
Envision: A Fast and Flexible Visual Code Editor
with Fluid Interactions

Dimitar Asenov
Department of Computer Science

ETH Zurich
dimitar.asenov@inf.ethz.ch

Peter Müller
Department of Computer Science

ETH Zurich
peter.mueller@inf.ethz.ch

Abstract—While visual programming has had success in some
areas such as introductory or domain specific programming,
professional developers typically still use a text editor. Designing
a visual tool for professionals poses a number of challenges:
visualizations must be flexible to support a variety of different
tasks, interactions must be fluid to retain productivity, and the
visual editing must scale to large software projects. In this
paper we introduce Envision, a visual structured code editor that
addresses these challenges using an architecture that supports
flexible, customizable visualizations, keyboard-centric controls for
fluid interaction, and optimizations to ensure good performance
for large projects. Experiments with CogTool indicate that En-
vision’s code manipulation techniques are as efficient as those
of Eclipse, thus overcoming a major usability barrier for visual
programming for professional developers.

Keywords—programming environments, structured editors, vi-
sual programming, human-computer interaction

I. INTRODUCTION

Visual programming (VP) tools are very successful in
specific domains (e.g., LabView1), in end-user programming
(e.g., spreadsheets), and in teaching (e.g., Alice [1], Scratch
[2]). However, the great majority of professional programmers
are stuck in a textual world. A look at two popular web-sites2,3

keeping track of the popularity of programming languages
easily reveals that all mainstream languages today are textual.
Most developers program in them using IDEs such as Eclipse,
or just with a text editor. Compared to tools from other
domains, the influence of VP techniques on tools for mainstream
programming is minor, limited to features such as syntax
highlighting and error underlining. The recent work on showing
code fragments in a two-dimensional canvas in Code Bubbles
[3] and the related Debugger Canvas [4] (part of Visual Studio)
is an important step forward, but these and other attempts
to improve existing IDEs build on top of their solid textual
foundation, which limits what visualizations are possible. To
our knowledge there is no VP tool that: (1) is fundamentally a
visual tool, (2) supports mainstream languages, (3) is designed
for professionals, and (4) can handle large projects. Building
such a tool poses a number of challenges:

Flexibility. Professional developers are involved in many
different tasks including designing and documenting software,
exploring unfamiliar code, implementing features, testing and

1http://www.ni.com/labview/
2www.tiobe.com/index.php/tiobe index
3http://langpop.com/

debugging, working with domain-specific languages (DSLs),
etc. Different tasks have different information needs and
navigation strategies. Therefore, visualizations and interactions
need to be flexible and customizable to enable a wide range of
visualizations, tailored to a developer’s needs in the context of
specific tasks. Going beyond the tool maintainers, professional
users of a tool might also have the need to customize it, for a
particular organization or project. Existing tools for VP rarely
satisfy this demand for flexibility and extensibility.

Fluid interactions. A key strength of text editors is that
they provide a universal set of interactions that developers are
well familiar with and can use efficiently. Thanks to these
efficient interactions, editing code takes only a small fraction
of the overall development time. A successful VP tool must
be at least as good as text-based editors when it comes to
manipulating source code. It should allow developers to edit
the code quickly and directly. Many existing VP tools offer
interactions that are cumbersome and limiting for skilled users
— a problem that Green and Petre [5] called “high viscosity”.
Oftentimes the problem comes from a strong focus on mouse-
based interactions. The issue especially affects VP tools that
manipulate non-textual representations, such as LabView or
Scratch. Some VP tools, like Barista [6], do provide keyboard-
based interactions closer to text, but at the cost of more closely
coupling the visualizations used for editing to the grammar of
the language, which hurts flexibility.

Performance. Unlike beginners or most end-users, pro-
fessional programmers work on large projects that can span
millions of lines of code. Accordingly, the tools supporting
developers in their tasks must perform well with large programs.
A VP environment must remain responsive as visualizations get
more complex and as more of them are drawn simultaneously.
VP tools targeting mainstream languages such as Barista or
Alice, do not share our goal to support professional developers
and have not been shown to perform well with large projects.

This paper contributes a solution to these three fundamental
issues. We are not aware of any other VP tool that solves them
simultaneously for general-purpose languages. To address the
issues we built Envision, a visual programming environment
for large-scale object-oriented programs. Our solutions are
sufficiently general to address these issues also in other VP
tools. The contributions of this paper are threefold:
(1) We present an experimental VP tool that is fast and flexible.
(2) We provide a detailed description of interactions that enable
efficient manipulation of programs in Envision.
(3) We show the efficiency of these interactions by using

1

CogTool [7], [8] to compare Envision to Eclipse on three
typical code editing tasks.
Videos of Envision can be found at the project’s home page:
http://www.pm.inf.ethz.ch/research/envision.

The paper has the following organization. In Sec. II, we
explore Envision’s user interface, demonstrate some of its
flexibility features and performance, and define requirements
for the tool’s interactions. In Sec. III, we describe in detail
the most essential interaction mechanisms in Envision. Sec. IV
gives more information about Envision’s design and architecture
and provides guidelines for achieving good performance with
large projects. In Sec. V, we present a CogTool simulation that
shows that editing code in Envision is as quick as in Eclipse.
We discuss related work in Sec. VI and conclude in Sec. VII.
A shorter version of this paper appeared at VL/HCC 2014 [9].

II. FEATURE AND UI OVERVIEW

In this section, we introduce the basics of code visualization
in Envision and show different flexibility and performance
aspects of the tool. We also define interaction requirements
needed to effectively support these features.

A. User Interface

Envision renders code fragments on a two-dimensional
canvas. One such fragment can be seen in the screen shot in
Fig. 1. It shows a Java class Hello containing two methods,
main and factorial.

main args
String[]

printlnoutSystem. . ()factorial()5

int factorial x
int

resultint ← 1
x>1

result i

iint ← 2 i≤x i⁺⁺

result

Hello

Fig. 1. Envision showing a Java class that prints the factorial of 5. The class
has an icon depicting a class hierarchy and a blue background behind the class
name. Methods have an icon depicting two cogs and an orange background.
A green name indicates a public symbol and a gray name one with default
visibility. The underline indicates a static method. The icon represents the
*= operator.

Envision uses the semantics of the underlying textual
language, but in contrast to text editors, it can display graphical
objects to represent language constructs. We are still experi-
menting with different visualizations and can freely choose how
a code fragment is rendered — whether to use text, icons, or
shapes; how to compose visualizations; what colors to use; etc.
In general, we are exploring visualizations that abstract from
the concrete language syntax and focus on the language features
instead. Fig. 1 shows the current defaults of the system. High-
level code structures and declarations like classes, methods,
and some statements are visualized with a box and icon. We
can use visual properties, instead of text, to encode meaning.
For example we use icons instead of keywords, and spatial

arrangement to express control structures. Objects like methods
or classes, can be freely arranged in two dimensions within
the body of their container. This allows one to visually group
related objects together. Low-level code structures such as
expressions are visualized in a linear sequence of visual items,
mostly just text. Even though expressions might look like text,
they are just standard visual objects, like everything else in
Envision. In fact these visualizations are decoupled from the
syntax of the language and it is possible to render something
completely different, such as an icon or an interactive widget.
For example, two-dimensional arrays are visualized as matrices
as shown in Fig. 2. test

identityint [][] ←()1 0
0 1

s

Fig. 2. A two-dimensional array rendered as a matrix. The matrix is editable.
The textual equivalent is int[][] identity = {{1,0},{0,1}}.

To enable the quick and convenient manipulation of code
visualized as in Figs. 1 and 2, Envision satisfies the following
two interaction requirements:
Req-keyboard: All edits should be achievable by using just
the keyboard, like in a standard text editor. This includes
creating new structures such as methods, editing expressions,
and navigating between different parts of the visualization.
Developers can be very efficient using the keyboard and it
should not play a secondary role in VP tools.
Req-feedback: After the AST of the program has been modified
based on the user’s input, visualizations should be updated
immediately, to provide feedback on the new state of the AST.
Processing input in key-stroke batches delays feedback which
may confuse users and make them less productive.

B. Flexibility

Envision allows the creation of multiple alternative visual-
izations for the same type of AST nodes. For example, in
Fig. 3 you can see the factorial method from Fig. 1
rendered using an alternative visualization showing the control
flow. Such alternative visualizations could be tailored to a
particular task by presenting different information or rendering
information differently. Alternative visualizations can be used
not only for different tasks, but also for different domains
or libraries. For example, Envision can automatically use an
alternative visualization instead of the default one, based on
programmable conditions that may depend on the program’s
entire AST. This is illustrated in Fig. 4. The append method
declares two postconditions using Microsoft’s Code Contracts.
The postconditions are expressed by calls to the static methods
Ensures and OldValue. This approach enables the encod-
ing of specifications without extending the underlying language.
In Fig. 4a, we see how this looks using the default visualizations,
and in Fig. 4b, we see the same method with alternative
visualizations. Here, Envision is customized to automatically
show all calls to the Ensures and OldValue methods using
a keyword-like visualization that is easier to read. The contracts
are shown as part of the method signature, above the dashed line.
This type of customization is especially useful for designing
embedded DSLs as discussed in our previous work [10].

Going beyond executable code, we have started experiment-
ing with rich documentation support. Fig. 5 shows an example

2

main args
String[]

printlnoutSystem. . ()factorial()5

factorial x
int

int

result i

iint ← 2

i⁺⁺

i≤x

x>1

result

resultint ← 1

Hello

Fig. 3. The control flow visualization of the factorial method. The visualization
is not just a static image, that is, code can be edited in this form.

append x
int

EnsuresContract. ()elements [size-1] = x
EnsuresContract. ()size = OldValueContract. ()size +1

elements[size⁺⁺] ← x

(a)

append x
int

ensures elements [size-1] = x
ensures size = OLDsize +1

elements[size⁺⁺] ← x

(b)

Fig. 4. (a) A method that appends an element to a list using .NET Code
Contracts to specify postconditions and (b) the same method with custom
visualizations for the contract method calls. Both forms are editable.

initialize

The initialize() method:

Creates a Model
Connects it to a View

Model V iew

Controller

mModel ← newModel()
...

he

Fig. 5. An early prototype of our rich comment editor supporting diagrams.

of a rich comment. Users can write comments using a version
of the popular Markdown4 syntax. For viewing, comments are
visualized in their HTML equivalent. In addition to formatted
text in comments, Envision features a built-in diagram editor
that enables the creation of simple diagrams directly inside a
comment. Other comment features are support for displaying
images from disk, displaying a specified web page in an inline
browser, and even running custom HTML/JavaScript code in
an inline browser.

As we have seen, Envision enables the creation of visual-
izations that differ significantly from text. The effectiveness of
such visualizations depends directly on the interactions that they
provide. Two additional requirements implemented in Envision
help provide efficient interactions:
Req-generic: Built-in generic interactions, such as copy and
paste, should work across all visualizations. Having a set
of core interactions makes the system more intuitive and
transparent for the user. Furthermore, generic interactions
reduce the implementation overhead for new visualizations,
thereby promoting alternatives.
Req-customizable: In addition to the functionality provided by
generic interactions, it should be possible to create custom in-
teractions. In this way, existing visualizations could be adapted
to user preferences or new domains, and new visualizations
with complex behavior could be created. This facilitates direct
manipulation by avoiding a switch between simpler, but editable,
visualizations and more elaborate ones that are read-only.

C. Performance

Envision is capable of visualizing large amounts of code, or
even entire programs at once. For instance, it can visualize the
entire Apache Xerces5 Java project with its more than 200kLoc
and more than 800 classes and interfaces — comparable to
simultaneously viewing all of the project’s source files in a text
editor. The AST of the project contains more than 1.1 million
nodes, which are visualized by more than 1.4 million visual
items. To get a better feeling for the scale of this project and
how it is handled by Envision we invite readers to see the
introductory video on the project home page6.

Fig. 6 shows a zoomed-out view showing a part of the
canvas. Users can zoom in/out using the mouse wheel. At
any zoom level objects can be selected, moved, and edited
normally. The rectangles in the middle show classes using the
same visualization as Fig. 1, but due to the high zoom level, it
is not possible to see their contents in detail. Text overlays show
the class names. In the bottom left corner there is a mini-map
that shows the entire project at a glance. Programmers familiar
with the spatial layout of the project can simply click on the
map or zoom in on a location to navigate to it.

Even when showing a complex visual scene, Envision does
not compromise on the quality of the visualizations or the
interactions. At any zoom level, visualizations are drawn with
vector graphics and are editable, provided they are visible. This
dictates one final requirement towards the tool:
Req-responsive: As the complexity and number of visual-
izations grow, the environment should remain responsive.

4http://daringfireball.net/projects/markdown/
5http://xerces.apache.org/
6http://www.pm.inf.ethz.ch/research/envision

3

Fig. 6. A zoomed-out view showing a part of the Apache Xerces project.

Professionals are often involved in big projects and an editor’s
performance must scale well to such projects. This includes
both interactions for navigating and for editing.

III. INTERACTIONS

In this section, we detail the core interactions provided
by Envision. Professional developers are used to quickly and
directly editing the source code of a program using the keyboard.
Therefore, we put a strong focus on keyboard-based interactions.
In particular, we avoid using drag-and-drop gestures for creating
or editing structure and limit mouse operations to navigation
and zooming.

A. Universal Visual Cursor

A prerequisite for any application that uses keyboard input
is the cursor. In textual environments, it indicates where the
text that the user types will go. Developers are able to position
the cursor anywhere in a text editor, regardless of the syntax
of the edited document. Visual environments typically do not
offer this freedom, and limit the cursor to selecting a visual
object or manipulating a text field.

For Envision, we designed a cursor that provides the
freedom of a text editor in a visual setting. Using the keyboard
arrows or mouse clicks, it is possible to position the cursor
virtually anywhere on the canvas:
(1) On top of an item, thus selecting the item. Selecting a
visual item is a typical interaction in visual tools. For example,
in Fig. 1, we can select the class’s icon to copy or delete the
class.
(2) Inside text. This is typical for text editors and text box
widgets. For example, we can place the cursor in the middle
of the identity label in Fig. 2.
(3) Between items, in empty spaces. This is an unusual cursor
location, which provides a lot of possibilities for interactions.
Being able to mark empty space is especially useful for creating
new structures. For example, in Fig. 4, we can place the cursor
between the method’s name and icon, marking a location that
allows us to directly enter the method’s return type.

Next, we will provide a few more technical details about
how cursors are defined. Each visual item in Envision has a
bounding rectangle and can declare regions within this rectangle
that can be occupied by the cursor. Typically, regions occupied
by child items (e.g., an icon) are declared so that children can
be selected. Regions, such as between children, or at the corners

base + offset

Fig. 7. An expression where all cursor regions are indicated with dashed
lines. Adjacent regions are treated as equivalent.

or edges, can also be declared to enable additional interactions,
such as removing a child by pressing Del . Pressing an arrow
key moves the cursor in the desired direction to the closest
cursor region within the same visualization. If the cursor is
already at the edge, it is moved to the closest region of the
parent visualization and so on. For example, in Fig. 1, if the
cursor is at the end of the println expression, pressing Ñ

will move the cursor to the beginning of int result Ð

1 in the factorial method. This mechanism also works
for more complex visualizations like the one from Fig. 3,
where it is possible to switch between all parts of the method
body by simply using Ò and Ó . In many common cases,
appropriate regions can be automatically declared even for
new visualizations. For example, when using the standard list
layout provided by Envision, it will automatically declare cursor
regions for list items and for empty spaces in the list. This
automatic behavior supports generic interactions that work
across visualizations. It is also possible to manually define
cursor regions in a visualization to achieve a custom interaction.

When using the arrow keys to move the cursor, there are
two interesting situations that need special treatment. The first
one arises when objects are placed far apart and the next cursor
position could be quite far away on the screen. Large jumps in
the location of the cursor can confuse the user, so we limit the
distance the cursor is allowed to move when a key is pressed,
that is, the key press is ignored if the cursor would jump too
far away from its current position.

The second situation arises when there are many adjacent
cursor regions. A common case is illustrated in Fig. 7. It is
an expression consisting of three visualizations (two identifiers
and an operator) arranged horizontally. Each of them has cursor
regions at its edges, colored in green. There are also cursor
regions between the visualizations, colored in purple. Imagine,
for example, that the cursor is positioned right after the letter
“a” and a user wants to use the keyboard to position the cursor
right after the “o”. Going through all the cursor regions will
take 8 key presses instead of the desirable 4. Thus Envision
provides a way to flag adjacent cursor regions as equivalent and
treat them as one region during navigation. Using this feature
moving the cursor in the case from Fig. 7 behaves as desirable.

The cursor is solely based on the structure of the visu-
alizations and is independent of the program’s AST. This
makes the cursor a universal tool for editing in Envision
and a key enabler of keyboard-centric interactions. The cursor
enables three fundamental interactions in Envision: (1) marking
positions for the insertion or deletion of objects via a single
key press such as Enter or BackÐ ; (2) providing a familiar
text-like edit functionality for objects that resemble text, such
as expressions; (3) selecting a context for invoking a context-
sensitive command prompt; We present the latter two next.

4

B. Free Expression Editing

In a text editor, edits are unrestricted and allow the developer
to temporarily break the code structure to quickly achieve
the desired results with only a few keystrokes (e.g., typing
{{1,0},{0,1}} from left to right). Providing such a quick
interaction has traditionally been a problem for visual editors,
especially if complex visualizations like the one from Fig. 2
must be editable. Quick editing is especially important for
expressions since they are the leaves of ASTs — the larger
part of a program — and are edited very frequently.

Following JPie [11] and Barista [6], we made expressions
freely editable, like text. We relaxed the constraint that an
expression has to be always syntactically correct by adding
special error nodes to represent incorrect tokens. This design
provides the flexibile text-like edits that developers are familiar
with. For example, we can create the entire expression in Fig. 2
by just typing it from left to right.

As shown in Fig. 2, we decouple how expressions are
visualized from the concrete language syntax. To achieve this
we use a bi-directional mapping between visualizations and
text. On every keystroke, the visualizations of expressions are
unparsed into a textual equivalent, which is implicitly modified
based on the current cursor position, and re-parsed to update the
AST. The immediate updates implement the requirement for
immediate feedback. The bi-directional mapping mechanism
is essential for providing flexibility. In essence it maps the
individual components of a visualization, such as children or
edges, to strings that represent expression nodes from an AST.
For example, the values of the matrix from Fig. 2 map to literal
expressions, and the surrounding parenthesis to the top-level
initializer expression. The ability to define such a mapping
between any visualization and text is a difference to other tools
like Barista, which has a tighter coupling between syntax and
editable visualizations.

C. Context-sensitive Command Prompt

Compared to expressions, higher-level nodes of a program’s
AST are edited less frequently and are more stable. This stability
allows interactions on a structural level to be efficient, which
makes it possible to keep higher-level AST nodes always in
a consistent state, and eliminates the need for error nodes
like in expressions. To edit high-level AST structures, we use
a context-sensitive command prompt. It provides access to
actions specific for the currently selected item as well as all of
Envision’s commands.

Each visualization type has an extensible set of commands,
which can be typed in the prompt. For example, the class
visualization from Fig. 1 has commands to add methods or
fields to the class. Pressing Esc or clicking the right mouse
button shows the command prompt right below the cursor.
This allows the execution of: (1) commands associated with
the object at the cursor or any of its ancestor objects, and
(2) core tool commands such as find, save project, and exit.
A command has access to the AST and the visual canvas.
Therefore, there are no restrictions on what a command does:
it can manipulate the AST, change properties of visualizations,
or even execute a system command. The prompt works across
all visualizations and fulfills the requirement for generic
interactions. Envision provides a number of built-in commands,

but it is also possible to register new ones, according to the
customizability requirement.

When typing commands, Envision provides a list of
auto-completion suggestions and a brief description of each
command as can be seen in Fig. 8. This helps explore the
available commands and reduces the need to remember the
list of arguments. If the user invokes an incorrect command,
an error message will be displayed directly in the prompt.
A further feature simplifying command entry and reducing
the need to remember the precise syntax of commands is the
support for abbreviations. For example, instead of typing the
complete form of the method command to create a method
(e.g., public static method Main), it is sufficient to
abbreviate the command name and arguments as long as the
abbreviations are not ambiguous. This is illustrated in Fig. 8.

Hello

pu s m Main

pu s m Main
Create a public static method called 'Main'

Fig. 8. An abbreviated command in a prompt invoked on a class object.

D. Other Interaction Features

Fulfilling the requirement for generic interactions, Envision
provides a number of additional interactions that work across all
visualizations such as the standard copy, paste, and undo oper-
ations, as well as a way to manipulate the AST independently
of how it is visualized, by using primitive tree operations.
Implementing the requirement for customizability, Envision
allows the system to be customized in two ways to achieve
specialized behaviors. The first one is to use customization
features of existing interaction mechanisms. For example, new
commands can be added to the command prompt. The second
way is to implement new interaction handlers in order to
replace existing ones, or use them with new visualizations.
A handler processes all mouse and keyboard events coming
from visualizations and can be used to implement complex
behaviors on top of Envision’s generic interactions. We use
this method, for example, to implement free expression editing
or to enable intuitive editing of matrices like the one from
Fig. 2. This method is also particularly suitable for customizing
interactions when working with embedded DSLs like we show
in our previous work [10].

IV. DESIGN AND ARCHITECTURE

In this section, we discuss Envision’s architecture in more
detail. We discuss what mechanisms form the foundation of
the tool’s flexibility and provide guidelines for achieving good
performance in complex visualizations.

A. Plug-in Architecture for Flexibility

Envision is built using a modular plug-in architecture. All
of the tool’s functionality is implemented by plug-ins with well-
defined interfaces. The different plug-ins are logically stacked
into layers, where each successive layer can use the services
of previous layers. An overview of the available plug-ins and
layers is shown in Fig. 9.

5

1: generic Model Visualization Interaction

0: manager Plugin manager Logger Test framework

2: OO core

OOModel
OOVisualization
OOInteraction 2: other languages ...

3: OO
extensions Control FlowControl Flow Visualization

Code Contracts 3: other extensions ...

Fig. 9. The different layers and plug-ins of Envision’s architecture.

Layer 0 contains the basic functionality of the system such
as plug-in management, logging, reflection mechanisms, and a
self-testing framework.

Layer 1 consists of three plug-ins that implement the differ-
ent parts of a Model-View-Controller (MVC) framework that
is the foundation of Envision. The Model plug-in implements
generic functionality for specifying a program AST. The Visu-
alization plug-in implements Envision’s visualization engine on
top of Qt’s Graphics View7 framework. The Interaction plug-in
implements the generic interactions available in the system.
These three plug-ins define many extension and customization
mechanisms that are used in higher layers. This layer provides
services that could be used for supporting any programming
language.

Layer 2 is for groups of extensions for a particular language
or programming paradigm. At the moment we support only OO
languages. We have developed three plug-ins, which are the OO
extensions of the generic MVC implementations: OOModel,
OOVisualization, and OOInteraction. They define what AST
nodes form an OO program, their default visualizations (Figs. 1
and 2), and interactions. These plug-ins also provide extension
mechanisms that can be used from higher layers.

Plug-ins in further layers can customize language features
and provide alternative visualizations and interactions. For
example, a library designer could optionally bundle an Envision
plug-in with the library in order to customize how code from
the library is visualized and how developers interact with it.
The example in Fig. 4b is implemented with such a plug-in.
This can be useful for designers of embedded DSLs. Another
plug-in at this layer implements the control flow visualization
in Fig. 3.

Envision’s architecture promotes a clear separation of
concerns and facilitates extensibility. The separation into layers
and plug-ins makes it easy to identify where a new feature
should be implemented. The overhead of implementing new
features is reduced by the reuse of existing building blocks,
plug-in services, and customization concepts. For example,
throughout Envision, we use a declarative API to create new
visualizations by combining existing ones.

Envision’s design has also been beneficial for us as
researchers. It allows us to experiment with a variety of
visualization and interaction techniques, which lead to the ones
presented in Secs. II and III. For example, when creating a
new visualization, it is possible to define many of its properties

7http://qt-project.org/doc/qt-4.8/graphicsview.html

such as colors, shapes, distances, font properties, icons, etc.
using the built-in styles API. Using the API, property values
are automatically read from an XML file on disk and can be
changed without recompiling the program. Other researchers
are also welcome to experiment with the tool — its C++ source
code is open8. Development is done in Linux, but Envision is
a cross-platform tool and the code is occasionally updated for
Windows compatibility.

B. Performance Guidelines

Envision achieves good performance with large programs
thanks to its performance-sensitive design and optimizations.
Some of these optimizations, related to collision detection
(CD), are inspired by video game rendering techniques; others,
such as reducing the number of memory allocations, are made
possible by the technology we use to implement Envision.
Below we formulate the most important ones as guidelines for
tool designers. Through these optimization, Envision remains
responsive with large projects.

Structure visualizations in a visual tree. Qt uses CD
algorithms to determine which objects: are visible on the screen,
are under the mouse cursor, should be updated, etc. Although
visual objects in Qt are logically organized as a tree, by default
the bounding box of each object depends only on what the
object draws itself and disregards children. Thus, to calculate
collisions, Qt iterates over all objects, which is slow. CD can
be much faster if the bounding box of each item completely
encompasses all of its children. Qt has support for enforcing this,
which results in some performance gains, but also introduces
overhead due to the enforcement. We modified Qt’s source
code to skip this enforcement, which is not necessary in
Envision since all visualizations respect that condition. This
resulted in significant benefits when drawing a large number
of objects at once. Note that this optimization does not restrict
the flexibility of Envision’s visualizations, since objects are
allowed to overlap.

Draw only what is necessary. Qt already provides support
for culling off-screen objects by using CD to decide what is not
visible. However, when observing a canvas with many visual
objects at a high zoom level, most of them are visible and
therefore drawn. This is especially of concern to Envision, since
the mini map that we provide in the tool (see Fig. 6) is actually
just a second rendering of the same canvas, where all objects
are always visible. With millions of objects, the standard Qt
approach was too slow and unusable. At a very high zoom
level, many visual objects (especially text which is slow to
draw) are practically invisible, but were nevertheless drawn.
We made a further modification to Qt’s drawing routines, to
skip the drawing of any visual item that occupies less than
one pixel in any dimension. Note that this also automatically
skips the drawing of all child items. This results in a significant
speed up when drawing a large number of objects, like the
canvas from Fig. 6.

Cache text renderings. At medium zoom levels, thousands
of objects could be within the visible region of the screen and
not small enough to be discarded by the optimizations discussed
so far. This is especially a problem for textual elements (labels,
expressions, etc.) as drawing so much anti-aliased text at once

8https://github.com/dimitar-asenov/Envision

6

can be slow. We used the functionality of Qt’s QStaticText
class to speed up text drawing by caching results of drawing
operations. In this way, text has to be redrawn only when it is
updated or when the zoom level changes. This resulted in a
noticeable speed-up, without a significant memory cost.

Decouple updates from rendering. Modern graphics frame-
works minimize the number of painting operations, but painting
still occurs quite often, for example when scrolling, zooming,
panning, etc. In many of these cases, all or almost all objects
on the visual canvas remain unchanged and do not need to be
updated. For achieving good performance, it is essential that
updates are decoupled from the regular painting operations, and
are only performed when necessary. When the user modifies a
program, only visualizations that are affected should be updated.
Using a tree organization for visualizations, an edit typically
affects only a particular visualization and all of its ancestors
in the tree.

Use mature graphics frameworks and libraries designed for
performance. Envision is based on the Qt framework, which
features a mature C++ graphics framework. It has a large
community of developers and often receives optimizations or
even redesigns that greatly improve performance. This choice
has had a big impact on Envision’s performance. It enabled
us to build an environment that remains responsive even with
large projects.

V. COGTOOL EVALUATION

To evaluate the fluidity of the interactions of our system,
we used CogTool [7], [8]. Our goal is to show that the speed
of low-level edits in Envision is comparable to text-based tools
and, therefore, editing in Envision, remains an insignificant
part of software development. This is in contrast to existing
visual programming tools, which often suffer from cumbersome
interactions. Our evaluation resembles what Green and Petre did
for their Cognitive Dimensions framework [5] when they called
this bottleneck ”high viscosity”. CogTool is well suited for
such an evaluation. In CogTool, one creates a model of several
user interfaces and specifies how a task can be achieved using
each one. The tool then uses a cognitive model to simulate the
performance of skilled users, who know how to achieve the
given task without hesitation.

We modeled how three typical code editing tasks are
accomplished in Envision and Eclipse, similarly to what other
researchers have done in the past [8]. The steps to complete
each task and the final results are assumed to be known to the
developer — the programs just need to be edited without the
need to deliberate. Next, we briefly describe the three tasks.

HelloWorld — This task involves the creation of a new
project, a class within the project, and a simple main method
that prints the string “Hello world”. In Envision, we create the
project, class, and the method using the command prompt and
abbreviated commands. The call to the println method is
created without using auto-completion. In Eclipse, we use the
main menu to create the new project and a context menu to
create the new class. We did not use the option to automatically
create the main method in the class wizard dialog, as this is
not a part of the usual Eclipse interactions and will skew the
results. Envision does not have such a shortcut but one could
be easily added. When editing the method, we used Eclipse’s

built-in code snippet facility to speed up writing. As in the
Envision case, we did not use auto-completion.

Rocket — This task is an adaptation of a task from the
work on Cognitive Dimensions of Green and Petre [5] and
is originally based on work by Curtis et al. [12]. The task is
to modify a method that computes the trajectory of a rocket
to account for air resistance. It requires the addition of five
new statements to a method. Using this task, Green and Petre
showed that visual programming environments can suffer from
high viscosity — resistance to local change — and require
several times the amount of time for such changes compared
to a textual environment. We adapted the task to the Java
programming language and modeled it in Eclipse and Envision.
The actions required to complete the task in both tools are
almost identical.

Tetris — In this task, a new shape is added to a game of
Tetris. This consists of adding a new element to an existing
enumeration and editing a three-dimensional array, a loop
condition, and another array. In Envision, the three-dimensional
array is edited as a matrix of arrays, and there is no need to
manually insert space breaks to align array elements. The mini-
map is used to navigate from one edit location to another. In
Eclipse, space breaks are inserted to nicely align the elements
in the three-dimensional array. Navigation between different
edit locations is done via the file tabs and the scroll bar.

TABLE I. COGTOOL ESTIMATIONS OF TASK COMPLETION TIMES.

Task Estimated time in seconds (˘10% range)
Eclipse Envision

HelloWorld 41.6 (37.5 - 45.8) 37.5 (33.8 - 41.3)
Rocket 75.0 (67.5 - 82.5) 72.1 (64.9 - 79.3)
Tetris 44.1 (39.7 - 48.5) 36.6 (32.9 - 40.3)

The simulation results in Table I show that for all three
tasks the differences in completion times between Eclipse and
Envision are within the empirically observed error margin of
˘10% in CogTool’s underlying KLM cognitive model. The
results indicate that editing code in Envision is as fast as in
a text editor. We are not aware of another visual code editor
that provides such fluid interactions and offers visualizations
as flexible as the ones in Envision. The CogTool models used
for this evaluation can be downloaded from www.pm.inf.ethz.
ch/research/envision/vlhcc2014.cgt.

The goal of this evaluation is very specific and is in-
dependent of code comprehension, developer accuracy, and
learnability. To test these qualities, further experiments with
professionals are needed.

VI. RELATED WORK

Barista [6] is an implementation framework for creating
visual code editors. It has features similar to Envision, such as
augmenting the code with HTML documentation, the ability
to present source code in different ways, keyboard navigation,
and text-like editing. Our work goes beyond Barista in a
number of important aspects. Firstly, not all visualizations
in Barista are editable. The tool’s authors demonstrate pretty-
printed views of mathematical operators, but for editing revert
to visualizations that closely match the tokens of the concrete

7

language. This is not necessary in Envision, since more
powerful interactions allow all visualizations to be edited
directly. Secondly, as we have previously shown [10], we focus
strongly on customizability, through explicit mechanisms in
the existing implementation and through our plug-in based
architecture. Thirdly, unlike Envision, Barista is not built to
support large software projects. The authors consider only small
examples and do not make any performance claims.

MPS [13] and Intentional software [14] are two domain
workbench tools that also provide visual structured editors.
Both of these tools take a non-standard approach to software
engineering where many domain-specific languages are defined
and combined together. This is in contrast to Envision’s goal
of supporting mainstream programming.

Targeting the same audience as Envision are tools like Code
Bubbles [3] and the related Debugger Canvas [4]. Building on
the well-established Eclipse and Visual Studio platforms, these
tools provide an alternative way to navigate code in a two-
dimensional canvas. This canvas can be populated with different
“bubbles”, which represent methods, classes, documentation,
and other artifacts. However, these visualizations are not flexible.
Ultimately both tools use text as their foundation, and there is a
classical text editor in a code bubble. This precludes alternative
visualizations for most language constructs, for example for
expressions, as in Fig. 2.

LabView is perhaps the most successful visual programming
tool used by professionals. Unlike Envision, LabView targets
the domain of measurement and control systems, and is based
on a non-mainstream, data-flow driven programming model.

There are many visual programming tools for beginners
such as Alice [1], Scratch [2], and JPie [11]. Such tools
focus on easily constructing executable programs via visual
means and displaying a live execution while programming.
Users can use drag and drop gestures to put different program
fragments together, which eliminates most if not all syntactical
errors. Unlike tools for professionals, there is no strong focus
on keyboard interactions, freedom of editing the program,
performance, or customizability.

Another big group of visual programming tools are applica-
tions designed for end-users. These environments are designed
primarily for ease of use and smaller programs. They mostly
use their own programming model and often lack good support
for large, complex projects or flexible visualizations.

VII. CONCLUSION AND FUTURE WORK

In this paper, we introduced Envision — a visual code editor
for OO programs. It offers flexibility in defining how programs
are visualized and provides fluid interactions that are familiar to
professional developers. Using CogTool, we demonstrated that
the interactions of our visual structured editor are as efficient
as those of a standard text editor. Envision is also a platform
for experimenting with new ideas in the area of visual code
editors.

We are currently working on complementing Envision’s
geometric zoom with a semantic zoom feature. We also plan to
explore different ways to more efficiently navigate Envision’s
canvas. Since a visual editor provides a lot of freedom for visual
effects, arrangements, and overlays, we want to investigate how

these can improve a developer’s productivity and help them
find information quicker. Finally, we plan to update the look of
the default visualizations based on user input and good visual
design principles.

ACKNOWLEDGMENTS

We would like to thank Andrea Helfenstein for her work
on a declarative API for defining visualizations and Jonas
Trappenberg for his work on rich comments in Envision, as
part of their Bachelor theses.

REFERENCES

[1] S. Cooper, “The design of Alice,” Trans. Comput. Educ., vol. 10, pp.
15:1–15:16, November 2010.

[2] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond, “The
Scratch programming language and environment,” Trans. Comput. Educ.,
vol. 10, no. 4, pp. 16:1–16:15, Nov. 2010.

[3] A. Bragdon, R. Zeleznik, S. P. Reiss, S. Karumuri, W. Cheung, J. Kaplan,
C. Coleman, F. Adeputra, and J. J. LaViola, Jr., “Code Bubbles: a working
set-based interface for code understanding and maintenance,” CHI ’10,
pp. 2503–2512.

[4] R. DeLine, A. Bragdon, K. Rowan, J. Jacobsen, and S. P. Reiss, “De-
bugger Canvas: industrial experience with the Code Bubbles paradigm,”
ICSE ’12, pp. 1064–1073.

[5] T. Green and M. Petre, “Usability analysis of visual programming
environments: A ”Cognitive Dimensions” framework,” JVLC, vol. 7,
no. 2, pp. 131 – 174, 1996.

[6] A. J. Ko and B. A. Myers, “Barista: An implementation framework for
enabling new tools, interaction techniques and views in code editors,”
CHI ’06, pp. 387–396.

[7] B. E. John, K. Prevas, D. D. Salvucci, and K. Koedinger, “Predictive
human performance modeling made easy,” CHI ’04, pp. 455–462.

[8] R. Bellamy, B. John, J. Richards, and J. Thomas, “Using CogTool to
model programming tasks,” PLATEAU ’10, pp. 1:1–1:6.

[9] D. Asenov and P. Müller, “Envision: A fast and flexible visual code
editor with fluid interactions (overview),” to appear in VLHCC ’14.

[10] D. Asenov and P. Müller, “Customizing the visualization and interaction
for embedded domain-specific languages in a structured editor,” VLHCC
’13, pp. 127–130.

[11] B. E. Birnbaum and K. J. Goldman, “Achieving flexibility in direct-
manipulation programming environments by relaxing the edit-time
grammar,” VLHCC ’05, pp. 259–266.

[12] B. Curtis, S. B. Sheppard, E. Kruesi-Bailey, J. Bailey, and D. A.
Boehm-Davis, “Experimental evaluation of software documentation
formats,” J. of Systems and Software, vol. 9, no. 2, pp. 167 – 207, 1989.

[13] M. Fowler. (2005, June) A language workbench in action - MPS. [Online]
Available: http://martinfowler.com/articles/mpsAgree.html.

[14] C. Simonyi, M. Christerson, and S. Clifford, “Intentional software,”
OOPSLA ’06, pp. 451–464.

8

