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problem in the context of modern 
object-oriented languages, using the 
well-known approach of contracts, or 
specification constructs, to document 
behavior.22 Contracts standardize the 
common practice of writing assertions 
within code through two main con-
structs: 

Method pre- and postconditions. 
Method pre- and postconditions are 
part of the application- programming 
interface (API) for methods. Precon-
ditions describe what is to be true at 
method entry, callers establish them, 

A Main Reas o n  for the difficulty of progamming 
is the inability of programmers to ensure their 
programs behave as intended. Needed is both a 
way to record that intent and the tools to enforce it. 
Spec# (pronounced “speck sharp”)a is a project from 
Microsoft Research aimed at addressing the 
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and implementers can assume them. 
Postconditions describe what is to be 
true at method exit; implementers es-
tablish them, and callers can assume 
them upon method return. 

Object invariants. Object invariants 
are a way to specify the steady-state 
properties that all “good” instances of 
a class should maintain. A crucial fea-
ture setting Spec# apart from previous 
programming systems is a sound tech-
nique for reasoning about when object 

invariants hold; why this is such a dif-
ficult problem and how Spec# solves 
it are covered in the section on invari-
ants. 

Spec# enforces both kinds of con-
tracts with instrumentation for run-
time checking and with an automatic 
program verifier for static, compile-
time checking. 

Programmers interact with Spec# 
just as they do with any other program-
ming system: Type in the program, 

and respond to errors. The difference 
is that in Spec#, one writes specifica-
tions, as well as code. In return, the 
system analyzes the program as it is 
being written and detects many errors 
traditional approaches would reveal 
only during testing (or deployed execu-
tion). 

Figure 1 is a glimpse at what Spec# 
has to offer, with a Spec# project ed-
ited in the Visual Studio integrated de-
velopment environment (IDE); shown 
is the definition and implementa-
tion of an interface used in a parsing 
framework. The method ParseBind-
ing is used to pull apart a string of the 
form “a = b”. Like many programming 
languages, Spec# does not allow inter-
face methods to contain code though 
does allow them to have contracts, 
in this case a precondition (keyword 
requires) saying the argument pro-
vided to the method must contain the 
character ’=’. 

Contracts are a native part of the 
Spec# language in two ways: Method 
contracts are part of the signature of 
a method, and the expressions con-
tained in the contracts are written in 
the programming language itself, not 
in a secondary logical metalanguage 
(see Figure 2). ParseBinding’s pre-
condition is written using a call to a 
method in the standard .NET library, 
Contains. The Spec# programming 
system comes with a set of contracts 
for the .NET Framework, providing a 
(partial) semantics for such commonly 
used methods. 

All implementations of Parse-
Binding written in Spec# inherit the 
interface method’s contract and so do 
not have to perform error checking or 
defensive programming. This behav-
ior is illustrated in the implementation 
that calls the library method IndexOf 
with the assurance that the return 
value is a valid index into the receiver 
string, as guaranteed by the postcon-
dition (not shown) of the Contains 
method. Thus, programmers can use 
the return value as an argument to the 
method Substring, the precondition 
of which requires the argument to be a 
valid index. 

Spec# enforces ParseBinding’s 
precondition on any client making a 
call to the interface method. A (partic-
ularly stupid) client is shown in Figure 
2, where the Spec# system has noticed 

Figure 2. A client using the IParser interface incorrectly; notice that verification errors are 
presented in the same format as compiler errors. 

Figure 1. A (partial) Spec# interface. The yellow box is a tooltip that appears when the  
mouse hovers over the call to Substring, showing the signature of the method and  
a short programmer-written summary and its contract. Just like the barking dog (as in  
Silver Blaze, Arthur Conan Doyle), the important thing to notice is the absence of warnings 
on the call to Substring. 
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the error as the programmer was typ-
ing the code. The resulting squiggly, 
the visual underlining in the editor, 
alerts the programmer that the code 
is violating a contract. The tooltip win-
dow shown pops up in response to the 
programmer hovering over the squig-
gled text with the mouse. The error 
list in the IDE is also populated with a 
warning about the contract error. 

Note that Figures 1 and 2 do not in-
clude warnings about object referenc-
es possibly being null because Spec# 
distinguishes between non-null types 
and possibly-null types. In the exam-
ples, IParser and string are both 
non-null types. 

The Spec# Language 
Spec# is an object-oriented language, 
a superset of C# v2.0 (released in 
2005), compiling to the Microsoft In-
termediate Language bytecode (MSIL) 
and running on the .NET virtual ma-
chine and integrated into Visual Stu-
dio’s IDE, which provides language 
services (such as syntax highlighting 
and the ability to run the program veri-
fier in the background as the code is 
being written). 

The extensions to C# consist chief-
ly of the standard design-by-contract 
features22 (method contracts and ob-
ject invariants), as well as a non-null 
type system. For a full introduction to 
the language, see the Spec# tutorial20; 
Figure 3 outlines the most commonly 
used features. 

The first postcondition (keyword 
ensures) of CrankItUp uses the ex-
pression old(Volume()) to refer to 
the value of Volume() on entry to the 
method, promising the value of Vol-
ume() is increased by amount. The 
second postcondition expresses that 
the method returns the final value of 
Volume(); the Spec# keyword re-
sult refers to the return value of the 
method. 

Since contracts must not cause 
state changes, methods may be used 
in contracts only if they are side-effect 
free,4 as indicated by the [Pure] cus-
tom attributeb, as in the definition of 
Volume(). 

Reasoning about a method call is 
in terms of the method’s contract. 

b	 A .NET feature that allows associating meta-
data with program elements.

Because method contracts are inher-
ited in subclasses, this reasoning ap-
plies even in the presence of dynamic 
method dispatch where the particular 
method implementation invoked may 
not be known until runtime; that is, 
contract inheritance enforces the well-
known concept of behavioral subtyp-
ing.9,21 

The class Stereo declares three 
object invariants to specify what it 
means for an object of this class to 
be consistent. Whereas the first two 
invariants constrain the values of the 
fields of a Stereo object, the third in-
variant relates the states of two sub-ob-
jects. The first assignment statement 
in the body of the method CrankItUp 
might break that invariant before the 
subsequent assignment reestablishes 
it. To indicate that an object invari-
ant might be temporarily violated, 
the two assignment statements must 
appear within an expose statement, 
described in more detail in the section 
on invariants. Note that no expose 
statement is needed in ChangeCD, 
because the single assignment main-
tains the invariants. 

Null-dereference problems are the 

bane of object-oriented programming. 
We and others have found the single 
most common specification is the 
exclusion of the null value from the 
possible values of a field, method pa-
rameter, or result. Spec# refines C#’s 
type system by distinguishing non-null 
types (such as the type Speaker of the 
fields left and right in Figure 3) and 
possibly null types (written with a post-
fix question mark, as in Speaker?)c. 
References of non-null types can be 
dereferenced safely without requiring 
runtime checks or proof obligations to 
prevent errors. 

Each object of type Stereo is an ag-
gregate object containing references to 
other objects that make up its internal 
representation. In Spec#, the aggre-
gate/sub-object relation is expressed 
using the [Rep] custom attribute in 
the declaration of the field pointing 
to the sub-object. In our example, the 
speakers are sub-objects of a Ste-
reo object; we say the Stereo object 

c	 For traditionalists, Spec# also offers the com-
plementary mode where Speaker represents 
the possibly null type and the non-null type is 
written as Speaker!.

Figure 3. A (partial) Spec# program demonstrating the language’s basic features, 
including method contracts that describe (part of) the method behavior, as well as object 
invariants that describe the consistent state of each instance of the class. 

public class Stereo {
  int currentCDSlot;
  [Rep] Speaker left = new Speaker();
  [Rep] Speaker right = new Speaker();

   invariant 0 <= currentCDSlot;
   invariant left != right;
   invariant left.Gain == right.Gain;

   public int CrankItUp(int amount)
     requires 0 <= amount;
     ensures Volume() == old(Volume()) + amount;
     ensures result == Volume();
   {
     expose (this) {
       left.Adjust(amount);
       right.Adjust(amount);
     }
     ...
   }

   [Pure] public int Volume()
   { return left.Gain; }

   public void ChangeCD(int newSlot)
     requires 0 <= newSlot;
   { currentCDSlot = newSlot; }
}
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owns its speakers. Due to this own-
ership relationship, Spec# enforces 
that two Stereo objects do not share 
their speakers and that, in general, a 
speaker can be modified only through 
its owning Stereo object. This lets a 
Stereo object maintain object invari-
ants over the state of its speakers (such 
as the third object invariant). 

Enforcing Spec# Contracts 
A spectrum of possibilities is available 
for checking Spec# contracts. One 
extreme would be to verify them all 
statically; another would be to check 
them all dynamically. Either extreme 
is impractically expensive. The former 
involves a prohibitive specification 
and verification effort; the latter in-
volves prohibitive runtime overhead. 
Instead, Spec# makes some checks 
mandatory; splitting them between 
dataflow analyses performed during 
compilation and runtime checks per-
formed during execution; the rest are 
optionally enforced by a static pro-
gram verifier. 

The runtime checker is straightfor-
ward: each contract indicates some 
particular program points at which it 

must hold; the Spec# compiler gener-
ates a runtime assertion for each, and 
any failure causes an exception to be 
thrown. 

The dataflow analysis part of the 
Spec# compiler primarily checks 
three properties: The first, and most 
important, is enforcing the non-null 
type system, which can be used inde-
pendently without the other kinds of 
contracts in the Spec# system. 

In general, a type system guaran-
tees the static type of an expression ac-
curately describes the possible values 
to which the expression can evaluate at 
runtime. In Spec#, an expression with 
a non-null type can never be observed 
to have a value of null. Guarantee-
ing this property requires controlling 
both assignments and initialization.10 
In particular, the type system must 
guarantee that a fresh object doesn’t 
escape from its constructor before 
the constructor initializes all non-null 
fields (such as left and right in 
Figure 3) with non-null values. Spec# 
offers two solutions to this problem. 
One is based on a flexible placement 
of the base constructor call within a 
constructor body; the other caters to 

legacy code by a more sophisticated 
dataflow analysis.11 

The second property is to enforce 
the purity of, or side-effect free, con-
tracts; that is, they are side-effect 
free. Purity ensures dynamic contract 
checking does not interfere with the 
execution of the rest of the program 
and that contracts have a simple se-
mantics that can be encoded in the 
static verifier. 

Purity could easily be enforced by 
forbidding all side-effecting opera-
tions (such as field updates), but do-
ing so would be too restrictive; for 
instance, a method called in a speci-
fication might want to iterate over a 
collection. Creating and advancing an 
iterator are side effects; however, they 
are not observable when the method 
returns. Following JML,18 Spec# thus 
enforces weak purity, forbidding pure 
methods from changing the state of 
existing objects but allowing updates 
to objects created within the (dynam-
ic) scope of the method’s lifetime. 

The final property the compiler 
enforces is to limit what can be men-
tioned in an object invariant and what 
things a pure method is allowed to 
read. These admissibility checks are 
crucial for sound static verification. 

The static program verifier flags vio-
lations of both the explicit contracts 
and the implicit contracts set forth 
by the language semantics (such as 
null dereference and array index out 
of bounds). It checks one method at 
a time. If the verification fails, Spec# 
displays an error message, the loca-
tion of the error, the trace through the 
method containing the error, and pos-
sibly a counterexample; Figure 2 illus-
trates how the IDE reports verification 
errors to the programmer. 

The Spec# static verifier is sound 
but not complete; that is, it finds all er-
rors in a program but might also warn 
about methods that are actually cor-
rect. Such spurious warnings are often 
fixed by providing more comprehen-
sive specifications. In some cases, it 
may be necessary for the programmer 
to add an assumption to the program 
using the program statement assume 
e. The condition e is blindly assumed 
by the static verifier but is checked at 
runtime. Assumptions require special 
attention during testing and code re-
views. 

Figure 4. Verfication pipeline. 
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The semantics of Spec# is encoded in Boogie. The heap is modeled as a 2D array indexed by object 
references and field names. Within a method body, preconditions and type information are encoded 
as assumptions and postconditions and implicit language contracts as assertions. The verification 
condition is expressed in a standard format supported by many automatic theorem provers. When the 
theorem prover reports errors, they are mapped back to the Boogie program and then to the Spec# 
source. Another outcome (not shown) is when the prover runs out of time or space. 

Correct!

Boogie

Verification Condition

void Truncate(Rational r)
	 ensures r.n < 10;
{r.n = r.n./r.d;}

assume r != null;
t0 := heap[r,n];
t1 := heap[r,d];
assert t1 != 0;
t2 := t0 / t1;
heap[r,n] := t2;
assert heap[r,n] < 10;

r ≠ null ⇒ t0 =
select(heap,r,n) ⇒ t1 =
select(heap,r,d) ⇒ t1 ≠ 0 ∧
(t2 = t0 / t1 ⇒ heap′ = 
store(heap,r,n,t2) ⇒
select(heap′,r,n) < 10)

SMT Solver


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Verification proceeds via a series 
of transformations starting with the 
Spec# program and ending with a 
mathematical formula that is then in-
put to an automated first-order theo-
rem prover. The formula, called a veri-
fication condition, is valid if and only 
if there are no violations of implicit 
or explicit contracts (see Figure 4). 
The gap between the program and the 
formula is bridged by translating the 
Spec# program into a much simpler 
program, much as a compiler bridges 
the gap between source program and 
machine code by translating into an 
intermediate representation. For this 
purpose, we defined the intermedi-
ate verification language Boogie2; we 
also created a way to derive verifica-
tion conditions for Boogie programs 
by computing their weakest precondi-
tions. In essence, Boogie has only as-
signment statements, assertions, as-
sumptions, and branches. A method 
call is modeled by asserting all of the 
method’s preconditions, assigning ar-
bitrary values to anything the method 
might modify (things within its frame) 
and assuming the method’s postcon-
ditions. Boogie was designed to sup-
port more front ends than Spec#. 

Note that static verification does 
not fully replace testing. Tests are still 
necessary to ensure the requirements 
are captured correctly, to check the 
properties that are not expressed by 
contracts, and to check properties ig-
nored by the Spec# verifier (such as 
stack overflows). 

Invariants 
Spec# performs modular reasoning, 
which is to a verifier what separate 
compilation is to a compiler; each 
module is verified separately and 
does not need to be re-verified when 
the modules are combined into a 
whole program (see Figure 3). To rea-
son soundly in the presence of object 
invariants and mutable state, Spec# 
uses a methodology that restricts pro-
grams and guides their use of specifi-
cations. Here, we outline this impor-
tant contribution of sound modular 
reasoning; a full explanation is in the 
Spec# tutorial.20 

A first problem with object invari-
ants is deciding on the program points 
at which they should hold. An invari-
ant cannot always hold; it is generally 

necessary to temporarily violate an in-
variant with later state changes rees-
tablishing it, as outlined in Figure 3 by 
method CrankItUp. It is also not pos-
sible to say an object invariant holds 
on method boundaries; method calls 
made within a method could make 
the object accessible outside the class 
while in an inconsistent state. 

A second related problem is that 
an object invariant often depends on 
the state of other objects; for instance, 
the invariant of an aggregate object 
typically depends on the state of its 
sub-objects, as illustrated by Stereo 
in Figure 3. Consequently, modifica-
tion of these sub-objects potentially 
violates the invariant of the aggregate. 
This situation is inescapable for any 
system with reusable components, so 
the methodology must allow it. But 
the verifier must ensure the aggregate 
object’s invariants are reestablished 
before the aggregate relies on them 
again. 

Spec# solves the first problem with 
the expose statement, which is simi-
lar to a lock statement in concurrent 
programming. The expose statement 
indicates a non-reentrant lexical re-
gion within which an object’s state is 
vulnerable and within which the in-
variant may be temporarily violated. 
The object invariant must hold in or-
der for the block to be entered or ex-
ited. 

The second problem is solved by 
introducing an ownership system in 
which the objects of the heap are or-
ganized into a collection of tree struc-
tures. The edges of the trees indicate 
ownership, or an aggregate/sub-object 
relationship. An object invariant can 
depend roughly only on state con-
tained in the subtree of which it is the 
root. Within an expose block, a meth-
od can call down in the ownership tree 
but not up, preventing method calls on 
inconsistent objects. 

This is the basic approach to speci-
fying aggregate objects in Spec#. How-
ever, many object-oriented programs 
not only involve hierarchical data 
structures but also consist of mutu-
ally referring objects (such as the sub-
ject-observer pattern or doubly linked 
lists). To deal with such peer relation-
ships, the Spec# methodology uses the 
notion of peer consistency, or that an 
object and all its peers are consistent; 

If verification 
ever makes it into 
the daily rhythm 
of mainstream 
programming,  
it will be through 
a design-time 
interface providing 
online verification. 
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see the Spec# tutorial20 for details. 
A third problem of modular rea-

soning is framing, which deals with 
what “frame” can be put around a 
method call to limit the effects the call 
might have; for instance, in method 
CrankItUp, what is the program state 
after the call to left.Adjust? A pes-
simistic approach is to treat the call 
as modifying everything in the heap, 
since potentially all objects in the heap 
are reachable from every method (such 
as through static fields). A better solu-
tion would be to know exactly which 
parts of the heap a method changes, 
but, in the presence of subclassing 
and information hiding, a method 
contract cannot name these parts di-
rectly. Instead, some form of abstrac-
tion is needed but one that is precise 
enough for the program verifier. Spec# 
solves this problem by again utilizing 
its ownership system; without an ex-
plicit specification stating otherwise 
(keyword modifies), a method may 
modify only the fields of the receiver 
and those of objects within the subtree 
of which the receiver is the root. Using 
ownership to abstract over the modifi-
cations of sub-objects is justified, be-

cause clients of an object should not 
be concerned with its sub-objects; for 
instance, clients of Stereo objects 
need to know only about the result 
of Volume(), not how the volume is 
stored in the sub-objects of Stereo. 

Songs of Innocence 
We began the Spec# project in 2003 as 
an attempt to build a comprehensive 
program-verification system,3 hoping 
to build a real system real program-
mers could use on real programs to 
perform real verification, a system the 
“programming masses” could use in 
their everyday work. Along the way, 
we wanted to explore and push the 
boundaries of specification and verifi-
cation technology to get closer to real-
izing these aspirations. 

At the time, program verification 
was already decades old, starting with 
formal underpinnings of program se-
mantics and techniques for proving 
program correctness.14 Supported by 
mechanical-proof assistants, early 
program verifiers included the GYPSY 
system and the Stanford Pascal Veri-
fier. Later systems, still used today, 
include full-featured proof assistants 

like PVS and Isabelle/HOL. 
Another approach to improving 

program quality via verification tech-
nology is extended static checking, 
which included checkers like ESC/
Modula-38 and ESC/Java.13 These tools 
have been more closely integrated into 
existing programming languages and 
value automation over expressivity 
or soundness. The automation is en-
abled by a breed of combined decision 
procedures that today is known as Sat-
isfiability Modulo Theories, or SMT, 
solvers. To make their use easier and 
more cost-effective, extended static 
checkers were intentionally designed 
to be unsound; that is, they could miss 
certain errors. 

Dynamic checking of specifications 
has always been done by the Eiffel 
programming language,22 which pio-
neered inclusion of contracts in ob-
ject-oriented languages. The tool suite 
for the Java Modeling Language (JML) 
also included a facility for dynamic 
contract checking.4 The strong influ-
ence of both Eiffel and JML on Spec# 
is evident. 

Our plan in 2003 targeting real pro-
grams was no doubt our single most 
important decision and has perme-
ated every aspect of the Spec# design. 
Targeting real programs meant not 
designing a tool for a toy language 
with idealized features. In addition 
to learning how to handle difficult or 
otherwise uncomfortable language 
features, a benefit of this decision is 
the large body of programs and librar-
ies that can be used as starting points 
for specification and verification. It 
also implied a connection with an ex-
isting language, so we built our lan-
guage extensions around C# and the 
.NET platform. Other well-known real 
languages with specifications were 
Eiffel, Java+JML, and SPARK Ada1; as 
in GYPSY and Eiffel, our extensions 
made specifications part of the lan-
guage itself. 

Our plan to build a system for real 
programmers immediately ruled out 
the possibility of exposing program-
mers to an interactive proof assistant. 
We felt that while programmers must 
know how to specify a program, they 
should not need to understand proof 
theory, the logical encoding of a pro-
gram’s semantics, or how to issue tac-
tics to guide the proof search. Instead, 

Spec# also relies on other projects developed within Microsoft Research: 
CCI. The Microsoft Research Common Compiler Infrastructure is a set of base 

classes that implement common functionality needed by compilers, taking care 
of intermediate code generation and helping with symbol table management, 
metadata importing, name resolution, overload resolution, and error reporting. It also 
includes functionality for language integration into the Visual Studio development 
environment. First developed within Microsoft as part of the implementation of 
Comega, it has since been used for other compilers, including the Spec# compiler. 
A redesigned version of the core parts of CCI was released in 2009 as an open source 
project (http://ccimetadata.codeplex.com).

Boogie. Boogie19 is a verification platform consisting of an intermediate verification 
language and a tool that generates logical verification conditions. The Boogie language 
offers a level of abstraction suitable for modeling the behavior and proof obligations of 
a source language; for example, it supports procedures with contracts, local and global 
variables, structured and unstructured control flow, a polymorphic type system, and 
first-order mathematical definitions. These features make it convenient for verification 
systems to encode imperative and object-oriented programs. Verifiers built on top of 
Boogie translate source programs into Boogie programs and invoke the Boogie tool. 
Boogie computes efficient verification conditions for its input program, sends them 
to a theorem prover (such as the SMT solver Z3), and makes the results available to 
programmers and upstream tools. We initially developed Boogie within the Spec# 
project, but, as noted, Boogie is now employed by many program verifiers. Boogie has 
been an open source project (http://boogie.codeplex.com) since 2009. 

Z3. Z37 is a state-of-the-art SMT solver combining decision procedures for functions, 
arithmetic, and logical quantifiers. Due to its high performance, it is the default SMT 
solver used by the Boogie verification engine. When a proof attempt fails, Z3 returns 
information from which Boogie extracts the failed assertion, the trace through the 
method to be verified leading to the failure, and a counterexample with possible values 
for local variables and heap locations. This information gives programmers precise and 
helpful error messages; see Z3’s Web site http://research/microsoft.com/projects/z3/.

The Spec# Ecosystem 
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we turned to an automatic SMT solver. 
This is not to say that verification is 
fully automatic; Spec# programmers 
must still supply specifications, but all 
interaction between them and Spec#’s 
tools takes place in the context of the 
program and its specifications. The 
major contender here was ESC/Java 
and similar tools using JML specifica-
tions in Java programs. 

Another important consequence 
of building a system for real program-
mers was the need for something to 
attract real programmers. It is a long 
journey indeed for programmers to 
arrive at the point of writing specifica-
tions that lead to effective verification. 
To give them immediate benefit for 
any specification they write, however 
partial, we included in Spec# dynamic 
checking of specifications. Through-
out the project, we also worked on pro-
viding good defaults so programmers 
would not be unduly burdened in the 
most common cases. 

Finally, our plan for real verification 
meant not compromising on sound-
ness while also aligning with fully fea-
tured proof assistants. Sound verifica-
tion of object-oriented programs does 
not come easily. Of the unsound fea-
tures in ESC/Java, many were known 
to have sound solutions. But two open 
key areas were how to verify object in-
variants in the presence of subclassing 
and dynamically dispatched methods 
(giving rise to the possibility of call-
backs, or situations where the caller 
of a method is reentered during the 
execution of the method it called), as 
well as method framing. To ensure our 
verifier would scale to large programs 
and could be applied to libraries, we 
also wanted to support modular veri-
fication. We began the project with an 
idea for a methodology that addresses 
these problems, providing a glimmer 
of hope for building a sound and mod-
ular verifier. 

Though we aimed for a broad de-
sign, we initially left out several things 
so we could provide simpler specifi-
cations; for example, we provided no 
support for writing specifications for 
unsafe (non-type-safe) code, concur-
rency, higher-level aspects of closure 
objects, and some functional correct-
ness concerns of algorithmic verifica-
tion. The specifications focused in-
stead on partial properties, of the kind 

every programmer could write down 
and for which might be willing to ac-
cept the runtime overhead of dynamic 
checking. We subsequently added 
other features we left out of our initial 
design (such as generics). 

We set out to build a programming 
system where both the programming 
language and integrated tooling sup-
port specifications. The system was 
intended to blend into existing prac-
tices, provide a range of assurance lev-
els, from dynamic checking to static 
verification, and deliver static verifi-
cation that was sound and automatic. 
Its success depended on answering a 
number of scientific questions, as well 
as solving non-trivial engineering con-
cerns. 

Influence 
Here, we explore Spec#’s influence on 
researchers and language designers in 
academia and industry. 

Scientific results. The Spec# proj-
ect’s main research focus has been on 
improving verification methodology 
by identifying common programming 
idioms and developing techniques and 
notations for their specification and 
verification. We built a state-of-the-art 
system and advanced the state of veri-
fication. First, the Spec# methodology 
supports sound modular verification 
of object invariants in the presence of 
multi-object invariants, subclassing, 
and reentrancy. We also worked out 
some of the difficulties with abstrac-
tion features (such as pure methods). 
Spec#’s dynamic ownership model al-
lows programmers to express heap to-
pologies and use them for verification. 
The Spec# project gained practical ex-
perience through a design of non-null 
types and incorporated flexible object 
initialization schemes. It advanced the 
foundations of program verification 
by, for instance, providing a verifica-
tion-condition generator for unstruc-
tured programs. And finally, by pro-
viding IDE support and continuously 
running the program verifier in the 
background, Spec# broke new ground 
in how programmers work with a veri-
fier. The scientific contributions of the 
Spec# project have been published in 
more than 30 articles. 

Impact on academic research and 
teaching. A number of research proj-
ects build directly on the Spec# infra-

structure; for example, SpecLeuven16 
is an extension of the Spec# method-
ology and tools to handle concurrency, 
using Spec#’s ownership system to 
enforce locking strategies. Several re-
search groups use the Boogie verifica-
tion engine developed as part of the 
Spec# project2; for instance, various 
Java/JML, bytecode/BML, and Eiffel 
projects use Boogie as a target for their 
verifiers. At the other end, Boogie’s 
output is now also fed to interactive 
theorem provers. In addition, we’ve 
seen researchers encode and verify 
new logics, as well as verify challeng-
ing examples (such as garbage collec-
tors). 

Other projects do not use the Spec# 
infrastructure but seem to be influ-
enced and inspired by the project. 
For example, Eiffel supports attached 
types, a variation of a non-null type 
system. JML does not include a non-
null type system but offers non-null 
annotations, which are the default 
for all reference types. The idea to 
run a program verifier within an IDE 
and report verification errors just like 
compiler errors has been picked up by 
ESC/Java2, which comes with Eclipse 
integration. Likewise, the Rodin tool 
provides Eclipse integration for the 
Event-B tools. 

Spec# has also been used to teach 
program verification at universities, 
mostly in graduate seminars. We and 
others have also taught Spec# in a 
number of summer schools, as well as 
at major conferences. 

Impact within industry. In 2003, we 
hoped to convince one of the program-
ming language teams at Microsoft to 
add Spec#-like features. However, 
influencing such a team is itself a dif-
ficult proposition, and even if we had 
succeeded, our single-language story 
did not address the fact that .NET is 
a multi-language platform. We also 
lacked support for unsafe code and for 
concurrency while battling a percep-
tion that verification is relevant only 
for safety-critical software. Even so, 
Spec# has influenced other projects 
in Microsoft Research and several Mi-
crosoft product groups. This influence 
can be grouped into two main catego-
ries: Boogie and Code Contracts for 
.NET: 

Boogie. The verification engine 
originally developed for Spec#, called 



88    communications of the acm    |   june 2011  |   vol.  54  |   no.  6

contributed articles

Boogie, has become an independent 
project (see the sidebar “The Spec# 
Ecosystem”) used in other projects in-
side and outside Microsoft. Here are 
some of them:

The HAVOC tool uses Boogie to ver-
ify low-level sequential systems code 
written in C5 and has been applied to 
verify properties of device drivers and 
critical components in the Windows 
kernel. A version of HAVOC has also 
been targeted in Microsoft at finding 
specific errors in a very large code base 
of systems code. 

The VCC6 tool built at Microsoft Re-
search adopts Spec#’s tool chain and 
methodology for C code, addressing 
Spec#’s limits in two dimensions: full 
functional verification and verifying 
concurrent operating system code. For 
the latter, VCC allows two-state invari-
ants spanning multiple objects with-
out sacrificing thread or data modu-
larity. VCC is being used to verify the 
kernel of Microsoft Hyper-V (an indus-
trial virtualization platform), the Pike-
OS embedded operating system, and 
the LEDA data-structure library. 

The type safety of the Verve operat-
ing system built at Microsoft Research 
has been verified; the lowest level of 
that verification concerns assembly 
code written for verification and com-
pilation in a stylized form of the Boo-
gie intermediate verification language. 

Also at Microsoft Research, SymDiff 
is a project built on Boogie providing 
an infrastructure for building tools 
and techniques for statically provid-
ing feedback about program changes. 
It is being used to ensure “app-com-
pat,” whereby evolving programs are 
checked for compatibility, or relative 
correctness as opposed to absolute 
correctness. 

Code Contracts for .NET. In 2009, 
Spec# inspired a new project: Code 
Contracts for .NET. To avoid having to 
get programmers to adopt (and sup-
port) a new language, we introduced 
a library-based approach where speci-
fications are written as method calls 
to the library within the actual code. 
Calls to the contract library, including 
methods like Contract.Requires 
for precondtions can be called from 
any .NET program. Both method con-
tracts and object invariants are sup-
ported, though we intentionally do not 
(yet) offer a sound treatment for invari-

ants. Non-null types and purity check-
ing are not supported. 

Standard compilers generate the 
normal MSIL code for calls to contract 
methods, wheras the Code Contracts 
tools use post-build steps to extract 
the contracts and use them for both 
dynamic and static checking. Starting 
with .NET 4.0 in 2010, the contract li-
brary is now a part of mscorlib, .NET’s 
standard library. The associated tools 
are distributed through DevLabs, a Vi-
sual Studio Web sited where early tech-
nology is made available for collecting 
community feedback. 

Songs of Experience 
Here, we reflect on our initial aspira-
tions and design decisions: 

Not a toy language. The fact that 
we built Spec# as a full-scale .NET 
language and developed a mode for it 
within the Visual Studio IDE has had 
far-reaching consequences; for exam-
ple, it made the scope of the project 
large enough to include a wealth of 
scientific and engineering challeng-
es. The project shows it is possible to 
build a practical verifier at this scale; 
given the availability of SMT solvers 
and verification engines like Boogie 
and Why,12 the task of building a veri-
fier is now more straightforward than 
it was a decade earlier. 

Most important, being a full lan-
guage that compiles to a common 
platform has increased the credibility 
of Spec# research, letting us approach 
programmers and managers, espe-
cially at Microsoft, who might not have 
been impressed by a one-off system. 
Integration into Visual Studio allowed 
us to perform background verification 
at design time, immediately indicating 
errors in the program text by design-
time squigglies. It also allowed us to 
populate tool tips with contracts that 
boost programmer understanding of 
the code. A crucial consequence of the 
IDE integration is that it has allowed 
us, through live demos, to communi-
cate the Spec# vision. Demos aside, if 
verification ever makes it into the daily 
rhythm of mainstream programming, 
it will be through a design-time inter-
face providing online verification. 

Having access to existing programs 

d	 http://msdn.microsoft.com/en-us/devlabs/
dd491992.aspx

has two important advantages: let re-
search teams try out ideas and brutally 
reveal problems that still need solu-
tions. It thus both validates research 
and guides the way to more research 
problems to be tackled. Seeing the 
results of our Spec#-related experi-
ments over the years often forced us 
to support previously ignored features 
and alter and expand our specification 
methodology. 

Dealing with a full language also 
has disadvantages. Building the proto-
type system takes effort but is helped 
by the initial enthusiasm that goes 
with creating a new research project. 
However, with most of the system in 
place, adding or modifying features 
becomes a larger effort than one 
would wish. We often felt we could not 
move as quickly as we wished; for ex-
ample, adding a new syntactic feature 
required changes not just to the parser 
but often also to the rest of the compil-
er, the admissibility checker, the part 
of the system that persists and recalls 
contracts in compiled libraries, and 
the verifier. We also put a lot of effort 
into producing contracts for the exist-
ing .NET libraries, using a heuristic 
tool that mined the binaries, manually 
adding contracts as needed, and add-
ing system support for them. 

Our IDE integration did just enough 
to communicate our vision. However, 
our implementation is far inferior to 
product-quality integration, and the 
Spec# mode in Visual Studio is down-
right clunky compared to the whiz-
bang C# mode. Using our own integra-
tion, we gave programmers feedback 
as the program is keyed in but unable 
to take advantage of all IDE advances 
(such as refactoring support) without a 
prohibitively large engineering invest-
ment. 

If we were to do the Spec# research 
project again, it is not clear that ex-
tending an existing language (here 
C#) would be the best strategy. Not 
only does extending C# mean having 
to deal with constructs that are diffi-
cult to reason about but also presents 
a maintenance problem as the base 
language evolves; for example, migrat-
ing Spec# to extend C# versions 3 and 
4 would require more development re-
sources than our small research team 
has, all for the purpose of supporting 
features of marginal research return. 
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In contrast, SPARK Ada was built as a 
subset of Ada and more readily lets a 
language designer pick features that 
mesh well with verification and trivi-
ally solve the problem of what to do as 
the base language evolves. Subsetting 
makes it more difficult to apply the 
verifier to legacy code. 

A final point about developing a 
verifier in a multi-language platform 
is the question of where in the com-
pilation chain to apply verification. 
The Spec# verifier actually starts with 
the MSIL bytecode the compiler pro-
duces, letting the verifier ignore syn-
tactic variations offered by the source 
language (such as for loops versus 
while loops) and allowing the build-
ing of cross-language verifiers. But for 
some features, like the syntactic sup-
port for iterators in C#, it would be 
much easier to start with the source 
constructs than either verify or first 
reverse engineer the auxiliary classes 
and chopped-up method bodies the 
compiler emits into the bytecode. 
While it may be tempting to start at the 
source, the right thing is to start with 
MSIL; otherwise, every language would 
have to write its own verifier. Compil-
ers should annotate the bytecode to 
make it easy to recover higher-level in-
formation. 

Non-null types. Non-null types have 
proven useful and easy to use. Like 
other successful type features, they 
provide an enforceable discipline that 
hits a sweet spot of ruling out most 
programs with certain kinds of errors 
while allowing most programs without 
such errors. In our experience, pro-
grammers almost universally like the 
non-null types, with the exception of 
converting legacy code. 

We began the Spec# project with 
reference types being possibly null 
by default (as in C# and Java) and re-
quiring the type modifier ! to express 
a non-null type, except for local vari-
ables where the type checker auto-
matically inferred the non-null mode. 
We found that in our own code, the 
non-null-by-default option led to less 
clutter. Consequently, our suggestion 
to future language designers is to let 
possibly-null types be the option. 

Our non-null type system has some 
holes resulting from the engineering 
compromises we had to make to in-
tegrate the types into an existing plat-

form. A complete system needs sup-
port from the .NET virtual machine to, 
say, ensure that element assignments 
to arrays respect the covariant arrays 
of .NET. Another example is that han-
dling non-null static fields requires 
more control during class initializa-
tion than the .NET machine provides. 
We designed (sometimes compli-
cated) workarounds for the lack of 
virtual-machine support but did not 
implement them all. We hope future 
execution platforms will be designed 
with non-null types in mind. 

Our attempt at technology-transfer 
of non-null types into Microsoft lan-
guages also yielded a surprise. We had 
felt that the fruits of our non-null re-
search were ready for prime time, but, 
as just described, non-null types do 
not reap their full benefits in a single 
language, instead needing platform 
support. Also as we described, we had 
better luck with technology transfer of 
contracts. 

Dynamic and static checking. An-
other major goal of our initial design 
was support for both dynamic and 
static checking of specifications. Such 
support has several advantages; most 
important, it immediately rewards pro-
grammers for writing specifications, 
because they turn into useful runtime 
assertions. Each specification added 
in that way helps reduce the additional 
cost of writing provable specifications 
at a time when the program might be 
verified. Another advantage of using 
specifications for both dynamic and 
static checking is that programmers 
only need to learn one specification 
language. 

Whenever dynamic checking would 
be too expensive (such as in the en-
forcement of method frames) our prin-
ciple was to drop the dynamic check. 
If dynamic checks are a subset of the 
static checks, then such a design has 
the nice property that any program 
that is statically verified will run with-
out dynamic violations of specifica-
tions. An important exception to this 
subsetting is the assume statement, 
the sole purpose of which is to trade a 
dynamic check for an assumption by 
the static verifier. 

A point that often comes up in dis-
cussions with colleagues is the pros-
pect of omitting the dynamic checks 
of those specifications that have been 

In our experience, 
programmers 
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like the non-null 
types, with the 
exception  
of converting  
legacy code. 
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statically verified. We never got around 
to trying such an optimization for 
Spec#. However, we offer a word of 
caution to others who might consider 
doing so: Preserving the soundness of 
such optimizations is difficult unless 
the whole program is forced to un-
dergo verification. Such a requirement 
on the whole program is practically 
impossible in the .NET environment, 
where the interoperating languages 
have neither static nor dynamic check-
ing. 

Verifying loops. A familiar issue 
with static verification is the need for 
loop invariants, which are analogous 
to the inductive hypotheses used to 
prove theorems inductively in math-
ematics. Whereas a tool like ESC/Java 
avoids this issue by checking only a 
bounded number of iterations of each 
loop, Spec# verifies all iterations, but 
comes at a cost. We have found this 
cost to be moderately low, explaining 
it as follows: The effective loop invari-
ant draws from three sources: One is 
that the Spec# program verifier au-
tomatically infers simple loop invari-
ants. A second is loop-modification in-
ference,8 whereby Spec# enforces the 
method frame on every heap update, 
so the modifies clause of the enclos-
ing method can be incorporated as an 
automatic part of the loop invariant. 
This is the “biggest” part of the effec-
tive loop invariant and also the part no 
user would want to supply explicitly. 
The third source is user-supplied loop 
invariants. Due to the first two sources, 
many loops require no user-supplied 
loop invariants at all, especially for 
methods with no postconditions. As 
programmers and tools take steps to-
ward functional-correctness verifica-
tion, the need for user-supplied loop 
invariants is likely to increase. 

Methodology. The Spec# methodol-
ogy led us to the first implementation 
of a sound modular approach to speci-
fying and verifying object invariants 
and method frames. Compared to ear-
lier solutions,23 the Spec# methodol-
ogy is better suited for automatic veri-
fication using SMT solvers. Since 2003, 
other researchers have designed alter-
native methodologies.17,24 The Spec# 
methodology has been streamlined 
for some common object-oriented pat-
terns (such as aggregate objects), lend-
ing itself to concise specifications of 

programs that fall within those com-
mon patterns. However, for programs 
using more complicated patterns, the 
methodology can be too restrictive; for 
example, it caused us to lose the inter-
est of one programmer at Microsoft 
who was avidly trying to verify a large 
body of code. 

The learning curve of the methodol-
ogy has been steeper for programmers 
than we would have liked, and non-ex-
perts of the methodology sometimes 
have problems knowing what to do in 
response to certain error messages. 
The fact that we constantly changed 
the methodology to improve it, and 
along with it the terminology we used, 
complicated programmers’ under-
standing. We hope the 2010 tutorial20 
has mitigated this problem. 

More. We’d like to make a few more 
remarks about our Spec# experience: 
First, we set out to build a sound veri-
fication system. While we found sound 
solutions to fundamental problems 
of modular verification of object-ori-
ented programs, our implementation 
is not perfect, including several un-
implemented features and other un-
found errors and semantic encoding. 

Second, the best and most far-
reaching single design decision we 
made in implementing the Spec# veri-
fier was to introduce the intermediate 
language Boogie between the Spec# 
program and the formulas sent to the 
theorem prover. Boogie permits man-
ual authoring, as well as automatic 
translation.2 This extra layer of indi-
rection allowed us to investigate many 
alternative design decisions in a light-
weight fashion by hand-modifying the 
translated Spec# program. Another 
benefit of having this important sepa-
ration of concerns is the use of Boogie 
as the backend for other programming 
languages and verification systems 
and as the frontend for different theo-
rem provers. 

Third, a conclusion we draw from 
watching programmers beginning 
to use Spec# is that they really do ap-
preciate contracts, which are not just 
an esoteric feature prescribed by “Di-
jkstra clones.” Unfortunately, we have 
also seen them develop unreasonable 
expectations for how easy it will be to 
statically verify their programs using 
contracts. Post-installation depres-
sion might then set in as they have 

We set out to build 
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difficulty trying to verify their own pro-
grams. 

Fourth, from a research standpoint, 
having source syntax for specification 
constructs lets program text be con-
cise and usefully descriptive, making 
clear the important concepts. How-
ever, from an adoption standpoint, 
this approach involves two problems: 
One is that the engineering overhead 
associated with being a superset lan-
guage is a high price for the developers 
of the verification system to pay; the 
other is that we want specifications to 
be adopted in the platform, not just 
in a single language. Therefore, we 
gradually steered toward a language-
independent solution by providing the 
specification constructs via the Code 
Contracts library, making it possible 
for individual languages to consider 
adding convenient source syntax. 

Conclusion 
Following the Spec# project, the Veri-
fied Software Initiative15 was formed 
in 2005 to encourage the verification 
community to work toward larger proj-
ects, addressing larger risk, and taking 
a long-term view of program verifica-
tion. All our work on Spec# fits this 
initiative. 

Spec# has evolved from a single-
language vision into four ongoing 
technical themes: 

One is the Spec# project itself, 
which entered a new phase in 2009, 
hoping, through a new open-source 
releasee, to see continued improve-
ment in the Spec# programming sys-
tem from a larger community and also 
more use of Spec# in teaching, espe-
cially in light of the 2010 comprehen-
sive tutorial.20 

A second theme is the Boogie lan-
guage and verification engine, provid-
ing an infrastructure used as an ab-
straction layer in several verification 
projects.f

A third theme is a new strand of 
research attempting automatic func-
tional-correctness verification. Using 
a variation of the Spec# methodology 
and the Boogie intermediate verifica-
tion language, VCC is an example of 
such a project, and Hyper-V’s experi-
ence with it has been positive. 

e	 http://specsharp.codeplex.com
f	 http://boogie.codeplex.com

A fourth theme aims at the mass 
adoption of specifications in program-
ming. The language-independent 
Code Contracts project bypasses the 
problem of trying to get a single new 
language to be accepted as the stan-
dard programming language for all 
programmers by putting specification 
facilities into the underlying platform. 
We hope that since all .NET program-
mers can make use of the associated 
tools for runtime checking, static 
checking, automatic documentation 
generation, and intelligent program-
mer assistants, this will lead to an im-
proved general software-engineering 
process. 

These themes continue to push 
frontiers in the quest for verified soft-
ware. 
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