
Changing Programs Correctly:
Refactoring with Specifications

Fabian Bannwart and Peter Müller

ETH Zürich, peter.mueller@inf.ethz.ch

Abstract. Refactorings change the internal structure of code without
changing its external behavior. For non-trivial refactorings, the preserva-
tion of external behavior depends on semantic properties of the program
that are difficult to check automatically before the refactoring is applied.
Therefore, existing refactoring tools either do not support non-trivial
refactorings at all or force programmers to rely on (typically incomplete)
test suites to check their refactorings.
The technique presented in the paper allows one to show the preservation
of external behavior even for complex refactorings. For a given refactor-
ing, we prove once and for all that the refactoring is an equivalence trans-
formation, provided that the refactored program satisfies certain seman-
tic correctness conditions. These conditions can be added automatically
as assertions to the refactored program and checked at runtime or verified
statically. Our technique allows tools to apply even complex refactorings
safely, and refactorings automatically improve program documentation
by generating assertions.

1 Introduction

Refactorings are equivalence transformations on source code that change the
internal structure of code without changing its external behavior [10]. They are
applied to improve the understandability of code and to reduce its resistance to
change.

The application of a refactoring is correct if it preserves the external behav-
ior of the program. Whether an application of a refactoring is correct depends
on certain correctness conditions. For instance, replacing the (side effect free)
condition of a loop by a different condition generally preserves the external pro-
gram behavior only if the old and the new condition yield the same value in all
program executions.

Refactoring by hand is tedious and error-prone. Refactoring tools simplify the
application of refactorings, but they guarantee the preservation of the program’s
external behavior only for refactorings with very simple correctness conditions
such as “Rename Method” [10]. More complex refactorings such as “Move Field”
are either not supported at all or not guaranteed to be applied correctly. That
is, their application potentially alters the external behavior of the program.

Consequently, programmers rely on unit testing to determine whether a refac-
toring was applied correctly. This approach works well if the program has a
complete set of unit tests that execute rapidly. However, in most practical ap-
plications, the set of unit tests is highly incomplete, for instance, because pro-
grammers have to make a trade-off between the completeness of the test suite
and the time it takes to run all tests.

In this paper, we present a technique that guarantees that refactorings are
applied correctly. For each refactoring, we perform the following three steps.

First, we determine the refactoring’s essential applicability conditions. These
syntactic conditions ensure that applying the refactoring results in a syntactically-
correct program. In the “Move Field” example, a field f can be moved from a
class S to a class T only if the field and both classes exist and if the target class
does not already contain a field called f . Essential applicability conditions can
easily be checked syntactically and are therefore not discussed in this paper.

Second, we determine the refactoring’s correctness conditions. These semantic
conditions ensure that each application of the refactoring preserves the external
behavior of the program. For instance, an application of “Replace Expression”
is correct only if the old and the new expression evaluate to the same value in
all program executions. One of the novelties of our approach is that correctness
conditions can be expressed in terms of the refactored program and added to the
program as assertions such as JML [15] or Spec# [3] specifications. They can
then be checked at runtime to make sure that the execution of a test actually
covers the correctness condition. Alternatively, they can be checked statically
by a program verifier such as Boogie [3] or ESC/Java2 [13]. Some correctness
conditions can also be approximated and checked syntactically.

Third, we provide a formal proof that each application of the refactoring pre-
serves the external behavior of the program, provided that the program satisfies
the refactoring’s essential applicability conditions and correctness conditions.
We consider the original and the refactored program to have equivalent external
behavior if they perform the same sequence of I/O operations. This notion of
equivalence allows us to handle even complex changes of the program’s internal
structure. It is important to note that this correctness proof is done once and
for all for each refactoring, whereas correctness conditions must be checked for
each particular application of a refactoring.

Our technique improves the state of the art in three significant ways: (a) It
handles refactorings with complex correctness conditions. Expressing these con-
ditions as assertions improves test coverage and enables static verification. (b) It
works on the source code level as opposed to more abstract models such as UML
class diagrams. Working on the code level is important because refactorings
are mainly applied during implementation rather than during design. Moreover,
many correctness conditions depend on the intricacies of concrete code. For in-
stance, the correctness conditions for “Move Field” fall on the field accesses,
which are not present in an abstract model. (c) The specifications added to the
transformed program convey the programmer’s tacit knowledge why a partic-
ular refactoring is applicable. Therefore, they improve the documentation and
facilitate the application of program verifiers.

In this paper, we present our technique and apply it to “Move Field”, a pro-
totypical example for a complex refactoring. Our technical report [2] describes
several other successful applications of our technique as well as an implementa-
tion of “Move Field” in Eclipse and Visual Studio.

2

Overview. The rest of this paper is structured as follows. In the next section,
we discuss correctness conditions. Section 3 formalizes the notion of external
equivalence for a language with objects, references, and I/O operations. We
apply our approach to “Move Field” in Sect. 4. Section 5 discusses related work.

2 Correctness Conditions

The correctness conditions for a refactoring can be split into a-priori conditions
that are checked statically in the original program before the refactoring is ap-
plied and a-posteriori conditions that are checked in the refactored program.
A-priori conditions are semantic conditions that can be easily checked or aptly
approximated syntactically. For instance, splitting a loop is possible if there is
no data dependency between the statements in the loop, which can be checked
a-priori by data dependency analyses.

However, for many interesting refactorings, correctness conditions cannot
be checked a-priori. Consider for instance the following code fragment, which
calculates and prints the hypotenuse of a right triangle with legs a and b.
print(a/cos(atan(b/a)));

A possible refactoring is to replace the expression a/cos(atan(b/a)) by the
simpler expression sqrt(a*a + b*b).

The correctness conditions for this refactoring are that both expressions
(a) are side effect free and (b) evaluate to the same result (we ignore differ-
ences due to rounding here). While property (a) can be checked a-priori by a
static analysis, property (b) must be checked at runtime or verified statically.
Runtime assertion checking is not useful for a-priori conditions because it would
be cumbersome to force programmers to run their test suite before applying
a refactoring. Therefore, property (b) is better formulated as an a-posteriori
condition and turned into a specification of the refactored program:
assert sqrt(a*a + b*b) == a/cos(atan(b/a));

print(sqrt(a*a + b*b));

The assertion can be checked at runtime when testing the refactored program
or proved by a program verifier.

Assertions for a-posteriori conditions of refactorings document knowledge
about the design of the code. Therefore, it is important that they stay in the
program, even after a successful test or static verification. They are an important
guideline for future modifications of the code.

To avoid cluttering up programs with assert statements, it is vital that asser-
tions themselves can be refactored. In the above example, the assert statement
could, for instance, be replaced by the stronger assertion assert a > 0. If a is
a field, this assertion could then be further refactored into an object invariant.

We believe that the process of automatically generating assertions during
refactoring and later refactoring the assertions into interface specifications greatly
contributes to the documentation of the code by making design decisions explicit.
This is an important side effect of our technique.

3

3 External Equivalence

Depending on the application domain, different aspects of external behavior are
of interest such as functional behavior, timing, or resource consumption. In this
paper, we focus on functional behavior. That is, we consider two programs to be
externally-equivalent if they perform the same sequence of I/O operations.

In this section, we present the programming language that is used in the rest
of the paper, formalize our notion of external equivalence, and explain how to
prove the correctness of refactorings.

3.1 Programming Language

We present our results in terms of a small sequential class-based programming
language. The language has the following statements: local variable update l:=e,
field read l:=o.f , field update o.f :=e, object allocation o:=new C, I/O operation
l:=io(p), sequential composition t1; t2, and loop while(e){t}, where l and o are
local variables, e is an expression, p is a vector of expressions, f is a field name,
and t is a statement. For simplicity, we ignore the declaration of local variables,
but we assume that they are correctly typed and that the language is type-safe.
We do not discuss methods, inheritance, and subtyping in this paper, but our
technical report does [2].

Assertions are not part of the program representation and do therefore not
have any operational meaning. For runtime assertion checking however, these
assertions have to be compiled into executable code.

The program representation is denoted by Γ . codeΓ is the executable program
code of Γ . fieldsΓ (C) is the set of field names for a given class C in program Γ .
After object creation, each field is initialized to the zero-equivalent value of its
type T , denoted by zero(T). ctt(name) returns the compile-time type of variable
or field name.

States. A state s of a program execution consists of variables vars, object heap
heap and I/O interactions ext : s = (vars, heap, ext). We refer to the components
of a state s by using s.vars, s.heap, and s.ext , respectively. The variables map
names to values: vars(l) = v. The heap maps references to objects, which in turn
map field names to values: heap(o)(f) = v. The I/O interactions accumulate the
executed I/O operations: ext = [. . . , v:=io(v1, . . . , vn), . . .]. The result of an
I/O operation is given by the exogenous input decision function inp. Program
executions start in the initial state ini , where all local variables hold default
values, and the heap as well as the I/O sequence is empty.

Operational Semantics. Expression evaluation [[e]]s is defined compositionally
by mapping the operator symbols to the respective operations: [[f(e1, . . . , en)]]s =
[[f]]([[e1]]s, . . . , [[en]]s). Variable accesses are simply lookups in the state: [[l]]s =
s.vars(l). Field accesses are not allowed in expressions. The big-step operational
semantics is defined in Table 1. Updating the image of a value x in a map m

4

with a value v is denoted by m[x � v]. The state obtained from a state s by
updating a local variable l with a value v is denoted by s[l � v]. We use an
analogous notation for updates of s.heap and s.ext . The function rtt(v) yields
the (runtime) type of a value. The transition relation for a statement t from a
state s to a state r in a program Γ is written as Γ ` s

t−→r.

Statement t Terminal state Condition

l:=e s[l � [[e]]s] –
o.f :=e s[heap(s.vars(o))(f) � [[e]]s] s.vars(o) 6= null

l:=o.f s[l � s.heap(s.vars(o))(f)] s.vars(o) 6= null

o:=new C s[o � p, heap(p) � m] p /∈ dom heap ∧ rtt(p) = C∧ m =
{f � zero(ctt(f))|f ∈ fieldsΓ (C)}

l:=io(p) s[ext � ext ′, l � i] i = inp([[p]]s, ext) ∧ ext ′ =
ext · [i:=io([[p]]s)]

t1; t2 r Γ ` s
t1−→q ∧ Γ ` q

t2−→r

while(e){t1} r [[e]]s ∧ Γ ` s
t1−→q ∧ Γ ` q

t−→r
while(e){t1} s ¬[[e]]s

Table 1. Operational semantics. Statement t of Γ (first column) performs a transition
from state s to the terminal state (second column), provided that the antecedents
(third column) hold.

3.2 Correspondence between Original and Transformed Program

A refactoring R is defined by a transformation function µR, which maps a pro-
gram Γ to the refactored program Γ ′ ≡ µR(Γ) and occurrences t of statements
in Γ to their respective counterparts: t′ ≡ µR(t). For simplicity, we assume that
µR is applied only to programs that satisfy the essential applicability conditions
of R. Consequently, µR can be assumed to yield syntactically-correct programs.

Γ and Γ ′ are equivalent if they perform the same I/O operations, that is, if
r.ext = r′.ext for their respective terminal states r and r′:

(Γ ` ini codeΓ−−−−→r) ⇒ ∃r′ : (Γ ′ ` ini
codeΓ ′−−−−→r′) ∧ r.ext = r′.ext (1)

For simplicity, we consider only terminating executions here. Non-terminating
programs can be handled by considering prefixes of executions of Γ .

Simulation Method. Although Implication (1) expresses external equivalence
of Γ and Γ ′, it is not useful for an equivalence proof because it is inaccessible to
any inductive argument. This problem is avoided by using the simulation method

for proving correspondence of two transition systems Γ ` −→ and Γ ′ ` µR()−−−→ .
To apply the simulation method, one defines a correspondence relation βR on
the states of the transition systems and proves that if both systems are in cor-
responding states and make a transition, they again reach corresponding states:

5

(Γ ` s
t−→r) ∧ βR(s, s′) ⇒ ∃r′ : (Γ ′ ` s′

µR(t)−−−→r′) ∧ βR(r, r′) (2)

For Implication (2) to imply the general condition (1), two sanity conditions
must hold. First, βR must imply identity of the ext parts of the states so that
external equivalence is guaranteed: ∀s, s′ : βR(s, s′) ⇒ s.ext = s′.ext . Second, the
initial states of the program executions must correspond (initial correspondence):
βR(ini , ini).

To prove that a refactoring R is correct, it suffices to devise a correspon-
dence relation βR and prove that it satisfies Implication (2) and the two sanity
conditions. This method works for many refactorings, but cannot handle several
interesting refactorings as we discuss next.

General Correspondence Requirement for Refactorings. Implication (2)
is too strong for several important refactorings for the following reasons.

(a) Some refactorings do not define a statement µ(t) for each statement t
of the original program1. Consider for instance the inlining of a local variable:
µ(l:=f(p1); l:=g(p2)) ≡ l:=g(p2[f(p1)/l]). In this case, l:=f(p1) and l:=f(p2)
alone do not have corresponding statements in the refactored program. There-
fore, µ(l:=f(p1)) and µ(l:=f(p2)) are undefined, and Implication (2) cannot be
applied to these statements individually.

(b) Conversely, some refactorings transform a statement t of the original
program into several non-consecutive statements in the transformed program.
For instance, when unrolling a loop, the loop body t is duplicated and placed
at different locations in the program, namely before and inside the loop. Again,
µ(t) is not well-defined.

(c) Different statements in the original program may require different cor-
respondence relations. Consider for instance the split of a variable l0 into two
fresh variables l1 and l2 in t0 ≡ t1; t2:

µ(t1) ≡ l1:=l0; t1[l1/l0]︸ ︷︷ ︸
tb

µ(t2) ≡ l2:=l1; t2[l2/l0]︸ ︷︷ ︸
td

; l0:=l2

This refactoring requires a different correspondence relation for each active scope
of the new variables. During the execution of statement tb, l0 and l1 correspond,
whereas l0 and l2 in general do not correspond since l2 is not yet initialized.
However, during the execution of statement td, l0 and l2 correspond, whereas
l1 is not used any more. Implication (2) does not permit such variations of the
correspondence relation.

To address these problems, we allow the correspondence relation to be differ-
ent at each program point: βbefore

[t,t′] (s, s′) is the correspondence between a state s

before the execution of a statement t in the original program Γ and a state s′

before the execution of a statement t′ in the transformed program Γ ′. βafter
[t,t′] (s, s

′)
is the analogous correspondence after the execution of t and t′. External equiv-
alence can then be proved using the following implication:
1 We omit the subscript R when the refactoring is clear from the context.

6

(Γ ` s
t−→r) ∧ βbefore

[t,t′] (s, s′) ⇒ ∃r′ : (Γ ′ ` s′ t′−→r′) ∧ βafter
[t,t′] (r, r

′) (3)

Implication (3) implies the general condition (1) if the two sanity conditions hold,
namely initial correspondence, βbefore

[codeΓ ,codeΓ ′]
(ini , ini), and external equivalence,

∀r, r′ : βafter
[codeΓ ,codeΓ ′]

(r, r′) ⇒ r.ext = r′.ext .
Besides these sanity conditions, the correspondence relation is not constrained.

Therefore, Implication (3) provides enough flexibility to handle even complex
program transformations. In particular, one is free to choose the statements t
and t′ to be related. For all statements t′ in the refactored program Γ ′ that are
not related to a statement t in the original program Γ , βbefore

[t,t′] is simply defined
to be empty.

For “Split Variable”, we say that (a sub-statement of) t1 in the original is
comparable to (the corresponding sub-statement of) tb in the transformed pro-
gram and the same for t2 and td. Moreover, a statement t outside t0 that is not
affected by the refactoring is comparable to its transformation µ(t). For state-
ments t and t′ that are not comparable, βP

[t,t′] is empty. For comparable state-
ments, corresponding states have an identical heap and identical I/O sequences.
The requirement for local variables depends on whether t is (a sub-statement
of) t1, (a sub-statement of) t2, or outside t0.

In summary, we prove correctness of a refactoring R by devising a correspon-
dence relation βR that satisfies Implication (3) as well as initial correspondence
and external equivalence. If βR is simple enough, Implications (3) and (2) co-
incide. This will be the case for “Move Field”, which we discuss in the next
section. Examples that require the general correspondence, Implication (3), are
presented in our technical report [2].

4 Example: “Move Field”

In this section, we apply our technique to “Move Field” [10]. This refactoring is
interesting because it requires non-trivial correctness conditions and is therefore
not supported by existing approaches. We describe “Move Field”, present an ap-
propriate correspondence relation as well as the required correctness conditions,
and prove correctness of the refactoring.

4.1 The Refactoring

“Move Field” removes the declaration of a field f from a class Source, inserts it
into a different class Target , and adjusts all accesses to f . To be able to access
f after the refactoring, there must be a Target object for each Source object.
For simplicity, we assume that there is a field target in Source that points to
the corresponding Target of each Source object. A generalization to arbitrary
associations between Source and Target objects is possible by using ghost fields
to express the association.

7

Transformation Function. We assume that the classes Source and Target
exist and that Source declares the distinct fields f and target . We assume further
that Target does not declare a field f .

An original program Γ and the transformed program µ(Γ) are identical ex-
cept for the following aspects: (a) The field f is moved from Source to Target :

fieldsµ(Γ)(Source) = fieldsΓ (Source)− {f}
fieldsµ(Γ)(Target) = fieldsΓ (Target) ∪ {f}

(b) Accesses to f are redirected via the target field:

µ(l:=o.f) ≡ tmp:=o.target ; l:=tmp.f
µ(o.f :=e) ≡ tmp:=o.target ; tmp.f :=e

where ctt(o) = Source and tmp is a fresh variable.
Since “Move Field” either leaves statements of the original program un-

changed or replaces them by simple sequential compositions, this refactoring
does not require the general correspondence requirement, Implication (3). We
can prove correctness using the simpler Implication (2). We present an appro-
priate correspondence relation in the next subsection.

4.2 Correspondence Relation

Intuitively, the correspondence relation for “Move Field” requires that o.f in
the original program and o.target .f in the transformed program hold the same
values. However, this correspondence requires o.target to be different from null,
which is not the case for a newly allocated object o before o.target has been
initialized. To handle object initialization, we use a more relaxed correspondence.
If target = null, f in the original program must hold its zero-equivalent default
value, that is, be also uninitialized.

For two states s and s′, the correspondence relation β(s, s′) yields true if and
only if:

1. All local variables, except for temporary variables introduced by the refac-
toring, hold the same value in s and s′: s.vars = s′.vars|(dom s.vars), where
the domain restriction operator F |D restricts the domain of function F to
D.

2. All references x that are not of type Source or Target are mapped to the same
objects: dom s.heap = dom s′.heap and s.heap(x) = s′.heap(x). For a Source
reference x, s.heap(x)(f) corresponds to s′.heap(s′.heap(x)(target))(f) or
zero(ctt(f)), depending on whether s′.heap(x)(target) 6= null or not. All
other field values are identical. We also have to encode that Target objects
do not have an f field in the original program. That is, for all references
x ∈ dom s.heap and object values m ≡ s.heap(x) and m′ ≡ s′.heap(x), we
require:

8

m =

8>>><>>>:
m′[f � s′.heap(m′(target))(f)] if rtt(x) = Source ∧m′(target) 6= null

m′[f � zero(ctt(f))] if rtt(x) = Source ∧m′(target) = null

m′[f � undef] if rtt(x) = Target

m′ otherwise

(4)

3. The I/O part of both states is identical: s.ext = s′.ext .

This correspondence relation satisfies initial correspondence because there
are no references in the initial heap ini.heap. External equivalence is trivially
satisfies by the third requirement.

4.3 Correctness Conditions

The correctness conditions for “Move Field” have to guarantee that the refac-
toring preserves the external program behavior. In the following, we suggest suf-
ficient correctness conditions and explain how they can be checked a-posteriori.

A-posteriori Conditions for “Move Field”. Any conditions that allow one
to prove Implication (2) for any statement t in the original program are possible
correctness conditions. A pragmatic approach is to start with the proof of Im-
plication (2) and to determine the weakest conditions that are necessary for the
induction to go through. However, these weakest conditions are often difficult to
express as assertions or difficult to check. Therefore, one typically has to devise
stronger correctness conditions that are easier to express and to check.

In the “Move Field” example, Implication (2) holds trivially for most state-
ments of the original program since t ≡ µ(t). The interesting cases are if t is (a) a
read access to the moved field f , (b) an update of f , or (c) an update of target.
For these cases, we present sufficient (but not weakest) a-posteriori conditions
in the following (o is a variable of type Source):

(a) t ≡ l:=o.f : The statement t reads o.f in the original program. It terminates
normally if o is different from null. The correctness conditions must guaran-
tee that the transformed statement µ(t) ≡ tmp:=o.target ; l:=tmp.f behaves
correspondingly. This is the case if o.target is different from null. Therefore,
we introduce the following assertion before µ(t):

assert o.target 6= null; (5)

(b) t ≡ o.f :=e: An update of o.f in the original program changes the value of the
f field of exactly one Source object, namely o. To achieve the corresponding
behavior for the transformed statement µ(t) ≡ tmp:=o.target ; tmp.f :=e, we
require that the updated Target object is not shared by several Source ob-
jects. Moreover, we have to make sure the association exists, that is, o.target
is different from null. Therefore, we introduce the following assertion before
µ(t):

9

assert o.target 6= null ∧ ∀Source p : p.target = o.target ⇒ p = o; (6)

Quantifiers over objects range over non-null allocated objects. Both t and
µ(t) terminate normally if and only if o is different from null.

(c) t ≡ o.target :=e: An update of o.target in the original program associates the
Source object o with another Target object. For the transformed program,
this means that o will potentially access a different f field. Updates of target
are not transformed, that is, t ≡ µ(t). They lead to corresponding terminal
states in the following cases:

– o.target is set to null (e = null), and the old o.target either is already
null (that is, the value remains unchanged), or o.target .f holds the
default value for f ’s type.

– o.target is set from null to a proper Target object (e 6= null) whose f
field holds the default value.

– o.target is set to a proper Target object whose f field holds the same
value as the old o.target .f .

These conditions are expressed by the following assertion, which is inserted
before µ(t):

assert (e = null ∧ (o.target = null ∨ o.target .f = zero(ctt(f)))) ∨
(e 6= null ∧ ((o.target = null ∧ zero(ctt(f)) = e.f) ∨

(o.target 6= null ∧ o.target .f = e.f)));
(7)

Both t and µ(t) terminate normally if and only if o is different from null.

Checking the Conditions. Assertion (5) is amenable to both runtime asser-
tion checking and static verification. Alternatively, non-null types [9] can be used
to check the condition syntactically.

The second conjunct of Assertion (6) is difficult to check at runtime. It re-
quires code instrumentation to keep track of the number of Source objects that
point to a Target object. Static verification is possible for this assertion, for
instance, using the ownership discipline of the Boogie methodology [16]. A syn-
tactic alternative is to use pointer confinement type systems such as ownership
types and their descendants [5, 7], or linear types [8].

Assertion (7) is straightforward to check at runtime or by static verification.
Nevertheless, it seems reasonable to impose additional restrictions to enforce
this correctness condition. For instance in Java, the field target can be declared
final, which ensures that target cannot be changed after its first initializa-
tion. With this restriction, the condition of Assertion (7) can be simplified to
e = null ∨ zero(ctt(f)) = e.f .

10

4.4 Correctness Proof

In this subsection, we prove that “Move Field” is correct. That is, the trans-
formed program µ(Γ) performs the same sequence of I/O operations as the
original program Γ if the correctness conditions hold.

For the proof, we use the following auxiliary lemma: If the states s and
s′ correspond then the evaluation of an expression e yields the same value in
both states: β(s, s′) ⇒ [[e]]s = [[e]]s′. This lemma is a direct consequence of the
definition of β (β(s, s′) ⇒ s.vars = s′.vars) and the fact that expressions do not
contain field accesses.

With this auxiliary lemma, the cases for local variable update, object allo-
cation, I/O operation, sequential composition, and loop are straightforward and
therefore omitted. In the following, we sketch the proof for the interesting cases:
field read and field update. The other cases and further details of the proof are
presented in our technical report [2].

We prove correctness by showing Implication (2) for any statement t in the
original program Γ and any states s, s′, and r. The proof runs by induction
on the shape of the derivation tree for Γ ` s

t−→r. For each case, we present a

terminal state r′ and then show (a) that µ(Γ) ` s′
µ(t)−−→r′ is a valid transition

and (b) that r and r′ correspond.

Field Read. Consider t ≡ l:=o.fld . If fld 6= f , the statement is not transformed
and we have β(s, s′) ⇒ s.heap(x)(fld) = s′.heap(x)(fld) for all x. Therefore, the
field accesses yield the same value. Consequently r′ = r satisfies Implication (2).

For fld = f , the original and transformed statements are:

t ≡ l:=o.f and t′ ≡ tmp:=o.target ; l:=tmp.f

They lead to the following terminal states r and r′ from s and s′ respectively.

r = s[l � s.heap(s.vars(o))(f)]
r′ = s′[l � s′.heap(s′.heap(s′.vars(o))(target))(f),

tmp � s′.heap(s′.vars(o))(target)]

The antecedents that have to hold for the transition in the transformed program,
Γ ′ ` s′

tmp:=o.target; l:=tmp.f−−−−−−−−−−−−−−−→r′, are:

s′.vars(o) 6= null and s′.heap(s′.vars(o))(target) 6= null

The first antecedent is implied by the antecedent s.vars(o) 6= null of the cor-
responding transition in the original program because β(s, s′) implies s.vars =
s′.vars. The second antecedent is directly guaranteed by the correctness condi-
tion preceding t′, Assertion (5).

Next, we prove β(r, r′). r and r′ have the same heap and ext components as
s and s′, respectively. Besides the temporary variable tmp, which is irrelevant
according to the definition of β, their vars components differ from the variables

11

of the initial states only for variable l. Therefore, it suffices to show r.vars(l) =
r′.vars(l), that is, we prove the following equation:

s.heap(s.vars(o))(f) = s′.heap(s′.heap(s′.vars(o))(target))(f)

This equation is directly implied by line 1 in Equation (4), which applies because
type safety guarantees that rtt(o) = Source holds and Assertion (5) ensures
s′.heap(s′.vars(o))(target) 6= null .

Field Update. Consider t ≡ o.fld :=e. We present the proof for updates of f
and of target in the following. For all other fields, the proof is trivial.

Updates of f . For fld = f , the original and transformed statements are:

t ≡ o.f :=e and t′ ≡ tmp:=o.target ; tmp.f :=e

They lead to the following terminal states r and r′ from s and s′, respectively.

r = s[heap(vars(o))(f) � [[e]]s]
r′ = s′[heap(s′.heap(s′.vars(o))(target))(f) � [[e]]s,

tmp � s′.heap(s′.vars(o))(target)]

where we used the auxiliary lemma to show that the evaluation of e is not affected
by the transformation.

The antecedents that have to hold for the transition in the transformed pro-
gram, Γ ′ ` s′

tmp:=o.target; tmp.f :=e−−−−−−−−−−−−−−−−→r′, are:

s′.vars(o) 6= null and s′.heap(s′.vars(o))(target) 6= null

The first antecedent is implied by the antecedent s.vars(o) 6= null of the corre-
sponding transition in the original program and β(s, s′). The second antecedent
is directly guaranteed by the correctness condition preceding t′, Assertion (6).

Next, we prove β(r, r′). Besides the temporary variable tmp, which is irrel-
evant according to the definition of β, r and r′ have the same vars and ext
components as s and s′, respectively. We get dom r.heap = dom r′.heap and
r.heap(x) = r′.heap(x) for all references x from β(s, s′) and the definitions of r
and r′. Therefore, it suffices to show that Equation (4) holds for all references
x ∈ dom r.heap. We show this by a case distinction on the value of x.

Case (i): x = s′.vars(o). We have rtt(x) = Source (by type safety) and
s′.heap(x)(target) 6= null by Assertion (6). Therefore, line 1 in Equation (4)
applies. Since only the f field is updated, it suffices to prove:

r.heap(x)(f) = r′.heap(x)[f � r′.heap(s′.heap(x)(target))(f)](f)

(We used s′.heap(x)(target) = r′.heap(x)(target), which holds because target
is not updated.) The right-hand side of the above equation can be trivially
simplified to r′.heap(s′.heap(x)(target))(f). Using the definitions of r and r′

above reveals that both sides of the equation evaluate to [[e]]s, which concludes
Case (i).

12

Case (ii): x 6= s.vars(o). Since t updates a field of a Source object, this case
is trivial if rtt(x) 6= Source. For rtt(x) = Source, we continue as follows. If
s′.heap(x)(target) = null, line 2 of Equation (4) follows directly from β(s, s′).
Otherwise, line 1 in Equation (4) applies, that is, we have to prove:

r.heap(x) = r′.heap(x)[f � r′.heap(r′.heap(x)(target))(f)]

By the definition of r and the assumption of Case (ii), we get r.heap(x) =
s.heap(x). By the definition of r′ and type safety, we get r′.heap(x) = s′.heap(x)
because x is a Source object and t′ updates a field of a Target object. By using
these two equalities, we can reduce our proof goal to:

s.heap(x) = s′.heap(x)[f � r′.heap(s′.heap(x)(target))(f)]

Assertion (6) implies s′.heap(x)(target) 6= s′.heap(s′.vars(o))(target). Therefore,
we get r′.heap(s′.heap(x)(target)) = s′.heap(s′.heap(x)(target)) by the definition
of r′. This condition together with β(s, s′) implies the above equation. This
concludes Case (ii) and, thereby, the case for updates of f .

Updates of target. For fld = target , the original and transformed statements
are identical. They lead to the following terminal states r and r′ from s and s′,
respectively.

r = s[heap(s.vars(o))(target) � [[e]]s]
r′ = s′[heap(s′.vars(o))(target) � [[e]]s]

The proof of the antecedent for the transition Γ ′ ` s′ t−→r′ is analogous to the
case for fld = f .

Next, we prove β(r, r′). This part is mostly analogous to the case for fld = f .
The only new property we have to show is that r.heap(x) and r′.heap(x) satisfy
Equation (4), where x = s.vars(o) = s′.vars(o). From type safety, we know
rtt(x) = Source because target is a field of class Source. Therefore, line 1 or
line 2 of Equation (4) might apply. We continue by case distinction.

Case (i): r′.heap(x)(target) = null. From the definition of r′ and the assump-
tion of Case (i), we get [[e]]s = null. Therefore, line 2 in Equation (4) applies
and we have to prove:

r.heap(x) = r′.heap(x)[f � zero(ctt(f))]

Using the definitions of r and r′ as well as β(s, s′) reveals that this is exactly
the case if r.heap(x)(f) = zero(ctt(f)) or, equivalently:

s.heap(x)(f) = zero(ctt(f))

Due to the assumption of this case, Assertion (7) is known to guarantee:

s′.heap(x)(target) = null ∨ s′.heap(s′.heap(x)(target))(f) = zero(ctt(f))

If the first disjunct holds, β(s, s′) implies s.heap(x)(f) = zero(ctt(f)) by line 2
in Equation (4). Otherwise, we get this property by line 1 in Equation (4). This
concludes Case (i).

13

Case (ii): r′.heap(x)(target) 6= null. Analogously to Case (i), we derive
[[e]]s 6= null. Therefore, line 1 in Equation (4) applies and we have to prove:

r.heap(x) = r′.heap(x)[f � r′.heap(r′.heap(x)(target))(f)]

Again, using the definitions of r and r′ as well as β(s, s′) reveals that this is
exactly the case if the following equation holds.

s.heap(x)(f) = s′.heap([[e]]s)(f)

Due to the assumption of this case, Assertion (7) is known to guarantee:

(s′.heap(x)(target) = null ∧ zero(ctt(f)) = s′.heap([[e]]s)(f))∨
(s′.heap(x)(target) 6= null ∧ s′.heap(s′.heap(x)(target))(f) = s′.heap([[e]]s)(f))

If the first disjunct of this condition holds then line 2 in Equation (4) implies
s.heap(x)(f) = zero(ctt(f)), rendering it equal to s′.heap([[e]]s)(f).

If the second disjunct holds, line 1 in Equation (4) yields s.heap(x)(f) =
s′.heap(s′.heap(x)(target))(f). This concludes Case (ii) and, thereby, the case
for updates of target . ¤

5 Related Work

There is a vast literature on refactoring, but little on its formalization. Most of
the related work discusses the design rationale [12] of individual refactorings or
treats refactorings on a syntactic level [14]. In this section, we discuss work that
is geared towards reasoning about refactorings.

Opdyke [20] mentions explicitly that refactorings have correctness conditions
and argued informally for the correctness of refactorings. He defined the notion
of equivalence for refactorings that is also used in this paper, namely identical
sequences of I/O operations.

The Smalltalk Refactoring Browser [21] samples the program at runtime to
estimate properties that are difficult or impossible to infer statically. Samples
are taken before the refactoring because their results are sometimes needed for
the transformation itself. For instance, because Smalltalk is untyped, the classes
that are receivers of a certain method call have to be determined by sampling
before “Rename Method” can be applied. Representative program executions
must be available for this approach, which is a serious restriction as explained in
Sect. 1. While typed languages remove the need to sample programs in order to
carry out the refactoring, sampling the program before refactoring could still be
used to check correctness conditions a-priori. However, our approach of adding
a-posteriori conditions as assertions to the refactored program has several ad-
vantages. It reduces the dependence on a complete unit test suite, enables static
verification, and improves program documentation.

Streckenbach and Snelting [22] use the results of static or dynamic analyses to
determine possible refactorings of class hierarchies automatically. The analyses
guarantee that the refactorings are correct. Two class hierarchies are consid-
ered equivalent if the behavior observable by clients is identical. This notion of

14

equivalence is too restrictive for many non-local refactorings such as renaming
a public field or method. In a similar approach, Logozzo and Cortesi [18] solve
this problem by defining explicitly what aspects of the program behavior are
observable. They use abstract interpretation to determine possible refactorings
of class hierarchies. We do not aim at finding possible refactorings automatically,
but require the user to apply the desired refactorings. Our approach supports
complex refactorings whose correctness conditions cannot be checked efficiently
by static analyses.

Cornélio [6] uses a refinement relation as the equivalence criterion for refactor-
ings. He shows correctness by decomposing a refactoring into various refinement
steps. The refinement relation of the calculus [19] per se does not guarantee
external equivalence however. In particular, visible intermediary states may be
different. We solve this problem by introducing an explicit I/O model. Cornélio’s
work does not support important language features such as references and there-
fore avoids some of the most challenging problems. Our formalism is based on
an operational semantics, which allows us to handle realistic languages.

Refactorings have also been applied to models of the program such as a UML
diagrams rather than to the source code. There are various efforts to formalize
such refactorings [4, 11, 17, 23]. Our work focuses on source code because the
main application of refactoring is changing code quickly and correctly with all
its intricacies For instance, method calls cannot be adjusted in class diagrams.

Like our work, investigations on representation independence [1] aim at prov-
ing that certain changes in the code preserve its external behavior. Represen-
tation independence relies on encapsulation to guarantee that modifications of
the internal representation of a module cannot be observed by client code. In
contrast, refactorings are typically not local to a module and, therefore, require
very different correctness conditions.

6 Conclusion

We have presented a technique that guarantees that the application of a refactor-
ing preserves the external behavior of the program if the transformed program
satisfies the refactoring’s correctness conditions. These conditions are added to
the transformed program and can be used for runtime assertion checking, to gen-
erate unit tests, and for static verification. We applied our approach successfully
to 15 representative refactorings [2].

An important virtue of our approach is that it automatically improves pro-
gram documentation by adding assertions. Thereby, it prepares the program for
the application of specification-based test tools and program verifiers.

We have implemented a prototype for “Move Field” for Spec# in Visual Stu-
dio and for JML in Eclipse. As future work, we plan to develop a more com-
prehensive refactoring tool based on the technique presented here. Moreover, we
plan to investigate how the generated assertions can be refactored into invariants
and method contracts.

15

References

1. A. Banerjee and D. A. Naumann. Ownership confinement ensures representation
independence for object-oriented programs. J. ACM, 52(6):894–960, 2005.

2. F. Bannwart. Changing software correctly. Technical Report 509, Department of
Computer Science, ETH Zürich, 2006.

3. M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# Programming System:
An Overview. In G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet, and T. Muntean,
editors, CASSIS, volume 3362 of LNCS, pages 49–69. Springer-Verlag, 2005.

4. P. L. Bergstein. Object-preserving class transformations. In OOPSLA, pages 299–
313. ACM Press, 1991.

5. D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for flexible alias pro-
tection. In OOPSLA, pages 48–64. ACM Press, 1998.

6. M. Cornélio. Refactorings as Formal Refinements. PhD thesis, Universidade de
Pernambuco, 2004.

7. W. Dietl and P. Müller. Universes: Lightweight ownership for JML. Journal of
Object Technology (JOT), 4(8):5–32, 2005.

8. M. Fähndrich and R. DeLine. Adoption and focus: practical linear types for im-
perative programming. In PLDI, pages 13–24. ACM Press, 2002.

9. M. Fähndrich and K. R. M. Leino. Declaring and checking non-null types in an
object-oriented language. In OOPSLA, pages 302–312. ACM Press, 2003.

10. M. Fowler. Refactoring: improving the design of existing code. Addison-Wesley,
1999.

11. R. Gheyi, T. Massoni, and P. Borba. An abstract equivalence notion for object
models. Electr. Notes Theor. Comput. Sci., 130:3–21, 2005.

12. J. Kerievsky. Refactoring to Patterns. Addison-Wesley Professional, August 2004.
13. J. R. Kiniry and D. R. Cok. ESC/Java2: Uniting ESC/Java and JML. In G. Barthe,

L. Burdy, M. Huisman, J.-L. Lanet, and T. Muntean, editors, CASSIS, volume 3362
of LNCS, pages 108–128. Springer-Verlag, 2005.

14. R. Lämmel. Towards Generic Refactoring. In Workshop on Rule-Based Program-
ming (RULE). ACM Press, 2002.

15. G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of JML: A behavioral
interface specification language for Java. Technical Report 98-06-rev28, Iowa State
University, 2005.

16. K. R. M. Leino and P. Müller. Object invariants in dynamic contexts. In M. Oder-
sky, editor, ECOOP, volume 3086 of LNCS, pages 491–516. Springer-Verlag, 2004.

17. K. J. Lieberherr, W. L. Hürsch, and C. Xiao. Object-extending class transforma-
tions. Formal Aspects of Computing, (6):391–416, 1994.

18. F. Logozzo and A. Cortesi. Semantic hierarchy refactoring by abstract interpre-
tation. In E. A. Emerson and K. S. Namjoshi, editors, VMCAI, volume 3855 of
LNCS, pages 313–331. Springer-Verlag, 2006.

19. C. Morgan. Programming from specifications. Prentice-Hall, 1990.
20. W. F. Opdyke. Refactoring object-oriented frameworks. PhD thesis, University of

Illinois at Urbana-Champaign, 1992.
21. D. B. Roberts. Practical analysis for refactoring. PhD thesis, University of Illinois

at Urbana-Champaign, 1999.
22. M. Streckenbach and G. Snelting. Refactoring class hierarchies with KABA. In

OOPSLA, pages 315–330. ACM Press, 2004.
23. L. Tokuda and D. Batory. Evolving object-oriented designs with refactorings. In

Automated Software Engineering, pages 174–182. IEEE Computer Society, 1999.

16

