
Bytecode 2005 Preliminary Version

A Program Logic for Bytecode

Fabian Bannwart 1 and Peter Müller 2,3

ETH Zürich, CH-8092 Zürich, Switzerland

Abstract

Program logics for bytecode languages such as Java bytecode or the .NET CIL can
be used to apply Proof-Carrying Code concepts to bytecode programs and to verify
correctness properties of bytecode programs. This paper presents a Hoare-style logic
for a sequential bytecode kernel language similar to Java bytecode and CIL. The
logic handles object-oriented features such as inheritance, dynamic method binding,
and object structures with destructive updates, as well as unstructured control flow
with jumps. It is sound and complete.

Key words: Java Bytecode, .NET CIL, program verification,
Hoare logic

1 Introduction

Intermediate languages such as Java bytecode and the .NET CIL are part
of standardized execution environments that are independent of a particular
hardware, operating system, or source programming language. Therefore,
they support platform-independence and language interoperability.

Although programs are usually developed in a source language and then
compiled to an intermediate language (bytecode), several applications require
that formal reasoning is applied on the bytecode level rather than the source
level: (1) Software for small devices is often developed directly in an intermedi-
ate language without using a source language. The typically high correctness
and security requirements of such software can be met by formal verification,
applied on the bytecode level. (2) Proof-Carrying Code [15] embeds formal
proofs of program properties into compiled code such as bytecode. Code con-
sumers can check these proofs before executing code from untrusted sources.
(3) Proofs about bytecode programs can be used to improve and speed up JIT
compilation [21].

1 fybannwart@student.ethz.ch
2 peter.mueller@inf.ethz.ch
3 This work was supported by ETH Research Grant TH -26/04-2

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Formal verification of bytecode programs requires a program logic for byte-
code. This paper presents a Hoare-style program logic for a kernel bytecode
language. The logic supports the typical object-oriented features such as
classes and objects, inheritance, instance fields, instance methods and dy-
namic method binding, as well as unstructured control flow with conditional
and unconditional jumps. For brevity, we omit static class members, excep-
tion handling, class initialization, and value classes in this paper. However, our
logic covers these features [4]. An extension of our logic to full Java bytecode
or .NET CIL is straightforward.

Approach. The logic presented in this paper has been developed within a
project that aims at generating verified bytecode automatically from verified
source programs. That is, we aim at developing a so-called proof-transforming
compiler, which translates a source program and a proof of certain properties
of the source program to the bytecode level [3]. Proof-transforming compilers
are similar to certifying compilers in Proof-Carrying Code [8], but take a
source proof as input. To simplify the proof translation, our bytecode logic
resembles Poetzsch-Heffter and Müller’s source code logic [19]: both logics
are based on the same model of the object store, handle inheritance, dynamic
method binding, and recursion in the same way, and use the same language-
independent rules (for instance, the rule of consequence). Therefore, proofs
for corresponding source and bytecode programs have a similar proof structure
and are based on identical proof obligations in first-order logic (for instance,
for the rule of consequence).

For the bytecode instructions, we adapt program logics for programs with
unstructured control flow [5]. Instead of using triples like in classic Hoare logic,
each instruction I is preceded by an assertion that gives all properties that
must hold at that point in the code for being able to verify the given method
body as a whole. This precondition has to be established by all predecessors
of I, which usually includes the instruction that precedes I in the program
text as well as all instructions that jump to I.

Our logic assumes that the bytecode program is well-formed, in particular,
well-typed. That is, we consider programs that are accepted by the bytecode
verifier.

Outline. We introduce the bytecode kernel language and its operational
semantics in Sec. 2. The program logic is presented in Sec. 3. We sketch the
soundness proof in Sec. 4. In Sec. 5, we show how our logic can be applied in a
wp-fashion and illustrate how source proofs can be translated to the bytecode
logic. Related work is discussed in Sec. 6.

2 The Bytecode Language VMK

In this section, we present the bytecode kernel language, VMK, and its oper-
ational semantics.

2

2.1 VMK Programs

As in Java or .NET, a VMK program consists of classes with fields and meth-
ods. The methods are implemented as method bodies consisting of a sequence
of labeled bytecode instructions. The bytecode instructions operate on an
evaluation stack (sometimes called operand stack), local variables (which also
include parameters), and the object store (heap). The instructions of VMK

are explained along with their operational semantics below.

We make some assumptions in order to keep the formalism simple: meth-
ods are always virtual, return a value, and take two parameters: the receiver,
this, and one explicit parameter, p. Each method body ends with a return

instruction, which returns the control flow to the caller. This instruction can
occur only as the last instruction of a method body. A method returns the
value stored in the special local variable result.

In this paper, we omit static class members, exceptions, class initialization,
and value classes. An extension of the logic to these features and several
instructions not discussed here is presented in our technical report [4].

VMK is very similar to Java bytecode and .NET CIL. However, it does not
support CIL’s structured exception handling and Java’s method-local subrou-
tines that are used to compile finally clauses. These features can be handled
by code expansion [23]. Moreover, VMK does not support CIL’s class modifier
.beforefieldinit, which indicates that a class can be initialized any time
before the access of static fields (that is, not necessarily immediately before
the first use of a class). This behavior is difficult to model in program logics.

2.2 The Object Store

Source and bytecode programs support the same operations on the object
store. Therefore, we build on an existing formal model of the object store
[18], which we briefly summarize here.

The state of all objects and the information whether an object is allocated
in the current program state is formalized by an abstract data type with sort
ObjectStore and the following functions:

iv(v, f) : V alue× FieldId→ InstV ar

OS〈a := v〉 : ObjectStore× InstV ar × V alue→ ObjectStore

OS(f) : ObjectStore× InstV ar → V alue

OS〈T 〉 : ObjectStore× ClassTypeId→ ObjectStore

new(OS, T) : ObjectStore× ClassTypeId→ V alue

A V alue is a value of a primitive type or a reference. FieldId and ClassTypeId
are unique identifiers of fields and classes, resp. InstV ar is the set of field
addresses of all objects in the program. iv(v, f) yields the address of a field
identified by f from object v. OS〈a := v〉 returns the object store where the
instance variable a is updated with the new value v. OS〈T 〉 yields the store

3

where a new object of type T is allocated. new(OS, T) returns a fresh object
of type T in OS. For an axiomatization of these functions see [18].

To have a uniform treatment for variables and the object store in the formal
semantics, we use $ as identifier for the current object store.

2.3 Operational Semantics

In this subsection, we present an operational semantics for VMK.

Configurations. A configuration 〈S, σ, l〉 of a method execution consists of
a state, S, an evaluation stack, σ, and the program counter, l, which is the
label of the next instruction to be executed. The state maps identifiers for
local variables (sort V arId), formal parameters, and the current object store
to values. The evaluation stack is a sequence of values.

State ≡ (V arId ∪ { this, p } → V alue ∪ {undef}) × ({ $ } → ObjectStore)

Stack ≡ V alue∗

For S ∈ State, we write S(x) for the application to a variable or parame-
ter identifier and S($) for the application to the object store. The sequence
(σ, e1, e2, . . .) is the sequence obtained from σ by appending e1, then e2, etc.

l is a valid label, that is, it is in set of labels {0, . . . , |p| − 1} of a method
body p. |p| denotes the number of instructions in p. p(l) is the instruction at
label l in p. When the method body p is clear from the context, we simply
write Il for the instruction at label l.

Instruction Semantics. The transition relation p; 〈S, σ, l〉 → 〈S ′, σ′, l′〉 ex-
presses that the execution of the instruction Il in the method body p brings
the machine from configuration 〈S, σ, l〉 to 〈S ′, σ′, l′〉. For a given method body
p, the multi-step relation →∗ is the reflexive transitive closure of →.

The transition relation is the smallest relation satisfying the rules in Fig. 1.
The instructions pushc and pushv push constants and variables onto the
evaluation stack, resp. That is, they leave the state unchanged, add a new
value to the stack, and increment the program counter. pop pops a value
from the evaluation stack and assigns it to a variable. We summarize all
binary operators such as boolean and arithmetic operators by an instruction
binopop, which pops two values from the stack, performs the binary operation,
and pushes the result. Conditional and unconditional jumps are expressed by
brtrue and goto , resp. newobj T creates a new object of class T , thereby
modifying the current object store. A reference to the new object is pushed
onto the stack. The checkcast T instruction performs the runtime check for
a cast. If the object v referenced from the top of the stack is an instance of
T , the program counter is incremented. Otherwise, the execution halts. In
the rule for checkcast, τ(v) is the (dynamic) type of value v and � denotes
the subtype relation. getfield and putfield read and update instance
fields. Both instructions pop the receiver object, y. If y is null, the execution

4

[. . . l : pushc v . . .]; 〈S, σ, l〉 → 〈S, (σ, v), l + 1〉

[. . . l : pushv x . . .]; 〈S, σ, l〉 → 〈S, (σ, S(x)), l + 1〉

[. . . l : pop x . . .]; 〈S, (σ, v), l〉 → 〈S[x 7→ v], σ, l + 1〉

[. . . l : binopop . . .]; 〈S, (σ, v1, v2), l〉 → 〈S, (σ, v1 op v2), l + 1〉

[. . . l : brtrue l′ . . .]; 〈S, (σ, true), l〉 → 〈S, σ, l′〉

[. . . l : brtrue l′ . . .]; 〈S, (σ, false), l〉 → 〈S, σ, l + 1〉

[. . . l : goto l′ . . .]; 〈S, σ, l〉 → 〈S, σ, l′〉

[. . . l : newobj T . . .]; 〈S, σ, l〉 → 〈S[$ 7→ S($)〈T 〉], (σ, new(S($), T)), l + 1〉

τ(v) � T

[. . . l : checkcastT . . .]; 〈S, (σ, v), l〉 → 〈S, (σ, v), l + 1〉

y 6= null

[. . . l : getfield T@a . . .]; 〈S, (σ, y), l〉 → 〈S, (σ, S($)(iv(y, T@a))), l+ 1〉

y 6= null

Sp = S[$ 7→ S($)〈iv(y, T@a) := v〉]

[. . . l : putfield T@a . . .]; 〈S, (σ, y, v), l〉 → 〈Sp, σ, l + 1〉

y 6= null

p′ = body(impl(τ(y),m)) p′(l′) = return

p′; 〈{this 7→ y, p 7→ v, $ 7→ S($)} , (), 0〉 →∗ 〈S′, σ′, l′〉
Sp = S[$ 7→ S′($)] σp = (σ, S′(result))

[. . . l : invokevirtual T:m . . .]; 〈S, (σ, y, v), l〉 → 〈Sp, σp, l+ 1〉

Fig. 1. Rules of the operational semantics.

halts. Otherwise, getfield pushes the value of the instance variable onto
the stack. putfield pops a second value and updates the instance variable
with that value, that is, modifies the object store. Field identifiers are written
as Type@fieldname.

The most complex rule handles invocations of virtual methods. We as-
sume that method calls are augmented by the static type of their receiver
expression. For instance, a method m invoked on an expression of static
type T is denoted by T:m. The implementation of a method T:m in class
S is denoted by impl(S,T:m) or simply by impl(S,m). Note that S can in-
herit m from a superclass. The body of a method m is denoted by body(m).
invokevirtual T:m pops the receiver object, y, and the actual parameter
value, v. Each method execution has its own evaluation stack, which is de-
stroyed when its method invocation completes. Therefore, the body of the
dynamically-bound method m, p′, is executed in a configuration with an
empty stack and the actual arguments assigned to the formal parameters.
The exeuction of p′ terminates when it reaches its last instruction, return.
Control returns to the caller after the value of result is pushed onto the
stack.

5

3 Program Logic

The Hoare-style program logic presented in this section allows one to formally
verify that implementations satisfy interface specifications given as pre- and
postconditions.

3.1 Method and Instruction Specifications

Our treatment of methods follows Poetzsch-Heffter and Müller’s program logic
for Java source programs [19]: We distinguish between method implementa-
tions and virtual methods. A method implementation T@m represents the
concrete implementation of method m in class T . A virtual method T:m rep-
resents the common properties of all method implementations that might by
invoked dynamically when m is called on a receiver of static type T , that is,
impl(T,m) (if T:m is not abstract) and all overriding subclass methods.

Method Specifications. Properties of methods and method bodies are ex-
pressed by Hoare triples of the form {P} comp {Q}, where P , Q are sorted
first-order formulas and comp is a method implementation T@m, a virtual
method T:m, or a method body p. We call such a triple method specification.
The triple {P} comp {Q} expresses the following refined partial correctness
property: if the execution of comp starts in a state satisfying P , then (1) comp
terminates in a state in which Q holds, or (2) comp aborts due to errors or
actions that are beyond the semantics of the programming language (for in-
stance, memory allocation problems), or (3) comp runs forever.

The pre- and postconditions of method specifications must not refer to
variables or stack elements. Preconditions may refer to the formal parameters
this and p, as well as the current object store $. Postconditions may refer to
$ and result.

For the treatment of recursive methods, we use sequents of the form
A ` {P} comp {Q} where A is a set of method specifications. Intuitively,
such a sequent expresses the fact that the triple {P} comp {Q} can be proved
based on some assumptions A about methods (see [19] for details).

Instruction Specifications. The unstructured control flow of bytecode
programs makes it difficult to handle instruction sequences, because jumps
can transfer control into and from the middle of a sequence. Therefore, our
logic treats each instruction individually: each individual instructions Il in a
method body p has a precondition El. An instruction with its precondition is
called an instruction specification, written as {El} l : Il.

Obviously, the meaning of an instruction specification {El} l : Il cannot
be defined in isolation. {El} l : Il expresses that if the precondition El holds
when the program counter is at position l, then the precondition El′ of Il’s
successor instruction I ′l holds after normal termination of Il.

Like method specifications, instruction specifications can have assump-

6

tions. An instruction specification with assumption set A is denoted by
A ` {El} l : Il.

Connecting Instruction and Method Specifications. Individual instruc-
tions can be combined at the level of method bodies since VMK guarantees
that the instruction sequence constituting a method body is always entered
at the first instruction and left after the last instruction. All jumps are lo-
cal within a method body. The precondition of a method implementation is
the precondition of the first instruction of its body, the method postcondi-
tion is the precondition of the return instruction. Consequently, a method
implementation T@m satisfies its method specification if all instructions in
the body of T@m satisfy their instruction specifications. This connection is
formalized by the body rule:

∀i ∈ {0, . . . , |body(T@m)| − 1} : (A ` {Ei} i : Ii)

A ` {E0} body(T@m)
{

E|body(T@m)|−1

}

{E0} body(T@m)
{

E|body(T@m)|−1

}

has to be an admissible method specifica-

tion, in particular, E0 and E|body(T@m)|−1 must not refer to local variables.

3.2 Rules for Instruction Specifications

All rules for VMK instructions, except for method calls, have the following
form:

El ⇒ wp1
p
(Il)

A ` {El} l : Il

wp1
p
(Il) is the local weakest precondition of instruction Il. Such a rule

expresses that the precondition of Il has to imply the weakest precondition of
Il w.r.t. all possible successor instructions of Il.

The definition of wp1
p is shown in Fig. 2. Within an assertion, the current

stack is referred to as s, and its elements are denoted by non-negative integers:
element 0 is the top element, etc. The interpretation [[El]] : State× Stack →
V alue for s is [[s(0)]]〈S, (σ, v)〉 = v and [[s(i+1)]]〈S, (σ, v)〉 = [[s(i)]]〈S, σ〉. The
functions shift and unshift express the substitutions that occur when values
are pushed onto and popped from the stack, resp.:

shift(E) = E[s(i+ 1)/s(i) for all i ∈ N]

unshift = shift−1

shiftn denotes n consecutive applications of shift.

The rules for pushc , pushv , and pop are analogous to Hoare’s assignment
axiom: The precondition is obtained from the postcondition by substituting
the right-hand side of the assignment for the left-hand side variable. For the
push instructions, the top stack element can be regarded as the left-hand side
variable; for pop the stack top is the right-hand side expression. All other

7

Il wp1
p(Il)

pushc v unshift(El+1[v/s(0)])

pushv x unshift(El+1[x/s(0)])

pop x (shift(El+1))[s(0)/x]

binopop (shift(El+1))[(s(1) op s(0))/s(1)]

goto l′ El′

brtrue l′ (¬s(0) ⇒ shift(El+1)) ∧ (s(0) ⇒ shift(El′))

checkcastT El+1 ∧ τ(s(0)) � T

newobj T unshift(El+1[new($, T)/s(0), $〈T 〉/ $])

getfield T@a El+1[$(iv(s(0), T@a))/s(0)] ∧ s(0) 6= null

putfield T@a (shift2(El+1))[$〈iv(s(1), T@a) := s(0)〉/ $] ∧ s(1) 6= null

return true

Fig. 2. The values of the wp1
p function. Except for brtrue , all instructions have

only one potential successor.

stack references are adapted by applying the unshift and shift function, resp.

The binop instruction pops two values, performs a binary operation, and
pushes the result. Therefore, shift is applied only once. An unconditional
jump changes the control flow. Therefore, its local weakest precondition is
the precondition of the jump target. A branch has two possible successors,
depending on the value of the stack top. Its local weakest precondition is
obtained from the preconditions of both potential successor instructions.

For a checkcast T instruction, one has to show that the precondition of
its successor holds and that the type of the stack top is a subtype of T . Since
the top stack element is not popped, shift is not applied here. Object creation,
field read, and field update are also similar to classical assignment: putfield
updates the current object store, getfield updates the top stack element,
and newobj updates both. getfield and putfield require that the receiver
object (the stack top) is non-null. getfield substitutes the value held by the
designated instance variable for the stack top. Since it pops and pushes one
element each, shift is not applied. putfield updates the current object store
at the designated instance variable with the second stack element. Since it
pops two values, shift is applied twice.

Method Calls. For the call of a virtual method T:m, one has to prove
(1) that T:m satisfies its method specification, (2) that the precondition of
the invokevirtual instruction implies the precondition of the method spec-
ification, with actual arguments substituted for the formal parameters, and

8

(3) that the postcondition of the method specification implies the precondi-
tion of the instruction following invokevirtual , with result substituted
by the stack top. These requirements are the antecedents of the rule for
invokevirtual :

A ` {P} T:m {Q}
El ⇒ s(1) 6= null ∧ P [s(1)/ this, s(0)/ p][shift(w)/Z]

Q[s(0)/ result][w/Z] ⇒ El+1

A ` {El} l : invokevirtual T:m

where Z is a vector Z0, . . . , Zn of logical variables and w is a vector w0, . . . , wn

of local variables or stack elements (different from s(0)). The shift function
for vectors is defined pointwise.

A method call does not modify the local variables and the evaluation stack
of the caller, except for popping the arguments and pushing the result of the
call. To express these frame properties, the invocation rule allows one to
substitute logical variables in the method’s pre- and postcondition by local
variables and stack elements of the caller. However, s(0) must not be used for
a substitution because it contains the result of the call, that is, its value is not
preserved by the call.

3.3 Rules for Method Specifications

The rules for method specifications are identical to Poetzsch-Heffter and Müller’s
source program logic. We summarize these rules briefly here. For a detailed
explanation, see [19].

Virtual methods are used to model dynamically-bound methods. That is,
a method specification for T:m reflects the common properties of all imple-
mentations that might be executed on invocation of T:m. If T is a class, there
are two obligations to prove a specification of a virtual method T:m: (1) Show
that the corresponding implementation satisfies the specification if invoked for
objects of type T . (2) Show that the specification holds for objects of proper
subtypes of T .

A ` {P ∧ τ(this) = T} impl(T,m) {Q}
A ` {P ∧ τ(this) ≺ T} T:m {Q}

A ` {P ∧ τ(this) � T} T:m {Q}

The second antecedent of this rule and annotations of interface type meth-
ods can be proved by the following rule: If S is a subtype of T , an invocation of
T:m on an S object is equivalent to an invocation of S:m. Thus, all properties
of S:m carry over to T:m as long as T:m is applied to S objects:

9

` {false} comp {false} {P} comp {Q} ` {P} comp {Q}

A ` {P} comp {Q}

{P ′} comp′ {Q′} ,A ` {P} comp {Q}

A ` {P ′} comp′ {Q′}
{P ′} comp′ {Q′} ,A ` {P} comp {Q}

A ` {P} comp {Q}

A ` {P1} comp {Q1}
A ` {P2} comp {Q2}

A ` {P1 ∧ P2} comp {Q1 ∧Q2}

A ` {P1} comp {Q1}
A ` {P2} comp {Q2}

A ` {P1 ∨ P2} comp {Q1 ∨Q2}

P ⇒ P ′ A ` {P ′} comp {Q′} Q′ ⇒ Q

A ` {P} comp {Q}

A ` {P} comp {Q}

A ` {P ∧R} comp {Q ∧R}

A ` {P} comp {Q}

A ` {P [t/Z]} comp {Q[t/Z]}

A ` {P [Y/Z]} comp {Q}

A ` {P [Y/Z]} comp {∀Z : Q}

A ` {P} comp {Q[Y/Z]}

A ` {∃Z : P} comp {Q[Y/Z]}

Fig. 3. Language-independent rules. R and t are terms that do not reference
program variables. Y and Z are distinct logical variables.

S � T
A ` {P ∧ τ(this) � S} S:m {Q}

A ` {P ∧ τ(this) � S} T:m {Q}

Finally, a specification of a method implementation T@m holds if it holds
for its body. To handle recursion, the specification of T@m may be assumed
for the proof of the body.

A, {P} T@m {Q} ` {P ∧ this 6= null} body(T@m) {Q}

A ` {P} T@m {Q}

Besides the axiomatic semantics, the programming logic for VMK contains
language-independent axioms and rules to handle assumptions and to establish
a connection between the predicate logic of pre- and postconditions and triples
of the programming logic (Fig. 3). These rules can be applied to method
specifications.

10

3.4 Example

To illustrate how our logic works, we verify a method int abs(int p) that
returns the absolute value of its argument. For simplicity, we assume that abs
is declared in a class Math that does not have any subclasses. We prove that
the method satisfies the following specification:

{p = P} Math:abs {(P ≥ 0 ⇒ result = P) ∧ (P < 0 ⇒ result = −P)}

The logical variable P is used to refer to p’s initial value from the postcondi-
tion. It is necessary to meet the syntactic restrictions of method specifications
that formal parameters must not occur in postconditions (Sec. 3.1). To derive
this triple, we first derive the instruction specifications for abs’ body (we omit
assumptions for brevity):

{p = P ∧ τ(this) = Math∧ this 6= null} 0 : pushv p

{(s(0) < 0 ⇒ P < 0) ∧ (s(0) ≥ 0 ⇒ P ≥ 0) ∧ p = P} 1 : pushc 0

{(s(1) < s(0) ⇒ P < 0) ∧ (s(1) ≥ s(0) ⇒ P ≥ 0) ∧ p = P} 2 : binop≥

{(s(0) < 0 ⇒ P < 0) ∧ (s(0) ≥ 0 ⇒ P ≥ 0) ∧ p = P} 3 : brtrue 8

{P < 0 ∧ p = P} 4 : pushc 0

{P < 0 ∧ s(0) − p = −P} 5 : pushv p

{P < 0 ∧ s(1) − s(0) = −P} 6 : binop−
{P < 0 ∧ s(0) = −P} 7 : goto 9

{P ≥ 0 ∧ p = P} 8 : pushv p

{(P ≥ 0 ⇒ s(0) = P) ∧ (P < 0 ⇒ s(0) = −P)} 9 : pop result

{(P ≥ 0 ⇒ result = P) ∧ (P < 0 ⇒ result = −P)} 10 : return

One can easily see, that the precondition of each instruction implies the
local weakest precondition. For instance, the precondition P ≥ 0 ∧ p = P of
instruction 8 : pushv p implies the local weakest precondition, (P ≥ 0 ⇒ p =
P) ∧ (P < 0 ⇒ p = −P).

By the body rule, we combine these instruction specifications to the method
specification of abs’ body, and then derive the specification of Math@abs (we
abbreviate (P ≥ 0 ⇒ result = P) ∧ (P < 0 ⇒ result = −P) by Q):

{p = P ∧ τ(this) = Math ∧ this 6= null} body(Math@abs) {Q}

{p = P ∧ τ(this) = Math} Math@abs {Q}

Since Math does not have subclasses, we have τ(this) ≺ Math ⇒ false.
Therefore, we can derive by the rule of consequence:

{false} Math:abs {false}

{p = P ∧ τ(this) ≺ Math} Math:abs {Q}

Since abs is implemented in class Math, we have impl(Math, abs) = Math@abs.
Therefore, we can conclude the proof by combining the above two triples:

{p = P ∧ τ(this) = Math} Math@abs {Q}
{p = P ∧ τ(this) ≺ Math} Math:abs {Q}

{p = P} Math:abs {Q}

11

4 Soundness

Our logic is sound with respect to the operational semantics. In this sec-
tion, we sketch the soundness proof. The complete proof is presented in our
technical report [4], which also contains the completeness proof.

We express soundness on the level of method specifications: if a method
specification {P} M {Q} can be proved, then it actually holds. Following
Gordon [10], we embed both the operational and the axiomatic semantics into
higher order logic (see [19] for details). For the operational semantics, sem
denotes the multistep relation: sem(C, p, C ′) ≡ p;C →∗ C ′. The fact that
the triple {P} M {Q} holds is formalized as predicate H(P,M,Q), which is
defined as follows:

H(P, p, Q) ≡ ∀(C ≡ 〈{this 7→ this0, p 7→ p0, $ 7→ $0} , (), 0〉),

(C ′ ≡ 〈S ′, σ′, l′〉) :

sem(C, p, C ′) ∧ Il′ = return ∧ [[P]]C ⇒ [[Q]]C ′

H(P, T@m,Q) ≡ H(this 6= null ∧ P, body(T@m), Q)

H(P, T0 : m,Q) ≡ ∀T � T0 : H(τ(this) = T ∧ P, impl(T,m), Q)

The soundness prove runs by induction on the structure of the derivation
tree for a Hoare triple. For a rule with antecedents {Pi} Mi {Qi} and con-
sequent {P} M {Q}, we prove (

∧

iH(Pi,Mi, Qi)) ⇒ H(P,M,Q). To focus
on the specialties of the bytecode logic, we simplified this translation in two
ways: (1) we ignore the assumptions of sequents since they are not important
for the rules of VMK instructions; (2) the translation misses out the inductive
argument associated with the treatment of recursive methods. Both aspects
are covered by the translation presented in [19].

Since the rules for method specifications in the VMK logic, in particular,
the language-independent rules, are identical to the rules of our source logic,
the proofs for these rules are identical for both logics. We do not repeat these
cases here.

The most interesting case is the body rule, which connects individual in-
structions to a method body (see Sec. 3.1). For this rule, we have to prove
H(E0, body(T@m), E|body(T@m)|−1). It is however easier to derive the more gen-
eral property

∀C ≡ 〈S, σ, l〉, C ′ ≡ 〈S ′, σ′, l′〉 : sem(C, p, C ′) ∧ [[El]]C ⇒ [[El′]]C
′

which is proved by induction on the length of the derivation of sem(C, p, C ′).
For the induction step, we have to consider each individual step of the deriva-
tion and prove:

∀C ≡ 〈S, σ, l〉, C ′ ≡ 〈S ′, σ′, l′〉 : (p;C → C ′) ∧ [[El]]C ⇒ [[El′]]C
′)

We prove this property by case distinction over all possible instructions Il.

12

The proofs of these cases rely on the following two substitution lemmas:

Lemma 4.1

[[E]]〈S, σ, l〉 ⇐⇒ [[shift|κ|(E)]]〈S, (σ, κ), l〉

Lemma 4.2

[[E[s0/s(i0), . . . , sn/s(in), y0/x0, . . . , ym/xm]]〈S, σ, l〉 ⇐⇒

[[E]]〈S[x0 7→ [[y0]]〈S, σ, l〉, . . . , xm 7→ [[ym]]〈S, σ, l〉],

σ[i0 7→ [[s0]]〈S, σ, l〉, . . . , in 7→ [[sn]]〈S, σ, l〉], l〉

For brevity, we only show one case of the prove: pushc . All other cases,
except for invokevirtual are analogous, see [4].

[[El]]〈S, σ〉 – antecedent of the rule

⇒ [[wp1
p
(l : pushc v)]]〈S, σ〉 – definition of wp1

p

⇐⇒ [[unshift(El+1[v/s(0)])]]〈S, σ〉 – Lemma 4.1

⇐⇒ [[El+1[v/s(0)]]]〈S, (σ, t)〉 – Lemma 4.2

⇐⇒ [[El+1]]〈S, (σ, v)〉

5 Applying the Logic

To verify a method body, one has to find suitable specifications for each of its
instructions. While this task can be cumbersome for programs with complex
control flow, the specifications can be derived systematically in many practical
cases. In this section, we show by an example that instruction specifications
can be derived by weakest precondition transformation. If the source code
and a proof for the source program are available, the instructions and their
specifications can also be obtained by proof transformation.

5.1 Weakest Preconditions

Except for method calls, the rules for the instructions of VMK are formulated
in terms of the local weakest precondition, wp1

p(Il). For given preconditions
of all possible successors of an instruction Il, wp1

p
(Il) yields the weakest pre-

condition of Il. For brevity, we ignore method calls in this subsection. An
extension to method calls is straightforward, see [4,22].

Fig. 4 shows the body of a method Math@pow2(int p) that calculates
2p. We assume that the method postcondition, E15, is given by an interface
specification. This example illustrates that in programs with loops, the pre-
conditions of several instructions mutually depend on each other: E14 depends
on E3, which in turn depends on E14. Therefore, we cannot directly use the
local weakest precondition function wp1

p to calculate E14.

Following classical wp-calculi [6], we can use fixed-point iteration to resolve
such recursive dependencies. This iteration propagates the method postcondi-

13

{p = P} 0 : pushc 1 I0
{

s(0) = 2P−p
}

1 : pop result I1
{

result = 2P−p
}

2 : goto 11 I2
{

result = 2P−p ∧ p 6= 0
}

3 : pushv p I3
{

result ·2 = 2P−(s(0)−1)
}

4 : pushc 1 I4
{

result ·2 = 2P−(s(1)−s(0))
}

5 : binop− I5
{

result ·2 = 2P−s(0)
}

6 : pop p I6
{

result ·2 = 2P−p
}

7 : pushv result I7
{

s(0)·2 = 2P−p
}

8 : pushc 2 I8
{

s(1)·s(0) = 2P−p
}

9 : binop∗ I9
{

s(0) = 2P−p
}

10 : pop result I10
{

result = 2P−p
}

11 : pushv p I11
{

result = 2P−p ∧ (s(0) 6= 0) = (p 6= 0)
}

12 : pushc 0 I12
{

result = 2P−p ∧ (s(1) 6= s(0)) = (p 6= 0)
}

13 : binop6= I13
{

result = 2P−p ∧ s(0) = (p 6= 0)
}

14 : brtrue 3 I14 start
{

result = 2P
}

15 : return I15

Fig. 4. Bytecode of method Math@pow2(int p). Each instruction specification can
be constructed from the successors’ specifications.

tion, Q, backwards through the control flow graph until the instruction specifi-
cations do not change anymore. The weakest precondition ψl of an instruction
Il is defined in infinitary logic. The local weakest precondition wp1

p
(Il)

(k) is
defined analogously to wp1

p, but refers to the computed instruction specifica-

tions ψ
(k)
l′ of all successors Il′ of Il instead of the El′. In our technical report

[4], we show that ψl is actually the weakest precondition.

ψ
(k)
|p|−1 = Q

ψ
(0)
l = false for l 6= |p| − 1

ψ
(k+1)
l = wp1

p(Il)
(k) for l 6= |p| − 1

ψl =
∨

n∈N0
ψ

(n)
l

The fixed-point iteration can be avoided if programmers provide the specifi-
cations for those branch instructions that are part of a loop. This specification
is typically the conjunction of the loop invariant and the property that the
result of evaluating the loop condition is stored in s(0). In our example, the
loop invariant is result = 2P−p, and the loop condition is p 6= 0. Therefore,
we get:

E14 ≡ result = 2P−p ∧ s(0) = (p 6= 0)

14

Based on this specification, we can calculate the instruction specifications of
E14’s predecessors by applying wp1

p
. The specifications in Fig. 4 are obtained

from the calculated specifications by straightforward simplifications.

Since E14 has not been constructively derived, we have to prove that this
specification is strong enough to establish the specifications of the successors,
E3 and E15. That is, we have to show E14 ⇒ wp1

p
(I14), which is easy:

(result = 2P−p ∧ s(0) = (p 6= 0)) ⇒

(¬s(0) ⇒ shift(result = 2P)) ∧ (s(0) ⇒ shift(result = 2P−p))

5.2 Transformation of Source Proofs

As explained in the introduction, one of the design criteria for the VMK logic
was to enable proof-transforming compilers, which translate a proof for a
source program along with the code to VMK. In this subsection, we illustrate
this approach by an example.

A proof-transforming compiler is based on transformation functions, S and
SE, for statements and expressions, resp. Both functions yield a sequence of
VMK instructions and their specifications. S generates this sequence from a
proof for a source statement. SE generates is from a source expression and
a precondition for its evaluation. These functions can be defined inductively,
that is, the translation of a proof tree can be defined as a composition of the
translations of its sub-trees [3].

For example, for proof trees whose root is an application of the while rule,
S is defined as follows:

S

T
{e ∧ P} S {P}

{P} while(e)S {¬e ∧ P}

=

{P}l1 : goto l3

{e ∧ P}l2 : S

(

T
{e ∧ P} S {P}

)

{P}l3 : SE(P, e)

{shift(P) ∧ s(0) = e}l4 : brtrue l2

{P ∧ ¬e}

The translation function uses symbolic labels. {e ∧ P} l2 and {P} l3 are the
preconditions and labels of the first instructions generated by the applications
of S to the loop body and SE to the loop condition, resp. The “dangling”
precondition P ∧ ¬e is the precondition of the next instruction l4 + 1 in the
final method body. One can easily see that each instruction Il satisfies El ⇒
wp1

p(Il), that is, S generates a valid VMK proof.

We illustrate the proof translation by the source code version of the method
Math@pow2 in Fig. 4 (result is abbreviated by r):

r = 1;

while(p != 0) { p = p - 1; r = r * 2; }

15

Like the bytecode version, the source implementation satisfies the triple
{P = p} Math@pow2

{

r = 2P
}

. Consider the source proof for the while
loop:

T0 ≡

T1 ≡ · · ·
{

r = 2P−p ∧ p 6= 0
}

p = p− 1; r = r * 2;
{

r = 2P−p
}

{

r = 2P−p
}

while(p 6= 0){p = p− 1; r = r * 2;}
{

r = 2P−p ∧ p = 0
}

The translation of the proof for the loop body, S(T1), yields instructions 3
to 10 of the instruction sequence in Fig. 4:

S(T1) ≡
[{

r = 2P−p ∧ p 6= 0
}

3 : pushv p, . . . ,
{

s(0) = 2P−p
}

10 : pop r
]

The translation of the whole loop, S(T0), is obtained by applying the pattern
described above. This translation yields the following instruction sequence,
which corresponds to instructions 2 to 14 in Fig. 4:

S(T0) ≡
[{

r = 2P−p
}

2 : goto 11
]

·S(T1)·SE(p 6= 0, r = 2P−p)

·
[{

shift(r = 2P−p) ∧ s(0) = (p 6= 0)
}

14 : brtrue 3
]

6 Related Work

Whereas the operational semantics of intermediate languages such as the .NET
CIL and Java bytecode has been studied intensely [9,11,13,23], very few pro-
gram logics for these languages have been published.

Our logic was inspired by Benton’s logic for an imperative subset of the
.NET CIL [5]. This logic does not support object-oriented features such as
objects, references, or methods. Unlike Benton, we do not merge specifica-
tions and type information. Instead, we require that certain well-typedness
constraints are checked by a bytecode verifier before our logic is applied.

Quigley [20,21] presents rules for Hoare-like reasoning about a small subset
of Java bytecode within Isabelle. Her treatment is based on trying to redis-
cover high-level control structures (such as while loops), which precludes the
verification of arbitrary instruction sequences.

The MRG project developed a program logic for the verification of func-
tional and resource properties of a specialized form of Java bytecode (called
Grail) [2]. Grail uses a functional form to represent bytecode, whereas our
logic handles the imperative and object-oriented features of VMK directly.

A number of program logics for object-oriented source programming lan-
guages have been proposed [1,7,12,14,16,17]. The object store model and the
treatment of method specifications of the logic presented here are adopted
from Poetzsch-Heffter and Müller’s work [18,19].

16

7 Conclusions

We have presented a program logic for a bytecode language similar to Java
bytecode and the .NET CIL. The key idea of the logic is to combine Hoare
triples for methods with instruction specifications, which consist only of a pre-
condition. Like in source logics, method specifications and the corresponding
rules are used to handle inheritance and dynamic method binding. Specifica-
tions of individual instructions allow one to handle unstructured control flow
in an unpretentious and effective manner.

As future work, we plan to use the VMK logic to apply Proof-Carrying
Code to functional correctness of Java programs. In particular, we will develop
a proof-transforming compiler that translates verified source programs into
verified bytecode. A first case study based on the VMK logic lead to promising
results.

References

[1] M. Abadi and K. R. M. Leino. A logic of object-oriented programs. In M. Bidoit
and M. Dauchet, editors, Theory and Practice of Software Development
(TAPSOFT), volume 1214 of Lecture Notes in Computer Science, pages 682–
696. Springer-Verlag, 1997.

[2] D. Aspinall, L. Beringer, M. Hofmann, H.-W. Loidl, and A. Momigliano. A
program logic for resource verification. In Theorem Proving in Highre Order
Logics (TPHOLs), LNCS. Springer-Verlag, 2004.

[3] F. Y. Bannwart. A logic for bytecode and the translation of proofs from
sequential Java. ETH Zürich, 2004.

[4] F. Y. Bannwart and P. Müller. A logic for bytecode. Technical Report 469,
ETH Zürich, 2004. Available from http://sct.inf.ethz.ch/publications.

[5] N. Benton. A typed logic for stacks and jumps. Available from
research.microsoft.com/∼nick/stacks.pdf, 2004.

[6] R. Berghammer. Soundness of a purely syntactical formalization of weakest
preconditions. In D. Spreen, editor, Electronic Notes in Theoretical Computer
Science, volume 35. Elsevier, 2000.

[7] F. S. de Boer. A WP-calculus for OO. In W. Thomas, editor, Foundations of
Software Science and Computation Structures, volume 1578 of Lecture Notes in
Computer Science, pages 135–149. Springer-Verlag, 1999.

[8] C. Colby, P. Lee, G. C. Necula, F. Blau, M. Plesko, and K. Cline. A certifying
compiler for Java. In Programming Language Design and Implementation
(PLDI), pages 95–107. ACM Press, 2000.

[9] A. D. Gordon and D. Syme. Typing a multi-language intermediate code. In
Principles of Programming Languages (POPL), pages 248–260. ACM Press,
2001.

17

http://pm.inf.ethz.ch/publications
research.microsoft.com/~nick/stacks.pdf

[10] M. J. C. Gordon. Mechanizing programming logics in higher order logic. In
G. Birtwistle and P. A. Subrahmanyam, editors, Current Trends in Hardware
Verification and Automated Theorem Proving. Springer-Verlag, 1989.

[11] P. H. Hartel and L. Moreau. Formalizing the safety of Java, the Java Virtual
Machine, and Java Card. ACM Computing Surveys, 33(4):517–558, 2001.

[12] M. Huisman and B. Jacobs. Java program verification via a Hoare logic
with abrupt termination. In T. Maibaum, editor, Fundamental Approaches
to Software Engineering (FASE), volume 1783 of Lecture Notes in Computer
Science, pages 284–303. Springer-Verlag, 2000.

[13] G. Klein and T. Nipkow. Verified bytecode verifiers. Theoretical Computer
Science, 298(3):583–626, 2002.

[14] K. R. M. Leino. Ecstatic: An object-oriented programming language with an
axiomatic semantics. In B. Pierce,
editor, Foundations of Object-Oriented Languages (FOOL), 1997. Available
from: www.cs.indiana.edu/hyplan/pierce/fool/.

[15] G. C. Necula. Proof-carrying code. In Principles of Programming Languages
(POPL), pages 106–119. ACM Press, 1997.

[16] D. von Oheimb. Hoare logic for Java in Isabelle/HOL. Concurrency and
Computation: Practice and Experience, 13(13):1173–1214, 2001.

[17] D. von Oheimb and T. Nipkow. Hoare logic for NanoJava: Auxiliary variables,
side effects and virtual methods revisited. In L.-H. Eriksson and P. A. Lindsay,
editors, Formal Methods – Getting IT Right (FME’02), volume 2391 of Lecture
Notes in Computer Science, pages 89–105. Springer, 2002.

[18] A. Poetzsch-Heffter and P. Müller. Logical foundations for typed object-
oriented languages. In D. Gries and W. De Roever, editors, Programming
Concepts and Methods (PROCOMET), 1998.

[19] A. Poetzsch-Heffter and P. Müller. A programming logic for sequential Java. In
S. D. Swierstra, editor, European Symposium on Programming (ESOP), volume
1576, pages 162–176. Springer-Verlag, 1999.

[20] C. Quigley. A programming logic for Java bytecode programs. In D. Basin
and B. Wolff, editors, Theorem Proving in Higher Order Logics, volume 2758
of Lecture Notes in Computer Science, pages 41–54. Springer-Verlag, 2003.

[21] C. L. Quigley. A Programming Logic for Java Bytecode Programs. PhD thesis,
University of Glasgow, 2004.

[22] N. Rauch. Precondition generation for a Java subset. In G. Schellhorn
D. Haneberg and W. Reif, editors, FM-TOOLS 2002, Report 2002-11, pages
1–6. Universität Augsburg, Institut für Informatik, 2002.

[23] R. F. Stärk, J. Schmid, and E. Börger. Java and the Java Virtual Machine—
Definition, Verification, Validation. Springer-Verlag, 2001.

18

www.cs.indiana.edu/hyplan/pierce/fool/

	Introduction
	The Bytecode Language VMK
	VMK Programs
	The Object Store
	Operational Semantics

	Program Logic
	Method and Instruction Specifications
	Rules for Instruction Specifications
	Rules for Method Specifications
	Example

	Soundness
	Applying the Logic
	Weakest Preconditions
	Transformation of Source Proofs

	Related Work
	Conclusions
	References

