
c© 2014 IEEE doi: 10.1109/VLHCC.2014.6883014

Envision: A Fast and Flexible Visual Code Editor
with Fluid Interactions (Overview)

Dimitar Asenov
Department of Computer Science

ETH Zurich
dimitar.asenov@inf.ethz.ch

Peter Müller
Department of Computer Science

ETH Zurich
peter.mueller@inf.ethz.ch

Abstract—While visual programming has had success in some
areas such as introductory or domain specific programming,
professional developers typically still use a text editor. Designing
a visual tool for professionals poses a number of challenges:
visualizations must be flexible to support a variety of different
tasks, interactions must be fluid to retain productivity, and the
visual editing must scale to large software projects. In this
paper we introduce Envision, a visual structured code editor that
addresses these challenges using an architecture that supports
flexible, customizable visualizations, keyboard-centric controls for
fluid interaction, and optimizations to ensure good performance
for large projects. Experiments with CogTool indicate that En-
vision’s code manipulation techniques are as efficient as those
of Eclipse, thus overcoming a major usability barrier for visual
programming for professional developers.

Keywords—programming environments, structured editors, vi-
sual programming, human-computer interaction

I. INTRODUCTION

Visual programming (VP) tools are very successful in
specific domains (e.g., LabView1), in end-user programming
(e.g., spreadsheets), and in teaching (e.g., Alice [1], Scratch
[2]). However, the great majority of professional programmers
are stuck in a textual world. A look at two popular web-sites2,3

keeping track of the popularity of programming languages
easily reveals that all mainstream languages today are textual.
Most developers program in them using IDEs such as Eclipse,
or just with a text editor. Compared to tools from other
domains, the influence of VP techniques on tools for mainstream
programming is minor, limited to features such as syntax
highlighting and error underlining. The recent work on showing
code fragments in a two-dimensional canvas in Code Bubbles
[3] and the related Debugger Canvas [4] (part of Visual Studio)
is an important step forward, but these and other attempts
to improve existing IDEs build on top of their solid textual
foundation, which limits what visualizations are possible. To
our knowledge there is no VP tool that: (1) is fundamentally a
visual tool, (2) supports mainstream languages, (3) is designed
for professionals, and (4) can handle large projects. Building
such a tool poses a number of challenges:

Flexibility. Professional developers are involved in many
different tasks including designing and documenting software,
exploring unfamiliar code, implementing features, testing and

1http://www.ni.com/labview/
2www.tiobe.com/index.php/tiobe index
3http://langpop.com/

debugging, working with domain-specific languages (DSLs), etc.
Different tasks have different information needs and navigation
strategies. Therefore, visualizations and interactions need to
be flexible and customizable to enable tailoring the tool to a
developer’s needs in the context of specific tasks and domains.
Existing tools for VP rarely satisfy this demand for flexibility.

Fluid interactions. A key strength of text editors is that
they provide a universal set of interactions that developers are
well familiar with and can use efficiently. Thanks to these
efficient interactions, editing code takes only a small fraction
of the overall development time. A successful VP tool must
be at least as good as text-based editors when it comes to
manipulating source code. It should allow developers to edit
the code quickly and directly. Many existing VP tools focus on
mouse-based interactions that are cumbersome and limiting for
skilled users — a problem that Green and Petre [5] called “high
viscosity”. Some tools, like Barista [6], do provide keyboard-
based interactions closer to text, but at the cost of more closely
coupling the visualizations used for editing to the grammar of
the language, which hurts flexibility.

Performance. Unlike beginners or most end-users, pro-
fessional programmers work on large projects that can span
millions of lines of code. Accordingly, the tools supporting
developers in their tasks must perform well with large programs.
A VP environment must remain responsive as visualizations get
more complex and as more of them are drawn simultaneously.
VP tools targeting mainstream languages such as Barista or
Alice, do not share our goal to support professional developers
and have not been shown to perform well with large projects.

To address these three issues we built Envision, a fast and
flexible visual programming environment for large-scale object-
oriented programs. In this paper we provide an overview of
Envision and our solutions, which are sufficiently general to
address these issues also in other VP tools. We are not aware
of any other VP tool that solves all three issues simultaneously
for general-purpose languages. The paper has the following
organization. In Sec. II, we explore Envision’s user interface and
demonstrate some of its flexibility, interaction, and performance
features. In Sec. III, we present a CogTool evaluation that shows
that editing code in Envision is as efficient as in Eclipse. We dis-
cuss related work in Sec. IV and conclude in Sec. V. Envision’s
source code and videos of the tool can be found at the project’s
home page: http://www.pm.inf.ethz.ch/research/envision. The
extended version of this paper [7] provides additional detail
about Envision’s interactions and architecture.

II. OVERVIEW OF ENVISION

A. User Interface

Envision renders code fragments on a two-dimensional
canvas. One such fragment can be seen in the screen shot in
Fig. 1. It shows a Java class Hello containing two methods,
main and factorial.

main args
String[]

printlnoutSystem. . ()factorial()5

int factorial x
int

resultint ← 1
x>1

result i

iint ← 2 i≤x i⁺⁺

result

Hello

Fig. 1. Envision showing a Java class that prints the factorial of 5. The class
has an icon depicting a class hierarchy and a blue background behind the class
name. Methods have an icon depicting two cogs and an orange background.
A green name indicates a public symbol and a gray name one with default
visibility. The underline indicates a static method. The icon represents the
*= operator.

Envision uses the semantics of the underlying textual
language, but in contrast to text editors, it can display graphical
objects to represent language constructs. We are still exper-
imenting with different visualizations and can freely choose
how a code fragment is rendered — whether to use text, icons,
or shapes; how to compose visualizations; what colors to use;
etc. Fig. 1 shows the current defaults of the system. High-level
code structures and declarations like classes, methods, and some
statements are visualized with a box and icon. We can use visual
properties, instead of text, to encode meaning. For example
we use icons instead of keywords, and spatial arrangement to
express control structures. Low-level code structures such as
expressions are visualized in a linear sequence of visual items,
mostly just text. Even though expressions might look like text,
they are just standard visual objects and are decoupled from the
syntax of the language. Therefore, non-textual visualizations
are also possible, for example, two-dimensional arrays are
visualized as matrices as shown in Fig. 2.test

identityint [][] ←()1 0
0 1

s

Fig. 2. A two-dimensional array rendered as a matrix. The matrix is editable.
The textual equivalent is int[][] identity = {{1,0},{0,1}}.

To enable the quick and convenient manipulation of code
visualized as in Figs. 1 and 2, all edits in Envision are achievable
using the keyboard as described in Sec. II-C. This includes
creating new structures such as methods, editing expressions,
and navigating between parts of the visualization.

B. Flexibility

Envision allows the creation of multiple alternative visual-
izations for the same type of AST nodes. For example, in
Fig. 3 you can see the factorial method from Fig. 1

main args
String[]

printlnoutSystem. . ()factorial()5

factorial x
int

int

result i

iint ← 2

i⁺⁺

i≤x

x>1

result

resultint ← 1

Hello

Fig. 3. The control flow visualization of the factorial method. The visualization
is not just a static image, that is, code can be edited in this form.

rendered using an alternative visualization showing the control
flow. Such alternative visualizations could be tailored to a
particular task by presenting different information or rendering
information differently. Alternative visualizations can be used
not only for different tasks, but also for different domains
or libraries. For example, Envision can automatically use an
alternative visualization instead of the default one, based on
programmable conditions that may depend on the program’s
entire AST. This is illustrated in Fig. 4. The append method
declares two postconditions using Microsoft’s Code Contracts.
The postconditions are expressed by calls to the static methods
Ensures and OldValue. This approach enables the encod-
ing of specifications without extending the underlying language.
In Fig. 4a, we see how this looks using the default visualizations,
and in Fig. 4b, we see the same method with alternative
visualizations. Here, Envision is customized to automatically
show all calls to the Ensures and OldValue methods using

append x
int

EnsuresContract. ()elements [size-1] = x
EnsuresContract. ()size = OldValueContract. ()size +1

elements[size⁺⁺] ← x

(a)

append x
int

ensures elements [size-1] = x
ensures size = OLDsize +1

elements[size⁺⁺] ← x

(b)

Fig. 4. (a) A method that appends an element to a list using .NET Code
Contracts to specify postconditions and (b) the same method with custom
visualizations for the contract method calls. Both forms are editable.

a keyword-like visualization that is easier to read. The contracts
are shown as part of the method signature, above the dashed line.
This type of customization is especially useful for designing
embedded DSLs as discussed in our previous work [8].

We are also experimenting with rich documentation support.
Fig. 5 shows an example of a rich comment. Users can write

initialize

The initialize() method:

Creates a Model
Connects it to a View

Model V iew

Controller

mModel ← newModel()
...

he

Fig. 5. An early prototype of our rich comment editor supporting diagrams.

comments using a version of the popular Markdown4 syntax,
which is rendered as HTML for viewing. Additionally, com-
ments can contain diagrams, created directly inside Envision,
images, web browsers, and custom HTML/JavaScript code.

As we have seen, Envision enables the creation of visual-
izations that differ significantly from text. The effectiveness
of such visualizations depends directly on the interactions
that they provide. On the one hand, to make the tool more
intuitive to use and reduce the overhead of extending it, Envision
supports a number of generic interactions that work across all
visualizations. These are briefly discussed in Sec. II-C. On the
other hand, Envision allows the customization of visualizations
and interactions for a particular user, organization, or domain.
This makes it possible to create new visualizations with complex
behavior, and facilitates direct manipulation by avoiding a
switch between simpler, but editable, visualizations and more
elaborate ones that are read-only.

This flexibility is enabled by Envision’s plug-in architecture.
All of Envision’s functionality is implemented as plug-ins,
which are stacked in layers and provide services to each other.
Plug-ins can add support for new interactions, visualizations,
languages, and customizations. For more detail on Envision’s
design, please see the extended version of this paper [7].

C. Interactions

Professionals are used to quickly and directly edit source
code using the keyboard. Therefore, Envision puts a strong
focus on keyboard interactions. Unlike many VP tools, we avoid
using drag-and-drop gestures for creating or editing structure
and limit mouse operations to navigation and zooming. Users
can also navigate with the arrow keys, moving a visual cursor
anywhere on the canvas to select items, text, or points where
new programming fragments can be inserted.

4http://daringfireball.net/projects/markdown/

Similarly to a text editor, it is possible to freely edit
expressions just by typing. On every keystroke expressions are
unparsed into a textual form, which is adjusted based on the
pressed key and then re-parsed to visualize the new expression.
Special error nodes represent syntactically invalid forms, which
often occur temporarily during editing. This mechanism also
works for non-textual visualizations such as the one from Fig. 2.

Another interaction feature is Envision’s context-sensitive
command prompt. When an item is selected, the user can
invoke a prompt where they can type commands. The available
commands depend on what item is selected, and offer a
convenient way to modify the AST or invoke tool commands.
We use this feature to conveniently create top-level AST nodes
such as classes and methods.

Envision has a number of built-in generic interactions that
apply to all visualizations, such as copy and paste, undo,
inserting and deleting objects, and the command prompt. Sup-
porting extensibility, it is possible to create custom interactions,
including commands for the context sensitive prompt, and
entirely custom event handlers for any visualization. An event
handler can process mouse clicks or key presses at a low
level and can implement any complex behavior. We discuss
Envision’s interactions in more detail in the extended version
of this paper [7]. For a demonstration of the interactions we
invite the reader to watch the videos6 of the tool.

D. Performance

Envision is capable of visualizing large amounts of code, or
even entire programs at once. For instance, it can visualize the
entire Apache Xerces5 Java project with its more than 200kLoc
and more than 800 classes and interfaces — comparable to
simultaneously viewing all of the project’s source files in a text
editor. The AST of the project contains more than 1.1 million
nodes, which are visualized by more than 1.4 million visual
items. To get a better feeling for the scale of this project and
how it is handled by Envision we invite readers to see the
introductory video on the project home page6.

Even when showing a complex visual scene, Envision
does not compromise on the quality of the visualizations or
the interactions. Visualizations are always drawn with vector
graphics and are editable. Envision achieves good performance
with large programs thanks to its performance-sensitive design
and optimizations. Most important for quickly handling millions
of objects are fast collision detection algorithms, which can be
used to greatly reduce what visual objects need to be updated
or repainted, based on whether they are visible or not. Using
Qt’s mature Graphics View framework has also had a major
impact on Envision’s design, enabling it to perform well. We
provide specific optimization guidelines in the extended version
of this paper [7].

III. COGTOOL EVALUATION

To evaluate the efficiency of low-level edits in Envision, we
used CogTool [9]. In CogTool, one creates a model of several
user interfaces and specifies how a task can be achieved using
each one. The tool then uses a cognitive model to simulate

5http://xerces.apache.org/
6http://www.pm.inf.ethz.ch/research/envision

the performance of skilled users. The steps to complete each
task and the final results are assumed to be known to the
user — the edits are performed without the need to deliberate.
Our evaluation resembles what Green and Petre did for their
Cognitive Dimensions framework [5] when they measured
”viscosity”. We modeled how three typical code editing tasks
are accomplished in Envision and Eclipse. The HelloWorld
task is to create a new project and a method that prints the
string “Hello world”. The Rocket task is to modify a method
that computes the trajectory of a rocket to include air resistance,
adapted from the work on Cognitive Dimensions. The Tetris
task is to add a new shape to the game.

TABLE I. COGTOOL ESTIMATIONS OF TASK COMPLETION TIMES.

Task Estimated time in seconds (˘10% range)
Eclipse Envision

HelloWorld 41.6 (37.5 - 45.8) 37.5 (33.8 - 41.3)
Rocket 75.0 (67.5 - 82.5) 72.1 (64.9 - 79.3)
Tetris 44.1 (39.7 - 48.5) 36.6 (32.9 - 40.3)

The simulation results in Table I show that for all tasks the
differences in completion times between Eclipse and Envision
are within the empirically observed error margin of ˘10% in
CogTool’s underlying cognitive model, KLM. The results indi-
cate that editing code in Envision is as fast as in a text editor, and
therefore remains an insignificant part of software development.
We are not aware of another visual code editor that provides
such efficient interactions and is as flexible as Envision. The
CogTool models used for this evaluation can be downloaded
from www.pm.inf.ethz.ch/research/envision/vlhcc2014.cgt.

IV. RELATED WORK

Barista [6] is an implementation framework for creating
visual code editors. It has features similar to Envision, such as
augmenting the code with HTML documentation, the ability to
present source code in different ways, keyboard navigation, and
text-like editing. Our work goes beyond Barista in a number of
important aspects. Firstly, not all visualizations in Barista are
editable. The tool’s authors demonstrate pretty-printed views of
mathematical operators, but for editing revert to visualizations
that closely match the tokens of the concrete language. This
is not necessary in Envision, since more powerful interactions
allow all visualizations to be edited directly. Secondly, as we
have previously shown [8], we focus strongly on customizability.
Thirdly, unlike Envision, Barista is not built to support large
software projects, and its authors do not make any performance
claims.

Targeting the same audience as Envision are tools like Code
Bubbles [3] and the related Debugger Canvas [4]. Building on
the well-established Eclipse and Visual Studio platforms, these
tools provide an alternative way to navigate code in a two-
dimensional canvas. This canvas can be populated with different
“bubbles”, which represent methods, classes, documentation,
and other artifacts. However, these visualizations are not flexible.
Ultimately both tools use text as their foundation, and there is a
classical text editor in a code bubble. This precludes alternative
visualizations for most language constructs, for example for
expressions, as in Fig. 2.

LabView is perhaps the most successful visual programming
tool used by professionals. Unlike Envision, LabView targets
the domain of measurement and control systems, and is based
on a non-mainstream, data-flow driven programming model.

Unlike tools for professionals, visual tools for beginners
such as Alice [1] or Scratch [2] do not place a strong focus
on keyboard interactions, freedom of editing the program,
performance, or customizability.

V. CONCLUSION AND FUTURE WORK

In this paper, we introduced Envision — a visual code editor
for OO programs. It offers flexibility in defining how programs
are visualized and provides fluid interactions that are familiar to
professional developers. Using CogTool, we demonstrated that
the interactions of our visual structured editor are as efficient
as those of a standard text editor. Envision is also a platform
for experimenting with new ideas in the area of visual code
editors.

We are currently working on a semantic zoom feature and
also plan to explore additional ways to more efficiently navigate
Envision’s canvas with large projects. Since a visual editor
provides a lot of freedom for visual effects, arrangements,
and overlays, we want to investigate how these can improve a
developer’s productivity and help them find information quicker.
Finally, we plan to update the look of the default visualizations
based on user input and good visual design principles.

ACKNOWLEDGMENTS

We would like to thank Jonas Trappenberg for his work on
rich comments in Envision as part of his Bachelor theses.

REFERENCES

[1] S. Cooper, “The design of Alice,” Trans. Comput. Educ., vol. 10, pp.
15:1–15:16, November 2010.

[2] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond, “The
Scratch programming language and environment,” Trans. Comput. Educ.,
vol. 10, no. 4, pp. 16:1–16:15, Nov. 2010.

[3] A. Bragdon, R. Zeleznik, S. P. Reiss, S. Karumuri, W. Cheung, J. Kaplan,
C. Coleman, F. Adeputra, and J. J. LaViola, Jr., “Code Bubbles: a working
set-based interface for code understanding and maintenance,” CHI ’10,
pp. 2503–2512.

[4] R. DeLine, A. Bragdon, K. Rowan, J. Jacobsen, and S. P. Reiss, “Debugger
Canvas: industrial experience with the Code Bubbles paradigm,” ICSE
’12, pp. 1064–1073.

[5] T. Green and M. Petre, “Usability analysis of visual programming
environments: A ”Cognitive Dimensions” framework,” JVLC, vol. 7,
no. 2, pp. 131 – 174, 1996.

[6] A. J. Ko and B. A. Myers, “Barista: An implementation framework for
enabling new tools, interaction techniques and views in code editors,”
CHI ’06, pp. 387–396.

[7] D. Asenov and P. Müller, “Envision: A fast and flexible visual code
editor with fluid interactions,” ETH-Zürich, Tech. Rep., 2014, available
at www.pm.inf.ethz.ch/publications.

[8] D. Asenov and P. Müller, “Customizing the visualization and interaction
for embedded domain-specific languages in a structured editor,” VLHCC
’13, pp. 127–130.

[9] B. E. John, K. Prevas, D. D. Salvucci, and K. Koedinger, “Predictive
human performance modeling made easy,” CHI ’04, pp. 455–462.

