
The IDE as a Scriptable Information System
(extended version)

Dimitar Asenov
Dept. of Computer Science

ETH Zurich, Switzerland
dimitar.asenov@inf.ethz.ch

Peter Müller
Dept. of Computer Science

ETH Zurich, Switzerland
peter.mueller@inf.ethz.ch

Lukas Vogel
Ergon Informatik AG
Zurich, Switzerland

lukas.vogel@ergon.ch

ABSTRACT
Software engineering is extremely information-intensive. Ev-
ery day developers work with source code, version reposi-
tories, issue trackers, documentation, web-based and other
information resources. However, three key aspects of infor-
mation work lack good support: (i) combining information
from different sources; (ii) flexibly presenting collected in-
formation to enable easier comprehension; and (iii) auto-
matically acting on collected information, for example to
perform a refactoring. Poor support for these activities
makes many common development tasks time-consuming
and error-prone. We propose an approach that directly
addresses these three issues by integrating a flexible query
mechanism into the development environment. Our approach
enables diverse ways to process and visualize information
and can be extended via scripts. We demonstrate how an
implementation of the approach can be used to rapidly write
queries that meet a wide range of information needs.

Keywords
integrated development environments; information system;
queries;

1. INTRODUCTION
Software development is an information-intense activity.

While programming and designing software, developers ask
a wide variety of questions [6, 13, 17, 23] and seek informa-
tion from numerous sources such as the source code itself,
compiler output, debug and program analysis tools, version
control information, issue tracker, project and API docu-
mentation, colleagues, project wiki pages, and community
resources like wikipedia.com and stackoverflow.com. In try-
ing to meet their information needs, developers are faced
with three issues.

First, developers often need to combine information from
more than one source, but tool support for piecing infor-
mation together is lacking [23]. For example, in order to
understand a performance regression, it is useful to combine
information from the source code (code structure and con-
trol flow), the version control system (recent commits and
changes to affected code), performance analysis tools (run-
time measurements), and an issue tracker (bugs associated
with relevant commits). In situations that require diverse
information, developers are forced to manually connect the
different pieces of information, which is an error-prone and
time-consuming process. Such an information search is also
tedious to refine as this usually requires the developer to

manually repeat a part of the process.
Second, tools most often present information in a fixed

form. Typical presentations include a list of items, a tree-
view, or a visual graph. For example, searching with regular
expressions results in a list of matches; querying a program
with Ferret [3] results in a hierarchical tree-view. These
one-size-fits-all presentations are not always a good match
for a developer’s specific information need (e.g., a visual
call graph is better suited for detecting recursion than a
hierarchical list), but there is very little or no flexibility for
customizing the presentation in existing tools. This could
hinder the comprehension of the results and makes domain-
and project-specific visualizations impossible.

Third, even after a developer finds the information they
need, they often have to take action manually. For example,
to understand how a set of methods are called, one has to
manually set breakpoints or insert print statements in the
code. Another example is a developer manually creating
bug reports as a result of an analysis that detects certain
code patterns. Repeatedly performing an action manually
is time-consuming, error-prone, and frustrating. While some
tools support automation (e.g., JunGL [25] and Rascal [7]
for refactoring), they cannot integrate arbitrary information
sources and are usually limited to certain modifications of
source code.

To address these three issues, we designed a query system
that integrates directly with developer’s primary tool – the
integrated development environment (IDE). We make the
following contributions:

• An approach for querying information within an IDE,
which enables the integration of diverse information re-
sources, flexible result presentations, extensibility via
scripts, and automated execution of actions.

• An implementation of the approach in the open-source
Envision [2] IDE prototype.

• An evaluation of the applicability of the system in a
number of use cases with diverse information needs.

A video demonstrating our system can be seen at youtu.be/
kYaRKuUy9rA.

The rest of the paper is organized as follows. In Sec. 2,
we motivate our approach with two practical examples. We
explain our approach in more technical detail in Sec. 3 and in
Sec. 4 we show the wide applicability of our approach using
a selection of diverse case studies. In Sec. 5, we provide
details of the implementation. We discuss related work in
Sec. 6 and conclude in Sec. 7.

1

2. MOTIVATING EXAMPLES
In this section, we will introduce our approach on two

practical examples.

2.1 Investigating a regression
Suppose that a developer is investigating a recently re-

ported regression, where the incorrect behavior occurs after
a specific button is pressed. To investigate this problem the
developer will need two main pieces of information: (i) the
source code, more specifically, the code that is executed after
the handler of the button click, and (ii) the version reposi-
tory, to see what recent changes could cause this issue.

With current tools, the developer will likely first explore
what code is being called from the button handler and man-
ually correlate that to recent changes. This could be a rather
time-consuming task if a lot of code is potentially reachable
from the handler or if there are many changes that have
happened in the mean time. In particularly hard cases, it
might pay off to design a specific test case for this regression
and run a binary search on the version repository in order
to find the offending commit (e.g., using git bisect). Both
of these approaches are rather time-consuming due to inef-
fective ways of combining source code information (the call
graph) with version information (what changed recently).

Our approach offers an alternative solution. The devel-
oper can select the handler of the button in the source code,
bring up a query prompt and type:

callgraph -nodes | changes -c 5 -nodes

The callgraph query returns the nodes (methods) in the
callee graph of the currently selected method. The bug
is likely among these methods, but there may be many of
them. To narrow down the search, the methods from the
callee graph are piped into the changes query, which re-
turns only those methods from the graph that have changed
in the last five commits. After the query is executed, the
relevant source code fragments will be highlighted and help
the developer to more quickly find the issue.

Enabling this workflow are three key components of our
approach: (i) a context-sensitive query prompt that enables
developers to quickly type and combine queries; (ii) diverse
queries that can access arbitrary data resources such as the
program’s source code or version repository; and (iii) a uni-
fied data format that enables queries to be combined in
order to refine searches.

2.2 Heatmap of code execution
Imagine that a developer wants to get a visual overview

of the often-executed parts of the code. The goal is not
to optimize specific code, but rather gain a general under-
standing of which classes are relevant for performance and
what is their general function. Thus, it is preferable to see
frequently executed methods in a broader context.

Profiling tools typically provide timing information in the
form of a chart, graph, or a list. However none of these pre-
sentations fits the developer’s need in this example, as the
code around performance critical methods is also important.
The developer will have to manually switch between the pro-
filer and the code they want to explore.

This is one example where the presentation of informa-
tion is critical for understanding and where our approach’s
support for flexible visualizations can help. The developer
could, for example, export the timings to a CSV file and use

carmodel
langjav a.

CarModel

BufferedReaderiojav a. .

IOExceptioniojav a. .

InputStreamReaderiojav a. .

main args
String[]

void

throws IOException

LINE_SEPARATORString ← getPropertySystem. ()"line.separator"
BORDER_CHAR_LENGTHint ← 40
UNREF_OBJ_CREATEDint ← 10

menuStringBuffer ← newStringBuffer()
carCarModel ← newCarModel()

Create the menu

appendmenu. ()''-''

for iint ← 0 i<BORDER_CHAR_LENGTH i⁺⁺

appendappendmenu. ()LINE_SEPARATOR . ()" (1) Simulate car usage"
appendappendmenu. ()LINE_SEPARATOR . ()" (2) Create unreferenced objects"
appendappendmenu. ()LINE_SEPARATOR . ()" (q) Quit"

appendmenu. ()LINE_SEPARATOR

appendmenu. ()''-''

for iint ← 0 i<BORDER_CHAR_LENGTH i⁺⁺

Display the menu
printlnoutSystem. . ()"CarModel started"+LINE_SEPARATOR+"Menu:"
printlnoutSystem. . ()toStringmenu. ()
printlnoutSystem. . ()"Choose an option:"

inBufferedReader ← newBufferedReader()new InputStreamReader()inSystem.
inputString ← trimreadLinein. (). ()

Accept input for the desired option

printlnerrSystem. . ()"Wrong option"
input ← trimreadLinein. (). ()
continue

input=∅∨ lengthinput. ()≠1∨ ¬ isDigitCharacter. ()charAtinput. ()0

intValuevalueOfInteger. ()input . ()

simulateCarUsage()car
break

1

newCarModel()
for iint ← 0 i<UNREF_OBJ_CREATED i⁺⁺

printlnoutSystem. . ()UNREF_OBJ_CREATED+" unreferenced objects of CarModel has been created"
break

2

printlnerrSystem. . ()"Wrong option"

input ← trimreadLinein. (). ()

for ¬ equalsIgnoreCaseinput. ()"q"

CarModel

wheel[i] ← newWheel()
for iint ← 0 i<4 i⁺⁺

simulateCarUsage car
CarModel

void

rollupwindowleftcar. . . ()
startenginecar. . ()
revenginecar. . ()
alignwheelcar. [0]. ()

stopenginecar. . ()

Engine engine← newEngine()
Wheel[] wheel ← newWheel []4
Door left← newDoor()
Door right← newDoor()

Engine
BufferedReaderiojav a. .

IOExceptioniojav a. .

InputStreamReaderiojav a. .

start void

printlnoutSystem. . ()"Start the car."

rev void

printlnoutSystem. . ()"Rev the engine."

stop void

printlnoutSystem. . ()"Car stopped."

Wheel
BufferedReaderiojav a. .

IOExceptioniojav a. .

InputStreamReaderiojav a. .

align void

printlnoutSystem. . ()"Tires aligned."

Window
BufferedReaderiojav a. .

IOExceptioniojav a. .

InputStreamReaderiojav a. .

rollup void

printlnoutSystem. . ()"Rollup the window."

rolldown void

printlnoutSystem. . ()"Rolldown the window."

Door

BufferedReaderiojav a. .

IOExceptioniojav a. .

InputStreamReaderiojav a. .

open void

printlnoutSystem. . ()"Open()"

close void

printlnoutSystem. . ()"Close()"

Windowwindow ← newWindow()

Figure 1: A heatmap overlayed on top of a visual
presentation of code showing a few classes () and

methods (). The heatmap is visualized as a set of
translucent overlays on top of methods; each over-
lay has a color in the spectrum between red and
green, indicating how often a method was executed.
Similar visualizations are also possible in traditional
text-based IDEs, e.g., using line or file highlights.

a query to import it into the IDE and visualize the results:

importProfileCSV profile.csv | heatmap

The first time they do this, they will have to write the
importProfileCSV Python script (about 15-20 lines) that
reads the CSV file into the data format understood by our
system, but the freely available csv Python library makes
this task trivial. The read data is piped into the heatmap

query, which highlights different parts of the code with a
color in the red-green spectrum based on the value of a num-
ber. An example heatmap is shown in Fig. 1.

This example illustrates two more essential components
of our approach: (iv) tight integration with a mainstream
scripting language, allowing easy extension to new informa-
tion resources and highly-customized queries; and (v) flex-
ible visualizations, which enable task-specific rendering of
information to facilitate comprehension.

3. APPROACH
Our goal was to design a system that is highly expressive

and extensible by the user in order to satisfy a wide range of
information needs. The architecture of our system is shown
in Fig. 2. Below, we discuss each component in detail.

3.1 Query execution model
The core of our approach is the ability to compose and

execute queries. This functionality is provided by the execu-
tion engine, which implements a simple computation model.
It enables queries to be connected in a directed acyclic graph,
where the edges between queries represent data flow. Such
a network of queries is illustrated in Fig. 3.

The execution engine provides each query with a context,
which is the AST node (e.g., a method) on which the com-
mand prompt was invoked. A query has two additional ways

2

query
prompt

data exchange

visualization
native

queries

scripts

execution engine

Figure 2: The architecture of our system. Using a
query prompt, a developer can invoke and combine
queries. Queries can access diverse information re-
sources, make computations, and produce visualiza-
tions, and can be either native or implemented via
scripts. A unified data exchange format facilitates
the cooperation between multiple queries. An exe-
cution engine orchestrates query execution and the
information flow between queries.1

to access information.
First, a query may be connected to the output of other

queries via any number of required or optional inputs, which
comprise the inter-query data exchange. For example, a
query might receive on its input a set of method AST nodes,
and output their names as a set of strings. To enable com-
munication between queries, it is key that the data format
flowing between queries is unified (see Sec. 3.3).

Second, a query may access (that is, read and modify)
external resources (see Sec. 3.2.1), such as the program’s
source code (e.g., to perform a refactoring), call a method
of the IDE (e.g., to access the AST or show a message), read
from a file (e.g., to import external data), or use a REST
service (e.g., to create a bug report).

A query is executed only after all of its inputs are read.
When a query is run, it can perform arbitrary computa-
tion, which typically includes accessing external resources
and computing outputs. Once a query has finished execut-
ing, its outputs are forwarded to any downstream queries.

3.2 Query types
In principle a query can perform arbitrary computation

and use many information resources. However, to facili-
tate composition, we divide queries into three types (Fig. 4):
resource-access, visualization, and operator. Below, we de-
fine each type and explain how we designed corresponding
queries in order to improve usability.

3.2.1 Resource access
Resource-access queries are used to read and modify re-

sources external to the execution engine. They connect a
network of queries to the AST and external tools and data.
A resource-access query can be a source of data for other
queries. For example, a query may read the contents of a
file or it may extract version information from the project’s

1The git logo by Jason Long and icons made by Freepik from
www.flaticon.com are licensed by CC BY 3.0.

inter-query data exchange

external data access

queryX

i0
i1

o0

Figure 3: A query network with seven intercon-
nected queries. queryX is shown in detail. It has
two inputs (i0, which is the union of two outputs
from other queries and i1, which is unused here),
and one output (o0, which is duplicated).

repository and provide them as inputs to other queries for
processing. A resource-access query may also modify exter-
nal data. For example, it could create a new record in a
database, or modify the program. There is no limit on the
type of external resources a query may access; some common
ones are the program code or AST, the version repository,
the issue tracker, the file system, and on-line services.

To facilitate composability, we designed resource-access
queries according to the following guidelines. First, a resource-
access query provides access to only one resource. This re-
striction allows accessing one resource without imposing re-
quirements on another one. Second, complex resources are
accessed by multiple queries, which enables each query to
focus on a particular aspect of the resource. For example,
when reading the program’s AST, one query is used to se-
lect nodes while another provides control-flow information.
Third, when integrating tools that have a command line in-
terface, we created queries with a similar interface. This
enables developers to transfer some of their existing knowl-
edge from the terminal command to the query. For example,
in a query that accesses a Git repository, commits can be
specified by commit id, branch name, or reference like the
git command allows.

A noteworthy resource available through resource-access
queries is the IDE itself. A query may call available IDE
APIs to get information or to perform IDE functions. For
example, most IDEs maintain a code model that provides
easy access to the program’s AST. Such queries are not
limited to extracting information. Depending on available
IDE APIs, queries might be used for navigation between
code fragments, setting breakpoints, running tests, display-
ing warnings or errors, and refactoring code.

3.2.2 Visualization
Visualization queries are used to render information on

the screen. Different visualization queries can be used to
render the same piece of information in different ways in
order to better match the specific information needs of the
developer. For example, we support three ways to visualize
relations between code elements: (i) show the relations using
a textual notation – useful for a dense summary; (ii) high-
light on screen all code elements that appear in the relations

3

R R R V R VO

Figure 4: The three common types of queries: (R)
resource-access, (V) visualization, and (O) operator.
On the left a resource-access query extracts informa-
tion from an AST and forwards it to another query,
which writes it to a file. In the middle, this infor-
mation is being visualized instead of written to file.
On the right, an additional filter is inserted to refine
what information is displayed.

– useful when searching for particular patterns; (iii) show the
relations using arrows between code elements – useful when
exploring call graphs or data flow. Some visualizations are
provided by the underlying IDE, while others could be done
via external tools. Common visualizations in IDEs are high-
lighting a program fragment, showing a list or a tree of result
entries, and displaying error messages and warnings. More
visual IDEs could even provide a map of the code that en-
ables intuitive arrow overlays to explore connections between
elements or even a heatmap visualization similar to Fig. 1.

Our approach imposes no limit on how information can
be visualized. If an IDE exposes general drawing routines,
a query could use those to implement an entirely custom vi-
sualization. Some IDEs provide a built-in HTML rendering
engine, which could be used to easily and quickly implement
new ways for visualizing information. Using a combination
of HTML5 and Javascript, it is even possible to create in-
teractive visualizations as we demonstrate in Sec. 4.1. This
high degree of flexibility is indispensable for domain- and
project-specific visualizations.

We designed visualization queries according to the follow-
ing guidelines in order to make them easier to use. First,
each available visualization mechanism has its own query,
which makes it clear what will appear on the screen when
it is invoked. Second, visualizations impose as few require-
ments on the input data as possible, so that one visualization
can be easily swapped for another. Third, if a visualization
query is not explicitly provided by the user, but there is un-
consumed data at the end of a query-network execution, a
visualization is automatically chosen based on the structure
of the result. This frees developers from the need to always
explicitly specify a visualization that could be automatically
inferred.

3.2.3 Operator
Operator queries (operators) are used to perform internal

computation, for example, to refine results. Operators do
not access any external resources but rather help filter and
combine data in complex query networks. They work solely
with the unified data format, which we discuss in Sec. 3.3.
As operators work with sets and relations, they naturally
map to operations from set and relational algebra such as
union, intersect, select, and join. Building on these primi-
tives, we have also pre-defined more elaborate operators in

order to simplify common cases. For example, in Sec. 4.2,
we demonstrate the reachable operator, which filters out
elements unreachable from a starting point via a relation
– in essence a combination of transitive closure and selec-
tion. Such a convenience operator is very useful in answering
reachability questions, which are very common [17].

3.3 Inter-query data exchange
To enable query composition, all queries communicate us-

ing a simple unified structure for exchanging data. This
unified exchange structure is a set of tuples, because it is
sufficiently expressive and provides a simple mental model
for developers to work with.

Each input and output of a query is a set of tuples, and
each tuple consists of an arbitrary number of named ele-
ments. The names of elements within a single tuple have to
be unique. The elements of a tuple may be strings, integers,
and references to AST nodes. Each tuple has a tag, which
is an identifier that is either explicitly provided or is iden-
tical to the name of the tuple’s first element. This minimal
structure allows us to conveniently encode and access typi-
cal structures such as sets, lists, and graphs. For example,
the set of all methods whose name starts with get could be:

{ (node: getAge), (node: getAddress) }

The tuple tags could also be provided explicitly:

{ node: (node: getAge), node: (node: getAddress) }

It is also easy to express relations. For example, all methods
transitively called from rest could be expressed using the
calls relation:

{ calls: (caller: rest, callee: watchTV),

calls: (caller: rest, callee: sleep),

calls: (caller: sleep, callee: dream) }

Since there is no restriction on what the set contains, we
could also merge the two sets above:

{ (node: getAge), (node: getAddress),

calls: (caller: rest, callee: watchTV),

calls: (caller: rest, callee: sleep),

calls: (caller: sleep, callee: dream) }

It is also easy to relate information from different data sources.
For example, in:

{ (commit: "bcdef01", author: "John"),

changes: (commit: "bcdef01", node: sleep),

calls: (caller: rest, callee: watchTV),

calls: (caller: rest, callee: sleep),

calls: (caller: sleep, callee: dream) }

We can see that John made a change to sleep, which is
called by rest.

Filtering and combining can be easily done based on the
name or value of elements, or the tags of tuples. Result
visualizations can be automatically selected based on the
tags and tuples present in the final output. For example,
a tuple with the tag message could be shown as a message
associated with a code location.

3.4 Query prompt
In order to make information access quick and conve-

nient, we designed a specialized input mechanism for in-
voking queries – the query prompt. Below, we list the key
features of this interface.

4

foo -a -b
bar 1 2

baz -x

foobar y
queryX -arg

vis1
vis2

?

Figure 5: A complex composition of queries in
the query prompt. The outputs of foo and bar

are merged and forwarded to baz, whose output is
merged with the output of foobar and forwarded to
queryX. The output of queryX is duplicated and for-
warded to both vis1 and vis2. The resulting network
is the one from Fig. 3.

The prompt is normally hidden and does not take space
on screen. Using a keyboard shortcut, the developer can
show the prompt on top of an arbitrary code fragment. The
prompt is context-sensitive — it records the location of the
cursor inside the source code at the time the prompt was
shown and forwards it to queries. The queries can then use
this context (e.g., a class or a method) to implement their
behavior.

To use the prompt, developers simply type the queries
they want to execute. This keyboard-based input allows ex-
perienced developers to efficiently invoke queries. Multiple
queries can be composed by typing the pipe character ‘|’.
The similarity of this interface to a typical Unix command
prompt ensures that developers are already familiar with the
interaction flow and composition using pipes.

The input field of the prompt is not a standard text box,
but a custom widget that allows non-linear queries. Fig. 5
shows an example of non-linear input. The prompt does
not allow the creation of an arbitrary query network, and
uses at most one input and one output per query. Develop-
ers can create parallel paths by pressing a keyboard short-
cut and can direct data flow using multi-line pipes. There
are currently two multi-line pipes: joining and subtracting.
Both types have a single output that is duplicated among
all downstream queries. A joining multi-line pipe outputs a
union of all of its inputs. A subtracting multi-line pipe sub-
tracts from its first input all remaining inputs and outputs
the result. Even though this mechanism cannot construct
an arbitrary query network, we find that it is sufficiently
expressive for many practical tasks.

While we find the query prompt a convenient mechanism,
the rest of our system is independent of it and there are other
ways for invoking queries. For example, a lighter approach
could be to show a text-input on right click and parse linear
commands. This could also be extended with support for
named pipes. On the other hand, for creating truly custom
queries, a graphical editor could be created, which allows
manually wiring queries in a complex network.

3.5 Extensibility via scripts and native queries
Using our system, the simplest way to access and manip-

ulate information is to compose existing queries directly on
the query prompt and get results immediately. Query com-
position covers a broad range of common needs with min-
imal effort, but inevitably, developers will need specialized
behavior where composition will not be enough. To support
custom information processing we provide two extensibility
mechanisms.

The first one is to implement new queries as light-weight

scripts, in our case using Python. Scripts allow orchestrat-
ing complex query flows and provide access to specialized
resources, which is made easier by existing libraries for the
scripting language. Scripts have access to a limited API: the
context, inputs, and outputs of the query they represent,
and the program’s AST. This API is enough to make scripts
versatile while keeping them extremely simple. For example,
Fig. 6 shows the complete script for selecting only if state-
ments that have else branches from the input. Implementing
a query via a script is as easy as writing the script file. Any
available scripts are directly invokable on the query prompt
and scripts are seamlessly composable with other queries.
The execution engine translates the inter-query data format
to and from the native environment and the scripting lan-
guage’s virtual environment.

for node in Query.input.tuples(’ast’):

if isinstance(node.ast, IfStatement):

if node.ast.elseBranch.size() > 0:

Query.result.add(node)

Figure 6: A Python script that filters input nodes.

The second extension mechanism is to create new na-
tive queries within the host IDE of our system. Native
queries give the developer unlimited power to perform spe-
cialized computation and allow deep IDE integration — un-
like scripts, native queries have access to all IDE APIs. The
drawback of this approach is that it is more demanding
and time-consuming than writing a script, since develop-
ers will have to, essentially, extend the host IDE (e.g., write
an Eclipse plug-in).

In practice, native queries, which provide deep IDE inte-
gration, and scripts, which access a custom resource, com-
plement each other well, as we show in Sec. 4.

4. CASE STUDIES
To analyze the applicability of our approach, we demon-

strate its use in a variety of practical programming scenar-
ios. For each case, we motivate its practical relevance, show
a possible solution, and discuss how our approach addresses
the needs of programmers. All examples can be expressed
in our implementation, which is discussed in Sec. 5. A video
demonstrating most of the scenarios below can be seen at
youtu.be/kYaRKuUy9rA.

4.1 Callgraph of selected method
Programmers frequently need to understand control flow

and, in particular, follow paths through several method calls
[17]. IDEs often have built-in call graph views, and there is
a number of research tools that further facilitate the explo-
ration of call graphs [9, 14, 16]. Let’s examine a simple
scenario:

What is the callgraph of this method?

As this is a commonly needed piece of information, we
provide a native query:

callgraph

Because it is context-sensitive, this query will automatically
return the callee graph of the method that contains the cur-
sor. The query itself just returns a set of tuples and does

5

not produce any visualization. As no visualization is explic-
itly provided, the execution engine automatically chooses
one based on the structure of the result. By default, results
that represent relations between AST nodes are visualized
as arrows connecting the nodes’ representations on screen as
shown on Fig. 7(a). Alternatively, the developer could show
all result tuples in a table (Fig. 7(b)):

callgraph | table

or highlight visually the methods that are part of the call
graph without showing arrows (Fig. 7(c)):

callgraph -nodes

Here, the execution engine will detect that the output is
a set of AST nodes and will highlight them on the screen.
The visualizations from Figs. 7(a) and 7(c) use Envision’s
visual code presentation, but analogous visualizations also
exist in conventional IDEs: line highlights, and arrows be-
tween lines. These three visualization options illustrate an
important aspect of our approach: the results of queries
are decoupled from their visualizations. This decoupling en-
ables flexible visualizations that allow the presentation of
the results to more accurately match the information need
of the developer. Common presentations such as highlights,
graphs, arrows, and tables can be readily provided by the
IDE. As we show next, developers can also add their own
visualizations.

In some projects or domains, specialized visualizations en-
able better information comprehension. A very convenient
way of achieving custom visualizations is to quickly create
them by using HTML and existing developer skills. Full-
fledged IDEs such as Eclipse often come with a built-in
HTML rendering engine, and our approach allows visual-
ization queries to utilize such capabilities. For example, we
used the freely available open-source vis.js Javascript library
and a custom Python script to implement the visualization
from Fig. 7(d). With a total of 80 lines of Javascript and
Python code we can run the query:

callgraph | toHtmlGraph

and get an interactive HTML view of a graph that enables
users to select and rearrange nodes. The toHtmlGraph script
converts the tuple set from our system into an HTML page
that uses vis.js, which in turn provides the rendering and
interactions.

4.2 Recently changed recursive methods
Sillito et al. [23] identify the lack of support for writing re-

fined queries and combining information as two of the three
major gaps in tool support for answering developers’ ques-
tions. One such question is:

Which recursive methods have changed recently?

This question is a refinement of the questions we showed
in both Sec. 2.1 and Sec. 4.1. Compared to the former, it
adds the requirement of recursive methods. Compared to
the latter, it adds the need for another information source,
the version repository. Our approach enables answering this
question directly:

callgraph -global
| reachable -self
| changes -c 5 -nodes

(a)

Dreams

Bed

rest

sleep()
watchTv()

sleep

dream()

dream

watchTv
goToWork

(b)

Dreams

Person

rest

sleep()
watchTv()

sleep

dream()

dream

watchTv
goToWork

calls
callee caller

Person.watchTv Person.rest
Person.sleep Person.rest
Person.dream Person.sleep

(c)

Dreams

Bed

rest

sleep()
watchTv()

sleep

dream()

dream

watchTv
goToWork

(d)

Figure 7: Different ways of visualizing results that
describe a relation: (a) arrows between related el-
ements; (b) a table; (c) highlighting relation ele-
ments; (d) a custom HTML visualization: in this
case, an interactive graph rendered using the vis.js

Javascript library.

The -global argument makes callgraph return the call
graph of the entire program, ignoring context. The result
is then piped into the reachable query, which filters AST
nodes that cannot reach themselves following the relations
from the input. The output contains only recursive meth-
ods. Finally, we use the changes query to select only those
methods from the input that have changed in the last 5
commits.

Two things are noteworthy. First, it was possible to easily
refine the call graph query by inserting the reachable filter
in order to get a set of recursive methods. And second, it was
also easy to combine the result with another information
source. Other research tools rarely provide both of these
features, and mainstream tools such as regular expression
search are thoroughly inadequate for such tasks.

4.3 Why is this code the way it is?
Programmers often need to know the reason some code

exists or looks the way it does (e.g., questions 8-10 from
Fritz and Murphy [6]). There are multiple ways to interpret
and answer this question, but a common approach is to con-
nect a piece of code with version control and bug database
information. Here is how a query answering this question
could look:

6

ast -type Statement -topLevel
| changes -intermediate
| join change.id,commit.message ,ast

-as data
| associatedBugs

This is a more complex query, but building it piece by
piece is rather straight-forward. We want information about
each statement in a method, so we first get all top-level (non-
nested) statements using ast -type Statement -topLevel.
The result is piped into the changes query, which yields
change information about all commits that modify any of
the input statements. The result consists of two different
kinds of tuples: the first one associating each node with the
id of the commit where it changed, the second associating
a commit id with the commit’s meta data (e.g., the commit
message). Using the join query, we merge those two differ-
ent kinds of tuples into a single kind that relates nodes and
commit messages and that we call data. We use this name
in the associatedBugs script (Fig. 8), which is invoked next.
This script scans the text of each commit message, looking
for references to issue numbers and fetches the correspond-
ing issues’ descriptions from the GitHub issue tracker us-
ing a REST request. It uses the freely available GitHub3

Python library to communicate with GitHub. The output
of the script is a set of tuples representing info messages,
which are automatically shown using standard Envision in-
formation bubbles next to the corresponding code as shown
in Fig. 9. Developers might want to execute this query of-
ten. They can conveniently create an alias to it and use this
name to call it in the future. The alias may also appear as
a subquery in other even more complex queries.

Functionality for explaining the reason for a piece of code
is also available in other tools like the blame command for
version control systems, or the Eclipse annotate feature.
However, our approach allows building this information from
elementary blocks and precise controlling of what is in-

import re

from github3 import GitHub

gh = GitHub()

repo = gh.repository(’username’, ’repository’)

def referencedIssues(commit):

for issueId in re.findall(’#(\d+)’, commit):

yield repo.issue(issueId)

Build an HTML message from commit and issue data

for data in Query.input.tuples(’data’):

text = ’Commit
{}
’.format(

data.message.replace(’\n’, ’
’))

for issue in referencedIssues(data.message):

text += ’Issue #{}
{}
’.format(

issue.number, issue.title)

t = Tuple([(’message’, text),

(’ast’, data.ast), (’type’, ’info’)])

Query.result.add(t)

Figure 8: A Python script that fetches issue infor-
mation from a GitHub repository.

why
langjav a.

TopLevel

ArrayListutiljav a. .

Listutiljav a. .

ssssssssssssssssssssssssssssssssssstest items
Item[]

void

dataItemData ← getDataitems[i]. ()
addallData. ()data

detachdata. ()

for iint ← 0 i< lengthitems. ⁺⁺i

resetItemCount()lengthitems.

resetItemCount newCount
int

void

List⟨ ⟩ItemData allData← new ArrayList()

ItemData
ArrayListutiljav a. .

Listutiljav a. .

detach void

Item

ArrayListutiljav a. .

Listutiljav a. .

getData ItemData

data

ItemData data

Commit
Add support for multiple items

This resolv es issue #3 and should also help with bug #6

Issue #3
Only a single item is supported
Issue #6
Can't establish connection using a proxy

Commit
Fix #11 - incorrect item count

This was just an off-by-one error

Issue #11
The app crashes if I try to use the last item

Figure 9: A for-loop and a method call with cor-
responding explanations for why they were last
changed. The information bubbles are standard vi-
sualizations in the Envision IDE.

cluded. Developers can also link to arbitrary additional
sources to fit the answer of this question to their needs.

4.4 Which upstream changes possibly conflict
with mine?

This question might arise in fast moving projects where
developers’ local branches may quickly diverge from the de-
velopment branch. Answering this question precisely is im-
possible in general, but one way to get an approximate an-
swer is to compare local changes to changes from the remote
branch. One possible query to perform this comparison and
the corresponding result are illustrated in Fig. 10.

We run two queries in parallel that fetch the latest changes
and highlight the changed nodes in different colors. The
prompt’s support for non-linear queries enables the flow of
query results to be split and joined to form a more complex
query graph, and can often yield a simpler and more intu-
itive solution compared to a linear approach.

(a)
changes HEAD..master -nodes color blue
changes origin/master..master -nodes color red

?

(b)

Test

MyClass

foo x
int

y
int

int

return 0

x*y = 0

return ()x-y /()x*y

Figure 10: (a) Two parallel queries that will high-
light local changes and changes between the master

branch and the origin repository in different colors.
(b) The resulting highlights on part of the code.

7

4.5 Instability metric
A common application of program query tools is to com-

pute software metrics [1, 19]. To illustrate the computation
of metrics using our approach, we will compute an instabil-
ity metric [18]. The instability I of a Java package could be
defined as:

I =
Efferent Couplings

Efferent Couplings + Afferent Couplings

Where Efferent Couplings is the number of classes inside the
package that depend on (import) classes outside the package,
and Afferent Couplings is the number of classes outside of
the package that depend on classes within the package. The
higher the instability, the easier it is to change a package
without affecting other packages. To compute this metric
we could use the following query:

ast -type Class -global
| instability
| table

This query fetches all Class AST nodes, forwards them to
the instability script, and displays the results in a table.
The instability script (Fig. 11) iterates over all classes,
collecting dependency information in order to compute the
metric. Our approach’s support for scripts enables the easy
computation of metrics and more generally of code analyses.

4.6 Modifying recursive methods
Programmers often have to change existing code at scale.

Development tools typically provide a limited set of refac-
toring options, and one is lucky if one’s use case is covered
by these. The fallback solution is most often textual search
and replace using regular expressions. However, many situa-
tions are non-standard and are simply not expressible using
regular expressions. Let’s consider one such example – a
variation of Sec. 4.2:

Modify the program so that each recently changed recursive
method prints the values of its arguments when called.

This modification is for instance useful if a program crashes
due to a stack overflow after recent changes and one wants
to better understand what code is being executed. We could
add the necessary print statements using the query:

callgraph -global
| reachable -self
| changes -c 5 -nodes
| insertArgPrinting

Like we showed in Sec. 4.2, we first get all recursive meth-
ods that have changed recently. Then we pass these methods
to the insertArgPrinting script (Fig. 12), which inserts
code that prints the name and lists all arguments of each
method.

Three things are worth noting here. First, we executed
a query which modified a resource, in this case the source
code. Second, this modification uses both non-trivial pro-
gram properties (recursion) and information other than the
source code itself (version information). Thus, it is outside
the reach of regular expressions and also impossible in typ-
ical refactoring languages such as JunGL [25] or Rascal [7],
which cannot integrate additional information sources into
refactoring decisions. Third, the support for scripts makes
it easy to perform program edits within the overall query
mechanism. Just like any other query, edits can also depend

Returns the fully qualified package of a node

def packageOf(node):

package = ’’

node = node.parent

while node:

if type(node) is Module:

package = node.symbolName() + ’.’ + package

node = node.parent

return package

Returns a list of all packages a class imports

def dependsOnPackages(aClass):

result = []

for decl in aClass.subDeclarations:

if type(decl) is NameImport:

package = ’’

name = decl.importedName

while type(name) is ReferenceExpression:

package = name.name + ’.’ + package

name = name.prefix

result.append(package)

return result

allPackages = set()

eff = {}

aff = {}

Loop over input classes to collect

package dependencies

for tuple in Query.input.take(’ast’):

p = packageOf(tuple.ast)

allPackages.add(p)

deps = dependsOnPackages(tuple.ast)

if deps:

eff[p] = 1 + (eff[p] if p in eff else 0)

for dep in deps:

aff[dep] = 1 + (aff[p] if p in aff else 0)

Compute the instability of each package

for p in allPackages:

e = eff[p] if p in eff else 0

a = aff[p] if p in aff else 0

i = str(e/(e+a)) if e+a > 0 else 1

t = Tuple([(’package’, p), (’instability’, i)])

Query.result.add(t)

Figure 11: A Python script that computes instabil-
ity of all packages.

on input from other queries and external data resources,
which enables data-driven changes to the code.

5. IMPLEMENTATION
To validate our approach, we have implemented it as a

plug-in to the open-source Envision [2] programming envi-
ronment. Envision offers a more visually-rich code presenta-
tion compared to traditional IDEs and allows us to more eas-
ily implement diverse visualization queries. The implemen-
tation of our approach and Envision itself are open-source
on GitHub: github.com/dimitar-asenov/Envision.

Each native query is implemented as a single C++ class,

8

for t in Query.input.tuples(’ast’):

m = t.ast

if type(m) is Method:

call = ’System.out.println("calling ’ +

m.name + ’: "’

for a in m.arguments:

call += ’ + "’ + a.name + ’=" + ’ + a.name

call += ’)’

m.beginModification(’add print statement’)

nodeExpr=AstModification.buildExpression(call)

printStmt = Node.createNewNode(

’ExpressionStatement’, None)

printStmt.expression = nodeExpr

m.items.prepend(printStmt)

m.endModification()

Figure 12: A Python script that inserts code to print
all arguments at the beginning of a method.

which has access to our framework’s infrastructure as well
as all IDE APIs. Additional native queries can be added by
creating new query classes in new plug-ins. We use exist-
ing IDE features to implement queries that show highlights,
arrows, and information messages, and to render HTML.
The advanced features of the changes command (e.g., ver-
sion information on a per-AST node basis), are enabled by
Envision’s own fine-grained version control system.

To enable advanced interactions in the command prompt,
we parse the user’s input on every keystroke and create a
parse tree of the current input. The parse tree is used to
create and render parallel queries, and it is mapped to a
string representation that enables copying and pasting. This
string representation allows users to share queries and is also
used when creating aliases to queries.

Queries are executed sequentially by a simple data-flow
programming engine, which can be easily extended to par-
allel execution and streaming of data.

We use boost.python to integrate Python scripting. Python
scripts have access to the inputs, outputs, and context of a
query, as well as Envision’s AST model. A few helper fea-
tures are also available, such as the ability to invoke other
queries and to modify the program.

6. RELATED WORK

6.1 Questions developers ask
A number of recent studies investigate what questions de-

velopers ask and how they seek answers to these questions.
Ko et al. [13] observed 17 professional developers in 90-

minute sessions and recorded the information they needed
and how they acquired it. They present a list of 21 infor-
mation types and associated questions that developers often
asked. The authors suggest that tools should be able to
share information and let users transform it as needed, both
of which our system directly supports.

Sillito et al. [23] observed 27 developers during two stud-
ies and compiled a list of 44 questions that were frequently
asked during program evolution. They list three areas for
improvement of information seeking tools: (i) support for
asking more precise and refined questions, (ii) using context

when searching for information and displaying results, and
(iii) support for combining information. Our approach di-
rectly addresses these three gaps with the ability to pipe
queries, to use context for queries and show results in-line
with the program, and to combine information from different
sources.

In three separate studies LaToza and Myers [17] observed
that developers often asked reachability questions and sug-
gest that answering such questions is difficult and time-
consuming in large code bases. Reachability questions are
about a feasible path through a program, for example in the
program control flow or data flow graphs. Our approach
directly supports reachability questions.

Fritz and Murphy [6] interviewed 11 professional devel-
opers about questions they face frequently and learned 78
questions that span different domains such as the source
code, bug database, version history, test cases, etc. Most
of these questions require linking different information to-
gether, which is supported by our approach.

Sadowski et al. [20] collected data from in-browser code
search queries of 27 developers at Google and characterized
their search behavior. One of their observations is that de-
velopers frequently perform quick searches to navigate code
and the authors suggest the integration of search tools di-
rectly within the IDE to facilitate quick searches without
context switching. Our system enables this workflow.

6.2 Tools for seeking information
Researchers have developed a variety of languages and

techniques for querying source code [5, 8, 19, 21], which
have also been analyzed in comparative studies [1, 4]. Some
tools also offer a natural language interface [11, 26]. Such
query tools offer powerful and efficient ways to query pro-
gram properties, but many are restricted to the program
source and do not integrate additional information resources.
Such query engines could be integrated as a single informa-
tion resource in our platform, which will enable the combi-
nation of their output with additional information. For such
an integration, it is important that query results are reified
with other entities (e.g., AST nodes) so that they are usable
in the rest of the system [5].

A number of tools do allow the combination of differ-
ent data sources. ABSINTHE [10] was designed specifically
to enable queries over different versions of software. More
generally, as the basis of the Ferret tool, Alwis and Mur-
phy [3] present a model for integrating information from
different sources, which they call Spheres. For example,
one sphere could represent source code, while another could
capture run-time information such as a call stack. Two
spheres can be linked if they contain matching elements, and
these matchings have to be predefined by the tool design-
ers. Later, Fritz and Murphy [6] proposed another approach
for integrating data from different sources – the information
fragment model. Unlike Ferret, the information fragment
model allows the automatic inference of links between dif-
ferent kinds of information so that it can be easily composed.
Our approach is different from these approaches in several
ways: (i) the link between different sources does not need to
be predefined, but the developer has full control over what
information is linked; (ii) the simple tuple set interface of
queries allows for the easy addition of a wide range of in-
formation resources; (iii) result visualizations are flexible to
better match specific information needs.

9

Recognizing the importance of combining information from
different sources, Schiller and Lucia [22] formalize a model
for inter-plug-in communication and cooperation within an
IDE. They suggest that plug-ins should share data and
should allow users to put information from plug-ins together
via pipes and filters similarly to the Unix Shell and the Win-
dows Powershell. Our system is also inspired by the Unix
shell, but additionally is concerned with visualizations and
allows more flexible plug-in and script mixtures. In a simi-
lar spirit, Kuhn [15] suggests that IDEs should become open
platforms that facilitate the data exchange between plug-ins.
In his vision, plug-ins should make all data they compute
public and available to other plug-ins for consumption. To
share data, he suggests that plug-ins use meta-models to
describe the data they produce in a unified system. Our
approach also features a unifying component – the tuple set
exchange format – which we believe is easier for developers
to understand and use to compose complex queries.

6.3 Visualization of information
There is a wealth of tools for visualizing information re-

lated to software. However these are typically coupled to
a specific kind of inquiry. Most tools that provide general
query capabilities provide only a single way to view results or
only basic visualization flexibility. Common result presenta-
tions are list or tree views [3, 5, 6, 8, 11, 26] and graphs [16,
21]. Some tools allow configurable views or advanced inter-
faces. The prototype implementation for Fritz and Murphy’s
information fragment model [6] presents the results in a tree
view, which allows different projections of the data affecting
the hierarchy of objects in the tree. SemmleCode [19] can
present results as a list or as a number of predefined chart
types. Reacher [16], Stacksplorer [9], and Blaze [14] enable
the interactive exploration of call graphs. Our approach is
more general and, unlike these other tools, offers flexible and
easily extensible visualizations.

6.4 Scripting actions and refactoring
Existing program querying tools that go beyond display-

ing information are typically limited to refactoring code. To
support the implementation of complex or project-specific
refactorings, researchers have designed scripting languages
for refactoring such as JunGL [25] or Rascal [7], which offer
powerful capabilities to analyze and transform the source
code. Our system also enables complex refactorings via
Python scripts and it offers two major advantages: (i) scripts
can use external resources in addition to the source code,
enabling data-driven refactorings; and (ii) modifying code
is just a special-case for our system’s general support for
automating arbitrary actions.

7. CONCLUSION AND FUTURE WORK
We showed an approach to turn an IDE into a power-

ful and customizable information system. We demonstrated
how a unified data exchange format enables query com-
position and allows developers to combine diverse informa-
tion resources. The results of such queries can be presented
using a wide range of visualizations enabling a better fit
for a developer’s particular information needs – a key in
improving comprehension. Our approach can also be used
for automating developer actions and data-driven refactor-
ings of code. We showed that the integration of the Python
scripting language unlocks great extensibility options, pro-

viding a platform for rapidly integrating new information
resources or performing complex data manipulation. We
were inspired by Unix command shells when designing the
context-sensitive query prompt – a familiar interface for de-
velopers and a convenient entry point for the entire system.

We evaluated our approach using diverse case studies. A
user study is future research, which would enable us to fur-
ther asses the usability of our approach.

Another promising research direction is interactive queries.
For example, query results that represent code locations and
a suitable mechanism to explore them could improve nav-
igation inside the IDE, which takes a significant time for
developers [12]. Such navigation could use waypoints, simi-
lar to tagSEA [24], which could be used as a guided tutorial
that introduces new programmers to a particular part of
the system or shows the steps for a routine task. Another
use for interactive queries is to integrate a compiler as part
of a refactoring query. When performing a non-standard
refactoring, sometimes developers first manually change a
part of the code, deliberately breaking compilation, and then
run the compiler in order to manually traverse and fix each
compilation error. Perhaps this process could be more auto-
mated using a query that runs the compiler and interactively
processes each error. Yet another example for the potential
of interactive queries is extracting run-time data. For ex-
ample, we have done preliminary experiments with setting
breakpoints from within queries, pausing queries mid-way
in order to allow the program to run, and collecting data
during its execution when a breakpoint is hit. This ability
to collected run-time data effectively makes this data avail-
able as another resource for queries and paves the way for
execution-based visualizations and refactorings.

We see the continuing transformation of IDEs into full-
fledged information systems as promising and inevitable given
the high complexity of today’s software. As approaches for
integrating data resources like ours evolve, we speculate that
standards will emerge. These standards should make it eas-
ier to integrate information, breaking down barriers to co-
operation between tools and making developers more pro-
ductive.

8. REFERENCES
[1] T. Alves, J. Hage, and P. Rademaker. A comparative

study of code query technologies. In Source Code
Analysis and Manipulation (SCAM), 2011 11th IEEE
International Working Conference on, pages 145–154,
Sept 2011.

[2] D. Asenov and P. Müller. Envision: A fast and flexible
visual code editor with fluid interactions (overview).
In Visual Languages and Human-Centric Computing
(VL/HCC), 2014 IEEE Symposium on, pages 9–12,
July 2014.

[3] B. de Alwis and G. Murphy. Answering conceptual
queries with Ferret. In Software Engineering, 2008.
ICSE ’08. ACM/IEEE 30th International Conference
on, pages 21–30, May 2008.

[4] B. de Alwis, G. Murphy, and M. Robillard. A
comparative study of three program exploration tools.
In Program Comprehension, 2007. ICPC ’07. 15th
IEEE International Conference on, pages 103–112,
June 2007.

[5] C. De Roover, C. Noguera, A. Kellens, and
V. Jonckers. The SOUL tool suite for querying

10

programs in symbiosis with Eclipse. In Proceedings of
the 9th International Conference on Principles and
Practice of Programming in Java, PPPJ ’11, pages
71–80, New York, NY, USA, 2011. ACM.

[6] T. Fritz and G. C. Murphy. Using information
fragments to answer the questions developers ask. In
Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 1, ICSE
’10, pages 175–184, New York, NY, USA, 2010. ACM.

[7] M. Hills, P. Klint, and J. J. Vinju. Scripting a
refactoring with Rascal and Eclipse. In Proceedings of
the Fifth Workshop on Refactoring Tools, WRT ’12,
pages 40–49, New York, NY, USA, 2012. ACM.

[8] D. Janzen and K. De Volder. Navigating and querying
code without getting lost. In Proceedings of the 2nd
International Conference on Aspect-oriented Software
Development, AOSD ’03, pages 178–187, New York,
NY, USA, 2003. ACM.

[9] T. Karrer, J.-P. Krämer, J. Diehl, B. Hartmann, and
J. Borchers. Stacksplorer: Call graph navigation helps
increasing code maintenance efficiency. In Proceedings
of the 24th Annual ACM Symposium on User
Interface Software and Technology, UIST ’11, pages
217–224, New York, NY, USA, 2011. ACM.

[10] A. Kellens, C. De Roover, C. Noguera, R. Stevens,
and V. Jonckers. Reasoning over the evolution of
source code using quantified regular path expressions.
In Reverse Engineering (WCRE), 2011 18th Working
Conference on, pages 389–393, Oct 2011.

[11] M. Kimmig, M. Monperrus, and M. Mezini. Querying
source code with natural language. In Proceedings of
the 2011 26th IEEE/ACM International Conference
on Automated Software Engineering, ASE ’11, pages
376–379, Washington, DC, USA, 2011. IEEE
Computer Society.

[12] A. J. Ko, H. Aung, and B. A. Myers. Eliciting design
requirements for maintenance-oriented IDEs: a
detailed study of corrective and perfective
maintenance tasks. In Proceedings of the 27th
international conference on Software engineering,
ICSE ’05, pages 126–135, New York, NY, USA, 2005.
ACM.

[13] A. J. Ko, R. DeLine, and G. Venolia. Information
needs in collocated software development teams. In
Proceedings of the 29th international conference on
Software Engineering, ICSE ’07, pages 344–353,
Washington, DC, USA, 2007. IEEE Computer Society.

[14] J.-P. Krämer, J. Kurz, T. Karrer, and J. Borchers.
Blaze: Supporting two-phased call graph navigation in
source code. In CHI ’12 Extended Abstracts on Human
Factors in Computing Systems, CHI EA ’12, pages
2195–2200, New York, NY, USA, 2012. ACM.

[15] A. Kuhn. IDEs need become open data platforms (as
need languages and VMs). In Developing Tools as
Plug-ins (TOPI), 2012 2nd Workshop on, pages
31–36, June 2012.

[16] T. LaToza and B. Myers. Visualizing call graphs. In
Visual Languages and Human-Centric Computing
(VL/HCC), 2011 IEEE Symposium on, pages
117–124, Sept 2011.

[17] T. D. LaToza and B. A. Myers. Developers ask
reachability questions. In Proceedings of the 32nd

ACM/IEEE International Conference on Software
Engineering - Volume 1, ICSE ’10, pages 185–194,
New York, NY, USA, 2010. ACM.

[18] R. Martin. Oo design quality metrics. An analysis of
dependencies, 12:151–170, 1994.

[19] O. Moor, D. Sereni, M. Verbaere, E. Hajiyev,
P. Avgustinov, T. Ekman, N. Ongkingco, and
J. Tibble. Generative and Transformational
Techniques in Software Engineering II: International
Summer School, GTTSE 2007, Braga, Portugal, July
2-7, 2007. Revised Papers, chapter .QL:
Object-Oriented Queries Made Easy, pages 78–133.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[20] C. Sadowski, K. T. Stolee, and S. Elbaum. How
developers search for code: A case study. In
Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE
2015, pages 191–201, New York, NY, USA, 2015.
ACM.

[21] T. Schafer, M. Eichberg, M. Haupt, and M. Mezini.
The SEXTANT software exploration tool. IEEE
Transactions on Software Engineering, 32(9):753–768,
Sept 2006.

[22] T. Schiller and B. Lucia. Playing cupid: The IDE as a
matchmaker for plug-ins. In Developing Tools as
Plug-ins (TOPI), 2012 2nd Workshop on, pages 1–6,
June 2012.

[23] J. Sillito, G. Murphy, and K. De Volder. Asking and
answering questions during a programming change
task. Software Engineering, IEEE Transactions on,
34(4):434–451, July 2008.

[24] M.-A. Storey, L.-T. Cheng, I. Bull, and P. Rigby.
Waypointing and social tagging to support program
navigation. In CHI ’06 Extended Abstracts on Human
Factors in Computing Systems, CHI EA ’06, pages
1367–1372, New York, NY, USA, 2006. ACM.

[25] M. Verbaere, R. Ettinger, and O. de Moor. JunGL: A
scripting language for refactoring. In Proceedings of
the 28th International Conference on Software
Engineering, ICSE ’06, pages 172–181, New York, NY,
USA, 2006. ACM.

[26] M. Würsch, G. Ghezzi, G. Reif, and H. C. Gall.
Supporting developers with natural language queries.
In Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 1, ICSE
’10, pages 165–174, New York, NY, USA, 2010. ACM.

11

