
Available

CAV
Evaluation

Artifact

Functional

CAV
Evaluation

Artifact

Accelerating Automated Program Verifiers
by Automatic Proof Localization

Kiran Gopinathan1⋆, Dionysios Spiliopoulos2, Vikram Goyal3,
Peter Müller2, Markus Püschel2, and Ilya Sergey3

1 University of Illinois Urbana-Champaign, USA
2 Department of Computer Science, ETH Zurich, Switzerland

3 National University of Singapore, Singapore

Abstract. Automated program verifiers such as Dafny, F⋆, Verus, and
Viper are now routinely used to verify real-world software. Unfortunately,
the performance of the SMT solvers employed by these tools is not always
able to keep up with the increasing size and complexity of verification
problems, resulting in long verification times and verification failures due
to time-outs. This performance degradation occurs because large SMT
queries increase the search space for the SMT solver, in particular, the
number of possible quantifier instantiations. Most existing attempts to
mitigate this problem require substantial manual effort to reduce the size
of the search space, for instance, by decomposing proofs.
In this paper, we present an automatic technique to significantly improve
the performance of SMT-based program proofs by drastically reducing
the proof search space for each assertion, in particular, the performed
quantifier instantiations. Starting from a successful verification, we auto-
matically extract for each assertion the quantified axioms used by the
SMT solver to show that the assertion is valid. Crucially, these include
lurking axioms, which are logically irrelevant, but needed to trigger the
instantiation of other, relevant axioms. We describe a novel proof localiza-
tion algorithm that implements a semantics-preserving source-to-source
translation of a program such that re-verifying an assertion in the opti-
mized program uses only the axioms in its proof essence. This rewriting
greatly reduces the possible quantifier instantiations and, thereby, the
search space for the SMT solver, such that all future runs of the verifier,
for instance as part of continuous integration, are substantially faster.
We implemented our algorithm for the Boogie verifier and demonstrated
its effectiveness on examples from Dafny and Viper. Specifically, for files
with verification times over a minute, we show significant speedups of
up to 100–1000 times and no slowdowns. We also provide some evidence
that these improvements persist as projects evolve.

1 Introduction

Automated program verification has become an increasingly popular approach
to certifying real world systems, with the most recent developments tackling
larger and more ambitious targets such as distributed systems [18], cryptographic

⋆ Work done while at National University of Singapore.

https://doi.org/10.5281/zenodo.15201479

2 Gopinathan et al.

libraries [28,1], file systems [7], and access protocols [9]. By delegating proof
obligations to Satisfiability Modulo Theories (SMT) solvers, such as Z3 [11] or
cvc5 [2], automated verification tools such as Dafny [21], F⋆ [30], Verus [20], and
verifiers built on top of Viper [25] or Why3 [15] substantially reduce the proof
burden for users and provide a lighter alternative to interactive proof assistants.

However, with the growing ambition of verification projects, automated veri-
fiers increasingly face performance-related maintenance problems. Complex proof
obligations substantially increase the proof search space, which may lead to
long verification times and failures due to time-outs [18,27]. This performance
degradation is primarily caused by an explosion of the number of quantifier
instantiations performed by the SMT solver. Most program verifiers use the SMT
solver’s e-matching algorithm [12], which associates each universal quantifier with
a syntactic matching pattern (often called trigger) and instantiates the quantifier
when a ground term in the proof context matches the pattern. Large queries con-
tain thousands of quantifiers and many ground terms that trigger instantiations,
introducing additional ground terms and, thus, even more instantiations.

The prevalent solution to date is to address maintenance concerns by manually
refactoring verified programs in order to reduce the number of quantifiers as
well as the general size of the proof context. For instance, Dafny and Verus allow
programmers to control which function definitions (encoded as quantified axioms)
are available in a proof. Dafny and Gobra [31] also allow programmers to break
up proofs into smaller pieces, which reduces the size of the proof context for each
piece. Both approaches are helpful, but require substantial manual effort and
insight to decide when to refactor. Moreover, they are difficult to apply, even for
expert users, because the effect of a code refactoring on verification time is rather
unpredictable due to the SMT solver’s complex heuristics. Bordis and Leino use
a syntactic analysis to automatically pre-instantiate some quantified axioms [5],
which improves verification times, but may lead to spurious errors if the analysis
cannot determine all necessary instantiations.

This work. We present proof localization, an automatic procedure to systematically
minimize the proof search space for the SMT solver and, thereby, improve
verification time. Given an initial successful verification of an assertion, we extract
from the SMT solver the essence of the proof, which includes the information
needed for the solver to efficiently re-prove the assertion on all future runs of the
verifier. The proof essence contains the ∀-quantified axioms used by the SMT
solver to prove that the assertion is valid. Moreover, it includes additional axioms
that are logically irrelevant for the proof, but needed by the SMT solver to trigger
the instantiation of other, relevant axioms—we refer to them as lurking axioms.

Once we have identified all axioms needed to prove an assertion, we auto-
matically rewrite the input program in a semantics-preserving way, such that
computing standard verification conditions over the rewritten program includes,
for each assertion, only those axioms strictly needed by the SMT solver (rather
than all available in the context). The result is a drastically reduced search space.

Since proof localization requires the existence of a proof, it does not improve
performance of the initial verification of each assertion. Nevertheless, speeding

Accelerating Automated Program Verifiers by Automatic Proof Localization 3

up future runs of the verifier is of great practical value. In an active project,
each assertion is typically verified a countless number of times. For example,
when the code evolves, when iteratively verifying increasingly-strong properties,
when code is reused in different contexts, when upgrading the program verifier
or the underlying SMT solver, or when verification is integrated into continuous
integration pipelines. Caching of verification results is helpful in only a few of
these cases, when a proof obligation remains entirely unchanged compared to the
cached result; however, even a small, irrelevant change requires re-verification.

Our implementation performs a source-to-source transformation on programs
in the Boogie intermediate verification language [3]. It could easily be integrated
into any Boogie-based source verifier by performing a corresponding transforma-
tion on the source program, such that the unmodified translation into Boogie
produce the optimized program. Alternatively, the proof essence could be stored
separately from the source program and used by an adapted Boogie translation.

We have implemented our technique in a tool called Axolocl and evaluated it
on Boogie programs generated by Dafny and Viper, including various benchmarks
from industrial verification projects. Our evaluation shows significant speedups for
files with verification times over a minute. Using semantics-preserving mutations
of SMT queries, we also provide some evidence that the positive effects of our
transformations persist as verification projects evolve.

Contributions. We make the following specific technical contributions:

– We present a systematic approach to extracting the proof essence for a proof
obligation, that is, the axioms needed for the proof. We identify the phenomenon
of lurking axioms, which must be included in the essence to ensure that an
SMT solver can reconstruct the proof from the essence.

– We introduce proof localization, a simple semantics-preserving translation that
embeds the proof essence for each assertion directly into the verified program,
such that verification conditions over the resulting program include, for each
assertion, only the axioms strictly needed by the SMT solver. Our technique
is applicable with all SMT-based verifiers.

– We have implemented our technique in a tool called Axolocl [16] for the Boogie
intermediate language, which enables the optimization of all verifiers built on
top of Boogie, including Dafny and Viper.

– We present an extensive evaluation of Axolocl on a diverse set of benchmarks
from eight verification projects. Specifically, for long-running files, we show
significant speedups of up to 100–1000 times and no slowdowns.

2 Overview

The positive effect of proof localization is best observed at scale, i.e., on large
programs with complex specifications. For the sake of clarity, in this section, we
provide the intuition for the most likely sources of long proof runtimes and the
ways we mitigate them via proof localization, by means of a simple example.

4 Gopinathan et al.

1 type Seq;
2 const Emp : Seq;
3 function Length(Seq) : int;
4 function Append(Seq , Seq) : Seq;
5 function NonEmpty(Seq) : bool;
6
7 axiom (∀ l : Seq , r : Seq • {NonEmpty(Append(l, r))}
8 {Length(l), Length(r)}
9 NonEmpty(Append(l, r)) = (NonEmpty(l) ∨ NonEmpty(r)));

10
11 axiom (∀ s : Seq • {NonEmpty(s)} NonEmpty(s)=(1≤Length(s)));
12
13 procedure test(x : Seq , y : Seq)
14 returns (res : Seq)
15 requires NonEmpty(x) ∧ NonEmpty(y);
16 ensures NonEmpty(res); {
17 res := Append(x,y);
18 assert NonEmpty(res);
19 }

Fig. 1: An example Boogie program. The final assert statement is redundant
and used for illustration purposes. The color-highlighted lines specify different
matching patterns (triggers) for the ∀-quantifiers.

2.1 A Primer on SMT-based Verification

Our approach for proof localization works by performing a source-to-source
transformation on verified programs written in the Boogie intermediate verification
language [3]. Fig. 1 presents an example program written in Boogie. Let us ignore
the highlighted parts, which will be explained later. A Boogie program can
be broadly considered as being composed of three main components: firstly, a
declaration context, consisting of a series of uninterpreted types (line 1), constants
(line 2), and functions (lines 3–5); secondly, a series of axioms (lines 7–12) that
provide an interpretation for the prior declarations; and finally a series of verified
procedures (lines 14–19) each specified in terms of the previous definitions using a
pre- (line 15) and postcondition (line 16), and whose body (lines 17–18) is written
in imperative style. Our example procedure concatenates the input sequences x
and y and returns the result. Its specification expresses that, provided that the
input sequences are non-empty (as required by the precondition), the result will
also be non-empty. The latter property is expressed as a postcondition and, for
illustration purposes, also as an assertion in line 18. The postcondition follows
from the precondition and the axiom in line 7. When run on this program, Boogie
checks its correctness by computing a verification condition (VC) using weakest
preconditions calculus and proves its validity using an SMT solver.

Let us delve a little into the internals of how Boogie’s SMT-based verification
works. In this discussion, we ignore the postcondition in line 16 because the
same check is already expressed by the assertion in line 18. Ignoring various
optimizations, Boogie computes a VC expressing that the assertion on line 18
holds for the result of the program, given the assumptions in the precondition:

BG ∧ NonEmpty(x) ∧ NonEmpty(y) ⇒ NonEmpty(Append(x,y))

Accelerating Automated Program Verifiers by Automatic Proof Localization 5

In this VC, BG is the so-called background theory, which includes the axioms
declared in our program and various built-in axioms, e.g., about lists. To prove
that this VC is valid, Boogie uses an SMT solver to show that its negation is
unsatisfiable, that is, that there are no counterexamples to the VC’s validity. To
achieve this, the underlying SMT solver must instantiate the axiom in line 7.
Boogie, like most program verifiers, rely on e-matching [12] to instantiate quanti-
fiers. Each quantifier is associated with a matching pattern (often called trigger),
a term using variables bound by the quantifier. When the SMT solver encounters
a term that matches the trigger, it uses unification to instantiate the quantifier.

In our running example, Fig. 1, the blue areas highlight possible triggers
for the two axioms. These are used by the SMT solver to guide instantiation
based on the terms available in the context. In particular, the conclusion of the
implication NonEmpty(Append(x,y)) in the VC matches the trigger of the first
axiom. This enables the SMT solver to instantiate the axiom with x for l and y
for r, after which the proof can be completed using the obtained equality. The
terms NonEmpty(x), NonEmpty(y), and NonEmpty(Append(x,y)) in the VC all also
match the trigger of the second axiom in line 11. However, none of these three
instantiations are useful for the proof and correspond to redundant instantiations.

Triggers give program verifiers such as Boogie fine-grained control over the
heuristics used by the underlying SMT solver to instantiate quantifiers. However,
even with carefully-chosen triggers, the SMT solver will still often consider several
redundant instantiations, and the search space remains vast. Verifying realistic
VCs often involves hundreds or thousands of quantifier instantiations. Whether
such SMT queries are solved efficiently, in particular, before a time-out occurs,
largely depends on how effectively the SMT solver’s heuristics navigate the search
space of possible instantiations. Therefore, reducing the search space of quantifier
instantiations is key to improving the efficiency of SMT-based verification. In the
rest of this section, we will present the key ideas for achieving this goal.

2.2 Capturing the Essence of a Proof

To improve the efficiency of the prover, our main objective is to reduce the space
of possible quantifier instantiations it has to make. We achieve this in two steps.
First, we extract from the SMT solver which axioms it used to prove the validity
of an assertion. Second, we rewrite the input program such that the VC for this
assertion contains exactly the relevant axioms rather than the entire background
theory. In the following, we explain these steps in the context of Boogie and its
underlying SMT solver Z3, but our approach can be implemented in any verifier
whose SMT solver supports triggers and UNSAT cores.

Extracting relevant axioms. To determine which axioms were used to verify an
assertion, we instruct Boogie to compute a separate VC for each assertion (rather
than a single VC for the entire procedure). Moreover, we assign a unique label to
each axiom in the background theory. Recall that an SMT solver proves validity
of a formula by showing that its negation is unsatisfiable. Consequently, when
verification of an assertion succeeds, we can obtain the UNSAT core from the

6 Gopinathan et al.

SMT solver, which includes the facts used to prove validity, and, in particular,
the (labels of) the axioms that were used in the proof. In our example from
Fig. 1, the UNSAT core contains the first axiom. The second one might have
been instantiated during the proof search. However, since these instantiations
were not helpful for the proof, the axiom does not show up in the UNSAT core.

Axiom guarding. Once we have obtained the relevant axioms for each assertion,
we transform the input program to ensure that future attempts to re-prove the
assertion consider only the relevant axioms and, thus, have to explore a drastically
reduced search space. We call this transformation axiom guarding.

As explained in Sec. 2.1, the VC for each assertion contains a background
theory with all axioms. Conceptually, we would like to customize the background
theory for each assertion to include only the relevant axiom. However, different
background theories per assertion lead to a substantial overhead for the SMT
solver (for instance, for parsing the different background theories). Therefore,
instead, we use the same background theory for all assertions, but guard each
axiom in a way that lets us enable and disable individual axioms for a proof.

1 // dedicated guard for axiom 1
2 function ax1(bool) : bool;
3 axiom (∀ b • {ax1(b)}
4 (∀ l,r • {NonEmpty(Append(l,r))}
5 NonEmpty(Append(l, r)) =
6 (NonEmpty(l) ∨ NonEmpty(r))));

Fig. 2: Example guarded axiom.

In order to guard an axiom,
we add another trigger to the
axiom such that the axiom is in-
stantiated only if a VC includes
a term that matches this dedi-
cated trigger. Fig. 2 shows the
guarded version of the first ax-
iom from Fig. 1. To obtain a trigger that is specific to this axiom, we first define
a unique uninterpreted guard function, ax1 (line 2) and then wrap the axiom in
a second ∀-quantifier with the guard function as trigger (line 3). Now we can
selectively enable the axiom by including the term ax1(true) in a VC. This will
allow the SMT solver to instantiate the outer quantifier and get access to the
original axiom. If no such term is present, the axiom is disabled.

1 if (*) {
2 assume ax1(true);
3 assert NonEmpty(res);
4 assume false;
5 }
6 assume NonEmpty(res)

Fig. 3: A transformed assertion.

To enable axioms selectively per as-
sertion, we rewrite each assertion into a
non-deterministic if-statement, where one
branch proves the assertion and then stops
verification, and the other branch sim-
ply assumes the asserted property and
then proceeds to the subsequent statement.
This allows us to enable axioms selectively
in the first branch without polluting the proof of the subsequent code with
unnecessary facts. Since a verifier considers both branches of an if-statement,
this encoding both proves the assertion and verifies the subsequent code; verifying
the first branch justifies the assumption in the second one.

Fig. 3 illustrates this translation for the assertion from the line 18 of Fig. 1.
The first branch of the non-deterministic if-statement enables the axiom relevant
for the assertion (that is, our first axiom), by mentioning the dedicated trigger ax1
in an assume statement (line 2). After proving the original assertion (line 3), we

Accelerating Automated Program Verifiers by Automatic Proof Localization 7

1 function ax1(bool): bool;
2 function ax2(bool): bool;
3
4 axiom (∀ b: bool • {ax1(b)}
5 (∀ l: Seq , r: Seq
6 • {NonEmpty(Append(l,r))}
7 NonEmpty(Append(l, r)) =
8 (NonEmpty(l)∨NonEmpty(r))));
9

10 axiom (∀ b: bool • {ax2(b)}
11 (∀ s: Seq • {NonEmpty(s)}
12 NonEmpty(s) = (1≤Length(s)));
13
14 procedure test(x: Seq , y: Seq)
15 returns (res : Seq)
16 requires NonEmpty(x) ∧
17 NonEmpty(y);
18 ensures NonEmpty(res); {
19 res := Append(x,y);
20 if (*) {
21 assume ax1(true);
22 assert NonEmpty(res);
23 assume false;
24 }
25 assume NonEmpty(res);
26 }

(a) An initial transformed version.

1 function ax1(bool): bool;
2 function ax2(bool): bool;
3
4 axiom (∀ b: bool • {ax1(b)}
5 (∀ l: Seq , r: Seq
6 • {Length(l), Length(r)}
7 NonEmpty(Append(l, r)) =
8 (NonEmpty(l)∨NonEmpty(r))));
9

10 axiom (∀ b: bool • {ax2(b)}
11 (∀ s: Seq • {NonEmpty(s)}
12 NonEmpty(s) = (1≤Length(s)));
13
14 procedure test(x: Seq , y: Seq)
15 returns (res : Seq)
16 requires NonEmpty(x) ∧
17 NonEmpty(y);
18 ensures NonEmpty(res); {
19 res := Append(x,y);
20 if (*) {
21 assume ax1(true)∧ax2(true);
22 assert NonEmpty(res);
23 assume false;
24 }
25 assume NonEmpty(res);
26 }

(b) The final version.

Fig. 4: Proof-localized example of the Boogie program from Fig. 1; the left version
enables UNSAT core axioms only, the right one also includes lurking axioms.

kill off this branch by assuming false (line 4), which ensures that the subsequent
code verifies trivially. In the second branch, we assume that the property holds
(line 6) without introducing any axioms into the context and continue with the
rest of the verification.

Proof localization. We apply the procedure described above to each proof obliga-
tion in a Boogie program. These include assert statements, procedure precondi-
tions (at call sites), procedure postconditions (at the end of the procedure body),
and loop invariants (before the loop and at the end of the loop body). Boogie
internally makes all of these proof obligations explicit as assert statements (just
like our assertion in line 18 makes the proof obligation for the postcondition
explicit), which we then transform. Fig. 4a presents a transformed version of the
example from Fig. 1 (with the blue triggers) using the localization procedure
described so far. Our transformation effectively removes the second axiom from
the search space for the assertion. Note that our proof-localizing transformation
is able to remove this axiom even though it syntactically seems relevant since
both the trigger and the quantified assertion share terms with the assertion. This
fine-grained pruning of the search space is important for realistic examples, where
many axioms are syntactically related.

8 Gopinathan et al.

2.3 The Missing Piece: Lurking Axioms

Unfortunately, the story does not yet end here. To see why, consider the variation
of the example from Fig. 1, but this time with the orange trigger for the first
axiom instead of the blue (and still the blue trigger for the second axiom). The
orange trigger is contrived in this example, but illustrates a problem that occurs
frequently, as we demonstrate in our evaluation.

The program with the orange trigger from Fig. 1 verifies successfully. However,
when we apply the localization procedure described so far, the resulting program
fails to verify! As it turns out, successful verification requires an entire class of
additional axioms that are not included in the UNSAT core and, thus, are not
enabled in our transformation from Sec. 2.2. Next, we explain how such hidden
dependencies can arise, and present a systematic solution for identifying them.

The transformed program enables the first axiom, which is logically sufficient
to prove the assertion. However, with the orange trigger, the SMT solver will not
instantiate this axiom during the proof search because it does not encounter any
term that matches the orange trigger (Length does not occur in the proof obliga-
tion). Consequently, the proof fails. In contrast, the non-transformed program
verifies because the SMT solver will instantiate the second axiom with both x
and y, which produces the Length terms to instantiate the first axiom. This shows
that even though the second axiom is logically irrelevant and, thus, not included
in the UNSAT core, it is essential for the SMT solver to find the proof. We call
such axioms lurking axioms. Therefore, we must extend our proof essence to
include not only the axioms from the UNSAT core, but also these lurking axioms.
We identify them by extracting from the debug output of Z3 an instantiation
graph that reflects the dependencies between quantifier instantiations [4].

ax2 @ x ax2 @ y

NonEmpty(x) NonEmpty(y)

Length(x) Length(y)

ax1 @ x,y

Fig. 5: Instantiation graph for Fig. 1
(with the orange trigger for axiom 1).

Fig. 5 shows the instantiation graph
for our example. The white boxes are
terms from the solver’s context, such
as NonEmpty(x) or NonEmpty(y). The
rounded colored boxes depict axiom in-
stantiations, e.g., ax2 @ x is the instan-
tiation of the second axiom with the
expression x. We use blue for axioms in
the UNSAT core and red for all other
axioms. Arrows between the nodes cap-
ture dependencies between terms and axioms: the line between NonEmpty(x) and
ax2 @ x means that during the proof search, the solver used the term NonEmpty(x)
to match the trigger for ax2 and instantiate it. By examining this graph, we can
see that for the solver to instantiate the necessary axiom (ax1 with x and y) in
the actual proof search, it first instantiated ax2 with both x and y to obtain the
terms Length(x) and Length(y), thereby triggering ax1.

We identify lurking axioms by inspecting each path from a root of the
instantiation graph to an axiom in the UNSAT core. All axioms on this path
that are not in the UNSAT core are considered lurking axioms. The proof essence
for an assertion consists of all axioms in the UNSAT core plus all lurking axioms,

Accelerating Automated Program Verifiers by Automatic Proof Localization 9

Boogie file

Types, constants,
functions

Axioms

Asserts

Procedures

Optimized Boogie file

Types, constants,
functions

Guarded Axioms

Guarded Asserts

Guarded Procedures

Proof Localization

Lurking
axioms

UNSAT core UNSAT core
axioms

Z3

Solver trace
Instantiation

graph

Axiom profiler

Fig. 6: Overview of the approach. Boxes with white background are user-provided
components; the gray background indicates Boogie source files; boxes with green
backgrounds are generated components; blue boxes depict intermediate artifacts;
the red box indicates the external executable Z3. The dashed arrow indicates
that the components are copied verbatim from the old to the new program.

and we use all of them in our proof localization. In our example, the proof essence
contains both axioms, the first one because it is in the UNSAT core and the
second because it is a lurking axiom. Consequently, the proof-localized program,
shown in Fig. 4b, enables both axioms and thus verifies successfully. So for the
orange trigger, proof localization does not actually reduce the search space for
the SMT solver. However, as we discussed above, this trigger is contrived; in a
realistic example, the transformation effectively reduces the search space and,
thereby, proof search runtime, as we will show in our evaluation.

2.4 Putting It All Together

Fig. 6 presents the high-level overview of our approach, which integrates the
proof localization process presented throughout this section behind a push-button
interface. Our tool, Axolocl, takes as input any standard Boogie file, and produces
as output a proof-localized version where all the axioms and assertions have been
guarded in order to improve its stability. Axolocl does so in four steps: (1) It copies
the declaration context, consisting of the types, constants, and functions, over to
the new file. (2) It performs a straightforward syntactic translation to wrap each
axiom into a quantifier with a unique trigger. (3) It verifies each assertion in the
original program, and obtains from the Z3 SMT solver both the UNSAT core
and a solver trace, from which it extracts the instantiation graph for the proof
search. Combining these two components, for each assertion, provides the proof
essence. (4) It rewrites each of the assertions in the original program to enable
exactly the axioms in its proof essence. The resulting proof-localized program is
semantically equivalent to the input program, contains all information to verify
successfully, and its proof is typically substantially faster.

10 Gopinathan et al.

ALGORITHM 3.1: Proof Localization
Procedure Localize-Proofs(P)

Input: Original Boogie program P
Output: Transformed Boogie program with localized proofs
C ← ExtractDeclContext(P)
A← BuildGuardedAxioms(P)
I ← []
for proc in P do

essence ← []
for a in SplitVCByAsserts(proc) do

q ← ConstructSMTQuery(a)
c, t← VerifyWithZ3(q)
g ← ExtractInstGraph(t)
c′ ← ComputeEssence(c, g)
essence[a]← c′

proc′ ← BuildGuardedProc(proc, essence)
I ← I + [proc′]

P ′ ← BuildBoogieProgram(C, A, I)
return P ′

3 Algorithms and Encoding

Our tool, Axolocl, implements proof localization in a fork of Boogie version
3.0.12.0, vendoring a modified version of Becker et al.’s Axiom Profiler [4] to
generate instantiation graphs for inferring lurking axioms. In this section, we
present Axolocl’s main algorithms and various alternative encoding schemes.

3.1 Localizing Boogie Proofs

Algorithm 3.1 is the core of Axolocl’s proof localization. It takes as input an
arbitrary Boogie program P and produces an optimized version as depicted in
Fig. 6. The algorithm operates in three steps: (1) it retrieves the declaration
context (ExtractDeclContext) composed of all the types, constants, and func-
tions shared between the original and optimized program; (2) it then constructs
guarded forms of each axiom in P (BuildGuardedAxioms), generating a unique
guard function and rewriting the axiom body to wrap it with a trigger-based
guard; (3) it performs proof localization on each of the procedures in P .

For the latter, the algorithm partitions each procedure into the verification con-
ditions for each assertion in the code (SplitVCByAsserts). For each of these verifi-
cation conditions, the algorithm constructs an SMT query (ConstructSMTQuery)
including appropriate annotations to allow extracting the axiom dependencies. It
is submitted to the Z3 SMT solver (VerifyWithZ3), to obtain both an UNSAT
core c and a solver debug trace t, which contains a log of each of the axiom instan-
tiations that the solver performed during the proof search. This solver trace is
then used to construct an instantiation graph g (ExtractInstGraph), capturing
the dependencies between each of the axioms in the query. The algorithm uses

Accelerating Automated Program Verifiers by Automatic Proof Localization 11

ALGORITHM 3.2: Compute Proof Essence

Procedure ComputeEssence(C,G)
Input: UNSAT Core C and Instantiation Graph G
Output: Set of Required Axioms
C′ ← []
for a in C do

deps ← {a}
s← [a]
while s ̸= [] do

n, s← TakeFirst(s)
deps ← deps ∪ {n}
for n′ ← GetAxiomDependencies(G,n) do

if n′ ̸∈ deps then
s← Append(s, n’)

C′ ← C′ + deps
return C′

the UNSAT core c and the instantiation graph g to infer any missing lurking
axioms and constructs the minimal set of required axioms c′ to complete the
proof (ComputeEssence). Once this proof essence has been constructed for all
verification conditions, the algorithm optimizes the original Boogie procedure
(BuildGuardedProc), replacing each assertion with a guarded version that ex-
plicitly enables the axioms in the proof essence. The last step of the algorithm
concatenates the declaration context C, the guarded axioms A, and the optimized
procedures I to produce the final optimized Boogie program.

3.2 Identifying Lurking Axioms

Algorithm 3.2 determines the necessary set of axioms for a verification query. It
takes as input an UNSAT core C and the instantiation graph G generated by the
solver for a given SMT query. It then iterates through each of the axioms in the
UNSAT core, and, for each axiom a, performs a basic breadth first search over
the instantiation graph rooted at a to retrieve the set of dependencies of a. We
allocate a list of nodes s to visit, initially populated by a, and a set deps to track
the set of lurking axioms required for a. While s is non-empty, the algorithm
repeatedly takes the first element n, adds it to the list of dependencies and uses
the instantiation graph to retrieve the list n′ of axioms that were required for
n to be instantiated. If any of these dependencies are not present in deps then
they are added to s to be visited. Finally, the algorithm takes the union of all
the axiom dependencies for each axiom in the UNSAT core (including the core
axiom itself) to produce the final proof essence.

3.3 Encoding Schemes

After extracting the proof essence for each assertion, Axolocl rewrites the program
into a guarded form to improve verification times. One subtle aspect of our design

12 Gopinathan et al.

function
ax(bool): bool;

axiom
(∀ b: bool • {ax(b)} A);

procedure foo(x) {
if(*) {
assume ax(true);
assert P;
assume false;

}
assume P;
...

}

(a) Trigger-based (fine)

function
ax(bool): bool;

axiom
(∀ b: bool • {ax(b)} A);

procedure foo(x) {
assume ax;
...
assert P;
...

}

(b) Trigger-based (coarse)

procedure foo(x) {
if(*) {
axiom A;
assert P;
assume false;

}
assume P;
. ..

}

(c) Inlining-based

Fig. 7: Comparison of different guarded proof encoding schemes.

is in the particular trigger-based encoding that we use to localize proofs. Given a
proof essence, there are several possible encodings that we considered in order to
enable these axioms in the source program. As we will show in the evaluation
(Sec. 3.3), the choice of encoding has a major effect on verification times.

Fig. 7 presents three different encoding schemes that we considered for guard-
ing axioms and restricting the proof context at the source level. Fig. 7a presents
the trigger-based encoding used by our implementation that constrains the proof
context at a fine-grained per-assertion level. We introduce a unique guard function
ax for each axiom A, and move the axiom under a universal quantifier over a
Boolean variable b with a trigger using that guard {ax(b)}. At each assertion,
we introduce branching; one branch selectively enables the relevant axioms by
assuming their guards ax(true) and then verifies the assertion. The other branch
continues with the rest of the verification assuming the assertion. This encod-
ing allows rewriting programs with minimal changes and achieves the largest
performance improvements in our evaluation.

Fig. 7b presents an alternative, coarse-grained trigger-based encoding. It
performs the same transformation on each of the axioms, but instead of rewriting
each assertion individually, it triggers all axioms needed for the entire procedure
at the beginning of the procedure body. In other words, this encoding localizes
proofs at the procedure (rather than assertion) level. Compared to the previous
fine-grained encoding, the coarse-grained encoding leads to simpler verification
conditions because it does not complicate the control-flow of the programs. It
also restricts the proof search space in comparison to the original program, but
not as effectively as the fine-grained encoding. As we will see in the evaluation,
the benefit of fine-grained proof localization outweighs the increased complexity
of the verification conditions.

Fig. 7c presents an alternative encoding based on inlining axioms rather than
disabling them via triggers. With this encoding, we remove all axioms from
the global context, and then instead, at each assertion, we selectively assume
the (quantified) body of each axiom in the proof essence. This encoding is as

Accelerating Automated Program Verifiers by Automatic Proof Localization 13

precise as our first encoding. It avoids the overhead of guarding each axiom, but
duplicates axiom bodies at each assertion. For most real-world Boogie programs
that we tried it on, it produced results that are too large to even fit into memory.

For our trigger-based encodings, we also considered adding the guard as an
additional pattern to the triggers of the existing axioms, rather than wrapping
them in an additional universal quantifier:

axiom (∀ s : Seq , b : bool • {Length(s), ax(b)} 1 ≤ Length(s));

This encoding reduces the total number of universal quantifiers, but, as it turns
out, does not improve verification times.

4 Evaluation

We evaluate Axolocl on a broad range of benchmarks. Most important is its
effectiveness in reducing verification time, but we also assess whether the achieved
runtime improvements can be expected to be maintained across changes as the
verification project. Measuring the latter on real projects would require detailed
information about revisions, manual performance optimizations, and updates of
the verifier and SMT solver. Since we do not have access to this information, we use
robustness against semantics-preserving mutations as proxy; prior work has shown
that such mutations can already perturb verification times substantially [13].
Finally, we also compare the different proof localization strategies from Sec. 3.3.
Specifically, we answer the following research questions:

– RQ1: Is Axolocl effective at reducing verification times?
– RQ2: Are these improvements robust to mutations of the input?
– RQ3: Is Axolocl’s encoding for localizing axioms effective?

4.1 Evaluation Setup

We explain the benchmark set used and the evaluation methodology.

Benchmarks. To answer the above research questions, we apply Axolocl to a suite
of Boogie programs, all extracted from existing verification projects. Specifically,
we consider eight benchmark sets, seven of which are publicly-available open-
source Dafny projects. The last one is based on the Viper test suite. We chose
these benchmarks for their size and to assess the effectiveness of Axolocl on a
diverse set of verified systems. The resulting benchmark suite consists of:

– Cedar: The Dafny formalization of the Cedar authorization language [9]
– AWS: The AWS Cryptographic Material providers library [1]
– Daisy-NFSD: The Daisy-NFSD verified crash-safe file system [7]
– EVM: An EVM disassembler in Dafny [6]
– Dafny-VMC: A verified library for Monte Carlo algorithms [32]
– Komodo: An implementation of an SGX-like enclave protection model in a

formally verified privileged software stack for ARMv7 TrustZone [17]
– VeriBetrKV: A formally verified key-value store based on a BeTree [14]
– Viper: Various test cases from the Viper program verifier’s test suite

14 Gopinathan et al.

0 100 200 300 400 500 600

0.01

0.1

1

10

100

1000

Initial verification time (in seconds)

Speedup by Axolocl

Fig. 8: Average speedup per Axolocl-optimized file as a function of the initial
verification time over our 365 benchmark files. The y axis is logarithmic.

Methodology. We use Axolocl to optimize each Boogie file from the benchmark
suite and compare the verification times before and after proof localization.
All experiments are conducted on a 2-vCPU Intel Xeon Platinum 8000 series
processor (up to 3.6 GHz) running Ubuntu 22.04. We use Z3 version 4.8.7.

Since verification times are dominated by SMT solving, we measure the
runtime at the SMT level rather than at the Boogie level. For each Boogie file, we
measure the wall-clock time spent in the SMT solver, averaged over 50 runs, in
which we alter the Z3 random seed to account for different Z3-heuristic behaviors.
The timeout for each verification run is set to ten minutes.

Axolocl is designed to accelerate verification on slow inputs. Therefore, we
discard Boogie files for which the mean verification time is at most two seconds.
These are fast already, such that further optimization is not justified. This leaves
us with 365 Boogie files across our eight projects; see Table 1 for more details.

4.2 Runtime Improvement (RQ1)

Our first research question investigates whether our tool is effective at reducing
verification times. Fig. 8 plots the speedup (verification time before divided by
verification time after) achieved by Axolocl versus the original verification time
for each file. A speedup of less than one is thus a slowdown. We first observe that
Axolocl achieves a speedup in the majority of cases. Importantly, slowdown occur
only for files whose verification is very fast to begin with, with one exception
that takes around 35 seconds and suffers a 4× slowdown. Conversely, for slow
files beyond that, Axolocl yields very significant speedup of up to a 1000× and,
equally important, never incurs a slowdown.

Tab. 1 presents the aggregate effect of Axolocl on the verification times across
the eight projects in our benchmark suite. It shows the number of Boogie files
for each project, the total number of lines of code in the Boogie files, the mean
verification time for the original files, as well as the total verification time for all

Accelerating Automated Program Verifiers by Automatic Proof Localization 15

Table 1: Effect of Axolocl on verification times. All times in seconds.

Suite Files Total LoC Mean time Total Time Speedup
Before After

AWS 23 1,264,497 16 370 380 1.0
Dafny-VMC 1 10,916 2 2 2 1.0
Cedar 15 1,198,291 64 967 349 2.8
Daisy-NFSD 8 109,801 7 69 50 1.4
EVM 16 548,790 9 141 131 1.1
Viper 17 63,790 181 3,070 711 4.3
Komodo 5 26,371 9 45 15 3.0
VeriBetrKV 280 6,718,495 23 6,569 5,757 1.1

Table 2: Effect of Axolocl on quantifier instantiations (QIs).

Suite Mean QIs Total QIs Reduction factor
Before After

AWS 41,930 2,138,465 664,442 3.2
Dafny-VMC 4,796 47,960 21,623 2.2
Cedar 812,507 26,000,237 3,792,461 6.9
Daisy-NFSD 36,956 628,261 203,276 3.1
EVM 45,121 1,308,522 185,303 7.1
Viper 540,591 6,487,097 3,243,952 2.0
Komodo 677 74,567 13,406 5.6
VeriBetrKV 6,716 4,996,978 1,272,005 3.9

files in the project, before and after using Axolocl. The speedup obtained for this
total time is shown in the last column and reflects what would be experienced by
a developer working on the project or in CI. Except for AWS, Axolocl reduces the
overall verification time by up to 4.3 times for the Viper test suite. Among the
considered projects, the AWS codebase is the only one that is actively maintained
and has verification integrated as part of its CI pipeline; therefore, we hypothesize
that it already underwent considerable manual optimization.

Tab. 2 shows the impact of Axolocl on the number of quantifier instantiations
(QIs) across the same set of projects. For each test case, we measured the number
of QIs over multiple runs and computed the average to mitigate the effects of
proof instability. The table reports the mean number of QIs across the entire
test suite before applying proof localization. Unlike earlier experiments, we
include all files in this analysis, regardless of whether their verification time was
below two seconds. The table also reports the total number of QIs before and
after proof localization, as well as the reduction factor for each project. Proof
localization significantly reduces the number of QIs, providing evidence that the
observed performance improvements indeed stem from a decrease in quantifier
instantiations.

16 Gopinathan et al.

We conclude that Axolocl is a viable solution to improve verification runtimes
for slow files and for entire large-scale projects.

4.3 Robustness to Mutation (RQ2)

Improving verification times alone does not tell the complete picture: if a program
(as well as the employed verifier and SMT solver) remained entirely unchanged,
then a developer could improve verification times by simple caching. Our second
research question investigates whether the performance improvements achieved
by Axolocl are likely to persist across changes in the project. We focus on the
simplest kind of such changes, semantic-preserving re-orderings and renamings of
variables and declarations, and investigate how the generated files’ verification
times behave with respect to them. Such simple mutations can have a substantial
effect on verification times; therefore, they are a good proxy for other changes.

Concretely, we measure the verification times of each Boogie file before and
after proof localization, averaged across several runs with random mutations
applied at the SMT level. We consider two kinds of mutations: renaming user-
defined symbols (e.g., functions, types) and reordering assertions. We then
calculate the mean verification time over 50 measurements while considering both
mutations and variations in the random seed. The results of this evaluation are
presented in Fig. 9, which plots the speedups against the initial mean verification
time over 50 mutations.

We can see from this diagram that mutations have a significantly greater
impact on verification time than changes in the verification seed as considered
in Sec. 4.2. For reference, mutations increase the mean verification time of 16
out of the 20 files in the Viper test suite. On average, each Viper file takes 42.59
seconds longer to verify under mutation.

Due to the increased average verification time, more files excluded in Sec. 4.2
for being verified in less than 2 seconds are included in this experiment. Since
proof-localization is generally less effective for fast queries with few quantifier
instantiations, the inclusion of these queries leads to a lower average speedup
across all files.

Despite the additional variability introduced by mutation, the general trends
from Fig. 8 still persist, especially among the slowest files.

We conclude that Axolocl achieves substantial performance improvements for
files with long verification times, even under mutation.

4.4 Encoding Effectiveness (RQ3)

In the final experiment, we assess the benefit of the chosen fine-grained trigger-
based encoding in Axolocl, compared to the alternatives explained in Sec. 3.3:

– Trigger (fine): Axolocl’s default encoding strategy (see Fig. 7a).
– Trigger (coarse): Enabling all axioms at a procedure level (see Fig. 7b).
– Trigger (embedded): Embedding the axiom guard within existing triggers

for the axiom.

Accelerating Automated Program Verifiers by Automatic Proof Localization 17

0 100 200 300 400 500 600

0.1

1

10

100

1000

10000

Initial verification time (in seconds)

Speedup by Axolocl

Fig. 9: Average speedup of Axolocl-optimized files under mutations as a function
of the initial verification time, over 365 benchmark files. The y axis is logarithmic.

Table 3: Comparison of different encoding strategies.

Encoding Speedup

Trigger (fine) 4.8
Trigger (coarse) 0.6
Trigger (nested) 0.4
Inline 0.4

– Inline: Inlining axiom bodies at each assertion (see Fig. 7c).

For this research question, we focus on the Viper suite of benchmarks specifically
as it contains the files with the largest verification times, and on which Axolocl
exhibits the greatest speedups (see Tab. 1).

We run Axolocl to generate optimized versions of each of the Viper files in the
benchmark suite for each encoding scheme, and then measure the verification
times averaged over 25 runs. Tab. 3 presents total speedups achieved for each
different encoding scheme as before. It shows that our chosen fine-grained encoding
outperforms all other encodings by far, and is the only scheme which produces
improvements in verification times. The slowdown caused by the coarse-grained
trigger-based encoding demonstrates the importance of constraining axioms at
a per-assertion level. The speedup achieved for Viper is slightly different from
the speedup reported in Tab. 1 primarily because one of the files couldn’t be
transformed for the inlining encoding. As a result, the speedups were calculated
only for the remaining files.

18 Gopinathan et al.

5 Related Work

Performance problems in SMT-based deductive verifiers are typically addressed
by manual code refactorings using three different strategies. (1) Modularization
by breaking up the verification of a method into several smaller proofs reduces
the number of terms in the proof context and, thereby, quantifier instantiations,
leading to better performance. Some verifiers offer language support for this
strategy, for instance, Dafny’s opaque blocks, Gobra’s outline statement [31]
allow one to specify code blocks with pre- and postconditions and verify them
separately from the enclosing code, as if they had been extracted into separate
methods. Similarly, Ivy’s [26] isolates achieve the same goal in the context of
automatically verifying safety properties of state-transition systems, providing a
scoping mechanism to confine a logical fragment or theory that a prover can handle
reliably and efficiently.4 (2) Carefully controlling the availability of quantified
assertions also reduces the number of instantiations. For instance, Dafny and
Verus allow for hiding the quantified axiom by defining a specification function
and revealing it selectively. (3) Several verifiers allow the addition of proof hints
to assertions, for instance to invoke lemmas or reveal definitions. Both Dafny and
Verus offer assert-by statements, whose encoding ensures that the provided proof
hints do not pollute the proof context of other assertions. All three approaches
require substantial manual effort. Moreover, they are difficult to apply, even for
expert users, because the effect of a code refactoring on verification times is
unpredictable due to the SMT solver’s complex heuristics and thus its inherent
black-box character. In contrast, our proof localization technique is completely
automatic and requires no expertise in SMT solving.

Bordis and Leino [5] aim at reducing the number of quantified axioms and,
thereby, the number of quantifier instantiations by automatically pre-instantiating
some quantified axioms based on syntactic clues. However, their syntactic analysis
cannot reliably identify all instantiations needed for a proof. In contrast, our
technique starts from an existing proof, from which we can extract all necessary
axioms, including lurking axioms.

The Axiom Profiler [4] supports developers and users of automated verifiers
in understanding and debugging performance and completeness issues. It offers
visualizations and analyses of SMT traces to identify issues with quantifier
instantiations such as matching loops. This tool is useful to improve the matching
patterns of quantifiers, but does not address the general problem of improving
verification performance. We use it in our technique to identify lurking axioms.

Qed [8] simplifies verification conditions before handing them to the SMT
solver, which reduces the proof context and, therefore, might have a positive
effect on verification time, but this is not assessed in their evaluation.

A lot of work on the performance of SMT-based verifiers targets proof in-
stability (also called brittleness) [13], which occurs when small changes in the
SMT query have large effects on the verification time or even verification success.
Most research into a systematic solution focuses on techniques to characterize

4 Cf. https://microsoft.github.io/ivy/proving.html.

https://microsoft.github.io/ivy/proving.html

Accelerating Automated Program Verifiers by Automatic Proof Localization 19

particular instances of instability [34,24] or develops strategies for mitigating
the instability in specific cases [22,10,19,23,29]. The recent Shake tool [33] offers
an approach to mitigating proof instability. For an already verified project, it
intercepts SMT queries emitted by verification tools and dynamically rewrites
them to simplify and constrain the verification context, omitting irrelevant ax-
ioms and assumptions that are not required for the solver to prove correctness.
Similarly to our algorithm, Shake aims at reducing the size of the proof context.
Unlike our algorithm, it does not identify lurking axioms and instead relies on a
syntactic dependency analysis to determine which axioms might be relevant. This
coarse analysis may include axioms that are not actually needed, making the
context (and, thus, the search space for the SMT solver) larger than necessary.
On the other hand, it may also miss lurking axioms; as a result, the SMT solver
may fail to prove the rewritten queries, leading to spurious verification errors
requiring expensive post-hoc repair. Zhou et al. demonstrate Shake’s effectiveness
in reducing proof instability, but do not demonstrate performance improvements.
Moreover, Shake does not offer a way to persist the rewritten queries, so that the
tool needs to be rerun even at the slightest change in the file being verified. By
contrast, our proof localization determines precisely which axioms are needed to
rerun a proof and can record this information for future runs.

6 Conclusion

In this work we have presented Axolocl, a tool for the systematic performance
optimizations of SMT-based program verifiers. Given an initial successful ver-
ification, it computes for each assertion the proof essence and encodes it into
the input program, such that the assertion can be proved more efficiently in the
future, for instance, during code maintenance or as part of continuous integration.

As future work, we plan to integrate proof localization in source verifiers, for
instance, using Dafny’s or Verus’ assert-by statements. We also plan to explore
whether proof localization can be applied also to address proof instability.

Acknowledgements. We thank CAV’25 reviewers for their detailed and in-
sightful comments. This work has been supported by a Singapore Ministry of
Education (MoE) Tier 1 grant T1 251RES2108 “Automated Proof Evolution
for Verified Software Systems” and Singapore MoE Tier 3 grant “Automated
Program Repair” MOE-MOET32021-0001.

Disclosure of Interests The authors have no further competing interests to declare
that are relevant to the content of this article.

References

1. AWS: AWS Cryptographic Material Providers Library (2024), https://github.com/
aws/aws-cryptographic-material-providers-library, [Online; accessed 8. Sept. 2024]

https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library

20 Gopinathan et al.

2. Barbosa, H., Barrett, C.W., Brain, M., Kremer, G., Lachnitt, H., Mann, M.,
Mohamed, A., Mohamed, M., Niemetz, A., Nötzli, A., Ozdemir, A., Preiner, M.,
Reynolds, A., Sheng, Y., Tinelli, C., Zohar, Y.: cvc5: A versatile and industrial-
strength SMT solver. In: TACAS. LNCS, vol. 13243, pp. 415–442. Springer (2022).
https://doi.org/10.1007/978-3-030-99524-9_24

3. Barnett, M., Chang, B.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A Modular
Reusable Verifier for Object-Oriented Programs. In: FMCO. LNCS, vol. 4111, pp.
364–387. Springer (2005). https://doi.org/10.1007/11804192_17

4. Becker, N., Müller, P., Summers, A.J.: The axiom profiler: Understanding and
debugging SMT quantifier instantiations. In: TACAS. LNCS, vol. 11427, pp. 99–116.
Springer (2019). https://doi.org/10.1007/978-3-030-17462-0_6

5. Bordis, T., Leino, K.R.M.: Free facts: An alternative to inefficient axioms in dafny.
In: FM. LNCS, vol. 14933, pp. 151–169. Springer (2024). https://doi.org/10.1007/
978-3-031-71162-6_8

6. Cassez, F.: evm-dis: An EVM bytecode disassembler/assembler (Nov 2024), https:
//github.com/franck44/evm-dis, [Online; accessed 1. Nov. 2024]

7. Chajed, T., Tassarotti, J., Kaashoek, M.F., Zeldovich, N.: Verifying concurrent,
crash-safe systems with Perennial. In: SOSP. pp. 243–258. ACM (2019). https:
//doi.org/10.1145/3341301.3359632

8. Correnson, L.: Qed. computing what remains to be proved. In: NASA Formal
Methods. LNCS, vol. 8430, pp. 215–229. Springer (2014). https://doi.org/10.1007/
978-3-319-06200-6_17

9. Cutler, J.W., Disselkoen, C., Eline, A., He, S., Headley, K., Hicks, M., Hietala, K.,
Ioannidis, E., Kastner, J.H., Mamat, A., McAdams, D., McCutchen, M., Rungta,
N., Torlak, E., Wells, A.: Cedar: A new language for expressive, fast, safe, and
analyzable authorization. Proc. ACM Program. Lang. 8(OOPSLA), 670–697 (2024).
https://doi.org/10.1145/3649835

10. Cutler, J.W., Torlak, E., Hicks, M.: Improving the stability of type soundness proofs
in Dafny. In: Proceedings of the First Workshop on Dafny (2024)

11. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: TACAS.
LNCS, vol. 4963, pp. 337–340. Springer (2008). https://doi.org/10.1007/
978-3-540-78800-3_24

12. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: A theorem prover for program checking.
J. ACM 52(3), 365–473 (May 2005). https://doi.org/10.1145/1066100.1066102

13. Dodds, M.: Formally verifying industry cryptography. IEEE Security & Privacy
20(3), 65–70 (2022). https://doi.org/10.1109/MSEC.2022.3153035

14. Ferraiuolo, A., Baumann, A., Hawblitzel, C., Parno, B.: Komodo: Using verification
to disentangle secure-enclave hardware from software. In: SOSP. pp. 287–305. ACM
(2017). https://doi.org/10.1145/3132747.3132782

15. Filliâtre, J., Paskevich, A.: Why3 - Where Programs Meet Provers. In:
ESOP. LNCS, vol. 7792, pp. 125–128. Springer (2013). https://doi.org/10.1007/
978-3-642-37036-6_8

16. Gopinathan, K., Spiliopoulos, D., Goyal, V., Müller, P., Püschel, M., Sergey, I.:
Axolocl: Accelerating Automated Program Verifiers by Automatic Proof Localization.
Software Artifact. (Apr 2025). https://doi.org/10.5281/zenodo.15201479

17. Hance, T., Lattuada, A., Hawblitzel, C., Howell, J., Johnson, R., Parno, B.: Stor-
age systems are distributed systems (so verify them that way!). In: OSDI. pp.
99–115. USENIX Association (2020), https://www.usenix.org/conference/osdi20/
presentation/hance

https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/11804192_17
https://doi.org/10.1007/11804192_17
https://doi.org/10.1007/978-3-030-17462-0_6
https://doi.org/10.1007/978-3-030-17462-0_6
https://doi.org/10.1007/978-3-031-71162-6_8
https://doi.org/10.1007/978-3-031-71162-6_8
https://doi.org/10.1007/978-3-031-71162-6_8
https://doi.org/10.1007/978-3-031-71162-6_8
https://github.com/franck44/evm-dis
https://github.com/franck44/evm-dis
https://doi.org/10.1145/3341301.3359632
https://doi.org/10.1145/3341301.3359632
https://doi.org/10.1145/3341301.3359632
https://doi.org/10.1145/3341301.3359632
https://doi.org/10.1007/978-3-319-06200-6_17
https://doi.org/10.1007/978-3-319-06200-6_17
https://doi.org/10.1007/978-3-319-06200-6_17
https://doi.org/10.1007/978-3-319-06200-6_17
https://doi.org/10.1145/3649835
https://doi.org/10.1145/3649835
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/1066100.1066102
https://doi.org/10.1145/1066100.1066102
https://doi.org/10.1109/MSEC.2022.3153035
https://doi.org/10.1109/MSEC.2022.3153035
https://doi.org/10.1145/3132747.3132782
https://doi.org/10.1145/3132747.3132782
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.5281/zenodo.15201479
https://doi.org/10.5281/zenodo.15201479
https://www.usenix.org/conference/osdi20/presentation/hance
https://www.usenix.org/conference/osdi20/presentation/hance

Accelerating Automated Program Verifiers by Automatic Proof Localization 21

18. Hawblitzel, C., Howell, J., Kapritsos, M., Lorch, J.R., Parno, B., Roberts, M.L.,
Setty, S.T.V., Zill, B.: IronFleet: proving practical distributed systems correct. In:
SOSP. pp. 1–17. ACM (2015). https://doi.org/10.1145/2815400.2815428

19. Ho, S., Pit-Claudel, C.: Incremental Proof Development in Dafny with Module-Based
Induction. In: Proceedings of the First Workshop on Dafny (January 2024)

20. Lattuada, A., Hance, T., Bosamiya, J., Brun, M., Cho, C., LeBlanc, H., Srinivasan,
P., Achermann, R., Chajed, T., Hawblitzel, C., Howell, J., Lorch, J.R., Padon, O.,
Parno, B.: Verus: A Practical Foundation for Systems Verification. In: SOSP. pp.
438–454. ACM (2024). https://doi.org/10.1145/3694715.3695952

21. Leino, K.R.M.: Dafny: An Automatic Program Verifier for Functional Correctness.
In: LPAR. LNCS, vol. 6355, pp. 348–370. Springer (2010). https://doi.org/10.1007/
978-3-642-17511-4_20

22. Leino, K.R.M., Pit-Claudel, C.: Trigger selection strategies to stabilize program
verifiers. In: CAV. LNCS, vol. 9779, pp. 361–381. Springer (2016). https://doi.org/
10.1007/978-3-319-41528-4_20

23. McLaughlin, S., Jaloyan, G.A., Xiang, T., Rabe, F.: Enhancing Proof Stability. In:
Proceedings of the First Workshop on Dafny (January 2024)

24. Mugnier, E., McLaughlin, S., Tomb, A.: Portfolio Solving for Dafny. In: Proceedings
of the First Workshop on Dafny (January 2024)

25. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: A Verification Infrastructure for
Permission-Based Reasoning. In: VMCAI. LNCS, vol. 9583, pp. 41–62. Springer
(2016). https://doi.org/10.1007/978-3-662-49122-5_2

26. Padon, O., McMillan, K.L., Panda, A., Sagiv, M., Shoham, S.: Ivy: safety verification
by interactive generalization. In: PLDI. pp. 614–630. ACM (2016). https://doi.org/
10.1145/2908080.2908118

27. Pereira, J.C., Klenze, T., Giampietro, S., Limbeck, M., Spiliopoulos, D., Wolf, F.A.,
Eilers, M., Sprenger, C., Basin, D., Müller, P., Perrig, A.: Protocols to code: Formal
verification of a next-generation internet router (2024), https://arxiv.org/abs/2405.
06074

28. Protzenko, J., Parno, B., Fromherz, A., Hawblitzel, C., Polubelova, M., Bhargavan,
K., Beurdouche, B., Choi, J., Delignat-Lavaud, A., Fournet, C., Kulatova, N.,
Ramananandro, T., Rastogi, A., Swamy, N., Wintersteiger, C.M., Béguelin, S.Z.:
EverCrypt: A Fast, Verified, Cross-Platform Cryptographic Provider. In: S&P. pp.
983–1002. IEEE (2020). https://doi.org/10.1109/SP40000.2020.00114

29. Srinivasan, P., Padon, O., Howell, J., Lattuada, A.: Domesticating automation. In:
Proceedings of the First Workshop on Dafny (January 2024)

30. Swamy, N., Hritcu, C., Keller, C., Rastogi, A., Delignat-Lavaud, A., Forest, S.,
Bhargavan, K., Fournet, C., Strub, P., Kohlweiss, M., Zinzindohoue, J.K., Béguelin,
S.Z.: Dependent types and multi-monadic effects in F*. In: POPL. pp. 256–270.
ACM (2016). https://doi.org/10.1145/2837614.2837655

31. Wolf, F.A., Arquint, L., Clochard, M., Oortwijn, W., Pereira, J.C., Müller, P.: Gobra:
Modular Specification and Verification of Go Programs. In: CAV. LNCS, vol. 12759,
pp. 367–379. Springer (2021). https://doi.org/10.1007/978-3-030-81685-8_17

32. Zaiser, F., Zetzsche, S., Tristan, J.B.: VMC: a Dafny Library for Verified Monte
Carlo Algorithms. In: Proceedings of the First Workshop on Dafny (January 2024)

33. Zhou, Y., Bosamiya, J., Li, J., Heule, M.J., Parno, B.: Context Pruning for More Ro-
bust SMT-based Program Verification. In: FMCAD. pp. 59–69. TU Wien Academic
Press, IEEE (2024)

34. Zhou, Y., Bosamiya, J., Takashima, Y., Li, J., Heule, M., Parno, B.: Mariposa:
Measuring SMT instability in automated program verification. In: FMCAD 2023. pp.
178–188. IEEE (2023). https://doi.org/10.34727/2023/ISBN.978-3-85448-060-0_26

https://doi.org/10.1145/2815400.2815428
https://doi.org/10.1145/2815400.2815428
https://doi.org/10.1145/3694715.3695952
https://doi.org/10.1145/3694715.3695952
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-319-41528-4_20
https://doi.org/10.1007/978-3-319-41528-4_20
https://doi.org/10.1007/978-3-319-41528-4_20
https://doi.org/10.1007/978-3-319-41528-4_20
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1145/2908080.2908118
https://doi.org/10.1145/2908080.2908118
https://doi.org/10.1145/2908080.2908118
https://doi.org/10.1145/2908080.2908118
https://arxiv.org/abs/2405.06074
https://arxiv.org/abs/2405.06074
https://doi.org/10.1109/SP40000.2020.00114
https://doi.org/10.1109/SP40000.2020.00114
https://doi.org/10.1145/2837614.2837655
https://doi.org/10.1145/2837614.2837655
https://doi.org/10.1007/978-3-030-81685-8_17
https://doi.org/10.1007/978-3-030-81685-8_17
https://doi.org/10.34727/2023/ISBN.978-3-85448-060-0_26
https://doi.org/10.34727/2023/ISBN.978-3-85448-060-0_26

	Accelerating Automated Program Verifiersby Automatic Proof Localization

