
ar
X

iv
:2

10
5.

14
10

0v
1

 [
cs

.L
O

]
 2

8
M

ay
 2

02
1

Latticed k-Induction

with an Application to Probabilistic Programs

Kevin Batz1(B) , Mingshuai Chen1(B) , Benjamin Lucien Kaminski2(B) ,
Joost-Pieter Katoen1(B) , Christoph Matheja3(B) , and Philipp Schröer1

1 RWTH Aachen University, Aachen, Germany
{kevin.batz,chenms,katoen}@cs.rwth-aachen.de

2 University College London, London, United Kingdom
b.kaminski@ucl.ac.uk

3 ETH Zürich, Zürich, Switzerland
cmatheja@inf.ethz.ch

Abstract. We revisit two well-established verification techniques, k-in-
duction and bounded model checking (BMC), in the more general setting
of fixed point theory over complete lattices. Our main theoretical contri-
bution is latticed k-induction, which (i) generalizes classical k-induction
for verifying transition systems, (ii) generalizes Park induction for bound-
ing fixed points of monotonic maps on complete lattices, and (iii) extends
from naturals k to transfinite ordinals κ, thus yielding κ-induction.
The lattice-theoretic understanding of k-induction and BMC enables us
to apply both techniques to the fully automatic verification of infinite-

state probabilistic programs. Our prototypical implementation manages
to automatically verify non-trivial specifications for probabilistic pro-
grams taken from the literature that—using existing techniques—cannot
be verified without synthesizing a stronger inductive invariant first.

Keywords: k-induction · Bounded model checking · Fixed point theory
· Probabilistic programs · Quantitative verification

1 Introduction

Bounded model checking (BMC) [11,17] is a successful method for analyzing
models of hardware and software systems. For checking a finite-state transition
system (TS) against a safety property (“bad states are unreachable”), BMC
unrolls the transition relation until it either finds a counterexample and hence
refutes the property, or reaches a pre-computed completeness threshold on the
unrolling depth and accepts the property as verified. For infinite-state systems,
however, such completeness thresholds need not exist (cf. [65]), rendering BMC
a refutation-only technique. To verify infinite-state systems, BMC is typically
combined with the search for an inductive invariant, i.e., a superset of the reach-
able states which is closed under the transition relation. Proving a—not nec-
essarily inductive—safety property then amounts to synthesizing a sufficiently

This work has been partially funded by the ERC Advanced Project FRAPPANT under
grant No. 787914.

http://arxiv.org/abs/2105.14100v1
http://orcid.org/0000-0001-8705-2564
http://orcid.org/0000-0001-9663-7441
http://orcid.org/0000-0001-5185-2324
http://orcid.org/0000-0002-6143-1926
http://orcid.org/0000-0001-9151-0441
http://orcid.org/0000-0002-4329-530X

2 K. Batz et al.

strong, often complicated, inductive invariant that excludes the bad states. A
plethora of techniques target computing or approximating inductive invariants,
including IC3 [14], induction [20,12], interpolation [51,52], and predicate ab-
straction [27,37]. However, invariant synthesis may burden full automation, as it
either relies on user-supplied annotations or confines push-button technologies
to semi-decision or approximate procedures.

k-induction [66] generalizes the principle of simple induction (aka 1-induction)
by considering k consecutive transition steps instead of only a single one. It is
more powerful: an invariant can be k-inductive for some k>1 but not 1-inductive.
Following the seminal work of Sheeran et al. [66] which combines k-induction
with SAT solving to check safety properties, k-induction has found a broad
spectrum of applications in the realm of hardware [66,38,29,46] and software
verification [21,22,23,64,9,56]. Its success is due to (1) being a foundational yet
potent reasoning technique, and (2) integrating well with SAT/SMT solvers, as
also pointed out in [46]: “the simplicity of applying k-induction made it the go-
to technique for SMT-based infinite-state model checking”. This paper explores
whether k-induction can have a similar impact on the fully automatic verification
of infinite-state probabilistic programs. That is, we aim to verify that the expected
value of a specified quantity—think: “quantitative postcondition”—after the ex-
ecution of a probabilistic program is bounded by a specified threshold.

Example 1 (Bounded Retransmission Protocol [32,19]). The loop

while (sent < toSend ∧ fail < maxFail) {

{ fail := 0 ; sent := sent+ 1 } [0.9] { fail := fail + 1 ; totalFail := totalFail + 1 }

}

models a simplified version of the bounded retransmission protocol, which at-
tempts to transmit toSend packages via an unreliable channel (that fails with
probability 0.1) allowing for at most maxFail retransmissions per package.

Using our generalization of k-induction, we can fully automatically verify that
the expected total number of failed transmissions is at most 1, if the number
of packages we want to (successfully) send is at most 3. In terms of weakest
preexpectations [45,50,39], this quantitative property reads

wpJCK (totalFail) � [toSend ≤ 3] · (totalFail+ 1) + [toSend > 3] · ∞ .

The bound on the right-hand-side of the inequality is 4-inductive, but not 1-
inductive; verifying the same bound using 1-induction requires finding a non-
trivial—and far less perspicuous—inductive invariant. Moreover, if we consider
an arbitrary number of packages to send, i.e., we drop [toSend ≤ 3], this bound
becomes invalid. In this case, our BMC procedure produces a counterexample,
i.e., values for toSend and maxFail, proving that the bound does not hold. ⊳

Lifting the classical formalization (and SAT encoding) of k-induction over TSs
to the probabilistic setting is non-trivial. We encounter the following challenges:

(A) Quantitative reachability. In a TS, a state reachable within k steps re-
mains reachable on increasing k. In contrast, reachability probabilities in Markov

Latticed k-Induction with an Application to Probabilistic Programs 3

chains—a common operational model for probabilistic programs [28]—may in-
crease on increasing k. Hence, proving that the probability of reaching a bad
state remains below a given threshold is more intricate than reasoning about
qualitative reachability.

(B) Counterexamples are subsystems. In a TS, an acyclic path from an initial
to a bad state suffices as a witness for refuting safety, i.e., non-reachability. SAT
encodings of k-induction rely on this by expressing the absence of witnesses up
to a certain path-length. In the probabilistic setting, however, witnesses are no
longer single paths [30]. Rather, a witness for the probability of reaching a bad
state to exceed a threshold is a subsystem [15], i.e., a set of possibly cyclic paths.

(C) Symbolic encodings. To enable fully automated verification, we need a
suitable encoding such that our lifting integrates well into SMT solvers. Verify-
ing probabilistic programs involves reasoning about execution trees, where each
(weighted) branch corresponds to a probabilistic choice. A suitable encoding
needs to capture such trees which requires more involved theories than encoding
paths in classical k-induction.

We address challenges (A) and (B) by developing latticed k-induction, which
is a proof technique in the rather general setting of fixed point theory over
complete lattices. Latticed k-induction generalizes classical k-induction in three
aspects: (1) it works with any monotonic map on a complete lattice instead of
being confined to the transition relation of a transition system, (2) it generalizes
the Park induction principle for bounding fixed points of such monotonic maps,
and (3) it extends from natural numbers k to (possibly transfinite) ordinals κ,
hence its short name: κ-induction.

It is this lattice-theoretic understanding that enables us to lift both k-in-
duction and BMC to reasoning about quantitative properties of probabilistic
programs. To enable automated reasoning, we address challenge (C) by an incre-
mental SMT encoding based on the theory of quantifier-free mixed integer and
real arithmetic with uninterpreted functions (QF UFLIRA). We show how to ef-
fectively compute all needed operations for κ-induction using the SMT encoding
and, in particular, how to decide quantitative entailments.

A prototypical implementation of our method demonstrates that κ-induction
for (linear) probabilistic programs manages to automatically verify non-trivial
specifications for programs taken from the literature which—using existing tech-
niques—cannot be verified without synthesizing a stronger inductive invariant.

Related Work. Besides the aforementioned related work on k-induction, we
briefly discuss other automated analysis techniques for probabilistic systems and
other approaches for bounding fixed points. Symbolic engines exist for exact
inference [26] and sensitivity analysis [33]. Other automated approaches focus
on bounding expected costs [57], termination analysis [16,2], and static analy-
sis [68,3]. BMC has been applied in a rather rudimentary form to the on-the-fly
verification of finite unfoldings of probabilistic programs [36], and the enumer-
ative generation of counterexamples in finite Markov chains [69]. (Semi-)auto-
mated invariant-synthesis techniques can be found in [42,24,6]. A recent variant
of IC3 for probabilistic programs called PrIC3 [7] is restricted to finite-state sys-

4 K. Batz et al.

tems. When applied to finite-state Markov chains, our κ-induction operator is
related to other operators that have been employed for determining reachabil-
itiy probabilities through value iteration [62,4,31]. In particular, when iterated
on the candidate upper bound, the κ-induction operator coincides with the (up-
per value iteration) operator in interval iteration [4]; the latter operator can be
used together with the up-to techniques (cf. [54,59,60]) to prove our κ-induction
rule sound (in contrast, we give an elementary proof). However, the κ-induction
operator avoids comparing current and previous iterations. It is thus easier to im-
plement and more amenable to SMT solvers. Finally, the proof rules for bounding
fixed points recently developed in [5] are restricted to finite-state systems.

2 Verification as a Fixed Point Problem

We start by recapping some fundamentals on fixed points of monotonic operators
on complete lattices before we state our target verification problem.

Fundamentals. For the next three sections, we fix a complete lattice (E, ⊑), i.e.
a carrier set E together with a partial order ⊑, such that every subset S ⊆ E
has a greatest lower bound

d
S (also called the meet of S) and a least upper

bound
⊔
S (also called the join of S). For just two elements {g, h} ⊆ E, we

denote their meet by g ⊓ h and their join by g ⊔ h. Every complete lattice has a
least and a greatest element, which we denote by ⊥ and ⊤, respectively.

In addition to (E, ⊑), we also fix a monotonic operator Φ : E → E. By
the Knaster-Tarski theorem [44,67,48], every monotonic operator Φ admits a
complete lattice of (potentially infinitely many) fixed points. The least fixed
point lfp Φ and the greatest fixed point gfp Φ are moreover constructible by
(possibly transfinite) fixed point iteration from ⊥ and ⊤, respectively: Cousot &
Cousot [18] showed that there exist ordinals α and β, such that1

lfp Φ = Φ⌈α⌉ (⊥) and gfp Φ = Φ⌊β⌋ (⊤) , (†)

where Φ
⌈δ⌉

(g) denotes the upper δ-fold iteration and Φ⌊δ⌋ (g) denotes the lower

δ-fold iteration of Φ on g, respectively. Formally, Φ
⌈δ⌉

(g) is given by

Φ⌈δ⌉ (g) =







g if δ = 0 ,

Φ
(

Φ
⌈γ⌉

(g)
)

if δ = γ + 1 is a successor ordinal ,

⊔
{

Φ
⌈γ⌉

(g)
∣
∣ γ < δ

}

if δ is a limit ordinal2 .

Intuitively, if δ is the successor of γ, then we simply do another iteration of Φ.

If δ is a limit ordinal, then Φ
⌈δ⌉

(g) can also be thought of as a limit, namely

1 We use lowercase greek letters α, β, γ, δ, etc. to denote arbitrary (possibly transfinite)
ordinals and i, j, k, m, n, etc. to denote natural (finite) numbers in N.

2 To ensure well-definedness of transfinite iterations, we fix an ambient ordinal ν and
tacitly assume δ < ν for all ordinals δ considered throughout this paper. Formally,
ν is the smallest ordinal such that |ν| > |E|. Intuitively, ν then upper-bounds the
length of any repetition-free sequence over elements of E.

Latticed k-Induction with an Application to Probabilistic Programs 5

of iterating Φ on g. However, simply iterating Φ on g need not always converge,
especially if the iteration does not yield an ascending chain. To remedy this, we
take as limit the join over the whole (possibly transfinite) iteration sequence,
i.e., the least upper bound over all elements that occur along the iteration. The

lower δ-fold iteration Φ⌊δ⌋ (g) is defined analogously to Φ
⌈δ⌉

(g), except that we
take a meet instead of a join whenever δ is a limit ordinal.

An important special case for fixed point iteration (see (†)) is when the opera-
tor Φ is Scott-continuous (or simply continuous), i.e., if Φ

(⊔
{g1 ⊑ g2 ⊑ . . .}

)
=

⊔
Φ
(
{g1 ⊑ g2 ⊑ . . .}

)
. In this case, α in (†) coincides with the first infinite limit

ordinal ω (which can be identified with the set N of natural numbers). This fact
is also known as the Kleene fixed point theorem [1].

Problem statement. Fixed points are ubiquitous in computer science. Prime ex-
amples of properties that can be conveniently characterized as least fixed points
include both the set of reachable states in a transition system and the function
mapping each state in a Markov chain to the probability of reaching some goal
state (cf. [61]). However, least and greatest fixed points are often difficult or even
impossible [40] to compute; it is thus desirable to bound them.

For example, it may be sufficient to prove that a system modeled as a Markov
chain reaches a bad state from its initial state with probability at most 10−6,
instead of computing precise reachability probabilities for each state. Moreover,
if said probability is not bounded by 10−6, we would like to witness that as well.

In general lattice-theoretic terms, our problem statement reads as follows:

Given a complete lattice (E, ⊑), a monotonic operator Φ : E → E,
and a candidate upper bound f ∈ E on lfp Φ,

prove or refute that lfp Φ ⊑ f .

For proving, we will present latticed k-induction; for refuting, we will present
latticed bounded model checking. Running both in parallel may (and under certain
conditions: will) lead to a decision of the above problem.

3 Latticed k-Induction

In this section, we generalize the well-established k-induction verification tech-
nique [66,21,56,38,29,46] to latticed k-induction (for short: κ-induction; reads:
“kappa induction”). With κ-induction, our aim is to prove that lfp Φ ⊑ f . To
this end, we attempt “ordinary” induction, also known as Park induction:

Theorem 1 (Park Induction [58]). Let f ∈ E. Then

Φ (f) ⊑ f implies lfp Φ ⊑ f .

Intuitively, this principle says: if pushing our candidate upper bound f through Φ
takes us down in the partial order ⊑, we have verified that f is indeed an upper

6 K. Batz et al.

Latticed BMC

κ-induction

⊥

Φ⌈1⌉(⊥)

Φ⌈2⌉(⊥)

Φ⌈δ⌉(⊥) lfpΦ

fp’s Φ

gfpΦ

Ψ
⌊κ⌋

f
(f)

Ψ
⌊2⌋

f
(f)

Ψ
⌊1⌋

f
(f)

f

Φ(Ψ
⌊κ⌋

f
(f))

Φ(Ψ
⌊κ−1⌋

f
(f))

Φ(Ψ
⌊1⌋

f
(f))

Φ(f)

Fig. 1: κ-induction and latticed BMC in case that lfp Φ ⊑ f . An arrow from g to h
indicates g ⊑ h. The solid blue arrow from Φ(Ψ

⌊κ⌋
f (f)) to f is the premise of κ-

induction, i.e., the LHS of Lemma 2, which implies the dash-dotted blue arrow from
Φ(Ψ

⌊κ⌋
f (f)) to Ψ

⌊κ⌋
f (f), i.e., the RHS of Lemma 2. The dashed blue arrow from lfp Φ to

Φ(Ψ
⌊κ⌋
f (f)) is a consequence of the dash-dotted arrow (by Park induction, Theorem 1)

and ultimately proves that lfp Φ ⊑ f .

bound on lfp Φ. The true power of Park induction is that applying Φ once tells
us something about iterating Φ possibly transfinitely often (see (†) in Section 2).

Park induction, unfortunately, does not work in the reverse direction: If we
are unlucky, f ⊐ lfp Φ is an upper bound on lfp Φ, but nevertheless Φ (f) 6⊑ f .
In this case, we say that f is not inductive. But how can we verify that f is
indeed an upper bound in such a non-inductive scenario? We search below f for
a different, but inductive, upper bound on lfp Φ, that is, we

search for an h ∈ E such that lfp Φ ⊑ Φ(h) ⊑ h ⊑ f .

In order to perform a guided search for such an h, we introduce the κ-induction
operator—a modified version of Φ that is parameterized by our candidate f :

Definition 1 (κ-Induction Operator). For f ∈ E, we call

Ψf : E → E, g 7→ Φ (g) ⊓ f

the κ-induction operator (with respect to f and Φ).

What does Ψf do? As illustrated in Figure 1, if Φ (f) 6⊑ f (i.e. f is non-inductive)
then “at least some part of Φ (f) is greater than f”. If the whole of Φ (f) is greater
than f , then f ⊏ Φ (f); if only some part of Φ (f) is greater and some is smaller
than f , then f and Φ (f) are incomparable. The κ-induction operator Ψf now
rectifies Φ (f) being (partly) greater than f by pulling Φ (f) down via the meet
with f (i.e., via ⊓ f), so that the result is in no part greater than f . Applying
Ψf to f hence always yields something below or equal to f .

Together with the observation that Ψf is monotonic, iterating Ψf on f nec-
essarily descends from f downwards in the direction of lfp Φ (and never below):

Latticed k-Induction with an Application to Probabilistic Programs 7

Lemma 1 (Properties of the κ-Induction Operator). Let f ∈ E and
let Ψf be the κ-induction operator with respect to f and Φ. Then

(a) Ψf is monotonic, i.e., ∀ g1, g2 ∈ E : g1 ⊑ g2 implies Ψf (g1) ⊑ Ψf (g2).
(b) Iterations of Ψf starting from f are descending, i.e., for all ordinals γ, δ,

γ < δ implies Ψ
⌊δ⌋
f (f) ⊑ Ψ

⌊γ⌋
f (f) .

(c) Ψf is dominated by Φ, i.e., ∀ g ∈ E : Ψf (g) ⊑ Φ (g) .

(d) If lfp Φ ⊑ f , then for any ordinal δ,

lfp Φ ⊑ . . . ⊑ Ψ
⌊δ⌋
f (f) ⊑ . . . ⊑ Ψ

⌊2⌋
f (f) ⊑ Ψf (f) ⊑ f .

Proof. See Appendix A.1. ⊓⊔

The descending sequence f ⊒ Ψf (f) ⊒ Ψ
⌊2⌋
f (f) ⊒ . . . constitutes our guided

search for an inductive upper bound on lfp Φ. For each ordinal κ (hence the
short name: κ-induction), Ψ

⌊κ⌋
f (f) is a potential candidate for Park induction:

Φ
(

Ψ
⌊κ⌋
f (f)

)
potentially

⊑ Ψ
⌊κ⌋
f (f) . (‡)

For efficiency reasons, e.g., when offloading the above inequality check to an SMT
solver, we will not check the inequality (‡) directly but a property equivalent
to (‡), namely whether Φ(Ψ

⌊κ⌋
f (f)) is below f instead of Ψ

⌊κ⌋
f (f):

Lemma 2 (Park Induction from κ-Induction). Let f ∈ E. Then

Φ
(

Ψ
⌊κ⌋
f (f)

)

⊑ f iff Φ
(

Ψ
⌊κ⌋
f (f)

)

⊑ Ψ
⌊κ⌋
f (f) .

Proof. The if-direction is trivial, as Ψ
⌊κ⌋
f (f) ⊑ f (Lemma 1(d)). For only-if:

Ψ
⌊κ⌋
f (f) ⊒ Ψ

⌊κ+1⌋
f (f) (by Lemma 1(b))

= Ψf

(

Ψ
⌊κ⌋
f (f)

)

(by definition of Ψ
⌊κ+1⌋
f (f))

= Φ
(

Ψ
⌊κ⌋
f (f)

)

⊓ f (by definition of Ψf)

⊒ Φ
(

Ψ
⌊κ⌋
f (f)

)

. (by the premise) ⊓⊔

If Φ
(
Ψ

⌊κ⌋
f (f)

)
⊑ f , then Lemma 2 tells us that Ψ

⌊κ⌋
f (f) is Park inductive and

thereby an upper bound on lfp Φ. Since iterating Ψf on f yields a descending
iteration sequence (see Lemma 1(b)), Ψ

⌊k⌋
f (f) is below f and therefore f is also

an upper bound on lfp Φ. Put in more traditional terms, we have shown that
Ψ

⌊κ⌋
f (f) is an inductive invariant stronger than f . Formulated as a proof rule,

we obtain the following induction principle:

Theorem 2 (κ-Induction). Let f ∈ E and let κ be an ordinal. Then

Φ
(

Ψ
⌊κ⌋
f (f)

)

⊑ f implies lfp Φ ⊑ f .

8 K. Batz et al.

Algorithm 1: Latticed k-induction

input: Φ : E → E and f ∈ E.
output: “verify” if f is a

k-inductive invariant,
diverge otherwise.

1 g ← f ;
2 while Φ (g) 6⊑ f do
3 g ← Ψf (g) ;

// recall: Ψf (g) = Φ (g) ⊓ f

4 return verify ;

Algorithm 2: Latticed BMC

input: Φ : E → E and f ∈ E.
output: “refute” if there exists

k ∈ N with Φ
⌈k⌉

(⊥) 6⊑ f ,
diverge otherwise.

1 g ← ⊥ ;
2 repeat
3 g ← Φ (g) ;
4 until g 6⊑ f ;

5 return refute ;

Proof. Following the argument above, for details see Appendix A.2. ⊓⊔

An illustration of κ-induction is shown in (the right frame of) Figure 1. For
every ordinal κ, if Φ(Ψ

⌊κ⌋
f (f)) ⊑ f , then we call f (κ+1)-inductive (for Φ). In

particular, κ-induction generalizes Park induction, in the sense that 1-induction
is Park induction and, (κ>1)-induction is a more general principle of induction.

Algorithm 1 depicts a (semi-)algorithm that performs latticed k-induction
(for k < ω) in order to prove lfp Φ ⊑ f by iteratively increasing k. For im-
plementing this algorithm, we require, of course, that both Φ and Ψf are com-
putable and that ⊑ is decidable. Notice that the loop (lines 2–3) never terminates
if f ⊏ Φ (f)—a condition that can easily be checked before entering the loop.
Even with this optimization, however, Algorithm 1 is a proper semi-algorithm:
even if lfp Φ ⊑ f , then f is still not guaranteed to be k-inductive for some k < ω.
And even if an algorithm could somehow perform transfinitely many iterations,
then f is still not guaranteed to be κ-inductive for some ordinal κ:

Counterexample 1 (Incompleteness of κ-Induction) Consider the carrier
set {0, 1, 2}, partial order 0 ⊏ 1 ⊏ 2, and the monotonic operator Φ with
Φ(0) = 0 = lfp Φ, and Φ(1) = 2, and Φ(2) = 2 = gfp Φ. Then lfp Φ ⊑ 1, but for

any ordinal κ, Ψ
⌊κ⌋
1 (1) = 1 and Φ(1) = 2 6⊑ 1. Hence 1 is not κ-inductive. ⊳

Despite its incompleteness, we now provide a sufficient criterion which ensures
that every upper bound on lfp Φ is κ-inductive for some ordinal κ.

Theorem 3 (Completeness of κ-Induction for Unique Fixed Point). If
lfp Φ = gfp Φ (i.e. Φ has exactly one fixed point), then, for every f ∈ E,

lfp Φ ⊑ f implies f is κ-inductive for some ordinal κ .

Proof. By the Knaster-Tarski theorem, we have Φ⌊β⌋(⊤) = gfp Φ for some ordi-
nal β. We then show that f is (β+1)-inductive, see Appendix A.3. ⊓⊔

The proof of the above theorem immediately yields that, if the unique fixed point
can be reached through finite fixed point iterations starting at ⊤, then f is k-
inductive for some natural number k; Algorithm 1 thus eventually terminates.

Corollary 1. If Φ⌊n⌋ (⊤) = lfp Φ for some n ∈ N, then, for every f ∈ E,

lfp Φ ⊑ f implies f is n-inductive for some n ∈ N .

Latticed k-Induction with an Application to Probabilistic Programs 9

4 Latticed vs. Classical k-Induction

We show that our purely lattice-theoretic κ-induction from Section 3 generalizes
classical k-induction for hardware- and software verification. To this end, we
first recap how k-induction is typically formalized in the literature [21,9,38,29]:
Let TS = (S, I, T) be a transition system, where S is a (countable) set of
states, I ⊆ S is a non-empty set of initial states, and T ⊆ S × S is a transition
relation. As in the seminal work on k-induction [66], we require that T is a
total relation, i.e., every state has at least one successor. This requirement is
sometimes overlooked in the literature, which renders the classical SAT-based
formulation of k-induction ((1a) and (1b) below) unsound in general.

Our goal is to verify that a given invariant property P ⊆ S covers all states
reachable in TS from some initial state. Suppose that I, T and P are character-
ized by logical formulae I(s), T (s, s′) and P (s) (over the free variables s and s′),
respectively. Then, achieving the above goal with classical k-induction amounts
to proving the validity of

I(s1) ∧ T (s1, s2) ∧ . . . ∧ T (sk−1, sk) =⇒ P (s1) ∧ . . . ∧ P (sk) , and (1a)

P (s1) ∧ T (s1, s2) ∧ . . . ∧ P (sk) ∧ T (sk, sk+1) =⇒ P (sk+1) . (1b)

Here, the base case (1a) asserts that P holds for all states reachable within
k transition steps from some initial state; the induction step (1b) formalizes
that P is closed under taking up to k transition steps, i.e., if we start in P and
stay in P for up to k steps, then we also end up in P after taking the (k+1)-
st step. If both (1a) and (1b) are valid, then classical k-induction tells us that
the property P holds for all reachable states of TS. How is the above principle
reflected in latticed k-induction (cf. Section 3)? For that, we choose the complete
lattice (2S , ⊆), where 2S denotes the powerset of S; the least element is ⊥ = ∅
and the meet operation is standard intersection ∩.

Moreover, we define a monotonic operator Φ whose least fixed point precisely
characterizes the set of reachable states of the transition system TS:

Φ : 2S → 2S , F 7→ I ∪ Succs(F) ,

That is, Φ maps any given set of states F ⊆ S to the union of the initial states I
and of those states Succs(F) that are reachable from F using a single transition.3

Using the κ-induction operator ΨP constructed from Φ and P according to
Definition 1, the principle of κ-induction (cf. Theorem 2) then tells us that

Φ
(

Ψ
⌊κ⌋
P (P)

)

⊆ P implies lfp Φ
︸︷︷︸

reachable states of TS

⊆ P .

For our above choices, the premise of κ-induction equals the classical formaliza-
tion of k-induction—formulae (1a) and (1b)—because the set of initial states I

3 Formally, Succs(F) , { t′ | t ∈ F, (t, t′) ∈ T }.

10 K. Batz et al.

is “baked into” the operator Φ. More concretely, for the base case (1a), we have

I(s1)
︸ ︷︷ ︸

Φ(∅)

∧T (s1, s2)

︸ ︷︷ ︸

Φ
⌈2⌉

(∅)

∧ . . . ∧ T (sk−1, sk)

︸ ︷︷ ︸

Φ
⌈k⌉

(∅)

=⇒ P (s1) ∧ . . . ∧ P (sk)

︸ ︷︷ ︸

meaning Φ
⌈k⌉

(∅) ⊆ P

.

In other words, formula (1a) captures those states that are reachable from I via
at most k transitions. If we assume that (1a) is valid, then P contains all initial
states and formula (1b) coincides with the premise of κ-induction:

P (s1) ∧ T (s1, s2)
︸ ︷︷ ︸

Φ(P)

∧P (s2)

︸ ︷︷ ︸

ΨP (P) = Φ(P)∩P

∧T (s2, s3) ∧ . . . ∧ P (sk)

︸ ︷︷ ︸

Ψ
⌊k−1⌋
P

(P)

∧T (sk, sk+1)

︸ ︷︷ ︸

Φ
(

Ψ
⌊k−1⌋
P (P)

)

=⇒ P (sk+1)

︸ ︷︷ ︸

meaning Φ
(

Ψ
⌊k−1⌋
P

(P)
)

⊆ P

.

It follows that, when considering transition systems, our (latticed) κ-induction
is equivalent to the classical notion of k-induction for κ < ω:

Theorem 4. For every natural number k ≥ 1,

Φ
(

Ψ
⌊k−1⌋
P (P)

)

⊆ P iff formulae (1a) and (1b) are valid .

Proof. See Appendix A.4. ⊓⊔

5 Latticed Bounded Model Checking

We complement κ-induction with a latticed analog of bounded model check-
ing [11,10] for refuting that lfp Φ ⊑ f . In lattice-theoretic terms, bounded model
checking amounts to a fixed point iteration of Φ on ⊥ while continually checking
whether the iteration exceeds our candidate upper bound f . If so, then we have
indeed refuted lfp Φ ⊑ f :

Theorem 5 (Soundness of Latticed BMC). Let f ∈ E. Then

∃ ordinal δ : Φ⌈δ⌉ (⊥) 6⊑ f implies lfp Φ 6⊑ f .

Furthermore, if we were actually able to perform transfinite iterations of Φ on ⊥,
then latticed bounded model checking is also complete: If f is in fact not an upper
bound on lfp Φ, this will be witnessed at some ordinal:

Latticed k-Induction with an Application to Probabilistic Programs 11

C ::= skip

| x := e

| C ; C

| {C } [p] {C }

| if (ϕ) {C } else {C }

| while (ϕ) {C }

(a) pGCL programs

e ::= n

| x

| n · e

| e+ e

| e .− e (monus max{0, e− e})

(b) Linear expressions

ϕ ::= e < e

| ϕ ∧ ϕ

| ¬ϕ

(c) Linear guards

Fig. 2: Syntax of pGCL programs, linear expressions, and guards, where x is a variable
taken from a countable set Vars of program variables (evaluating to natural numbers),
p ∈ [0, 1] ∩Q is a rational probability, and n ∈ N is a constant.

Theorem 6 (Completeness of Latticed BMC). Let f ∈ E. Then

lfp Φ 6⊑ f implies ∃ ordinal δ : Φ⌈δ⌉ (⊥) 6⊑ f .

More practically relevant, if Φ is continuous (which is the case for Bellman oper-
ators characterizing reachability probabilities in Markov chains), then a simple
finite fixed point iteration, see Algorithm 2, is sound and complete for refutation:

Corollary 2 (Latticed BMC for Continuous Operators). Let f ∈ E and
let Φ be continuous. Then

∃n ∈ N : Φn(⊥) 6⊑ f iff lfp Φ 6⊑ f .

6 Probabilistic Programs

In the remainder of this article, we employ latticed k-induction and BMC to ver-
ify imperative programs with access to discrete probabilistic choices—branching
on the outcomes of coin flips. In this section, we briefly recap the necessary back-
ground on formal reasoning about probabilistic programs (cf. [45,50] for details).

6.1 The Probabilistic Guarded Command Language

Syntax. Programs in the probabilistic guarded command language pGCL adhere
to the grammar in Figure 2a. The semantics of most statements is standard.
In particular, the probabilistic choice {C1 } [p] {C2 } flips a coin with bias
p ∈ [0, 1]∩Q. If the coin yields heads, it executes C1; otherwise, C2. In addition
to the syntax in Figure 2, we admit standard expressions that are definable as
syntactic sugar, e.g., true, false, ϕ1 ∨ ϕ2, e1 = e2, e1 ≤ e2, etc.

12 K. Batz et al.

Program states. A program state σ maps every variable in Vars to its value,
i.e., a natural number in N.4 To ensure that the set of program states Σ remains
countable5, we restrict ourselves to states in which only finitely many variables—
those that appear in a given program—evaluate to non-zero values. Formally,

Σ ,
{

σ : Vars → N

∣
∣
∣

∣
∣{ x ∈ Vars | σ(x) 6= 0 }

∣
∣ <∞

}

.

The evaluation of expressions e and guards ϕ under a state σ, denoted by e(σ)
and ϕ(σ), is standard. For example, we define the evaluation of “monus” as

(e1
.− e2)(σ) , max { 0, e1(σ)− e2(σ) } .

6.2 Weakest Preexpectations

Expectations. An expectation f : Σ → R∞
≥0 is a map from program states to the

non-negative reals extended by infinity. We denote by E the set of all expecta-
tions. Moreover, (E, �) forms a complete lattice, where the partial order � is
given by the pointwise application of the canonical ordering ≤ on R∞

≥0, i.e.,

f � g iff ∀σ ∈ Σ : f(σ) ≤ g(σ) .

To conveniently describe expectations evaluating to some r ∈ R∞
≥0 for every state,

we slightly abuse notation and denote by r the constant expectation λσ. r. Sim-
ilarly, given an arithmetic expression e, we denote by e the expectation λσ. e(σ).
The least element of (E, �) is 0 and the greatest element is ∞. We employ the
Iverson bracket notation [35] to cast Boolean expressions into expectations, i.e.,

[ϕ] = λσ.

{

1 if ϕ(σ) = true ,

0 if ϕ(σ) = false .

The weakest preexpectation transformer wp : pGCL → (E → E) is defined in
Table 1, where g [x/e] denotes the substitution of variable x by expression e, i.e.,

g [x/e] , λσ. g(σ [x 7→ e(σ)]), where σ [x 7→ e(σ)] , λy.

{

e(σ) if y = x ,

σ(y) otherwise .

We call wpJCK (g) the weakest preexpectation of program C w.r.t. postexpecta-
tion g. The weakest preexpectation wpJCK (g) is itself an expectation of type E,
which maps each initial state σ to the expected value of g after running C on σ.

4 We prefer unsigned integers because our quantitative “specifications” (aka expecta-

tions) must evaluate to non-negative numbers. Otherwise, expectations like x+y are
not well-defined, and, as a remedy, we would frequently have to take the absolute
value of every program variable. Restricting ourselves to unsigned variables does not
decrease expressive power as signed variables can be emulated (cf. [8, Sec. 11.2]).

5 In order to avoid any technical issues pertaining to measurability.

Latticed k-Induction with an Application to Probabilistic Programs 13

C wp JCK (g)

skip g

x := e g [x/e]

C1 ; C2 wpJC1K
(

wpJC2K (g)
)

{C1 } [p] {C2 } p · wpJC1K (g) + (1− p) · wpJC2K (g)

if (ϕ) {C1 } else {C2 } [ϕ] · wpJC1K (g) + [¬ϕ] · wpJC2K (g)

while (ϕ) {C′ } lfp h. [¬ϕ] · g + [ϕ] · wpJC′K (h)

Table 1: Rules defining the weakest preexpectation transformer.

More formally, if µσC is the distribution over final states obtained by executing C
on initial state σ, then for any postexpectation g [45],

wpJCK (g) (σ) =
∑

τ∈Σ
µσC(τ) · g(τ) .

For a gentle introduction to weakest preexpectations, see [39, Chap. 2 and 4].

7 BMC and k-Induction for Probabilistic Programs

We now instantiate latticed κ-induction and BMC (as developed in Sections 2
to 5) to enable verification of loops written in pGCL; we discuss practical aspects
later in Sections 7.1 to 7.3 and Section 8. For the next two sections, we fix a loop

Cloop = while (ϕ) {C } .

For simplicity, we assume that the loop body C is loop-free (every probabilistic
program can be rewritten as a single while loop with loop-free body [63]).

Given an expectation g ∈ E and a candidate upper bound f ∈ E on the ex-
pected value of g after executing Cloop (i.e. wpJCloopK (g)), we will apply latticed
verification techniques to check whether f indeed upper-bounds wpJCloopK (g).

To this end, we denote by Φ the characteristic functional of Cloop and g, i.e.,

Φ : E → E, h 7→ [¬ϕ] · g + [ϕ] · wpJCK (h) ,
whose least fixed point defines wpJCloopK (g) (cf. Table 1). We remark that Φ is
a monotonic—and in fact even continuous—operator over the complete lattice
(E, �) (cf. Section 6.2). In this lattice, the meet is a pointwise minimum, i.e.,

h ⊓ h′ = h min h′ , λσ. min {h(σ), h′(σ) } .

By Definition 1, Φ and g then induce the (continuous) κ-induction operator

Ψf : E → E, h 7→ Φ (h) min f .

With this setup, we obtain the following proof rule for reasoning about proba-
bilistic loops as an immediate consequence of Theorem 2:

14 K. Batz et al.

Corollary 3 (k-Induction for pGCL). For every natural number k ∈ N,

Φ
(

Ψ
⌊k⌋
f (f)

)

� f implies wpJCloopK (g) � f .

Analogously, refuting that f upper-bounds the expected value of g after execu-
tion of Cloop via bounded model checking is an instance of Corollary 2:

Corollary 4 (Bounded Model Checking for pGCL).

∃n ∈ N : Φn(0) 6� f iff wpJCloopK (g) 6� f .

Example 2 (Geometric Loop). The pGCL program

Cgeo = while (x = 1) { {x := 0 } [0.5] { c := c+ 1 } }

keeps flipping a fair coin x until it flips heads, sets x to 0, and terminates.
Whenever it flips tails instead, it increments the counter c and continues. We
refer to Cgeo as the “geometric loop” because after its execution, the counter
variable c is distributed according to a geometric distribution.

What is a (preferably small) upper bound on the expected value wpJCgeoK (c)
of c after execution of Cgeo? Using 2-induction, we can (automatically) verify that
c+ 1 is indeed an upper bound: Since Φ (Ψc+1(c+ 1)) � c+ 1, where Φ denotes
the characteristic functional of Cgeo, Corollary 3 yields wpJCgeoK (c) � c+ 1.

However, c + 1 cannot be proven an upper bound using Park induction
as it is not inductive. Moreover, it is indeed the least upper bound, i.e., any
smaller bound is refutable using BMC (cf. Corollary 4). For example, we have

wpJCgeoK (c) 6� c+0.99, since Φ
⌈11⌉

(0) 6� c+0.99. Finally, we remark that some
correct upper bounds only become κ-inductive for transfinite ordinals κ. For in-
stance, the innocuous-looking bound 2 · c+ 1 is not k-inductive for any natural

number k, but it is (ω + 1)-inductive, since Φ
(
Ψ

⌊ω⌋
2·c+1(2 · c+ 1)

)
� 2 · c+ 1. ⊳

In principle, we can semi-decide whether wpJCloopK (g) 6� f holds or whether
f is k-inductive for some k: it suffices to run Algorithms 1 and 2 in parallel.
However, for these two algorithms to actually be semi-decision procedures, we
cannot admit arbitrary expectations. Rather, we restrict ourselves to a suitable
subset Exp of expectations in E satisfying all of the following requirements:

1. Exp is closed under computing the characteristic functional Φ, i.e.,

∀h ∈ Exp : Φ (h) is computable and belongs to Exp .

2. Quantitative entailments between expectations in Exp are decidable, i.e.,

∀h, h′ ∈ Exp : it is decidable whether h � h′ .

3. (For k-induction) Exp is closed under computing meets, i.e.,

∀h, h′ ∈ Exp : h min h′ is computable and belongs to Exp .

Below, we show that linear expectations meet all of the above requirements.

Latticed k-Induction with an Application to Probabilistic Programs 15

7.1 Linear Expectations

Recall from Figure 2b that we assume all expressions appearing in pGCL pro-
grams to be linear. For our fragment of syntactic expectations, we consider ex-
tended linear expressions ẽ that (1) are defined over rationals instead of natural
numbers and (2) admit ∞ as a constant (but not as a subexpression). Formally,
the set of extended linear expressions is given by the following grammar:

ẽ ::= e | ∞ e ::= r | x | r · e | e + e | e .− e (r ∈ Q≥0)

Similarly, we admit extended linear expressions (without ∞) in linear guards ϕ.6

With these adjustments to expressions and guards in mind, the set LinExp of
linear expectations is defined by the grammar

h ::= ẽ | [ϕ] · h | h+ h .

We write h = h′ if h and h′ are syntactically identical ; and h ≡ h′ if they are
semantically equivalent, i.e., if for all states σ, we have h(σ) = h′(σ).

Furthermore, the rescaling c·h of a linear expectation h by a constant c ∈ Q≥0

is syntactic sugar for rescaling suitable7 arithmetic subexpressions of h, e.g.,

1/2 · ([x = 1] · 4 + 1/3 · x+∞) ≡ 1/2 · [x = 1] · 4 + 1/2 · 1/3 · x+∞ ∈ LinExp .

A formal definition of the rescaling c · h is found in Appendix A.5.
If we choose a linear expectation h as a postexpectation, then a quick in-

spection of Table 1 reveals that the weakest preexpectation wpJCK (h) of any
loop-free pGCL program C and h yields a linear expectation again. Hence, linear
expectations are closed under applying Φ—Requirement 1 above—because

∀ g, h ∈ LinExp : Φ (h) = [¬ϕ] · g
︸ ︷︷ ︸

∈ LinExp

+ [ϕ] · wpJCK (h)
︸ ︷︷ ︸

∈ LinExp
︸ ︷︷ ︸

∈ LinExp

.

7.2 Deciding Quantitative Entailments between Linear Expectations

To prove that linear expectations meet Requirement 2—decidability of quanti-
tative entailments—we effectively reduce the question of whether an entailment
h � h′ holds to the decidable satisfiability problem for QF LIRA—quantifier-free
mixed linear integer and real arithmetic (cf. [43]).

As a first step, we show that every linear expectation can be represented as
a sum of mutually exclusive extended arithmetic expressions—a representation
we refer to as the guarded normal form (similar to [42, Lemma 1]).

6 We do not admit ∞ in guards for convenience. In principle, all comparisons with ∞
in guards can be removed by a simple preprocessing step.

7 We do not rescale every subexpression to account for the corner cases c · ∞ = ∞
and 0 · ∞ = 0.

16 K. Batz et al.

Definition 2 (Guarded Normal Form (GNF)). h ∈ LinExp is in GNF if

h =
∑n

i=1
[ϕi] · ẽi ,

where ẽ1, . . . , ẽn are extended linear expressions, n ∈ N is some natural number,
and ϕ1, . . . , ϕn are linear Boolean expressions that partition the set of states, i.e.,
for each σ ∈ Σ there exists exactly one i ∈ {1, . . . , n} such that ϕi(σ) = true.

Lemma 3. Every linear expectation h ∈ LinExp can effectively be transformed
into an equivalent linear expectation GNF (h) ≡ h in guarded normal form.

Proof. An extension of [8, Lemma A.2]. See details in Appendix A.6.

The number of summands |GNF (h) | in GNF (h) is, in general, exponential in the
number of summands in h. In practice, however, this exponential blow-up can
often be mitigated by pruning summands with unsatisfiable guards. Throughout
the remainder of this paper, we denote the components of GNF (h) and GNF (h′),
where h and h′ are arbitrary linear expectations, as follows:

GNF (h) =
∑n

i=1
[ϕi] · ẽi and GNF (h′) =

∑m

j=1
[ψj] · ãj .

We now present a decision procedure for the quantitative entailment over LinExp.

Theorem 7 (Decidability of Quantitative Entailment over LinExp). For
h, h′ ∈ LinExp, it is decidable whether h � h′ holds.

Proof. Let h, h′ ∈ LinExp. By Lemma 3, we have h � h′ iff GNF (h) � GNF (h′).
Let σ be some state. By definition of the GNF, σ satisfies exactly one guard

ϕi and exactly one guard ψj . Hence, the inequality GNF (h) (σ) ≤ GNF (h′) (σ)
does not hold iff ẽi(σ) > ãj(σ) holds for the expressions ẽi and ãj guarded by ϕi
and ψj , respectively. Based on this observation, we construct a QF LIRA formula
cex� (h, h′) that is unsatisfiable iff there is no counterexample to the entailment
h � h′ (see Appendix A.7 for a soundness proof):

cex� (h, h′) ,
∨n

i=1

∨m

j=1, ãj 6=∞
(ϕi ∧ ψj ∧ encodeInfty (ẽi) > ãj) .

Here, we identify every program variable in h or h′ with an N-valued SMT
variable. Moreover, to account for comparisons with ∞, we rely on the fact that
our (extended) arithmetic expressions either evaluate to ∞ for every state or
never evaluate to ∞. To deal with the case ẽi > ∞, which is always false, we
can thus safely exclude cases in which ãj = ∞ holds. To deal with the case
∞ > ãj , we represent ∞ by some unbounded number, i.e., we introduce a fresh,
unconstrained N-valued SMT variable infty and set encodeInfty (ẽ) to infty if
ẽ = ∞; otherwise, encodeInfty (ẽ) = ẽ. Since QF LIRA is decidable (cf. [43]), we
conclude that the quantitative entailment problem is decidable. ⊓⊔

Since quantitative entailments are decidable, we can already conclude that, for
linear expectations, Algorithm 2 is a semi-decision procedure.

Latticed k-Induction with an Application to Probabilistic Programs 17

7.3 Computing Minima of Linear Expectations

To ensure that latticed k-induction on pGCL programs (cf. Algorithm 1 and Sec-
tion 7) is a semi-decision procedure when considering linear expectations, we
have to consider Requirement 3—the expressability and computability of meets:

Theorem 8. LinExp is effectively closed under taking minima.

Proof. For k ∈ N, let k , {1, . . . , k}. Then, for two linear expectations h, h′, the
linear expectation GNF (h) min GNF (h′) ∈ LinExp is given by:

∑

(i,j)∈n×m







[ϕi ∧ ψj] · ãj , if ẽi = ∞ ,

[ϕi ∧ ψj] · ẽi, if ãi = ∞ ,

[ϕi ∧ ψj ∧ ẽi ≤ ãj] · ẽi + [ϕi ∧ ψj ∧ ẽi > ãj] · ãj otherwise ,

where we exploit that, for every state, exactly one guard ϕi and exactly one
guard ψj is satisfied (cf. Lemma 3). Notice that in the last case we indeed obtain
a linear expectation since neither ẽ nor ã are equal to ∞. ⊓⊔

In summary, all requirements stated in Section 7 are satisfied.

8 Implementation

We have implemented a prototype called kipro2—k-Induction for PRObabilis-
tic PROgrams—in Python 3.7 using the SMT solver Z3 [55] and the solver-API
PySMT [25]. Our tool, its source code, and our experiments are available online.8

kipro2 performs in parallel latticed k-induction and BMC to fully automati-
cally verify upper bounds on expected values of pGCL programs as described in
Section 7. In addition to reasoning about expected values, kipro2 supports ver-
ifying bounds on expected runtimes of pGCL programs, which are characterized
as least fixed points à la [41]. Rather than fixing a specific runtime model, we
took inspiration from [57] and added a statement tick (n) that does not affect
the program state but consumes n ∈ N time units.

To discharge quantitative entailments and compute the meet, we use the con-
structions in Theorems 7 and 8, respectively. As an additional optimization, we
do not iteratively apply the k-induction operator Ψf directly but use an incre-
mental encoding. We briefly sketch our encoding for k-induction (Algorithm 2);
the encoding for BMC is similar. In both cases, we employ uninterpreted func-
tions on top of mixed integer and real arithmetic, i.e., QF UFLIRA.

Recall Example 2, the geometric loop Cgeo, where we used k-induction to

prove wpJCgeoK (c) � c+ 1. For every k ∈ N, Φ(Ψ
⌊k⌋
c+1(c+ 1)) is given by

[x = 1] ·
(

0.5 · Ψ
⌊k⌋
c+1(c+ 1)
︸ ︷︷ ︸

Qk

[x/0] + 0.5 · Ψ
⌊k⌋
c+1(c+ 1)
︸ ︷︷ ︸

Qk

[c/c+ 1]
)

+ [x 6= 1] · c

︸ ︷︷ ︸

Pk

.

8 � https://github.com/moves-rwth/kipro2

https://github.com/moves-rwth/kipro2

18 K. Batz et al.

To obtain an incremental encoding, we introduce an uninterpreted function
Pk : N × N → R≥0 and a formula ρk(c, x) specifying that Pk(c, x) characterizes

Φ(Ψ
⌊k⌋
c+1(c+ 1)), i.e., for all σ ∈ Σ and r ∈ R≥0 with Φ(Ψ

⌊k⌋
c+1(c+ 1))(σ) <∞,9

ρk(σ(c), σ(x)) ∧ Pk(σ(c), σ(x)) = r is satisfiable iff r = Φ
(

Ψ
⌊k⌋
c+1(c+ 1)

)

(σ) .

If Φ(Ψ
⌊k⌋
c+1(c + 1))(σ) = ∞, our construction of ρk(x, c) ensures that the above

conjunction is satisfiable for arbitrarily large r. Analogously, we introduce an

uninterpreted function Qk : N× N → R≥0 that characterizes Ψ
⌊k⌋
c+1(c+ 1).

In particular, the formula ρk(c, x) may use all uninterpreted functions intro-
duced for smaller or equal values of k—not just the function Pk(c, x) it needs
to characterize. This enables an incremental encoding in the sense that ρk(c, x)
can be computed on top of ρk−1(c, x) by reusing Pk−1(c, x), Qk(c, x), and the
construction in Theorem 8.

Moreover, we can reuse ρk(c, x) to avoid computing the (expensive) GNF for
deciding certain quantitative entailments (cf. Theorem 7): For example, to check

whether Φ(Ψ
⌊k⌋
c+1(c + 1)) 6� h′ holds, we only need to transform the right-hand

side into GNF (cf. Section 7.2), i.e., if GNF (h′) =
∑m
j=1 [ψj] · ãj , then

Φ
(

Ψ
⌊k⌋
c+1(c+ 1)

)

6� g iff ρk ∧
∨m

j=1, ãj 6=∞
ψj ∧ Pk(c, x) > ãj is satisfiable .

9 Experiments

We evaluate kipro2 on two sets of benchmarks. The first set, shown in Table 2,
consists of four (infinite-state) probabilistic systems compiled from the literature;
each benchmark is evaluated on multiple variants of candidate upper bounds:

(1) brp is a pGCL variant of the bounded retransmission protocol [32,19]. The
goal is to transmit toSend many packages via an unreliable channel allowing for
at most maxFail many retransmissions per package (cf. Example 1). The variable
totalFail keeps track of the total number of failed attempts to send a package.
We verified upper bounds on the expected outcome of totalFail (variants 1–
4). In doing so, we bound the number of packages to send by 4 (10, 20, 70)
while keeping maxFail unbounded, i.e., we still verify an infinite-state system.
We notice that k > 1 is required for proving any of the candidate bounds; for up
to k = 11, kipro2 manages to prove non-trivial bounds within a few seconds.
However, unsurprisingly, the complexity increases rapidly with larger k. While
kipro2 can prove variant 3, it needs to increase k to 23; we observe that the

9 Notice that we do not axiomatize in ρk(c, x) that Φ(Ψ
⌊k⌋
c+1(c+1)) and Pk(c, x) are the

same function because we have no access to universal quantifiers. Rather, we spec-
ify that both functions coincide for any fixed concrete values assigned to c and x.
This weaker notion is not robust against formal modifications of the parameters,
e.g., through substitution. For example, to assign the correct interpretation to
Pk(c, x) [c/c+ 1], we have to construct a (second) formula ρk(c, x) [c/c+ 1].

Latticed k-Induction with an Application to Probabilistic Programs 19

complexity grows rapidly both in terms of the size of formulae and in terms of
runtime with increased k. Furthermore, variants 5–7 correspond to (increasing)
incorrect candidate bounds (totalFail+ 1, totalFail+ 1.5, totalFail+ 3) that are
refuted (or time out) when not imposing any restriction on toSend.

(2) geo corresponds to the geometric loop from Example 2. We verify that
c+1 upper-bounds the expected value of c for every initial state (variant 1); we
refute the incorrect candidates c+ 0.99 and c+ 0.999999999999 (variants 2–3).

(3) rabin is a variant of Rabin’s mutual exclusion algorithm [47] taken
from [34]. We aim to verify that the probability of obtaining a unique winning
process is at most 2/3 for at most 2 (3, 4) participants (variants 1–3) and refute
both 1/3 (variant 4) and 3/5 (variant 5) for an unbounded number of participants.

(4) unif gen implements the algorithm in [49] for generating a discrete uni-
form distribution over some interval {l, . . . , l + n− 1} using only fair coin flips.
We aim to verify that 1/n upper-bounds the probability of sampling a particular
element from any such interval of size at most n = 2 (3, 4, 5, 6) (variants 1–5).

Our second set of benchmarks, shown in Table 3, confirms the correctness of
(1-inductive) bounds on the expected runtime of pGCL programs synthesized by
the runtime analyzers Absynth [57] and (later) KoAT [53]; this gives a baseline
for evaluating the performance of our implementation. Moreover, it demonstrates
the flexibility of our approach as we effortlessly apply the expected runtime
calculus [41] instead of the weakest preexpectation calculus for verification.

Further details about individual benchmarks, including all considered pGCL

programs and candidate upper bounds, can be found in Appendix B.

Setup. We ran Algorithms 1 and 2 in parallel using an AMD Ryzen 5 3600X pro-
cessor with a shared memory limit of 8GB and a 15-minute timeout. For every
benchmark finishing within the time limit, kipro2 either finds the smallest k
required to prove the candidate bound by k-induction or the smallest unrolling
depth k to refute it. If kipro2 refutes, the SMT solver provides a concrete ini-
tial state witnessing that violation. In Tables 2 and 3, column #formulae gives
the maximal number of conjuncts on the solver stack; formulae t, sat t, and to-

tal t give the amount of time spent on (1) computing formulae, (2) satisfiability
checking, and (3) everything (including preprocessing), respectively. The input
consists of a program, a candidate upper bound, and a postexpectation; in Ta-
ble 3, the latter is fixed to “postruntime” 0 and thus omitted.

Evaluation of Benchmark Set 1. Table 2 empirically underlines that probabilistic
program verification can benefit from k-induction to the same extent as classical
software verification: kipro2 fully automatically verifies relevant properties of
infinite-state randomized algorithms and stochastic processes from the literature
that require k to be strictly larger than 1. That is, proving these properties
using (1-)inductive invariants requires either non-trivial invariant synthesis or
additional user annotations. This indicates that k-induction mitigates the need
for complicated specifications in probabilistic program verification (cf. [41]).

We observe that k-induction tends to succeed if some variable is bounded in
the candidate upper bound under consideration (cf. brp, rabin, unif gen). How-

20 K. Batz et al.

Table 2: Empirical results for the first benchmark set (time in seconds).

postexpectation variant result k #formulae formulae t sat t total t

b
r
p

totalFail

1 ind 5 285 0.15 0.01 0.28
2 ind 11 2812 1.77 0.12 2.03
3 ind 23 26284 17.68 28.09 45.94
4 TO – – – – –
5 ref 13 949 0.84 14.39 15.28
6 TO – – – – –
7 TO – – – – –

g
e
o

c

1 ind 2 18 0.01 0.00 0.08
2 ref 11 103 0.04 0.01 0.09
3 ref 46 1223 0.39 0.04 0.48

r
a
b
i
n

[i = 1]

1 ind 1 21 0.01 0.00 0.15
2 ind 5 1796 1.27 0.03 1.44
3 TO – – – – –
4 ref 4 458 0.31 0.03 0.40
5 ref 8 10508 8.76 2.85 11.68

u
n
i
f
g
e
n

[c = i]

1 ind 2 267 0.27 0.02 0.56
2 ind 3 1402 1.45 0.10 1.81
3 ind 3 1402 1.48 0.11 1.86
4 ind 5 40568 47.31 15.70 63.28
5 TO – – – – –

ever, k-induction can also succeed without any bounds (cf. geo). The time and
formulae required for checking k-inductivity increases rapidly for larger k; this is
particularly striking for rabin and unif gen. When refuting candidate bounds
with BMC, we obtain a similar picture. Both the time and formulae required for
refutation increase if the candidate bound increases (cf. brp, geo, rabin).

For both k-induction and BMC, we observe a direct correlation between the
complexity of the loop, i.e., the number of possible traces through the loop
from some fixed initial state after some bounded number of iterations, and the
required time and space (number of formulae). Whereas for geo and brp—which
exhibit a rather simple structure—these checks tend to be fast, this is not the
case for rabin and unif gen, which have more complex loop bodies. For such
complex loops, k-induction and BMC quickly become infeasible as k increases.

Evaluation of Benchmark Set 2. From Table 3, we observe that—in almost every
case—verification is instantaneous and requires very few formulae. The programs
we verify are equivalent to the programs provided in [57] up to interpreting minus
asmonus and using N-typed (instead of Z) variables. A manual inspection reveals
that this matters for C4B t303 and rdwalk, which is the reason why the runtime
bound for C4B t303 is 3-inductive rather than 1-inductive.

There are two timeouts (2drwalk, bayesian network) due to the GNF con-
struction from Lemma 3, which exhibits a runtime exponential in the number of
possible execution branches through the loop body. We conjecture that further
preprocessing (by pruning infeasible branches upfront) can mitigate this, render-
ing 2drwalk and bayesian network tractable as well. We consider a thorough

Latticed k-Induction with an Application to Probabilistic Programs 21

Table 3: Empirical results for (a subset of) the ERTs [57] (time in milliseconds).

runtime bound candidate result k #formulae formulae t sat t total t

2drwalk 2 · (n+ 1 .− d) TO – – – – –
bayesian network 5 · n TO – – – – –
ber 2 · (n .− x) ind 1 9 7.22 0.44 88.12
C4B t303 0.5 · (x+ 2) + 0.5 · (y + 2) ind 3 129 91.38 10.01 216.11
condand m+ n ind 1 10 7.10 0.43 76.21
fcall 2 · (n .− x) ind 1 9 6.73 0.41 75.73
hyper 5 · (n .− x) ind 1 11 7.24 0.46 97.52
linear01 0.6 · x ind 1 11 7.19 0.49 74.38
prdwalk 1.14286 · (n+ 4 .− x) ind 1 17 7.64 0.72 194.44
prspeed 2 · (m .− y) + 0.6666667 · (n .− x) ind 1 18 7.64 0.81 145.13
race 0.666667 · (t+ 9 .− h) ind 1 30 9.21 0.86 695.89
rdspeed 2 · (m .− y) + 0.666667 · (n .− x) ind 1 19 7.70 0.78 143.45
rdwalk 2 · (n+ 1 .− x) ind 1 12 10.22 0.75 85.03
sprdwalk 2 · (n .− x) ind 1 9 7.28 0.42 83.40

investigation of suitable preprocessing strategies for GNF construction, which is
outside the scope of this paper, a worthwhile direction for future research.

10 Conclusion

We presented κ-induction, a generalization of classical k-induction to arbitrary
complete lattices, and—together with a complementary bounded model check-
ing approach—obtained a fully automated technique for verifying infinite-state
probabilistic programs. Experiments showed that this technique can prove non-
trivial properties in an automated manner that using existing techniques cannot
be proven—at least not without synthesizing a stronger inductive invariant. If
a given candidate bound is k-inductive for some k, then our prototypical tool
will find that k for linear programs and linear expectations. In theory, our tool
is also applicable to non-linear programs at the expense of an undecidability
quantitative entailment problem. It is left for future work to consider (positive)
real-valued program variables for non-linear expectations.

Acknowledgements. Benjamin Lucien Kaminski is indebted to Larry Fischer
for his linguistic advice—this time on the word “latticed”.

References

1. Abramsky, S., Jung, A.: Domain theory. In: Handbook of Logic in Computer Sci-
ence, vol. 3: Semantic Structures. Clarendon Press (1994)

2. Agrawal, S., Chatterjee, K., Novotný, P.: Lexicographic ranking supermartingales:
an efficient approach to termination of probabilistic programs. Proc. ACM Pro-
gram. Lang. 2(POPL), 34:1–34:32 (2018)

3. Amtoft, T., Banerjee, A.: A theory of slicing for imperative probabilistic programs.
ACM Trans. Program. Lang. Syst. 42(2), 6:1–6:71 (2020)

22 K. Batz et al.

4. Baier, C., Klein, J., Leuschner, L., Parker, D., Wunderlich, S.: Ensuring the relia-
bility of your model checker: Interval iteration for Markov decision processes. In:
CAV (1). LNCS, vol. 10426, pp. 160–180. Springer (2017)

5. Baldan, P., Eggert, R., König, B., Padoan, T.: Fixpoint theory - upside down. In:
FoSSaCS. LNCS, vol. 12650, pp. 62–81. Springer (2021)

6. Barthe, G., Espitau, T., Fioriti, L.M.F., Hsu, J.: Synthesizing probabilistic invari-
ants via Doob’s decomposition. In: CAV (1). LNCS, vol. 9779, pp. 43–61. Springer
(2016)

7. Batz, K., Junges, S., Kaminski, B.L., Katoen, J., Matheja, C., Schröer, P.: PrIC3:
Property directed reachability for MDPs. In: CAV (2). LNCS, vol. 12225, pp. 512–
538. Springer (2020)

8. Batz, K., Kaminski, B.L., Katoen, J., Matheja, C.: Relatively complete verification
of probabilistic programs: An expressive language for expectation-based reasoning.
Proc. ACM Program. Lang. 5(POPL), 1–30 (2021)

9. Beyer, D., Dangl, M., Wendler, P.: Boosting k -induction with continuously-refined
invariants. In: CAV (1). LNCS, vol. 9206, pp. 622–640. Springer (2015)

10. Biere, A.: Bounded model checking. In: Handbook of Satisfiability, Frontiers in
Artificial Intelligence and Applications, vol. 185, pp. 457–481. IOS Press (2009)

11. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without
BDDs. In: TACAS. LNCS, vol. 1579, pp. 193–207. Springer (1999)

12. Biere, A., Clarke, E., Raimi, R., Zhu, Y.: Verifying safety properties of a PowerPC
microprocessor using symbolic model checking without BDDs. In: CAV. pp. 60–71.
Springer (1999)

13. Bjørner, N., Gurfinkel, A.: Property directed polyhedral abstraction. In: VMCAI.
LNCS, vol. 8931, pp. 263–281. Springer (2015)

14. Bradley, A.R.: SAT-based model checking without unrolling. In: VMCAI. LNCS,
vol. 6538, pp. 70–87. Springer (2011)

15. Chadha, R., Viswanathan, M.: A counterexample-guided abstraction-refinement
framework for Markov decision processes. ACM Trans. Comput. Log. 12(1), 1:1–
1:49 (2010)

16. Chakarov, A., Sankaranarayanan, S.: Probabilistic program analysis with martin-
gales. In: CAV. LNCS, vol. 8044, pp. 511–526. Springer (2013)

17. Clarke, E.M., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satis-
fiability solving. Formal Methods Syst. Des. 19(1), 7–34 (2001)

18. Cousot, P., Cousot, R.: Constructive versions of Tarski’s fixed point theorems.
Pacific Journal of Mathematics 82(1), 43–57 (1979)

19. D’Argenio, P.R., Jeannet, B., Jensen, H.E., Larsen, K.G.: Reachability analysis
of probabilistic systems by successive refinements. In: PAPM-PROBMIV. LNCS,
vol. 2165, pp. 39–56. Springer (2001)

20. Déharbe, D., Moreira, A.M.: Using induction and BDDs to model check invariants.
In: CHARME. IFIP Conference Proceedings, vol. 105, pp. 203–213. Chapman &
Hall (1997)

21. Donaldson, A.F., Haller, L., Kroening, D., Rümmer, P.: Software verification using
k -induction. In: SAS. LNCS, vol. 6887, pp. 351–368. Springer (2011)

22. Donaldson, A.F., Kroening, D., Rümmer, P.: Automatic analysis of scratch-pad
memory code for heterogeneous multicore processors. In: TACAS. LNCS, vol. 6015,
pp. 280–295. Springer (2010)

23. Donaldson, A.F., Kroening, D., Rümmer, P.: Automatic analysis of DMA races
using model checking and k -induction. Formal Methods Syst. Des. 39(1), 83–113
(2011)

Latticed k-Induction with an Application to Probabilistic Programs 23

24. Feng, Y., Zhang, L., Jansen, D.N., Zhan, N., Xia, B.: Finding polynomial loop
invariants for probabilistic programs. In: ATVA. LNCS, vol. 10482, pp. 400–416.
Springer (2017)

25. Gario, M., Micheli, A.: PySMT: A solver-agnostic library for fast prototyping of
SMT-based algorithms. In: SMT Workshop 2015 (2015)

26. Gehr, T., Misailovic, S., Vechev, M.T.: PSI: exact symbolic inference for proba-
bilistic programs. In: CAV (1). LNCS, vol. 9779, pp. 62–83. Springer (2016)

27. Graf, S., Säıdi, H.: Construction of abstract state graphs with PVS. In: CAV.
LNCS, vol. 1254, pp. 72–83. Springer (1997)

28. Gretz, F., Katoen, J., McIver, A.: Operational versus weakest pre-expectation se-
mantics for the probabilistic guarded command language. Perform. Evaluation 73,
110–132 (2014)

29. Gurfinkel, A., Ivrii, A.: K-induction without unrolling. In: FMCAD. pp. 148–155.
IEEE (2017)

30. Han, T., Katoen, J., Damman, B.: Counterexample generation in probabilistic
model checking. IEEE Trans. Software Eng. 35(2), 241–257 (2009)

31. Hartmanns, A., Kaminski, B.L.: Optimistic value iteration. In: CAV (2). LNCS,
vol. 12225, pp. 488–511. Springer (2020)

32. Helmink, L., Sellink, M.P.A., Vaandrager, F.W.: Proof-checking a data link proto-
col. In: TYPES. LNCS, vol. 806, pp. 127–165. Springer (1993)

33. Huang, Z., Wang, Z., Misailovic, S.: PSense: Automatic sensitivity analysis for
probabilistic programs. In: ATVA. LNCS, vol. 11138, pp. 387–403. Springer (2018)

34. Hurd, J., McIver, A., Morgan, C.: Probabilistic guarded commands mechanized in
HOL. Theor. Comput. Sci. 346(1), 96–112 (2005)

35. Iverson, K.E.: A Programming Language. John Wiley & Sons, Inc., USA (1962)
36. Jansen, N., Dehnert, C., Kaminski, B.L., Katoen, J., Westhofen, L.: Bounded

model checking for probabilistic programs. In: ATVA. LNCS, vol. 9938, pp. 68–85
(2016)

37. Jhala, R., McMillan, K.L.: A practical and complete approach to predicate refine-
ment. In: TACAS. LNCS, vol. 3920, pp. 459–473. Springer (2006)

38. Jovanović, D., Dutertre, B.: Property-directed k-induction. In: FMCAD. pp. 85–92.
IEEE (2016)

39. Kaminski, B.L.: Advanced Weakest Precondition Calculi for Probabilistic Pro-
grams. Ph.D. thesis, RWTH Aachen University, Germany (2019)

40. Kaminski, B.L., Katoen, J., Matheja, C.: On the hardness of analyzing probabilistic
programs. Acta Informatica 56(3), 255–285 (2019)

41. Kaminski, B.L., Katoen, J., Matheja, C., Olmedo, F.: Weakest precondition rea-
soning for expected runtimes of randomized algorithms. J. ACM 65(5), 30:1–30:68
(2018)

42. Katoen, J., McIver, A., Meinicke, L., Morgan, C.C.: Linear-invariant generation
for probabilistic programs: Automated support for proof-based methods. In: SAS.
LNCS, vol. 6337, pp. 390–406. Springer (2010)

43. King, T., Barrett, C.W., Tinelli, C.: Leveraging linear and mixed integer pro-
gramming for SMT. In: SMT. CEUR Workshop Proceedings, vol. 1163, p. 65.
CEUR-WS.org (2014)

44. Knaster, B.: Un théorème sur les functions d’ensembles. Annales de la Societe
Polonaise de Mathematique 6, 133–134 (1928)

45. Kozen, D.: A probabilistic PDL. J. Comput. Syst. Sci. 30(2), 162–178 (1985)
46. Krishnan, H.G.V., Vizel, Y., Ganesh, V., Gurfinkel, A.: Interpolating strong in-

duction. In: CAV (2). LNCS, vol. 11562, pp. 367–385. Springer (2019)

24 K. Batz et al.

47. Kushilevitz, E., Rabin, M.O.: Randomized mutual exclusion algorithms revisited.
In: PODC. pp. 275–283. ACM (1992)

48. Lassez, J.L., Nguyen, V.L., Sonenberg, L.: Fixed point theorems and semantics: A
folk tale. Inf. Process. Lett. 14(3), 112–116 (1982)

49. Lumbroso, J.O.: Optimal discrete uniform generation from coin flips, and applica-
tions. CoRR abs/1304.1916 (2013)

50. McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Sys-
tems. Monographs in Computer Science, Springer (2005)

51. McMillan, K.L.: Interpolation and SAT-based model checking. In: CAV. LNCS,
vol. 2725, pp. 1–13. Springer (2003)

52. McMillan, K.L.: An interpolating theorem prover. Theor. Comput. Sci. 345(1),
101–121 (2005)

53. Meyer, F., Hark, M., Giesl, J.: Inferring expected runtimes of probabilistic integer
programs using expected sizes. In: TACAS. LNCS (2021), (to appear)

54. Milner, R.: Communication and concurrency. PHI Series in computer science, Pren-
tice Hall (1989)

55. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: TACAS. LNCS,
vol. 4963, pp. 337–340. Springer (2008)

56. de Moura, L.M., Rueß, H., Sorea, M.: Bounded model checking and induction:
From refutation to verification (extended abstract, category A). In: CAV. LNCS,
vol. 2725, pp. 14–26. Springer (2003)

57. Ngo, V.C., Carbonneaux, Q., Hoffmann, J.: Bounded expectations: Resource anal-
ysis for probabilistic programs. In: PLDI. pp. 496–512. ACM (2018)

58. Park, D.: Fixpoint induction and proofs of program properties. Machine Intelli-
gence 5 (1969)

59. Pous, D.: Complete lattices and up-to techniques. In: APLAS. LNCS, vol. 4807,
pp. 351–366. Springer (2007)

60. Pous, D., Sangiorgi, D.: Enhancements of the bisimulation proof method. In: Ad-
vanced Topics in Bisimulation and Coinduction, Cambridge tracts in theoretical
computer science, vol. 52, pp. 233–289. Cambridge University Press (2012)

61. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley Series in Probability and Statistics, Wiley (1994)

62. Quatmann, T., Katoen, J.: Sound value iteration. In: CAV (1). LNCS, vol. 10981,
pp. 643–661. Springer (2018)

63. Rabehaja, T.M., Sanders, J.W.: Refinement algebra with explicit probabilism. In:
TASE. pp. 63–70. IEEE Computer Society (2009)

64. Rocha, W., Rocha, H., Ismail, H., Cordeiro, L.C., Fischer, B.: Depthk: A k-
induction verifier based on invariant inference for C programs - (competition con-
tribution). In: TACAS (2). LNCS, vol. 10206, pp. 360–364 (2017)

65. Schüle, T., Schneider, K.: Bounded model checking of infinite state systems. Formal
Methods Syst. Des. 30(1), 51–81 (2007)

66. Sheeran, M., Singh, S., St̊almarck, G.: Checking safety properties using induction
and a SAT-solver. In: FMCAD. LNCS, vol. 1954, pp. 108–125. Springer (2000)

67. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific Jour-
nal of Mathematics 5(2), 285–309 (1955)

68. Wang, D., Hoffmann, J., Reps, T.W.: PMAF: an algebraic framework for static
analysis of probabilistic programs. In: PLDI. pp. 513–528. ACM (2018)

69. Wimmer, R., Braitling, B., Becker, B.: Counterexample generation for discrete-
time Markov chains using bounded model checking. In: VMCAI. LNCS, vol. 5403,
pp. 366–380. Springer (2009)

Latticed k-Induction with an Application to Probabilistic Programs 25

A Appendix

A.1 Proof of Lemma 1

For item (a), observe that h1 ⊑ h2 implies h1 ⊓ f ⊑ h2 ⊓ f . We then have

Ψf (g1) = Φ (g1) ⊓ f (by definition of Ψf)

⊑ Φ (g2) ⊓ f (by monotonicity of Φ and the above property)

= Ψf (g2) . (by definition of Ψf)

For item (b), we proceed by transfinite induction on the γ.

The case δ = 0. This case is trivial as there exists no ordinal γ < δ.
The case δ = β + 1 successor ordinal. For every α < β, consider the following:

Ψ
⌊δ⌋
f (f)

= Ψf

(

Ψ
⌊β⌋
f (f)

)

(by definition of Ψ
⌊β+1⌋
f (f))

⊑ Ψf

(

Ψ
⌊α⌋
f (f)

)

(by I.H. and monotonicity of Ψf)

= Ψ
⌊α+1⌋
f (f) . (by definition of Ψ

⌊α+1⌋
f (f))

This proves the claim for every γ = α + 1 < δ. For the missing case γ = 0,
consider the following:

Ψ
⌊δ⌋
f (f)

= Ψf

(

Ψ
⌊β⌋
f (f)

)

(by definition of Ψ
⌊β+1⌋
f (f))

⊑ f (by Lemma 1, definition of Ψg)

= Ψ
⌊0⌋
f (f) . (by definition of Ψ

⌊0⌋
f (f))

The case δ limit ordinal. For every γ < δ consider the following

Ψ
⌊δ⌋
f (f)

=
l{

Ψ
⌊β⌋
f (f)

∣
∣ β < δ

}

(by definition of Ψ
⌊δ⌋
f (f))

⊑
l{

Ψ
⌊α⌋
f (f)

∣
∣ α < γ

}

(by I.H.)

= Ψ
⌊γ⌋
f (f) . (by definition of Ψ

⌊γ⌋
f (f))

For item (c), we first observe that Ψf (g) ⊑ Φ (g) holds for every element g ∈
E. The claim then follows from a straightforward transfinite induction on the

number of iterations and the fact that Φ⌊δ⌋ (g) ⊑ Φ
⌈δ⌉

(g) holds by definition.
For item (d), assume lfp Φ ⊑ f . It suffices to prove that, for all ordinals δ < ν,

we have lfp Φ ⊑ Ψ
⌊δ⌋
f (f); the remaining inequalities are immediate by definition

of Ψf and item (b). We proceed by transfinite induction on δ.

26 K. Batz et al.

The case δ = 0. Trivial, since lfp Φ ⊑ f = Ψ
⌊0⌋
f (f).

The case δ = γ + 1 successor ordinal.

Ψ
⌊δ⌋
f (f)

= Ψf

(

Ψ
⌊γ⌋
f (f)

)

(by definition of Ψ
⌊δ⌋
f (f))

⊒ Ψf (lfp Φ) (by I.H. and monotonicity of Ψf)

= Φ (lfp Φ) ⊓ f (by definition of Ψf)

= (lfp Φ) ⊓ f

⊒ lfp Φ .

The case δ limit ordinal.

Ψ
⌊δ⌋
f (f)

=
l{

Ψ
⌊γ⌋
f (f)

∣
∣ γ < δ

}

(by definition of Ψ
⌊δ⌋
f (f))

⊒
l

{lfp Φ} (by I.H.)

= lfp Φ .

This completes the proof. ⊓⊔

A.2 Proof of Theorem 2

Φ
(

Ψ
⌊κ⌋
f (f)

)

⊑ f

implies Φ
(

Ψ
⌊κ⌋
f (f)

)

⊑ Ψ
⌊κ⌋
f (f) (by Lemma 2)

implies lfp Φ ⊑ Ψ
⌊κ⌋
f (f) (by Park induction)

implies lfp Φ ⊑ f . (by Lemma 1(b)) ⊓⊔

A.3 Proof of Theorem 3

By the Knaster-Tarski theorem, we have Φ⌊β⌋(⊤) = gfp Φ for some ordinal β.

We next observe that for this ordinal β, we have Ψ
⌊β⌋
f (f) ⊑ lfp Φ:

Ψ
⌊β⌋
f (f) ⊑ Φ⌊β⌋(f) (by Lemma 1(c))

⊑ Φ⌊β⌋(⊤) (by monotonicity of Φ)

= gfp Φ = lfp Φ (by Knaster-Tarski theorem and the assumption)

It follows that f is (β + 1)-inductive, since

Φ
(

Ψ
⌊β⌋
f

)

⊑ Φ (lfp Φ) (apply the above property and monotonicity of Φ)

= lfp Φ (by the fixed point property)

⊑ f . (by the implication’s premise) ⊓⊔

Latticed k-Induction with an Application to Probabilistic Programs 27

A.4 Proof of Theorem 4

Premises. We first recap our assumptions and introduce some useful notation.
We assume the setting from Section 4, in particular

Φ(X) = I ∪ Succs(X) ,

where Succs(X) = {t′ | ∃t ∈ X : (t, t′) ∈ T }. We denote by µ interpretations
that assign to every variable a state in S; µ |= ϕ denotes that µ is a model
of formula ϕ. Moreover, we treat I(s), T (s, s′), and P (s) as relational symbols
whose interpretation is I, T , and P , respectively.10 Formally:

1. µ |= I(s) iff µ(s) ∈ I,
2. µ |= T (s, s′) iff (µ(s), µ(s′)) ∈ T , and
3. µ |= P (s) iff µ(s) ∈ P .
4. ∀s ∈ S ∃s′ ∈ S : (s, s′) ∈ T .

Recall the formula 1a depicted below. We denote by ϕk(s1, . . . , sk) the LHS of
the implication and by ψk(s1, . . . , sk) the RHS of the implication, respectively.

I(s1) ∧ T (s1, s2) ∧ . . . ∧ T (sk−1, sk)
︸ ︷︷ ︸

, ϕk

=⇒ P (s1) ∧ . . . ∧ P (sk)
︸ ︷︷ ︸

, ψk

. (1a)

Moreover, recall the formula 1b; as shown below, we define a shortcut for the
LHS of the implication excluding the last transition.

P (s1) ∧ T (s1, s2) ∧ . . . ∧ P (sk)
︸ ︷︷ ︸

, πk

∧T (sk, sk+1) =⇒ P (sk+1) . (1b)

Finally, we define an auxiliary transformer capturing all successors of a given
set of states that satisfy the property P :

Λ : 2S → 2S, F 7→ Succs(F) ∩ P

Claim. For every natural number k ≥ 1,

Φ
(

Ψ
⌊k−1⌋
P (P)

)

⊆ P iff formulae (1a) and (1b) are valid .

Proof (of the claim aka Theorem 4). Let k ≥ 1. We rely on several lemmata,
which are presented further below. With this in mind, consider the following:

Φ
(

Ψ
⌊k−1⌋
P (P)

)

⊆ P

iff Φ
(

Ψ
⌊k−1⌋
P (P)

)

⊆ P and Φ⌊k⌋ (∅) ⊆ P (by Lemma 4)

10 That is, by fixing an interpretation, we abstract from how I(s), T (s, s′), and P (s)
are axiomatized. Moreover, by interpreting every variable as a state in S, we abstract
from common encodings of the state space in which a single state is given by the
evaluation of a set of state variables (cf. [46,13,21]).

28 K. Batz et al.

iff Φ
(

Φ⌊k−1⌋ (∅) ∪ Λ⌊k−1⌋ (P)
)

⊆ P (by Lemma 5 and monotinicty of Φ)

iff I ∪ Succs
(

Φ⌊k−1⌋ (∅) ∪ Λ⌊k−1⌋ (P)
)

⊆ P (by definition of Φ)

iff I ∪ Succs
(

Φ⌊k−1⌋ (∅)
)

∪ Succs
(

Λ⌊k−1⌋ (P)
)

⊆ P

(Succs(.) distributes over ∪)

iff Φ⌊k⌋ (∅) ∪ Succs
(

Λ⌊k−1⌋ (P)
)

⊆ P (by definition of Φ)

iff Φ⌊k⌋ (∅) ⊆ P and Succs
(

Λ⌊k−1⌋ (P)
)

⊆ P

iff ϕk =⇒ ψk is valid and Succs
(

Λ⌊k−1⌋ (P)
)

⊆ P (by Lemma 6)

iff ϕk =⇒ ψk is valid (by Lemma 7)

and πk ∧ T (sk, sk+1) =⇒ P (sk+1) is valid

iff formulae (1a) and (1b) are valid . (by definition of ϕk, ψk, and πk)

⊓⊔

Lemma 4. For all k ≥ 1, Φ
(

Ψ
⌊k−1⌋
P (P)

)

⊆ P implies Φ⌊k⌋ (∅) ⊆ P .

Proof. By Theorem 2, Φ
(

Ψ
⌊k−1⌋
P (P)

)

⊆ P implies lfp Φ ⊆ P . Hence, for all

n ∈ N, we have Φ⌊n⌋ (∅) ⊆ P ; in particular, for n = k. ⊓⊔

Lemma 5. For all k ≥ 1, if Φ⌊k⌋ (∅) ⊆ P , then

Ψ
⌊k−1⌋
P (P) = Φ⌊k−1⌋ (∅) ∪ Λ⌊k−1⌋ (P) .

Proof. By induction on k. For k = 1, we have

Ψ
⌊1−1⌋
P (P) = P = Φ⌊1−1⌋ (∅) ∪ Λ⌊1−1⌋ (P) .

For k > 1, consider the following:

Ψ
⌊k−1⌋
P (P)

= ΨP

(

Ψ
⌊k−2⌋
P (P)

)

= Φ
(

Ψ
⌊k−2⌋
P (P)

)

∩ P (by definition of ΨP)

= Φ
(

Φ⌊k−2⌋ (∅) ∪ Λ⌊k−2⌋ (P)
)

∩ P (by I.H.)

=
(

I ∪ Succs
(

Φ⌊k−2⌋ (∅) ∪ Λ⌊k−2⌋ (P)
))

∩ P (by definition of Φ)

=
(

I ∪ Succs
(

Φ⌊k−2⌋ (∅)
)

∪ Succs
(

Λ⌊k−2⌋ (P)
))

∩ P

(Succs distributes over ∪)

=
(

Φ⌊k−1⌋ (∅) ∪ Succs
(

Λ⌊k−2⌋ (P)
))

∩ P (by definition of Φ)

Latticed k-Induction with an Application to Probabilistic Programs 29

=
(

Φ⌊k−1⌋ (∅) ∩ P
)

∪ Λ⌊k−1⌋ (P) (by definition of Λ⌊k−1⌋ (P))

= Φ⌊k−1⌋ (∅) ∪ Λ⌊k−1⌋ (P) . (by the assumption Φ⌊k−1⌋ (∅) ⊆ P)

⊓⊔

Lemma 6. For all k ≥ 1, ϕk =⇒ ψk is valid iff Φ⌊k⌋ (∅) ⊆ P .

Proof. By induction on k.

Base case k = 1. We have

ϕ1 =⇒ ψ1 is valid

iff ∀µ : µ |= ϕ1 implies µ |= ψ1

iff ∀µ : µ |= ϕ1 implies µ(s1) ∈ P (by Lemma 8)

iff ∀µ : µ(s1) ∈ I implies µ(s1) ∈ P

iff I ⊆ P

iff Φ⌊1⌋ (∅) ⊆ P .

Induction step.

ϕk+1 =⇒ ψk+1 is valid

iff ϕk+1 =⇒ ψk ∧ P (sk+1) is valid (by def. of ψk+1)

iff (ϕk+1 =⇒ ψk is valid) and (ϕk+1 =⇒ P (sk+1) is valid)

iff (ϕk ∧ T (sk, sk+1) =⇒ ψk is valid) and (ϕk+1 =⇒ P (sk+1) is valid)
(by def. of ϕk+1)

iff (T (sk, sk+1) =⇒ (ϕk =⇒ ψk) is valid) and (ϕk+1 =⇒ P (sk+1) is valid)

iff (ϕk =⇒ ψk is valid) and (ϕk+1 =⇒ P (sk+1) is valid)
(since T is total and sk+1 does not occurr in ϕk or ψk)

iff Φ⌊k⌋ (∅) ⊆ P and (ϕk+1 =⇒ P (sk+1) is valid) (by I.H.)

iff Φ⌊k⌋ (∅) ⊆ P and (∀µ : µ |= ϕk+1 implies µ |= P (sk+1))

iff Φ⌊k⌋ (∅) ⊆ P

and (∀µ : µ(si+1) ∈ Succs⌊i⌋ (I) for all i ∈ {0, . . . , k} implies µ |= P (sk+1))
(by Lemma 9)

iff Φ⌊k⌋ (∅) ⊆ P and (∀µ : µ(sk+1) ∈ Succs⌊k⌋ (I) implies µ |= P (sk+1))

iff Φ⌊k⌋ (∅) ⊆ P and (∀µ : µ(sk+1) ∈ Succs⌊k⌋ (I) implies µ(sk+1) ∈ P)

iff Φ⌊k⌋ (∅) ⊆ P and (Succs⌊k⌋ (I) ⊆ P)

iff Φ⌊k+1⌋ (∅) ⊆ P . (by Lemma 10)

30 K. Batz et al.

Lemma 7. For all k ≥ 1,

πk ∧ T (sk, sk+1) =⇒ P (sk+1) is valid iff Succs(Λ⌊k−1⌋ (P)) ⊆ P .

Proof. We have

πk ∧ T (sk, sk+1) =⇒ P (sk+1) is valid

iff ∀µ : (µ(si+1) ∈ Λ⌊i⌋ (P) for all i ∈ {0, . . . , k − 1} (by Lemma 11)

and µ(sk+1) ∈ Succs({µ(sk)})) implies µ(sk+1) ∈ P

iff ∀µ : (µ(sk) ∈ Λ⌊k−1⌋ (P) and µ(sk+1) ∈ Succs({µ(sk)})) implies µ(sk+1) ∈ P

iff Succs(Λ⌊k⌋ (P)) ⊆ P .

Lemma 8. For all k ≥ 1, µ |= ψk iff µ(s1), . . . , µ(sk) ∈ P .

Proof. Immediate by assumption (3).

Lemma 9. For all k ≥ 1, µ |= ϕk iff µ(si+1) ∈ Succs⌊i⌋ (I) for all i ∈ {0, . . . , k − 1}.

Proof. By induction on k.

Base case k = 1. We have

µ |= ϕ1

iff µ |= I(s1) (by def. of ϕ1)

iff µ(s1) ∈ I

iff µ(s1) ∈ Succs⌊0⌋ (I) .

Induction step. We have

µ |= ϕk+1

iff µ |= ϕk ∧ T (sk, sk+1)

iff µ |= ϕk and µ |= T (sk, sk+1)

iff (µ(si+1) ∈ Succs⌊i⌋ (I) for all i ∈ {0, . . . , k − 1}) (by I.H.)

and µ |= T (sk, sk+1)

iff (µ(si+1) ∈ Succs⌊i⌋ (I) for all i ∈ {0, . . . , k − 1})

and µ(sk+1) ∈ Succs({µ(sk)})

iff µ(si+1) ∈ Succs⌊i⌋ (I) for all i ∈ {0, . . . , k} .

Lemma 10. For all k ≥ 1, Φ⌊k⌋ (∅) = Φ⌊k−1⌋ (∅) ∪ Succs⌊k−1⌋ (I).

Proof. By induction on k.

Lemma 11. For all k ≥ 1, µ |= πk iff µ(si+1) ∈ Λ⌊i⌋ (P) for all i ∈ {0, . . . , k − 1} .

Latticed k-Induction with an Application to Probabilistic Programs 31

Proof. By induction on k.

Base case k = 1. We have

µ |= π1

iff µ |= P (s1)

iff µ(s1) ∈ P

iff µ(s1) ∈ Λ⌊0⌋ (P) .

Induction step. We have

µ |= πk+1

iff µ |= πk ∧ T (sk, sk+1) ∧ P (sk+1)

iff µ(si+1) ∈ Λ⌊i⌋ (P) for all i ∈ {0, . . . , k − 1} and µ |= T (sk, sk+1) ∧ P (sk+1)
(by I.H.)

iff µ(si+1) ∈ Λ⌊i⌋ (P) for all i ∈ {0, . . . , k − 1} and µ(sk+1) ∈ Succs({µ(sk)}) ∩ P

iff µ(si+1) ∈ Λ⌊i⌋ (P) for all i ∈ {0, . . . , k − 1} and µ(sk+1) ∈ Succs(Λ⌊k−1⌋ (P)) ∩ P

iff µ(si+1) ∈ Λ⌊i⌋ (P) for all i ∈ {0, . . . , k − 1} and µ(sk+1) ∈ Λ⌊k⌋ (P)

(since for k ≥ 1, Λ⌊k⌋ (P) = Λ⌊1⌋
(

Λ⌊k−1⌋ (P)
)

= Succs(Λ⌊k−1⌋ (P)) ∩ P)

iff µ(si+1) ∈ Λ⌊i⌋ (P) for all i ∈ {0, . . . , k} .

A.5 Formal Definition of Linear Rescaling

Let h ∈ LinExp be a linear expectation. Moreover, let c ∈ Q≥0 be some rational
constant. For c = 0, we define the rescaling as 0 · g , 0. For c > 0, the rescaling
c · h is given by the table below.

h c · h

∞ ∞
e (6= ∞) c · e
[ϕ] · h′ [ϕ] · (c · h′)
h′ + h′′ c · h′ + c · h′′

A.6 Proof of Lemma 3

Claim. Every linear expectation h ∈ LinExp can effectively be transformed into
an equivalent linear expectation GNF (h) ≡ h in guarded normal form.

Proof. Let h ∈ LinExp. As shown in [8, Lemma A.2], h can effectively be trans-
formed into an equivalent (linear) expectation h′ of the form

h′ =
∑m

i=1
[ψi] · ãi ,

32 K. Batz et al.

that is not necessarily in GNF (as the guards ψ1, . . . , ψn do not necessarily par-
titition the state space). We can then construct an equivalent linear expectation
GNF (h) in guarded normal form as follows:

GNF (h) ,
∑

((ρ1,d̃1),...,(ρm,d̃m))∈×m
i=1{(ψi,ãi),(¬ψi,0)}

[∧m

i=1
ρi

︸ ︷︷ ︸
= ϕi

]

·
(∑m

i=1
d̃i

)

︸ ︷︷ ︸

= ẽi

,

where we define ∞+ ã = ã+∞ = ∞. ⊓⊔

A.7 Proof of cex� (h, h′)

We show that h � h′ holds iff cex� (h, h′) is unsatisfiable:

h � h′

iff GNF (h) � GNF (h′) (by Lemma 3)

iff
n∑

i=1

[ϕi] · ẽi �
m∑

i=1

[ψi] · ãi (by definiton of GNF (.))

iff ∀σ ∈ Σ :

n∑

i=1

([ϕi] · ẽi)(σ) ≤
m∑

i=1

([ψi] · ãi)(σ) (by definiton of �)

iff ∀σ ∈ Σ : σ |=
n∧

i=1

(

¬ϕi ∨ ẽi ≤
m∑

i=1

[ψi] (σ) · ãi

)

(σ |= ϕi for exactly one i)

iff ∀σ ∈ Σ : σ |=
n∧

i=1

m∧

j=1

¬ϕi ∨ ¬ψj ∨ ẽi ≤ ãi (σ |= ψj for exactly one j)

iff ¬∃σ ∈ Σ : σ |=
n∨

i=1

m∨

j=1

ϕi ∧ ψj ∧ ẽi > ãi (by de Morgan’s law)

iff ¬∃σ ∈ Σ : σ |=
n∨

i=1

m∨

j=1,
ãj 6=∞

ϕi ∧ ψj ∧ encodeInfty (ẽi) > ãi (encoding of ∞)

iff cex� (h, h′) is unsatisfiable . (by definition of cex� (h, h′))

A.8 (ω + 1)-Inductivity of 2x + 1

We show for every n ≥ 1 that

Ψ
⌊n⌋
2x+1(2x+ 1) = [c 6= 1] · x+ [c = 1] · [x = 0]

+ [c = 1] · [x ≥ 1] ·
((

2−
n−1∑

i=1

1

2i
)
· x+ 1 +

n− 1

2n−1

)

.

From that, we get

Ψ
⌊ω⌋
2x+1(2x+ 1) = sup

n
Ψ

⌊n⌋
2x+1(2x+ 1) = [c 6= 1] · x+ [c = 1] · (x+ 1)

Latticed k-Induction with an Application to Probabilistic Programs 33

and thus
Φ(Ψ

⌊ω⌋
2x+1(2x+ 1)) ≤ 2x+ 1 ,

rendering 2x+ 1 an (ω + 1)-inductive invariant.
Furthermore, from Lemma 12 and Theorem 9 it follows for every n ≥ 1 that

Φ(Ψ
⌊n⌋
2x+1(2x+ 1)) 6� 2x+ 1 since Φ(Ψ

⌊n⌋
2x+1(2x+ 1))(σ) > 1 for every σ ∈ Σ with

σ(x) = 0, i.e., there is no n ≥ 1 such that 2x + 1 is n + 1-inductive (and thus
also not 1-inductive).

Lemma 12. For n ∈ N, if

Ψ
⌊n⌋
2x+1(2x+ 1) = [c 6= 1] · x+ [c = 1] · [x = 0]

+ [c = 1] · [x ≥ 1] ·
((

2−
n−1∑

i=1

1

2i
)
· x+ 1 +

n− 1

2n−1

)

then

Φ(Ψ
⌊n⌋
2x+1(2x+ 1)) = [c 6= 1] · x

+ [c = 1] ·
((

2−
n∑

i=1

1

2i
)
· x+ 1 +

n

2n

)

Proof. We have

Φ(Ψ
⌊n⌋
2x+1(2x+ 1))

= [c 6= 1] · x

[c = 1] ·
1

2
· (Ψ

⌊n⌋
2x+1(2x+ 1) [c/0] + Ψ

⌊n⌋
2x+1(2x+ 1) [x/x+ 1])

= [c 6= 1] · x

+ [c = 1] ·
1

2
·
(
x+ (2−

n∑

i=1

1

2i
) · (x + 1) + 1 +

n− 1

2n−1

)

= [c 6= 1] · x

+ [c = 1] ·
(1

2
· x+ (1−

n∑

i=1

1

2i+1
) · (x + 1) + 1/2 +

n− 1

2n
)

= [c 6= 1] · x

+ [c = 1] ·
(1

2
· x+ (1−

n∑

i=1

1

2i+1
) · x+ (1 −

n∑

i=1

1

2i+1
) +

1

2
+
n− 1

2n
)

= [c 6= 1] · x

+ [c = 1] ·
(
(
1

2
+ 1−

n∑

i=1

1

2i+1
) · x

︸ ︷︷ ︸

=(2−
∑

n
i=1

1

2i
)·x

+(1−
n∑

i=1

1

2i+1
) +

1

2
+
n− 1

2n

︸ ︷︷ ︸

=1+ n
2n

)

= [c 6= 1] · x

34 K. Batz et al.

+ [c = 1] ·
((

2−
n∑

i=1

1

2i
)
· x+ 1 +

n

2n

)

.

Theorem 9. For every n ≥ 1,

Ψ
⌊n⌋
2x+1(2x+ 1) = [c 6= 1] · x+ [c = 1] · [x = 0]

+ [c = 1] · [x ≥ 1] ·
((

2−
n−1∑

i=1

1

2i
)
· x+ 1+

n− 1

2n−1

)

.

Proof. By induction on n.

Base case n = 1. We have

Ψ
⌊n⌋
2x+1(2x+ 1)

= Φ(2x+ 1) min 2x+ 1

= [c 6= 1] · x

+ [c = 1] ·
1

2
· ((2x+ 1) [c/0] + (2x+ 1) [x/x+ 1])) min 2x+ 1

= [c 6= 1] · x+ [c = 1] ·
1

2
· (2x+ 1 + 2x+ 3)) min 2x+ 1

= [c 6= 1] · x+ [c = 1] ·
1

2
· (4x+ 4)) min 2x+ 1

= [c 6= 1] · x+ [c = 1] · (2x+ 2)) min 2x+ 1

= [c 6= 1] · x+ [c = 1] · (2x+ 1)) min 2x+ 1

= [c 6= 1] · x+ [c = 1] · [x = 0]

+ [c = 1] · [x ≥ 1] ·
((

2−
0∑

i=1

1

2i
)
· x+ 1 +

0

2n−1

)

.

Induction step. We have

Ψ
⌊n+1⌋
2x+1 (2x+ 1)

= Ψ2x+1(Ψ
⌊n⌋
2x+1(2x+ 1))

= Φ(Ψ
⌊n⌋
2x+1(2x+ 1)) min 2x+ 1

= [c 6= 1] · x+ [c = 1] · [x = 0] (by Lemma 12)

+ [c = 1] · [x > 0] ·
((

2−
n∑

i=1

1

2i
)
· x+ 1 +

n

2n

)

.

B Benchmarks

B.1 Brp

A pGCL variant of the bounded retransmission protocol [19,32]. The goal is to
transmit toSend number of packages via an unreliable channel allowing for at

Latticed k-Induction with an Application to Probabilistic Programs 35

most maxFail number of retransmissions per package. Variable totalFail keeps
track of the total number of failed attempts to send a package. We verified
upper bounds on the expected outcome of totalFail (variants 1-4). In doing so,
we bound the number of packages to send by 4 (variant 1) until 70 (variant 4)
while keeping maxFail unbounded, i.e., we still verify an infinite-state system.
We notice that k > 1 is required for proving any of the candidate bounds;
for up to k = 11, kipro2 manages to prove non-trivial bounds within a few
seconds. However, unsurprisingly, the complexity increases rapidly with larger k.
While kipro2 can prove variant 4, it needs to increase k to 23; we observe that,
unsurprisingly, the complexity grows rapidly both in terms of formulae and in
terms of runtime with increased k. Furthermore, variants 5 – 7 correspond to
(increasing) incorrect candidate bounds that are refuted (or time out) when not
imposing any restriction on toSend.

The number of total packages to send

nat toSend;

Number of packages sent

nat sent;

The maximal number of retransmission tries

nat maxFailed;

The number of failed retransmission tries

nat failed;

nat totalFailed;

while(failed < maxFailed & sent < toSend){

{

Transmission of current packages successful

failed := 0;

sent := sent + 1;

}

[0.9]

{

Transmission not successful

failed := failed +1;

totalFailed := totalFailed + 1;

}

}

Preexpectations for the different variants:

– [toSend ≤ 4] · (totalFailed+ 1) + [toSend > 4] · ∞
– [toSend ≤ 10] · (totalFailed+ 3) + [toSend > 10] · ∞
– [toSend ≤ 20] · (totalFailed+ 3) + [toSend > 20] · ∞

36 K. Batz et al.

– [toSend ≤ 70] · (totalFailed+ 20) + [toSend > 70] · ∞
– totalFailed+ 1
– totalFailed+ 1.5
– totalFailed+ 3

B.2 Geo

The geometric loop Cgeo from Example 2. We verify that c + 1 upper bounds
the expected value of c for every initial state (variant 1). Furthermore, we refute
the candidates c+ 0.99 and c+ 0.999999999999 (variants 2–3).

nat c;

nat f;

while(f=1){

{f := 0}[0.5]{c := c+1}

}

Preexpectations for the different variants:

– c+ 1
– c+ 0.99
– c+ 0.999999999999

B.3 Rabin

A pGCL variant of Rabin’s mutual exclusion algorithm [47] taken from [34]. We
verify 2/3 as an upper bound on the probability of obtaining a unique winning
process when bounding the number of participating processes by 2 (variant 1)
up to 4 (variant 3). Furthermore, we refute 1/3 (variant 4) and 3/5 (variant 5)
without restricting the number of participating processes.

nat i;

nat n;

nat d;

nat phase; # Initially 0

while(1<i || phase =1){

if(phase =0){

n:=i;

phase :=1;

}{

if(0<n){

{d:=0}[0.5]{d:=1};

i:=i-d;

n:=n-1;

Latticed k-Induction with an Application to Probabilistic Programs 37

}{ #leave inner loop

phase :=0;

}

}

}

Preexpectations for the different variants:

– [1 < i ∧ i < 2 ∧ phase = 0] · 2
3 + [¬(1 < i ∧ i < 2 ∧ phase = 0)] · 1

– [1 < i ∧ i < 3 ∧ phase = 0] · 2
3 + [¬(1 < i ∧ i < 3 ∧ phase = 0)] · 1

– [1 < i ∧ i < 4 ∧ phase = 0] · 2
3 + [¬(1 < i ∧ i < 4 ∧ phase = 0)] · 1

– [1 < i ∧ phase = 0] · 1
3 + [¬(1 < i ∧ phase = 0)] · 1

– [1 < i ∧ phase = 0] · 0.6 + [¬(1 < i ∧ phase = 0)] · 1

B.4 Unif gen

A pGCL variant of the algorithm from [49] for generating a discrete uniform
distribution over some interval {elow, elow + 1, . . . , ehigh} using fair coin flips
only. We verify that 1/n is an upper bound on the probability of sampling a
particular element from any such interval when bounding the number of elements
by n = 2 (variant 1) up to n = 6 (variant 5) .

nat elow;

nat ehigh; # Initially elow <= ehigh

nat n; # Initially ehigh -elow + 1

nat v; # Initially 1

nat c; # Initially 0; the result

nat running; # Initially 0

nat i; # auxiliary variable for array positions in

specifications

while(running = 0){

v := 2*v;

{c := 2*c+1}[0.5]{c := 2*c};

if((not (v<n))){

if((not (n=c)) & (not (n<c))){ # terminate

running := 1

}{

v := v-n;

c := c-n;

}

}{

skip

}

38 K. Batz et al.

On termination , determine correct index

if((not (running = 0))){

c := elow + c;

}{

skip

}

}

Preexpectations for the different variants:

– [elow + 1 = ehigh ∧ n = ehigh− elow + 1 ∧ v = 1 ∧ c = 0 ∧ elow ≤ i ≤ ehigh]·
0.5+[¬(elow + 1 = ehigh ∧ n = ehigh− elow + 1 ∧ v = 1 ∧ c = 0 ∧ elow ≤ i ≤ ehigh)]·
1

– [elow + 2 = ehigh ∧ n = ehigh− elow + 1 ∧ v = 1 ∧ c = 0 ∧ elow ≤ i ≤ ehigh]·
1/3+[¬(elow + 2 = ehigh ∧ n = ehigh− elow + 1 ∧ v = 1 ∧ c = 0 ∧ elow ≤ i ≤ ehigh)]·
1

– [elow + 3 = ehigh ∧ n = ehigh− elow + 1 ∧ v = 1 ∧ c = 0 ∧ elow ≤ i ≤ ehigh]·
1/4+[¬(elow + 3 = ehigh ∧ n = ehigh− elow + 1 ∧ v = 1 ∧ c = 0 ∧ elow ≤ i ≤ ehigh)]·
1

– [elow + 4 = ehigh ∧ n = ehigh− elow + 1 ∧ v = 1 ∧ c = 0 ∧ elow ≤ i ≤ ehigh]·
1/5+[¬(elow + 4 = ehigh ∧ n = ehigh− elow + 1 ∧ v = 1 ∧ c = 0 ∧ elow ≤ i ≤ ehigh)]·
1

– [elow + 5 = ehigh ∧ n = ehigh− elow + 1 ∧ v = 1 ∧ c = 0 ∧ elow ≤ i ≤ ehigh]·
1/6+[¬(elow + 5 = ehigh ∧ n = ehigh− elow + 1 ∧ v = 1 ∧ c = 0 ∧ elow ≤ i ≤ ehigh)]·
1

B.5 2drwalk

nat x;

nat y;

nat d;

nat n;

while (d < n) {

if (0 < x) {

if (0 < y) {

{

x := x + 2;

d := d + 2;

} [1/4] {

{

y := y + 2;

d := d + 2;

} [1/3] {

{

x := x - 1;

Latticed k-Induction with an Application to Probabilistic Programs 39

d := d - 1;

} [1/2] {

y := y - 1;

d := d - 1;

}

}

}

} else {

if (y < 0) {

{

x := x + 2;

d := d + 2;

} [1/4] {

{

y := y + 1;

d := d - 1;

} [1/3] {

{

x := x - 1;

d := d - 1;

} [1/2] {

y := y - 2;

d := d + 2;

}

}

}

} else {

{

x := x + 2;

d := d + 2;

} [1/4] {

{

y := y + 1;

d := d + 1;

} [1/3] {

{

x := x - 1;

d := d - 1;

} [1/2] {

y := y - 1;

d := d + 1;

}

}

}

}

40 K. Batz et al.

}

} else {

if (x < 0) {

if (0 < y) {

{

x := x + 1;

d := d - 1;

} [1/4] {

{

y := y + 2;

d := d + 2;

} [1/3] {

{

x := x - 2;

d := d + 2;

} [1/2] {

y := y - 1;

d := d - 1;

}

}

}

} else {

if (y < 0) {

{

x := x + 1;

d := d - 1;

} [1/4] {

{

y := y + 1;

d := d - 1;

} [1/3] {

{

x := x - 2;

d := d + 2;

} [1/2] {

y := y - 2;

d := d + 2;

}

}

}

} else {

{

x := x + 1;

d := d - 1;

} [1/4] {

Latticed k-Induction with an Application to Probabilistic Programs 41

{

y := y + 1;

d := d + 1;

} [1/3] {

{

x := x - 2;

d := d + 2;

} [1/2] {

y := y - 1;

d := d + 1;

}

}

}

}

}

} else {

if (0 < y) {

{

x := x + 1;

d := d + 1;

} [1/4] {

{

y := y + 2;

d := d + 2;

} [1/3] {

{

x := x - 1;

d := d + 1;

} [1/2] {

y := y - 1;

d := d - 1;

}

}

}

} else {

if (y < 0) {

{

x := x + 1;

d := d + 1;

} [1/4] {

{

y := y + 1;

d := d - 1;

} [1/3] {

{

42 K. Batz et al.

x := x - 1;

d := d + 1;

} [1/2] {

y := y - 2;

d := d + 2;

}

}

}

} else {

{

x := x + 1;

d := d + 1;

} [1/4] {

{

y := y + 1;

d := d + 1;

} [1/3] {

{

x := x - 1;

d := d + 1;

} [1/2] {

y := y - 1;

d := d + 1;

}

}

}

}

}

}

}

tick(1);

}

B.6 bayesian

nat i;

nat d;

nat s;

nat l;

nat g;

nat n;

while (0 < n) {

i := 1 : 3/10 + 0 : 7/10;

tick(1);

Latticed k-Induction with an Application to Probabilistic Programs 43

d := 1 : 2/5 + 0 : 3/5;

tick(1);

if ((i < 1 & d < 1)) {

g := 1 : 7/10 + 0 : 3/10;

tick(1);

} else {

if ((i < 1 & 0 < d)) {

g := 1 : 19/20 + 0 : 1/20;

tick(1);

} else {

if ((0 < i & d < 1)) {

g := 1 : 1/10 + 0 : 9/10;

tick(1);

} else {

g := 1 : 1/2 + 0 : 1/2;

tick(1);

}

}

}

if (i < 1) {

s := 1 : 1/20 + 0 : 19/20;

tick(1);

} else {

s := 1 : 4/5 + 0 : 1/5;

tick(1);

}

if (g < 1) {

l := 1 : 1/10 + 0 : 9/10;

tick(1);

} else {

l := 1 : 3/5 + 0 : 2/5;

tick(1);

}

n := n - 1;

}

B.7 ber

nat x;

nat n;

nat r;

while (x < n) {

r := 1 : 1/2 + 0 : 1/2;

x := x + r;

44 K. Batz et al.

tick(1);

}

B.8 C4B t303

nat x;

nat y;

nat t;

nat r;

while (0 < x) {

r := 1 : 1/3 + 2 : 1/3 + 3 : 1/3;

x := x - r;

t := x;

x := y;

y := t;

tick(1);

}

B.9 condand

nat n;

nat m;

while ((0 < n & 0 < m)) {

{n := n - 1;} [1/2] {m := m - 1;}

tick(1);

}

B.10 fcall

nat x;

nat n;

nat r;

while (x < n) {

r := 0 : 1/2 + 1 : 1/2;

x := x + r;

tick(1);

}

Latticed k-Induction with an Application to Probabilistic Programs 45

B.11 hyper

nat x;

nat n;

nat r;

while ((x + 2 <= n)) {

r := 0 : 351/435 + 1 : 81/435 + 2 : 3/435;

x := x + r;

tick(1);

}

B.12 linear01

nat x;

while (2 <= x) {

{x := x - 1;} [1/3] {x := x - 2;}

tick(1);

}

B.13 prdwalk

nat x;

nat n;

nat r;

while (x < n) {

{

r := 0 : 1/3 + 1 : 1/3 + 2 : 1/3;

x := x + r;

} [1/2] {

r := 0 : 1/6 + 1 : 1/6 + 2 : 1/6 + 3 : 1/6 + 4 :

1/6 + 5 : 1/6;

x := x + r;

}

tick(2);

}

B.14 prspeed

46 K. Batz et al.

nat x;

nat y;

nat m;

nat n;

while ((x + 3 <= n)) {

if (y < m) {

{ y := y + 1; } [1/2] {y := y + 0;}

} else {

{ x := x + 0; } [1/4] {

{ x := x + 1; } [1/3] {

{ x := x + 2; } [1/2] {

x := x + 3;

}

}

}

}

tick(1);

}

B.15 race

nat h;

nat t;

nat r;

nat ticks;

while (h <= t) {

t := t + 1;

{

r := 0 : 1/11 + 1 : 1/11 + 2 : 1/11 + 3 : 1/11 + 4

: 1/11 + 5 : 1/11 + 6 : 1/11 + 7 : 1/11 + 8 :

1/11 + 9 : 1/11 + 10 : 1/11;

h := h + r;

} [1/2] { h := h + 0; }

tick(1);

}

B.16 rdwalk

nat x;

nat n;

while (x < n) {

Latticed k-Induction with an Application to Probabilistic Programs 47

{x := x + 2;} [1/2] {x := x - 1;}

tick(1);

}

B.17 sprdwalk

nat x;

nat n;

nat r;

while (x < n) {

r := 0 : 1/2 + 1 : 1/2;

x := x + r;

tick(1);

}

	Latticed k-Induction with an Application to Probabilistic Programs

