
A Logic for Bytecode

Fabian Yves Bannwart and Peter Müller

August 2, 2004

Contents

1 Introduction 2

2 The VMK Bytecode 6

3 A Programming Logic for the VMK Kernel Language 15

4 Soundness, Completeness and Weakest Preconditions 31

5 Application: Deriving Rules For Complex Instructions 46

6 Extensions: Exception Handling and Class Initialization 49

7 Related Work 57

8 Conclusion 57

1

Abstract

Firstly, this technical report presents a Hoare-style programming logic
(“axiomatic semantics”) for a sequential, stack-based bytecode language
with unstructured control flow and OO-features similar to the JVM or
the CLI languages. We prove soundness and completeness with respect
to the operational semantics and derive a weakest precondition calculus
that does not sacrifice modular reasoning. We then extend the bytecode
language and its logic to include structured exception handling and class
initialization and we show how the weakest precondition calculus can be
used to trivially derive provably correct rules for most JVM and many
CLI instructions.

1 Introduction

This technical report defines a Hoare programming logic for a simple, sequential,
stack based bytecode language with objects and dynamic dispatch. For the
purpose of our explanations, we shall call the virtual machine for this bytecode
language VMK. This machine is similar to the JVM or the CLI. We also present
an operational semantics for the VMK bytecode.

The instruction set is small to keep the logic simple, but large enough to show
all the problems that occur when specifying a bytecode language for an existing
virtual machine. In fact, most JVM and many CLI data structures and instruc-
tions can be easily translated to the restricted set we are reasoning about in
this paper. We will see how the translation of these “compound instructions”
together with the special shape of the programming logic can be used to trivially
extend the logic to include such instructions. (section 5 on page 46)

The formalisms for the bytecode logic loosely follow [Ben04] for individual in-
structions. Objects and dynamic dispatch are treated similarly as in [PHM99].

Unlike the logic in [Ben04], we do not merge specification and typing infor-
mation in our bytecode logic. But we naturally require certain well-typedness
conditions.

This simple well-formedness can be checked by a “bytecode verifier”. This sep-
aration of the verification process is necessary to keep the programming logic
manageable: Properties that can be easily checked by a verifier1 are compli-
cated enough that they should be reasoned about separately such that its result
can form a basis for the more complicated behavioral correctness proofs of a
program.

1e.g. are all variables definitely assigned when they are used, are there enough values on
the stack for the instructions and do they contain values of the right type for the operations
applied to them, are all statements reachable?

2

1.1 Why is a Bytecode Logic Needed?

Is it necessary to have a logic for bytecode programs? The ideas of proof-
carrying code (PCC, [Nec97]) are already old. “Untrusted code” is augmented
with information (the proof) that can render its (type-) safety checkable. The
obligation to provide a proof for the safety of a program is deferred to the code
producer. The only thing the user of the code has to do is checking the proof
that comes with the program. Checking a proof is comparably simple. This
procedure allows mobile code to be executed directly and without expensive
runtime checks.

Unfortunately, properties described by PCC are typically limited to simple well-
typedness of the binary code. PCC is used for hardware platforms, where well-
typedness is not guaranteed. Because the proofs are simple, a certifying compiler
can add a proof when compiling a program. For virtual machines like the JVM
or the CLI, the bytecode verifier automatically ensures the type-safety of a
program.

What is more, in order to show that programs and especially program compo-
nents do the right things, it is just not enough to show that they do the things
right, which is what PCC can guarantee. For complicated properties like adher-
ence to an interface specification, we need a formal program proof. But program
proofs are at most available on the level of the source code. They cannot be
used for component- or class libraries that are shipped or sent over a network
as bytecode.

Our arguments illustrate the necessity of two elements for a “proven components
industry”:

1. A logic for bytecode verification, to be able to show the correctness of byte-
code programs.

2. An automatic translation from source code proofs to this bytecode logic by
proof transforming compilers. No one will be willing to prove compiler output
and manual intervention is still necessary for formal program verification.
We have already implemented a very simple version of a proof transforming
compiler for a subset of Java to a logic similar to the one presented here in
this report. [Ban04]

With introduction of the CLI, the idea of bytecode being a device for language
interoperability has gained ground. By the definition of how source code is trans-
lated to bytecode, we define at the same time how source programs written in
different languages can inter-operate. This fact defines another and important
application of any bytecode logic and its corresponding translation procedures
of source level proofs into that logic: To define a common semantics for spec-
ifications written in different languages. A bytecode logic can guarantee that
correctness properties survive and are even formally accessible across language
boundaries.

It is sometimes be necessary to program directly in a bytecode language – most

3

often when writing embedded applications. That’s why it is important to de-
velop an intuitive bytecode logic that can also be used directly and for which
tool support is feasible.

����

���

���

�
���

	
��
��������������
���

��		� ��	���� ��	���
��

�������
�����

	
�������

	
������������
��

���������
��������

	�

�����
��
�����������

 ���������
��

��

!��
�����

"����
��

!�������

��������

Figure 1: The vision of the trusted components market. Components are proven
on the source level and then translated – together with their proof – to an in-
termediary bytecode language that now guarantees correctness across language
boundaries beyond operational interoperability.

1.1.1 Why Another Operational Semantics for Bytecode?

In spite of the amazing number of operational semantics for bytecode ([HM01],
[SBS01]) that have been developed, we are introducing another, new semantics
for the sake of crafting a bytecode logic. Why? Most semantics pretend to
be close to the actual virtual machines while ignoring important aspects of the
concrete machine like class initialization and garbage collection (finalizers). This
is not truly prohibitive however. The fundamental reason not to use any of the
existing semantics are the following:

• Current operational semantics model the stack of procedure activation
frames explicitly precluding easy comparison with modular source level
programming logics. This is helpful when constructing a bytecode logic
that should be easy to translate to from a source logic.

• We want a layered architecture that is easy to understand and easy to
reason about. We use a small set of simple instructions. Most of them
are not instructions of a real virtual machine. But most real JVM/CLI
instructions can be trivially translated to VMK instructions. Giving an
operational semantics for complex JVM and especially CLI instructions

4

directly is awkward and less intuitive than giving a translation to primitive
instructions that are easy to understand.

�

�

�

� �

Figure 2: The overall architecture of the bytecode logic. The VMK kernel con-
tains a small set of instructions. Most of them are either generalized instructions
like opop that can stand for any operation op of any arity or more primitive than
the instructions that can be found on a real machine. “VMK Kernel” is discussed
in section 3 on page 15. Tailoring the logic for formally verifying CLI or JVM
programs can be done by specialization and assemblage of VMK instructions.
Specialization is trivial. Assembling instructions to more complex ones is dis-
cussed in section 5 on page 46. The VMK kernel logic itself is split into modular
layers of primitive orthogonal language features. Adding one layer changes little
in lower layers.

1.2 Omissions

Many JVM/CLI instructions fit into our framework. Exceptions are unmanaged
CLI instructions and instructions that can only be used in conjunction with
delegates and out/ref parameters in managed code. Delegates can be translated
to interfaces and classes that implement them.2 out and ref parameters can be
treated just like heap objects (adding another level of indirection). A better idea
for effective reasoning may be to treat locals whose address is taken differently.
The concrete treatment of these features depends on the exact nature of the
intended application and is therefore beyond the scope of this report.3

1.3 Overview

The sections of this paper are organized as follows: We define an operational
semantics for the VMKbytecode. The operational semantics leads to the Hoare-
style program logic for bytecode. Soundness and completeness proofs are given
together with a weakest precondition calculus. The logic is then extended to

2For reasoning about them, it may be better to introduce another interface type for every
single delegate variable declaration because variables of the same delegate type are often used
for very different purposes.

3e.g, it would be nice to use the same abstractions as a source logic that supports these
features in order to make proof translation easier.

5

include exceptions and class initializers. We show how complex instructions are
assembled from simpler ones and how rules for them can be derived.

Readers familiar with bytecode languages may want to skip the overview and the
operational semantics in section 2 and start directly with section 3 on page 15
and go back only when needed.

2 The VMK Bytecode

In this section, we’re describing the design of the VMK virtual machine byte-
code language and give an operational semantics for it. As indicated in the
introduction, VMK is a machine

• with unrestricted control flow expressed using conditional and uncondi-
tional jumps to labeled instructions within a method body.

• VMK is stack based. All arithmetic operations operate on this evaluation
stack. The machine does not impose any limit on the elements that may
be pushed onto the stack.

• In addition to the evaluation stack, there are locals. They include local
variables as well as method parameters.

Definition 1. A VMK program consists of a number of classes and interfaces
just like in Java: The classes are templates for the instantiation of objects with
fields and method implementations. Classes are in the usual subtype relation
with the interfaces they implement and in the subtype and subclass relation
with the single class they inherit from. The exception is the class object that
does not inherit from any other class. Classes can override individual methods
of super-types that are marked as virtual.

Method implementations are sequences of labeled bytecode instructions. The
labels are consecutive non-negative integers starting with 0. The operational
semantics is normative, but the following list gives an informal overview of the
instructions available in the VMK kernel.

• pushc v pushes a constant v onto the stack

• pushv x pushes the value of a local variable (or method parameter) onto
the stack

• pop x pops the top element off the stack and assigns it to the local variable
x

• opop Assuming that op is a function that takes n input values to m output
values, it removes the n top elements from the stack by applying op to
them and puts the m output values onto the stack. We write binopop if
op is a binary function.

6

Example 1. – dup is a abbreviation for opx7→(x,x).

– The JVM instruction swap is a abbreviation for op(x,y)7→(y,x).

– The CLI instruction isinst T is a abbreviation for opx7→(τ(x)�T).
The τ function maps a value to its type. � is the subtype relation.

• goto l transfers control the program point l

• brtrue l transfers control the program point l if the top element of the
stack is true and unconditionally pops it.

• checkcastT checks whether the top element is of type T or a subtype
thereof.

• newobj T allocates a new object of type T and pushes it onto the stack

• invokevirtual M and call M invokes the method M on an optional
object reference and parameters on the stack and replaces these values
by the return value of the invoked method (if M returns a value). call

invokes non-virtual and static methods, invokevirtual invokes virtual
methods. The invoked code depends on the actual type of the object
reference (dynamic dispatch).

• getfield F replaces the top element by its field F

• putfield F sets the field F of the object denoted by the second-topmost
element to the top element of the stack and pops both values.

• nop has no effect

Example 2. The following program is an example of bytecode method imple-
mentation fragment that calculates S =

∑n
i=1 i in a naive manner.

0: pushc 0 // the top of the stack now contains 0
1: pop S // store the top of the stack into the local S
2: goto 11 // unconditional jump to the conditional beginning

// of the loop that calculates the sum

// beginning of the loop body where n is decremented

// by 1 and S is incremented by n
3: pushv S // push the local S onto the stack

4: pushv n // stack is now (S, n)
5: dup // duplicate the topmost element: (S, n, n)
6: pushc 1 // push the constant 1: (S, n, n, 1)
7: binop "-" // in order to decrement n
8: pop n // store it back

9: binop "+" // add the old n to S...
10: pop S // ...and store it

// the evaluation stack is empty again

// we decide here whether there is anything to do

11: pushv n // n...
12: pushc 0 // ...and 0...
13: binop ">" // ...are compared

14: brtrue 3 // if it is true that n > 0 then do it again

// if it is not true, fall through

7

The bytecode program is the translation of the following C] fragment:

S = 0;

while(n > 0)

S += n--;

Note that although this example bytecode program does have a reducible con-
trol flow graph, no structure is required by the bytecode language, the operational
semantics or the programming logic we are going to present. Unstructured pro-
grams are treated exactly as programs where high level structures could be
rediscovered.

Definition 2. Method bodies can terminate and return a value back to the
invoking method. The return value is stored in the special local variable result.
There is no return-like instruction in VMK.4

A method terminates (returns to the caller) when it reaches the instruction
beyond the end of its body. We require that it is the special instruction
end_method. end_method halts the execution. The intuition is that it transfers
control back to the invoking method. It serves as an end marker for a method
implementation. There must not be a end_method instruction before the end
of the method.

Example 3. The following method implementation returns directly to the
caller.

0: end_method

We say that the length of the method is zero. The end_method instruction is
not considered actual part of the method body but a syntactic trick to allow
comfortable formulation of method call semantics.

Definition 3. A method can also take parameters. They are accessed like lo-
cal variables as p0, . . . , pn. While we allow an arbitrary number of parameters
per method, we will – without loss of generality – only reason about non-static
methods with exactly one parameter called p to keep the proofs simple. Like-
wise, we will only reason about binopop and not the more general opop. The
operational semantics therefore covers only these cases.

Example 4. The following method returns its argument, i.e., it is the identity
function.

0: pushv p

1: pop result

2: end_method

Example 5. An example of a function that divides its argument by 5. The
state of the evaluation stack after the execution of each instruction is shown.
The initial value of the parameter p is denoted by p0.

4We will see in section 6 on page 49 how return-like instructions can be easily formulated
as “compound instructions”.

8

0: pushv p // (p0)
1: pushc 5 // (p0, 5)
2: binop "/" // (p0/5)
3: pop result // ()
4: end_method

Definition 4. Instance variables names are written as Type@fieldname, meth-
ods that are known at compile-time as Type@method and virtual method iden-
tifiers as Type : method. The body of the method declaration T@m is denoted
by bodyVMK

(T@m), the implementing method declaration for a virtual method
T : m in S (for S � T) is impl(S, T : m) or simply impl(S,m).

Example 6. • The class T has the fields a, b, c. They are referred to as
T@a, T@b, T@c, resp.

• The following C] class

class Turtle{

...

public Turtle (){ ... }

public virtual void go(){ ... }

public void home (){ ... }

}

Introduces the method identifiers

– Turtle@.ctor, the instance constructor

– Turtle@go and Turtle : go, the virtual method identifier for Turtle@go

– Turtle@home.

Example 7. This dynamically bound method Factorial@fact calculates the
factorial n! recursively, assuming the fields N and R are initialized by n and 1
resp. t is a local variable.

0: pushv this // (this)
1: getfield Factorial@N // (this.N)
2: pushc 0 // (this.N, 0)
3: binop " <=" // (this.N ≤ 0)
4: brtrue 21 // ()

5: pushv this // (this)
6: dup // (this, this)
7: getfield Factorial@R // (this, this.R)
8: pushv this // (this, this.R, this)
9: dup // (this, this.R, this, this)

10: getfield Factorial@N // (this, this.R, this, this.N)
11: dup // (this, this.R, this, this.N, this.N)
12: pop t // (this, this.R, this, this.N)
13: pushc 1 // (this, this.R, this, this.N, 1)
14: binop "-" // (this, this.R, this, this.N − 1)
15: putfield Factorial@N // (this, this.R)
16: pushv t // (this, this.R, t)
17: binop "*" // (this, this.R·t)

9

18: putfield Factorial@R // ()
19: pushv this // (this)
20: invokevirtual Factorial :fact

21: end_method

2.1 Operational Semantics

The abstract execution requires an abstract state and some code we want to
execute. First let’s repeat and formalize the notion of a method body we have
introduced above (section 2 on page 6):

Definition 5. A VMK method implementation p consists of a sequence of
labeled VMK instructions.

1. |p| is the number of instructions in the method (without the obligatory
end_method instruction beyond the method body)

2. The labels of the instructions are in Λp = {0..|p|}, i.e., the end_method

instruction is labeled as well.

3. For every label in p, there is exactly one corresponding instruction.

p(l) = Il

Putting it differently, labels are unique within an instruction sequence.

The state of a method invocation consists of the locals, the evaluation stack and
the object store. To support dynamic allocation and object features, we have
to model the object store:

2.1.1 Modeling the Heap

The object store $: ObjectStore is introduced to model the dynamic heap. The
object store and some auxiliary functions together support the usual operations
that are normally associated with the heap. These operations follow certain
intuitive axioms (given in section 3.1 of [PH97]). We do not treat them here,
because they are only necessary to actually prove properties about your pro-
grams, but not to understand the concept of how the operations work and how
they can be used.

• instance variable lookup:

iv : V alue× FieldDeclId→ InstV ar

Remember that FieldDeclIds are written as Type@FieldName InstV ar
is the set of instance variables. This is comparable to addresses of heap
variables in other models.

10

• instance variable update:

$〈f := v〉 : ObjectStore× InstV ar × V alue→ ObjectStore

updates anObjectStore $ and returns a newObjectStore where the InstV ar
f has the new value v.

• instance variable load:

$(f) : ObjectStore× InstV ar → V alue

returns the value of an InstV ar in $.

• new object allocation: this function yields the object-store obtained by
allocating a new object of type T in $

$〈T 〉 : ObjectStore× ClassTypeId→ ObjectStore

• return a new object of type T

new($, T) : ObjectStore× ClassTypeId→ V alue

2.1.2 The Abstract State

Definition 6. The configuration (abstract state)

K ≡ 〈S, σ, l〉

of a method invocation during execution consists of the program environment
S, the evaluation stack σ and the program counter l (the label of the next
instruction to be executed).

• The environment S maps variables and the parameters this and p to values
and $ to the current object store

S ∈ State

State ≡ (LocalV ariable ∪ {this, p} ↪→ V alue) ∪ ({$} → ObjectStore)

As mentioned before, we allow only one parameter in order to simplify the
formalism.

• The stack is a list of values

σ ∈ Stack

Stack ≡ V alue∗

• The program counter is always at a valid position

l ∈ Λp

11

Definition 7. The small step transition relation

p; 〈S, σ, l〉 → 〈S′, σ′, l′〉

means that for the program p, the machine can go in one step from the state
〈S, σ, l〉 to the VMK state 〈S′, σ′, l′〉.

Note 1. Other common symbols for small step transition relations are

• 〈p,K〉 → 〈p′,K ′〉 or

• 〈p,K〉 . 〈p′,K ′〉

These relations do not only transform the abstract state K to K ′, they normally
transform the code as well (p to p′). This is not the case with our relation
“_; _→ _”. p; 〈S, σ, l〉 → 〈S′, σ′, l′〉 leaves the code p as is and operates only on
the abstract state. For a given instructions sequence p, we can then talk about
the transition relation “→” from state to state.

For a given p, the multistep relation →∗ is the reflexive transitive closure of
→. The multistep relation frees us from having to model procedure activation
frames explicitly.

We can now define the individual instructions of our virtual machine. See par-
tition III of [ECM02] and [LY99] to compare them with the actual instructions
of our example VMs. The primary goal of the operational semantics is to al-
low the soundness and completeness of the axiomatic semantics to be verified.
That’s why we omit the transition rules for call s to static methods, meth-
ods with more than one explicit parameter, etc. which do not feature in our
soundness/completeness proofs.

2.1.3 Instructions for the Compilation of Expressions

Pushing a Constant onto the Stack: pushc v

[. . . l : pushc v . . .]; 〈S, σ, l〉 → 〈S, (σ, v), l + 1〉

Pushing the Value of a Local Variable onto the Stack: pushv x

[. . . l : pushv x . . .]; 〈S, σ, l〉 → 〈S, (σ, S(x)), l + 1〉

Popping the Stack into a Local Variable: pop x

[. . . l : pop x . . .]; 〈S, (σ, v), l〉 → 〈S[x 7→ v], σ, l + 1〉

12

Binary Operations: binopop

[. . . l : binopop . . .]; 〈S, (σ, v1, v2), l〉 → 〈S, (σ, v1 op v2), l + 1〉

2.1.4 Instructions that Modify the Control Flow

Conditional Jump: brtrue l′

[. . . l : brtrue l′ . . .]; 〈S, (σ, true), l〉 → 〈S, σ, l′〉

and
[. . . l : brtrue l′ . . .]; 〈S, (σ, false), l〉 → 〈S, σ, l + 1〉

Unconditional Jump: goto l′

[. . . l : goto l′ . . .]; 〈S, σ, l〉 → 〈S, σ, l′〉

goto is not strictly necessary: goto l′ is equivalent to the sequence

l1 : pushc true

l1 + 1 : brtrue l′

In section 5 on page 46, we will look at goto as a “compound instruction”.

2.1.5 Instructions for Objects

Casting a Reference: checkcastT

τ(v) � T

[. . . l : checkcastT . . .]; 〈S, (σ, v), l〉 → 〈S, (σ, v), l + 1〉

The condition τ(v) � T ensures that execution gets stuck if the reference is not
of the required type. The axiomatization in [PH97] relates the value of the τ
function and the allocation primitives $〈T 〉 and new($, T).

Object Creation: newobj T

[. . . l : newobj T . . .]; 〈S, σ, l〉 → 〈S[$ 7→ S($)〈T 〉], (σ, new(S($), T))), l + 1〉

13

Calling a Virtual Method (with One Argument): invokevirtual T : m

p′ = bodyVMK
(impl(τ(y),m)) p′(l′) = end_method

p′; 〈{this 7→ y, p 7→ v, $ 7→ S($)} , (), 0〉 →∗ 〈S′, σ′, l′〉
Sp = S[$ 7→ S′($)]
σp = (σ, S′(result))

[. . . l : invokevirtual T : m . . .]; 〈S, (σ, y, v), l〉 → 〈Sp, σp, l + 1〉

Non-virtual and virtual methods are treated very similarly – virtual methods
are just a bit more complicated. We will thus omit explicit arguments about
non-virtual methods.

Loading a Field of an Object: getfield T@a

y 6= null

[. . . l : getfield T@a . . .]; 〈S, (σ, y), l〉 → 〈S, (σ, S($)(iv(y, T@a)), l+ 1〉

Storing into a Field of an Object: putfield T@a

y 6= null
Sp = S[$ 7→ S($)〈iv(y, T@a) := v〉]

[. . . l : putfield T@a . . .]; 〈S, (σ, y, v), l〉 → 〈Sp, σ, l + 1〉

2.1.6 Additional Instructions

No Operation: nop

[. . . l : nop . . .]; 〈S, σ, l〉 → 〈S, σ, l + 1〉

2.1.7 Comments

Observation 1. There is no transition for end_method. Execution will stop
when reaching an end_method instruction.

Observation 2. The operational semantics is deterministic.

There is at most one transition for every statement and program point. And
program points are unique in a program.

Observation 3. There should be constraints on the state at a given program
point.

14

Example 8. The effect of an execution step starting in the configuration [. . . l :
pushv x . . .]; 〈S′, σ, l〉 cannot be reasonably legitimated if the variable x is not
yet initialized.

The configuration [. . . l : binopop . . .]; 〈S′, (σ, a, b), l〉 should not have a succes-
sor if op is not an operation on τ(a)× τ(b)→ α for some type α.

We assume that every VMK program satisfies some basic well-formedness con-
straints that ensure that such situations can never occur.

We do so not only because this is rarely prohibitive and quite usual for real
machines – both the JVM and the CLI have bytecode verifiers – but also because
this additional abstraction helps us keep the logic we will construct simple. We
are ruling out invalid behavior (type errors, popping the empty stack, ...) of our
programs before our logic is applied to them. An alternative approach would
be to combine type checking5 and verification. Compare [Ben04] on how this
can be done.

It should be noted that type-checking bytecode is itself a non-trivial under-
taking: Research on this topic has led to the publication of a vast quantity
of articles and several Ph.D. theses. It is only recently that the implications
of the complex interplay between unrestricted control flow, exception handling
and unstructured subroutines has been completely understood6. The approach
taken in [Ben04] is therefore unlikely to scale to the extended instruction set of
a real virtual machine.

3 A Programming Logic for the VMK Kernel Lan-

guage

The intuitive meaning of the Hoare-triple

{P} comp {Q}

is that if P holds in some initial state and the execution of comp terminates
then Q will hold in the halting state of comp.

We are mainly concerned with the specification and verification of individual
methods with pre- and postconditions: given some precondition, what condi-
tion will hold when the method terminates? In this case, comp is a method
implementation. We denoted these method bodies by p:

{P} p {Q}

As illustrated by the invocation rules (section 2.1.5 on page 13), a method body
terminates if and only if control flow reaches the end_method instruction.7

5in a very general sense
6[JAR03] gives an overview, [SS03] discusses the problems of bytecode verification
7Jumping out of the method body is not possible by the well-formedness condition of the

bytecode.

15

Taking the focus on methods as a motivation, we can extend Hoare-triples to
method declaration identifiers that represent a method implementation or a
set of method implementations in the case of a virtual method identifiers. We
call Hoare triples for method identifiers and method bodies collectively method
specifications. Specifications of virtual method identifiers capture the common
properties of all the overriding implementations in subtypes. Method pre- and
postconditions may not reference local variables or stack elements. They may
however depend on the object store. The precondition is also allowed to depend
on the input parameters. (Remember: A statically bound method m in class T
has the method identifier T@m. A virtual method m in the context of a class
T is denoted by T : m)

Example 9. For a statically bound method T@m

{P} T@m {Q}

holds if
{P ∧ this 6= null} bodyVMK

(T@m) {Q}

I.e., if the triple holds for the method implementation for which we can quite
reasonably assume that this 6= null.

Example 10. For a dynamically bound method T : m

{P} T : m {Q}

holds if
{P ∧ this 6= null} bodyVMK

(S@m) {Q}

holds for all subtypes S of T (S � T), i.e. for all concrete implementations of
T : m

The fact that we are using classical Hoare-triples shows that we also need the
usual deduction rules. Because our logic is based on [PHM99], we will need all
the statement-independent rules that are introduced there. These rules are then
only applicable to method implementations and method identifiers – individual
instructions are treated differently. For the treatment of recursive methods,
we use sequents of the form A ` {P} comp {Q} where A is a set of method
specifications.

3.1 Rules for Method Specifications

There are two groups of rules for method specifications: general rules that can
be found in most axiomatic semantics and method specific rules. The method
specific rules just formalize the examples above: A method specification holds
for a method identifier if it holds for all implementations. How the required
triples can be derived modularly is described in [PHM99] at the end of section
3.

16

3.1.1 Method Specific Rules

implementation

implementation
A, {P} T@m {Q} ` {P ∧ this 6= null} bodyVMK

(T@m) {Q}

A ` {P} T@m {Q}

The following rules are needed to derive virtual method specifications (see
[PHM99] for how this can be done):

class

class

A ` {P ∧ τ(this) = T} impl(T,m) {Q}
A ` {P ∧ τ(this) ≺ T} T : m {Q}

A ` {P ∧ τ(this) � T} T@m {Q}

subtype

subtype

S � T
A ` {P ∧ τ(this) � S} S : m {Q}

A ` {P ∧ τ(this) � S} T@m {Q}

3.1.2 Method Independent Rules

conjunct

A ` {P1} comp {Q1}
A ` {P2} comp {Q2}

A ` {P1 ∧ P2} comp {Q1 ∧Q2}

disjunct

A ` {P1} comp {Q1}
A ` {P2} comp {Q2}

A ` {P1 ∨ P2} comp {Q1 ∨Q2}

consequence

P ⇒ P ′ Q′ ⇒ Q
A ` {P ′} comp {Q′}

A ` {P} comp {Q}

inv

R doesn’t contain references to the program state
A ` {P} comp {Q}

A ` {P ∧R} comp {Q ∧ R}

subst

t doesn’t contain references to the program state
Z is a logical variable
A ` {P} comp {Q}

A ` {P [t/Z]} comp {Q[t/Z]}

17

all

Z, Y are distinct logical variables
A ` {P [Y/Z]} comp {Q}

A ` {P [Y/Z]} comp {∀Z : Q}

ex

Z, Y are distinct logical variables
A ` {P} comp {Q[Y/Z]}

A ` {∃Z : P} comp {Q[Y/Z]}

3.2 The Specification and Verification of Method Bodies

It is clear that Hoare triples cannot be extended to parts of method bodies
– sequences of instructions with unstructured control flow. We don’t want to
rediscover high level control structures in our code sequences either because this
would preclude the verification of arbitrary instruction sequences that do not
adhere to any patterns. Instead, we look at only one instruction at a time.
We don’t use pre- and post-condition for every statement like in structured
programming languages. We use only preconditions for individual instructions
in a method body p:

{El} l : Il

Obviously, the meaning of the instruction specification {El} l : Il cannot be
defined in isolation. The meaning of {El} l : Il in a method body p is that if
the “labeled assertion” El holds when the program counter is just before the in-
struction (at position l) then the precondition El′ of the successor instruction at
label l′ will also hold after successful termination of instruction l. By induction
on the number of instructions executed, this is equivalent to claiming that the
precondition of the end_method holds if the method terminates. We have thus
already established the necessary connection between method and instruction
specifications: If all instructions in a method body p are well specified (i.e.,
{El} l : Il holds for all l ∈ Λp) then the postcondition of p is the precondition
of the end_method instruction and the precondition of p is the precondition of
the first instruction (that is where execution of a method body starts). The
following two definitions formalize this idea.

Definition 8. A specified VMK instruction consists of

1. a labeled VMK instruction l : Il

2. a precondition El

We write this specified instruction as {El} l : Il. We can only prove or deduce
the validity of the instruction specification {El} l : Il in the context of a method
implementation p.

Definition 9. A specified VMK method implementation p is a VMK method
implementation where all instructions have a single precondition, i.e., |p| is the
number of instructions in the method (excluding end_method), the labels of the

18

instructions are in Λp = {0..|p|}, there is exactly one instruction for each label
p(l) = Il, and, what is new, there is exactly one precondition for every label:

preconditionp(l) = El

We abbreviate
specp(l) = {El} l : Il

Definition 10. A specified method implementation p can be verified by veri-
fying all of its components. The precondition for p is the precondition of the
first instruction, the postcondition of p is the precondition of the end_method

instruction.

body

preconditionp(0)[undef /v for all method variables v] = P

preconditionp(|p|) = Q
[∀i ∈ Λp : specp(i)]

{P} p {Q}

Needless to say, the method body must be well formed: p(|p|) = end_method

and ∀i < |p| : p(i) 6= end_method. We have to replace all method variables8

by undef in the precondition for formal reasons.9 It is easy to see however
that this replacement does not change the value of the precondition: all local
variables are undef at the beginning of a method. We do not allow references to
any local data (i.e., stack elements, local variables, parameters) in the method
postcondition.

Definition 11. Substitutions E[e′/x] or E[e′/s(i)], the simultaneous substitu-
tions E[e′1/z1, e

′
2/z2, . . .] and the evaluation [[.]] of assertionsEl in a configuration

〈S, σ, l〉 are defined as usual. Assertions may not depend on the program counter
l, so we can omit it:

[[El]] : State× Stack → V alue

The formulas that can be used as assertions are not restricted in any significant
way. One obvious possibility would be to use sorted first-order formulas.

Definition 12. The current stack is referred to as s, and its elements are
denoted by non-negative integers: element 0 is the top element, etc.:

[[s(0)]]〈S, (σ, v)〉 = v

[[s(i+ 1)]]〈S, (σ, v)〉 = [[s(i)]]〈S, σ〉

Definition 13. Helper functions

shift(E) = E[s(i+ 1)/s(i) for all i ∈ N]

unshift = shift−1

With these definitions at hand, we now give a system of rules that allow to
prove preconditions for individual instructions. The required enclosing specified
method body (p) for the instructions is left implicit in the rules.

8i.e., local variables and stack elements
9the soundness proof for method invocations in section 4.1 on page 31 is simpler when the

precondition of a method body does not depend on the value of local variables.

19

3.2.1 Instructions for Expressions

pushc

pushc
El → unshift(El+1[v/s(0)])

A ` {El} l : pushc v

Example 11. The top of the stack s(0) must be 3 after pushc 3:

0: {true}
pushc 3

1: {s(0) = 3}
end_method

To see whether instruction 0 allows this specification, let’s instantiate the for-
mula in the antecedent of the rule:

true→ unshift((s(0) = 3)[3/s(0)])

⇐⇒ true→ unshift(3 = 3)

⇐⇒ true→ true

pushv

pushv
El → unshift(El+1[x/s(0)])

A ` {El} l : pushv x

pop

pop
El → (shift(El+1))[s(0)/x]

A ` {El} l : pop x

Example 12. The value of variable x must be equal to the value of the top of
the stack after a pop:

0: {s(0) = s0}
pop x

1: {x = s0}
end_method

To see whether instruction 0 allows this specification, we instantiate the formula
in the antecedent of the rule:

(s(0) = s0)→ (shift(x = s0))[s(0)/x]

⇐⇒ (s(0) = s0)→ (x = s0)[s(0)/x]

⇐⇒ (s(0) = s0)→ (s(0) = s0)

Again we see that the rule allows such a specification.

unop

unop
El → El+1[(op s(0))/s(0)]

A ` {El} l : unopop

20

binop

binop
El → (shift(El+1))[(s(1) op s(0))/s(1)]

A ` {El} l : binopop

Example 13. We calculate 3/4 programatically and want to ensure that that
value is actually the topmost element after the program:

0: {true}
pushc 3

1: {s(0) = 3}
pushc 4

2: {s(1) = 3 ∧ s(0) = 4}
binop "/"

3: {s(0) = 3/4}
end_method

We will now check only the instruction specifications for binop.

(s(1) = 3 ∧ s(0) = 4)→ (shift(s(0) = 3/4))[(s(1)/s(0))/s(1)]

⇐⇒ (s(1) = 3 ∧ s(0) = 4)→ (s(1) = 3/4)[(s(1)/s(0))/s(1)]

⇐⇒ (s(1) = 3 ∧ s(0) = 4)→ ((s(1)/s(0)) = 3/4)

The proof obligations for the other instruction specifications are:

0: true→ unshift((s(0) = 3)[3/s(0)])

1: (s(0) = 3)→ unshift((s(1) = 3 ∧ s(0) = 4)[4/s(0)])

op

op

op : α1 × · · · × αn → β1 × · · · × βm
Z is a fresh logical variable (or a vector of variables if m 6= 1)
El → (shiftn−m(El+1[Z/s(0..m− 1))]))[op(s(n− 1..0))/Z]

A ` {El} l : opop

Example 14. dup is an abbreviation for opx7→(x,x). To see what a specialized
rule would look like, we replace op by x 7→ (x, x) and we get (n = 1,m = 2):

dup
El → (unshift(El+1[Z/s(0..1)]))[(s(0), s(0))/Z]

A ` {El} l : dup

which is the same as

dup
El → (unshift(El+1[Z/s(0), Z/s(1)]))[s(0)/Z]

A ` {El} l : dup

As a sanity check, lets try to verify

21

0: {s(1) = 3 ∧ s(0) = 4}
dup

1: {s(2) = 3 ∧ s(1) = 4 ∧ s(0) = 4}
end_method

We have to check that

(s(1) = 3 ∧ s(0) = 4)

→ (unshift((s(2) = 3 ∧ s(1) = 4 ∧ s(0) = 4)[Z/s(0), Z/s(1)]))[s(0)/Z]

⇐⇒ (s(1) = 3 ∧ s(0) = 4)→ (unshift(s(2) = 3 ∧ Z = 4 ∧ Z = 4))[s(0)/Z]

⇐⇒ (s(1) = 3 ∧ s(0) = 4)→ (s(1) = 3 ∧ Z = 4 ∧ Z = 4)[s(0)/Z]

⇐⇒ (s(1) = 3 ∧ s(0) = 4)→ (s(1) = 3 ∧ s(0) = 4 ∧ s(0) = 4)

Example 15. binopop is an abbreviation for op(x,y)7→op(x,y). Let’s derive the
premise of the binop rule using the rule for opop (n = 2,m = 1):

El → (shift(El+1[Z/s(0)]))[op(s(1..0))/Z]

⇐⇒ El → (shift(El+1[Z/s(0)]))[(s(1) op s(0))/Z]

⇐⇒ El → shift(El+1)[(s(1) op s(0))/s(1)]

3.2.2 Instructions that Modify the Control Flow

goto

goto
El → El′

A ` {El} l : goto l′

brtrue

brtrue
El → (¬s(0)→ shift(El+1)) ∧ (s(0)→ shift(El′))

A ` {El} l : brtrue l′

A more intuitive premise for brtrue inspired by the if-statement rule

if

{e ∧ P} C1 {Q}
{¬e ∧ P} C2 {Q}

{P} if(e){C1}else{C2} {Q}

would probably be

(El ∧ ¬s(0)→ shift(El+1)) ∧ (El ∧ s(0)→ shift(El′))

It is equivalent to our antecedent:

(El ∧ ¬s(0)→ shift(El+1)) ∧ (El ∧ s(0)→ shift(El′))

⇐⇒ (¬(El ∧ ¬s(0)) ∨ shift(El+1)) ∧ (¬(El ∧ s(0)) ∨ shift(El′))

⇐⇒ (¬El ∨ s(0) ∨ shift(El+1)) ∧ (¬El ∨ ¬s(0) ∨ shift(El′))

⇐⇒ ¬El ∨ (s(0) ∨ shift(El+1) ∧ (¬s(0) ∨ shift(El′)))

⇐⇒ El → (¬s(0)→ shift(El+1)) ∧ (s(0)→ shift(El′))

22

3.2.3 Instructions for Objects

checkcast

checkcast
El → El+1 ∧ τ(s(0)) � T

A ` {El} l : checkcastT

The condition τ(s(0)) � T guarantees that verified programs do not fail due
to invalid casts – our operational semantics gets stuck if τ(s(0)) � T does not
hold. But this guarantee is a source of incompleteness. E.g., we cannot prove
anything about the following method (T and S are unrelated)

0: newobj T

1: checkcast S

2: end_method

For this method however, any specification will do because there is no terminat-
ing transition 〈S0, σ0, 0〉 →

∗ 〈S, σ, 2〉. The only clean way out of this dilemma
is to introduce exceptions – section 6 on page 49. The absence of stuck configu-
rations10 comes at the cost of introducing incompleteness. This is also true for
getfield and putfield .

newobj

newobj
El → unshift(El+1[new($, T)/s(0), $〈T 〉/ $])

A ` {El} l : newobj T

getfield

getfield
El → El+1[$(iv(s(0), T@a))/s(0)] ∧ s(0) 6= null

A ` {El} l : getfield T@a

putfield

putfield
El → (shift2(El+1))[$〈iv(s(1), T@a) := s(0)〉/ $] ∧ s(1) 6= null

A ` {El} l : putfield T@a

invokevirtual

invokevirtual

A ` {P} T : m {Q}
Z is a vector of logical variables

w is a vector of local or a stack elements 6= s(0)
El → s(1) 6= null ∧ P [s(1)/ this, s(0)/ p][shift(w)/Z]

Q[s(0)/ result][w/Z]→ El+1

A ` {El} l : invokevirtual T : m

10i.e., a stronger condition than soundness

23

The simple invokevirtual rule used for methods with one explicit parameter (p)
and a return value is the most important one for we are only going to reason
about that possibility of invoking a method. The rule captures the fact that
locals and stack elements are not modified by the invocation of a method. Other
invocation rules would be very similar. We may summarize therefore summarize
all the invocation rules. Let M be the method identifier. n is the number of
arguments of M (without a possible this parameter), m ∈ N is the number of
logical variables to be replaced by locals or stack elements because they aren’t
changed. Z = (Zi)i∈{1..m}, Zi is a logical variable, w = (wi)i∈{1..m}, wi is a
stack element. static(M) indicates whether M is a static method. retval(M)
indicates whether M returns a value. IND is the indicator function:

IND(b) =

{

1 if b

0 if ¬b

invocation

invocation

A ` {P} M {Q}
retval(M)→ ∀i : wi 6= s(0)

σ =

{

{} if static(M)

{s(n)/ this} otherwise

δ =

{

{} if ¬retval(M)

{s(0)/ result} otherwise

j = n− IND(static(M)) + IND(¬retval(M))
G = s(n) 6= null ∨ static(M)

El → G ∧ Pσ[s(n− 1..0)/ p1..n][shiftj(w)/Z]
Qδ[w/Z]→ El+1

A ` {El} l : invocation-instrM

Here is the explanation:

• retval(M)→ ∀i : wi 6= s(0): if there is a return value, w may not contain
s(0) because s(0) is not preserved, it contains the return-value after the
execution of the method

• σ: The this parameter need not be passed when the method is static.
Similarly, the return value need not be passed back using substitution δ if
the method does not have a return value.

• j is the number of elements the stack contains more before the invocation
than afterwards. Basically, j = n: The stack contains “this” and n argu-
ments before and the return value after the invocation. If the method is
static, “this” is missing (−IND(static(M))) but if the method does not re-
turn a value, the stack will contain one element more before the execution
of M (+IND(¬retval(M)))

• s(n) 6= null ∨ static(M): We need only check the this parameter if M is
not static.

24

• invocation-instr is call if M is statically bound (either a static or non-
virtual method, i.e., M = T@w or invokevirtual if M is dynamically
bound, i.e., M = T : v.

Example 16. Our method invocation rules formalize two things: Capture the
effect of the execution of a method and save locals across a method invocation
instruction. Separating these orthogonal concerns as in [PHM99] would lead to
simpler rules (here for the invokevirtual instruction with one argument and
a return value):

invokevirtual

A ` {P} T : m {Q}
El → s(1) 6= null ∧ P [s(1)/ this, s(0)/ p]

Q[s(0)/ result]→ El+1

A ` {El} l : invokevirtual T : m

invokevar

Z is a logical variable
w is a local variable or a stack element 6= s(0)
A ` {E′

l} l : invokevirtual T : m
{
E′
l+1

}

El → E′
l [(shift(w))/Z] E′

l+1[w/Z]→ El+1

A ` {El} l : invokevirtual T : m

The problem here is that we now have an arbitrary number of preconditions
for one instructions (one additional E ′

l for every invokevar). We have only
associated one specification per instruction to every method body proof. What
is more, we would have to define what is needed to prove the triple

{E′
l} l : invokevirtual T : m

{
E′
l+1

}

in invokevar.

3.2.4 The special operation nop

nop
El → El+1

A ` {El} l : nop

Observation 4. There is exactly one transition for every instruction in our
operational semantics and exactly one rule in our programming logic. It is no
surprise that they look similar.

This one-to-one correspondence can help us prove the soundness of the logic:
we just need to show that if there is a small step transition from one state
K = 〈S, σ, l〉 to its next state K ′ = 〈S′, σ′, l′〉11 and the precondition El holds
in K then El′ must also hold in K ′.

We may have reached the end of the method if there is no transition. I.e.
we may have reached the end_method instruction. In that case, we know the
precondition of end_method holds. This is also the postcondition of our method.

11 which means: p; 〈S, σ, l〉 → 〈S′, σ′, l′〉

25

Because the end_method instruction is the only means of returning from a
method12, we know that if a method terminates, its postcondition will always
hold.

Example 17. Calculating xn recursively based on the observation that xn =

(x·x)
n/2

.

{P ≡ x > 0 ∧ n ≥ 0 ∧ x = x0 ∧ n = n0} Rec@pow {Q ≡ result = xn0
0 }

An assumption during verification is {P} Rec : pow {Q}. Again see [PHM99]
for exactly when such an assumption can be deduced from the assumption
{P} Rec@pow {Q}. The reasoning is simple in our case because Rec is the
only class in our program.

Our assumption

{P ≡ x > 0 ∧ n ≥ 0 ∧ x = x0 ∧ n = n0} Rec : pow {Q ≡ result = xn0
0 }

cannot be used directly for the recursive method invocations. We have to adapt
it and deduce two other triples that are more useful in our calling contexts with
the help of the rules for method specifications in section 3.1.1 on page 17. We
use a common linear notation here that makes it easier to grasp the idea of the
proof (“proof outline”). The H and N symbols are used to indicate nesting:

H{P} (rule)

H{P ′}
comp

N{Q′}
N{Q} (rule)

stands for

rule
{P ′} comp {Q′}

{P} comp {Q}

Note that in a fully formal presentation, the proof would consist of a list of
derivation trees for individual instructions. We could then integrate the modifi-
cations we make to our original assumption into a derivation tree of an instruc-
tion (the invokevirtual instruction).

• The adaption of the method specification for the case n mod 2 = 0.

H{x > 0 ∧ n ≥ 0 ∧ x = x0·x0 ∧ n = n0/2 ∧ n0 mod 2 = 0} (inv-rule)

H{x > 0 ∧ n ≥ 0 ∧ x = x0·x0 ∧ n = n0/2} (subst-rule)

H{x > 0 ∧ n ≥ 0 ∧ x = x′
0 ∧ n = n′

0} (subst-rule)

H{x > 0 ∧ n ≥ 0 ∧ x = x0 ∧ n = n0}
Rec:pow

N{result = xn0
0 }

N

�
result = x′

0
n′
0 � (subst-rule)

12see the definition of the invokevirtual rule

26

N

�
result = (x0·x0)

(n0/2) � (subst-rule)

N

�
result = (x0·x0)

(n0/2) ∧ n0 mod 2 = 0 � (inv-rule)

• The adaption of the method specification for the case n mod 2 6= 0. The
inv rule is used to introduce auxiliary logical variables that can then be
used to save x across the invokevirtual call.

H{x > 0 ∧ n ≥ 0 ∧ x = x0 ∧ n = n0 − 1 ∧ xf = x0} (inv-rule)

H{x > 0 ∧ n ≥ 0 ∧ x = x0 ∧ n = n0 − 1} (subst-rule)

H{x > 0 ∧ n ≥ 0 ∧ x = x′
0 ∧ n = n′

0} (subst-rule)

H{x > 0 ∧ n ≥ 0 ∧ x = x0 ∧ n = n0}
Rec:pow

N{result = xn0
0 }

N

�
result = x′

0
n′
0 � (subst-rule)

N � result = x0
n0−1 � (subst-rule)

N � result = x0
n0−1 ∧ xf = x0

� (inv-rule)

→ {result ·xf = x0
n0 ∧ xf = x0}

0: {x > 0 ∧ n ≥ 0 ∧ x = x0 ∧ n = n0}
pushv n

1: {x > 0 ∧ n ≥ 0 ∧ x = x0 ∧ n = n0 ∧ (s(0) 6= 0) = (n 6= 0)}
unop <>0 // is n 6= 0

2: {x > 0 ∧ n ≥ 0 ∧ x = x0 ∧ n = n0 ∧ s(0) = (n 6= 0)}
brtrue 6 // if n 6= 0, perform actual algorithm

// otherwise, n = 0, just return 1
3: {n = 0 ∧ x > 0 ∧ n ≥ 0 ∧ x = x0 ∧ n = n0}

pushc 1

4: {s(0) = xn0
0 }

pop result // store result 1 in special variable

5: {result = xn0
0 }

goto 30 // goto end

// actual algorithm

6: {n 6= 0 ∧ x > 0 ∧ n ≥ 0 ∧ x = x0 ∧ n = n0}
pushv n

7:

�
((s(0) mod 2) 6= 0) = (n mod 2 6= 0)

∧ n 6= 0 ∧ x > 0 ∧ n ≥ 0 ∧ x = x0 ∧ n = n0 �
pushc 2

8:

�
((s(1) mod s(0)) 6= 0) = (n mod 2 6= 0)

∧ n 6= 0 ∧ x > 0 ∧ n ≥ 0 ∧ x = x0 ∧ n = n0 �
binop "%"

9: {(s(0) 6= 0) = (n mod 2 6= 0) ∧ n 6= 0 ∧ x > 0 ∧ n ≥ 0 ∧ x = x0 ∧ n = n0}
unop <>0 // n mod 2 6= 0?

10: {s(0) = (n mod 2 6= 0) ∧ n 6= 0 ∧ x > 0 ∧ n ≥ 0 ∧ x = x0 ∧ n = n0}
brtrue 21

27

// otherwise, n mod 2 = 0, so we can apply xn = (x·x)n/2

11: {n mod 2 = 0 ∧ n 6= 0 ∧ x > 0 ∧ n ≥ 0 ∧ x = x0 ∧ n = n0}
pushv this

12: {n mod 2 = 0 ∧ n 6= 0 ∧ x > 0 ∧ n ≥ 0 ∧ x = x0 ∧ n = n0}
pushv x

13: {s(0) = x ∧ n mod 2 = 0 ∧ n > 0 ∧ x > 0 ∧ x = x0 ∧ n = n0}
pushv x

14: {s(1)·s(0) = x·x ∧ ∧ n mod 2 = 0 ∧ n > 0 ∧ x > 0 ∧ x = x0 ∧ n = n0}
binop "*"

15: {s(0) = x·x ∧ n mod 2 = 0 ∧ n > 0 ∧ x > 0 ∧ x = x0 ∧ n = n0}
pushv n

16:

�
(s(0)/2) = n/2 ∧ s(1) = x·x ∧ n mod 2 = 0

∧ n > 0 ∧ x > 0 ∧ x = x0 ∧ n = n0 �
pushc 2

17:

�
(s(1)/s(0)) = n/2 ∧ s(2) = x·x ∧ n mod 2 = 0

∧ n > 0 ∧ x > 0 ∧ x = x0 ∧ n = n0 �
binop "/"

18:

�
(x > 0 ∧ n ≥ 0 ∧ x = x0·x0 ∧ n = n0/2

∧ n0 mod 2 = 0)[s(2)/ this, s(1)/x, s(0)/n] �
invokevirtual Rec:pow

19: {s(0) = xn0
0 }

pop result

20: {result = xn0
0 }

goto 30

// if n mod 2 6= 0, subtract one

21: {n mod 2 6= 0 ∧ n > 0 ∧ x > 0 ∧ x = x0 ∧ n = n0}
pushv x

22: {s(0) = x ∧ x > 0 ∧ n > 0 ∧ x = x0 ∧ n = n0}
pushv this

23: {x = x ∧ s(1) = x ∧ n > 0 ∧ x > 0 ∧ x = x0 ∧ n = n0}
pushv x

24: {n − 1 = n − 1 ∧ s(0) = x ∧ s(2) = x ∧ n > 0 ∧ x > 0 ∧ x = x0 ∧ n = n0}
pushv n

25: {(s(0) − 1) = n − 1 ∧ s(1) = x ∧ s(3) = x ∧ n > 0 ∧ x > 0 ∧ x = x0 ∧ n = n0}
pushc 1

26:

�
(s(1) − s(0)) = n − 1 ∧ s(2) = x ∧ s(4) = x

∧ n > 0 ∧ x > 0 ∧ x = x0 ∧ n = n0 �
binop "-"

27: {s(1) > 0 ∧ s(0) ≥ 0 ∧ s(1) = x0 ∧ s(0) = n0 − 1 ∧ s(3) = x0}
invokevirtual Rec:pow

28: {s(1)·s(0) = xn0
0 }

binop "*"

29: {s(0) = xn0
0 }

pop result

30: {result = xn0
0 }

28

end_method

This example should give a rough idea how the programming logic can be used
in practice to prove method implementations correct. Although the instructions
specification are quite long, they can still be understood intuitively: they express
the programmer’s assertions about the state at every program point.

3.3 The Special Shape of the Rules

There is exactly one rule for every instruction. All rules for verifying instruction
specifications {El} l : Il, have a premise of the following form:

El → wp1
p(Il, (Ei)i∈succ(l:Il))

where succ(l : Il) is the successor function returning the set of possible successor
labels for an instruction l : Il.

succ(l : Il) =

(l′) if Il = goto l′

(l + 1, l′) if Il = brtrue l′

(l + 1) otherwise

Il wp1
p(Il, (Ei)i∈succ(l:Il))

pushc v unshift(El+1[v/s(0)])
pushv x unshift(El+1[x/s(0)])
pop x (shift(El+1))[s(0)/x]
binopop (shift(El+1))[(s(1) op s(0))/s(1)]
goto l′ El′

brtrue l′ (¬s(0)→ shift(El+1)) ∧ (s(0)→ shift(El′))
checkcastT El+1 ∧ τ(s(0)) � T
newobj T unshift(El+1[new($, T)/s(0), $〈T 〉/ $])
getfield T@a El+1[$(iv(s(0), T@a))/s(0)] ∧ s(0) 6= null

putfield T@a (shift2(El+1))[$〈iv(s(1), T@a) := s(0)〉/ $] ∧ s(1) 6= null

Figure 3: The values of the wp1
p function. The value of wp1

p for invocation
instructions is discussed in section 4.2.1 on page 45.

Lemma 1. wp1
p is distributive with respect to the logical conjunction ∧ and

disjunction ∨ in the successor assertions:

wp1
p(I, (F

(1)
i � F

(2)
i)i) = wp1

p(I, (F
(1)
i)i))� wp1

p(I, (F
(1)
i)i)

It is easy to check for every instruction separately. The equivalence transfor-
mations are based on the fact that shift and substitution for A opB are defined
as applications on the constituents A and B. brtrue l′ is the only interesting
case because it has two successors. The following list is just for the sake of
completeness.

29

• brtrue l′:

wp1
p(brtrue l

′, F
(1)
1 � F

(2)
1 , F

(1)
2 � F

(2)
2)

⇐⇒ (¬s(0)→ shift(F
(1)
1 � F

(2)
1)) ∧ (s(0)→ shift(F

(1)
2 � F

(2)
2))

by case distinction on s(0)

⇐⇒ ((¬s(0)→ shift(F
(1)
1)) ∧ (s(0)→ shift(F

(1)
2)))�

((¬s(0)→ shift(F
(2)
1)) ∧ (s(0)→ shift(F

(2)
2)))

⇐⇒ wp1
p(brtrue l

′, F
(1)
1 , F

(1)
2)� wp1

p(brtrue l′, F
(2)
1 , F

(2)
2)

• pushc v:

unshift((F (1) � F (2))[v/s(0)])

⇐⇒ unshift(F (1)[v/s(0)])� unshift(F (2)[v/s(0)])

• pushv x: same as for pushc c

• pop x:

(shift(F (1) � F (2)))[s(0)/x]

⇐⇒ (shift(F (1))� shift(F (2)))[s(0)/x]

⇐⇒ shift(F (1))[s(0)/x]� shift(F (2))[s(0)/x]

• binopop:

(shift(F (1) � F (2)))[(s(1) op s(0))/s(1)]

⇐⇒ (shift(F (1))� shift(F (2))) [(s(1) op s(0))/s(1)]
︸ ︷︷ ︸

R

⇐⇒ shift(F (1))R � shift(F (2))R

• goto l′:

(F (1) � F (2))

⇐⇒ (F (1))� (F (2))

• checkcastT :

(F (1) � F (2)) ∧ τ(s(0)) � T

⇐⇒ F (1) ∧ τ(s(0)) � T � F (2) ∧ τ(s(0)) � T

• newobj T :

unshift((F (1) � F (2)) [new($, T)/s(0), $〈T 〉/ $]
︸ ︷︷ ︸

R

)

⇐⇒ unshift(F (1)R)� unshift(F (2)R)

30

• getfield T@a:

(F (1) � F (2)) [$(iv(s(0), T@a))/s(0)]
︸ ︷︷ ︸

R

∧ s(0) 6= null

⇐⇒ (F (1)R� F (2)R) ∧ s(0) 6= null

⇐⇒ F (1)R ∧ s(0) 6= null�F (2)R ∧ s(0) 6= null

• putfield T@a:

(shift2(F (1) � F (2))) [$〈iv(s(1), T@a) := s(0)〉/ $]
︸ ︷︷ ︸

R

∧ s(1) 6= null

⇐⇒ (shift2(F (1))� shift2(F (2)))R ∧ s(1) 6= null

⇐⇒ (shift2(F (1))R� shift2(F (2))R) ∧ s(1) 6= null

⇐⇒ shift2(F (1))R ∧ s(1) 6= null� shift2(F (2))R ∧ s(1) 6= null

Lemma 2. wp1
p(I, (false)i ∈ succ(l : Il)) = false

This is only a quick check.

4 Soundness, Completeness and Weakest Precon-

ditions

In this section, we discuss soundness and completeness properties of the ax-
iomatic semantics with respect to the operational semantics. We introduce a
weakest precondition calculus that can be used to derive weakest preconditions
for arbitrary method bodies. As mentioned in the introduction, the calculus
can be used to derive additional rules for “compound instructions”: instructions
whose effect is defined as the sequential composition of primitive13 instructions.
Compound instructions may even contain loops.

4.1 Soundness

We prove the soundness of the VMK bytecode logic as discussed section 3 on
page 15. Operational semantics are more intuitive and suitable for automatic
generation of interpreter prototypes that can be used to validate the definition
while axiomatic semantics is a less intuitively accessible higher level abstrac-
tion intended for program verification. That’s why soundness is proven with
respect to the operational semantics.14 The argument may not be that con-
vincing for simple instruction because the operational semantics is very close to
the axiomatic definition but soundness is certainly worth checking for method

13instructions of bounded complexity, i.e., all except method invocation instructions
14As noted before, this is not true for very complex instructions that do multiple rather un-

related things like the CLI box instruction. It is better to define them directly as translations
to more basic instructions. section 5 on page 46.

31

invocations. Nonetheless, we’ll prove soundness for the simple instructions as
well.

The proof is based on an embedding of both operational and axiomatic semantics
into higher order logic. Exactly the same method is used in [PHM99].15 As we
have based our axiomatic semantics on the ideas developed in [PHM99] and as
we have taken care to make the operational semantics as directly comparable
to the source semantics in [PHM99] as possible, we can even recycle parts of
their proof – exactly those that deal with method specifications. Cf. [PHM99]
for the motivation and more details about the proof.

What soundness theorem do we want to prove? There are two levels of
abstractions: method specifications and instruction specifications. Instruction
specifications cannot be defined without the notion of enclosing method specifi-
cations (or at least specifications for instructions in an enclosing method body).
Our goal is the modular specification and verification of methods, so we will
not prove soundness for instruction specifications explicitly. Our soundness is
theorem then is

` {P} M {Q} ⇒ |= {P} M {Q}

Definition 14.

sem(C, p, C ′) ≡ p;C →∗ C ′

nsem1(N + 1, C ≡ 〈S, σ, l〉, p, C ′ ≡ 〈S′, σ′, l′〉) ≡

if Il 6= invokevirtual T : m
p;C → C ′

if Il = invokevirtual T : m ∧ C = 〈S, (σ0, y, v), l〉 ∧N > 0
p
′ = bodyVMK

(impl(τ(y),m)) ∧
p
′(l′) = end_method ∧
nsem(N, 〈{this 7→ y, p 7→ v, $ 7→ S($)} , (), 0〉, p′, 〈S′, σ′, l′〉)

false otherwise

nsem is the reflexive transitive closure of nsem(N, ., p, .), i.e.

nsem(N,C, p, C)

and
nsem1(N,C, p, C ′) nsem(N,C ′, p, C ′′)

nsem(N,C, p, C ′′)

The relation between nsem1 and nsem is thus the same as between → and→∗.
nsem(N,S,C, S′) means that S is a state that leads to a terminating execution
with poststate S′ with a recursion depth that is at most N .

15 Including names of relations so that the two proofs are directly comparable.

32

Lemma 3.
sem(P,C,Q)⇐⇒ ∃N : nsem(N,P,C,Q)

Proof. “⇐” trivial

“⇒” by induction on N (we only consider Il = invokevirtual):

· · · sem(〈{this 7→ y, p 7→ v, $ 7→ S($)} , (), 0〉, p′, 〈S′, σ′, l′〉)

sem(C, p, C ′)

sem(〈{this 7→ y, p 7→ v, $ 7→ S($)} , (), 0〉, p′, 〈S′, σ′, l′〉)

by the induction hypothesis

⇒nsem(N, 〈{this 7→ y, p 7→ v, $ 7→ S($)} , (), 0〉, p′, 〈S′, σ′, l′〉)

From that we obtain:

· · · nsem(N, 〈{this 7→ y, p 7→ v, $ 7→ S($)} , (), 0〉, p′, 〈S′, σ′, l′〉)

nsem(N + 1, C, p, C ′)

Definition 15. H(P,M,Q) formalizes the meaning of the specification {P} M {Q}.

H(P, p, Q) ≡ ∀C ≡ 〈{this 7→ this0, p 7→ p0, $ 7→ $0} , (), 0〉, C
′ ≡ 〈S′, σ′, l′〉 :

sem(C, p, C ′) ∧ Il′ = end_method ∧ [[P]]C ⇒ [[Q]]C ′

H(P, T@m,Q) ≡ H(this 6= null ∧ P, body(T@m), Q)

H(P, T : m,Q) ≡ ∀T � T0 : H(τ(this) = T ∧ P, impl(T,m), Q)

Definition 16.

K(N,P, p, Q) ≡ ∀C ≡ 〈{this 7→ this0, p 7→ p0, $ 7→ $0} , (), 0〉,

C ′ ≡ 〈S′, σ′, l′〉 :

nsem(N,C, p, C ′) ∧ Il′ = end_method

∧ [[P]]C ⇒ [[Q]]C ′

K(0, P, T@m,Q) ≡ true

K(N + 1, P, T@m,Q) ≡ K(N, this 6= null ∧ P, bodyVMK
(T@m), Q)

K(N,P, T0 : m,Q) ≡ ∀T � T0 : K(N, τ(this) � T ∧ P, impl(T,m), Q)

Lemma 4.

H(P,C,Q)⇐⇒ ∀N : K(N,P,C,Q)

Proof.

H(P, p, Q)

⇐⇒ ∀C ≡ 〈{this 7→ this0, p 7→ p0, $ 7→ $0} , (), 0〉, C
′ ≡ 〈S′, σ′, l′〉 :

sem(C, p, C ′) ∧ Il′ = end_method ∧ [[P]]C ⇒ [[Q]]C ′

⇐⇒ ∀C ≡ 〈{this 7→ this0, p 7→ p0, $ 7→ $0} , (), 0〉, C
′ ≡ 〈S′, σ′, l′〉 :

∃N : nsem(N,C, p, C ′) ∧ Il′ = end_method ∧ [[P]]C ⇒ [[Q]]C ′

⇐⇒ ∀N∀C ≡ 〈{this 7→ this0, p 7→ p0, $ 7→ $0} , (), 0〉, C
′ ≡ 〈S′, σ′, l′〉 :

nsem(N,C, p, C ′) ∧ Il′ = end_method ∧ [[P]]C ⇒ [[Q]]C ′

⇐⇒ ∀N : K(N,P, p, Q)

33

Using the translation of |= {A} B {C} the soundness theorem reads

` {A} B {C} ⇒ H(A,B,C)

The next few sections are devoted to actually proving soundness. We do that by
showing ` {P} C {Q} ⇒ ∀N : K(N,P,C,Q) by induction on the shape of the
derivation tree of {P} C {Q}. We do not cover the method specification specific
rules. They are already proven correct in [PHM99]. In fact, there is only one
induction case left to prove: When the root of the derivation for ` {A} B {C}
is the body rule:

body

preconditionp(0)[undef /v for all method variables v] = P

preconditionp(|p|) = Q
[∀i ∈ Λp : specp(i)]

{P} p {Q}

Then we have to show that:

` {P} p {Q} ⇒ ∀N : K(N,P, p, Q)

We do this by induction over N . The case N = 0 is trivial, we may therefore
assume for the rest of the proof that N > 0. Our only hope is expanding the
right hand side. The end-result should therefore be:

∀C ≡ 〈{this 7→ this0, p 7→ p0, $ 7→ $0} , (), 0〉, C
′ ≡ 〈S′, σ′, l′〉 :

nsem(N,C, p, C ′) ∧ Il′ = end_method ∧ [[P]]C ⇒ [[Q]]C ′

In order to prove the body rule, we may assume its antecedents:

[∀i ∈ Λp : specp(i)]

and

I|p| = end_method

∀i < |p| : p(i) 6= end_method

preconditionp(0)[undef /v for all method variables v] = P ∧ this 6= null

postconditionp(|p|) = Q

Instead of the complex formula

∀C ≡ 〈{this 7→ this0, p 7→ p0, $ 7→ $0} , (), 0〉, C
′ ≡ 〈S′, σ′, l′〉 :

nsem(N,C, p, C ′) ∧ Il′ = end_method ∧ [[P]]C ⇒ [[Q]]C ′

34

we prove the more general and more easily reusable and generalizable

∀C ≡ 〈S, σ, l〉, C ′ ≡ 〈S′, σ′, l′〉 : nsem(N,C, p, C ′) ∧ [[El]]C ⇒ [[El′]]C
′

by induction on the shape of the derivation of nsem(N,C, p, C ′).

When we have that, we can easily get the original formula by constraining C to
〈{this 7→ this0, p 7→ p0, $ 7→ $0} , (), 0〉. We would thus have shown the inductive
step (N − 1)→ (N) and we can conclude:

∀N : K(N,P, p, Q)

Now that we have presented the overall structure of the proof, we’ll give the
deduction of

ZZ(N) ≡ ∀C ≡ 〈S, σ, l〉, C ′ ≡ 〈S′, σ′, l′〉 : nsem(N,C, p, C ′) ∧ [[El]]C ⇒ [[El′]]C
′

We will need the induction hypothesis M < N ⇒ ZZ(M).

4.1.1 Proof of Soundness for Sequences of Instructions

We’ll prove the propositions

ZZ(N) ≡ ∀C ≡ 〈S, σ, l〉, C ′ ≡ 〈S′, σ′, l′〉 : nsem(N,C, p, C ′) ∧ [[El]]C ⇒ [[El′]]C
′

We do this by induction on the length m of the derivation of nsem(N,C, p, C ′):

(ZZ(m = 0)): trivial: l = l′′ ⇒ (El = El′′ ∧ C = C ′).

(ZZ(m)→ ZZ(m+ 1)): After proving the first step we get:

∀C ≡ 〈S, σ, l〉, C ′ ≡ 〈S′, σ′, l′〉 : nsem1(N,C, p, C ′) ∧ [[El]]C ⇒ [[El′]]C
′)

and with the induction hypothesis

∀C ′ ≡ 〈S′, σ′, l′〉, C ′′ ≡ 〈S′′, σ′′, l′′〉 : nsemm(N,C ′, p, C ′′) ∧ [[El′]]C
′ ⇒ [[El′′]]C

′′)

We may prove the implication ZZ(m+ 1) = nsemm+1(N,C, p, C0′) ∧ [[El]]C ⇒
[[El′′]]:

nsemm+1(N,C, p, C ′′) ∧ [[El]]C

⇒[[El]]C ∧ nsem1(N,C, p, C ′) ∧ nsemm(N,C ′, p, C ′′)

⇒· · · ∧ ([[El]]C ∧ nsem1(N,C, p, C ′)⇒ [[El′]]C
′)

∧ (nsemm(N,C ′, p, C ′′) ∧ [[El′]]C
′ ⇒ [[El′′]]C

′′)

⇒[[El′′]]

Which proves the inductive step under the assumptions that

∀C ≡ 〈S, σ, l〉, C ′ ≡ 〈S′, σ′, l′〉 : nsem1(N,C, p, C ′) ∧ [[El]]C ⇒ [[El′]]C
′)

actually holds. This is what we’re going to prove next.

35

Proof of Single-Step Soundness This part of the soundness proof is later
recycled for the completeness proof.

∀C ≡ 〈S, σ, l〉, C ′ ≡ 〈S′, σ′, l′〉 : nsem1(N,C, p, C ′) ∧ [[El]]C ⇒ [[El′]]C
′)

We assume nsem1(...) ∧ [[El]]C and then show that this implies [[El′]]C
′ by in-

duction on the shape of the derivation tree of the assertion {El} l : Il. Although
the inductive hypothesis will be needed only for the invokevirtual rule. All other
rules are shallow: they have only logical formulas as antecedents. So we can
prove them directly. The proof is simple for primitive instructions and uses the
following two lemmas. invokevirtual is more difficult because it has to cope with
the reference to some virtual method T : m.

Lemma 5.
[[E]]〈S, σ, l〉 ⇐⇒ [[shift|κ|(E)]]〈S, (σ, κ), l〉

Proof by induction on the structure of the expression.

Lemma 6.

[[E[s0/s(i0), . . . , sn/s(in), y0/x0, . . . , ym/xm]]〈S, σ, l〉 ⇐⇒

[[E]]〈S[x0 7→ [[y0]]〈S, σ, l〉, . . . , xm 7→ [[ym]]〈S, σ, l〉],

σ[i0 7→ [[s0]]〈S, σ, l〉, . . . , in 7→ [[sn]]〈S, σ, l〉], l〉

Proof by induction on the structure of the expression.

As mentioned before, the proofs always follow the same pattern: We assume
nsem1(N,C, p, C ′) ∧ [[El]]C and deduce, with the antecedents of the rule that
was used to infer El, that [[El′]] holds. The operational semantics is determinis-
tic. We therefore have to look at only one possible derivation for nsem1(N,C, p, C ′).
Keep in mind, that we’re considering the cases

Il 6= invokevirtual T : m

first and therefore nsem1(N, ., p, .) = (→) according to the definition of nsem1.

pushc v We know: El → unshift(El+1[v/s(0)])

[[El]]〈S, σ〉

⇒[[unshift(El+1[v/s(0)])]]〈S, σ〉

⇐⇒ [[El+1[v/s(0)]]]〈S, (σ, t)〉

⇐⇒ [[El+1]]〈S, (σ, v)〉

pushv x exactly as above for pushc v

36

pop x We know: El → (shift(El+1))[s(0)/x]

[[El]]〈S, (σ, v)〉

⇒[[(shift(El+1))[s(0)/x]]]〈S, (σ, v)〉

⇐⇒ [[(shift(El+1))]]〈S[x 7→ v], (σ, v)〉

⇐⇒ [[El+1]]〈S[x 7→ v], σ〉

binopop We know: El → (shift(El+1))[(s(1) op s(0))/s(1)]

[[El]]〈S, (σ, v1, v2)〉

⇒[[(shift(El+1))]]〈S, (σ, (v1 op v2), v2)〉

⇐⇒ [[El+1]]〈S, (σ, v1 op v2)〉

goto l′ We know: El → El′

[[El]]〈S, σ〉

⇒[[El′]]〈S, σ〉

brtrue l′ We know

El → (¬s(0)→ shift(El+1)) ∧ (s(0)→ shift(El′))

Case 1: s(0) = true

[[El]]〈S, (σ, true)〉

⇒[[¬s(0)→ shift(El+1)) ∧ (s(0)→ shift(El′)]]〈S, (σ, true)〉

⇐⇒ [[shift(El′)]]〈S, (σ, true)〉

⇐⇒ [[El′]]〈S, σ〉

Case 2: s(0) = false: similar

checkcastT We know: El → El+1 ∧ τ(s(0)) � T

[[El]]〈S, (σ, v)〉

⇒[[El+1 ∧ τ(s(0)) � T]]〈S, (σ, v)〉

⇐⇒ [[El+1]]〈S, (σ, v)〉 ∧ [[τ(s(0)) � T]]〈S, (σ, v)〉

⇐⇒ [[El+1]]〈S, (σ, v)〉 ∧ τ(v) � T
︸ ︷︷ ︸

true (nsem1(..) holds)

⇐⇒ [[El+1]]〈S, (σ, v)〉

37

newobj T We know: El → unshift(El+1[new($, T)/s(0), $〈T 〉/ $])

[[El]]〈S, σ〉

⇒[[unshift(El+1[new($, T)/s(0), $〈T 〉/ $])]]〈S, σ〉

⇐⇒ [[El+1]]S[$ 7→ S($)〈T 〉], (σ, new(S($), T))

getfield T@a We know: El → El+1[$(iv(s(0), T@a))/s(0)] ∧ s(0) 6= null

[[El]]〈S, (σ, y)〉

⇒[[El+1[$(iv(s(0), T@a))/s(0)] ∧ s(0) 6= null]]〈S, (σ, y)〉

⇐⇒ [[El+1[$(iv(s(0), T@a))/s(0)]]]〈S, (σ, y)〉 ∧ y 6= null
︸ ︷︷ ︸

nsem(...)

⇐⇒ [[El+1[$(iv(s(0), T@a))/s(0)]]]〈S, (σ, y)〉 ∧ true

⇐⇒ [[El+1[$(iv(s(0), T@a))/s(0)]]]〈S, (σ, y)〉

⇐⇒ [[El+1]]〈S, (σ, S($)(iv(y, T@a)))〉

putfield T@a We know:

El → (shift2(El+1))[$〈iv(s(1), T@a) := s(0)〉/ $] ∧ s(1) 6= null

[[El]]〈S, (σ, y, v)〉

⇒[[(shift2(El+1))[$〈iv(s(1), T@a) := s(0)〉/ $] ∧ s(1) 6= null]]〈S, (σ, y, v)〉

⇐⇒ [[(shift2(El+1))[$〈iv(s(1), T@a) := s(0)〉/ $]]]〈S, (σ, y, v)〉 ∧ y 6= null

⇐⇒ [[(shift2(El+1))[$〈iv(s(1), T@a) := s(0)〉/ $]]]〈S, (σ, y, v)〉 ∧ true

⇐⇒ [[(shift2(El+1))]]〈S[$ 7→ S($)〈iv(y, T@a) := v〉], (σ, y, v)〉

⇐⇒ [[El+1]]〈S[$ 7→ S($)〈iv(y, T@a) := v〉], σ〉

Single-Step Soundness for the invokevirtual Rule El has been deduced
by the invokevirtual rule:

invokevirtual

A ` {P} T : m {Q}
L is a vector of logical variables

w is a vector of local or a stack elements 6= s(0)
El → s(1) 6= null ∧ P [s(1)/ this, s(0)/ p][shift(w)/L]

Q[s(0)/ result][w/L]→ El+1

A ` {El} l : invokevirtual T : m

we have to prove:

∀C ≡ 〈S, σ, l〉, C ′ ≡ 〈S′, σ′, l2〉 : nsem1(N,C, p, C ′) ∧ [[El]]C ⇒ [[El2]]C
′)

38

(nsem1(N,C, p, C ′) is possible because N > 0).

We assume nsem1(N,C, p, C ′) ∧ [[El]]C and then deduce [[El2]]C
′. Here are the

assumptions in detail:

C = 〈S, (σ, y, v), l〉 (1)

C ′ = 〈S[$ 7→ S′($)], (σ, S′(result)), l + 1〉 (2)

i.e. l2 = l + 1 and

nsem(N − 1, 〈{this 7→ y, p 7→ v, $ 7→ S($)} , (), 0〉, p′, 〈S′, σ′, l′〉) (3)

where p′ = bodyVMK
(impl(τ(y),m)) and

p
′(l′) = end_method (4)

[[El]]C (5)

According to the derivation of El we can also assume that

A ` {P} T : m {Q} ,

El → s(1) 6= null ∧ P [s(1)/ this, s(0)/ p][shift(w)/L] and

Q[s(0)/ result][w/L]→ El+1

From
A ` {P} T : m {Q}

we deduce with the inductive hypothesis that

∀M : K(M,P, T : m,Q)

therefore
∀S � T : K(M, τ(this) � S ∧ P, impl(S,m), Q)

from the well-formedness we know that

τ(y) � T

and we can rewrite the formula as

K(M, y 6= null ∧ τ(this) � τ(y) ∧ P,

bodyVMK
(impl(τ(y),m)), Q)

or equivalently

K(M, y 6= null ∧ τ(this) � τ(y) ∧ P, p′, Q)

Replacing the definition of K:

∀M,Z ≡ 〈{this 7→ this0, p 7→ p0, $ 7→ $0} , (), 0〉, Z
′ ≡ 〈A′, σ′, l′〉 :

nsem(M,Z, p′, Z ′) ∧ Il′ = end_method

∧ [[y 6= null ∧ τ(this) � τ(y) ∧ P]]Z

⇒ [[Q]]Z ′

39

Setting
Z = 〈{this 7→ y, p 7→ v, $ 7→ S($)} , (), 0〉

Z ′ = 〈S′, σ′, l′〉

and
M = N − 1

we are almost done:

nsem(N − 1, 〈{this 7→ y, p 7→ v, $ 7→ S($)} , (), 0〉, p′, 〈S′, σ′, l′〉) ∧

Il′ = end_method ∧ [[y 6= null ∧ τ(this) � τ(y) ∧ P]]Z

⇒ [[Q]]Z ′

Because we can conclude by (3) and equation (4) on the preceding page that

[[y 6= null ∧ τ(this) � τ(y) ∧ P]]Z ⇒ [[Q]]Z ′

To make it clear, lets replace Z,Z ′

[[y 6= null ∧ τ(this) � τ(y) ∧ P]]

〈{this 7→ y, p 7→ v, $ 7→ S($)} , (), 0〉

⇒ [[Q]]〈S′, σ′, l′〉

and after some evaluation:

[[y 6= null ∧ τ(y) � τ(y) ∧ P]]

〈{this 7→ y, p 7→ v, $ 7→ S($)} , (), 0〉

⇒ [[Q]]〈S′, σ′, l′〉

we recognize that we can equally well write

[[y 6= null ∧ P]]〈{this 7→ y, p 7→ v, $ 7→ S($)} , (), 0〉 ⇒ [[Q]]〈S ′, σ′〉

Taking advantage of our assumption [[El]]C (equation (5) on the previous page)
we can also use

[[s(1) 6= null ∧ P [s(1)/ this, s(0)/ p][shift(w)/L]]]C

or just as well when considering the structure of C:

[[s(1) 6= null ∧ P [s(1)/ this, s(0)/ p][shift(w)/L]]]〈S, (σ, y, v)〉

Let’s first reformulate by separate the auxiliary substitution [shift(w)/L]:

([[s(1) 6= null ∧ P [s(1)/ this, s(0)/ p]]]〈S, (σ, y, v)〉)[[[w]]〈S, (σ, y), l〉/L]

40

We use the substitution lemma and the fact that P does only depend on this,
on the parameter p and the object store $, i.e. its value does not change when
we reduce the evaluation environment:

([[y 6= null ∧ P]]〈{this 7→ y, p 7→ v, $ 7→ S($)} , (), 0〉)
︸ ︷︷ ︸

lhs assumpt.

[[[w]]〈S, (σ, y)〉/L]

The left hand side of the implication we have deduced from the assumption can
be replaced by its right hand side! We can deduce

([[Q]]〈S′, σ′〉) [[[w]]〈S, (σ, y)〉/L]
︸ ︷︷ ︸

just carry around

By the same line of reasoning as before (Q does only depend on result and $):

([[Q[s(0)/ result]]]〈S[$→ S ′($)], (σ′, S′(result))〉)[[[w]]〈S, (σ, y)〉/L]

We can re-integrate the substitution of L taking advantage of the fact that
w 6= s(0), i.e., [[[w]]〈S, (σ, x)〉 is the same for all x:

[[Q[s(0)/ result][w/L]]]〈S[$→ S ′($)], (σ′, S′(result))〉

With the implication Q[s(0)/ result][w/L]→ El+1

[[El+1]]〈S[$→ S′($)], (σ′, S′(result))〉

Which is what we wanted to prove. Done.

4.2 Completeness and Weakest Preconditions

In this section, we prove the following theorem

if |= {P} p {Q} then ` {P} p {Q} for any method body p.

There are limitations of our notion of completeness due to modularity concerns.
They are discussed in section 4.2.1 on page 45. Unlike checking soundness of
a programming logic – a mere necessity – completeness can reveal real new
insights. The weakest precondition (wp) approach to proving completeness cho-
sen here yields a constructive method16 to derive for any given method post-
condition17 a weakest precondition which is implied by all valid preconditions if
the program terminates. This is helpful and often used for automatic/interactive
program verification.

Proving completeness of Hoare-style programming logics using a wlp-calculus is
a standard technique. There are other, less commonly used and less rewarding
approaches that do not fit nicely into our framework. ([Kle99])

In structured programming languages, the weakest liberal precondition wlp(S,Q)
of a statement S for a predicate Q is defined as18

[[wlp(S,Q)]]s ≡ 〈S, s〉 → s′ ⇒ [[Q]]s′

16up to expressiveness problems of the assertion language
17i.e., for any desired result condition of a method
18〈S, s〉 → s′ is the big step transition relation from state s to s′.

41

Trivial consequences of this definition are

|= {wlp(S,Q)} S {Q}

and
(|= {P} S {Q})⇒ (P ⇒ wlp(S,Q))

The completeness theorem follows if we can deduce

` {wlp(S,Q)} S {Q}

because then, there is a corresponding derivation tree for all valid {P} S {Q}

consequence
P → wlp(S,Q) {wlp(S,Q)} S {Q}

{P} S {Q}

As explained in section 3.2.3 on page 23, we cannot prove a program correct
using our rules if it can get stuck due to invalid object operations. We will thus
only prove completeness for programs that are guaranteed to terminate. I.e., we
will prove that the weakest precondition for total correctness can be derived.

The weakest precondition for total correctness for method bodies wp(p, Q) is
constrained by all preconditions of all individual instructions of p. We shall
therefore construct all the preconditions of all instructions simultaneously such
that the desired postcondition Q holds in the terminating state (when the
end_method instruction is reached). We define another wp-like attribute for
the preconditions of all instructions:

Definition 17.

[[wpp(l, Q)]]〈S, σ〉 ≡ [[Q]]〈S′, σ′〉 ∧ p; 〈S, σ, l〉 →∗ 〈S′, σ′, |p|〉

If we can prove the assertion {wpp(l, Q)} l : Il for all instructions in any given
method body, then the our programming logic for bytecode is definitely rela-
tively complete.

The proof is organized as follows: We first define a predicate that can be deduced
given a method body p and its postcondition Q and then show that it actually
is at least as weak as the predicate wpp.

1. We define instruction specifications ψl that can be deduced given a method
body postcondition Q for p

2. We show that ψl ⇐ wpp(l, Q)

Definition 18. For a given postcondition Q of a method implementation p we
define

ψ|p| = Q

ψ
(0)
l = false

ψ
(k+1)
l = wp1

p(Il, (ψ
(k)
i)i∈succ(l:Il))

ψl =
∨

n∈N0

ψ
(n)
l

42

In order to show that {ψl} l : Il is derivable, we prove that

ψl ⇐⇒ wp1
p(Il, (ψi)i∈succ(l:Il)) (6)

holds. Assume ψl. There must be an m > 0 such that ψ
(m)
l . From its definition,

we know that
wp1

p(Il, (ψ
(m−1)
i)i∈succ(l:Il))

or equivalently
∨

n∈N0

wp1
p(Il, (ψ

(n)
i)i∈succ(l:Il))

Lemma 1 tells us that this is equal to

wp1
p(Il, (

∨

n∈N0

ψ
(n)
i

︸ ︷︷ ︸

ψi

)i∈succ(l:Il))

Therefore wp1
p(Il, (ψi)i∈succ(l:Il)) which is what we wanted to prove. The oppo-

site direction is similar. Done.

To see that equation (6) holds, it is even easier just to rewrite the expression:

wp1
p(Il, (ψi)i∈succ(l:Il))

⇐⇒ wp1
p(Il, (

∨

n∈N0

ψ
(n)
i)i∈succ(l:Il))

⇐⇒
∨

n∈N0

wp1
p(Il, (ψ

(n)
i)i∈succ(l:Il))

⇐⇒
∨

n∈N0

ψ
(n+1)
l

⇐⇒
∨

n∈N0

ψ
(n+1)
l ∨ false

⇐⇒
∨

n∈N0

ψ
(n)
l

⇐⇒ ψl

showing ψl ⇐ wpp(l, Q) We have to prove

[[ψl]]〈S, σ, l〉 ⇐ [[Q]]〈S′, σ′, |p|〉 ∧ p; 〈S, σ, l〉 →∗ 〈S′, σ′, |p|〉

We prove the more general

[[ψl]]〈S, σ, l〉 ⇐ [[ψl′]]〈S
′, σ′, l′〉 ∧ p; 〈S, σ, l〉 →∗ 〈S′, σ′, l′〉

All the soundness proves for individual instructions (section 4.1.1 on page 36)
have the same structure:

[[El]]〈S, σ〉

⇒[[wp1
p(El, . . .)]]〈S, σ〉

⇐⇒ [some equivalence transformations]

⇐⇒ [[El′]]〈S
′, σ′〉

43

Reading the soundness proves in the opposite direction, we can follow

[[wp1
p(El, (Ei)i∈succ(l:Il))]]〈S, σ〉

from [[El′]]〈S
′, σ′〉 by reading the soundness proof in the opposite direction. Just

as for soundness an induction on the length of the derivation yields the required
result for all derivations of arbitrary length.

The reader may have noticed that

φ|p| = Q

φ
(0)
l = true

φ
(k+1)
l = wp1

p(Il, (φ
(k)
i)i∈succ(l:Il))

φl =
∧

n∈N0

φ
(n)
l

do satisfy the conditions on the weakest preconditions as well. The difference
is that φl is the greatest fixed point and ψ is the least fixed point of wpp. The
greatest fixed point normally coincides with the weakest liberal precondition. As
explained above, this is not the case for the VMK bytecode language because of
the checkcastT , getfield T@a, putfield T@a and invocation instructions.

Example 18. Consider the following code snippet

0: goto 0

1: end_method

We want to find the weakest precondition for this method:

k ψ
(k)
0 ψ

(k)
1

0 false Q
1 wp1

p(goto , false) = false Q
2 wp1

p(goto , false) = false Q
...

We derive that ψ0 = false indicating that the program does not terminate. We
should expect the weaker precondition φ to be true because the program always
loops.

k φ
(k)
0 φ

(k)
1

0 true Q
1 wp1

p(goto , true) = true Q
2 wp1

p(goto , true) = true Q
...

Example 19. φ0 and ψ0 should both be false for the following method because
it gets stuck (S and T are unrelated):

44

0: newobj T

1: checkcast S

2: end_method

k ψ
(k)
0 ψ

(k)
1 ψ

(k)
2

0 false false Q
1 false Q ∧ τ(s(0)) � S Q
2 Q ∧ τ(new($, T)) � S Q ∧ τ(s(0)) � S Q
...

ψ0 is therefore Q ∧ τ(new($, T)) � S, which according to axiom (env11) in
[PH97]:

τ(new($, T)) = T

is false.

For φ0, we get the same result

k φ
(k)
0 φ

(k)
1 φ

(k)
2

0 true true Q
1 true Q ∧ τ(s(0)) � S Q
2 Q ∧ τ(new($, T)) � S Q ∧ τ(s(0)) � S Q
...

4.2.1 Invocations

Until now, we did not define a local precondition function for invocation instruc-
tions: wp1

p(invokevirtual T : m, . . .). The reason is simple. We’re considering
a scenario for program verification where the programmer associates with every
method one or more specifications. The method specifications are fixed at the
beginning and the code is verified to conform to these specifications. This al-
lows modular reasoning. For verifying a method, we do not have to follow the
invocations and verify all the transitively called methods. It is sufficient to use
the known method specifications as summaries of the effect of a method body.
These method specifications are however not tailored towards a specific call site.
Hence there can be no weakest precondition for a method invocation given a
method specification for the invoked method. Giving up method this modular-
ity idea, we could extend the fixed point iteration to work simultaneously on
all method bodies in a program. This is completely impractical. Furthermore,
programs are often open to extensions in a highly dynamic environment.

Instead of weakest preconditions for method invocations, we will instead consider
preconditions that are weak enough in practice. The idea is based on [Rau02].

45

We assume {P} T : m {R}

wp1
p(invokevirtual T : m,El+1) = P [s(1)/ this, s(0)/ p]

∧ (∀T,H : ρ(s(1), s(0), $, H,E) ∧ R[T/ result, H/ $]⇒ El+1[T/s(0), H/ $])

ρ(s(1), s(0), $, H,E) is a general constraint on the object, its argument and
the object store, and the possible end values H and E. ρ is used to weaken
the postcondition. A good ρ is crucial to make this weak precondition usable.
Details can be found in [Rau02].

5 Application: Deriving Rules For Complex In-

structions

Axiomatic definitions for instructions whose effect is defined as the effect of a
sequential execution of simpler instructions can be easily derived. We call these
instructions “compound instructions”. To see how rules for them are assembled,
let’s make the deductive system more restrictive. The premises for primitive
instructions have the following form:

El → wp1
p(Il, (Ei)i∈succ(l:Il))

We now change the implication to an equivalence

El ←→ wp1
p(Il, (Ei)i∈succ(l:Il))

Soundness is obviously not affected. Neither is completeness: the weakest pre-
conditions ψ and φ actually satisfy the desired equivalence. For a basic block
B of instructions,

1 :B1

2 :B2

...

|B| :B|B|

valid specifications β satisfy the equations

β1 ←→ wp1
p(B1, β2)

...

β|B|−1 ←→ wp1
p(B|B|−1, β|B|)

These equations can be substituted into each other yielding for a block B the
rule for which we replace ←→ by → to make it less awkward to use.

B
El → wp1

p(B1,wp1
p(B2, · · ·wp1

p(B|B|,

(Ei)i∈succ(l:B)

︷ ︸︸ ︷

(Et)t∈succ(l.|B|:B|B|))))

{El} l : B
(7)

46

Replacing → by ←→ also helps when blocks contain method invocations. The
corresponding (simplified) invokevirtual rule is:

invokevirtual

A ` {P} T : m {Q}
El ←→ s(1) 6= null ∧ P [s(1)/ this, s(0)/ p]

Q[s(0)/ result]←→ El+1

A ` {El} l : invokevirtual T : m

For blocks of instructions with loops, their weakest precondition as an instruc-
tion is the weakest precondition of the block as an implementation:

wp1
p(B, (Ei)i∈succ(l:B)) = wpB(1, (Ei)i∈succ(l:B)) (8)

Their rules naturally have the antecedent El → wpB(1, El+1).

These constructions can be shown to conform to an operational interpretation
of compound instructions as macros:19

0 :I0

1 :I1

...

l :B

...

|p| : end_method

≡

0 :I0

1 :I1

...

l − 1 :Il−1

l.1 :B1

l.2 :B2

...

l.|B| :B|B|

l + 1 :Il+1

...

|p| : end_method

Mutual implication by induction on the shape of the derivation shows that the
expansion is equivalent to assigning the following semantics to a block B:

l′ 6= l.i
B; 〈S, σ, l.1〉 →∗ 〈S′, σ′, l′〉

[. . . l : B . . .]; 〈S, σ, l〉 → 〈S′, σ′, l′〉

19 To make this argument formal, we should redefine the operational semantics, relax the
conditions on labels and introduce a function nextlabel(l) that is used instead of l + 1 in the
operational semantics to access the label of the next instruction in a sequence.

nextlabel(l − 1) = � l.1 if Il is a block

l otherwise

nextlabel(l.i) = � l + 1 if i = |Il|

l.(i + 1) otherwise

47

To see that equation (8) on the preceding page yields correct results, remember
that wpB(1, El+1) constructs preconditions β for which

βi ⇐⇒ wp1
p(Bi, (βi)i∈succ(l.i:Bi))

The βis can thus be identified with El.i yieliding a proof for the in-line version of
the program. The other assemblage rule, replacing→ by←→ is only a practical
simplification and works for the same reason. The βs can be computed directly
when the equations are not recursive, so we do not need a fixed point iteration.

Example 20. The goto l′ instruction may be defined as

goto ≡

{

1 : pushc true

2 : brtrue l′

Its operational semantics is

[1 : pushc true, 2 : brtrue l′]; 〈S, σ, l.1〉 →∗ 〈S′′, σ′′, l′′〉

[. . . l : goto l′ . . .]; 〈S, σ, l〉 → 〈S′′, σ′′, l′′〉

Substituting the finite transition relation→∗ for [1 : pushc true, 2 : brtrue l′]
results in

〈S, σ, l.1〉 → 〈S, (σ, true), l.2〉
〈S, (σ, true), l.2〉 → 〈S, σ, l′〉

[. . . l : goto l′ . . .]; 〈S, σ, l〉 → 〈S, σ, l′〉

The same transition for goto l′ we already have found before.

We now derive the antecedent of the rule for goto l′ as a compound instruction
using equation (7) on page 46 where (Ei)i∈succ(l:brtrue l′) = (El+1, El′):

El → wp1
p(pushc true,wp1

p(brtrue l′, El+1, El′))

⇐⇒ El → wp1
p(pushc true, (¬s(0)→ shift(El+1)) ∧ (s(0)→ shift(El′)))

⇐⇒ El → unshift(((¬s(0)→ shift(El+1)) ∧ (s(0)→ shift(El′)))[true/s(0)])

⇐⇒ El → unshift(((¬true→ shift(El+1)) ∧ (true→ shift(El′))))

⇐⇒ El → unshift(shift(El′))

⇐⇒ El → El′

Leading us to the rule we already had

El → El′

A ` {El} l : goto l′

Example 21. The CLI ret instruction returns from the current method re-
turning the topmost element of the stack to the caller (if the method is not
void). Its translation to VMK instructions is:

retCLI ≡

{

1 : pop result

2 : goto |p|

48

The new rule is according to equation (7) on page 46

El → wp1
p(pop result,wp1

p(goto |p|, El + 1))

A ` {El} l : retCLI

Replacing wp1
p by its definition gives us

El → shift(E|p|)[s(0)/ result]

A ` {El} l : retCLI

Example 22. Value types in the CLI have two representations, (section 4.1,
partition III, [ECM02])

• “A raw form used when a value type is embedded within another object
or on the stack.”

• “A boxed form, where the data in the value type is wrapped (boxed) into
an object so it can exist as an independent entity.”

We call the type of the boxed form Box(T) and assume this class has the single
field value. The instructions box T can be defined as

box T ≡

1 : pop t

2 : newobj Box(T)

3 : dup

4 : pushv t

5 : putfield Box(T)@value

where t is a new temporary variable. t is not present in the rule we derive:

El → wp1
p(pop t,wp1

p(newobj Box(T),wp1
p(dup,wp1

p(pushv t,

wp1
p(putfield Box(T)@a,El+1)))))

A ` {El} l : box T

Evaluating simplifies the premise to

El → El+1[$〈Box(T)〉〈iv(new($, Box(T)), Box(T)@value) := s(0)〉/ $,
new($, Box(T))/s(0)]

A ` {El} l : box T

For more examples on how blocks with jumps and method calls are used, see
section 6 on extensions that are defined using compound instructions.

6 Extensions: Exception Handling and Class Ini-

tialization

This section discusses two important extensions to the basic “kernel” bytecode
language and its axiomatic semantics: class initialization – the implicit call of a

49

static method (class initializer) upon the first access of a class – and structured
exception handling that has become a standard to deal with error conditions
and leads to abrupt termination of parts of the program. We were careful to
define as many of the new features as possible as translations to the kernel
instructions.

6.1 Global Data and Class Initialization

In order to support class initialization, we need global variables. For the opera-
tional semantics, we can do so by extending the abstract state by an additional
state G : GlobalV ariable ↪→ V alue for global variables. The configuration then
becomes K ≡ 〈S,G, σ, l〉. We need two additional instructions putstatic and
getstatic to access global variables just in the same way pop and pushv are
used for locals. There are other possibilities to cope with global variables like
extending the state S ∈ State = · · · ∪ Class ↪→ V alue and treating classes as
objects with fields.

[. . . l : popg x . . .]; 〈S,G, σ, l〉 → 〈S,G, (σ,G(x)), l + 1〉

[. . . l : pushg x . . .]; 〈S,G, (σ, v), l〉 → 〈S,G[x 7→ v], σ, l + 1〉

The semantics of other instructions does not change. The exception is invokevirtual ,
for which we have to pass the global environment just like the heap $:

p′ = bodyVMK
(impl(τ(y),m)) p′(l′) = end_method

p′; 〈{this 7→ y, p 7→ v, $ 7→ S($)} , G, (), 0〉 →∗ 〈S′, G′, σ′, l′〉

[. . . l : · · · . . .]; 〈S,G, (σ, y, v), l〉 → 〈S[$ 7→ S ′($)], G′, (σ, S′(result)), l + 1〉

The axiomatic semantics does not change much either. The new instructions
popg and pushg are easy to handle:

pushg

pushg
El → unshift(El+1[x/s(0)])

A ` {El} l : pushg x

popg

popg
El → (shift(El+1))[s(0)/x]

A ` {El} l : popg x

To handle class initialization, we impose a structure on the global data. Global
variables are static fields of classes. A static field s of a class T is denoted by

50

T.s. All classes have a special static field initialized and a static method
. cctor that initializes a class and sets the initialized field to true before
doing anything else.

We assume that classes are initialized only when they are first accessed by means
of an instance allocation, a static field reference or a static method invocation.
I.e., as late as possible.20 This first access is abstracted by the new instruction
ensureinit T (cf. section 5 on page 46)

ensureinit T ≡

1 : pushg T. initialized

2 : brtrue 4

3 : call T@ . cctor

4 : nop

The semantics of the instructions that take care of class initializations are de-
fined by the following straightforward translations:

• putstatic init T.s ≡

{

1 : ensureinit T

2 : popg T.s

• getstatic init T.s ≡

{

1 : ensureinit T

2 : pushg T.s

• newobj init T.m ≡

{

1 : ensureinit T

2 : newobj T

• invokestatic init T@m ≡

{

1 : ensureinit T

2 : call T@m

Example 23. Derivation of the axiomatic semantics for ensureinit T . We
use the method described in section 5 on page 46 to derive a closed axiomatic
definition of the ensureinit T instruction: replace all→ by←→. The call rule
we need for static methods without arguments or results is call-static-void21. w
and Z are vectors of locals variables/stack elements and logical variables.

call-static-void

A ` {P} T@ . cctor {Q}
El ←→ P [w/Z]
Q[w/Z]←→ El+1

A ` {El} l : call T@ . cctor

Summarizing all obligations yields

• β1 ←→ unshift(β2[T. initialized/s(0)]) from 1 : pushg T. initialized

20This is the case for the JVM but not for the CLI, which allows classes to have the special
flag .beforefieldinit meaning they can be initialized at any time before the first access
or even afterwards but before the first field read. See section 5.5 in [LY99] and sections 8.9.5,
9.5.3 in [ECM02] or [BFGS04] for a readable ASM specification of the CLI class initialization.

21derived from section 3.2.3 on page 24

51

• β2 ←→ (¬s(0)→ shift(β3)) ∧ (s(0)→ shift(β4)) from 2 : brtrue 4

• β3 ←→ P [w/Z] and Q[w/Z]←→ β4 from 3 : call T@ . cctor and

• β4 ←→ β5 from 4 : nop

Solving the equations for β1 and β5 yields:

β1 ←→ unshift(((¬s(0)→ shift(P [w/Z]))

∧ (s(0)→ shift(Q[w/Z])))[T. initialized/s(0)])

←→ (¬T. initialized→ P [w/Z]) ∧ (T. initialized→ β5)

β5 ←→ Q[w/Z]

The final rule thus is after replacing back←→ by→ for the boundary conditions:

El → (¬T. initialized→ P [w/Z]) ∧ (T. initialized→ El+1)
Q[w/Z]→ El+1

A ` {El} l : ensureinit T

Note that there are ambiguities which βs should be substituted (β4 either be
substituted by Q[w/Z] or by El+1). Deciding for one alternative may make the
resulting rule more awkward to use, but never less correct or complete as argued
in section 5 on page 46.

Example 24. By the same construction as above we get for putstatic T.s

El → (¬T. initialized→ P [w/Z])
∧ (T. initialized→ (shift(El+1))[s(0)/x])

Q[w/Z]→ (shift(El+1))[s(0)/T.s]

A ` {El} l : putstatic T.s

6.2 Exception Handling

Exception handling in this section does only refer to the structured mechanism
that is used to catch exceptions in languages like C] and Java (try{...}catch(E
e){...}). In particular it does not discuss how try{...}finally{...} constructs
are best compiled to bytecode. The JVM uses method local subroutines and the
jsr instruction (chapter 7.13 in [LY99]). Even the Sun JVM implementation has
known problems correctly verifying the resulting bytecode programs (chapter
16, [SBS01]). New versions of Sun’s Java compiler eliminate the problems by
expansion of finally-code. This shows that polyvariant analyses that allow
more than one state per program point22 and are the easiest solution to handling
subroutines and also feasible in practice.

6.2.1 The Operational View

Example 25. Exceptions in the JVM are thrown by the athrow instruction
which takes one argument from the stack:

22jsr and ret can then be treated like unconditional jumps to each of the various invocation
sites

52

athrow

The JVM uses method local exception tables that define to where control should
be transfered when some exception happens in a protected region of code:

ExcTablep = (from : Label, upto : Label, handler : Label, filtertype : Type)∗

The exception is catched by an exception table entry if the program counter l is
in the range [from, upto) andfiltertype is compatible with the actual reference
that is thrown. The evaluation stack is cleared an control is transfered to the
instruction at label handler. Exception handling in the CLI is similar in its
simplest form. It is more flexible through custom exception filters and more
structured – finally blocks are made explicit. Also there are more restrictions
that a method body must conform to like using leave instead of br to exit a
protected region.

Example 26. Class initialization can fail. Both the CLI and the JVM mark
classes whose static initializer (.cctor) has failed are marked as unusable. On
each subsequent access, an exception is thrown. (TypeInitializationException
or ExceptionInInitializerError resp.)

Exception handling in the VMK works as follows: Exceptions are identified with
reference types. The State S of the program configuration is extended to store
the current exception (or null if no exception occurred):

Stateexc = State ∪ ({exc} → V alue)

There is an exception table for every single instruction mapping an exception
type to some destination label.

ExcTablep,l : Exc 7→ l′ : Type ↪→ Label

It indicates to where control should be transfered if an exception occurred.
If ExcTablep,l(Exc) returns undef (is undefined) when an exception occurs,
control is transfered to the end_method instruction and exc is not cleared (i.e.,
the exception is propagated). Otherwise, the evaluation stack is cleared, the
exception exc pushed onto the stack and control transfered to the instruction
at ExcTablep,l(S). An exception can be thrown by the new instruction throw.

l′ = ExcTablep,l(τ(e)) 6= undef

[. . . l : throw . . .]; 〈S, (σ, e), l〉 → 〈S, (e), l′〉

ExcTablep,l(τ(e)) = undef

[. . . l : throw . . .]; 〈S, (σ, e), l〉 → 〈S[exc 7→ e], (), |p|〉

The lookup in ExcTablep,l is done in the poststate of an instruction. Each
instruction has to take care of possible exceptions that may occur as part of their

53

execution. Instructions are only executed when exc = null. exc is therefore only
a device for propagating exceptions. Transitions for instructions that never cause
an exception do not change. If the result is not an exception, the instruction
terminates normally. In a suggestive notation:

· · · S′(exc) = null

[. . . l : · · · . . .]; 〈S, σ, l〉 → 〈S′, σ′, l′〉

· · · S′(exc) 6= null l′′ = ExcTablep,l(τ(S
′(exc))) 6= undef

[. . . l : · · · . . .]; 〈S, σ, l〉 → 〈S′[exc 7→ null], (S′(e)), l′′〉

· · · S′(exc) 6= null l′′ = ExcTablep,l(τ(S
′(exc))) = undef

[. . . l : · · · . . .]; 〈S, σ, l〉 → 〈S′, (), |p|〉

Observation 5. JVM and VMK exception tables are equivalent.

Example 27. The new rules for binary operations are defined as follows.
OpOKop(v1, v2) tests whether the operation is valid on the given arguments.
for op = (/), this could be

(v1, v2) 7→ v2 6= 0

In case the operation is valid:

OpOKop(v1, v2)

[. . . l : binopop . . .]; 〈S, (σ, v1, v2), l〉 → 〈S, (σ, v1 op v2), l + 1〉

and if the operation is not valid

¬OpOKop(v1, v2)
Sp = OpExcop(S, v1, v2)

lp = ExcTablep,l(τ(Sp(exc)))

(S′, σ′, l′) =

{

(Sp, (), |p|) if lp = undef

(Sp[exc 7→ null], (Sp(exc)), lp) if lp 6= undef

[. . . l : binopop . . .]; 〈S, (σ, v1, v2), l〉 → 〈S
′, σ′, l′〉

Where OpExcop(S, . . .) is a function that adds an exception to S describing the
reason why op failed. A simple possibility would be

(S, v1, v2) 7→ S[$ 7→ S($)〈InvalidOp〉, exc 7→ new(S($), InvalidOp)]

It is convenient to use the abbreviation

ExcTransp,l : Sp 7→

{

(Sp, (), |p|) if lp = undef

(Sp[exc 7→ null], (Sp(exc)), lp) if lp 6= undef

where lp = ExcTablep,l(τ(Sp(exc)))

54

Example 28.

τ(v) � T

[. . . l : checkcastT . . .]; 〈S, (σ, v), l〉 → 〈S, (σ, v), l + 1〉

τ(v) � T
Sp = InvalidCast(S)

(S′, σ′, l′) = ExcTransp,l(Sp)

[. . . l : checkcastT . . .]; 〈S, (σ, v), l〉 → 〈S ′, σ′, l′〉

InvalidCast has the same function as OpExcop in the previous example.

Example 29. The invokevirtual rule just propagates any exception that
was not handled in the invoked method on y if y 6= null.

y 6= null
p′ = bodyVMK

(impl(τ(y),m)) p′(l′) = end_method

p′; 〈{this 7→ y, p 7→ v, $ 7→ S($)} , (), 0〉 →∗ 〈S′, σ′, l′〉
Sp = S[$ 7→ S′($), exc 7→ S′(exc)]

σp = (σ, S′(result))

(S′′, σ′′, l′′) =

{

(Sp, σp, l + 1) if Sp(exc) = null

ExcTransp,l(Sp) if Sp(exc) 6= null

[. . . l : invokevirtual T : m . . .]; 〈S, (σ, y, v), l〉 → 〈S ′′, σ′′, l′′〉

If invoked on null, it throws an exception without executing the method:

y = null
Sp = NullRef(S)

(S′′, σ′′, l′′) = ExcTransp,l(Sp)

[. . . l : invokevirtual T : m . . .]; 〈S, (σ, y, v), l〉 → 〈S ′′, σ′′, l′′〉

6.2.2 The Axiomatic View

We can cope with exceptions in instruction specifications by allowing the special
value exc in assertions. Using different specifications depending on whether an
exception has occurred or not23 would require more work.

Exception handling effectively turn each instruction into a branching instruc-
tion. The new premises therefore look very much like the ones we already had
for brtrue . Again in a suggestive notation where wp1

p is the local weakest
precondition as defined earlier :

El → (NoExcCond → wp1
p(Il, (Ei)i∈succ(l:Il)))

∧Handledp,l ∧ Unhandledp,l

A ` {El} l : Il

where Handledp,l is defined as

∧

Exc∈HandledExcsp,l

(Condp,l(Exc)→ raise(Exc,EExcTablep,l(Exc)[exc/s(0)]))

23signals in JML

55

and Unhandledp,l as

∧

Exc∈UnhandledExcsp,l

(Condp,l(Exc)→ raise(Exc,E|p|))

• HandledExcsp,l is the set of types for which ExcTablep,l(.) is defined.
UnhandledExcsp,l is the set of types for which ExcTablep,l(.) is undefined

• Condp,l(Exc) is the logical formula describing the reason to raise Exc for
program point l in p. For binary operators for instance, this is corresponds
to OpOKop(s(1), s(0)) (as defined above)

• raise(Exc,E) models the effect of throwing the exception Exc on a con-
dition E. It is the weakest preconditon for raising the exception Exc. In
the simplest version, this is:

raise(Exc,E) = E[new($, Exc)/exc, $〈Exc〉/ $]

• The precondition of a handler may not reference a stack element other
than s(0). This is clear, as they will not be defined, but it is also required
to make our exception handling method sound.24

Example 30. The throw instruction is easy to handle as its NoExcCond is
false. It does not however create an exception. It does merely raise the ex-
ception. We therefore need a new function raise0 to raise exceptions that have
already been created and are found on top of the stack.

raise0(E) = E[s(0)/exc]

The rule for throw can then be defined as:

throw

El →
∧

Exc∈HandledExcsp,l
(τ(s(0)) = Exc→ raise0(EExcTablep,l(Exc)[exc/s(0)]))

∧

Exc∈UnhandledExcsp,l
(τ(s(0)) = Exc→ raise0(E|p|))

A ` {El} l : throw

Example 31. Let’s assume that ExcTablep,l is completely undefined. The
invokevirtual instruction has to propagate any exception unhandled by the
callee, it does not raise an exception itself:

A ` {P} T : m {Q}
Z is a vector of logical variables

w is a vector of local or a stack elements 6= s(0)
El → (s(1) 6= null→ P [s(1)/ this, s(0)/ p][shift(w)/Z])

∧ (s(1) = null→ raise(NullReference, E|p|))
Q[s(0)/ result][w/Z]→ ((exc = null→ El+1) ∧ (exc 6= null→ E|p|)

A ` {El} l : invokevirtual T : m

The full version has to do a case distinction on the type of exc.25

24The precondition of end_method may not contain any stack references.
25 �

Exc∈HandledExcsp,l
(τ(exc) = Exc → raise0(EExcTablep,l(Exc)[exc/s(0)]))

∧ �
Exc∈UnhandledExcsp,l

(τ(exc) = Exc → raise0(E|p|)) instead of just E|p|. The same

applies for checkcast T presented for methods without exception handlers.

56

Example 32. Again assuming that ExcTablep,l is completely undefined, the
rule for checkcastT is:

El → (τ(s(0)) � T → El+1)
∧ (τ(s(0)) � T → raise(InvalidCast, E|p|))

A ` {El} l : Il

Example 33. When proving programs with exception handling, method post-
conditions usually are of the form exc 6= null→ Q if exceptions are not consid-
ered or (exc = null→ QNorm) ∧ (exc 6= null→ QAbrupt) if guarantees are given
even if the method terminates abruptly. These postconditions correspond to
the separate postconditions QNorm and QAbrupt in case of normal and abrupt
termination resp. QAbrupt may itself consist of different formulas for different
types of exceptions that may be thrown.

7 Related Work

A huge amount of work deals with the formalization of aspects of the JVM.
[HM01] contains an overview. [SBS01] gives an almost comprehensive ASM
specification of the JVM. Operational semantics for the JVM are given in many
different publications. Most of them want to be faithful to the “real” JVM but
fail to model non-trivial aspects like dynamic class loading and garbage collec-
tion. Examples include [Qia99], [SH01] and [Ber97]. Operational semantics have
been used to proof the soundness of type systems for bytecode (e.g., [SNF03]),
but they are not very suitable for program verification. [Qui03] describes a for-
malism that tries to rediscover structures in the bytecode for program verifica-
tion, precluding the verification of arbitrary programs. There are fewer papers
about the CLI, but the results are the same. The formalism for instruction
specifications in our logic is based on [Ben04].

8 Conclusion

We presented the operational semantics and a programming logic for the byte-
code of VMK, a virtual machine similar to the JVM or the CLI. Possible uses of
the logic include language interoperability of specifications and trusted bytecode
components. Because the bytecode logic is based on high-level abstractions and
close to existing source logics, it is suitable target for source-to-bytecode proof
transformations.

The bytecode logic is a simple and intuitively accessible Hoare style logic with
labeled assertions. Labeled assertions allow us to express non-local requirements
on instructions. They are conceptually simpler than other methods to handle
unstructured control flow. Checking a proof is purely local: we can check one
instruction at a time. The proof obligations for instructions are logic formulas.
This makes the logic highly suitable for “extended proof carrying code”.

57

We also presented a weakest precondition calculus. Weakest preconditions are
not only useful to show completeness but also to support interactive program
verification. This is especially true for bytecode where instructions have very
simple weakest preconditions.

The logic and its extensions presented in this paper support most features found
in the CLI and all of the JVM bytecode languages directly. Missing features are
reference parameters and delegates. Extending the language to include these
does not add any new complications but their exact model is highly application
dependent.

References

[Ban04] Fabian Yves Bannwart. A logic for bytecode
and the translation of proofs from sequential java.
http://sct.inf.ethz.ch/projects/student_docs/Fabian_Bannwart_paper.pdf,
2004.

[Ben04] Nick Benton. A typed logic for stacks and jumps. 2004.

[Ber97] P. Bertelsen. Semantics of Java Byte Code. Technical report, 1997.

[Ber00] Rudolf Berghammer. Soundness of a purely syntactical formalization
of weakest preconditions. In Dieter Spreen, editor, Electronic Notes
in Theoretical Computer Science, volume 35. Elsevier, 2000.

[BFGS04] E. Börger, G. Fruja, V. Gervasi, and R. F. Stärk. A high-level modu-
lar definition of the semantics of C#. Theoretical Computer Science,
2004. Accepted for publication.

[DS90] Edsger W. Dijkstra and Carel S. Scholten. Predicate calculus and
program semantics. Springer-Verlag New York, Inc., 1990.

[ECM02] Standard ECMA-335: Common Language Infrastructure. ECMA In-
ternational, 2002.

[HM01] Pieter H. Hartel and Luc Moreau. Formalizing the safety of Java,
the Java Virtual Machine, and Java Card. ACM Computing Surveys,
33(4):517–558, 2001.

[JAR03] Java bytecode verification. J. of Automated Reasoning, 30(3–4), 2003.

[Kle99] Thomas Kleymann. Hoare logic and auxiliary variables. Formal
Aspects of Computing, 11(5):541–566, 1999.

[LY99] Tim Lindholm and Frank Yellin. Java Virtual Machine Specification.
Addison-Wesley Longman Publishing Co., Inc., 1999.

[Nec97] George C. Necula. Proof-carrying code. In Proceedings of the 24th
ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 106–119. ACM Press, 1997.

58

http://pm.inf.ethz.ch/projects/student_docs/Fabian_Bannwart_paper.pdf

[PH97] A. Poetzsch-Heffter. Specification and verification of object-oriented
programs. Habilitation thesis, Technical University of Munich, Jan-
uary 1997.

[PHM99] A. Poetzsch-Heffter and P. Müller. A programming logic for sequen-
tial Java. In S. D. Swierstra, editor, European Symposium on Pro-
gramming (ESOP ’99), volume 1576, pages 162–176. Springer-Verlag,
1999.

[Qia99] Zhenyu Qian. A formal specification of Java Virtual Machine in-
structions for objects, methods and subrountines. Lecture Notes in
Computer Science, pages 271–312, 1999.

[Qui03] Claire L. Quigley. A programming logic for Java bytecode programs.
Lecture Notes in Computer Science, 2758:41–54, 2003.

[Rau02] Nicole Rauch. Precondition generation for a Java subset. In G. Schell-
horn D. Haneberg and W. Reif, editors, FM-TOOLS 2002, The 5th
Workshop on Tools for System Design and Verification, Reisensburg,
Germany, Report 2002-11, pages 1–6. Universität Augsburg, Institut
für Informatik, July 2002.

[SBS01] Robert F. Stärk, E. Börger, and Joachim Schmid. Java and the Java
Virtual Machine: Definition, Verification, Validation with Cdrom.
Springer-Verlag New York, Inc., 2001.

[SH01] I. Siveroni and C. Hankin. A proposal for the JCVMLe operational
semantics, 2001.

[SNF03] John C. Mitchell Stephen N. Freund. A type system for the Java
bytecode language and verifier. J. of Automated Reasoning, 30(3–
4):271–321, 2003.

[SS03] R. F. Stärk and J. Schmid. Completeness of a bytecode verifier and a
certifying Java-to-JVM compiler. J. of Automated Reasoning, 30(3–
4):323–361, 2003.

59

	Introduction
	The VMK Bytecode
	A Programming Logic for the VMK Kernel Language
	Soundness, Completeness and Weakest Preconditions
	Application: Deriving Rules For Complex Instructions
	Extensions: Exception Handling and Class Initialization
	Related Work
	Conclusion

