
June 2011 | vol. 54 | no. 6 | communications of the acm 81

problem in the context of modern
object-oriented languages, using the
well-known approach of contracts, or
specification constructs, to document
behavior.22 Contracts standardize the
common practice of writing assertions
within code through two main con-
structs:

Method pre- and postconditions.
Method pre- and postconditions are
part of the application- programming
interface (API) for methods. Precon-
ditions describe what is to be true at
method entry, callers establish them,

A Main Reas o n for the difficulty of progamming
is the inability of programmers to ensure their
programs behave as intended. Needed is both a
way to record that intent and the tools to enforce it.
Spec# (pronounced “speck sharp”)a is a project from
Microsoft Research aimed at addressing the

Specification
and
Verification:
The Spec#
Experience

doi:10.1145/1953122.1953145

Can a programming language really help
programmers write better programs?

by Mike Barnett, Manuel Fähndrich, K. Rustan M. Leino,
Peter Müller, Wolfram Schulte, and Herman Venter

 key insights

 � �Programmers would provide more
information about their code than
existing programming languages
allow, if only they received some
benefit from doing so.

 � �Object-oriented languages should use a
type system that distinguishes references
that can never be null; programmers
spend far too much of their time having
to compensate for this limitation.

 � �Program verification systems receive
a tremendous benefit by leveraging a
shared infrastructure and a higher-level
way of communicating with automatic
theorem provers. a	 http://specsharp.codeplex.com

82 communications of the acm | june 2011 | vol. 54 | no. 6

contributed articles

and implementers can assume them.
Postconditions describe what is to be
true at method exit; implementers es-
tablish them, and callers can assume
them upon method return.

Object invariants. Object invariants
are a way to specify the steady-state
properties that all “good” instances of
a class should maintain. A crucial fea-
ture setting Spec# apart from previous
programming systems is a sound tech-
nique for reasoning about when object

invariants hold; why this is such a dif-
ficult problem and how Spec# solves
it are covered in the section on invari-
ants.

Spec# enforces both kinds of con-
tracts with instrumentation for run-
time checking and with an automatic
program verifier for static, compile-
time checking.

Programmers interact with Spec#
just as they do with any other program-
ming system: Type in the program,

and respond to errors. The difference
is that in Spec#, one writes specifica-
tions, as well as code. In return, the
system analyzes the program as it is
being written and detects many errors
traditional approaches would reveal
only during testing (or deployed execu-
tion).

Figure 1 is a glimpse at what Spec#
has to offer, with a Spec# project ed-
ited in the Visual Studio integrated de-
velopment environment (IDE); shown
is the definition and implementa-
tion of an interface used in a parsing
framework. The method ParseBind-
ing is used to pull apart a string of the
form “a = b”. Like many programming
languages, Spec# does not allow inter-
face methods to contain code though
does allow them to have contracts,
in this case a precondition (keyword
requires) saying the argument pro-
vided to the method must contain the
character ’=’.

Contracts are a native part of the
Spec# language in two ways: Method
contracts are part of the signature of
a method, and the expressions con-
tained in the contracts are written in
the programming language itself, not
in a secondary logical metalanguage
(see Figure 2). ParseBinding’s pre-
condition is written using a call to a
method in the standard .NET library,
Contains. The Spec# programming
system comes with a set of contracts
for the .NET Framework, providing a
(partial) semantics for such commonly
used methods.

All implementations of Parse-
Binding written in Spec# inherit the
interface method’s contract and so do
not have to perform error checking or
defensive programming. This behav-
ior is illustrated in the implementation
that calls the library method IndexOf
with the assurance that the return
value is a valid index into the receiver
string, as guaranteed by the postcon-
dition (not shown) of the Contains
method. Thus, programmers can use
the return value as an argument to the
method Substring, the precondition
of which requires the argument to be a
valid index.

Spec# enforces ParseBinding’s
precondition on any client making a
call to the interface method. A (partic-
ularly stupid) client is shown in Figure
2, where the Spec# system has noticed

Figure 2. A client using the IParser interface incorrectly; notice that verification errors are
presented in the same format as compiler errors.

Figure 1. A (partial) Spec# interface. The yellow box is a tooltip that appears when the
mouse hovers over the call to Substring, showing the signature of the method and
a short programmer-written summary and its contract. Just like the barking dog (as in
Silver Blaze, Arthur Conan Doyle), the important thing to notice is the absence of warnings
on the call to Substring.

contributed articles

June 2011 | vol. 54 | no. 6 | communications of the acm 83

the error as the programmer was typ-
ing the code. The resulting squiggly,
the visual underlining in the editor,
alerts the programmer that the code
is violating a contract. The tooltip win-
dow shown pops up in response to the
programmer hovering over the squig-
gled text with the mouse. The error
list in the IDE is also populated with a
warning about the contract error.

Note that Figures 1 and 2 do not in-
clude warnings about object referenc-
es possibly being null because Spec#
distinguishes between non-null types
and possibly-null types. In the exam-
ples, IParser and string are both
non-null types.

The Spec# Language
Spec# is an object-oriented language,
a superset of C# v2.0 (released in
2005), compiling to the Microsoft In-
termediate Language bytecode (MSIL)
and running on the .NET virtual ma-
chine and integrated into Visual Stu-
dio’s IDE, which provides language
services (such as syntax highlighting
and the ability to run the program veri-
fier in the background as the code is
being written).

The extensions to C# consist chief-
ly of the standard design-by-contract
features22 (method contracts and ob-
ject invariants), as well as a non-null
type system. For a full introduction to
the language, see the Spec# tutorial20;
Figure 3 outlines the most commonly
used features.

The first postcondition (keyword
ensures) of CrankItUp uses the ex-
pression old(Volume()) to refer to
the value of Volume() on entry to the
method, promising the value of Vol-
ume() is increased by amount. The
second postcondition expresses that
the method returns the final value of
Volume(); the Spec# keyword re-
sult refers to the return value of the
method.

Since contracts must not cause
state changes, methods may be used
in contracts only if they are side-effect
free,4 as indicated by the [Pure] cus-
tom attributeb, as in the definition of
Volume().

Reasoning about a method call is
in terms of the method’s contract.

b	 A .NET feature that allows associating meta-
data with program elements.

Because method contracts are inher-
ited in subclasses, this reasoning ap-
plies even in the presence of dynamic
method dispatch where the particular
method implementation invoked may
not be known until runtime; that is,
contract inheritance enforces the well-
known concept of behavioral subtyp-
ing.9,21

The class Stereo declares three
object invariants to specify what it
means for an object of this class to
be consistent. Whereas the first two
invariants constrain the values of the
fields of a Stereo object, the third in-
variant relates the states of two sub-ob-
jects. The first assignment statement
in the body of the method CrankItUp
might break that invariant before the
subsequent assignment reestablishes
it. To indicate that an object invari-
ant might be temporarily violated,
the two assignment statements must
appear within an expose statement,
described in more detail in the section
on invariants. Note that no expose
statement is needed in ChangeCD,
because the single assignment main-
tains the invariants.

Null-dereference problems are the

bane of object-oriented programming.
We and others have found the single
most common specification is the
exclusion of the null value from the
possible values of a field, method pa-
rameter, or result. Spec# refines C#’s
type system by distinguishing non-null
types (such as the type Speaker of the
fields left and right in Figure 3) and
possibly null types (written with a post-
fix question mark, as in Speaker?)c.
References of non-null types can be
dereferenced safely without requiring
runtime checks or proof obligations to
prevent errors.

Each object of type Stereo is an ag-
gregate object containing references to
other objects that make up its internal
representation. In Spec#, the aggre-
gate/sub-object relation is expressed
using the [Rep] custom attribute in
the declaration of the field pointing
to the sub-object. In our example, the
speakers are sub-objects of a Ste-
reo object; we say the Stereo object

c	 For traditionalists, Spec# also offers the com-
plementary mode where Speaker represents
the possibly null type and the non-null type is
written as Speaker!.

Figure 3. A (partial) Spec# program demonstrating the language’s basic features,
including method contracts that describe (part of) the method behavior, as well as object
invariants that describe the consistent state of each instance of the class.

public class Stereo {
 int currentCDSlot;
 [Rep] Speaker left = new Speaker();
 [Rep] Speaker right = new Speaker();

 invariant 0 <= currentCDSlot;
 invariant left != right;
 invariant left.Gain == right.Gain;

 public int CrankItUp(int amount)
 requires 0 <= amount;
 ensures Volume() == old(Volume()) + amount;
 ensures result == Volume();
 {
 expose (this) {
 left.Adjust(amount);
 right.Adjust(amount);
 }
 ...
 }

 [Pure] public int Volume()
 { return left.Gain; }

 public void ChangeCD(int newSlot)
 requires 0 <= newSlot;
 { currentCDSlot = newSlot; }
}

84 communications of the acm | june 2011 | vol. 54 | no. 6

contributed articles

owns its speakers. Due to this own-
ership relationship, Spec# enforces
that two Stereo objects do not share
their speakers and that, in general, a
speaker can be modified only through
its owning Stereo object. This lets a
Stereo object maintain object invari-
ants over the state of its speakers (such
as the third object invariant).

Enforcing Spec# Contracts
A spectrum of possibilities is available
for checking Spec# contracts. One
extreme would be to verify them all
statically; another would be to check
them all dynamically. Either extreme
is impractically expensive. The former
involves a prohibitive specification
and verification effort; the latter in-
volves prohibitive runtime overhead.
Instead, Spec# makes some checks
mandatory; splitting them between
dataflow analyses performed during
compilation and runtime checks per-
formed during execution; the rest are
optionally enforced by a static pro-
gram verifier.

The runtime checker is straightfor-
ward: each contract indicates some
particular program points at which it

must hold; the Spec# compiler gener-
ates a runtime assertion for each, and
any failure causes an exception to be
thrown.

The dataflow analysis part of the
Spec# compiler primarily checks
three properties: The first, and most
important, is enforcing the non-null
type system, which can be used inde-
pendently without the other kinds of
contracts in the Spec# system.

In general, a type system guaran-
tees the static type of an expression ac-
curately describes the possible values
to which the expression can evaluate at
runtime. In Spec#, an expression with
a non-null type can never be observed
to have a value of null. Guarantee-
ing this property requires controlling
both assignments and initialization.10
In particular, the type system must
guarantee that a fresh object doesn’t
escape from its constructor before
the constructor initializes all non-null
fields (such as left and right in
Figure 3) with non-null values. Spec#
offers two solutions to this problem.
One is based on a flexible placement
of the base constructor call within a
constructor body; the other caters to

legacy code by a more sophisticated
dataflow analysis.11

The second property is to enforce
the purity of, or side-effect free, con-
tracts; that is, they are side-effect
free. Purity ensures dynamic contract
checking does not interfere with the
execution of the rest of the program
and that contracts have a simple se-
mantics that can be encoded in the
static verifier.

Purity could easily be enforced by
forbidding all side-effecting opera-
tions (such as field updates), but do-
ing so would be too restrictive; for
instance, a method called in a speci-
fication might want to iterate over a
collection. Creating and advancing an
iterator are side effects; however, they
are not observable when the method
returns. Following JML,18 Spec# thus
enforces weak purity, forbidding pure
methods from changing the state of
existing objects but allowing updates
to objects created within the (dynam-
ic) scope of the method’s lifetime.

The final property the compiler
enforces is to limit what can be men-
tioned in an object invariant and what
things a pure method is allowed to
read. These admissibility checks are
crucial for sound static verification.

The static program verifier flags vio-
lations of both the explicit contracts
and the implicit contracts set forth
by the language semantics (such as
null dereference and array index out
of bounds). It checks one method at
a time. If the verification fails, Spec#
displays an error message, the loca-
tion of the error, the trace through the
method containing the error, and pos-
sibly a counterexample; Figure 2 illus-
trates how the IDE reports verification
errors to the programmer.

The Spec# static verifier is sound
but not complete; that is, it finds all er-
rors in a program but might also warn
about methods that are actually cor-
rect. Such spurious warnings are often
fixed by providing more comprehen-
sive specifications. In some cases, it
may be necessary for the programmer
to add an assumption to the program
using the program statement assume
e. The condition e is blindly assumed
by the static verifier but is checked at
runtime. Assumptions require special
attention during testing and code re-
views.

Figure 4. Verfication pipeline.

Bytecode
Translator

Verification
Condition
Generator

Spec#

Errors

“Squigglies”

The semantics of Spec# is encoded in Boogie. The heap is modeled as a 2D array indexed by object
references and field names. Within a method body, preconditions and type information are encoded
as assumptions and postconditions and implicit language contracts as assertions. The verification
condition is expressed in a standard format supported by many automatic theorem provers. When the
theorem prover reports errors, they are mapped back to the Boogie program and then to the Spec#
source. Another outcome (not shown) is when the prover runs out of time or space.

Correct!

Boogie

Verification Condition

void Truncate(Rational r)
	 ensures r.n < 10;
{r.n = r.n./r.d;}

assume r != null;
t0 := heap[r,n];
t1 := heap[r,d];
assert t1 != 0;
t2 := t0 / t1;
heap[r,n] := t2;
assert heap[r,n] < 10;

r ≠ null ⇒ t0 =
select(heap,r,n) ⇒ t1 =
select(heap,r,d) ⇒ t1 ≠ 0 ∧
(t2 = t0 / t1 ⇒ heap′ =
store(heap,r,n,t2) ⇒
select(heap′,r,n) < 10)

SMT Solver



contributed articles

June 2011 | vol. 54 | no. 6 | communications of the acm 85

Verification proceeds via a series
of transformations starting with the
Spec# program and ending with a
mathematical formula that is then in-
put to an automated first-order theo-
rem prover. The formula, called a veri-
fication condition, is valid if and only
if there are no violations of implicit
or explicit contracts (see Figure 4).
The gap between the program and the
formula is bridged by translating the
Spec# program into a much simpler
program, much as a compiler bridges
the gap between source program and
machine code by translating into an
intermediate representation. For this
purpose, we defined the intermedi-
ate verification language Boogie2; we
also created a way to derive verifica-
tion conditions for Boogie programs
by computing their weakest precondi-
tions. In essence, Boogie has only as-
signment statements, assertions, as-
sumptions, and branches. A method
call is modeled by asserting all of the
method’s preconditions, assigning ar-
bitrary values to anything the method
might modify (things within its frame)
and assuming the method’s postcon-
ditions. Boogie was designed to sup-
port more front ends than Spec#.

Note that static verification does
not fully replace testing. Tests are still
necessary to ensure the requirements
are captured correctly, to check the
properties that are not expressed by
contracts, and to check properties ig-
nored by the Spec# verifier (such as
stack overflows).

Invariants
Spec# performs modular reasoning,
which is to a verifier what separate
compilation is to a compiler; each
module is verified separately and
does not need to be re-verified when
the modules are combined into a
whole program (see Figure 3). To rea-
son soundly in the presence of object
invariants and mutable state, Spec#
uses a methodology that restricts pro-
grams and guides their use of specifi-
cations. Here, we outline this impor-
tant contribution of sound modular
reasoning; a full explanation is in the
Spec# tutorial.20

A first problem with object invari-
ants is deciding on the program points
at which they should hold. An invari-
ant cannot always hold; it is generally

necessary to temporarily violate an in-
variant with later state changes rees-
tablishing it, as outlined in Figure 3 by
method CrankItUp. It is also not pos-
sible to say an object invariant holds
on method boundaries; method calls
made within a method could make
the object accessible outside the class
while in an inconsistent state.

A second related problem is that
an object invariant often depends on
the state of other objects; for instance,
the invariant of an aggregate object
typically depends on the state of its
sub-objects, as illustrated by Stereo
in Figure 3. Consequently, modifica-
tion of these sub-objects potentially
violates the invariant of the aggregate.
This situation is inescapable for any
system with reusable components, so
the methodology must allow it. But
the verifier must ensure the aggregate
object’s invariants are reestablished
before the aggregate relies on them
again.

Spec# solves the first problem with
the expose statement, which is simi-
lar to a lock statement in concurrent
programming. The expose statement
indicates a non-reentrant lexical re-
gion within which an object’s state is
vulnerable and within which the in-
variant may be temporarily violated.
The object invariant must hold in or-
der for the block to be entered or ex-
ited.

The second problem is solved by
introducing an ownership system in
which the objects of the heap are or-
ganized into a collection of tree struc-
tures. The edges of the trees indicate
ownership, or an aggregate/sub-object
relationship. An object invariant can
depend roughly only on state con-
tained in the subtree of which it is the
root. Within an expose block, a meth-
od can call down in the ownership tree
but not up, preventing method calls on
inconsistent objects.

This is the basic approach to speci-
fying aggregate objects in Spec#. How-
ever, many object-oriented programs
not only involve hierarchical data
structures but also consist of mutu-
ally referring objects (such as the sub-
ject-observer pattern or doubly linked
lists). To deal with such peer relation-
ships, the Spec# methodology uses the
notion of peer consistency, or that an
object and all its peers are consistent;

If verification
ever makes it into
the daily rhythm
of mainstream
programming,
it will be through
a design-time
interface providing
online verification.

86 communications of the acm | june 2011 | vol. 54 | no. 6

contributed articles

see the Spec# tutorial20 for details.
A third problem of modular rea-

soning is framing, which deals with
what “frame” can be put around a
method call to limit the effects the call
might have; for instance, in method
CrankItUp, what is the program state
after the call to left.Adjust? A pes-
simistic approach is to treat the call
as modifying everything in the heap,
since potentially all objects in the heap
are reachable from every method (such
as through static fields). A better solu-
tion would be to know exactly which
parts of the heap a method changes,
but, in the presence of subclassing
and information hiding, a method
contract cannot name these parts di-
rectly. Instead, some form of abstrac-
tion is needed but one that is precise
enough for the program verifier. Spec#
solves this problem by again utilizing
its ownership system; without an ex-
plicit specification stating otherwise
(keyword modifies), a method may
modify only the fields of the receiver
and those of objects within the subtree
of which the receiver is the root. Using
ownership to abstract over the modifi-
cations of sub-objects is justified, be-

cause clients of an object should not
be concerned with its sub-objects; for
instance, clients of Stereo objects
need to know only about the result
of Volume(), not how the volume is
stored in the sub-objects of Stereo.

Songs of Innocence
We began the Spec# project in 2003 as
an attempt to build a comprehensive
program-verification system,3 hoping
to build a real system real program-
mers could use on real programs to
perform real verification, a system the
“programming masses” could use in
their everyday work. Along the way,
we wanted to explore and push the
boundaries of specification and verifi-
cation technology to get closer to real-
izing these aspirations.

At the time, program verification
was already decades old, starting with
formal underpinnings of program se-
mantics and techniques for proving
program correctness.14 Supported by
mechanical-proof assistants, early
program verifiers included the GYPSY
system and the Stanford Pascal Veri-
fier. Later systems, still used today,
include full-featured proof assistants

like PVS and Isabelle/HOL.
Another approach to improving

program quality via verification tech-
nology is extended static checking,
which included checkers like ESC/
Modula-38 and ESC/Java.13 These tools
have been more closely integrated into
existing programming languages and
value automation over expressivity
or soundness. The automation is en-
abled by a breed of combined decision
procedures that today is known as Sat-
isfiability Modulo Theories, or SMT,
solvers. To make their use easier and
more cost-effective, extended static
checkers were intentionally designed
to be unsound; that is, they could miss
certain errors.

Dynamic checking of specifications
has always been done by the Eiffel
programming language,22 which pio-
neered inclusion of contracts in ob-
ject-oriented languages. The tool suite
for the Java Modeling Language (JML)
also included a facility for dynamic
contract checking.4 The strong influ-
ence of both Eiffel and JML on Spec#
is evident.

Our plan in 2003 targeting real pro-
grams was no doubt our single most
important decision and has perme-
ated every aspect of the Spec# design.
Targeting real programs meant not
designing a tool for a toy language
with idealized features. In addition
to learning how to handle difficult or
otherwise uncomfortable language
features, a benefit of this decision is
the large body of programs and librar-
ies that can be used as starting points
for specification and verification. It
also implied a connection with an ex-
isting language, so we built our lan-
guage extensions around C# and the
.NET platform. Other well-known real
languages with specifications were
Eiffel, Java+JML, and SPARK Ada1; as
in GYPSY and Eiffel, our extensions
made specifications part of the lan-
guage itself.

Our plan to build a system for real
programmers immediately ruled out
the possibility of exposing program-
mers to an interactive proof assistant.
We felt that while programmers must
know how to specify a program, they
should not need to understand proof
theory, the logical encoding of a pro-
gram’s semantics, or how to issue tac-
tics to guide the proof search. Instead,

Spec# also relies on other projects developed within Microsoft Research:
CCI. The Microsoft Research Common Compiler Infrastructure is a set of base

classes that implement common functionality needed by compilers, taking care
of intermediate code generation and helping with symbol table management,
metadata importing, name resolution, overload resolution, and error reporting. It also
includes functionality for language integration into the Visual Studio development
environment. First developed within Microsoft as part of the implementation of
Comega, it has since been used for other compilers, including the Spec# compiler.
A redesigned version of the core parts of CCI was released in 2009 as an open source
project (http://ccimetadata.codeplex.com).

Boogie. Boogie19 is a verification platform consisting of an intermediate verification
language and a tool that generates logical verification conditions. The Boogie language
offers a level of abstraction suitable for modeling the behavior and proof obligations of
a source language; for example, it supports procedures with contracts, local and global
variables, structured and unstructured control flow, a polymorphic type system, and
first-order mathematical definitions. These features make it convenient for verification
systems to encode imperative and object-oriented programs. Verifiers built on top of
Boogie translate source programs into Boogie programs and invoke the Boogie tool.
Boogie computes efficient verification conditions for its input program, sends them
to a theorem prover (such as the SMT solver Z3), and makes the results available to
programmers and upstream tools. We initially developed Boogie within the Spec#
project, but, as noted, Boogie is now employed by many program verifiers. Boogie has
been an open source project (http://boogie.codeplex.com) since 2009.

Z3. Z37 is a state-of-the-art SMT solver combining decision procedures for functions,
arithmetic, and logical quantifiers. Due to its high performance, it is the default SMT
solver used by the Boogie verification engine. When a proof attempt fails, Z3 returns
information from which Boogie extracts the failed assertion, the trace through the
method to be verified leading to the failure, and a counterexample with possible values
for local variables and heap locations. This information gives programmers precise and
helpful error messages; see Z3’s Web site http://research/microsoft.com/projects/z3/.

The Spec# Ecosystem

contributed articles

June 2011 | vol. 54 | no. 6 | communications of the acm 87

we turned to an automatic SMT solver.
This is not to say that verification is
fully automatic; Spec# programmers
must still supply specifications, but all
interaction between them and Spec#’s
tools takes place in the context of the
program and its specifications. The
major contender here was ESC/Java
and similar tools using JML specifica-
tions in Java programs.

Another important consequence
of building a system for real program-
mers was the need for something to
attract real programmers. It is a long
journey indeed for programmers to
arrive at the point of writing specifica-
tions that lead to effective verification.
To give them immediate benefit for
any specification they write, however
partial, we included in Spec# dynamic
checking of specifications. Through-
out the project, we also worked on pro-
viding good defaults so programmers
would not be unduly burdened in the
most common cases.

Finally, our plan for real verification
meant not compromising on sound-
ness while also aligning with fully fea-
tured proof assistants. Sound verifica-
tion of object-oriented programs does
not come easily. Of the unsound fea-
tures in ESC/Java, many were known
to have sound solutions. But two open
key areas were how to verify object in-
variants in the presence of subclassing
and dynamically dispatched methods
(giving rise to the possibility of call-
backs, or situations where the caller
of a method is reentered during the
execution of the method it called), as
well as method framing. To ensure our
verifier would scale to large programs
and could be applied to libraries, we
also wanted to support modular veri-
fication. We began the project with an
idea for a methodology that addresses
these problems, providing a glimmer
of hope for building a sound and mod-
ular verifier.

Though we aimed for a broad de-
sign, we initially left out several things
so we could provide simpler specifi-
cations; for example, we provided no
support for writing specifications for
unsafe (non-type-safe) code, concur-
rency, higher-level aspects of closure
objects, and some functional correct-
ness concerns of algorithmic verifica-
tion. The specifications focused in-
stead on partial properties, of the kind

every programmer could write down
and for which might be willing to ac-
cept the runtime overhead of dynamic
checking. We subsequently added
other features we left out of our initial
design (such as generics).

We set out to build a programming
system where both the programming
language and integrated tooling sup-
port specifications. The system was
intended to blend into existing prac-
tices, provide a range of assurance lev-
els, from dynamic checking to static
verification, and deliver static verifi-
cation that was sound and automatic.
Its success depended on answering a
number of scientific questions, as well
as solving non-trivial engineering con-
cerns.

Influence
Here, we explore Spec#’s influence on
researchers and language designers in
academia and industry.

Scientific results. The Spec# proj-
ect’s main research focus has been on
improving verification methodology
by identifying common programming
idioms and developing techniques and
notations for their specification and
verification. We built a state-of-the-art
system and advanced the state of veri-
fication. First, the Spec# methodology
supports sound modular verification
of object invariants in the presence of
multi-object invariants, subclassing,
and reentrancy. We also worked out
some of the difficulties with abstrac-
tion features (such as pure methods).
Spec#’s dynamic ownership model al-
lows programmers to express heap to-
pologies and use them for verification.
The Spec# project gained practical ex-
perience through a design of non-null
types and incorporated flexible object
initialization schemes. It advanced the
foundations of program verification
by, for instance, providing a verifica-
tion-condition generator for unstruc-
tured programs. And finally, by pro-
viding IDE support and continuously
running the program verifier in the
background, Spec# broke new ground
in how programmers work with a veri-
fier. The scientific contributions of the
Spec# project have been published in
more than 30 articles.

Impact on academic research and
teaching. A number of research proj-
ects build directly on the Spec# infra-

structure; for example, SpecLeuven16
is an extension of the Spec# method-
ology and tools to handle concurrency,
using Spec#’s ownership system to
enforce locking strategies. Several re-
search groups use the Boogie verifica-
tion engine developed as part of the
Spec# project2; for instance, various
Java/JML, bytecode/BML, and Eiffel
projects use Boogie as a target for their
verifiers. At the other end, Boogie’s
output is now also fed to interactive
theorem provers. In addition, we’ve
seen researchers encode and verify
new logics, as well as verify challeng-
ing examples (such as garbage collec-
tors).

Other projects do not use the Spec#
infrastructure but seem to be influ-
enced and inspired by the project.
For example, Eiffel supports attached
types, a variation of a non-null type
system. JML does not include a non-
null type system but offers non-null
annotations, which are the default
for all reference types. The idea to
run a program verifier within an IDE
and report verification errors just like
compiler errors has been picked up by
ESC/Java2, which comes with Eclipse
integration. Likewise, the Rodin tool
provides Eclipse integration for the
Event-B tools.

Spec# has also been used to teach
program verification at universities,
mostly in graduate seminars. We and
others have also taught Spec# in a
number of summer schools, as well as
at major conferences.

Impact within industry. In 2003, we
hoped to convince one of the program-
ming language teams at Microsoft to
add Spec#-like features. However,
influencing such a team is itself a dif-
ficult proposition, and even if we had
succeeded, our single-language story
did not address the fact that .NET is
a multi-language platform. We also
lacked support for unsafe code and for
concurrency while battling a percep-
tion that verification is relevant only
for safety-critical software. Even so,
Spec# has influenced other projects
in Microsoft Research and several Mi-
crosoft product groups. This influence
can be grouped into two main catego-
ries: Boogie and Code Contracts for
.NET:

Boogie. The verification engine
originally developed for Spec#, called

88 communications of the acm | june 2011 | vol. 54 | no. 6

contributed articles

Boogie, has become an independent
project (see the sidebar “The Spec#
Ecosystem”) used in other projects in-
side and outside Microsoft. Here are
some of them:

The HAVOC tool uses Boogie to ver-
ify low-level sequential systems code
written in C5 and has been applied to
verify properties of device drivers and
critical components in the Windows
kernel. A version of HAVOC has also
been targeted in Microsoft at finding
specific errors in a very large code base
of systems code.

The VCC6 tool built at Microsoft Re-
search adopts Spec#’s tool chain and
methodology for C code, addressing
Spec#’s limits in two dimensions: full
functional verification and verifying
concurrent operating system code. For
the latter, VCC allows two-state invari-
ants spanning multiple objects with-
out sacrificing thread or data modu-
larity. VCC is being used to verify the
kernel of Microsoft Hyper-V (an indus-
trial virtualization platform), the Pike-
OS embedded operating system, and
the LEDA data-structure library.

The type safety of the Verve operat-
ing system built at Microsoft Research
has been verified; the lowest level of
that verification concerns assembly
code written for verification and com-
pilation in a stylized form of the Boo-
gie intermediate verification language.

Also at Microsoft Research, SymDiff
is a project built on Boogie providing
an infrastructure for building tools
and techniques for statically provid-
ing feedback about program changes.
It is being used to ensure “app-com-
pat,” whereby evolving programs are
checked for compatibility, or relative
correctness as opposed to absolute
correctness.

Code Contracts for .NET. In 2009,
Spec# inspired a new project: Code
Contracts for .NET. To avoid having to
get programmers to adopt (and sup-
port) a new language, we introduced
a library-based approach where speci-
fications are written as method calls
to the library within the actual code.
Calls to the contract library, including
methods like Contract.Requires
for precondtions can be called from
any .NET program. Both method con-
tracts and object invariants are sup-
ported, though we intentionally do not
(yet) offer a sound treatment for invari-

ants. Non-null types and purity check-
ing are not supported.

Standard compilers generate the
normal MSIL code for calls to contract
methods, wheras the Code Contracts
tools use post-build steps to extract
the contracts and use them for both
dynamic and static checking. Starting
with .NET 4.0 in 2010, the contract li-
brary is now a part of mscorlib, .NET’s
standard library. The associated tools
are distributed through DevLabs, a Vi-
sual Studio Web sited where early tech-
nology is made available for collecting
community feedback.

Songs of Experience
Here, we reflect on our initial aspira-
tions and design decisions:

Not a toy language. The fact that
we built Spec# as a full-scale .NET
language and developed a mode for it
within the Visual Studio IDE has had
far-reaching consequences; for exam-
ple, it made the scope of the project
large enough to include a wealth of
scientific and engineering challeng-
es. The project shows it is possible to
build a practical verifier at this scale;
given the availability of SMT solvers
and verification engines like Boogie
and Why,12 the task of building a veri-
fier is now more straightforward than
it was a decade earlier.

Most important, being a full lan-
guage that compiles to a common
platform has increased the credibility
of Spec# research, letting us approach
programmers and managers, espe-
cially at Microsoft, who might not have
been impressed by a one-off system.
Integration into Visual Studio allowed
us to perform background verification
at design time, immediately indicating
errors in the program text by design-
time squigglies. It also allowed us to
populate tool tips with contracts that
boost programmer understanding of
the code. A crucial consequence of the
IDE integration is that it has allowed
us, through live demos, to communi-
cate the Spec# vision. Demos aside, if
verification ever makes it into the daily
rhythm of mainstream programming,
it will be through a design-time inter-
face providing online verification.

Having access to existing programs

d	 http://msdn.microsoft.com/en-us/devlabs/
dd491992.aspx

has two important advantages: let re-
search teams try out ideas and brutally
reveal problems that still need solu-
tions. It thus both validates research
and guides the way to more research
problems to be tackled. Seeing the
results of our Spec#-related experi-
ments over the years often forced us
to support previously ignored features
and alter and expand our specification
methodology.

Dealing with a full language also
has disadvantages. Building the proto-
type system takes effort but is helped
by the initial enthusiasm that goes
with creating a new research project.
However, with most of the system in
place, adding or modifying features
becomes a larger effort than one
would wish. We often felt we could not
move as quickly as we wished; for ex-
ample, adding a new syntactic feature
required changes not just to the parser
but often also to the rest of the compil-
er, the admissibility checker, the part
of the system that persists and recalls
contracts in compiled libraries, and
the verifier. We also put a lot of effort
into producing contracts for the exist-
ing .NET libraries, using a heuristic
tool that mined the binaries, manually
adding contracts as needed, and add-
ing system support for them.

Our IDE integration did just enough
to communicate our vision. However,
our implementation is far inferior to
product-quality integration, and the
Spec# mode in Visual Studio is down-
right clunky compared to the whiz-
bang C# mode. Using our own integra-
tion, we gave programmers feedback
as the program is keyed in but unable
to take advantage of all IDE advances
(such as refactoring support) without a
prohibitively large engineering invest-
ment.

If we were to do the Spec# research
project again, it is not clear that ex-
tending an existing language (here
C#) would be the best strategy. Not
only does extending C# mean having
to deal with constructs that are diffi-
cult to reason about but also presents
a maintenance problem as the base
language evolves; for example, migrat-
ing Spec# to extend C# versions 3 and
4 would require more development re-
sources than our small research team
has, all for the purpose of supporting
features of marginal research return.

contributed articles

June 2011 | vol. 54 | no. 6 | communications of the acm 89

In contrast, SPARK Ada was built as a
subset of Ada and more readily lets a
language designer pick features that
mesh well with verification and trivi-
ally solve the problem of what to do as
the base language evolves. Subsetting
makes it more difficult to apply the
verifier to legacy code.

A final point about developing a
verifier in a multi-language platform
is the question of where in the com-
pilation chain to apply verification.
The Spec# verifier actually starts with
the MSIL bytecode the compiler pro-
duces, letting the verifier ignore syn-
tactic variations offered by the source
language (such as for loops versus
while loops) and allowing the build-
ing of cross-language verifiers. But for
some features, like the syntactic sup-
port for iterators in C#, it would be
much easier to start with the source
constructs than either verify or first
reverse engineer the auxiliary classes
and chopped-up method bodies the
compiler emits into the bytecode.
While it may be tempting to start at the
source, the right thing is to start with
MSIL; otherwise, every language would
have to write its own verifier. Compil-
ers should annotate the bytecode to
make it easy to recover higher-level in-
formation.

Non-null types. Non-null types have
proven useful and easy to use. Like
other successful type features, they
provide an enforceable discipline that
hits a sweet spot of ruling out most
programs with certain kinds of errors
while allowing most programs without
such errors. In our experience, pro-
grammers almost universally like the
non-null types, with the exception of
converting legacy code.

We began the Spec# project with
reference types being possibly null
by default (as in C# and Java) and re-
quiring the type modifier ! to express
a non-null type, except for local vari-
ables where the type checker auto-
matically inferred the non-null mode.
We found that in our own code, the
non-null-by-default option led to less
clutter. Consequently, our suggestion
to future language designers is to let
possibly-null types be the option.

Our non-null type system has some
holes resulting from the engineering
compromises we had to make to in-
tegrate the types into an existing plat-

form. A complete system needs sup-
port from the .NET virtual machine to,
say, ensure that element assignments
to arrays respect the covariant arrays
of .NET. Another example is that han-
dling non-null static fields requires
more control during class initializa-
tion than the .NET machine provides.
We designed (sometimes compli-
cated) workarounds for the lack of
virtual-machine support but did not
implement them all. We hope future
execution platforms will be designed
with non-null types in mind.

Our attempt at technology-transfer
of non-null types into Microsoft lan-
guages also yielded a surprise. We had
felt that the fruits of our non-null re-
search were ready for prime time, but,
as just described, non-null types do
not reap their full benefits in a single
language, instead needing platform
support. Also as we described, we had
better luck with technology transfer of
contracts.

Dynamic and static checking. An-
other major goal of our initial design
was support for both dynamic and
static checking of specifications. Such
support has several advantages; most
important, it immediately rewards pro-
grammers for writing specifications,
because they turn into useful runtime
assertions. Each specification added
in that way helps reduce the additional
cost of writing provable specifications
at a time when the program might be
verified. Another advantage of using
specifications for both dynamic and
static checking is that programmers
only need to learn one specification
language.

Whenever dynamic checking would
be too expensive (such as in the en-
forcement of method frames) our prin-
ciple was to drop the dynamic check.
If dynamic checks are a subset of the
static checks, then such a design has
the nice property that any program
that is statically verified will run with-
out dynamic violations of specifica-
tions. An important exception to this
subsetting is the assume statement,
the sole purpose of which is to trade a
dynamic check for an assumption by
the static verifier.

A point that often comes up in dis-
cussions with colleagues is the pros-
pect of omitting the dynamic checks
of those specifications that have been

In our experience,
programmers
almost universally
like the non-null
types, with the
exception
of converting
legacy code.

90 communications of the acm | june 2011 | vol. 54 | no. 6

contributed articles

statically verified. We never got around
to trying such an optimization for
Spec#. However, we offer a word of
caution to others who might consider
doing so: Preserving the soundness of
such optimizations is difficult unless
the whole program is forced to un-
dergo verification. Such a requirement
on the whole program is practically
impossible in the .NET environment,
where the interoperating languages
have neither static nor dynamic check-
ing.

Verifying loops. A familiar issue
with static verification is the need for
loop invariants, which are analogous
to the inductive hypotheses used to
prove theorems inductively in math-
ematics. Whereas a tool like ESC/Java
avoids this issue by checking only a
bounded number of iterations of each
loop, Spec# verifies all iterations, but
comes at a cost. We have found this
cost to be moderately low, explaining
it as follows: The effective loop invari-
ant draws from three sources: One is
that the Spec# program verifier au-
tomatically infers simple loop invari-
ants. A second is loop-modification in-
ference,8 whereby Spec# enforces the
method frame on every heap update,
so the modifies clause of the enclos-
ing method can be incorporated as an
automatic part of the loop invariant.
This is the “biggest” part of the effec-
tive loop invariant and also the part no
user would want to supply explicitly.
The third source is user-supplied loop
invariants. Due to the first two sources,
many loops require no user-supplied
loop invariants at all, especially for
methods with no postconditions. As
programmers and tools take steps to-
ward functional-correctness verifica-
tion, the need for user-supplied loop
invariants is likely to increase.

Methodology. The Spec# methodol-
ogy led us to the first implementation
of a sound modular approach to speci-
fying and verifying object invariants
and method frames. Compared to ear-
lier solutions,23 the Spec# methodol-
ogy is better suited for automatic veri-
fication using SMT solvers. Since 2003,
other researchers have designed alter-
native methodologies.17,24 The Spec#
methodology has been streamlined
for some common object-oriented pat-
terns (such as aggregate objects), lend-
ing itself to concise specifications of

programs that fall within those com-
mon patterns. However, for programs
using more complicated patterns, the
methodology can be too restrictive; for
example, it caused us to lose the inter-
est of one programmer at Microsoft
who was avidly trying to verify a large
body of code.

The learning curve of the methodol-
ogy has been steeper for programmers
than we would have liked, and non-ex-
perts of the methodology sometimes
have problems knowing what to do in
response to certain error messages.
The fact that we constantly changed
the methodology to improve it, and
along with it the terminology we used,
complicated programmers’ under-
standing. We hope the 2010 tutorial20
has mitigated this problem.

More. We’d like to make a few more
remarks about our Spec# experience:
First, we set out to build a sound veri-
fication system. While we found sound
solutions to fundamental problems
of modular verification of object-ori-
ented programs, our implementation
is not perfect, including several un-
implemented features and other un-
found errors and semantic encoding.

Second, the best and most far-
reaching single design decision we
made in implementing the Spec# veri-
fier was to introduce the intermediate
language Boogie between the Spec#
program and the formulas sent to the
theorem prover. Boogie permits man-
ual authoring, as well as automatic
translation.2 This extra layer of indi-
rection allowed us to investigate many
alternative design decisions in a light-
weight fashion by hand-modifying the
translated Spec# program. Another
benefit of having this important sepa-
ration of concerns is the use of Boogie
as the backend for other programming
languages and verification systems
and as the frontend for different theo-
rem provers.

Third, a conclusion we draw from
watching programmers beginning
to use Spec# is that they really do ap-
preciate contracts, which are not just
an esoteric feature prescribed by “Di-
jkstra clones.” Unfortunately, we have
also seen them develop unreasonable
expectations for how easy it will be to
statically verify their programs using
contracts. Post-installation depres-
sion might then set in as they have

We set out to build
a programming
system where
both the
programming
language and
integrated
tooling support
specifications.

contributed articles

June 2011 | vol. 54 | no. 6 | communications of the acm 91

difficulty trying to verify their own pro-
grams.

Fourth, from a research standpoint,
having source syntax for specification
constructs lets program text be con-
cise and usefully descriptive, making
clear the important concepts. How-
ever, from an adoption standpoint,
this approach involves two problems:
One is that the engineering overhead
associated with being a superset lan-
guage is a high price for the developers
of the verification system to pay; the
other is that we want specifications to
be adopted in the platform, not just
in a single language. Therefore, we
gradually steered toward a language-
independent solution by providing the
specification constructs via the Code
Contracts library, making it possible
for individual languages to consider
adding convenient source syntax.

Conclusion
Following the Spec# project, the Veri-
fied Software Initiative15 was formed
in 2005 to encourage the verification
community to work toward larger proj-
ects, addressing larger risk, and taking
a long-term view of program verifica-
tion. All our work on Spec# fits this
initiative.

Spec# has evolved from a single-
language vision into four ongoing
technical themes:

One is the Spec# project itself,
which entered a new phase in 2009,
hoping, through a new open-source
releasee, to see continued improve-
ment in the Spec# programming sys-
tem from a larger community and also
more use of Spec# in teaching, espe-
cially in light of the 2010 comprehen-
sive tutorial.20

A second theme is the Boogie lan-
guage and verification engine, provid-
ing an infrastructure used as an ab-
straction layer in several verification
projects.f

A third theme is a new strand of
research attempting automatic func-
tional-correctness verification. Using
a variation of the Spec# methodology
and the Boogie intermediate verifica-
tion language, VCC is an example of
such a project, and Hyper-V’s experi-
ence with it has been positive.

e	 http://specsharp.codeplex.com
f	 http://boogie.codeplex.com

A fourth theme aims at the mass
adoption of specifications in program-
ming. The language-independent
Code Contracts project bypasses the
problem of trying to get a single new
language to be accepted as the stan-
dard programming language for all
programmers by putting specification
facilities into the underlying platform.
We hope that since all .NET program-
mers can make use of the associated
tools for runtime checking, static
checking, automatic documentation
generation, and intelligent program-
mer assistants, this will lead to an im-
proved general software-engineering
process.

These themes continue to push
frontiers in the quest for verified soft-
ware.

Acknowledgments
Spec# owes a great deal to the research
interns who helped bring it into exis-
tence and to the feedback from pro-
grammers who have used it. We also
express our thanks to the early review-
ers and anonymous referees of this ar-
ticle. 	

References
1.	B arnes, J. High-Integrity Software: The SPARK

Approach to Safety and Security. Addison-Wesley,
2003.

2.	B arnett, M., Chang, B.-Y. E., DeLine, R., Jacobs, B., and
Leino, K.R.M. Boogie: A modular reusable verifier for
object-oriented programs. In Proceedings of Formal
Methods for Components and Objects, Volume 4111
LNCS (Amsterdam, The Netherlands, Nov. 1–4, 2005).
Springer, 2006, 364–387.

3.	B arnett, M., Leino, K.R.M., and Schulte, W. The Spec#
programming system: An overview. In Proceedings
of Construction and Analysis of Safe, Secure, and
Interoperable Smart Devices, Volume 3362 LNCS
(Nice, France, Mar. 8–11). Springer, 2005, 49–69.

4.	B urdy, L., Cheon, Y., Cok, D. R., Ernst, M.D., Kiniry, J.R.,
Leavens, G.T., Leino, K.R.M., and Poll, E. An overview
of JML tools and applications. Electronic Notes in
Theoretical Computer Science 80 (2003), 212–232.

5.	 Chatterjee, S., Lahiri, S.K., Qadeer, S., and Rakamaric,
Z. A reachability predicate for analyzing low-level
software. In Proceedings of Tools and Algorithms for
Construction and Analysis of Systems, Volume 4424
LNCS (Braga, Portugal, Mar. 24–Apr. 1). Springer, 2007,
19–33.

6.	 Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach,
D., Moskal, M., Santen, T., Schulte, W., and Tobies, S.
VCC: A practical system for verifying concurrent C.
In Proceedings of Theorem Proving in Higher Order
Logics, Volume 5674 LNCS (Munich, Aug. 17–20).
Springer, 2009, 23–42.

7.	 de Moura, L. and Bjørner, N. Z3: An efficient SMT
solver. In Proceedings of Tools and Algorithms for
Construction and Analysis of Systems, Volume 4963
LNCS (Budapest, Mar. 29–Apr. 6). Springer, 337–340.

8.	 Detlefs, D.L., Leino, K.R.M., Nelson, G., and Saxe,
J.B. Extended Static Checking Research Report 159.
Compaq Systems Research Center, Palo Alto, CA,
1998.

9.	 Dhara, K.K. and Leavens, G.T. Forcing behavioral
subtyping through specification inheritance. In
Proceedings of the International Conference on
Software Engineering (Berlin, Mar. 25–30). IEEE
Computer Society Press, 1996, 258–267.

10.	 Fähndrich, M. and Leino, K.R.M. Declaring and checking
non-null types in an object-oriented language. In
Proceedings of the ACM Conference on Object-
Oriented Programming, Systems, Languages, and
Applications (Anaheim, CA, Oct. 26–30). ACM Press,
New York, 2003, 302–312.

11.	 Fähndrich, M. and Xia, S.. Establishing object
invariants with delayed types. In Proceedings of the
ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications (Montréal, Oct.
21–25). ACM Press, New York, 2007, 337–350.

12.	 Filliâtre, J.-C. and Marché, C. The Why/Krakatoa/
Caduceus platform for deductive program verification.
In Proceedings of Computer Aided Verification, Volume
4590 LNCS (Berlin, July 3–7). Springer, 2007, 173–177.

13.	 Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G.,
Saxe, J.B., and Stata, R. Extended static checking for
Java. In Proceedings of ACM SIGPLAN Conference on
Programming Language Design and Implementation
(Berlin, June 17–19). ACM Press, New York, 2002,
234–245.

14.	 Floyd, R.W. Assigning meanings to programs.
In Mathematical Aspects of Computer Science,
Volume 19 of Proceedings of Symposia in Applied
Mathematics. American Mathematical Society, 1967,
19–32.

15.	H oare, C., Misra, J., Leavens, G.T., and Shankar, N.
The verified software initiative: A manifesto. ACM
Computing Surveys 41, 4 (2009), 1–8.

16.	 Jacobs, B., Leino, K.R.M., Piessens, F., Smans, J., and
Schulte, W. A programming model for concurrent
object-oriented programs. ACM Transactions on
Programming Languages and Systems 31, 1 (2008),
1–48.

17.	 Kassios, I.T. Dynamic frames: Support for framing,
dependencies and sharing without restrictions. In
Proceedings of World Congress on Formal Methods,
Volume 4085 LNCS (Hamilton, Canada, Aug. 21–27).
Springer, 2006, 268–283.

18.	L eavens, G.T., Baker, A.L., and Ruby, C. Preliminary
design of JML: A behavioral interface specification
language for Java. ACM SIGSOFT Software
Engineering Notes 31, 3 (2006), 1–38.

19.	L eino, K.R.M. This is Boogie 2. Microsoft Research
Technical Report (June 2008).

20.	L eino, K.R.M. and Müller, P. Using the Spec# language,
methodology, and tools to write bug-free programs.
Advanced Lectures on Software Engineering: LASER
Summer School 2007/2008, Volume 6029 LNCS.
Springer, 2010.

21.	L iskov, B.H. and Wing, J.M. A behavioral notion of
subtyping. ACM Transactions on Programming
Languages and Systems 16, 6 (1994), 1811–1841.

22.	 Meyer, B. Object-oriented Software Construction.
Prentice-Hall, 1988.

23.	 Müller, P. Modular Specification and Verification of
Object-Oriented Programs, Volume 2262 LNCS.
Springer, 2002.

24.	 Parkinson, M.J. and Bierman, G.M. Separation logic
and abstraction. In Proceedings of the Symposium
of Principles of Programming Languages (Long
Beach, CA, Jan. 12–14). ACM Press, New York, 2005,
247–258.

Mike Barnett (mbarnett@microsoft.com) is a principal
research software design engineer in the RiSE group at
Microsoft Research, Redmond, WA.

Manuel Fähndrich (maf@microsoft.com) is a senior
researcher in the RiSE group at Microsoft Research,
Redmond, WA.

K. Rustan M. Leino (leino@microsoft.com) is a principal
researcher in the RiSE group at Microsoft Research,
Redmond, WA.

Peter Müller (peter.mueller@inf.ethz.ch) is a professor in
the Department of Computer Science at the Swiss Federal
Institute of Technology (ETH), Zürich, Switzerland.

Wolfram Schulte (schulte@microsoft.com) is the
research area manager leading the RiSE group at
Microsoft Research, Redmond, WA.

Herman Venter (hermanv@microsoft.com) is a principal
research software design engineer in the RiSE group at
Microsoft Research, Redmond, WA.

© 2011 ACM 0001-0782/11/06 $10.00

