 79–86 (North-Holland Publishing Co., Amsterdam, The Nether-
lands, The Netherlands, 1990). ISBN 0-444-88817-9. URL http:
//dl.acm.org/citation.cfm?id=647402.725762.

[Gue15] B. Guenat. Tree-based Version Control in Envision. BSc. Thesis, ETH
Zurich, 2015.

[GWGG12] G. Ghezzi, M. Würsch, E. Giger, and H. C. Gall. An architectural
blueprint for a pluggable version control system for software (evo-
lution) analysis. In Proceedings of the Second International Work-
shop on Developing Tools As Plug-Ins, TOPI ’12, 13–18 (IEEE
Press, Piscataway, NJ, USA, 2012). ISBN 978-1-4673-1820-4. URL
http://dl.acm.org/citation.cfm?id=2667062.2667065.

[HCM02] D. Hendrix, I. Cross, J.H., and S. Maghsoodloo. The effectiveness
of control structure diagrams in source code comprehension activities.
Software Engineering, IEEE Transactions on, 28(5):463–477, 2002.
ISSN 0098-5589. doi:10.1109/TSE.2002.1000450.

[HF14] A. Z. Henley and S. D. Fleming. The patchworks code editor: Toward
faster navigation with less code arranging and fewer navigation mis-
takes. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’14, 2511–2520 (ACM, New York, NY, USA,
2014). ISBN 978-1-4503-2473-1. doi:10.1145/2556288.2557073. URL
http://doi.acm.org/10.1145/2556288.2557073.

[HKV12] M. Hills, P. Klint, and J. J. Vinju. Scripting a refactoring with rascal
and eclipse. In Proceedings of the Fifth Workshop on Refactoring Tools,
WRT ’12, 40–49 (ACM, New York, NY, USA, 2012). ISBN 978-1-4503-
1500-5. doi:10.1145/2328876.2328882. URL http://doi.acm.org/10.
1145/2328876.2328882.

[HN86] A. N. Habermann and D. Notkin. Gandalf: Software development envi-
ronments. IEEE Transactions on Software Engineering, SE-12(12):1117–
1127, 1986. ISSN 0098-5589. doi:10.1109/TSE.1986.6313007.

[HNS06] T. Hakala, P. Nykyri, and J. Sajaniemi. An experiment on the effects of
program code highlighting on visual search for local patterns. Psychology
of Programming Interest Group, 38–52, 2006.

[HRS84] K. Hammond and V. Rayward-Smith. A survey on syntactic
error recovery and repair. Computer Languages, 9(1):51 – 67,
1984. ISSN 0096-0551. doi:http://dx.doi.org/10.1016/0096-0551(84)
90012-2. URL http://www.sciencedirect.com/science/article/
pii/0096055184900122.

[HVM06] E. Hajiyev, M. Verbaere, and O. Moor. ECOOP 2006 – Object-Oriented
Programming: 20th European Conference, Nantes, France, July 3-7,
2006. Proceedings, chapter codeQuest: Scalable Source Code Queries

http://dl.acm.org/citation.cfm?id=647402.725762
http://dl.acm.org/citation.cfm?id=647402.725762
http://dl.acm.org/citation.cfm?id=2667062.2667065
http://doi.acm.org/10.1145/2556288.2557073
http://doi.acm.org/10.1145/2328876.2328882
http://doi.acm.org/10.1145/2328876.2328882
http://www.sciencedirect.com/science/article/pii/0096055184900122
http://www.sciencedirect.com/science/article/pii/0096055184900122

BIBLIOGRAPHY 151

with Datalog, 2–27 (Springer Berlin Heidelberg, Berlin, Heidelberg,
2006). ISBN 978-3-540-35727-8. doi:10.1007/11785477_2. URL http:
//dx.doi.org/10.1007/11785477_2.

[JDT] Eclipse JDT Core Component. https://eclipse.org/jdt/core/.
Accessed: 2017-02-02.

[JDV03] D. Janzen and K. De Volder. Navigating and querying code without
getting lost. In Proceedings of the 2Nd International Conference on
Aspect-oriented Software Development, AOSD ’03, 178–187 (ACM,
New York, NY, USA, 2003). ISBN 1-58113-660-9. doi:10.1145/643603.
643622. URL http://doi.acm.org/10.1145/643603.643622.

[JPSK04] B. E. John, K. Prevas, D. D. Salvucci, and K. Koedinger. Predictive
human performance modeling made easy. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’04, 455–462
(ACM, New York, NY, USA, 2004). ISBN 1-58113-702-8. doi:10.1145/
985692.985750. URL http://doi.acm.org/10.1145/985692.985750.

[Jus] GitHub project: justanothercoder/Compiler. https:
//github.com/justanothercoder/Compiler/blob/
79a44744be646cf8edfeefff44c28f776889ed6e/threeaddresscode.
hpp. Accessed: 2017-02-02.

[KAM05a] A. J. Ko, H. Aung, and B. A. Myers. Eliciting design require-
ments for maintenance-oriented ides: a detailed study of corrective
and perfective maintenance tasks. In Proceedings of the 27th in-
ternational conference on Software engineering, ICSE ’05, 126–135
(ACM, New York, NY, USA, 2005). ISBN 1-58113-963-2. doi:
http://doi.acm.org/10.1145/1062455.1062492. URL http://doi.acm.
org/10.1145/1062455.1062492.

[KAM05b] A. J. Ko, H. H. Aung, and B. A. Myers. Design requirements for more
flexible structured editors from a study of programmers’ text editing. In
CHI ’05 extended abstracts on Human factors in computing systems,
CHI EA ’05, 1557–1560 (ACM, New York, NY, USA, 2005). ISBN
1-59593-002-7. doi:http://doi.acm.org/10.1145/1056808.1056965. URL
http://doi.acm.org/10.1145/1056808.1056965.

[KDRN`11] A. Kellens, C. De Roover, C. Noguera, R. Stevens, and V. Jonckers.
Reasoning over the evolution of source code using quantified regular
path expressions. In Reverse Engineering (WCRE), 2011 18th Working
Conference on, 389–393 (2011). ISSN 1095-1350. doi:10.1109/WCRE.
2011.54.

[KDV07] A. J. Ko, R. DeLine, and G. Venolia. Information needs in col-
located software development teams. In Proceedings of the 29th in-
ternational conference on Software Engineering, ICSE ’07, 344–353
(IEEE Computer Society, Washington, DC, USA, 2007). ISBN
0-7695-2828-7. doi:http://dx.doi.org/10.1109/ICSE.2007.45. URL
http://dx.doi.org/10.1109/ICSE.2007.45.

http://dx.doi.org/10.1007/11785477_2
http://dx.doi.org/10.1007/11785477_2
https://eclipse.org/jdt/core/
http://doi.acm.org/10.1145/643603.643622
http://doi.acm.org/10.1145/985692.985750
https://github.com/justanothercoder/Compiler/blob/79a44744be646cf8edfeefff44c28f776889ed6e/threeaddresscode.hpp
https://github.com/justanothercoder/Compiler/blob/79a44744be646cf8edfeefff44c28f776889ed6e/threeaddresscode.hpp
https://github.com/justanothercoder/Compiler/blob/79a44744be646cf8edfeefff44c28f776889ed6e/threeaddresscode.hpp
https://github.com/justanothercoder/Compiler/blob/79a44744be646cf8edfeefff44c28f776889ed6e/threeaddresscode.hpp
http://doi.acm.org/10.1145/1062455.1062492
http://doi.acm.org/10.1145/1062455.1062492
http://doi.acm.org/10.1145/1056808.1056965
http://dx.doi.org/10.1109/ICSE.2007.45

152 BIBLIOGRAPHY

[KH10] M. Koegel and J. Helming. Emfstore: A model repository for emf models.
In Proceedings of the 32Nd ACM/IEEE International Conference on
Software Engineering - Volume 2, ICSE ’10, 307–308 (ACM, New
York, NY, USA, 2010). ISBN 978-1-60558-719-6. doi:10.1145/1810295.
1810364. URL http://doi.acm.org/10.1145/1810295.1810364.

[KHvWH10] M. Koegel, M. Herrmannsdoerfer, O. von Wesendonk, and J. Helming.
Operation-based conflict detection. In Proceedings of the 1st Inter-
national Workshop on Model Comparison in Practice, IWMCP ’10,
21–30 (ACM, New York, NY, USA, 2010). ISBN 978-1-60558-960-2.
doi:10.1145/1826147.1826154. URL http://doi.acm.org/10.1145/
1826147.1826154.

[Kil00] M. J. Kilgard. A practical and robust bump-mapping technique for
today’s gpus. In Game Developers Conference 2000 (2000).

[KK14] T. Kehrer and U. Kelter. Versioning of ordered model element sets.
Technical Report 2, University of Siegen, 2014.

[KKD`11] T. Karrer, J.-P. Krämer, J. Diehl, B. Hartmann, and J. Borchers.
Stacksplorer: Call graph navigation helps increasing code maintenance
efficiency. In Proceedings of the 24th Annual ACM Symposium on User
Interface Software and Technology, UIST ’11, 217–224 (ACM, New
York, NY, USA, 2011). ISBN 978-1-4503-0716-1. doi:10.1145/2047196.
2047225. URL http://doi.acm.org/10.1145/2047196.2047225.

[KKKB12] J.-P. Krämer, J. Kurz, T. Karrer, and J. Borchers. Blaze: Supporting
two-phased call graph navigation in source code. In CHI ’12 Extended
Abstracts on Human Factors in Computing Systems, CHI EA ’12, 2195–
2200 (ACM, New York, NY, USA, 2012). ISBN 978-1-4503-1016-1.
doi:10.1145/2212776.2223775. URL http://doi.acm.org/10.1145/
2212776.2223775.

[KM06] A. J. Ko and B. A. Myers. Barista: An implementation framework for
enabling new tools, interaction techniques and views in code editors. In
Proceedings of the SIGCHI conference on Human Factors in computing
systems, CHI ’06, 387–396 (ACM, New York, NY, USA, 2006). ISBN
1-59593-372-7. doi:http://doi.acm.org/10.1145/1124772.1124831. URL
http://doi.acm.org/10.1145/1124772.1124831.

[KMC12] T. Kosar, M. Mernik, and J. Carver. Program comprehension of
domain-specific and general-purpose languages: comparison using a
family of experiments. Empirical Software Engineering, 17:276–304,
2012. ISSN 1382-3256. 10.1007/s10664-011-9172-x, URL http://dx.
doi.org/10.1007/s10664-011-9172-x.

[KMM11] M. Kimmig, M. Monperrus, and M. Mezini. Querying source code
with natural language. In Proceedings of the 2011 26th IEEE/ACM
International Conference on Automated Software Engineering, ASE
’11, 376–379 (IEEE Computer Society, Washington, DC, USA, 2011).
ISBN 978-1-4577-1638-6. doi:10.1109/ASE.2011.6100076. URL http:
//dx.doi.org/10.1109/ASE.2011.6100076.

http://doi.acm.org/10.1145/1810295.1810364
http://doi.acm.org/10.1145/1826147.1826154
http://doi.acm.org/10.1145/1826147.1826154
http://doi.acm.org/10.1145/2047196.2047225
http://doi.acm.org/10.1145/2212776.2223775
http://doi.acm.org/10.1145/2212776.2223775
http://doi.acm.org/10.1145/1124772.1124831
http://dx.doi.org/10.1007/s10664-011-9172-x
http://dx.doi.org/10.1007/s10664-011-9172-x
http://dx.doi.org/10.1109/ASE.2011.6100076
http://dx.doi.org/10.1109/ASE.2011.6100076

BIBLIOGRAPHY 153

[Kuh12] A. Kuhn. Ides need become open data platforms (as need languages and
vms). In Developing Tools as Plug-ins (TOPI), 2012 2nd Workshop
on, 31–36 (2012). doi:10.1109/TOPI.2012.6229807.

[Lab] LabView – official website. https://www.ni.com/labview/. Accessed:
2017-02-02.

[LBM14] T. Lieber, J. R. Brandt, and R. C. Miller. Addressing misconceptions
about code with always-on programming visualizations. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems,
CHI ’14, 2481–2490 (ACM, New York, NY, USA, 2014). ISBN 978-
1-4503-2473-1. doi:10.1145/2556288.2557409. URL http://doi.acm.
org/10.1145/2556288.2557409.

[Lév75] J. P. Lévy. Automatic correction of syntax-errors in programming lan-
guages. Acta Informatica, 4(3):271–292, 1975. ISSN 1432-0525. doi:10.
1007/BF00288730. URL http://dx.doi.org/10.1007/BF00288730.

[Lin04] T. Lindholm. A three-way merge for xml documents. In Proceedings
of the 2004 ACM Symposium on Document Engineering, DocEng
’04, 1–10 (ACM, New York, NY, USA, 2004). ISBN 1-58113-938-1.
doi:10.1145/1030397.1030399. URL http://doi.acm.org/10.1145/
1030397.1030399.

[LL96] M. C. Longo and P. Lockhart. Structured cabling: foundations for the
future. Healthcare information management: journal of the Healthcare
Information and Management Systems Society of the American Hospital
Association, 10(4):59, 1996.

[LM10] T. D. LaToza and B. A. Myers. Developers ask reachability questions.
In Proceedings of the 32Nd ACM/IEEE International Conference on
Software Engineering - Volume 1, ICSE ’10, 185–194 (ACM, New
York, NY, USA, 2010). ISBN 978-1-60558-719-6. doi:10.1145/1806799.
1806829. URL http://doi.acm.org/10.1145/1806799.1806829.

[LM11] T. LaToza and B. Myers. Visualizing call graphs. In Visual Languages
and Human-Centric Computing (VL/HCC), 2011 IEEE Symposium on,
117–124 (2011). ISSN 1943-6092. doi:10.1109/VLHCC.2011.6070388.

[LR13] D. H. Lorenz and B. Rosenan. Source code management for pro-
jectional editing. In Proceedings of the 2013 Companion Publication
for Conference on Systems, Programming, & Applications: Soft-
ware for Humanity, SPLASH ’13, 83–84 (ACM, New York, NY, USA,
2013). ISBN 978-1-4503-1995-9. doi:10.1145/2508075.2508092. URL
http://doi.acm.org/10.1145/2508075.2508092.

[Lüt15] P. Lüthi. Self-hosting the Envision Visual Programming Environment.
MSc. Thesis, ETH Zurich, 2015.

[Mar94] R. Martin. Oo design quality metrics. An analysis of dependencies,
12:151–170, 1994.

https://www.ni.com/labview/
http://doi.acm.org/10.1145/2556288.2557409
http://doi.acm.org/10.1145/2556288.2557409
http://dx.doi.org/10.1007/BF00288730
http://doi.acm.org/10.1145/1030397.1030399
http://doi.acm.org/10.1145/1030397.1030399
http://doi.acm.org/10.1145/1806799.1806829
http://doi.acm.org/10.1145/2508075.2508092

154 BIBLIOGRAPHY

[McI01] L. K. McIver. Syntactic and semantic issues in introductory program-
ming education. Ph.D. thesis, Monash University, School of Computer
Science and Software Engineering, 2001.

[McK12] F. McKay. A prototype structured but low-viscosity editor for novice
programmers. In Proceedings of the 26th Annual BCS Interaction
Specialist Group Conference on People and Computers, BCS-HCI ’12,
363–368 (British Computer Society, Swinton, UK, UK, 2012). URL
http://dl.acm.org/citation.cfm?id=2377916.2377967.

[MCPW08] L. Murta, C. Corrêa, J. a. G. Prudêncio, and C. Werner. Towards
odyssey-vcs 2: Improvements over a uml-based version control system.
In Proceedings of the 2008 International Workshop on Comparison and
Versioning of Software Models, CVSM ’08, 25–30 (ACM, New York, NY,
USA, 2008). ISBN 978-1-60558-045-6. doi:10.1145/1370152.1370159.
URL http://doi.acm.org/10.1145/1370152.1370159.

[Men02] T. Mens. A state-of-the-art survey on software merging. IEEE Trans-
actions on Software Engineering, 28(5):449–462, 2002. ISSN 0098-5589.
doi:10.1109/TSE.2002.1000449.

[MM85] W. Miller and E. W. Myers. A file comparison program. Software:
Practice and Experience, 15(11):1025–1040, 1985. ISSN 1097-024X.
doi:10.1002/spe.4380151102. URL http://dx.doi.org/10.1002/spe.
4380151102.

[MPMV94] P. Miller, J. Pane, G. Meter, and S. Vorthmann. Evolution of novice
programming environments: The structure editors of carnegie mellon
university. Interactive Learning Environments, 4(2):140–158, 1994.

[MPS] MPS – official website. https://www.jetbrains.com/mps/. Accessed:
2017-02-02.

[MRR`10] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond. The
Scratch programming language and environment. Trans. Comput. Educ.,
10(4):16:1–16:15, 2010. ISSN 1946-6226. doi:10.1145/1868358.1868363.
URL http://doi.acm.org/10.1145/1868358.1868363.

[MSH`16] B. A. Myers, A. Stefik, S. Hanenberg, A.-J. Kaijanaho, M. Burnett,
F. Turbak, and P. Wadler. Usability of programming languages: Special
interest group (sig) meeting at chi 2016. In Proceedings of the 2016
CHI Conference Extended Abstracts on Human Factors in Computing
Systems, CHI EA ’16, 1104–1107 (ACM, New York, NY, USA, 2016).
ISBN 978-1-4503-4082-3. doi:10.1145/2851581.2886434. URL http:
//doi.acm.org/10.1145/2851581.2886434.

[MST12] S. Mathôt, D. Schreij, and J. Theeuwes. Opensesame: An open-source,
graphical experiment builder for the social sciences. Behavior Research
Methods, 44(2):314–324, 2012. doi:10.3758/s13428-011-0168-7. URL
http://dx.doi.org/10.3758/s13428-011-0168-7.

http://dl.acm.org/citation.cfm?id=2377916.2377967
http://doi.acm.org/10.1145/1370152.1370159
http://dx.doi.org/10.1002/spe.4380151102
http://dx.doi.org/10.1002/spe.4380151102
https://www.jetbrains.com/mps/
http://doi.acm.org/10.1145/1868358.1868363
http://doi.acm.org/10.1145/2851581.2886434
http://doi.acm.org/10.1145/2851581.2886434
http://dx.doi.org/10.3758/s13428-011-0168-7

BIBLIOGRAPHY 155

[MSV`08] O. Moor, D. Sereni, M. Verbaere, E. Hajiyev, P. Avgustinov, T. Ek-
man, N. Ongkingco, and J. Tibble. Generative and Transforma-
tional Techniques in Software Engineering II: International Sum-
mer School, GTTSE 2007, Braga, Portugal, July 2-7, 2007. Re-
vised Papers, chapter .QL: Object-Oriented Queries Made Easy, 78–
133 (Springer Berlin Heidelberg, Berlin, Heidelberg, 2008). ISBN
978-3-540-88643-3. doi:10.1007/978-3-540-88643-3_3. URL http:
//dx.doi.org/10.1007/978-3-540-88643-3_3.

[MTN`13] R. Mikhaiel, N. Tsantalis, N. Negara, E. Stroulia, and Z. Xing. Dif-
ferencing UML Models: A Domain-Specific vs. a Domain-Agnostic
Method, 159–196 (Springer Berlin Heidelberg, Berlin, Heidelberg, 2013).
ISBN 978-3-642-35992-7. doi:10.1007/978-3-642-35992-7_4. URL
http://dx.doi.org/10.1007/978-3-642-35992-7_4.

[Mye83] B. A. Myers. Incense: A system for displaying data structures. In
Proceedings of the 10th Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH ’83, 115–125 (ACM, New York,
NY, USA, 1983). ISBN 0-89791-109-1. doi:10.1145/800059.801140.
URL http://doi.acm.org/10.1145/800059.801140.

[Mye86] E. W. Myers. An O(ND) difference algorithm and its variations.
Algorithmica, 1(1):251–266, 1986. ISSN 1432-0541. doi:10.1007/
BF01840446. URL http://dx.doi.org/10.1007/BF01840446.

[Mye98] B. A. Myers. The case for an open data model. Technical report,
Carnegie Mellon University, 1998.

[NK12] J.-J. Nuñez and G. Kiczales. Understanding registration-based abstrac-
tions: A quantitative user study. In Program Comprehension (ICPC),
2012 IEEE 20th International Conference on, 93–102 (2012). ISSN
1092-8138. doi:10.1109/ICPC.2012.6240513.

[NMB05] T. Nguyen, E. Munson, and J. Boyland. An infrastructure for develop-
ment of object-oriented, multi-level configuration management services.
In Proceedings of the 27th International Conference on Software Engi-
neering, (ICSE 2005), 215–224 (2005). doi:10.1109/ICSE.2005.1553564.

[NND`15] H. V. Nguyen, M. H. Nguyen, S. C. Dang, C. Kästner, and T. N. Nguyen.
Detecting semantic merge conflicts with variability-aware execution. In
Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2015, 926–929 (ACM, New York, NY, USA,
2015). ISBN 978-1-4503-3675-8. doi:10.1145/2786805.2803208. URL
http://doi.acm.org/10.1145/2786805.2803208.

[NNPN10] T. Nguyen, H. Nguyen, N. Pham, and T. Nguyen. Operation-based,
fine-grained version control model for tree-based representation. In
D. Rosenblum and G. Taentzer (editors), Fundamental Approaches
to Software Engineering, volume 6013 of Lecture Notes in Computer
Science, 74–90 (Springer Berlin Heidelberg, 2010). ISBN 978-3-642-
12028-2. doi:10.1007/978-3-642-12029-9_6. URL http://dx.doi.
org/10.1007/978-3-642-12029-9_6.

http://dx.doi.org/10.1007/978-3-540-88643-3_3
http://dx.doi.org/10.1007/978-3-540-88643-3_3
http://dx.doi.org/10.1007/978-3-642-35992-7_4
http://doi.acm.org/10.1145/800059.801140
http://dx.doi.org/10.1007/BF01840446
http://doi.acm.org/10.1145/2786805.2803208
http://dx.doi.org/10.1007/978-3-642-12029-9_6
http://dx.doi.org/10.1007/978-3-642-12029-9_6

156 BIBLIOGRAPHY

[OLDR11] F. Olivero, M. Lanza, M. D’Ambros, and R. Robbes. Enabling program
comprehension through a visual object-focused development environment.
In Visual Languages and Human-Centric Computing (VL/HCC), 2011
IEEE Symposium on, 127 –134 (2011). ISSN 1943-6092. doi:10.1109/
VLHCC.2011.6070389.

[OMW05] H. Oliveira, L. Murta, and C. Werner. Odyssey-vcs: A flexible version
control system for uml model elements. In Proceedings of the 12th
International Workshop on Software Configuration Management, SCM
’05, 1–16 (ACM, New York, NY, USA, 2005). ISBN 1-59593-310-7.
doi:10.1145/1109128.1109129. URL http://doi.acm.org/10.1145/
1109128.1109129.

[Ope] Open clipart. https://openclipart.org/. Accessed: 2017-02-03.

[OVH15] J. Ou, M. Vechev, and O. Hilliges. An interactive system for data
structure development. In Proceedings of the 33rd Annual ACM Con-
ference on Human Factors in Computing Systems, CHI ’15, 3053–
3062 (ACM, New York, NY, USA, 2015). ISBN 978-1-4503-3145-6.
doi:10.1145/2702123.2702319. URL http://doi.acm.org/10.1145/
2702123.2702319.

[OVH`16] C. Omar, I. Voysey, M. Hilton, J. Aldrich, and M. A. Hammer. Hazelnut:
A bidirectionally typed structure editor calculus. CoRR, abs/1607.04180,
2016. URL http://arxiv.org/abs/1607.04180.

[PBL`16] T. W. Price, N. C. Brown, D. Lipovac, T. Barnes, and M. Kölling.
Evaluation of a frame-based programming editor. In ICER ’16 (ACM,
2016).

[PBMM15] J. Protzenko, S. Burckhardt, M. Moskal, and J. McClurg. Implementing
real-time collaboration in touchdevelop using ast merges. In Proceedings
of the 3rd International Workshop on Mobile Development Lifecycle,
MobileDeLi 2015, 25–27 (ACM, New York, NY, USA, 2015). ISBN
978-1-4503-3906-3. doi:10.1145/2846661.2846672. URL http://doi.
acm.org/10.1145/2846661.2846672.

[Pet95] M. Petre. Why looking isn’t always seeing: readership skills and
graphical programming. Commun. ACM, 38:33–44, 1995. ISSN 0001-
0782. doi:http://doi.acm.org/10.1145/203241.203251. URL http://
doi.acm.org/10.1145/203241.203251.

[PM93] J. F. Pane and P. L. Miller. The acse multimedia science learning
environment. In Proceedings of the 1993 International Conference on
Computers in Education, 168–173 (1993).

[QGV] The Qt Graphics View Framework – official website. https://doc.qt.
io/qt-5/graphicsview.html. Accessed: 2017-02-02.

[Que] QueryDSL – official website. http://www.querydsl.com. Accessed:
2017-02-02.

http://doi.acm.org/10.1145/1109128.1109129
http://doi.acm.org/10.1145/1109128.1109129
https://openclipart.org/
http://doi.acm.org/10.1145/2702123.2702319
http://doi.acm.org/10.1145/2702123.2702319
http://arxiv.org/abs/1607.04180
http://doi.acm.org/10.1145/2846661.2846672
http://doi.acm.org/10.1145/2846661.2846672
http://doi.acm.org/10.1145/203241.203251
http://doi.acm.org/10.1145/203241.203251
https://doc.qt.io/qt-5/graphicsview.html
https://doc.qt.io/qt-5/graphicsview.html
http://www.querydsl.com

BIBLIOGRAPHY 157

[Rea] GitHub project: ReactiveX/RxJava (manual merge).
https://github.com/ReactiveX/RxJava/pull/281/commits/
1667386b61de0c9f1157dce157bf2529e3715cb6. Accessed: 2017-02-
02.

[Rei08] S. P. Reiss. Tracking source locations. In Proceedings of the 30th
International Conference on Software Engineering, ICSE ’08, 11–
20 (ACM, New York, NY, USA, 2008). ISBN 978-1-60558-079-1.
doi:10.1145/1368088.1368091. URL http://doi.acm.org/10.1145/
1368088.1368091.

[RW91] J. R. Rasure and C. S. Williams. An integrated data flow
visual language and software development environment. JVLC,
2(3):217 – 246, 1991. ISSN 1045-926X. doi:10.1016/S1045-926X(06)
80007-8. URL http://www.sciencedirect.com/science/article/
pii/S1045926X06800078.

[Sar15] A. Sarkar. The impact of syntax colouring on program comprehension.
In Proceedings of the 26th Annual Conference of the Psychology of
Programming Interest Group (PPIG 2015), 49–58 (2015).

[SCBR06] M.-A. Storey, L.-T. Cheng, I. Bull, and P. Rigby. Waypointing and
social tagging to support program navigation. In CHI ’06 Extended
Abstracts on Human Factors in Computing Systems, CHI EA ’06,
1367–1372 (ACM, New York, NY, USA, 2006). ISBN 1-59593-298-4.
doi:10.1145/1125451.1125704. URL http://doi.acm.org/10.1145/
1125451.1125704.

[SCC06] C. Simonyi, M. Christerson, and S. Clifford. Intentional software. In
Proceedings of the 21st annual ACM SIGPLAN conference on Object-
oriented programming systems, languages, and applications, OOPSLA
’06, 451–464 (ACM, New York, NY, USA, 2006). ISBN 1-59593-
348-4. doi:http://doi.acm.org/10.1145/1167473.1167511. URL http:
//doi.acm.org/10.1145/1167473.1167511.

[SEHM06] T. Schafer, M. Eichberg, M. Haupt, and M. Mezini. The sextant
software exploration tool. IEEE Transactions on Software Engineering,
32(9):753–768, 2006. ISSN 0098-5589. doi:10.1109/TSE.2006.94.

[SH06] Z. Suvajdžin and M. Hajduković. A structure editor for the program
composing assistant. volume 3, 65–76 (2006).

[SL12] T. Schiller and B. Lucia. Playing cupid: The ide as a matchmaker for
plug-ins. In Developing Tools as Plug-ins (TOPI), 2012 2nd Workshop
on, 1–6 (2012). doi:10.1109/TOPI.2012.6229805.

[SMDV06] J. Sillito, G. C. Murphy, and K. De Volder. Questions programmers ask
during software evolution tasks. In Proceedings of the 14th ACM SIG-
SOFT international symposium on Foundations of software engineering,
SIGSOFT ’06/FSE-14, 23–34 (ACM, New York, NY, USA, 2006). ISBN
1-59593-468-5. doi:http://doi.acm.org/10.1145/1181775.1181779. URL
http://doi.acm.org/10.1145/1181775.1181779.

https://github.com/ReactiveX/RxJava/pull/281/commits/1667386b61de0c9f1157dce157bf2529e3715cb6
https://github.com/ReactiveX/RxJava/pull/281/commits/1667386b61de0c9f1157dce157bf2529e3715cb6
http://doi.acm.org/10.1145/1368088.1368091
http://doi.acm.org/10.1145/1368088.1368091
http://www.sciencedirect.com/science/article/pii/S1045926X06800078
http://www.sciencedirect.com/science/article/pii/S1045926X06800078
http://doi.acm.org/10.1145/1125451.1125704
http://doi.acm.org/10.1145/1125451.1125704
http://doi.acm.org/10.1145/1167473.1167511
http://doi.acm.org/10.1145/1167473.1167511
http://doi.acm.org/10.1145/1181775.1181779

158 BIBLIOGRAPHY

[SMDV08] J. Sillito, G. Murphy, and K. De Volder. Asking and answering
questions during a programming change task. Software Engineering,
IEEE Transactions on, 34(4):434–451, 2008. ISSN 0098-5589. doi:
10.1109/TSE.2008.26.

[SS13] A. Stefik and S. Siebert. An empirical investigation into program-
ming language syntax. Trans. Comput. Educ., 13(4):19:1–19:40, 2013.
ISSN 1946-6226. doi:10.1145/2534973. URL http://doi.acm.org/10.
1145/2534973.

[SSE15] C. Sadowski, K. T. Stolee, and S. Elbaum. How developers search
for code: A case study. In Proceedings of the 2015 10th Joint Meet-
ing on Foundations of Software Engineering, ESEC/FSE 2015, 191–
201 (ACM, New York, NY, USA, 2015). ISBN 978-1-4503-3675-8.
doi:10.1145/2786805.2786855. URL http://doi.acm.org/10.1145/
2786805.2786855.

[SUW15] F. Schwägerl, S. Uhrig, and B. Westfechtel. A graph-based algorithm
for three-way merging of ordered collections in {EMF} models. Sci-
ence of Computer Programming, 113, Part 1:51 – 81, 2015. ISSN
0167-6423. doi:http://dx.doi.org/10.1016/j.scico.2015.02.008. Model
Driven Development (Selected & extended papers from {MOD-
ELSWARD} 2014), URL http://www.sciencedirect.com/science/
article/pii/S0167642315000532.

[TR81] T. Teitelbaum and T. Reps. The cornell program synthesizer: A
syntax-directed programming environment. Commun. ACM, 24(9):563–
573, 1981. ISSN 0001-0782. doi:10.1145/358746.358755. URL http:
//doi.acm.org/10.1145/358746.358755.

[Ukk85] E. Ukkonen. International conference on foundations of computation
theory algorithms for approximate string matching. Information and
Control, 64(1):100 – 118, 1985. ISSN 0019-9958. doi:http://dx.doi.org/
10.1016/S0019-9958(85)80046-2. URL http://www.sciencedirect.
com/science/article/pii/S0019995885800462.

[UM15] R.-G. Urma and A. Mycroft. Source-code queries with graph
databases—with application to programming language usage and evolu-
tion. Science of Computer Programming, 97, Part 1:127 – 134, 2015.
ISSN 0167-6423. doi:http://dx.doi.org/10.1016/j.scico.2013.11.010.
Special Issue on New Ideas and Emerging Results in Understanding
Software, URL http://www.sciencedirect.com/science/article/
pii/S0167642313002943.

[VEdM06] M. Verbaere, R. Ettinger, and O. de Moor. Jungl: A scripting language
for refactoring. In Proceedings of the 28th International Conference
on Software Engineering, ICSE ’06, 172–181 (ACM, New York, NY,
USA, 2006). ISBN 1-59593-375-1. doi:10.1145/1134285.1134311. URL
http://doi.acm.org/10.1145/1134285.1134311.

[Vim] Vim – official website. http://www.vim.org. Accessed: 2017-02-02.

http://doi.acm.org/10.1145/2534973
http://doi.acm.org/10.1145/2534973
http://doi.acm.org/10.1145/2786805.2786855
http://doi.acm.org/10.1145/2786805.2786855
http://www.sciencedirect.com/science/article/pii/S0167642315000532
http://www.sciencedirect.com/science/article/pii/S0167642315000532
http://doi.acm.org/10.1145/358746.358755
http://doi.acm.org/10.1145/358746.358755
http://www.sciencedirect.com/science/article/pii/S0019995885800462
http://www.sciencedirect.com/science/article/pii/S0019995885800462
http://www.sciencedirect.com/science/article/pii/S0167642313002943
http://www.sciencedirect.com/science/article/pii/S0167642313002943
http://doi.acm.org/10.1145/1134285.1134311
http://www.vim.org

BIBLIOGRAPHY 159

[Visa] The vis.js Javascript library for rendering interactive data – official
website. http://visjs.org. Accessed: 2017-02-02.

[Visb] Visual Studio Code. https://code.visualstudio.com/. Accessed:
2017-02-06.

[Vog15] L. Vogel. Augmenting software development with information scripting.
MSc. Thesis, ETH Zurich, 2015.

[VSBK14] M. Voelter, J. Siegmund, T. Berger, and B. Kolb. Towards user-friendly
projectional editors. In B. Combemale, D. Pearce, O. Barais, and
J. Vinju (editors), Software Language Engineering, volume 8706 of Lec-
ture Notes in Computer Science, 41–61 (Springer International Publish-
ing, 2014). ISBN 978-3-319-11244-2. doi:10.1007/978-3-319-11245-9_3.
URL http://dx.doi.org/10.1007/978-3-319-11245-9_3.

[Wes10] B. Westfechtel. A formal approach to three-way merging of emf models.
In Proceedings of the 1st International Workshop on Model Comparison
in Practice, IWMCP ’10, 31–41 (ACM, New York, NY, USA, 2010).
ISBN 978-1-60558-960-2. doi:10.1145/1826147.1826155. URL http:
//doi.acm.org/10.1145/1826147.1826155.

[WGRG10] M. Würsch, G. Ghezzi, G. Reif, and H. C. Gall. Supporting developers
with natural language queries. In Proceedings of the 32Nd ACM/IEEE
International Conference on Software Engineering - Volume 1, ICSE
’10, 165–174 (ACM, New York, NY, USA, 2010). ISBN 978-1-60558-
719-6. doi:10.1145/1806799.1806827. URL http://doi.acm.org/10.
1145/1806799.1806827.

[Wie91] S. Wiedenbeck. The initial stage of program comprehension. In-
ternational Journal of Man-Machine Studies, 35(4):517 – 540,
1991. ISSN 0020-7373. doi:http://dx.doi.org/10.1016/S0020-7373(05)
80090-2. URL http://www.sciencedirect.com/science/article/
pii/S0020737305800902.

[Wil04] G. V. Wilson. Extensible programming for the 21st century. Queue,
2(9):48–57, 2004. ISSN 1542-7730. doi:10.1145/1039511.1039534. URL
http://doi.acm.org/10.1145/1039511.1039534.

[Wil12] R. Wilcox. Chapter 4 - confidence intervals in the one-sample case. In
R. Wilcox (editor), Introduction to Robust Estimation and Hypothesis
Testing (Third Edition), Statistical Modeling and Decision Science,
103 – 136 (Academic Press, Boston, 2012), third edition edition. ISBN
978-0-12-386983-8. doi:http://dx.doi.org/10.1016/B978-0-12-386983-8.
00004-4. URL http://www.sciencedirect.com/science/article/
pii/B9780123869838000044.

[Wil14] R. Williams. The non-designer’s design book: design and typographic
principles for the visual novice (Pearson Education, 2014).

[WKL`06] J. M. Wolfe, K. R. Kluender, D. M. Levi, L. M. Bartoshuk, R. S.
Herz, R. L. Klatzky, S. J. Lederman, and D. M. Merfeld. Sensation &
perception (Sinauer Sunderland, MA, 2006).

http://visjs.org
https://code.visualstudio.com/
http://dx.doi.org/10.1007/978-3-319-11245-9_3
http://doi.acm.org/10.1145/1826147.1826155
http://doi.acm.org/10.1145/1826147.1826155
http://doi.acm.org/10.1145/1806799.1806827
http://doi.acm.org/10.1145/1806799.1806827
http://www.sciencedirect.com/science/article/pii/S0020737305800902
http://www.sciencedirect.com/science/article/pii/S0020737305800902
http://doi.acm.org/10.1145/1039511.1039534
http://www.sciencedirect.com/science/article/pii/B9780123869838000044
http://www.sciencedirect.com/science/article/pii/B9780123869838000044

160 BIBLIOGRAPHY

[WNF06] K. N. Whitley, L. R. Novick, and D. Fisher. Evidence in favor
of visual representation for the dataflow paradigm: An experiment
testing labview’s comprehensibility. International Journal of Human-
Computer Studies, 64(4):281 – 303, 2006. ISSN 1071-5819. doi:
10.1016/j.ijhcs.2005.06.005. URL http://www.sciencedirect.com/
science/article/pii/S1071581905001163.

[Wol11] D. Wolber. App inventor and real-world motivation. In Proceedings of
the 42Nd ACM Technical Symposium on Computer Science Education,
SIGCSE ’11, 601–606 (ACM, New York, NY, USA, 2011). ISBN 978-
1-4503-0500-6. doi:10.1145/1953163.1953329. URL http://doi.acm.
org/10.1145/1953163.1953329.

[YM14] Y. S. Yoon and B. A. Myers. A longitudinal study of programmers’
backtracking. In 2014 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), 101–108 (2014). ISSN 1943-
6092. doi:10.1109/VLHCC.2014.6883030.

[YM15] Y. S. Yoon and B. A. Myers. Supporting selective undo in a code
editor. In Proceedings of the 37th International Conference on Software
Engineering - Volume 1, ICSE ’15, 223–233 (IEEE Press, Piscataway,
NJ, USA, 2015). ISBN 978-1-4799-1934-5. URL http://dl.acm.org/
citation.cfm?id=2818754.2818784.

http://www.sciencedirect.com/science/article/pii/S1071581905001163
http://www.sciencedirect.com/science/article/pii/S1071581905001163
http://doi.acm.org/10.1145/1953163.1953329
http://doi.acm.org/10.1145/1953163.1953329
http://dl.acm.org/citation.cfm?id=2818754.2818784
http://dl.acm.org/citation.cfm?id=2818754.2818784

Appendices

161

ASupplementary material for
user-study participants

163

Comparison between Eclipse, Envision reduced, and Envision default

Differences:
Feature Eclipse Envision reduced Envision default

block/body { }

method icon none

method parameters (String x, int y)

signature end/ body
start

{ } - - - - - -

local variable SomeType foo; SomeType foo

assignment = ←

comparison == =

operators <= >= != && || ! ≤ ≥ ≠ ¬∧ ∨

semicolon ; no semicolon

lists (e.g. method args) a, b, c, d a b c d

method/constructor call foo(a, b); foo(a b) foo(a b)

object creation new Foo(x); new Foo(x) new Foo(x)

cast (String) foo (String) foo (String) foo

return return x; return x x

assert assert x; assert x x

if if background

else if else if background

then branch { } white background background

else branch else { } - - - - - - - - - - - -
 background

loops for while do l background

try try background

catch catch background

finally finally background

synchronized synchronized background

switch switch background

case case case background

default case default default background

No differences:
Feature Eclipse Envision reduced Envision default

null null null

this this this

throw throw throw

break, continue break continue break continue

operators + - * / ++ -- + − * / ++ −−

outlines

x
String

y
int

if

else if

loop

try

catch

finally

synchronized

switch

method

Eclipse

@Override
public int visualizationLegend(int arg1, String arg2, SomeClass arg3)
throws MyException
{

int local1;
local1 = 42;
String local2 = arg2;

if (arg1 >= 5) {
System.out.println("Arg1 is greater or equal 4");
return 1;

} else if (arg1 <0) {
System.out.println("Arg1 is negative");

while (arg1<0) {
++arg1;
arg3.foo(arg1, local2);

}
}
else {

assert(arg1 >=0 && arg1 <5);
System.out.print("Arg1 is within the proper range.");

}

int local3 = arg3.bar(this, local1);
for(int i = 0; i<local3; i++) {

if (i - 10 % 5 == 0) continue;
for (int k = i; k>0; k--) {

System.out.println(i);
System.out.println(k);

}
}

synchronized(this) {
arg3.foobar(arg1);
if (arg3.isInvalid())

throw new MyException("State is invalid");
}

try {
SomeClass sc = new SomeClass();
Object baz_result = sc.baz(local1, this, null, 0, arg2);
local1 = ((Cell)baz_result).value;

}
catch(RuntimeException e) {

System.out.println("Run-time exception");
}
catch(Exception e) {

System.out.println("General exception exception");
}
finally {

arg3.cleanup();
}

switch(local1) {
case 0:

System.out.println("10");
break;

case 1:
System.out.println("20");
return 20;

default:
System.out.println("Something else");

}

return 0;
}

Envision reduced

Envision default

168 APPENDIX A. SUPPLEMENTARY MATERIAL

BPython and Javascript files for
interactive rendering of graphs

The vis.js Javascript library can be used to render an interactive graph inside a
web browser. We also use the library to show interactive graphs directly within
Envision. To achieve this, it is necessary to write a wrapper HTML file that uses
the library, similar to the one shown here:

<html>
<head>

<script type="text/javascript"
src="file://@path/scripts/vis-graph/vis.js"></script>

<link href="file://@path/scripts/vis-graph/vis.css"
rel="stylesheet" type="text/css" />

</head>
<body>
<div id="graph"></div>
<script type="text/javascript">

var nodes = new vis.DataSet([@nodes]);
var edges = new vis.DataSet([@edges]);

var container = document.getElementById(’graph’);
var data = { nodes: nodes, edges: edges };
var options = {};
var network = new vis.Network(container, data, options);

</script>
</body>
</html>

The vis.js and vis.css files used above can be downloaded from [Visa]. @nodes
and @edges are placeholders for the elements of the graph. They are substituted
with strings that correspond to the structure of a graph within Envision. The strings
are computed by the Python script on the next page.

169

170 APPENDIX B. FILES FOR INTERACTIVE RENDERING OF GRAPHS

import os
import random
import json

def getNames(node):
if node:

names = getNames(node.parent)
if node.symbolName():

names.append(node.symbolName())
return names

else:
return []

def getLabel(tuple):
if isinstance(tuple.value, Node):

return ’.’.join(getNames(tuple.value)[-2:])
return str(tuple.value)

def getId(tuple):
if isinstance(tuple.value, Node):

return ’.’.join(getNames(tuple.value))
return str(tuple.value)

nodeLabels = {}
nodes = []
edges = []

#Handle color tuples specially:
if len(Query.args) > 0 and Query.args[0] == ’useColor’:

for colorTuple in Query.input.take(’color’):
nodeId = getId(colorTuple[1])
nodeLabels[nodeId] = nodeId
nodes.append(json.dumps({’id’: nodeId, ’label’: nodeId,

’color’: colorTuple.color}))

Record all nodes and their labels
for tuple in Query.input.tuples():

for i in range(0, tuple.size()):
id = getId(tuple[i])
if not id in nodeLabels:

valueLabel = getLabel(tuple[i])
nodeLabels[id] = valueLabel
nodes.append(json.dumps({’id’: id, ’label’: valueLabel}))

Record edges
for tuple in Query.input.tuples():

if tuple.size() >= 2:
edges.append(json.dumps({’from’: getId(tuple[0]),

’to’: getId(tuple[1]), ’arrows’:’to’}))
nodesText = ’,’.join(nodes)
edgesText = ’,’.join(edges)

with open(’scripts/vis-graph/vis-graph.html’) as htmlFile:
htmlText = htmlFile.read().replace(’@path’, os.path.abspath("."))

.replace(’@nodes’, nodesText).replace(’@edges’, edgesText)
t = Tuple([(’html’, htmlText)])
Query.result.add(t)

	1 Introduction
	1.1 Issues of programming as creating text
	1.2 Improving the programming experience
	1.2.1 Approach
	1.2.2 Challenges

	1.3 Contributions and outline
	1.3.1 Envision as a platform for experimentation
	1.3.2 Flexible visual notations for programming
	1.3.3 Efficient interactions in structured editors
	1.3.4 Fine-grained and precise version control of trees
	1.3.5 Scriptable information system within the IDE

	2 A quick tour of Envision
	2.1 Writing code from scratch
	2.2 Working with a big project
	2.3 A note on learnability

	3 Design principles of Envision
	3.1 Rich information and smarter tools
	3.1.1 Decouple information structures from interfaces
	3.1.2 Support processing and integration of diverse types of information
	3.1.3 Use and share rich information to make tools smarter

	3.2 Better programming interfaces for people
	3.2.1 Design flexible interfaces that adapt to context
	3.2.2 Leverage expert developers' existing skills with languages and using the keyboard
	3.2.3 Make better use of people's perceptual and cognitive abilities

	3.3 Support for general-purpose languages and large-scale projects
	3.3.1 Design a tool that can be used conveniently for extended periods of time
	3.3.2 Enable a high degree of customization and flexibility
	3.3.3 Support a wide range of project domains and sizes

	4 The architecture of Envision
	4.1 Overview
	4.2 Extensibility and customization
	4.3 Performance and scalability

	5 Rich and customizable zprogram presentations
	5.1 The visualization framework of Envision
	5.1.1 Key concepts of flexible visualizations
	5.1.2 Creating and customizing visualizations in Envision
	5.1.3 Composing and rendering visualizations

	5.2 The design and evolution of Envision's program visualizations
	5.2.1 Basics of rendering code structure
	5.2.2 Design and evolution

	5.3 The effects of rich code presentations on code comprehension
	5.3.1 Evaluation method
	5.3.2 Results
	5.3.3 Discussion

	5.4 Using context-sensitive customizations
	5.4.1 Code Contracts for .NET
	5.4.2 Custom visualizations for contract methods
	5.4.3 Custom visualizations for interfaces
	5.4.4 Custom interactions for contract methods
	5.4.5 Discussion and limitations

	5.5 Related work
	5.5.1 Evaluating code visualizations
	5.5.2 Tools with rich code presentations
	5.5.3 Visualization customizations

	6 Efficient interactions in a structured editor
	6.1 Challenges and requirements of interactions in structured editors
	6.2 Interaction components
	6.2.1 Interaction framework basics
	6.2.2 Universal visual cursor
	6.2.3 Context-sensitive command prompt
	6.2.4 Text-like expression editing

	6.3 Evaluation
	6.4 Related work

	7 Precise version control of tree structures
	7.1 Challenges of versioning trees
	7.2 Tree versioning with a line-based VCS
	7.2.1 Textual encoding of valid trees
	7.2.2 Diff algorithm

	7.3 Merging trees
	7.3.1 Change graph and merge algorithm

	7.4 Domain-specific merge customizations
	7.4.1 List-merge customization
	7.4.2 Conflict unit customization

	7.5 Evaluation and discussion
	7.6 Related work

	8 The IDE as a scriptable information system
	8.1 Problems developers encounter when working with information
	8.2 Motivating examples
	8.2.1 Investigating a regression
	8.2.2 Heatmap of code execution

	8.3 Approach
	8.3.1 Query execution model
	8.3.2 Query types
	8.3.3 Inter-query data exchange
	8.3.4 Query prompt
	8.3.5 Extensibility via scripts and native queries

	8.4 Evaluation and case studies
	8.4.1 Callgraph of selected method
	8.4.2 Recently changed recursive methods
	8.4.3 Why is this code the way it is?
	8.4.4 Which upstream changes possibly conflict with mine?
	8.4.5 Instability metric
	8.4.6 Modifying recursive methods

	8.5 Implementation
	8.6 Related work
	8.6.1 Questions developers ask
	8.6.2 Tools for seeking information
	8.6.3 Visualization of information
	8.6.4 Scripting actions and refactoring

	9 Conclusion and future work
	Appendices
	A Supplementary material for user-study participants
	B Python and Javascript files for interactive rendering of graphs

