Compositional Reasoning about Advanced Iterator
Patterns in Rust

Aurel Bily
Department of Computer Science
ETH Zurich, Switzerland
aurel.bily@inf.ethz.ch

Peter Miiller
Department of Computer Science
ETH Zurich, Switzerland
peter.mueller@inf.ethz.ch

Abstract

Iteration is a control-flow mechanism that consists of repeat-
ing statements. Iterators provide an object-oriented abstrac-
tion to iteration. Simple iterators confer access to elements
of a data structure, but modern languages such as Rust, Java,
and C# generalise iteration far beyond this simple use case,
allowing iterators to be parameterised with closures (which
can modify their captured state as a side effect) and sup-
porting the composition of iterators to form iterator chains,
where each iterator in the chain consumes values from its
predecessor and produces values for its successor. Such gen-
eralisations pose four major challenges for modular specifi-
cation and verification of iterators and the client code using
them: (1) How can parameterised iterators be specified mod-
ularly and their (accumulated) side effects reasoned about?
(2) How can the behaviour of an iterator chain be derived
from the specifications of its component iterators? (3) How
can proofs about such iterators be automated? (4) How to
integrate a concrete methodology into the standard library,
without requiring the client code to change?

We present a methodology for the modular specification
and verification of advanced iteration idioms with compu-
tations affecting captured state as a side effect. It addresses
the four challenges above using a combination of inductive
two-state invariants, higher-order closure contracts, separa-
tion logic-like ownership, and a novel type of out-of-band
contracts. We implement our methodology in a state-of-the-
art SMT-based Rust verifier. Our evaluation shows that our
methodology is sufficiently expressive to handle advanced,
idiomatic iteration patterns and requires modest annotation
overhead.

1 Introduction

Iterators are a ubiquitous programming idiom used to ab-
stractly and simply enumerate the elements of a collection.
Verification of such simple use cases comes down to proving
that an iterator yields all elements of a collection in a spec-
ified linear order and showing that the used iterator does

Jonas Hansen
Department of Computer Science
ETH Zurich, Switzerland

Alexander J. Summers
University of British Columbia
Canada
alex.summers@ubc.ca

not get invalidated e.g. by concurrent modifications of the
underlying collection [12].

Modern programming languages such as C#, Java, Python,
and Rust support iteration patterns that go far beyond the tra-
ditional use case. For instance, iterators can perform compu-
tations over streams of values, such as computing a moving
average; the computation itself is typically parameterisable
by custom code using closures. In general-purpose languages,
both the iterators and the closures may perform side effects,
e.g. to modify the data structure in-place or to accumulate
results based on the values seen so far; code which uses such
iterators depends on properties of this modified state.

Moreover, it is increasingly prevalent for languages to sup-
port the composition of iterators, where an iterator processes
values produced by another iterator (rather than obtained
directly from a collection). Following Rust terminology, we
call this kind of iterator an iterator adapter. Adapters may be
composed into iterator chains that act as composite iterators.

Modern imperative languages provide a variety of itera-
tor adapters, e.g. Java’s Streams API, C#’s LINQ, Python’s
iterables, and Rust’s iterator adapters all support potentially-
side-effectful variants of common functional programming
operations such as filter, fold, and map. These languages
also allow creating custom iterators and iterator adapters.

The following Rust example illustrates an iterator chain:

1 let mut s = 0;

2 some_vector.iter() // iterate over a Vec<i32>

3 .map(lx] {

4 s += Xx; s }) // running totals of seen values
5 filter(|x] x < 10) // keep totals smaller than 10

6 .collect::<Vec<_>>(); // collect results into a vector

The function iter yields a traditional iterator for the un-
derlying vector, which is the input for the iterator chain. The
map adapter is parameterised with a closure, which mutates
the captured variable s. The subsequent filter adapter, also
parameterised with a filter criterion, removes elements, and
finally collect stores the produced elements in a new vector.

Such advanced iteration patterns lead to concise and read-
able code, but they also pose several challenges for modular
specification and verification. Modularity is important to

https://orcid.org/0000-0002-9284-9161
https://orcid.org/0000-0001-7001-2566
https://orcid.org/0000-0001-5554-9381

give correctness guarantees for libraries, to make verifica-
tion scale, and to reduce the effort for re-verification when
parts of a codebase change. We identify four key challenges:
(1) Modularly specifying parameterised iterators. The
behaviour of iterators such as map depends on their argument
closures, which vary for different calls. Modularity requires
a specification for map which is somehow parameterisable by
the behaviour of its argument closure, which may itself have
side effects (cf. line 4 of our example). Such a specification
must capture not only the values produced by the iterator
but also the accumulated side effects of all calls to the iterator
and its closure parameter. Variables mutably captured by
such a closure, such as s in our example, make these side
effects visible to client code when the iteration is over. For
example, if some_vector contained values 6, 2,9 then map’s
specification should imply that the iterator produces the
partial sums 6, 8, 17, and that the final value of s is 17.

(2) Modular reasoning about iterator chains. Modular
reasoning also requires that we can deduce the behaviour
of an iterator chain from the specifications of its compo-
nent iterators. Verification of a chain must not require re-
verification of its component iterators (whose code might not
even be available); the specification of each iterator should
be agnostic as to the source of values it consumes and to the
downstream processing of the produced values. In our exam-
ple, we want to prove that the result is [6, 8] from general-
purpose specifications of each of the intermediate adapters.
(3) Automating proofs about iterator chains. The behav-
iour of iterator chains depends on the behaviour of their
component iterators, which in turn depend on their argu-
ment closures. This hints at the need for higher-order logics
(specifications which depend on specifications), which can
greatly complicate proof automation; we instead aim for
proofs which can be automated with first-order SMT solvers.
(4) Supporting standard library and existing code. All
existing Rust code with custom iterators uses the Iterator
standard library trait. For iterator specifications to work with
existing code, we want to equip types implementing this trait
with these specifications, but not necessarily all such types
in a given codebase.

1.1 Related language features

In this paper, we use the terms iterator, iterator adapter, and
iterator chain consistently with established Rust terminol-
ogy. The Rust Iterator trait corresponds to Java’s Iterator
interface or C#’s IEnumerator interface. However, in Rust,
the same Iterator trait is also implemented by various oper-
ations applied on top of a previous iterator. These are called
iterator adapters, although the adaptation in question is from
Iterator (and additional parameters) again to Iterator, po-
tentially with a different output type. Higher-order functions
such as map and filter, prevalent in functional program-
ming, exist in Rust as iterator adapters, and are comparable
to Java’s streams APIL The behaviour of a chain composed of

Aurel Bily, Jonas Hansen, Peter Miiller, and Alexander). Summers

multiple adapters is not equivalent to that of a composition
of higher-order functions, however, due to the lazy nature
of Rust iterators.

1.2 State of the art

Prior work on iterator verification in Rust includes recent
work by Denis et al. [7] for the Creusot verifier [8]; their
iterator support extends earlier work by Pereira [16]. Our
approach extends Pereira’s in a different way, and was devel-
oped concurrently [6, 11] with the Creusot-based technique.

Compared with the Creusot-based approach ([7]), our
work provides alternative specification primitives and tech-
niques, proof automation and debugging at the level of the
Rust language, and integration with the Rust standard library
Iterator trait and its implementations: existing Rust code
can benefit from our work without changing its dependen-
cies. We provide more-detailed comparisons in Sec. 7.

Verification of Rust higher-order functions such as fold
in Rust was partially addressed by Wolff et al. [20], who
provide modular reasoning for side-effectful closures, such as
the argument to map in our example. This prior work does not
provide specification or verification support for iterators and
adapters that use closures in well-known but functionally
complex ways (e.g. as an argument to a fold).

1.3 This work

We present a modular specification and verification tech-
nique for advanced iteration patterns that addresses the
four challenges above. We present our technique in the con-
text of Rust, whose ownership type system complements
our methodology by preventing concurrent modifications
of an iterated-over data structure, or undesirable interfer-
ence between iterators. However, our technique would apply
equally to other languages if augmented with an alterna-
tive ownership-like technique such as separation logic [17].
Indeed, the underlying implementation encodes our method-
ology into the Viper verification language.
The main contributions of our paper are:

e We present a specification and verification methodol-
ogy for general side-effectful iterators (— Sec. 2, 3).

e We demonstrate how to use this methodology to rea-
son about the effects and resulting values of complex
iterator chains (— Sec. 4).

e We show how to express these specifications modu-
larly for existing iterator hierarchies (— Sec. 5).

e We implement our work as a prototype extension of
the Prusti verifier [3] and demonstrate its expressive-
ness on several challenging examples (— Sec. 6).

Additional background and details on the soundness of our
approach can be found in the extended technical report [6].

Compositional Reasoning about Advanced Iterator Patterns in Rust

I Tkn I
. qu.. . H
ok :

. "
step(li, Ik+1, o) leadsto(lj41, 1))

(a) step and leadsto predicates in a chain of next calls.

Ik+1
M "eXt Micn
.7<Fk Uk @ k)>~>o
e |,
e

(c) State diagram for a call to Map: : next.

I L L
etk e letk etk
Fo b F * F,
= -

o o

(b) Intermediate states and values when using a Map adapter.

Ip+x

Ip Ip+1
P o—next | —se—fnext]s -+ S next}—— Peas
.7< Up LY Up+1 ® Up+x —e
F—>| call |—>o—>| callp> -+ —fcall}—e Lk
P \/ p+1 \/ \/ Fp+x

false true

false

(d) State diagram for a call to Filter: :next.

Figure 1. State diagrams for iterators.

2 Methodology

In this section we introduce a general-purpose methodology
for reasoning about iterators. We describe a model of itera-
tors (— Sec. 2.1), introduce four predicates that allow one to
specify the behaviour of iterators (— Sec. 2.2), and present
the proof obligations needed to verify that an iterator imple-
mentation satisfies this specification (— Sec. 2.3). Finally, we
summarise how our methodology addresses the challenges
outlined in the introduction (— Sec. 2.4).

2.1 Iteration model

We provide informal diagrams illustrating key aspects of our
model of iterators in Fig. 1. An iterator can be queried repeat-
edly for values using a next method, producing a sequence
of values (vg, vy, ... in Fig. 1a). Calls to the next method
change the internal state of the iterator (Iy, I1, . . . in Fig. 1a).

The sequence of produced values can be finite or infinite.
In the former case, next yields a designated value L to signal
that the iteration has completed'. We assume that once an
iterator has completed, it will remain completed, which is
the case in many programming languages®.

Iterator adapters are iterators which use the results of a
previous iterator to produce their values. For instance, the
Map adapter applies a function f to the outputs vy, vy, ... of
the previous iterator to produce its result values mg, my,
The function f may itself be a closure with potentially mu-
table captured variables, which means it has its own state
(Fo, F1, .. .), as illustrated in Fig. 1b.

The overall state of the Map adapter M; comprises (and
encapsulates) the state of the previous iterator I; and that of
its argument closure F;. Map’s next method internally manip-
ulates both state components as illustrated in Fig. 1c.

Each call to Map’s next method triggers exactly one call to
the predecessor’s next method. Other adapters have more
complex behaviours: the Filter (Fig. 1d) adapter calls its

1n Rust, this corresponds to an Option: :None.
2In Rust, this kind of iterator is a FusedIterator, a trait implemented by
the vast majority of Rust’s standard library iterators.

predecessor’s next method until the provided value satisfies
the filter criterion determined by an argument closure (or the
predecessor has completed). A specification and verification
methodology for advanced iterators must therefore be able
to capture the evolution of such composite iterator states.

2.2 Specification components

Our methodology uses four specification components to
specify the states of and values returned by iterators. We
introduce them here using a mathematical notation and show
a concrete syntax in Rust later, in Sec. 3.1.

As in prior work [16], we associate each iterator with
two specification-only functions to specify the returned val-
ues. Function produced yields the sequence of elements re-
turned so far: produced(Iy) = [vg, vy, ..., Vk-1]- Function
done yields true iff the iterator has completed. In other words,
a call to next with the state I returns L iff done(I) holds.

The evolution of an iterator’s state across a single call
to next is characterised using the third component of our
methodology: a two-state predicate step. For a call to next
with the initial iterator state I, the updated iterator state
I;+1 and the returned value vy, step(Iy, I, ,vr) must hold.

In general, reasoning about the accumulated effects of
an iterator concerns an unbounded number of next calls.
This motivates our fourth key component: we associate each
iterator with a predicate leadsto that represents an inductive,
two-state invariant. This invariant relates the current iterator
state to any previous iterator state. It represents the reflexive,
transitive closure of the two-state postcondition step (which
relates consecutive iterator states): leadsto(ly,I;) © (Yi-k <
i <l= step(;,li+1,_)) forany 0 < k < .

When an iterator is used in a loop, we can naturally make
use of leadsto in the loop invariant: leadsto(ly, ;) must
hold at every iteration, where Ij is the state of the iterator
before the loop, and I is the current state.

2.3 Proof obligations

To use our methodology, programmers need to define the
four specification components described in the previous
subsection for each concrete iterator implementation. Our
methodology then imposes the following proof obligations.
First, we check that leadsto includes the reflexive, transitive
closure of step. If this well-formedness check fails, the pro-
gram is rejected. Second, we check whether the definitions
of the four components correctly reflect the behaviour of
the iterator implementation. This is done by verifying that
the implementation of the next method satisfies the follow-
ing five postconditions. In these conditions, Ix, Ix+1, and vg
denote the prestate, poststate, and result value of next, re-
spectively. For simplicity we assume that the iterator has no
methods that modify its state other than next.

e O = step(Iy,Ix41,vk): step reflects the behaviour of
a single call to next.

e O, = done(Ily) © vr = L: done reflects correctly
whether the iterator returns a value.

® O3 = done(l}) = produced(lx,;) = produced(ly): if
the iterator had already completed, the produced se-
quence is left unchanged.

® Oy = —done(ly) = produced(l,;) = produced(ly)
++[vg]: if the iterator had not completed, the produced
sequence is extended by the returned value.

® (5 = done(I) = done(Ix1): monotonic completion.

Importantly, these postconditions also allow client code to
reason about the results and effects of calls to an iterator.

2.4 Challenges revisited

In this subsection we summarise how our methodology ad-
dresses the first three challenges presented in Sec. 1.
(1) Modularly specifying parameterised iterators. We cap-
ture the result and effects of a single call to next using the
two-state step predicate. When the iterator is parameterised
with a closure (as in the Map example), we use a generalisation
of call descriptions [20] to abstractly and generically describe
the results and effects of calls to the closure. A call descrip-
tion, written F ~» |args| { pre } { post } expresses that
acall to F has happened, the assertion pre held in the prestate
of that call, the assertion post held in the poststate; the call’s
arguments are bound to the names args and the return value
to a reserved name result in the assertions pre and post.
We capture the accumulated results and effects of an itera-
tion using the produced sequence and the reflexive, transitive
leadsto predicate. When the iterator state includes closures,
we use two-state invariants on the closure state (again fol-
lowing [20]) to express how they evolve during an iteration.
Postconditions for the next method tie together these pred-
icates with concrete iterator implementations. They allow
clients to determine the behaviour of a single call to next
(using step) as well as of a full iteration (using leadsto). In
particular, clients aware of the concrete argument closure

Aurel Bily, Jonas Hansen, Peter Miiller, and Alexander). Summers

passed to the iterator can use these postconditions to deter-
mine both the sequence of returned values and all relevant
accumulated side-effects (e.g. on closure-captured state).
(2) Modular reasoning about iterator chains. To handle
chaining, the specification of iterator adapters may refer
to the step and leadsto predicates of the previous iterator
in the chain, making the adapter’s specification parametric
in that of the input iterator. In particular, neither the input
iterator nor the adapter need to be re-verified when forming
an iterator chain.

(3) Automating proofs about iterator chains. We handle
this challenge with an encoding of our methodology into
first-order logic components suitable for verification with
SMT-based verifiers. The four predicates defined above are
encoded as uninterpreted functions; their argument states
are encoded via a mathematical abstraction of heap-dependent
values known as snapshots in Prusti [20]; similar abstractions
are used in the Creusot verifier, as well as commonly in sym-
bolic execution tools for separation logics [13, 18, 19]. A
suitable first-order encoding of call descriptions is provided
in prior work [20]. We discuss more details of our first-order
encoding in our extended technical report [6].

3 Specifying individual iterators

In this section, we instantiate the methodology introduced
in Sec. 2 in Rust (— Sec. 3.1) and illustrate its use on a simple,
unchained iterator (— Sec. 3.2). The specification language
used corresponds to the Prusti specification language.

3.1 Defining the specification components

In Rust, iterators are types which implement the Iterator
trait. This is achieved with an explicit syntactic declara-
tion (impl Iterator for SomeType) which also declares the
element type and provides the definition of one required
method: next. The implementation of this method can mod-
ify the current state of the iterator and must output an Option
which contains the next element, or None to signal comple-
tion. The Iterator trait also defines a large number of other
methods with default (rarely overridden) implementations.

For now, let’s imagine adding the four key components
of our specifications (cf. Sec. 2.2) as ghost functions of the
Iterator trait (see below). In practice this would force that
each and every concrete iterator type in a codebase would
need to provide concrete definitions for these components.
We explain our more-flexible opt-in approach in Sec. 5.

1 trait Iterator {

2 fn produced(&self) -> GhostSeq<Self::Item>;
3 fn step(p: &Self, c: &Self,

4 r: &ption<Self::Item>) -> bool;

5 fn leadsto(p: &Self, c: &Self) -> bool;

6 fn done(&self) -> bool; }

Compositional Reasoning about Advanced Iterator Patterns in Rust

The produced method is a getter® for a ghost sequence of
values. The two-state predicates step and leadsto take refer-
ences to two copies (a previous version and a current version)
of the iterator type. step additionally takes a reference to
the returned value, represented in Rust as an Option to allow
for None to signal the end of iteration. Finally, done defines
the stopping condition. Since these methods are ghost code,
their definitions may use non-executable constructs, such as
quantifiers, in implementations of the Iterator trait.
Finally, we express the proof obligations from Sec. 2 as
postconditions of the next method, which must be satisfied
by each implementation of next. Here, &result denotes a
shared reference to the value returned by the method.

1 trait Iterator {
2 @ #lensures(old(&self).step(&self, &result))]

3 @ #[ensures(old(self.done()) == (result === None))]

4 @ #[ensures(old(self.done()) ==> self.produced() ===
5 old(self.produced()))]

6 #[ensures(!old(self.done()) ==> self.produced() ===
7 old(self.produced()).append(result))]

8 #[ensures(old(self.done()) ==> self.done())]

9 fn next(&mut self) -> Option<Self::Item>; }

This specification uses logical equality ===, which Prusti
provides to mean equality on snapshots; similar logical equal-
ities are used in other Rust verifiers; Rust doesn’t require
that all types implement the language’s equality ==.

3.2 Example

We illustrate our methodology using a simple iterator return-
ing a range of consecutive numbers, written as follows:

1 struct Counter(i32, i32); @
2 impl Counter {
3 #[ensures(Iterator::leadsto(&result, &result))]
4 fn new(end: i32) -> Self { ... } }
5 impl Iterator for Counter { @
6 type Item = i32; (D)

7 fn next(&mut self) -> Option<Self::Item> { @
8 if self.0 > self.1 { return None; }

9 self.0 += 1;

10 Some(self.0 - 1) } }

The code above first (A defines a type which represents
our iterator. Its state contains two i32-typed variables: its
current position and its stopping point. defines a con-
venience constructor for the counter, which must ensure
that the two-state invariant leadsto is (reflexively) satisfied
to begin with. (© is the declaration that marks Counter to
be an iterator, consisting of a declaration of the type of ele-
ments emitted by this iterator (® , and an implementation
of the next method (® . The latter checks if the limit has
been reached yet: if so, no more items are emitted (None is
returned), otherwise the internal position is updated and its
old value is returned (wrapped in Some).

3Traits in Rust cannot declare fields or properties, so we must use a method.

To specify this iterator, we give definitions of our four
methodology components, starting with done and step:

1 fn done(&self) -> bool { self.0 > self.1 }
2 fn step(p: &Self, c: &Self,

3 r: &0ption<Self::Item>) -> bool {
4 Ip.done() ==> (c.0 == p.0 + 1) }

The two-state postcondition step defines how the state is
updated. Here, p and p refer to the iterator snapshot before
and after the execution of next. The remaining properties
are specified in the definition of leadsto:

1 fn leadsto(p: &Self, c: &Self) -> bool {
2 @ p.1 ==c.1

3 8& p.0 <= c.0

4 (© 88 0 <=c.08 c.0 <=c.1+ 1

5 @ && c.produced().len() == c.0@ as usize

6 @ && forall(|x: i32] @ <= x && x < c.0 ==>
7 c.produced()[x as usize] == x) }

In this definition, ® the upper bound remains constant.
the current position is monotonically increasing, and
© it remains within bounds. (® the number of produced

elements is equal to the current position. Finally, ® the
value of every produced element can be defined by its posi-
tion in the sequence.

With such a definition, we can prove results about Counter,

even across unboundedly many calls, for example:

1 let mut counter = Counter::new(990);

2 let val_pre = counter.next().unwrap();

3 assume!(n < 80);

4 for i in @..n { counter.next().unwrap(); }
5 assert!(counter.next().unwrap() > val_pre);

At this point we have specified a simple iterator. We
have used all four of our methodology’s components de-
fined in Sec. 2. Although the approach is relatively heavy
for Counter (the definition of leadsto in particular), we will
shortly see it pays off when considering more advanced (and
idiomatic) cases. A similar specification can be used for iter-
ating over a slice or Vec.

4 Specifying iterator chains

In this section, we introduce our technical solutions to the
first two challenges described in Sec. 1: modular reasoning
about parameterised iterators and iterator chains. We first
introduce iterator adapters in Rust (— Sec. 4.1), then specify
the standard library type Map (— Sec. 4.2). In the extended
technical report, we build up the specification more gradually,
starting from a simple number-doubling iterator adapter.

4.1 Iterator adapters in Rust

In Rust, iterator adapters are types which wrap an instance
of the Iterator trait while implementing the Iterator trait
themselves. When the adapter’s next method is invoked, it
calls the previous iterator’s next method some number of
times, adapting the results. As an example, the Map adapter

applies a closure to every element produced by the previous
iterator, while the Filter adapter uses a closure as a logical
predicate to decide whether each value from the previous
iterator should be returned or not.

The Rust standard library provides many such adapters
for a variety of common use cases. The iterator chain in
the code example shown in Sec. 1 is actually composed of
iterator adapters, albeit hidden behind some convenience
syntax (e.g. x.map(. ..) wraps the iterator x in a Map adapter).

4.2 Specifying Map

The Map iterator adapter takes values from a previous iterator
and applies a user-supplied closure to each of them. To this
end, the Map type has two type parameters: one to represent
the previous iterator in the chain and one to represent the
closure®. A Map instance encapsulates (owns) its closure (field
f) and its previously-chained iterator (field prev).

1 struct Map<I, F> {
2 prev: I, // the wrapped previous iterator
3 f: F, } // the closure parameter

Map’s next method applies its closure to each element’:

1 fn next(&mut self) -> Option<Self::Item> {
2 self.prev.next().map(&mut self.f) }

To provide a generic specification of Map, we must account
for the side effects of the closure call, even when the exact
type of the closure is unknown; this property of side effects
on the closure’s mutable state cannot be captured using the
produced sequences alone. Instead, we use a call description
to connect the effect of an iteration step to the effects of a
call to the closure itself (we will refine this definition later):

1 fn step(p: &Self, c: &Self,

2 r: & ption<Self::Item>) -> bool {
3 @ Ip.prev.done() ==>

4 FnMut::call_mut ~» |cl_self, arg|

5 @ { p.f === cl_self

6 @ && arg === c.prev.produced().last() 3}
7 ® { c.f === cl_self

8 @ && r === Some(result) }) }

For each step we know (if the previous iterator had not com-
pleted ®) that there was a call to the closure originally
stored © in field f of the Map, and (® the updated closure
ends up stored in field f of the Map. For the call, ® the ar-
gument given to the closure was the last element yielded by
the previous iterator, and (® the element yielded by Map (r)
was the result of the closure (Some(result)).

4The actual declaration has a third type parameter to represent the return
type of the closure, omitted here for brevity.

5The map method on an Option type (unrelated to iterators) applies the
given closure on the value contained in a Some, but leaves None intact.

Aurel Bily, Jonas Hansen, Peter Miiller, and Alexander). Summers

4.3 Transitive side effects

The specification in the previous subsection refers to the val-
ues produced by the previous iterator, but does not account
for changes to its state. To address transitive side effects of
next calls (i.e. those on closures earlier in the iterator chain),
we must directly describe the calls to the previous iterator.
Our call description feature can also be used to describe this
necessary connection, this time relating each change to the
current iterator to the corresponding pre- and poststate of
a call to next on the previous iterator, all the while keeping
the specification generic with respect to the previous itera-
tor’s type. The following definition of step exemplifies this
powerful idiom, using two nested call descriptions:

1 fn step(p: &Self, c: &Self,
2 map_res: &0ption<Self::Item>) -> bool {
@ Iterator::next ~w» |it_self|

3
4 { p.prev === it_self }

5 @ { let prev_res = result;

6 @ c.prev === it_self

7 @ && (prev_res.is_some() ==>

8 (® FnMut::call_mut ~»> |cl_self, arg|

9 { p.f === cl_self

10 &8& Some(arg) === prev_res }

11 { c.f === cl_self

12 &8& map_res === Some(result) })

13 @ && prev_res.is_none() ==> map_res.is_none() } }

In this version of step, we begin by ® describing that a call
to the previous iterator will happen, where the original
state of the previous iterator is stored in the field prev of the
original state of the Map, and (® the new state of the previous
iterator is as stored in the field prev of the resulting state
of Map. To avoid confusion, we (© used a let expression to
name the result of the previous iterator prev_res; the result
returned from the Map is map_res. (® If the previous iterator
returned an element, we () describe how this relates a
call to the closure, as before. (©) Otherwise, no element is
returned from the Map iterator either.

The overall structure of this definition of step mirrors
the Map model presented in Fig. 1c: each call description
corresponds to one box in the diagram, and values from the
previous iterator flow through the closure.

4.4 Unboundedly many steps

Finally, reasoning about unboundedly many iteration steps
(e.g. when calling next in a loop), simply requires us to suit-
ably define leadsto for Map. To store the intermediate states
of the closures and the iterators, we add a ghost sequence
field st: GhostSeq<(F, I)>to Map, where every element is a
tuple containing a closure state and an iterator state.

1 fn leadsto(p: &Self, c: &Self) -> bool {
2 c.produced().len() == c.prev.produced().len()
3 @ && p.st.is_prefix_of(c.st)

4 && c.st.len() == c.produced().len() + 1

5 @ 8& c.st.last() === (c.f, c.prev)

Compositional Reasoning about Advanced Iterator Patterns in Rust

6 && forall(|idx: usize| idx < c.produced().len() ==>
7 () I::next w» |iter_self|

8 { c.stlidx].1 === iter_self }

9 { c.stlidx + 1].1 === iter_self

10 && result === Some(c.prev.produced()[idx])
11 && FnMut::call_mut ~» |cl_self, arg]|

12 { c.st[idx].0 === cl_self

13 && arg === c.prev.produced()[idx] }
14 { c.stlidx + 1].0 === cl_self

15 && result === c.produced()[idx] }3}) }

In this definition of leadsto, we establish a connection be-
tween the ghost sequence st and the concrete data stored in
the Map struct. In particular, states there are as many in-
termediate states as there are yielded elements, plus one for
the current state. (© The last tuple in the st sequence cor-
responds to the current data stored in Map. For each yielded
element (®) we re-use our nested call descriptions to estab-
lish the connection between consecutive intermediate states.
We also (&) state that the state sequence is expanded mono-
tonically, i.e. the intermediate states in any previous version
are a prefix of the intermediate states of any newer version.
With this specification, we can verify code which uses a
Map parameterised by a closure with captured state, applied to
an unbounded number of elements, such as this summation:

1 let vec: Vec<i32> = ...;

2 let vals = GhostSeq::of_vec(&vec); // ghost

3 let mut pos = Qusize; let mut s = 0;

4 let cl = #[requires(pos < vals.len() && x == vals[pos])]
5 #[ensures(pos == old(pos) + 1 && result == s)]
6 #[invariant(@ <= pos && pos <= vals.len()

7 && s == vals[0..pos].sum())]

8 x| { s += x; pos += 1; s };

9 // iterate values of vector

10 let mut map_iter = vec.into_iter().map(cl);

11 #[invariant(pos == map.prev.pos)] for el in map_iter {}
12 assert!(s == GhostSeq::of_vec(&vec).sum());

In this example, leadsto is maintained for map_iter through-
out the loop, which also implies the closure history invari-
ant. Once the loop exits, it is known that the position of
the vector iterator reached the end of the vector, and so
s == vals[0..pos].sum() collapses to s == vals.sum().

5 Type-dependent contracts

So far we considered adding methods to Rust’s Iterator trait,
but (a) this is standard library code that cannot be modified,
and (b) this forces all iterators in a codebase to implement
the features of our methodology. Several verification tools
allow the declaration of specifications in separate files from
source code (an idea we believe to originate from Spec# [4]);
in Prusti the extern_spec feature [2] allows the declaration
of a specification for a function/type from a different file.
This solves (a), but (b) requires a more-subtle technique; we
explain our solution to this (4th main challenge) here.

Firstly, we declare a new trait with the (specification-only)
methods of our methodology (leaving Iterator unchanged):

1 trait IteratorSpec : Iterator { @

2 fn produced(&self) -> GhostSeq<Self::Item (B)>;
3 fn leadsto(p: &Self, c: &Self) -> bool;

4 fn step(p: &Self, c: &Self,

5 r: & ption<Self::Item ©>) -> bool;

6 fn done(&self) -> bool; }

In the above, we (&) declare IteratorSpec and use Iterator
as its super-trait. This means that any type that implements
IteratorSpec must also implement Iterator. Note that at
and (© we re-use the associated type Item from the
Iterator supertrait.

5.1 Type-dependent contracts

The additional trait IteratorSpec allows us to remove the
four function declarations from the Iterator trait, but does
not provide a way to express the postconditions of the next
method in Iterator (Rust does not allow a sub-trait to rede-
clare/override methods of a super-trait). To provide a specifi-
cation for next without changing the Iterator trait, we can
use an external specification provided in a separate file. For
example, we could (erroneously) specify Iterator::next to
always return a result as follows:

1 #[extern_spec] // out-of-band contract

2 trait Iterator {

3 #[ensures(result.is_some())]

4 fn next(&mut self) -> Option<Self::Item>; }

However, such an extern spec for Iterator cannot use the
methods from IteratorSpec, because not every implemen-
tation of Iterator also implements IteratorSpec. To solve
this issue, we introduce type-dependent contracts, that is,
contracts that apply only to implementations of a given trait.
The following extern spec for Iterator uses this feature to
impose postconditions on next only for implementations
that also implement IteratorSpec:

1 #[extern_spec]

2 trait Iterator { @

3 #[type_dependent(Self: IteratorSpec, [

4 @ ensures(old(&self).step(&self, &result)),
5
6

(2),(2),(@),(@) 11 // as in Sec. 3.1

fn next(&mut self) -> Option<Self::Item>; }

As before, (® an extern spec is added to the Iterator
trait. The type_dependent attribute introduces postcondi-
tions (2)-(2) only for implementations that also implement
IteratorSpec. As a result, it is allowed to refer to methods
of IteratorSpec, e.g. to call self.done().

Note that the type-dependent contract is defined on the
type being extended, i.e. it is part of the specification of
Iterator::next, not part of the extension trait IteratorSpec.
This decision is motivated by Rust’s coherence rules, which
ensure that there is always exactly one implementation to

choose for any particular trait method call. Analogously, we
require this property of method contracts.

To ensure that our type-dependent contracts are sound,
we require that any type-dependent contract refines its base
contract. This consists of the usual behavioural subtyping
checks [14]: the precondition must be weakened and the
postcondition strengthened. The usage shown in this section
can selectively equip iterator types with our methodology
without changes to their code or the standard library.

6 Evaluation

We implemented our technique as a prototype extension to
the Prusti verifier [3]. Following the design laid out in Sec. 3,
our iterator methodology is implemented primarily in user-
facing Rust code (which can be packaged into a standard
library of specifications), not as an ad hoc feature of Prusti.

To enable annotating key standard library types, we added
support for declaring external specifications for trait types
as well as for our novel type-dependent contracts. Most
other extensions were routine; this suggests that layering
our methodology onto existing tools is fairly lightweight.
Due to this lightweight integration, we don’t treat leadsto
as a built-in type invariant, but rather as a postcondition on
next; intended properties such as transitivity are therefore
not checked by default (but proofs relying on them would of
course fail otherwise).

We evaluated our work on a number of challenging test
cases, modelling various combinations of idiomatic iterators
found in the Rust standard library, as well as custom iterator
implementations discussed in this paper. The results of our
evaluation are shown in Table 1 (in terms of lines of specifica-
tion, code and verification times). Generally, the specification
overhead is heavier (roughly one-to-one with code) for the
generic library functions such as Map, but these specifica-
tions need only be written once. Importantly, for client code
using these iterators, the specification overhead is typically
lighter. A substantial body (roughly 340 LoC) of common
specifications were also necessary as our implementation
neither builds in pre-defined support for common types such
as Option, or our new GhostSeq type. These specifications
need only be written once and could in principle be added
as a “standard library” of specifications. We consider the
verification times using our prototype implementation to be
generally reasonable, but with some expensive outliers; we
suspect that these require some additional effort to control
quantifier instantiation in the underlying solver [5].

7 Related work

As discussed in Sec. 1, a simpler version of call descriptions
(for closure calls only) was introduced by Wolff et al. [20] for
closure verification; that work does not handle any of the
four main challenges we identify for iterator verification.

Aurel Bily, Jonas Hansen, Peter Miiller, and Alexander). Summers

Creusot [8] is Rust verifier that maps a subset of Rust
to a functional language for verification in Why3 [10]. Its
prophetic encoding of Rust references simplifies the spec-
ification of some reborrowing patterns, meaning that the
signature of traits such as IterMut are supported, unlike the
reference support available in Prusti at time of writing. As
mentioned earlier, a recent iterator verification methodology
was designed by Denis et al. [7] for Creusot in parallel with
this work, which supports IterMut directly.

Their specifications require that all relevant properties
of heap values are representable as value by mathematical
abstractions; in particular, no notion of instance/reference
identity is available in the model. We use a similar idea for
the current automation of proofs using our specification tech-
nique (via snapshots), but our specifications make explicit
how closure/iterator/adapter instances persist and are called
across multiple states. This may afford advantages when
applying our methodology in other settings where instance
identity is important to the properties verified.

In terms of the four challenges in our introduction, [7]
handles the first two and partially addresses the third (au-
tomation), but some iterator proofs fail without user inter-
vention in the form of custom Why?3 tactics; debugging and
fixing these proofs must be performed at the level of the in-
termediate functional language, not in Rust. Our technique
provides automation at the level of Rust via extensive use
of quantifiers; this can make proofs slower and sometimes
require annotating quantifiers with triggers (a standard no-
tion for SMT-based tools), but all errors and annotations can
be understood in the Rust program via Rust expressions. We
believe this degree of automation and consistent level of
abstraction is important for users of such a methodology.

The above work and ours are both extensions of work by
Pereira [16], which defines a modular verification technique
for iterators in a functional setting using two predicates per
iterator to specify the sequence of produced values and a ter-
mination condition. It partially addresses Challenge 1 by pro-
viding abstract, implementation-independent specifications
for individual iterators. However, although higher-order it-
erators are discussed, this only refers to simple iterators pa-
rameterised by side-effect-free functions, as in a functional
fold operation. Support for iterators with side effects and
iterator composition are not addressed.

Iterators and generic algorithms in the C++ Standard Tem-
plate Library (STL) are concepts closely related to iterators
and iterator adapters in Rust. Musser and Wang [15] for-
malise C++ iterators, then use their specifications to (manu-
ally) prove the correctness of some algorithms generic over
the input iterator. As noted in Sec. 1.1, Rust iterators are akin
to streams in other languages, a concept which exists in the

Compositional Reasoning about Advanced Iterator Patterns in Rust

Test (implementation) LoS LoC VT (s) Test(client code) LoS LoC VT (s)

counter 32 30 9.53 counter 0 14 1153
double 43 25 9.95 double 1 6 10.16
filter.vpr 90 109* 18.24* filter.vpr 10* 27 5.68*
map 67 38 42.12 map 14 22 79.78
option_intoiter 36 19 7.41 option_intoiter 0 4 6.96
vec_intoiter 42 13 7.05 vec_intoiter 4 19 1648
zip 79 32 8446 zip 2 6 67.12

Table 1. Evaluation. LoS and LoC represent the line of specifications and lines of code, respectively. VT represents the
verification time, measured as the wall-clock runtime averaged over 7 runs using an Intel Core 19-10885H 2.40GHz CPU with
16 GiB of RAM, excluding the slowest and fastest runs. Test cases ending in .vpr were encoded manually into Viper: our
methodology supports these test cases, but issues in the underlying Prusti tool (independent from the contributions of this
paper) currently prevent our implementation from supporting the analogous examples in Rust. These Viper encoded examples

are more verbose and run through a simpler tool chain; for these reasons we mark the data with *s in the tables here.

Boost C++ libraries [1] and more recently in the C++20 stan-
dard as “range adapters” or “views”. To our knowledge, de-
ductive verification of such features was not yet attempted.

8 Conclusion

We have presented a novel methodology for modularly spec-
ifying and verifying the complex iterator patterns found
in modern programming languages. Our methodology is
compatible with standard techniques for reasoning about
side-effectful programs, such as Rust’s ownership system and
separation logics. We evaluated our methodology in Rust,
which has rich iterator support in its standard library, as well
as a type system which can be used to automatically take
care of these ownership requirements. Applying our method-
ology in languages without such a type system would require
specifications to govern side-effects, but the adaptation of
our novel methodology would be straightforward.

To ensure our methodology is usable with pre-existing
real-world codebases and integrates well with other verifica-
tion efforts, we have prioritised modularity throughout the
design of our methodology and the ability to selectively ap-
ply our methodology per iterator implementation technique
in our implemented extension to the state-of-the-art Rust
verifier Prusti. To this end, we introduced type-dependent
contracts which, along with specification extension traits,
allow specifying standard-library iterators and their clients
without modifying their source code or dependencies. We
have identified other cases where the feature is useful when
specifying the Rust standard library [9].

References

[1] 1999. Boost C++ libraries. https://www.boost.org/

[2] V. Astrauskas, A. Bily, J. Fiala, Z. Grannan, C. Matheja, P. Miiller, F. Poli,
and A. J. Summers. 2022. The Prusti Project: Formal Verification for
Rust (invited). In NASA Formal Methods (14th International Symposium).
Springer, 88-108. https://doi.org/10.1007/978-3-031-06773-0_5

Shttps://en.cppreference.com/w/cpp/ranges

[3] Vytautas Astrauskas, Peter Miller, Federico Poli, and Alexander J.

Summers. 2019. Leveraging Rust types for modular specification and

verification. Proc. ACM Program. Lang. 3, OOPSLA (2019), 147:1-147:30.

https://doi.org/10.1145/3360573

Mike Barnett, K Rustan M Leino, and Wolfram Schulte. 2004. The

Spec# programming system: An overview. In International Workshop

on Construction and Analysis of Safe, Secure, and Interoperable Smart

Devices. Springer, 49-69.

N. Becker, P. Miiller, and A. J. Summers. 2019. The Axiom Profiler:

Understanding and Debugging SMT Quantifier Instantiations. In Tools

and Algorithms for the Construction and Analysis of Systems (TACAS)

(LNCS). Springer, 99-116.

A. Bily, J. Hansen, P. Miiller, and A. J. Summers. 2022. Composi-

tional Reasoning for Side-effectful Iterators and Iterator Adapters.

arXiv:2210.09857 [cs.LO]

Xavier Denis and Jacques-Henri Jourdan. 2023. Specifying and Verify-

ing Higher-order Rust Iterators. In International Conference on Tools

and Algorithms for the Construction and Analysis of Systems. Springer,

93-110.

Xavier Denis, Jacques-Henri Jourdan, and Claude Marché. 2022.

Creusot: a Foundry for the Deductive Verication of Rust Programs.

In International Conference on Formal Engineering Methods (ICFEM)

(LNCS). Springer Verlag, Madrid, Spain. https://hal.inria.fr/hal-

03737878

[9] Julian Dunskus. 2022. Annotating the Rust Standard Library with
Specifications for Use in a Rust Verifier. Master’s thesis. ETH Ziirich.

[10] Jean-Christophe Fillidtre and Andrei Paskevich. 2013. Why3-where
programs meet provers. In European Symposium on Programming
(ESOP). Springer, 125-128.

[11] Jonas Hansen. 2022. Specification and Verification of Iterators in a Rust
Verifier. Master’s thesis. ETH Ziirich.

[12] Bart Jacobs, David Cok, Bruce Weide, Kevin Bierhoff, Neelakantan
Krishnaswami, et al. 2006. Proceedings of the 2006 Conference on Speci-
fication and Verification of Component-based Systems (SAVCBS). ACM
Digital Library.

[13] Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem
Penninckx, and Frank Piessens. 2011. VeriFast: A powerful, sound,
predictable, fast verifier for C and Java. In NASA Formal Methods
Symposium. Springer, 41-55.

[14] Barbara Liskov and John Guttag. 2000. Program development in JAVA:
abstraction, specification, and object-oriented design. Pearson Educa-
tion.

[15] David R Musser and Changqing Wang. 1995. A basis for formal spec-
ification and verification of generic algorithms in the C++ standard

[4

—

(5

—

G

—

[7

—

[8

[}

https://www.boost.org/
https://doi.org/10.1007/978-3-031-06773-0_5
https://en.cppreference.com/w/cpp/ranges
https://doi.org/10.1145/3360573
https://arxiv.org/abs/2210.09857
https://hal.inria.fr/hal-03737878
https://hal.inria.fr/hal-03737878

template library. Technical Report. Citeseer.

[16] Mario José Parreira Pereira. 2018. Tools and Techniques for the Ver-
ification of Modular Stateful Code. Theses. Université Paris Saclay.
https://tel.archives-ouvertes.fr/tel-01980343

[17] John C Reynolds. 2002. Separation logic: A logic for shared mutable
data structures. In Logic in Computer Science (LICS). IEEE, 55-74.

[18] M. Schwerhoff. 2016. Advancing Automated, Permission-Based Program
Verification Using Symbolic Execution. Ph. D. Dissertation. ETH Zurich.

Aurel Bily, Jonas Hansen, Peter Miiller, and Alexander). Summers

[19] Jan Smans, Bart Jacobs, and Frank Piessens. 2010. Heap-dependent
expressions in separation logic. In Formal Techniques for Distributed
Systems. Springer, 170-185.

[20] Fabian Wolff, Aurel Bily, Christoph Matheja, Peter Miiller, and Alexan-
der J. Summers. 2021. Modular specification and verification of closures
in Rust. Proceedings of the ACM on Programming Languages 5, OOPSLA
(Oct. 2021), 1-29. https://doi.org/10.1145/3485522

https://tel.archives-ouvertes.fr/tel-01980343
https://doi.org/10.1145/3485522

	Abstract
	1 Introduction
	1.1 Related language features
	1.2 State of the art
	1.3 This work

	2 Methodology
	2.1 Iteration model
	2.2 Specification components
	2.3 Proof obligations
	2.4 Challenges revisited

	3 Specifying individual iterators
	3.1 Defining the specification components
	3.2 Example

	4 Specifying iterator chains
	4.1 Iterator adapters in Rust
	4.2 Specifying [language=Rust, style=colouredRust, basicstyle=, mathescape=true, escapechar= ,]`Map`
	4.3 Transitive side effects
	4.4 Unboundedly many steps

	5 Type-dependent contracts
	5.1 Type-dependent contracts

	6 Evaluation
	7 Related work
	8 Conclusion
	References

