
c©Dimitar Asenov, Peter Müller, and Lukas Vogel 2016. This is the authors’ version of the work. It is
posted here for your personal use. Not for redistribution. The definitive version was published in ASE’16,

http://dx.doi.org/10.1145/2970276.2970329.

The IDE as a Scriptable Information System

Dimitar Asenov
Dept. of Computer Science

ETH Zurich, Switzerland
dimitar.asenov@inf.ethz.ch

Peter Müller
Dept. of Computer Science

ETH Zurich, Switzerland
peter.mueller@inf.ethz.ch

Lukas Vogel
Ergon Informatik AG
Zurich, Switzerland

lukas.vogel@ergon.ch

ABSTRACT
Software engineering is extremely information-intensive. Ev-
ery day developers work with source code, version reposi-
tories, issue trackers, documentation, web-based and other
information resources. However, three key aspects of informa-
tion work lack good support: (i) combining information from
different sources; (ii) flexibly presenting collected informa-
tion to enable easier comprehension; and (iii) automatically
acting on collected information, for example to perform a
refactoring. Poor support for these activities makes many
common development tasks time-consuming and error-prone.
We propose an approach that directly addresses these three
issues by integrating a flexible query mechanism into the de-
velopment environment. Our approach enables diverse ways
to process and visualize information and can be extended
via scripts. We demonstrate how an implementation of the
approach can be used to rapidly write queries that meet a
wide range of information needs.

CCS Concepts
•Software and its engineering → Integrated and vi-
sual development environments; Software maintenance
tools; •Information systems → Information integration;
•Human-centered computing → Visualization;

Keywords
code queries; software visualization; refactoring

1. INTRODUCTION
Software development is an information-intense activity.

While programming and designing software, developers ask
a wide variety of questions [5, 11, 14, 17] and seek informa-
tion from numerous sources, such as the source code itself,
analysis tools, version control information, issue trackers, doc-
umentation, project wiki pages, and community resources.
In trying to meet their information needs, developers are
faced with three issues.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASE ’16 Singapore
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3845-5/16/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2970276.2970329

First, developers often need to combine information from
more than one source, but tool support for piecing infor-
mation together is lacking [17]. For example, in order to
understand a performance regression, it is useful to combine
information from the source code (code structure and con-
trol flow), the version control system (recent commits and
changes to affected code), performance analysis tools (run-
time measurements), and an issue tracker (bugs associated
with relevant commits). In situations that require diverse
information, developers are forced to manually connect the
different pieces of information, which is an error-prone and
time-consuming process. Such an information search is also
tedious to refine as this usually requires the developer to
manually repeat a part of the process.

Second, tools most often present information in a fixed
form. For example, searching results in a list of matches;
querying a program with Ferret [3] results in a hierarchical
tree-view. Such one-size-fits-all presentations are not always
a good match for a developer’s specific information need,
but there is very little or no flexibility for customizing the
presentation in existing tools. This could hinder the compre-
hension of the results and makes domain- and project-specific
visualizations impossible.

Third, even after a developer finds the information they
need, they often have to take action manually. For example,
to understand how a set of methods are called, one has to
manually set breakpoints or insert print statements. Re-
peatedly performing an action manually is time-consuming,
error-prone, and frustrating. While some tools support au-
tomation (e.g., JunGL [18] and Rascal [6] for refactoring),
they cannot integrate arbitrary information sources and are
usually limited to certain modifications of source code.

To address these three issues, we designed a query system
that integrates directly with the integrated development
environment (IDE). We make the following contributions:
(i) An approach for querying information within an IDE,

which enables the integration of diverse information resources,
flexible result presentations, extensibility via scripts, and
automated execution of actions.
(ii) An implementation of the approach in the open-source

Envision IDE [1].
(iii) An evaluation of the applicability of the system in a

number of use cases with diverse information needs.
A video demonstrating our system can be seen at youtu.

be/kYaRKuUy9rA. An extended version of this paper [2]
contains additional examples, python scripts, and details of
our implementation.

http://dx.doi.org/10.1145/2970276.2970329
youtu.be/kYaRKuUy9rA
youtu.be/kYaRKuUy9rA

2. MOTIVATING EXAMPLES
We will introduce our approach on two practical examples.

2.1 Investigating a Regression
Suppose that a developer is investigating a recently re-

ported regression, where the incorrect behavior occurs after
a specific button is pressed. The developer needs to know
what code is executed in the button handler and what recent
changes might affect this code.

With current tools, the developer will likely first explore
what code is being called from the button handler and man-
ually correlate that to recent changes. In particularly hard
cases, it might pay off to design a specific test case for this
regression and run a binary search on the version repository
in order to find the offending commit (e.g., using git bi-

sect). Both of these approaches are time-consuming due to
ineffective ways of combining source code information (the
call graph) with version information (what changed recently).

Our approach offers an alternative solution. The developer
can select the handler of the button in the source code, bring
up a query prompt and type:

callgraph -nodes | changes -c 5 -nodes

The callgraph query returns the nodes (methods) in the
callee graph of the currently selected method. The bug is
likely among these methods, but there may be many of them.
To narrow down the search, the methods are piped into the
changes query, which returns only those methods from its
input that have changed in the last five commits. After the
query is executed, the remaining methods will be highlighted,
helping the developer to more quickly find the issue.

Enabling this workflow are three key components of our
approach: (i) a context-sensitive query prompt that enables
developers to type and combine queries; (ii) diverse queries
that can access arbitrary resources such as the source code
or version repository; and (iii) a unified data format that
enables queries to be combined in order to refine searches.

2.2 Heatmap of Code Execution
Imagine that a developer wants to get a visual overview

of the often-executed parts of the code to gain a general
understanding of which classes are relevant for performance.
Thus, it is preferable to see frequently executed methods in
a broader context.

Profiling tools typically provide timing information in the
form of a chart, graph, or a list. However none of these
presentations fits the developer’s need in this example, as the
code around performance critical methods is also important.

This is one example where the presentation of informa-
tion is critical for understanding and where our approach’s
support for flexible visualizations can help. The developer
could, for example, export the timings to a CSV file and use
a query to import it into the IDE and visualize the results:

importProfileCSV profile.csv | heatmap

The first time they do this, they will have to write the
importProfileCSV Python script (about 15-20 lines) that
reads the CSV file into the data format understood by our
system. The data is piped into the heatmap query, which
highlights different parts of the code with a color in the
red-green spectrum based on the value of a number (Fig. 1).

This example illustrates two more essential components
of our approach: (iv) integration with a scripting language,

carmodel
langjav a.

CarModel

BufferedReaderiojav a. .

IOExceptioniojav a. .

InputStreamReaderiojav a. .

main args
String[]

void

throws IOException

LINE_SEPARATORString ← getPropertySystem. ()"line.separator"
BORDER_CHAR_LENGTHint ← 40
UNREF_OBJ_CREATEDint ← 10

menuStringBuffer ← newStringBuffer()
carCarModel ← newCarModel()

Create the menu

appendmenu. ()''-''

for iint ← 0 i<BORDER_CHAR_LENGTH i⁺⁺

appendappendmenu. ()LINE_SEPARATOR . ()" (1) Simulate car usage"
appendappendmenu. ()LINE_SEPARATOR . ()" (2) Create unreferenced objects"
appendappendmenu. ()LINE_SEPARATOR . ()" (q) Quit"

appendmenu. ()LINE_SEPARATOR

appendmenu. ()''-''

for iint ← 0 i<BORDER_CHAR_LENGTH i⁺⁺

Display the menu
printlnoutSystem. . ()"CarModel started"+LINE_SEPARATOR+"Menu:"
printlnoutSystem. . ()toStringmenu. ()
printlnoutSystem. . ()"Choose an option:"

inBufferedReader ← newBufferedReader()new InputStreamReader()inSystem.
inputString ← trimreadLinein. (). ()

Accept input for the desired option

printlnerrSystem. . ()"Wrong option"
input ← trimreadLinein. (). ()
continue

input=∅∨ lengthinput. ()≠1∨ ¬ isDigitCharacter. ()charAtinput. ()0

intValuevalueOfInteger. ()input . ()

simulateCarUsage()car
break

1

newCarModel()
for iint ← 0 i<UNREF_OBJ_CREATED i⁺⁺

printlnoutSystem. . ()UNREF_OBJ_CREATED+" unreferenced objects of CarModel has been created"
break

2

printlnerrSystem. . ()"Wrong option"

input ← trimreadLinein. (). ()

for ¬ equalsIgnoreCaseinput. ()"q"

CarModel

wheel[i] ← newWheel()
for iint ← 0 i<4 i⁺⁺

simulateCarUsage car
CarModel

void

rollupwindowleftcar. . . ()
startenginecar. . ()
revenginecar. . ()
alignwheelcar. [0]. ()

stopenginecar. . ()

Engine engine← newEngine()
Wheel[] wheel ← newWheel []4
Door left← newDoor()
Door right← newDoor()

Engine
BufferedReaderiojav a. .

IOExceptioniojav a. .

InputStreamReaderiojav a. .

start void

printlnoutSystem. . ()"Start the car."

rev void

printlnoutSystem. . ()"Rev the engine."

stop void

printlnoutSystem. . ()"Car stopped."

Wheel
BufferedReaderiojav a. .

IOExceptioniojav a. .

InputStreamReaderiojav a. .

align void

printlnoutSystem. . ()"Tires aligned."

Window
BufferedReaderiojav a. .

IOExceptioniojav a. .

InputStreamReaderiojav a. .

rollup void

printlnoutSystem. . ()"Rollup the window."

rolldown void

printlnoutSystem. . ()"Rolldown the window."

Door

BufferedReaderiojav a. .

IOExceptioniojav a. .

InputStreamReaderiojav a. .

open void

printlnoutSystem. . ()"Open()"

close void

printlnoutSystem. . ()"Close()"

Windowwindow ← newWindow()

Figure 1: A heatmap overlayed on top of a visual
presentation of code showing a few classes () and

methods (). The heatmap is visualized as a set of
translucent overlays on top of methods; each over-
lay has a color in the spectrum between red and
green, indicating how often a method was executed.
Similar visualizations are also possible in traditional
text-based IDEs, e.g., using line or file highlights.

allowing easy extension to new information resources and cus-
tomized queries; and (v) flexible visualizations, which enable
task-specific display of information, helping comprehension.

3. APPROACH
Our goal was to design a system that is highly expressive

and extensible by the user in order to satisfy a wide range of
information needs. The architecture of our system is shown
in Fig. 2. Below, we discuss each component in detail.

3.1 Query Execution Model
The core of our approach is the ability to compose and

execute queries. This functionality is provided by the exe-
cution engine, which enables queries to be connected in a
network (directed acyclic graph), where the edges represent
data flow. Such a network of queries is illustrated in Fig. 3.

Each query has a context, which is the AST node (e.g., a
method) on which the query was invoked. A query has two
additional ways to access information.

First, a query may be connected to the output of other
queries via any number of required or optional inputs, which
comprise the inter-query data exchange. For example, a
query might receive on its input a set of method AST nodes,
and output their names as a set of strings. The data flowing
between queries uses a unified format (see Sec. 3.3).

Second, a query may access (that is, read and modify)
external resources (see Sec. 3.2.1), such as the program’s
source code (e.g., to perform a refactoring), call a method of
the IDE (e.g., to access the AST or show a message), or use
a REST service (e.g., to create a bug report).

A query is executed only after all of its inputs are read.
When a query is run, it can perform arbitrary computation,
which typically includes accessing external resources and
computing outputs. Once a query has finished executing, its
outputs are forwarded to any downstream queries.

query
prompt

data exchange

visualization
native

queries

scripts

execution engine

Figure 2: The architecture of our system. Using a
query prompt, a developer can invoke and combine
queries. Queries can access diverse information re-
sources, make computations, and produce visualiza-
tions, and can be either native or implemented via
scripts. A unified data exchange format facilitates
the cooperation between multiple queries. An exe-
cution engine orchestrates query execution and the
information flow between queries.1

3.2 Query Types
In principle a query can perform arbitrary computation.

However, to facilitate composition, we divide queries into
three types: resource-access, visualization, and operator.
Below, we define each type and explain how we designed
corresponding queries in order to improve usability.

3.2.1 Resource Access
Resource-access queries are used to read and modify re-

sources external to the execution engine. They connect a
network of queries to the AST and external tools and data.
A resource-access query can be a source of data for other
queries. For example, a query may read the contents of a
file and provide it as inputs to other queries for processing.
A resource-access query may also modify external data. For
example, it could create a new record in a database, or mod-
ify the program. There is no limit on what resources a query
may access; common ones are the program AST, the version
repository, the issue tracker, files, and on-line services.

To facilitate composability, we designed resource-access
queries according to the following guidelines. First, a resource-
access query provides access to only one resource. This
restriction allows accessing one resource without imposing
requirements on another. Second, complex resources are
accessed by multiple queries, which enables each query to
focus on a particular aspect of the resource. For example,
when reading the program’s AST, one query is used to select
nodes while another provides control-flow information. Third,
when integrating tools that have a command line interface,
we created queries with a similar interface. This enables
developers to transfer some of their existing knowledge from
the terminal command to the query. For example, in a query
that accesses a Git repository, commits can be specified by
commit id, branch name, or reference, like the git command
allows.

A noteworthy resource available through resource-access
queries is the IDE itself. A query may call available IDE APIs

1The git logo by Jason Long and icons made by Freepik from
www.flaticon.com are licensed by CC BY 3.0.

inter-query data exchange

external data access

queryX

i0
i1

o0

Figure 3: A query network with seven intercon-
nected queries. queryX is shown in detail. It has
two inputs (i0, which is the union of two outputs
from other queries and i1, which is unused here),
and one output (o0, which is duplicated).

to get information or to perform IDE functions. For example,
most IDEs maintain a code model that provides easy access
to the program’s AST. Such queries are not limited to
extracting information. Depending on available IDE APIs,
queries might be used for navigation between code fragments,
setting breakpoints, running tests, displaying warnings or
errors, and refactoring code.

3.2.2 Visualization
Visualization queries are used to render information on

the screen. Different visualization queries can be used to
render the same piece of information in different ways in
order to better match the specific information needs of the
developer. For example, we support three ways to visualize
relations between code elements: (i) show the relations using
a textual notation – useful for a dense summary; (ii) highlight
on screen all code elements that appear in the relations
– useful when searching for particular patterns; (iii) show
the relations using arrows between code elements – useful
when exploring call graphs or data flow. Some visualizations
are provided by the underlying IDE, while others could be
done via external tools. Common visualizations in IDEs are
highlighting a program fragment, showing a list or a tree of
result entries, and displaying error messages and warnings.
More visual IDEs could even provide a map of the code
that enables intuitive arrow overlays to explore connections
between elements or even a heatmap visualization similar to
Fig. 1.

Our approach imposes no limit on how information can
be visualized. If an IDE exposes general drawing routines,
a query could use those to implement an entirely custom
visualization. Some IDEs provide a built-in HTML rendering
engine, which could be used to easily and quickly implement
new ways for visualizing information. Using a combination
of HTML5 and Javascript, it is even possible to create in-
teractive visualizations as we demonstrate in Sec. 4.1. This
high degree of flexibility is indispensable for domain- and
project-specific visualizations.

We designed visualization queries according to the follow-
ing guidelines in order to make them easier to use. First,
each available visualization mechanism has its own query,
which makes it clear what will appear on the screen when
it is invoked. Second, visualizations impose as few require-

http://www.freepik.com
http://www.flaticon.com
http://creativecommons.org/licenses/by/3.0/

ments on the input data as possible, so that one visualization
can be easily swapped for another. Third, if a visualization
query is not explicitly provided, but there is unconsumed
data at the end of a query-network execution, a visualization
is automatically chosen based on the structure of the result.
This frees developers from having to always explicitly specify
a visualization that could be automatically inferred.

3.2.3 Operator
Operator queries (operators) are used to perform internal

computation, for example, to refine results. Operators do
not access any external resources but rather help filter and
combine data in complex query networks. They work solely
with the unified data format, which we discuss in Sec. 3.3. As
operators work with sets and relations, they naturally map
to operations from set and relational algebra such as union,
intersect, select, and join. Building on these primitives, we
have also pre-defined more elaborate operators in order to
simplify common cases. For example, in Sec. 4.3, we demon-
strate the reachable operator, which filters out elements
unreachable from a starting point via a relation – in essence
a combination of transitive closure and selection. Such a
convenience operator is very useful in answering reachability
questions, which are very common [14].

3.3 Inter-query Data Exchange
To enable query composition, all queries communicate

using a simple unified structure for exchanging data. This
unified exchange structure is a set of tuples, because it is
sufficiently expressive and provides a simple mental model
for developers to work with.

Each input and output of a query is a set of tuples, and each
tuple consists of an arbitrary number of named elements.
The names of elements within a single tuple have to be
unique. The elements of a tuple may be strings, integers,
and references to AST nodes. Each tuple has a tag, which is
an identifier that is either explicitly provided or is identical to
the name of the tuple’s first element. This minimal structure
allows us to conveniently encode and access typical structures
such as sets, lists, and graphs.

Filtering and combining can be easily done based on the
name or value of elements, or the tags of tuples. Result
visualizations can be automatically selected based on the
tags and tuples present in the final output. For example,
a tuple with the tag message could be shown as a message
associated with a code location.

3.4 Extensibility: Scripts and Native Queries
Using our system, the simplest way to access and ma-

nipulate information is to compose existing queries directly
on the query prompt and get results immediately. Query
composition covers a broad range of common needs with min-
imal effort, but inevitably, developers will need specialized
behavior where composition will not be enough. To support
custom information processing we provide two extensibility
mechanisms.

The first one is to implement new queries as light-weight
scripts, in our case using Python. Scripts allow orchestrat-
ing complex query flows and provide access to specialized
resources, which is made easier by existing libraries for the
scripting language. Scripts have access to a limited API:
the context, inputs, and outputs of the query they repre-
sent, and the program’s AST. This API is enough to make

for node in Query.input.tuples(’ast’):

if isinstance(node.ast, IfStatement):

if node.ast.elseBranch.size() > 0:

Query.result.add(node)

Figure 4: A Python script that filters input nodes.

scripts versatile while keeping them extremely simple. For
example, Fig. 4 shows the complete script for selecting only
if-statements that have else-branches from the input. Imple-
menting a query via a script is as easy as writing the script
file. Any available scripts are directly invokable on the query
prompt and scripts are seamlessly composable with other
queries. The execution engine translates the inter-query data
format to and from the native environment and the scripting
language’s virtual environment.

The second extension mechanism is to create new native
queries within the host IDE of our system. Native queries
give the developer unlimited power to perform specialized
computation and allow deep IDE integration — unlike scripts,
native queries have access to all IDE APIs. The drawback
of this approach is that it is more demanding and time-
consuming than writing a script, since developers will have
to, essentially, extend the host IDE (e.g., write an Eclipse
plug-in).

In practice, native queries, which provide deep IDE integra-
tion, and scripts, which access a custom resource, complement
each other well, as we show in Sec. 4.

4. CASE STUDIES
We will demonstrate the applicability of our approach in

three practical programming scenarios. All examples have
been tested using our implementation inside the Envision
IDE [1], which offers a more visually-rich code presentation
compared to traditional IDEs and allows us to more easily
implement diverse visualization queries.

4.1 Flexible Visualizations
Programmers frequently need to understand control flow

and, in particular, follow paths through several method calls
[14]. As the call graph is a commonly needed piece of infor-
mation, we provide a native query:

callgraph

Because it is context-sensitive, this query will automatically
return the callee graph of the method that contains the cursor.
The query itself just returns a set of tuples and does not
produce any visualization. As no visualization is explicitly
provided, the execution engine automatically chooses one
based on the structure of the result. By default, results
that represent relations between AST nodes are visualized
as arrows connecting the nodes’ representations on screen as
shown on Fig. 5(a). Alternatively, the developer could show
all result tuples in a table (Fig. 5(b)):

callgraph | table

or highlight visually the methods that are part of the call
graph without showing arrows (Fig. 5(c)):

callgraph -nodes

Here, the execution engine will detect that the output is
a set of AST nodes and will highlight them on the screen.
The visualizations from Figs. 5(a), 5(b), and 5(c) use Envi-

(a)

Dreams

Bed

rest

sleep()
watchTv()

sleep

dream()

dream

watchTv
goToWork (b)

Dreams

Person

rest

sleep()
watchTv()

sleep

dream()

dream

watchTv
goToWork

calls
callee caller

Person.watchTv Person.rest
Person.sleep Person.rest
Person.dream Person.sleep

(c)

Dreams

Bed

rest

sleep()
watchTv()

sleep

dream()

dream

watchTv
goToWork

(d)

Figure 5: Different ways of visualizing results that
describe a relation: (a) arrows between related ele-
ments; (b) a table; (c) highlighting relation elements;
(d) a custom HTML visualization: in this case, an
interactive graph rendered using vis.js.

sion’s visual code presentation, but analogous visualizations
also exist in conventional IDEs: line highlights, and arrows
between lines. These three visualization options illustrate
an important aspect of our approach: the results of queries
are decoupled from their visualizations. This decoupling
enables flexible visualizations that allow the presentation of
the results to more accurately match the information need
of the developer. Common presentations such as highlights
and arrows can be readily provided by the IDE. As we show
next, developers can also add their own visualizations.

In some projects or domains, specialized visualizations
enable better information comprehension. Our approach
enables the creation of custom visualizations using web tech-
nologies. For example, we used the open-source vis.js library
and a custom Python script to implement the visualization
from Fig. 5(d). With a total of 80 lines of Javascript and
Python code we can run the query:

callgraph | toHtmlGraph

and get an interactive view of a graph. The toHtmlGraph

script converts the tuple set from our system into an HTML
page that uses vis.js, which renders the interactive graph.

4.2 Combining and Transforming Information
Programmers often need to know the reason some code

exists or looks the way it does (e.g., questions 8-10 from
Fritz and Murphy [5]). One approach to gain this knowledge
is to connect a piece of code with version control and bug
database information. Here is how such a query could look:

ast -type Statement -topLevel
| changes -intermediate
| join change.id,commit.message ,ast

-as data
| associatedBugs

This is a more complex query, but building it piece by
piece is rather straight-forward. We want information about
each statement in a method, so we first get all top-level (non-
nested) statements using ast -type Statement -topLevel.
The result is piped into the changes query, which yields
change information about all commits that modify any of
the input statements. The result consists of two different
kinds of tuples: the first one associating each node with the
id of the commit where it changed, the second associating a
commit id with the commit’s meta data (e.g., the commit
message). Using the join query, we merge those two different
kinds of tuples into a single kind that relates nodes and

why
langjav a.

TopLevel

ArrayListutiljav a. .

Listutiljav a. .

ssssssssssssssssssssssssssssssssssstest items
Item[]

void

dataItemData ← getDataitems[i]. ()
addallData. ()data

detachdata. ()

for iint ← 0 i< lengthitems. ⁺⁺i

resetItemCount()lengthitems.

resetItemCount newCount
int

void

List⟨ ⟩ItemData allData← new ArrayList()

ItemData
ArrayListutiljav a. .

Listutiljav a. .

detach void

Item

ArrayListutiljav a. .

Listutiljav a. .

getData ItemData

data

ItemData data

Commit
Add support for multiple items

This resolv es issue #3 and should also help with bug #6

Issue #3
Only a single item is supported
Issue #6
Can't establish connection using a proxy

Commit
Fix #11 - incorrect item count

This was just an off-by-one error

Issue #11
The app crashes if I try to use the last item

Figure 6: A for-loop and a method call with cor-
responding explanations for why they were last
changed. The information bubbles are standard vi-
sualizations in the Envision IDE.

commit messages and that we call data. We pipe data

into the associatedBugs script, which can be seen in [2].
The script uses a REST request to associate commits with
issues on GitHub. The output of the script is a set of tuples
representing info messages, which are automatically shown
using standard Envision information bubbles next to the
corresponding code (Fig. 6).

Functionality for explaining the reason for a piece of code
is also available in other tools like the blame command for
version control systems, or the Eclipse annotate feature.
However, our approach allows building this information from
elementary blocks and precise controlling of what is included.
We could easily combine different information sources and
transform the information to fit our needs.

4.3 Automating Actions
Programmers often have to change code at scale. Devel-

opment tools typically provide only a limited set of refactor-
ings. The fallback solution is most often textual search and
replace. However, many situations are not expressible by
regular expressions. For example, we might want to modify
the program so that each recently changed recursive method
prints the values of its arguments when called. This could
be useful in debugging a termination issue. We could add
the necessary print statements using the query:

callgraph -global | reachable -self
| changes -c 5 -nodes | insertArgPrinting

First, we refine the query from Sec. 2.1, by using the
reachable query, which filters out AST nodes that cannot
reach themselves following the relations from the input. Thus,
we get all recursive methods that have changed recently.
Then we pass these methods to the insertArgPrinting

script, which we show in [2]. For each provided method
the script inserts code that prints its name and lists all
arguments.

Several things are worth noting here. First, it was possible
to easily refine a previous query, which Sillito et al. [17]
identify as a gap in existing tools. Second, we executed a

query which modified a resource, in this case the source
code. Third, this modification uses both non-trivial program
properties (recursion) and information other than the source
code itself (version information). Thus, it is outside the reach
of regular expressions and most refactoring tools, which can
only use information from the source code. Fourth, the
support for scripts makes it easy to perform program edits
within the overall query mechanism. Just like any other
query, edits can also depend on input from other queries and
external data resources, which enables data-driven changes
to the code.

5. RELATED WORK
A number of recent studies [5, 11, 14, 17] investigate what

questions developers ask and how they seek answers to these
questions. Our approach supports answering many of these
questions and addresses some of the major gaps identified by
earlier work, e.g., the need to share and transform informa-
tion [11] and the lack of support for combining information,
refining questions, and using context [5, 17].

Researchers have developed a variety of languages and
techniques for querying source code [4, 7, 10, 15, 16, 19]. Such
query tools offer powerful and efficient ways to query program
properties, but are typically restricted to the program source
and do not integrate other information resources. A number
of tools [3, 5, 9] do allow the combination of different data
sources. Our approach is different from these approaches in
several ways: (i) the link between different sources does not
need to be predefined, the developer has full control over
what information is linked; (ii) the simple tuple set interface
of queries allows for the easy addition of a wide range of
information resources; (iii) result visualizations are flexible
to better match specific information needs.

There is a wealth of tools for visualizing information related
to software. However these are typically coupled to a specific
kind of inquiry. Most tools that provide general query capa-
bilities provide only a single way to view results or only basic
visualization flexibility. Common result presentations are list
or tree views [3, 4, 5, 7, 10, 19] and graphs [13, 16]. Some
tools allow configurable views [5, 15] or advanced interfaces
[8, 13, 12]. Unlike these other tools, our approach is more
general and offers flexible and easily extensible visualizations,
which can also be interactive.

Some program querying tools can also make modifications
to code. Two scripting languages for refactoring are JunGL
[18] or Rascal [6], which offer powerful capabilities to analyze
and transform the source code. Our system also enables
complex code changes via Python scripts and it offers two
major advantages: (i) scripts can use external resources
in addition to the source code, enabling data-driven code
modification; and (ii) modifying code is just a special-case
for our system’s general support for automating arbitrary
actions.

6. CONCLUSION
We showed an approach to turn an IDE into a powerful and

customizable information system. A unified data exchange
format enables query composition and allows developers to
combine diverse information resources. The results of such
queries can be presented using a wide range of visualizations,
enabling a better fit for a developer’s particular information
needs – a key in improving comprehension. Our approach

can also be used for automating developer actions and data-
driven modification of code. We showed that the integration
of the Python scripting language unlocks great extensibility
options, providing a platform for rapidly integrating new
information resources or performing complex data manipula-
tion. A user study is future research, which would enable us
to further asses the usability of our approach.

7. REFERENCES
[1] D. Asenov and P. Müller. Envision: A fast and flexible

visual code editor with fluid interactions (overview). In
VL/HCC ’14.

[2] D. Asenov, P. Müller, and L. Vogel. The IDE as a
Scriptable Information System (extended version). In
arXiv:1607.04452.

[3] B. de Alwis and G. Murphy. Answering conceptual
queries with Ferret. In ICSE ’08.

[4] C. De Roover, C. Noguera, A. Kellens, and V. Jonckers.
The SOUL tool suite for querying programs in
symbiosis with Eclipse. In PPPJ ’11.

[5] T. Fritz and G. C. Murphy. Using information
fragments to answer the questions developers ask. In
ICSE ’10.

[6] M. Hills, P. Klint, and J. J. Vinju. Scripting a
refactoring with Rascal and Eclipse. In WRT ’12.

[7] D. Janzen and K. De Volder. Navigating and querying
code without getting lost. In AOSD ’03.

[8] T. Karrer, J.-P. Krämer, J. Diehl, B. Hartmann, and
J. Borchers. Stacksplorer: Call graph navigation helps
increasing code maintenance efficiency. In UIST ’11.

[9] A. Kellens, C. De Roover, C. Noguera, R. Stevens, and
V. Jonckers. Reasoning over the evolution of source
code using quantified regular path expressions. In
WCRE ’11.

[10] M. Kimmig, M. Monperrus, and M. Mezini. Querying
source code with natural language. In ASE ’11.

[11] A. J. Ko, R. DeLine, and G. Venolia. Information needs
in collocated software development teams. In ICSE ’07.

[12] J.-P. Krämer, J. Kurz, T. Karrer, and J. Borchers.
Blaze: Supporting two-phased call graph navigation in
source code. In CHI ’12.

[13] T. LaToza and B. Myers. Visualizing call graphs. In
VL/HCC ’11.

[14] T. D. LaToza and B. A. Myers. Developers ask
reachability questions. In ICSE ’10.

[15] O. Moor, D. Sereni, M. Verbaere, E. Hajiyev,
P. Avgustinov, T. Ekman, N. Ongkingco, and J. Tibble.
.ql: Object-oriented queries made easy. In GTTSE ’07.

[16] T. Schafer, M. Eichberg, M. Haupt, and M. Mezini.
The SEXTANT software exploration tool. IEEE TSE,
32(9).

[17] J. Sillito, G. Murphy, and K. De Volder. Asking and
answering questions during a programming change task.
IEEE TSE, 34(4).

[18] M. Verbaere, R. Ettinger, and O. de Moor. JunGL: A
scripting language for refactoring. In ICSE ’06.

[19] M. Würsch, G. Ghezzi, G. Reif, and H. C. Gall.
Supporting developers with natural language queries.
In ICSE ’10.

	1 Introduction
	2 Motivating Examples
	2.1 Investigating a Regression
	2.2 Heatmap of Code Execution

	3 Approach
	3.1 Query Execution Model
	3.2 Query Types
	3.2.1 Resource Access
	3.2.2 Visualization
	3.2.3 Operator

	3.3 Inter-query Data Exchange
	3.4 Extensibility: Scripts and Native Queries

	4 Case Studies
	4.1 Flexible Visualizations
	4.2 Combining and Transforming Information
	4.3 Automating Actions

	5 Related Work
	6 Conclusion
	7 References

