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Abstract
Most ownership systems enforce a tree topology on a program’s
heap. The tree topology facilitates many aspects of programming
such as thread synchronization, memory management, and program
verification. Ownership-based verification techniques leverage the
tree topology of an ownership system (and hence the fact that there
exists a single owner) to restore sound modular reasoning about in-
variants over owned objects. However, these techniques in general
restrict sharing by limiting modifying access to an owned object
to the object’s owner and to other objects in that owner’s owner-
ship tree. In this paper, we introduce selective ownership, a less
rigid form of ownership. The key idea is to structure the heap in
two ways, by defining an order on a program’s type declarations
and by imposing ownership on selected objects. The order on type
declarations results in a stratified program heap but permits shared,
modifying access to instances further “down” in the heap topology.
By superimposing object ownership on selected objects in the heap,
programmers can carve out partial sub-trees in the heap topology
where the objects are owned. We show how selective ownership
enables the modular verification of invariants over heap topologies
that subsume shared, modifiable sub-structures. Selective owner-
ship has been elaborated for our programming language Rumer, a
programming language with first-class relationships, which natu-
rally give rise to an ordering on type declarations.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification—Class invariants

General Terms Languages, Verification

Keywords Selective ownership, Universe types, Ownership types,
Visible-state verification techniques, First-class relationships

1. Introduction
Object-oriented programs typically produce graphs of highly-
interconnected objects. These graphs bear little resemblance to the
programs that produced them, complicating any reasoning about
them. Ownership type systems [17–23, 37, 41] have been shown to
ease program reasoning by imposing a tree structure on a program’s
heap. For instance, Ownership type systems have been successfully
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employed for program verification [30, 34, 37, 38], for guaran-
teeing thread safety [13], for memory management [14], and for
enforcing architectural styles [2].

However, many common design patterns and programming id-
ioms do not naturally produce a tree structure but a heap that sub-
sumes owned and shared objects. For instance, the nodes of Java’s
linked list implementation are shared and manipulated by a list’s
head and all its iterators. Most ownership systems either disallow
such implementations or provide weak guarantees. For example,
the classical Ownership types [19] enforce the owner-as-dominator
discipline [22, 24] and thus disallow direct access to the linked list
both by the list’s head and its iterators. Universe types [37], on the
other hand, enforce the owner-as-modifier discipline [22, 24] and
thus permit a limited form of sharing (restricting all non-owning
accesses to read-only). But the verification technique built on top
of Universe types restricts sharing by limiting modifying access to
an owned object to the object’s owner and to other objects in that
owner’s ownership tree.

This paper introduces selective ownership, a more flexible way
of giving structure to a program heap. Selective ownership allows
programmers to structure the heap in two ways: (i) by defining an
order on a program’s type declarations and (ii) by imposing owner-
ship on selected objects. The order on type declarations results in
a stratified program heap but permits shared, modifying access to
instances further “down” in the heap topology. By superimposing
object ownership on selected objects in the heap, programmers can
carve out partial sub-trees in the heap topology where the objects
are owned.

Like classical ownership, selective ownership may have several
applications. In this paper, we describe how selective ownership
can facilitate the modular verification of multi-object invariants in
the presence of call-backs. Selective ownership-based verification
leverages the type ordering for the prevention of transitive call-
backs, and ownership for the declaration and verification of invari-
ants on owned objects. We exemplify selective ownership in the
context of Rumer [4, 5], a programming language we have designed
to embody first-class relationships [1, 4, 6, 10, 33, 39, 42, 44]. In
Rumer, first-class relationships naturally define an order on type
declarations, making Rumer a natural fit as a host language for se-
lective ownership.

This paper extends our earlier work [5], in which we intro-
duce Rumer as well as a verification technique for Rumer. The de-
scribed verification technique leverages the type order defined by
relationship declarations (called Matryoshka Principle) as well as a
relationship-specific encapsulation mechanism (called member in-
terposition) for the modular verification of multi-object invariants.
In [5], we further briefly touch on the idea to overlay the type order
with ownership. This paper works out the details of this idea and



also provides an abstract presentation, detached from relationship-
based programming languages and Rumer, in particular.

The rest of this paper is structured as follows: Section 2 intro-
duces the main idea of selective ownership, independently of a spe-
cific host language. Section 3 then exemplifies selective ownership
in the context of Rumer. Section 4 briefly discusses some conse-
quences of the co-existence of owned and shared objects. Section 5
summarizes related work, and Section 6 concludes the paper.

2. Selective ownership in a nutshell
This section introduces the core ideas of selective ownership. Even
though we have developed selective ownership in the context of
the Rumer programming language, the core ideas of selective own-
ership are of general applicability. We thus keep the presentation
abstract in this section and defer the Rumer-specific aspects of se-
lective ownership to Section 3. In the following, we first show how
a program’s heap can be structured using selective ownership and
then sketch how the imposed structure facilitates the modular veri-
fication of object invariants.

2.1 Heap structure
Selective ownership provides programmers with a “mix and match”
approach to giving structure to a program’s heap. At its core,
the approach relies on an ordering relation on a program’s type
declarations. This ordering relation gives some basic structure to
the program heap. If additional structuring is required, then the
resulting heap can further be shaped by superimposing ownership
on selected type instances in the heap.

We illustrate the approach on Figure 1 (a) and Figure 1 (b). Fig-
ure 1 (a) displays a program heap that has been shaped by declar-
ing a type order and Figure 1 (b) displays one that has been shaped
by declaring both a type order and instance ownership. To keep
the presentation abstract, the two figures are not geared towards a
particular programming language. Instead, they use only the no-
tions of a type, type instance, and type instance reference. Types
are represented as dark grey boxes, which enclose the instances of
the type (represented as light gray circles). Type instance references
are represented as arrows with a split arrowhead. In a class-based,
object-oriented setting, types correspond to classes, type instances
to objects, and type instance references to object references. To in-
crease readability, we may occasionally refer to “type instances” as
“instances” or “objects” and to “type instance references” as “ref-
erences”.

Figure 1 (a) shows the result of imposing a strict partial order
on a program’s type declarations. This figure displays the order-
ing relation using bold arrows with filled arrowheads, which in-
dicate the order’s transitive reduction. To give structure to a pro-
gram’s heap, selective ownership confines the declaration of type
instance references such that an instance o of type O can only de-
clare a reference to an instance o′ of type O′ if the pair O 7→ O′

is an element of the type order. As shown by Figure 1 (a), the en-
forcement of this requirement gives rise to a program heap that
forms a directed acyclic graph (DAG). Similarly to the Universe
type system [20–23, 37], selective ownership leaves the declaration
of read-only type instance references unconstrained. This relax-
ation guarantees that any modifications by means of assignments
or side-effect-generating method invocations comply with a pro-
gram’s type order but allows for arbitrary reads or pure method in-
vocations. For simplicity, Figure 1 (a) omits read-only references,
but the reader can think of such references as occurring between
arbitrary instances. A DAG topology is more permissive than the
tree topology typically enforced by Ownership type systems [17–
23, 37, 41] as it allows for shared, modifying access to instances
further “down” in the heap topology. For example, the type instance
“e1”, in Figure 1 (a), can both be modified by the type instances

“a2” and “c1”, and the type instance “f3” by the type instances
“c2”, “b1”, and “d1”.

To shape a program’s heap even further, a programmer can su-
perimpose the type ordering with instance ownership. Figure 1 (b)
shows the result of imposing ownership on selected instances in
the program heap of Figure 1 (a). Ownership is displayed by a dot-
ted arrow from the owner to the owned instance. In Figure 1 (b),
ownership has been declared for three type instances: for the type
instance “e1” with the owning type instance “c1”, for the type in-
stance “d1” with the owning type instance “b2”, and for the type
instance “d2” with the owning type instance “b3”. The ownership
declaration guarantees that only the owner can declare modifying
type instance references to the owned instance and, hence, mod-
ify the owned type instance. As a result, the modifying references
between the instances “a2” and “e1” and the instances “b3” and
“d1”, which are legal in Figure 1 (a), are illegal in Figure 1 (b) and
are crossed out. The declaration of corresponding read-only refer-
ences, however, would be admissible since selective ownership per-
mits arbitrary read-only references. As opposed to the ownership
enforced by Ownership type systems [17–23, 37, 41], the owner-
ship enforced by selective ownership it not transitive. This property
allows for more flexibility. For example, even though the type in-
stances “d1” and “d2” are owned by different owners, they share
modifying access to the type instance “g1”.

2.2 Invariant verification technique
Invariants provide a foundation for verifying programs [26],
and various object-oriented programming and specification lan-
guages [9, 28, 35] have adopted invariants for objects. An object
invariant captures the properties of an object that the object exhibits
in its consistent states. Object invariants are central to a wealth
of object-oriented verification techniques [7, 8, 27, 30, 32, 36–
38, 40, 43]. These techniques establish appropriate proof obliga-
tions to verify at compile-time that an object satisfies its invariant
at designated program points at run-time. To be practical, those
proof obligations must be modular, allowing classes to be verified
independently from each other.

Modular, object-oriented verification techniques face two key
challenges: multi-object invariants and call-backs [25, 29]. A multi-
object invariant declared for an object o is an invariant that depends
not only on the state of o but also on the state of any object p that
o refers to. The verification of such invariants is difficult since the
invariant may be violated not only through modifications of o but
also by modifications of any of the objects p. A call-back, on the
other hand, happens when a method m() (possibly transitively) in-
vokes a method n() on m()’s current receiver object om. Call-backs
may complicate the adoption of a visible-state semantics for invari-
ants. A visible-state semantics [25, 38] expects the current receiver
object to satisfy its invariant in the initial and final states of the ex-
ecuting method (the so-called visible states) but allows temporary
violations in between those states. For instance, if m() (possibly
transitively) calls n() while the invariant of om is temporarily bro-
ken, then om would not satisfy its invariant in the initial state of n()
when a call-back occurs.

Ownership-based verification techniques for object invariants
[30, 34, 37, 38] leverage the tree topology of an ownership sys-
tem to address the above mentioned challenges. In particular, they
exploit (i) that invariants can depend only on fields of the invariant-
declaring object or on fields of objects it owns, (ii) that modifica-
tions of an owned object’s fields are initiated1 by the object’s owner
(“owner-as-modifier discipline” [22, 24]), and (iii) that owned ob-
jects may invoke methods only on objects with the same owner

1 Modifications of an owned object’s field are initiated by the owner if there
exists a stack frame on the call-stack with the owner as the current receiver.
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Figure 1. Abstract illustration of selective ownership: (a) valid program heap structure due to type order; (b) valid program heap structure
due to type order and selective ownership. Illegal modifying type instance references from (a) are crossed out in (b).

or on objects they own. The first and the second property give an
owner whose invariant relies on an owned object the chance to re-
establish the invariant upon modifications of the owned object. The
third property prevents call-backs into owners from objects within
their ownership trees.

Next, we sketch how a visible-state verification technique can
leverage both type ordering and object ownership to accommodate
invariants over heap topologies that subsume shared, modifiable
sub-structures. For simplicity, we assume that the underlying pro-
gramming language allows assignments to a field f only of the form
this.f = expr. In line with [38], we refer to this restriction as clas-
sical encapsulation. Our presentation draws from the visible-state
verification technique we have developed for Rumer but general-
izes its main ideas to fit the abstract description in this section. A
detailed account of our verification technique, including its proof
obligations as well as its soundness proof, can be found in [4].

A verification technique can leverage the type ordering entailed
by selective ownership to prevent transitive call-backs. Since the
type ordering forms a strict partial order, it is guaranteed to be
acyclic. To prevent transitive call-backs, a verification technique
simply needs to require that method invocations either propagate in
the direction of a program’s type ordering relation or that the caller
and callee of an invocation are the same object. For example, under
this restriction, the type instance “d1” in Figure 1 (a) is allowed to
invoke methods only on itself or on any instances of the types “G”
and “F”, such as the referred-to instances “g1” and “f3”.

Given the absence of transitive call-backs, the support of a
visible-state semantics for single-object invariants is straight-
forward: a verification technique simply needs (i) to require in-
variants declared for a type instance to depend only on fields of
that instance and (ii) to impose the proof obligation on a method
to restore the invariant of the current receiver instance in the final
state of the method as well as before any invocations on the current
receiver instance. For example, assume that we declare an invari-
ant for instances of type “D” in Figure 1 (a) and we consider the
execution of the method m() on the type instance “d1”. The first
requirement guarantees that m() can violate at most the invariant of
“d1” while it executes. The second requirement and the absence of
transitive call-backs guarantee that any method invocation during
m()’s execution encounters the callee instance in a consistent state.

The type ordering entailed by selective ownership is sufficient
to prevent transitive call-backs, but not (generally2) sufficient to

2 In earlier work [5], we describe a visible-state verification technique that
leverages the type order defined by relationship declarations as well as
an encapsulation mechanism called member interposition for the modular
verification of multi-object invariants.

support multi-object invariants. For example, if the invariant of in-
stance “b2” in Figure 1 (a) were allowed to depend on the state of
instance “d1”, a method with the receiver instance “d1” might vio-
late the invariant of “b2”. If calls to this method are not controlled
by instance “b2”, then the violation would go unnoticed during ver-
ification, making the verification technique unsound.

A way of accommodating multi-object invariants for a verifi-
cation technique is to additionally impose ownership on the type
instances on which a multi-object invariant depends. For example,
assume that we declare an invariant for instances of type “B” in
Figure 1 (b) such that the invariant not only depends on fields of
the current instance but also on the fields of a referred-to instance
of type “D”. Modular reasoning about such an invariant can be re-
stored by making the instances of type “B” become the owner of
the referred-to “D” instance. Given the ownership, instances of type
“B” are guaranteed that any modifications of the referred-to “D” in-
stance are solely triggered by themselves, giving them a chance to
re-establish the invariant accordingly. Furthermore, thanks to the
absence of transitive call-backs, instances of type “B” are guaran-
teed that they are not re-entered via a method invocation from their
owned instances (as the instances of type “B” might be in an incon-
sistent state at that moment).

So far, we have shown how a verification technique can leverage
type ordering to prevent transitive call-backs and selective owner-
ship to control modifications of objects and what objects an invari-
ant depends on. Since the ownership enforced by selective own-
ership it not transitive, a verification technique based on selective
ownership can accommodate even invariants over heap topologies
that subsume shared, modifiable sub-structures. For example, in
Figure 1 (b) instances “d1” and “d2” share and may modify in-
stance “g1”, although “d1” and “d2” have different owners. In Sec-
tion 3, we show further how selective ownership can develop its full
power in Rumer, a programming language supporting first-class re-
lationships. Rumer complements the notion of an object or relation-
ship instance with the one of an extent instance, that is, collections
of instances. This combination allows for a more modular program
design and facilitates the verification of invariants even in the pres-
ence of shared, modifiable sub-structures.

3. Selective ownership in Rumer
This section discusses how selective ownership can be incorporated
into a programming language. We use as an example Rumer [4, 5],
a programming language we have designed to embody first-class
relationships [1, 4, 6, 10, 33, 39, 42, 44] and for which we have
developed a visible-state verification technique based on selec-
tive ownership [4]. The section starts with a brief introduction to



1 entity Node {
2 string info; / / e l e m e n t f i e l d
3
4 void setInfo(string info) / / e l e m e n t m e t h o d
5 { this.info = info; }
6 }
7
8 relationship Parent
9 participants (Node child, Node parent) {
10
11 / / e x t e n t m e t h o d
12 extent void link(Node c, Node p) {
13 these.add(new Parent(c, p));
14 }
15 }

Figure 2. Simple Rumer program modeling node hierarchies.

Rumer; we introduce Rumer only as far as necessary to follow the
presentation of selective ownership in this paper. An in-depth in-
troduction to Rumer as well as a discussion of related work on
first-class relationships is given in [4]. Then, based on a running
example, we explain how programmers define type ordering and
ownership in Rumer and we sketch the Rumer verification tech-
nique based on the example.

3.1 Introduction to Rumer
Relationship-based programming languages extend object-oriented
languages with the abstraction of a relationship to encapsulate the
relationships that naturally arise between instances of classes. In
those languages, relationships are first-class citizens: relationships
can be instantiated as well as declare their own fields and methods.
Early research on first-class relationships was motivated by the ob-
servation that programmers are poorly served when trying to imple-
ment relationships in object-oriented programming languages. As
those languages lack first-class support for relationships, relation-
ships must be represented in terms of reference fields and auxiliary
classes. This indirection leads to a distribution of relationship code
across several classes, making the resulting program prone to error.

Figure 2 displays a simple Rumer program. The program mod-
els hierarchies between nodes. As illustrated by Figure 2, Rumer
supports two kinds of programmer-definable types: entities and re-
lationships. In the example, the entity Node and the relationship
Parent are declared. Entities are similar to classes and abstract
objects. Relationships, on the other hand, abstract the relationships
between instances. To indicate the types of instances that a rela-
tionship instance relates, a relationship declaration includes a par-
ticipants clause. According to its participants clause on line 9, re-
lationship Parent relates instances of the entity Node. To disam-
biguate the position an instance takes in a relationship, identifiers
are assigned to the type declarations in a participants clause, in-
dicating the role an instance of the type plays in the relationship.
In the example, a Parent relationship instance relates a child
node to its corresponding parent node.

Figure 3 (a) provides a schematic illustration of the run-time in-
stances that the Rumer program displayed in Figure 2 may produce.
It represents entity and relationship instances as dark gray circles
and light gray ellipses, respectively, and connects relationship in-
stances to their participant instances by lines, which are labeled
with the role identifiers of the relationship’s participants clause.
For later reference, we mark entity and relationship instances with
numbers and letters, respectively. In comparison to the object graph
that would be produced by a corresponding class-based object-
oriented implementation of the program shown in Figure 2, the run-
time structure displayed in Figure 3 (a) differs in the existence of

explicit relationship instances and in the absence of references in
nodes. Since relationships are bidirectional, Rumer facilitates ac-
cess to the participating instances at either side of a relationship
instance. As a result, the declaration of references in objects is no
longer a prerequisite for navigating the object graph. The different
nature of objects in Rumer is also the reason why we use the term
“entity” for the type abstracting objects rather than the term “class”.

A further distinguishing feature of Rumer is the support of ex-
tents. An extent denotes a programmer-instantiable collection of
instances. The term originates from the ODMG (Object Data Man-
agement Group) object model [16], where an extent of a type de-
notes the set of all instances of that type. Existing relationship-
based programming languages maintain a single extent instance
for each relationship declaration. Rumer builds on Nelson et al.’s
suggestion to support multiple extent instances for first-class rela-
tionships [39] and provides extent instantiation not only for rela-
tionships but also for entities. For example, the following line of
code instantiates an extent of type Parent and assigns the result-
ing extent instance to the variable parents:

Extent<Parent> parents = new Extent<Parent>();

As indicated by the argument type provided in angle brackets,
the extent instance parents comprises Parent relationship
instances. To distinguish the instances residing in an extent in-
stance from the extent instance itself, we use the term element
instance to refer to the former. Thus, the variable parents de-
notes a Parent extent instance that comprises Parent element
instances.

Extent instances are explicitly populated and depopulated by
programmers, and the Rumer type system guarantees that element
instances always inhabit exactly one extent instance. To facilitate
retrieval of element instances from an extent instance, Rumer sup-
ports a rich range of side-effect free queries in the spirit of LINQ
(.NET Language-Integrated Query) [11, 12]. For example, given a
Node element instance p, the following query returns all transitive
children of p:

parents.tClosure().select(x: x.parent == p).child

The built-in query operator tClosure() builds the transitive
closure of the relation described by the parents extent instance,
and the built-in query operator select() reduces the resulting
relation to the subset containing only Parent element instances
that have p as an immediate parent or ancestor. The role projection
operator child then projects the resulting subset of Parent
element instances onto all Node element instances that participate
as a child in those Parent element instances.

Extent instances in Rumer are not plain collections, but rather
they can be equipped by the programmer with customized fields
and methods. As a result, a Rumer type declaration may comprise
field and method declarations both for element instances and ex-
tent instances of the type. Extent fields and methods are denoted by
the extent keyword. For instance, entity Node declares the ele-
ment field info and the element method setInfo() on line 2
and line 4 in Figure 2, respectively, and relationship Parent de-
clares the extent method link() on line 11. The element method
setInfo() sets the info field of the Node element instance
that is the current receiver of the method. The keyword this
refers to the current receiver instance of an element method. The
extent method link() connects the argument Node element in-
stance c as a child to the argument Node element instance p.
The method invokes the built-in addition operator add() (line 13)
on the Parent extent instance that is the current receiver of the
method. The keyword these refers to the current receiver instance
of an extent method. The choice of the keyword reflects the fact that
an extent instance may contain several element instances. The ad-
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dition operator instantiates a new Parent element instance that
inhabits the current receiver extent instance.

3.2 Running example: tree
To illustrate the need for selective ownership, we extend the pro-
gram shown in Figure 2 with a new relationship that allows us to
model actual trees rather than node hierarchies. The new relation-
ship Tree is shown in Figure 4. As indicated by its participants
clause, a Tree element instance relates a Node element instance
as its root to a Parent extent instance as its tree. In more ab-
stract terms, a tree is thus represented by a tuple that has the root
node of a tree as its left element and a relation describing the hier-
archy between the tree’s nodes as its right element. Whereas typi-
cal object-oriented implementations use the same abstraction to de-
scribe a tree as well as its children sub-trees, we chose to separate
the two notions. As we will see (see Section 3.3 and Section 3.4),
the chosen representation facilitates a concise formulation of the
tree properties in terms of an invariant.

The chosen tree representation also becomes apparent in Fig-
ure 3 (b), which provides a schematic illustration of a Tree ele-
ment instance. Figure 3 (b) uses the same graphical notations as
Figure 3 (a) but complements them with extent instances. Extent
instances are represented as rectangular boxes. Figure 3 (b) thus
displays the Parent extent instance “α”, which is the tree par-
ticipant instance of the Tree element instance “a”. The matching
labels used in Figure 3 (a) and Figure 3 (b) further indicate that the
Parent extent instance “α” displayed in Figure 3 (b) exactly sub-
sumes the relationship element instances displayed in Figure 3 (a).
To keep Figure 3 (b) simple, we have chosen a Tree element in-
stance with only one layer. However, the relationship declaration in
Figure 4 also supports multi-layered trees as well.

Figure 3 (c) finally shows the complete view of a run-time heap
that may be produced by instantiating the declarations listed in
Figure 2 and in Figure 4. This heap comprises the two Tree el-
ement instances “a” and “b”. As indicated by the matching labels,
the Tree element instance “a” exactly subsumes the run-time in-
stances shown in Figure 3 (b). Since element instances are guaran-
teed to inhabit exactly one extent instance (see Section 3.1), Fig-
ure 3 (c) additionally displays the extent instances “i” and “γ” in
which the Node element instances and Tree element instances, re-
spectively, reside. To keep the graphical layout well-arranged, Fig-
ure 3 (c) makes use of “shadow” Node element instances. Those
shadows are purely graphical copies of the instance they are con-
nected to by a dotted line. For example, the Node element in-
stance “4” is part of both displayed Tree element instances: it is
a leaf node of the Tree element instance “a” and the root node of
the Tree element instance “b”. Node element instance “4” also
nicely motivates the need for selective ownership as it represents a
run-time instance further down in the heap topology that is shared
among and modified by both trees.

Relationship Tree declares various methods for tree manipula-
tions, such as appending one tree to another one. In the following,
we briefly explain the implementations of these methods for the
interested reader:

The extent method createTree() (line 4) instantiates a new
Tree element instance that inhabits the current receiver extent
instance referred to by these. In terms of Figure 3 (c), these
denotes the Tree extent instance “γ”. The newly created Tree
element instance relates the argument Node element instance r as
a root to an empty, newly created Parent extent instances as a
tree.

The element method appendTree() (line 7) appends the
Tree element instance t to the current receiver Tree element



1 relationship Tree participants (Node root, Extent<Parent> tree) {
2
3 / / I n s t a n t i a t e s a T r e e e l e m e n t i n s t a n c e w i t h ’ r o o t ’ r a n d a new e m p t y ’ t r e e ’ t h a t i n h a b i t s t h e s e .
4 extent void createTree(Node r)
5 { these.add(new Tree(r, new Extent<Parent>())); }
6
7 void appendTree(Tree t, Node p) / / A p p e n d s t r e e t t o t h i s a s ’ c h i l d ’ o f p .
8 { this.appendNode(t.root, p); this.appendSubTree(t.tree, t.root); }
9
10 void appendSubTree(query Set<Parent> c, Node p) / / A p p e n d s s u b− t r e e c t o t h i s a s ’ c h i l d ’ o f p .
11 { foreach (cp isElementOf c.select(x: x.parent == p)) {
12 this.appendNode(cp.child, cp.parent);
13 this.appendSubTree(c.select(x: x.child isElementOf
14 c.tClosure().select(y: y.parent == cp.child).child), cp.child); }}
15
16 void appendNode(Node c, Node p) / / A p p e n d s n o d e c t o t h i s a s ’ c h i l d ’ o f p .
17 { this.tree.link(c, p); }
18 }

Figure 4. Relationship Tree. Extends program in Figure 2 to model trees.

instance as a child of the Node element instance p. Method
appendTree() relies on the element methods appendNode()
and appendSubTree().

The element method appendNode() (line 16) appends the
Node element instance c to the current receiver Tree element
instance as a child of the Node element instance p. It relies on
Parent’s extent method link(), which it invokes on the current
receiver instance’s tree Parent extent instance.

The element method appendSubTree() (line 10), finally,
appends the sub-tree denoted by the set of Parent element in-
stances c to the current receiver Tree element instance as a
child of the Node element instance p. The method is imple-
mented recursively to append the sub-tree in a depth-first traver-
sal order. In each recursive step (line 12), one Node element in-
stance of the sub-tree (denoted by cp.child) is appended to
its corresponding parent Node element instance in the current
receiver instance’s tree Parent extent instance (denoted by
cp.parent). Recursion stops whenever the sub-tree c denotes
the empty set. This is the case as soon as a leaf node has been
inserted in the preceding recursive invocation.

3.3 Declaration of type ordering
A glimpse at Figure 3 (c) reveals that first-class relationships natu-
rally give rise to an ordering on type declarations. Building on this
observation, Rumer allows programmers to structure a program’s
heap by declaring relationships. The ordering on entity and rela-
tionships, in particular, is defined by a relationship’s participants
clause. In terms of Figure 1 (a), a relationship’s participants clause
defines two type order arrows such that each arrow points from the
relationship to one of the relationship’s participant types. For the
running example defined in Figure 2 and Figure 4, the transitive
reduction of the resulting type order thus is:

{Tree 7→ Parent, Tree 7→ Node,Parent 7→ Node}
To meet the criterion of a type order (see Section 2.1), the tran-

sitive closure of the above relation must form a strict partial order.
This requirement, in particular, expects relationship declarations to
be acyclic. It is noteworthy that this requirement does not prevent
the implementation of recursive data structures in Rumer since the
“links” between the structure’s data are represented by relationship
instances, as opposed to data references.

In earlier work [4, 5], we introduced a visible-state verification
technique that leverages the type order defined by relationship dec-
larations. As outlined in Section 2.2, our technique prevents transi-

tive call-backs by requiring method invocations to either propagate
in the direction of a program’s relationship declarations or to dis-
patch on the current receiver instance. The built-in query operators
in Rumer are not subject to this restriction as they are side-effect
free.

To illustrate what kinds of invariants can be accommodated us-
ing the order prescribed by relationship declarations, we introduce
an invariant to the running example. In particular, we declare an
invariant for extent instances of relationship Parent to guaran-
tee that a Parent extent instance indeed describes a hierarchy of
nodes:

extent invariant / / P a r e n t ’ s e x t e n t i n v a r i a n t
these.isPartialFunction() &
these.tClosure().isIrreflexive();

In addition to the built-in query operator tClosure() encoun-
tered earlier, the extent invariant uses the built-in query operators
isPartialFunction() and isIrreflexive(). These op-
erators evaluate to true if the set of relationship element instances
on which the operator is invoked forms a partial function and ir-
reflexive relation, respectively. The invariant thus guarantees that a
Parent extent instance forms a forest of trees.

The extent invariant of Parent depends only on the state of the
extent instance, but not on the states of the Node element instances
since the links between the nodes are expressed as a relationship
(as opposed to references stored in the Node element instances).
Consequently, we can maintain the invariant without requiring the
extent or the Tree relationship to own the nodes. The absence of
ownership allows arbitrary instances to refer to and to modify the
nodes - a setup that is not permitted in existing ownership-based
verification techniques. Since Rumer enforces classical encapsula-
tion (see Section 2.2) for its instances, the extent instance is the
only instance that can write to its content. To maintain Parent’s
extent invariant, our verification technique thus imposes the proof
obligation on any of Parent’s extent methods to establish the cur-
rent receiver’s invariant in the final state of the method as well as
before any invocations on the current receiver. An in-depth discus-
sion of our verification technique, including a complete overview
of its proof obligations as well as its soundness proof, can be found
in [4].

3.4 Declaration of ownership
Thanks to relationship Parent’s extent invariant, relationship
Tree is guaranteed that its element instances’ tree Parent
extent instances describe node hierarchies. However, as exempli-
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Figure 5. Possible instantiations of program declared in Figure 4. Both instantiations satisfy Parent’s extent invariant introduced in
Section 3.3 but do not form proper trees: (a) the Tree element instance’s tree Parent extent instance represents a forest of trees, (b) the
Tree element instance’s root Node element instance is not the topmost Node element instances of its tree Parent extent instance.

fied by Figure 5 (a) and Figure 5 (b), this invariant is not sufficient
to guarantee that Tree element instances indeed form proper trees.
For example, Figure 5 (a) displays a Tree element instance whose
tree Parent extent instance represents a forest of trees, and
Figure 5 (b) displays a Tree element instance whose root Node
element instance is not the topmost Node element instance of its
tree Parent extent instance.

To guarantee that Tree element instances actually form proper
trees, we need to impose an appropriate invariant on element in-
stances of relationship Tree. Intuitively, this invariant shall make
sure, for any Tree element instance t, that t’s root Node ele-
ment instance is the same as the topmost Node element instance in
t’s tree Parent extent instance and, also, that there exists a top-
most Node element instance in t’s tree Parent extent instance.
This invariant can be expressed in Rumer as an element invariant
on relationship Tree as follows:

invariant / / T r e e ’ s e l e m e n t i n v a r i a n t
!(this.root isElementOf this.tree.child) &
(!this.tree.isEmpty() => this.root isElementOf

this.tree.parent) &
this.tree.tClosure().select(cp: cp.parent ==
this.root).child == this.tree.child;

The first conjunct of the element invariant requires that a Tree
element instance’s root Node element instance never appears as
a child in the relation described by the Tree element instance’s
tree Parent extent instance. The second conjunct requires that a
Tree element instance’s root Node element instance appears as
a parent in the relation described by the Tree element instance’s
tree Parent extent instance, unless this relation is empty. The
first and second conjunct thus rule out instantiations such as the
one shown in Figure 5 (b). The third conjunct requires that a Tree
element instance’s root Node element instance is the transitive
parent of all children nodes of the relation described by the
Tree element instance’s tree Parent extent instance. The third
conjunct thus rules out instantiations such as the one shown in
Figure 5 (a).

As opposed to Parent’s extent invariant, this invariant does
not only depend on the state of the invariant’s Tree element in-
stance but also on the state of its instance’s tree Parent extent
instance. More specifically, the invariant depends on the content
of its instance’s tree Parent extent instance and can thus be
violated by the addition or removal of any Parent element in-
stances to or from the instance’s tree Parent extent instance.
As a result, the element invariant of relationship Tree cannot be

accommodated by our verification technique solely by leveraging
type ordering.

However, our verification technique can accommodate the ele-
ment invariant of relationship Tree by superimposing the type or-
der prescribed by relationship declarations with ownership. More
specifically, we must make a Tree element instance the owner
of its tree Parent extent instance. In terms of Figure 3 (c), the
ownership will guarantee that the Tree element instances “a” and
“b” are the owners of their tree Parent extent instances “α”
and “β”, respectively.

Figure 6 shows the result of superimposing ownership on the
relationship Tree declared in Figure 4; the differences between
the two versions are highlighted in Figure 6. The declarations
of entity Node and relationship Parent are unaffected by the
ownership declaration and are shown in Figure 2. As indicated by
the participants clause of the new version of relationship Tree, we
use type modifiers to express ownership of an instance relative to
a current receiver instance. We distinguish the following selective
ownership modifiers:
• owned: referred-to instance has the current receiver instance as

its owner;
• shared (default modifier): referred-to instance does not have an

owner;
• readonly: referred-to instance may or may not have an owner.

By annotating its tree participant type with the ownership
modifier owned, relationship Tree guarantees that its element
instances become the unique owner of their tree Parent extent
instances. If a type declaration omits the ownership modifier, the
default modifier shared is assumed. The use of type modifiers
results in an ownership type system that is similarly lightweight
as the Universe type system [20–23, 37]. However, unlike the
ownership enforced by Universe types, the ownership enforced by
selective ownership is not transitive. For example, the new version
of relationship Tree in Figure 6 does neither affect the Parent
element instances within an owned Parent extent instance nor
the Node element instances related by those Parent element
instances. As a result, the program heap depicted in Figure 3 (c)
still amounts to a valid heap that can be produced by the new
relationship declaration. The two Tree element instances “a” and
“b” displayed in Figure 3 (c), in particular, are allowed to share and
modify the Node element instance “4” while keeping their tree
Parent extent instances “α” and “β”, respectively, separate.

To guarantee that the two ways of structuring a program’s heap
offered by selective ownership — type order and instance owner-
ship — nicely complement each other, the ownership relation must



1 / / A T r e e e l e m e n t i n s t a n c e o w n s i t s ’ t r e e ’ P a r e n t e x t e n t i n s t a n c e .
2 relationship Tree participants (Node root, owned Extent<Parent> tree) {
3
4 extent void createTree(Node r)
5 / / New T r e e e l e m e n t i n s t a n c e b e c o m e s o w n e r o f new P a r e n t e x t e n t i n s t a n c e .
6 { these.add(new Tree(r, new owned Extent<Parent>())); }
7
8 void appendTree(Tree t, Node p)
9 { this.appendNode(t.root, p); this.appendSubTree(t.tree, t.root); }
10
11 void appendSubTree(query Set<Parent> c, Node p)
12 { foreach (cp isElementOf c.select(x: x.parent == p)) {
13 this.appendNode(cp.child, cp.parent);
14 this.appendSubTree(c.select(x: x.child isElementOf
15 c.tClosure().select(y: y.parent == cp.child).child), cp.child); }}
16
17 void appendNode(Node c, Node p)
18 { this.tree.link(c, p); } / / I n v o c a t i o n a d m i s s i b l e : t h i s i s o w n e r o f ’ t r e e ’ P a r e n t e x t e n t i n s t a n c e .
19 }

Figure 6. Relationship Tree augmented with ownership. Differences to version without ownership (see Figure 4) are highlighted.

be a subset of the type order. In Rumer, this requirement is met
by allowing only relationships to impose ownership on instances of
their participant types. Given this restriction, owners are guaranteed
not to be re-entered (in a possibly inconsistent state) via method in-
vocations from their owned instances.

Selective ownership modifiers constrain method invocations
and thus strengthen the restrictions imposed on method invoca-
tions by the type order. In particular, selective ownership allows
only owners to invoke methods on owned instances. For example,
the invocation of method link() on the Parent extent instance
referred-to by this.tree on line 18 in Figure 6 is admissible be-
cause the current receiver Tree element instance is the owner of its
tree Parent extent instance. This regime guarantees that modi-
fications of an owned instance’s fields are initiated by the instance’s
owner, giving the owner a chance to re-establish the invariant upon
modifications of the owned instance. Method invocations on shared
instances, on the other hand, are not constrained by selective own-
ership. Furthermore, selective ownership permits the reading of
fields of owned instances and the invocation of built-in query op-
erators on owned instances. For example, the access t.tree on
line 9 in Figure 6 is admissible because it is a read access. The se-
lective ownership modifier readonly, lastly, forbids any method
invocations on the referred-to instance but permits read accesses or
invocations of built-in query operators.

4. Discussion
As exemplified by the program heap shown in Figure 3 (c), selec-
tive ownership enables a hybrid ownership scheme in which owned
and shared instances coexist. To permit such a scheme, type dec-
larations must be formulated so as to allow possible callers to ob-
tain either owned or shared instances of the type. As a result, only
the caller-site knows about the ownership of an instance and can
thus guard the instance against prohibited modifications or acciden-
tal leaking by establishing appropriate selective ownership modi-
fiers. The callee-site, on the other hand, does not know whether a
particular instance is owned or shared and may thus perceive an
owned instance as “supposedly shared”. For example, relationship
Parent in Figure 2 assumes the default selective ownership modi-
fier shared for its extent instances and may thus accidentally leak
a Tree element instance’s tree Parent extent instance.

In [4] we establish appropriate well-formedness conditions on
a Rumer program to prevent the accidental leaking of “supposedly
shared” instances. In particular, we prove that, given those well-

formedness conditions, “supposedly shared” instances cannot out-
live the (possibly transitive) method executions within which they
are produced. Furthermore, we prove a lemma that captures the ef-
fects of selective ownership on a program’s call stack. The lemma
is stated from the perspective of an owned instance and guarantees
that any owned instance residing on the call stack is preceded by
its owner. As a result, the lemma guarantees that any modifications
of an owned instance’s field are initiated by the instance’s owner.
However, due to the hybrid nature of the underlying ownership
system, this property does not hold for all the instances in a pro-
gram’s heap, but only for those instances in a program’s heap that
are owned. To contrast the discipline emerging from selective own-
ership with the “owner-as-modifier” discipline of the Universe type
system [22, 24], we refer to our discipline as the “owned-called-by-
owner” discipline.

The currently enforced well-formedness conditions to prevent
the accidental leaking of “supposedly shared” instances restrict
the type of fields entities and relationships can declare. In partic-
ular, they prevent an entity or relationship from defining fields that
“point to” type instances of which the entity or relationship is a
(possibly transitive) participant. As part of future work, we would
like to investigate less restrictive mechanisms to prevent the acci-
dental leaking of “supposedly shared” instances.

5. Related work
In this section, we focus on related work on Ownership type sys-
tems and, in particular, on ownership-based verification techniques.
An extensive discussion of related work on relationship-based pro-
gramming languages is given in [4].

Work on “traditional” forms of ownership can broadly be cat-
egorized into work on ownership types [17–19, 41] and work on
Universe types [20–23, 37]. In both ownership schemes, all objects
are owned and have exactly one owning object. The two schemes,
however, differ in their applied encapsulation discipline. Whereas
ownership types typically enforce the owner-as-dominator disci-
pline, Universe types typically enforce the owner-as-modifier dis-
cipline [22, 24]. The owner-as-dominator discipline requires all ref-
erence chains to an object to pass through the object’s owner. The
owner-as-modifier discipline, on the other hand, enforces a less
stringent alias restriction and requires only modifications of an ob-
ject to be initiated by the object’s owner.

Whereas ownership types allow owned objects to establish
back-references to their owners, Universe types permit such ref-



erences only if they are read-only. This restriction makes the Uni-
verse type system attractive for program verification since it for-
bids call-backs into owners. The amenability of Universe types
and similar systems for program verification has been shown
in [30, 37, 38]. The benefits of ownership for program verifica-
tion have also been demonstrated in the context of Oval [34], a
variant of an ownership-type-based language. As opposed to other
ownership type systems [17–19, 41], Oval’s types system enforces
an owner-as-modifier discipline and employs effect annotations to
deal with call-backs.

The presented verification technique is most closely related to
the Universe-type-based verification technique [37, 38] since se-
lective ownership is similarly lightweight as Universe types thanks
to the use of ownership modifiers. However, selective ownership
allows for unrestricted sharing of instances further “down” in the
heap topology. This relaxation is due to the fact that selective own-
ership allows heap structure to be enforced either by type order
alone or by type order combined with instance ownership. Selective
ownership gives furthermore rise to a hybrid ownership scheme in
which owned and shared instances coexist.

Our extent invariants are related to visibility-based invariants
[30, 38] since they support certain multi-object invariants without
requiring ownership. Extent invariants lead to simple proof obliga-
tions for extent methods, whereas visibility-based invariants require
proof obligations that quantify over all objects that are possibly af-
fected by a field update.

Leino et al. [31] use a programmer-declared type ordering to
control class initialization and to verify static class invariants. In
our system, the type ordering is used to prevent transitive call-
backs. Instead of requiring explicit declarations, we infer the type
ordering from the relationship declarations in a Rumer program.

Cameron et al. [15] propose a type system that supports multi-
ple ownership. It enforces a DAG topology on the heap and, thus,
permits several objects to own and modify owned objects. So far
there is no verification technique that handles this expressiveness.
In our approach, certain invariants can be stated as extent invariants
rather than object invariants. Therefore, we can verify such invari-
ants without requiring ownership.

In ownership domains [3], the objects owned by one owner can
be grouped into several domains. A domain can be declared public;
each client that may access an owner object may also own the
objects in its public domain. For instance, a linked list structure
may put all list nodes in a non-public domain and the list iterators
in another, public domain. Each client with access to the list may
then access its iterators, which in turn can be permitted to have
access to the nodes. Therefore, ownership domains permit sharing
of owned objects. Modular verification of invariants over such
structures is difficult since owners do not have full control over
the owned objects. For instance, it is unclear how to maintain the
list’s invariant when the nodes are modified via an iterator. In our
approach, we can formulate structural properties of the list as an
extent invariant and are thus able to verify such invariants without
imposing ownership on the nodes.

6. Conclusions
This paper introduces selective ownership, a flexible “mix and
match” approach to giving structure to a program’s heap in two
ways: by defining an ordering relation on a program’s type declara-
tions and by imposing ownership on selected instances. We evalu-
ate selective ownership for the purpose of program verification. As
compared to existing ownership-based verification techniques, the
heap topology enforced by selective ownership does not amount to
a tree, but to a DAG with partial sub-trees. This scheme permits
the modular verification of ownership-based invariants without re-
stricting access to instances further “down” in the heap topology.

Although selective ownership is not tied to a particular host
language, it seems to develop its full power in a language that
supports first-class relationships. We illustrate selective ownership
in the context of Rumer, for which we have developed selective
ownership. First-class relationships in Rumer give naturally rise to
an ordering on type declarations. Furthermore, the availability of
an elaborate set of type abstractions — entity versus relationship
as well as element instance versus extent instance — allows for a
practical modularization of programs that facilitates the expression
of invariants over heap topologies that subsume shared, modifiable
sub-structures.
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