
c© 2013 IEEE doi: 10.1109/VLHCC.2013.6645255

Customizing the Visualization and Interaction for
Embedded Domain-Specific Languages in a

Structured Editor

Dimitar Asenov
Department of Computer Science

ETH Zurich
dimitar.asenov@inf.ethz.ch

Peter Müller
Department of Computer Science

ETH Zurich
peter.mueller@inf.ethz.ch

Abstract—Large software projects are often based on libraries
that provide abstractions for a particular domain such as writing
database queries, staging, or constraint solving. The API provided
by such a library can be considered a domain-specific language
within the implementation language of the library, a so-called
internal or embedded domain-specific language (eDSL). Embed-
ding a DSL leverages the tool infrastructure of the host language,
but also restricts the syntax and IDE support to that of the
host language. This restriction prevents programmers from using
convenient specialized notations and, thus, has a negative effect on
their productivity. To address this problem, we outline concepts
for a structured code editor that enable developers of eDSLs
to customize how eDSL code is rendered and what interactions
are available. We demonstrate the benefits of our approach by
customizing a structured editor for the .NET Code Contracts API.
Our prototype shows in particular that we can customize many
aspects of visualization and interaction with little effort.

Keywords—programming environments, embedded domain-
specific languages, structured editors, editor customization, visual
programming, human-computer interaction

I. INTRODUCTION

Large software systems frequently make use of domain-
specific languages (DSLs) to describe specific aspects of the
system in a concise way. Examples include DSLs for specifying
database queries, business processes, or security policies. Some
DSLs, so-called external DSLs such as SQL in the domain
of database queries, define their own (textual or graphical)
notations, which allow programmers to concisely express high-
level concepts from a particular domain. Code written in
such DSLs has been shown to be easier to comprehend [1]
than equivalent code in a general-purpose language. However,
external DSLs require their own tool support such as parsers,
code generators, etc., which makes their development costly.

To avoid this drawback, domain-specific abstractions are
often implemented as libraries in a general-purpose language.
The API provided by such a library can be considered a DSL
within a general-purpose host language, a so-called internal or
embedded domain-specific language (eDSL), such as Querydsl1
for database queries in Java. Embedding a DSL leverages
the tool infrastructure of the host language, but also restricts
the syntax and IDE support to that of the host language.
Even though some host languages such as Python and Scala

1www.querydsl.com

provide ways to customize syntax, for instance, through operator
overloading, they do not fully support specialized notations.
For instance, SQL’s WHERE clause is implemented as a method
call in Querydsl and treated as such by the IDE. Therefore,
the IDE offers neither specific visualizations nor interactions
for the embedded DSL code, which has a negative effect on
programmer productivity.

In this paper, we propose concepts that allow structured code
editors to be customized in order to visualize and manipulate
any language construct depending on its program context and
purpose. In particular, the developer of an eDSL may customize
how eDSL code is visualized and manipulated within client
code, for instance, to display a call to Querydsl’s where method
in the familiar SQL syntax. This gives embedded DSLs much
of the flexibility of external DSLs, while retaining the benefits
of operating inside a host language. We have implemented the
proposed concepts in a structured editor and demonstrate their
usefulness by customizing its visualizations and interactions
for the .NET Code Contracts library.

II. KEY CONCEPTS OF CUSTOMIZATION

The following concepts enable API designers to easily
customize the look and feel of the eDSLs they provide.

1. Decouple the storage format from visualization and
interaction. In traditional source code editors, the program
text is displayed and manipulated directly. This tight coupling
between the program’s storage format and the way it is rendered
and edited restricts flexibility, especially for eDSLs, which are
limited by the syntax of the host language. A prerequisite for
customized visualizations and interactions is, thus, to decouple
the storage format of a program from the representation that is
used for rendering and editing. Editors should operate on an
abstract syntax tree (AST), even when the visualization and
interactions are textual.

2. Choose visualizations based on context. In a customiz-
able editor, program fragments and language constructs can
be visualized in different ways. The kind of construct being
rendered should not be the sole determinant of the visualization
to use. Developers of eDSLs should have the freedom to define
suitable visualizations based on the following additional factors:
Construct instance: What is the specific instance of the
programming construct? For example a method call could
be rendered differently based on its target method; a string

constant that represents a URL might be rendered as a hyperlink,
permitting additional interactions.
Structural context: Where in the structure of the program is
this construct? For example, an expression inside a call to
Querydsl’s where method might be shown differently than the
same expression outside a Querydsl context.
Visualization context: What visualizations will appear along-
side the construct that is being rendered? For example when
rendering Querydsl calls together, their corresponding parts
could be visually aligned.
Visualization purpose: Why is this construct being rendered,
what is the purpose of the current task? For example, when
debugging calls to Querydsl’s where, it could be useful to
show information such as the number of matching rows. This
might not be needed if one is simply exploring unfamiliar code.
Personal preferences: Has the developer requested a particular
visualization? For example, they might prefer to represent
regular expressions as automata instead of text.

3. Allow customization of interactions and make each
visualization interactive. It is essential that eDSL designers
are able to define interactions for the visualizations they create
such as new shortcuts, options, context-menus, commands, etc.
Providing merely “read-only” visualizations might help with
program comprehension but not with manipulation; program-
mers would need to switch to the default representation of the
host language for editing, which is cumbersome and reduces
the benefits of DSLs. Also existing visualizations may benefit
from new, customized interactions. For example one could
create a new interaction for string literals that simplifies the
input of file paths by overriding the TAB key to perform a
name match, like a command terminal.

4. Make creating simple customizations easy, facilitate
composition, and enable advanced customizations. The edi-
tor should permit eDSL designers to develop visualizations and
interactions, and ship them together with their libraries. These
customizations should go beyond simple style files for syntax
highlighting and not require detailed knowledge of the editor
implementation. For instance, eDSL designers should be able to
quickly implement common visualizations such as text, boxes,
icons, and lists, and create new visualizations by composing
existing ones. The interactions of new compositions should
automatically emerge as the aggregation of the interactions
of their parts. This will greatly reduce the efforts required
to implement customizations. Moreover, developers who are
well familiar with the APIs provided by the editor should be
empowered to create advanced customizations.

III. PROTOTYPE

To demonstrate the applicability of the proposed concepts
we use Envision—our prototype of a structured code editor.
The open source implementation and a video showing the
customizations discussed in this paper are available online2.

Envision features a Model-View-Controller architecture
where the model is similar to an AST, and any subtree can be
visualized in arbitrary ways. The default is to use text for low-
level constructs such as expressions, and graphical notations for
top-level constructs such as classes and methods. Textual and
graphical visualizations are treated equally in Envision, and

2www.pm.inf.ethz.ch/research/envision

can be combined in different ways. The easiest one is to nest
them by creating a new composite visualization that defines
the layout used for arranging its subcomponents. The layout is
specified declaratively, similar to GUI frameworks such as Qt
and Swing. Subcomponents can be decorative elements (e.g.,
labels) or visualizations of AST nodes. Most visualizations
in the screenshots from Sec. IV are designed using nesting,
but visualizations can also be combined non-hierarchically as
shown in Sec. IV-2. Registering a visualization in the system
includes specifying the context in which it is applicable. All
factors specified in concept 2 from Sec. II can be used to
determine the context. When rendering an AST node, Envision
chooses a visualization by scoring all visualizations applicable
in the current context and picking the best one.

Each visualization has a controller that defines its interac-
tions. Controllers can be reused, making it easier to create new
visualizations. For example, Envision provides a text-like cursor
and a parsing module that can be used by any visualization.
We use them to enable the manipulation of expression AST
nodes using the keyboard, like a standard text editor. When
editing expressions, the AST is first unparsed into the host
language, the text is edited, and the result is reparsed. Invalid
text results in a special Error AST node. To enable text editing
for a new eDSL visualization, its designer needs to define a
bidirectional mapping between the visualization’s components
and text. For visualizations resembling text, only a few lines
of code are needed. In general, eDSL designers can add new
controllers or use the extension mechanisms of existing ones.

To take advantage of these customization mechanisms, eDSL
designers may either just annotate the eDSL implementation
as shown later, or they may define advanced customizations in
a separate plug-in for Envision. Based on our own experience
in using and improving the implementation, we find that
little effort is required to implement new visualizations and
interactions. For example, when composing visualizations, the
system automatically provides a cursor that enables keyboard-
based navigation and selection, similar to those in a text editor.
Typically this desired behavior requires no extra code in new
visualizations, therefore reducing their implementation effort.

IV. CASE STUDY

To demonstrate the usefulness of some of the proposed
customization features, we have customized Envision for the
.NET Code Contracts library3. Code Contracts is an eDSL that
allows programmers to annotate code with assertions such as
method pre and postconditions. Most assertions are expressed
via calls to static methods of a class Contract as illustrated
by Fig. 1. Due to the eDSL approach, the code annotated
with Code Contracts remains standard C# code and can be
handled by the standard compiler. Additional tools support
documentation generation, run-time checking, static analysis,
and automatic test case generation.

The small example in Fig. 1 already demonstrates three
issues caused by Code Contracts being an embedded DSL.
(A) Code Contracts are quite verbose compared to contract
languages with designated syntax such as Eiffel. (B) The
notation is sometimes inconvenient since it needs to satisfy the
rules of the host language; for instance, the call to Result

3research.microsoft.com/en-us/projects/contracts

public int factorial(int x) {
Contract.Requires(x >= 0);
Contract.Ensures(Contract.Result<int>()>0);
return x <= 1 : 1 ? x * factorial(x - 1); }

Fig. 1. A C# factorial method. The first two statements are calls to Code
Contract methods to express the pre and postcondition of the method. The call
to Result in the postcondition refers to the return value of the method; its
type argument is needed to satisfy the type system of the host language.

requires a type argument even though it is always the result type
of the enclosing method. Even bigger inconvenience incurs for
interfaces and out-parameters, as we illustrate later. (C) Calls
encoding pre and postconditions occur within the method body,
although conceptually they belong to the client-visible method
signature. In the rest of this section, we will show how to
customize Envision in three steps to address these issues and
to give Code Contracts the convenience of native language
support despite being an embedded DSL.

1) Custom visualizations for contract methods: Following
concept 1 from Sec. II, we do not simply visualize calls to
contract methods in C# syntax, but apply custom visualizations
(here, based on the target method of the call). To address
issue (C) above, we visualize these calls as part of the method
signature, separated from the body by a dashed line. Associating
contracts with the method signature is not only conceptually
sound, but may also have other positive effects. For example,
a semantic zoom showing only method signatures would now
also include the contracts. Moreover, to address issue (A) above,
we visualize calls to contract methods using a keyword style.
The effect of these customizations is shown in Fig. 2.

HelloWorld

CodeContracts

Contract

Requires precondition
bool

EnvisionKeywordVisualization()"contract_requires"
EnvisionShortcut()"requires"

Ensures postcondition
bool

EnvisionKeywordVisualization()"contract_ensures"
EnvisionShortcut()"ensures"

Result T

EnvisionKeywordVisualization()"contract_result"
EnvisionShortcut()"result" 1

OldValue T variable
T

EnvisionKeywordVisualization()"contract_old"
EnvisionShortcut()"old"

ContractClass class
Class

ContractClassFor class
Class

ValueAtReturn T argument
T

EnvisionKeywordVisualization()"contract_out"

Car

fuel int
int travel numPassengers

int

requires fuel>0
requires numPassengers>0
ensures fuel< OLDfuel
ensures result >0

SelfDriv ingCar Car

int travel numPassengers
int

requires numPassengers≥0

Paper

min_max a
int

b
int

min
int

max
int

a>b

←max a
←min b

←max b
←min a

ensures ↲min ≤ ↲max

int factorial x
int

return x≤1 ? 1 : x*factorial()x-1

requires x≥0
ensures result >0

append x
int

←elements[size⁺⁺] x

ensures elements [size-1] = x
ensures OLDsize +1

ICalc

int op x
int

y
int

requires x≠y

ContractClassContractCodeContracts. . ()ICalcContracts

ICalcContracts ICalc

int op x
int

y
int

requires x≠y

ContractClassForContractCodeContracts. . ()ICalc

Fig. 2. The factorial method from Fig. 1 with custom visualizations. Contracts
are visualized using keywords and visually separated from the method body.

Displaying contracts as part of the method signature is
achieved by composing customizations according to concept 4.
All visualizations in Envision have optional add-ons, which
are simply other visual items. Add-ons allow one to display
additional information within a visualization. For contracts, we
created an add-on for methods that displays additional items
in the signature. This add-on reuses the existing visualiza-
tion of the (entire) method body. To avoid that the method
body is visualized twice, we apply list filtering as a second
customization. Envision allows visualizations of list nodes to
filter which elements get displayed. For method contracts,
we installed a filter for statement lists that is sensitive to
the visualization context (see concept 2 from Sec. II): If the
visualization appears in a method signature, only contract calls
are displayed; otherwise, everything except contract calls is
shown. Together, these two customizations render contracts as
part of the method signature.

To apply the keyword style for contract methods, we apply
a built-in visualization that shows method calls as keywords
instead of using the normal method name. To change the

visualization of all calls to a method, the eDSL designer
simply needs to annotate the method definition with the
attribute EnvisionKeywordVisualization(style).
Here, style identifies a style in an XML file that allows
visualizations to be easily configured without recompilation.
It is possible to change the text, font, color, background,
placement, and other parameters. It is also possible to specify
an icon instead of text. The complete style for preconditions is
shown in Fig. 3; it specifies the keyword requires and uses
defaults for all other parameters of the style.

<style prototypes="default"><keyword>
<symbol>requires</symbol>

</keyword></style>

Fig. 3. The style for precondition visualizations.

To illustrate the flexibility of visualization styles, consider
the example in Fig. 4. The second postcondition refers to the
value of the size field, at the time of the method call, the so-
called old value of size. In C# syntax, the old value is denoted
by Contract.OldValue(size). Again, we apply a context-
dependent visualization, which renders calls to OldValue using
the superscript keyword OLD.

HelloWorld

CodeContracts

Contract

Requires precondition
bool

EnvisionKeywordVisualization()"contract_requires"
EnvisionShortcut()"requires"

Ensures postcondition
bool

EnvisionKeywordVisualization()"contract_ensures"
EnvisionShortcut()"ensures"

Result T

EnvisionKeywordVisualization()"contract_result"
EnvisionShortcut()"result" 1

OldValue T variable
T

EnvisionKeywordVisualization()"contract_old"
EnvisionShortcut()"old"

ContractClass class
Class

ContractClassFor class
Class

ValueAtReturn T argument
T

EnvisionKeywordVisualization()"contract_out"

Car

fuel int
int travel numPassengers

int

requires fuel>0
requires numPassengers>0
ensures fuel< OLDfuel
ensures result >0

SelfDriv ingCar Car

int travel numPassengers
int

requires numPassengers≥0

Paper

min_max a
int

b
int

min
int

max
int

a>b

←max a
←min b

←max b
←min a

ensures ↲min ≤ ↲max

int factorial x
int

return x≤1 ? 1 : x*factorial()x-1

requires x≥0
ensures result >0

append x
int

←elements[size⁺⁺] x

ensures elements [size-1] = x
ensures size = OLDsize +1

ICalc

int op x
int

y
int

requires x≠y

ContractClassContractCodeContracts. . ()ICalcContracts

ICalcContracts ICalc

int op x
int

y
int

requires x≠y

ContractClassForContractCodeContracts. . ()ICalc

Fig. 4. A keyword visualization with a different style.

Note that all of these visualizations are fully interactive
following concept 3: contracts can be added, edited, and
removed directly in the signature.

2) Custom visualizations for interfaces: Since interface
methods do not have bodies, there is no place in the interface
definition where one could write calls to contract methods. To
work around this limitation, Code Contracts force developers
to create a dummy contract class that implements the interface
and whose sole purpose is to contain the contracts. This special
contract class and the interface are linked by attributes as shown
in Fig. 5. This solution requires a lot of boilerplate code and
makes reading the contracts of an interface difficult.

[ContractClass(typeof(ICalcContract))]
interface ICalc { int op(int x, int y);}

[ContractClassFor(typeof(ICalc))]
abstract class ICalcContract : ICalc {

int ICalc.op(int x, int y){
Contract.Requires(x != y);
return 0;

} }

Fig. 5. An interface with an associated contract class. The attributes in square
brackets link the interface and the class. The return statement is necessary
to satisfy the C# compiler.

To address issue (B) above and shield the programmer from
this inconvenient notation, we perform two customizations.
First, we create another add-on for methods. It is active within

the context of interface method declarations and displays the
contracts from the associated contract class, as shown in Fig. 6.
This example illustrates that visualizations may depend on the
entire AST (see concept 2 from Sec. II), in this case, code
contained in a different class. Again, this visualization is fully
interactive according to concept 3: programmers may edit the
contracts using the add-on, as if the contracts were specified in
the interface itself. Second, we hide the contract class entirely
as it is no longer necessary and also omit the attribute in the
interface referring to that class. HelloWorld

CodeContracts

Contract

Requires precondition
bool

EnvisionKeywordVisualization()"contract_requires"
EnvisionShortcut()"requires"

Ensures postcondition
bool

EnvisionKeywordVisualization()"contract_ensures"
EnvisionShortcut()"ensures"

Result T

EnvisionKeywordVisualization()"contract_result"
EnvisionShortcut()"result" 1

OldValue T variable
T

EnvisionKeywordVisualization()"contract_old"
EnvisionShortcut()"old"

ContractClass class
Class

ContractClassFor class
Class

ValueAtReturn T argument
T

EnvisionKeywordVisualization()"contract_out"

Car

fuel int
int travel numPassengers

int

requires fuel>0
requires numPassengers>0
ensures fuel< OLDfuel
ensures result >0

SelfDriv ingCar Car

int travel numPassengers
int

requires numPassengers≥0

Paper

min_max a
int

b
int

min
int

max
int

a>b

←max a
←min b

←max b
←min a

ensures ↲min ≤ ↲max

int factorial x
int

x≤1 ? 1 : x*factorial()x-1

requires x≥0
ensures result >0

append x
int

←elements[size⁺⁺] x

ensures elements [size-1] = x
ensures size = OLDsize +1

ICalc

int op x
int

y
int

requires x≠y

ICalcContracts ICalc

int op x
int

y
int

0

requires x≠y

Fig. 6. The ICalc interface from Fig. 5 with a contract visualization add-on.
The corresponding contract class is hidden as it is no longer needed.

3) Custom interactions for contract methods: Postcondi-
tions in Code Contracts may refer to out-parameters. Since
postconditions appear at the beginning of the method bodies,
the C# compiler complains that the value of an out-parameter
appears to be read before it is initialized. The Code Contracts
solution is to wrap all such accesses to out-parameters in a
call to the Contract.ValueAtReturn method. In our custom
visualization, we omit these calls, but we make them explicit
in Fig. 7a using a ’ê’ icon for better illustration. The same
icon is used to indicate which parameters are out-parameters.

min_max a
int

b
int

min↲
int

max↲
int

ensures ↲min ≤ ↲max

a>b

max ← a
min ← b

max ← b
min ← a

(a)

HelloWorld

CodeContracts

Contract

Requires precondition
bool

Ensures postcondition
bool

Result T

OldValue T variable
T

ContractClass class
Class

ContractClassFor class
Class

ValueAtReturn T argument
T

Car

fuel int
travel numPassengers

int

int requires fuel>0
requires numPassengers>0
ensures fuel< OLDfuel
ensures result>0

SelfDriv ingCar Car

travel numPassengers
int

int requires numPassengers≥0

MinMax

minMax x
int

y
int

min
int

max
int

ensures ↲min ≤ ↲max

a>b

←max a
←min b

←max b
←min a

ensures mi
ensures ↲min
ensures mini

ICalc

op x
int

y
int

int requires x≠y

ContractClassContractCodeContracts. . ()ICalcContracts

ICalcContracts ICalc

op x
int

y
int

int requires x≠y

ContractClassForContractCodeContracts. . ()ICalc

(b)

Fig. 7. Wrapped references to the min and max out-parameters (a) and
automatic wrapping/unwrapping during typing (b).

To address issue (B) above and avoid the inconvenience of
calls to the ValueAtReturn method, Envision does not only
omit them in visualizations but also inserts them automatically
when the programmer types an out-parameter within a postcon-
dition. Following concept 3 from Sec. II, we achieve this by
adding a listener for expression modifications. If a method call
to the Ensures method is edited, its arguments are “sanitized”:
all accesses to output arguments are wrapped, all other accesses
are unwrapped. For instance, assume a programmer types mini
within a postcondition of the min_max method as shown in
Fig. 7b. When the programmer types the ‘n’ key, the symbol
is resolved to an out-parameter and automatically wrapped. As
soon as the second ‘i’ is typed, the symbol will be unwrapped
as it no longer refers to an out-parameter.

V. RELATED WORK

Modern development environments have advanced cus-
tomizations that go beyond syntax highlighting using external

plug-ins. For instance, the Code Contracts Editor Extensions
for Visual Studio enhance a method declaration by showing
inherited contracts and, for interfaces, contracts from contract
classes using keywords. However, unlike our work, these
visualizations are not editable—changes must still be made at
the source location where contracts appear as normal method
calls. The Editor Extensions also do not support the other
customizations presented in this paper.

Davis and Kiczales [2] describe an approach to recognize
syntactical patterns in code and visualize them with a more
convenient notation. Our approach similarly allows the editor
to choose an appropriate visualization for some code, but the
decision is not just based on syntax and name bindings—the
entire AST can be used together with the visual context and
purpose. We also support customization of interactions.

Barista [3] is a structured editor framework that allows
flexible presentation of code. Our prototype follows many of
the same principles including flexible text-like input interactions,
but also provides context-based customization, which is crucial
to support eDSLs.

Intentional software [4] and MPS [5] are language work-
benches that allow developers to create new textual and visual
DSLs, integrated with a specially designed host language. To
our knowledge neither tool supports the automatic context-
sensitive visualization of program components as presented here,
and unlike these tools, our approach works without introducing
new languages or changing the host language.

Erwig and Meyer propose a framework for mixing textual
and visual languages [6]. They use a text editor for the
host language that allows language constructs to be created
using graphical notations, particularly for specialized domains.
However, unlike our work, their approach does not allow the
user to simply customize the appearance of arbitrary language
constructs. Moreover, parsing a program with mixed notations
requires user-defined visual grammars.

VI. CONCLUSION

We proposed concepts of code editors that enable easy
customization of the visualization and interaction for embedded
DSLs and applied them to customize our structured editor
Envision for .NET Code Contracts. Our results suggest that it
is viable to extend editors with domain-specific customizations
to aid programmers. Further work is needed to quantitatively
evaluate the effectiveness of the proposed techniques.

REFERENCES

[1] T. Kosar, M. Mernik, and J. Carver, “Program comprehension of domain-
specific and general-purpose languages: comparison using a family of
experiments,” ESE, vol. 17, pp. 276–304, 2012.

[2] S. Davis and G. Kiczales, “Registration-based language abstractions,”
OOPSLA ’10, pp. 754–773.

[3] A. J. Ko and B. A. Myers, “Barista: An implementation framework for
enabling new tools, interaction techniques and views in code editors,”
CHI ’06, pp. 387–396.

[4] C. Simonyi, M. Christerson, and S. Clifford, “Intentional software,”
OOPSLA ’06, pp. 451–464.

[5] M. Fowler. (2005, June) A language workbench in action - mps. [Online]
Available: http://martinfowler.com/articles/mpsAgree.html.

[6] M. Erwig and B. Meyer, “Heterogeneous visual languages-integrating
visual and textual programming,” VL ’95, pp. 318–325.

