
Flexible Refinement Proofs in Separation Logic

Aurel Bílý, Christoph Matheja, and Peter Müller

Department of Computer Science, ETH Zurich, Switzerland
{aurel.bily, cmatheja, peter.mueller}@inf.ethz.ch

Abstract. Refinement transforms an abstract system model into a con-
crete, executable program, such that properties established for the ab-
stract model carry over to the concrete implementation. Refinement has
been used successfully in the development of substantial verified sys-
tems. Nevertheless, existing refinement techniques have limitations that
impede their practical usefulness. Some techniques generate executable
code automatically, which generally leads to implementations with sub-
optimal performance. Others employ bottom-up program verification to
reason about efficient implementations, but impose strict requirements
on the structure of the code, the structure of the refinement proofs, as
well as the employed verification logic and tools.
In this paper, we present a novel refinement technique that removes
these limitations. Our technique uses separation logic to reason about
efficient concurrent implementations. It prescribes only a loose coupling
between an abstract model and the concrete implementation. It thereby
supports a wide range of program structures, data representations, and
proof structures. We make only minimal assumptions about the underly-
ing program logic, which allows our technique to be used in combination
with a wide range of logics and to be automated using off-the-shelf sepa-
ration logic verifiers. We formalize the technique, prove the central trace
inclusion property, and demonstrate its usefulness on several case studies.

1 Introduction

Refinement is a powerful technique for the formal development of correct sys-
tems. It is especially useful for concurrent and distributed systems, because it
allows one to establish system-wide invariants on the level of abstract models
and preserve them when decomposing the system into its components. It is,
thus, not surprising that several recent developments of verified systems employ
refinement reasoning [2,10,14,19,22].

Traditionally, refinement is applied to mathematical models of software, for
instance, in formalisms such as Event-B [1], TLA+ [17], or the higher-order
logics supported by interactive theorem provers such as Coq [8]. The final exe-
cutable program is then produced automatically by a code generator. However,
this approach generally leads to sub-optimal implementations that do not fully
utilize the language features needed to produce efficient code, such as mutable
heap structures and concurrency. Manually optimizing the generated code would
forfeit the correctness guarantees provided by the formal development.

ar
X

iv
:2

11
0.

13
55

9v
1

 [
cs

.L
O

]
 2

6
O

ct
 2

02
1

2 A. Bílý et al.

To address these shortcomings, recent work has combined refinement with
bottom-up program verification techniques that support more features of mod-
ern programming languages [10,15,33,34]. While these approaches substantially
increase the range of programs that can be developed using refinement, they
come with their own limitations. First, several existing techniques restrict the
structure of the executable program, which reduces expressiveness and limits the
efficiency of the executable code. For instance, the methodology used in Iron-
Fleet [10] supports protocol-level concurrency, but restricts the implementations
of individual components to execute sequentially. Moreover, the structure of the
code must closely follow the structure of the abstract TLA+model. Similarly,
the Igloo methodology [33] does not allow threads to perform I/O operations
concurrently. Second, most refinement techniques that support bottom-up code
development are closely tied to a particular program logic, which often impedes
adoption and automation. For example, refinement in DeepSpec [15] is tied to
the VST logic [5], DISEL [32] comes with its own dedicated logic, and Tril-
lium [34] leverages Iris [13]. All of these logics are very expressive, but require
substantial manual effort. The underlying program logic may also impose limita-
tions. For instance, Trillium inherits Iris’s restriction to finitary behaviors, which
precludes operations such as non-deterministically choosing from an infinite set.
However, non-deterministic choice is essential for the specification of abstract
system models, for instance, when the concrete algorithm to determine a value
is an implementation decision that is taken in a later refinement step.

In this paper, we present a novel methodology to prove that an implemen-
tation refines an abstract model given as a transition system. Our methodology
enables flexible refinement proofs along four dimensions:

1. Abstract model.We do not prescribe a specific formalism for abstract models,
but support any transition system whose transition relation can be specified
in first-order logic.

2. Program structure. Our methodology uses separation logic [29] to support
efficient implementations, in particular, mutable state and arbitrary concur-
rency structures.

3. Logic and automation. We make only minimal assumptions about the under-
lying program logic, which allows our methodology to be used in combination
with a wide range of logics and to be automated using off-the-shelf separation
logic verifiers.

4. Proof structure. Our methodology prescribes only a very loose coupling be-
tween the abstract model and the concrete implementation. This maximizes
flexibility when choosing the program structure (for instance, control flow,
concurrency, and thread synchronization), the data representation (support-
ing for instance, local and shared state), and proof structure (for instance,
allowing coupling invariants to be expressed via a combination of local as-
sertions and lock invariants).

Approach. Our goal is to prove that a given implementation refines an abstract
model, that is, each finite trace of the abstract model corresponds to a trace in

Flexible Refinement Proofs in Separation Logic 3

the transition system. This trace inclusion property guarantees that any safety
property proved for the abstract model also holds for the implementation.

Our abstract models are expressed as (possibly infinite) transition systems
in the style of TLA+, Event-B, or other refinement frameworks. We assume that
some variables of the abstract transition system (ATS) are declared to be part
of the environment in which the system executes. These are the variables that
can be observed about an execution; that is, we require trace inclusion only after
projecting traces to the environment variables. Consequently, a concrete imple-
mentation may perform arbitrary internal operations as long as it manipulates
the environment according to ATS . A typical example for environment variables
are the input and output streams of a program, but our methodology also sup-
ports other cases such as the variables shared between threads. We assume that
a program manipulates the environment only via dedicated operations, such as
the methods of an I/O library, whose specifications express how they manipulate
the environment in terms of the environment variables of ATS .

To reason about ATS and the concrete implementation within one program
logic, we embed ATS as global ghost state into the concrete implementation:
each variable of ATS is represented as a ghost variable of the program. The
concrete program must implement the transitions of ATS via atomic program
operations and corresponding updates of the ghost state. We identify these op-
erations via annotations in the code; they include in particular the operations
used to manipulate the environment. Proof obligations enforce that each such
operation performs a valid transition of ATS and that they execute atomically.
We do not prescribe how these atomicity checks are performed: they are trivial
for sequential programs, could be performed syntactically by identifying a set
of atomic operations (such as compare-and-swap and native I/O operations),
could be ensured via a global locking strategy, or could be discharged in a logic
that can reason about atomicity, such as TaDA [30]. This approach allows us
to use any separation logic that is able to reason about shared state, in par-
ticular, standard separation logic [29], concurrent separation logic [24], and the
numerous separation logics for fine-grained concurrency, e.g., [9,30,31].

A key virtue of our methodology is that refinement proofs are organized
around a minimal core, namely the proof obligations showing that the program
manipulates the environment variables according to the abstract model. Dis-
charging these proof obligations generally requires suitable coupling invariants
between the abstract and the concrete state, as well as updates to the ghost state
to maintain them. However, we do not prescribe how to express and prove those,
which enables programmers to flexibly structure the code, data, and proof.

Contributions. We make the following technical contributions:

– We present a novel verification methodology for refinement proofs that pro-
vides more flexibility than prior work in terms of the supported class of
programs, the choice of verification logic and tools, and the organization of
the refinement proof itself (Sec. 2).

4 A. Bílý et al.

– We formalize an instance of our methodology for a concurrent language and a
standard separation logic. Our soundness proof shows trace inclusion, which
implies that safety properties of the abstract model also hold for the concrete
implementation (Sec. 3 and Sec. 4).

– We demonstrate the expressiveness of our methodology by encoding a series
of interesting examples into the Viper language [23]. Our evaluation shows in
particular that our methodology can be automated with existing separation
logic verifiers (Sec. 5). We will submit our examples as an artifact.

2 Overview

In this section, we explain our methodology on a simple example that prints
all integers in ascending order, starting from an arbitrary, non-negative initial
value. To illustrate the flexibility of our methodology, we refine an abstract
model into a concurrent implementation. The concrete state is stored in local
variables of the individual threads, which requires a non-trivial, decentralized
coupling invariant. This section provides an informal overview; the details of the
programming language and proof rules will be formalized in the next sections.

Abstract Model. The abstract model of our system is defined in Fig. 1. We
represent the output stream of the system stdOut as a sequence of integers. This
variable belongs to the environment, whereas count is internal to the system.
The initial state has an arbitrary non-negative value for count, which illustrates
the common case that abstract models choose values non-deterministically. A
valid transition adds the current value of count to the output stream and then
increments it.

Embedding of the Abstract Model. As explained in the introduction, we embed
the abstract model as ghost state into the concrete implementation. To this end,
we declare a global ghost variable:

ghost var count: Int

We assume that the environment variable stdOut is predeclared for each program.
It is manipulated via a print(x) statement, which requires ownership of stdOut
(in the sense of separation logic: stdOut 7−→ _) and appends its argument x to the
output stream. Other input and output channels, as well as other I/O operations
are handled analogously.

To refine the abstract model, the concrete implementation may manipulate
count and stdOut only according to the abstract model presented in Fig. 1. We

Vars: count: Int, stdOut: Seq[Int]

Init: 0 ≤ count ∧ stdOut = []
Next: stdOut′ = stdOut ++ [count] ∧ count′ = count+ 1

Fig. 1. Abstract model of our example. Here, unprimed and primed variables refer the
variables values before and after the transition, respectively.

Flexible Refinement Proofs in Separation Logic 5

enforce this requirement by protecting both variables with a ghost lock. Like
a regular lock, a ghost lock is equipped with a lock invariant that must be
established when the lock is initialized and must be preserved by the operations
between an acquire and a release operation. In contrast to a regular lock, a ghost
lock is not present at run time; that is, it does not block execution and, thus,
cannot cause deadlock. Erasing ghost locks from the program is sound because
the operations between an acquire and a release must execute atomically.

In our language, we initialize the ghost lock with a dedicated Init ghost
statement, which checks the Init assertion from the abstract model as well as
the lock invariant (in particular, it transfers ownership of the variables in the
lock invariant from the executing thread to the ghost lock). A dedicated Next

ghost block statement acquires the ghost lock, executes the block of the state-
ment, and then releases the ghost lock. Upon release, it checks that the Next

assertion from the abstract model holds between the state in which the ghost
lock was acquired and the state where it is released. That is, the Next statement
executes one transition of the abstract model (or stutters). The block of a Next

statement must be atomic; we enforce this requirement syntactically, that is, we
check that the body consists of at most one atomic statement plus an arbitrary
number of ghost operations. However, our methodology also supports more so-
phisticated approaches, for instance, logics that can prove atomicity [30]. Note
that both Init and Next are ghost statements, that is, part of the specification.
The executable program contains their blocks, but not the manipulation of the
ghost lock. They are supported by any separation logic that handles locks.

The invariant of the ghost lock must contain at least fractional ownership [3]
to each variable of the abstract model, which ensures that once the ghost lock has
been initialized, those variables can be modified only within a Next statement
and, thus, the Next relation of the abstract model is checked on each modification.
In our example, the ghost lock invariant contains fractional ownership of the
count variable and full ownership of stdOut:

count
2
37−→ _ ∗ stdOut 7−→ _

Our proof rules enforce that print—the only way to modify stdOut—can be
executed only after the ghost lock has been initialized with an Init statement.
Consequently, the above lock invariant guarantees that print operations can
occur only within a Next block and, thus, all changes to the environment are
checked to comply with the abstract model. We assume that print is atomic,
which is standard for I/O operations.

Fig. 2 shows the concrete implementation. After initializing the abstract
state, the Init operation checks that the initial state is valid and creates the
ghost lock that guards further updates to the abstract state, in particular, all
executions of print. Note that our implementation fixes a concrete initial value
for count, whereas the abstract model permits an arbitrary non-negative number
(see Fig. 1). Resolving non-determinism is very common during refinement. We
explain the body of the Init statement below.

6 A. Bílý et al.

count := 0 ;
Init {

evenTurn := true ; lastEven := − 1 ; lastOdd := 0 ;
lock L { /* even-thread */ ‖ /* odd-thread */ }

}

Fig. 2. The concrete implementation of our example. The even-thread is presented in
Fig. 3; the odd-thread is analogous.

var c := 0 ;

while true invariant lastEven
1
27−→ 2 ∗ c− 1

{
with L when evenTurn {

Next { /* print + ghost update */

print(2 ∗ c) ; count := count+ 1 }
lastEven := lastEven+ 2 ;
evenTurn := !evenTurn ;
c := c+ 1

} /* release lock L */

}

Fig. 3. Implementation of the thread that prints the even numbers. The Next block
marks an atomic transition; its body is atomic because the print statement is atomic
and the subsequent assignment is a ghost statement.

Concrete Program State and Coupling. Our concrete implementation uses two
concurrent threads (parallel branches) that print the even and odd numbers,
respectively. To synchronize these two threads, we declare a global Boolean vari-
able that indicates whether the next number to be printed is even:

var evenTurn: Bool

This variable is protected by a global (regular, non-ghost) lock L.
Fig. 3 shows the implementation of the thread that prints the even numbers;

the other thread is analogous. Both threads loop indefinitely. In each iteration,
they acquire the lock L (waiting until evenTurn is true resp. false), execute a
transition (explained later), flip evenTurn, and release the lock. Each thread has
a local variable c that counts how many numbers it has printed. This design
illustrates that our methodology supports flexible combinations of global con-
crete state (such as evenTurn) and local concrete state (such as c). While global
concrete state can easily be connected to the abstract state via lock invariants,
local variables require more flexible ways of expressing the coupling invariant.

For instance, at the beginning of each loop iteration of the even-thread, the
abstract counter count is equal to 2 ∗ c in case evenTurn is true. This condition
allows us to prove that the print operation in the loop body is indeed permit-
ted by the abstract model. However, this coupling invariant cannot be included

Flexible Refinement Proofs in Separation Logic 7

in a lock invariant because locks do not protect local variables. Nor can it be
expressed as a loop invariant because that would require that the even-thread
holds on to some ownership of count, which would prevent the odd-thread from
ever updating it.

A relation between the local variable c and the shared variable count can
be proved in many ways, for instance, by using classical rely-guarantee reason-
ing [12] or concurrent abstract predicates [9]. Our refinement methodology is
compatible with any such logic. In our example, we use a standard encoding of
the Owicki-Gries counter [26] in separation logic. For this purpose, we introduce
two global ghost variables lastEven and lastOdd that keep track of the effect of
each individual thread:

ghost var lastEven: Int, lastOdd: Int

We relate these ghost variables to the local variable c in each thread via the
thread’s loop invariant (see Fig. 3), and also to the global count via the lock
invariant of lock L:

evenTurn 7−→ _ ∗ lastEven
1
27−→ _ ∗ lastOdd

1
27−→ _ ∗ count

1
37−→ _ ∗

(evenTurn⇒ count = lastOdd ∧ lastEven = lastOdd− 1) ∗
(¬evenTurn⇒ count = lastEven ∧ lastOdd = lastEven− 1)

The lock and the loop invariants together form the coupling invariant for our
example. For the even-thread, we get lastEven = 2 ∗ c − 1 from the loop in-
variant, evenTurn from the with-statement, and (evenTurn⇒ count = lastOdd∧
lastEven = lastOdd−1) from the lock invariant. These three conditions together
imply count = 2∗c, which is required to show that the printed value is permitted
by the abstract model.

Discussion. Our example illustrates that our methodology enables flexible re-
finement proofs, which are required to support a wide range of efficient imple-
mentations. We refined an abstract model into a concurrent implementation that
uses both local and mutable shared state, as well as thread synchronization via
locks. The proof makes only minimal assumptions about the underlying program
logic. Concretely, we use concurrent separation logic, locks, ghost variables, and
fractional permissions. These features are supported and automated by many
existing separation logic verifiers. For instance, an encoding of our example into
Viper verifies automatically in around 3.8s. Combining our refinement method-
ology with other, more advanced program logics is possible.

Finally, our example demonstrates that our methodology enables flexible
proof structures. Proofs are essentially derived backwards from those statements
that manipulate environment variables, here, print. These statements require
that the abstract state has been initialized and that the modification of the
environment variables is permitted by the abstract model. Any proof structure
that establishes these properties is compatible with our methodology. In our
example, we use a combination of loop invariants and lock invariants, connected
via global ghost variables, to establish the necessary coupling relation. This
flexibility is essential to support a wide range of data, control, and concurrency
structures.

8 A. Bílý et al.

3 Preliminaries: Concurrent Separation Logic

Our verification technique for refinement proofs does not depend on a particular
program logic but can, in principle, be integrated into most separation logic-
based verification techniques. To make this claim more concrete, we will formalize
(in Sec. 4) our methodology on top of an elementary formalization of concurrent
separation logic with fractional permissions by Vafeiadis [35]. Since Vafeiadis’
soundness proof generalizes well to more advanced concurrent separation logics,
such as [9], we expect the same when using our technique for refinement on top
of such advanced logics.

This section briefly recapitulates the main ingredients of concurrent separa-
tion logic (CSL). More precisely, we introduce a small concurrent programming
language, its underlying model of program states, and its operational semantics.
Furthermore, we discuss CSL’s assertion language and proof rules.

3.1 Programming Language

We consider a small programming language that supports heap-manipulating
instructions, structured concurrency, and locks. More precisely, the set Cmds
of commands in our programming language is given by the grammar

C ::= Cbase

| C ; C

| if E {C } else {C }
| while E {C }
| C ‖ C
| lock L {C }
| with L when E {C }
| within L {C }semantics

Cbase ::= skip

| x := E

| [E] := E

| x := [E]

| free(E)

| x := new(E)

where x is a variable in the set Vars, E is an expression over variables, and L
is a lock identifier taken from the arbitrary, but finite set Locks = {L, . . . }.

We briefly go over our language: in addition to the assignment x := E and
the usual control-flow structures, C1 ‖ C2 is the parallel composition of C1 and
C2; lock L {C } declares a new lock L that can be used in C and expires after
termination of C; the conditional critical region (CCR) with L when E {C } ac-
quires lock L if condition E holds (and waits otherwise), executes C, and releases
L again upon termination of C; within L {C } is an internal command that we
will use to indicate that C is executed while holding the lock L. Furthermore,
[E] denotes the value at the memory address given by E. x := [E] reads the
value at address E and assigns it to x; [E] := E’ writes the value of E′ to the
address E. Moreover, free (E) disposes of location E, and x := new(E) allocates
a free memory address, assigns it to x, and stores E at that address. We use
structured concurrency and global locks to simplify the formalization, but our
methodology also supports dynamic threads and locks.

Flexible Refinement Proofs in Separation Logic 9

3.2 Program States

A program state (s, h) consists of a stack s, i.e., a valuation of variables, and a
heap h modeling dynamically allocated memory. Formally, we fix a set Vals =
{ v, . . . } of values containing, e.g., Booleans, integers, and sequences. The set
Stacks consists of all mappings s from variables in Vars to values in Vals, i.e.,

Stacks , Vars→ Vals .

Moreover, we fix a countably infinite setAddrs ofmemory addresses, and the set
Perms , [0, 1] of fractional permissions, where permission ρ = 1 means write
access, ρ ∈ (0, 1) means read access, and ρ = 0 means no access, respectively.

The set Heaps of heaps consists of all finite partial functions h that map
addresses in their domain dom (h) ⊆ Addrs to permission-value pairs, i.e.,

Heaps , Addrs⇀fin (Perms×Vals) .

For h(a) = (ρ, v), we define the projections perm(h(a)) = ρ and val(h(a)) = v. We
denote by

{
a1

ρ17−→ v1, . . . , an
ρn7−→ vn

}
the heap h with dom (h) = { a1, . . . , an }

and h(ai) = (ρi, vi), where i ∈ { 1, . . . , n }; the empty heap is denoted by h∅.
The addition of h1 ⊕ h2 of heaps h1 and h2 is defined as

(h1 ⊕ h2)(a) ,

(ρ1 + ρ2, v) if a ∈ dom (h1) ∩ dom (h2) and h1(a) = (ρ1, v)

and h2(a) = (ρ2, v) and ρ1 + ρ2 ≤ 1

h1(a) if a ∈ dom (h1) \ dom (h2)

h2(a) if a ∈ dom (h2) \ dom (h1)

undefined otherwise.

We write def (h1 ⊕ h2) if (h1⊕h2(a) is well-defined for all a ∈ dom (h1)∪dom (h2).
Furthermore, h [a := v] denotes the heap h except that a maps to v (with per-
mission 1), i.e.,

h [a := v] (a′) ,

{
(1, v) if a′ = a

h(a′) if a′ 6= a .

For every stack s, s [x := v] is defined analogously. We define the heap h [a :=⊥] ,
{ a′ 7→ h(a′) | a′ ∈ dom (h) \ {a} }, which is obtained from h by removing a from
its domain. Finally, the set NormHeaps of normal heaps consists of all heaps
h that assign the full permission 1 to every address, i.e.,

NormHeaps , { h ∈ Heaps | ∀a ∈ dom (h) . perm(h(a)) = 1 } .

We typically write h instead of h to highlight that a heap is normal; by slight
abuse of notation, we use h(a) as a shortcut for val(h(a)). Clearly, for every heap
h, there exists a heap h′ such that h⊕ h′ is a normal heap.

10 A. Bílý et al.

3.3 Operational Semantics

The semantics of commands is defined in terms of a small-step execution relation.
Toward a formal definition, we first clarify the semantics of expressions. We do

not fix a specific syntax for expressions; instead, we assume that every expression
E is associated with a function E : Stacks → Vals such that E(s) is the value
obtained from evaluating E in stack s.

The set Confs of program configurations c consists of all command-stack-
normal-heap triples plus a dedicated error state abort, that is,

Confs , (Cmds× Stacks×NormHeaps) ∪ { abort } .

We use normal heaps because permissions are a reasoning concept that does
not exist when executing a program. The small-step operational semantics of
commands is defined as the execution relation → ⊆ Confs ×Confs given by
the rules in Fig. 4. Most rules in Fig. 4 are standard (cf. [35]) and reflect the
behavior informally explained in Sec. 3.1; we briefly discuss particularities.

Usage and Declaration of Locks. The operational semantics uses the command
structure to record which locks are currently declared and acquired, respectively.
That is, lock L {C } indicates that L is declared in C; the internal command
within L {C } indicates that C holds L during its execution. We denote by
Locks(C) the set of all locks that are declared in C. Analogously, locked (C)
denotes the set of all locks that are currently held by C. For example, if C ′ is
not of the form lock L { . . . } or within L { . . . }, and C is given by

lock L1 { lock L2 { . . . lock Ln { within L′1 { . . . within L′m {C ′ } } } } . . . } ,

then Locks(C) = {L1, . . . ,Ln } and locked(C) = {L′1, . . . ,L′m }.
The semantics of lock L {C } consequently keeps the lock L declared and

performs a step of C until termination; after that, the lock declaration expires.

CCRs and Parallel Composition. For CCRs with L when E {C }, we first check
whether condition E holds in the current state. If so, we acquire lock L and
enter the CCR by moving to the internal command within L {C }, which will
execute C, and release the lock upon termination of C. If E does not hold, no
transition is possible, i.e., we need to wait for other threads.

The rules for the parallel composition C1 ‖ C2 model all interleaved execu-
tions of C1 and C2. They include a sanity check stating that C1 and C2 do not
hold the same lock at the same time, i.e., locks provide mutual exclusion. More-
over, there is a rule that prematurely aborts executions whenever a command
admits a data race, that is, C1 (resp. C2) writes to and C2 (resp. C1) accesses
(i.e., reads from or writes to) the same address that is outside of a CCR, and
thus without protection by a lock.

Flexible Refinement Proofs in Separation Logic 11

(Assign) x := E, s, h→ skip, s [x :=E(s)] , h
(Read) x := [E], s, h→ skip, s [x :=h(v)] , h if E(s) = v ∈ dom (h)
(ReadA) x := [E], s, h→ abort if E(s) /∈ dom (h)
(Write) [E] := E′, s, h→ skip, s, h [a :=E′(s)] if E(s) = a ∈ dom (h)
(WriteA) [E] := E′, s, h→ abort if E(s) /∈ dom (h)
(Alloc) x := new(E), s, h→ skip, s [x := a] , h [a :=E(s)] if a ∈ Addrs \ dom (h)
(Free) free(E), s, h→ skip, s, h [a :=⊥] if E(s) = a ∈ dom (h)
(FreeA) free(E), s, h→ abort if E(s) /∈ dom (h)
(With) with L when E {C }, s, h→ within L {C }, s, h if E(s) = true

(Ite1) if E {C1 } else {C2 }, s, h→ C1, s, h if E(s) = true

(Ite2) if E {C1 } else {C2 }, s, h→ C2, s, h if E(s) = false

(While) while E {C }, s, h→ if E {C ; while E {C } } else { skip }, s, h
(WithinL) within L {C }, s, h→ abort if L ∈ locked(C)
(WithinS) within L { skip }, s, h→ skip, s, h (SeqS) skip ; C2, s, h→ C2, s, h
(LockS) lock L { skip }, s, h→ skip, s, h (ParS) skip ‖ skip, s, h→ skip, s, h

(Seq)
C1, s, h→ C′1, s

′, h′

C1 ; C2, s, h→ C′1 ; C2, s
′, h′

(SeqA)
C1, s, h→ abort

C1 ; C2, s, h→ abort

(Par1)

C1, s, h→ C′1, s
′, h′

locked(C′1) ∩ locked(C2) = ∅
C1 ‖ C2, s, h→ C′1 ‖ C2, s

′, h′
(Par1A)

C1, s, h→ abort

C1 ‖ C2, s, h→ abort

(Par2)

C2, s, h→ C′2, s
′, h′

locked(C1) ∩ locked(C′2) = ∅
C1 ‖ C2, s, h→ C′1 ‖ C2, s

′, h′
(Par2A)

C2, s, h→ abort

C1 ‖ C2, s, h→ abort

(Race)
(accesses(C1, s) ∩writes(C2, s)) ∪ (writes(C1, s) ∩ accesses(C2, s)) 6= ∅

C1 ‖ C2, s, h→ abort

(Lock)
C, s, h→ C′, s′, h′

lock L {C }, s, h→ lock L {C′ }, s′, h′
(LockA)

C, s, h→ abort

lock L {C }, s, h→ abort

(Within)
C, s, h→ C′, s′, h′

within L {C }, s, h→ within L {C′ }, s′, h′

(WithinA)
C, s, h→ abort

within L {C }, s, h→ abort

Fig. 4. Rules of the small-step operational semantics for commands in Cmds. Here,
locked(C) is the set of all locks L held by C, i.e., within L { . . . } is a sub-command of
C. Furthermore, accesses(C, s) (resp. writes(C, s)) denotes the set of those addresses
a that are not exclusively owned by C, i.e., appear only in sub-commands Next { . . . }
or with L when E { . . . }), and are accessed (resp. modified) by C given stack s.

12 A. Bílý et al.

Table 1. Semantics of assertions.

P s, h |= P iff

E E (s) = true

Q ∧R s, h |= Q and s, h |= R

¬Q s, h 6|= Q

∀x . Q for all v ∈ Vals, s [x := v] , h |= Q

∃x . Q exists v ∈ Vals s.t. s [x := v] , h |= Q

emp dom (h) = ∅
Q ∗ R exists h1, h2 s.t. h = h1 ⊕ h2 and s, h1 |= Q and s, h2 |= R

Q−* R for all h′, (def (h⊕ h′) and s, h′ |= Q) implies s, h⊕ h′ |= R

Fi∈I Pi I = ∅ or exists j ∈ I s.t. s, h |= Pj ∗ Fi∈I\{j} Pi

3.4 Assertions

Syntax. The syntax of separation logic assertions includes, amongst others, all
Boolean expressions E supported by our programming language Formally, the
set SL of separation logic assertions is given by the grammar

P ::= E | P ∧ P | ¬P | ∀x . P | ∃x . P (FOL)

| emp | E ρ7−→ E | P ∗ P | P −* P | Fi∈I Pi , (SL)

where E is a Boolean expression over variables, x is a variable in Vars, ρ is a
permission in Perms, and I is a finite set such that each i ∈ I is associated with
an assertion Pi. We use syntactic sugar, such as P ⇒ Q, P ∨P and, in particular,
E

ρ
↪−→ E , E

ρ7−→ E ∗ true, E ρ7−→ _ , ∃y . E
ρ
↪−→ y, and E

ρ
↪−→ _ , ∃y . E

ρ
↪−→ y.

We denote by FOL the set of all first-order logic formulas, i.e., those formulas
that can be constructed from the first line of the above grammar.

Semantics. Assertions are interpreted over pairs (s, h) consisting of a stack s and
a heap (with permissions) h. Tab. 1 shows the formal semantics of assertions.

Intuitively, emp specifies the empty heap; the points-to assertion E
ρ7−→ E′

specifies that the heap contains exactly one address E that is mapped to E′

with permission ρ; E
ρ
↪−→ E′ is an intuitionistic version stating that the heap

contains at least permission ρ for the address E, which is mapped to E′. E ρ7−→ _
and E

ρ
↪−→ _ are analogous but do not require a specific value at the address

given by E. The separating conjunction P ∗ Q specifies that the heap can be
partitioned into two parts such that one part satisfies P and the other part
satisfies Q. Fi∈I Pi is an iterative version of the separating conjunction. Finally,
the magic wand P −* Q specifies that Q holds in a heap h after it has been
extended by any heap that satisfies P (and can be added to h).

We call an assertion P valid, written |= P , if and only if s, h |= P holds for
all stacks s ∈ Stacks and heaps h ∈ Heaps.

Flexible Refinement Proofs in Separation Logic 13

We denote by FV(P) the set of free variables (i.e., those that are not bound
by quantifiers) of assertion P . Moreover, P [x/v] denotes the substitution of every
free occurrence of variable x in assertion P by v.

3.5 Proof System

The last step of our recapitulation of concurrent separation logic (CSL) presents
the formal triples and proof rules for reasoning about commands. To formalize
both, we first introduce lock environments and lock invariants.

Lock Environments. In contrast to the operational semantics (cf. Sec. 3.3), which
has a global view on the full program state, the CSL proof system considers only
the local state i.e., those parts of the current program state that are accessible
to the local command. The remainder of the global state is either framed around
the command or protected by locks. To this end, we associate every declared
lock L with a lock invariant R that specifies the part of the global state that is
protected by L. Formally, the assignment of lock invariants to locks is captured
by a lock environment Γ , which is given by the grammar

Γ ::= ∅ | Γ,L : R ,

where L ∈ Locks and R is an SL assertion representing the lock invariant.
Moreover, given a lock environment Γ , the lock invariant of lock L is

Γ (L) ,

R if Γ = Γ ′,L : R
Γ ′(L) if Γ = Γ ′,L′ : R′ and L′ 6= L
emp if Γ = ∅ .

Intuitively, if Γ (L) = R, then R specifies a portion of the global state that is not
part of the local state but is shared with other threads and can be modified by
them. In particular, if Γ (L) = emp, then L does not appear in Γ (or the declared
invariant is emp) and nothing is shared with other threads.

Declaring, acquiring, and releasing the lock L can be understood as a transfer
of the portion of the state specified by R between the local state and Γ , i.e., the
part of the global state that is shared with other threads: whenever we declare L,
R is shared with other threads and thus moved from the local state into Γ ; once
the declaration expires, R is transferred back into the local state. Whenever we
acquire the lock L, R is moved from Γ into the local state; whenever we release
the lock L, R is moved back from the local state into Γ .

CSL Judgments. Judgments that can be derived in CSL are of the form

Γ ` {P} C {Q} ,
where Γ is a lock environment such that FL∈LocksΓ (L) describes the shared
state, P ∈ SL is the precondition evaluated in the local state, C is a command
in Cmds, and Q ∈ SL is the postcondition evaluated in the local state. Fig. 5
shows the standard proof rules of CSL [35]. In particular, the aforementioned
transfer between local and shared state can be observed in the rules (Lock) and
(With). A detailed discussion of the CSL proof rules is found in [24,4].

14 A. Bílý et al.

(Skip)
Γ ` {P} skip {P}

(Assign)
x /∈ FV(Γ)

Γ ` {P [x/E]} x := E {P}

(Write)
Γ `

{
E

17−→ _
}

[E] := E′
{
E

17−→ E′
}

(Read)
x /∈ FV(E,E′, Γ)

Γ `
{
E

ρ7−→ E′
}
x := [E]

{
E

ρ7−→ E′ ∧ x = E′
}

(Alloc)
x /∈ FV(Γ,E)

Γ ` {emp} x := new(E)
{
x

17−→ E
}

(Free) E /∈ GhostAddrs

Γ `
{
E

17−→ _
}

free(E) {emp}

(Seq)
Γ ` {P} C1 {R} Γ ` {R} C2 {Q}

Γ ` {P} C1 ; C2 {Q}

(Cond)
Γ ` {P ∧ E} C1 {Q} Γ ` {P ∧ ¬E} C2 {Q}

Γ ` {P} if E {C1 } else {C2 } {Q}

(While)
Γ ` {I ∧ E} C {I}

Γ ` {I} while E {C } {I ∧ ¬E}

(Par)

Γ ` {P1} C1 {Q1} FV(P1, C1, Q1) ∩Mod(C2) = ∅
Γ ` {P1} C2 {Q2} FV(P2, C2, Q2) ∩Mod(C1) = ∅

Γ ` {P1 ∗ P2} C1 ‖ C2 {Q1 ∗ Q2}

(Lock)
Γ,L : R ` {P} C {Q}

Γ ` {R ∗ P} lock L {C } {R ∗ Q}

(With)
Γ ` {(P ∗ R) ∧ E} C {Q ∗ R}

Γ,L : R ` {P} with L when E {C } {Q}

(Frame)
Γ ` {P} C {Q} FV(R) ∩Mod(C) = ∅

Γ ` {P ∗ R} C {Q ∗ R}

(Cons)

Γ ` {P} C {Q}
|= P ′ ⇒ P |= Q⇒ Q′

Γ ` {P ′} C {Q′}
(Ex)

Γ ` {P} C {Q} x /∈ FV(C)

Γ ` {∃x . P} C {Q}

(Conj)

∀L . Γ (L) precise
Γ ` {P1} C {Q1}
Γ ` {P2} C {Q2}

Γ ` {P1 ∧ P2} C {Q1 ∧Q2}
(Disj)

Γ ` {P1} C {Q1}
Γ ` {P2} C {Q2}

Γ ` {P1 ∨ P2} C {Q1 ∨Q2}

Fig. 5. Inference rules inherited from concurrent separation logic. Here, ρ is a permis-
sion; Mod(C) denotes all variables modified by command C, i.e., those that appear
on the left-hand side of assignments. Moreover, FV(E), FV(C), and FV(Γ) denote
the free variables of in expression E, command C (i.e., all variables accessed by C),
and lock environment Γ (i.e., the union of FV(Γ (L)) for all L ∈ Locks), respectively.
Furthermore, we define FV(A,B,C) , FV(A)∪FV(B)∪FV(C). Finally, an assertion
P is precise iff for all s, h1, h2, h′1, h′2, if def (h1 ⊕ h2) and h1⊕h2 = h′1⊕h′2 and s, h1 |= P
and and s, h2 |= P , then h1 = h2.

Flexible Refinement Proofs in Separation Logic 15

4 Methodology and Formalization

We now present the details of our methodology and formalize it on top of the
concurrent separation logic (CSL) introduced in Sec. 3. We first discuss how
abstract models are encoded into program states. After that, we extend the pro-
gramming language, its operational semantics, and the CSL proof system with
refinement-specific commands and rules. Finally, we show that our methodology
is sound, i.e., a proof in our program logic guarantees that the (finite) traces
of the given implementation are included in the traces of the abstract model.
Further details and proofs are provided in the appendix.

4.1 Abstract Models

Our methodology takes as input an abstract model that should be refined by a
concrete implementation. More precisely, we assume that an abstract model is
provided as a (potentially infinite-state) abstract transition system.

Toward a formal definition, recall from Sec. 3.4 the definition of heap-independent
assertions in first-order logic (FOL). Moreover, given a sequence of variables
~x = (x1, . . . , xk) , we denote by ~x′ the same sequence in which each xi is re-
placed by a primed version, i.e., ~x′ = (x′1, . . . , x

′
k).

Definition 1 (Abstract Transition System (ATS)). An abstract transition
system is a quadruple ATS , (k, ~x, Init ,Next), where

– ~x = (x1, . . . , xk) is a repetition-free sequence of k ≥ 1 variables,
– the initial state formula Init(~x) is an FOL assertion over ~x, and
– the next state formula Next(~x, ~x′) is an FOL assertion over ~x and ~x′. 4

We consider only ATSs that are stutter-invariant, that is, for all sequences of
values ~v ∈ Valsk, the formula Next(~v,~v) is valid. Stutter invariance is desirable
in the context of refinement proofs as concrete implementations should always
be allowed to perform more fine-grained computation steps. Furthermore, every
ATS can be turned into a stutter-invariant one by considering the modified next-
state formula Next(~x, ~x′) ∨

∧
1≤i≤k x

′
i = xi.

Throughout the rest of this paper, we fix a stutter-invariant abstract transi-
tion system ATS , (k, ~x, Init ,Next) representing the abstract model we would
like to prove refinement of.

To reason about refinement, we need to formalize the observable traces of
ATS . Every evaluation of an ATS ’s variables ~x constitutes one of its states.
Formally, the state space of ATS is ΣATS , Valsk. A (finite) path of ATS is a
sequence of states σ1 . . . σn, where n ≥ 1, such that

1. |= Init(σ1), i.e., σ1 is an initial state of ATS , and
2. for all i ∈ [1, n), we have |= Next(σi, σi+1), i.e., for every state but the last

one, ATS admits a transition to the next state on the path.

16 A. Bílý et al.

We collect in the set Paths(ATS) all finite paths of the transition system ATS .
A trace then projects every state on a path to the values corresponding to

those variables that are observable, e.g., variables modeling I/O channels as
outlined in Sec. 2. For simplicity, we assume that exactly one variable, x1, is
observable; generalizing to arbitrary sets of observable variables is straightfor-
ward. We denote by obs(σ) the projection of state σ to the value assigned to the
observable variable x1, that is, if σ = (v1, . . . , vk), then obs(σ) = v1.

Definition 2. The set Traces(ATS) of observable traces of ATS is given by

Traces(ATS) , {obs(σ1) . . . obs(σn) | n ∈ N and
σ1 . . . σn ∈ Paths(ATS)}. 4

State Encoding. To reason about the behavior of ATS s with the machinery
offered by concurrent separation logic (cf. Sec. 3), we encode states of ATS s
within program states—more precisely: as part of the heap.

We fix a set GhostAddrs ⊆ Addrs of dedicated ghost addresses that can-
not be allocated or disposed of—they thus need to be already allocated before
program execution. Every variable xi of ATS is then encoded as a ghost address
bxic ∈ GhostAddrs at which we store the current evaluation of xi. We use
stdOut as a synonym for bx1c—the address of the only observable variable x1.

Given a heap h, the contents of the addresses bx1c , . . . , bxkc in h encode the
current state of ATS . We introduce a function get_state : Heaps→ ΣATS which
extracts the transition system’s state from the heap:

Definition 3. The state extraction function get_state : Heaps→ ΣATS is

get_state(h) ,

(v1, . . . , vk) if bx1c , . . . , bxkc ∈ dom (h) and

for all i ∈ [1,k], h(bxic) = (ρi, vi)

and ρi > 0

undefined otherwise . 4

While ghost addresses cannot be allocated or disposed, (ghost) commands can
read and modify their contents just like with ordinary addresses. Hence, we can
enrich a concrete implementation with ghost commands to model updates to the
state of the abstract model ATS .

Ghost Locks. We employ a dedicated lock G to protect the ghost locations
bx1c , . . . , bxkc representing the current state of the abstract model ATS from
undesirable modifications. To this end, we require that any lock invariant G cho-
sen for G contains some permission to each of the locations bx1c , . . . , bxkc—thus
preventing modification of their content without acquiring G first. Formally:

Assumption 1. For any lock invariant G associated with the ghost lock G,
there exists a permission ρ > 0 such that the following entailment is valid:

|=
(
G ⇒ bx1c

ρ
↪−→ _ ∗ . . . ∗ bxkc

ρ
↪−→ _

)
4

Flexible Refinement Proofs in Separation Logic 17

(Print) print(E), s, h→ skip, s, h [stdOut :=h(stdOut) ++E(s)] if stdOut ∈ dom (h)
(PrintA) print(E), s, h→ abort if stdOut /∈ dom (h)
(Init) Init {C }, s, h→ lock G {C }, s, h

(Next)
atomic (C) C, s, h→∗ skip, s′, h′

Next {C }, s, h→ skip, s′, h′

Fig. 6. Extension of the rules in Fig. 4 that determine the operational semantics. Here,
→∗ denotes the reflexive and transitive closure of execution relation → .

Our methodology prescribes that G is a ghost lock such that it can be safely
erased at runtime and thus cannot block execution. To guarantee the above
property, our formalization treats G differently from other locks: it is a dedicated
lock that is invisible to programmers and thus can neither be declared nor locked
by them. Instead, it will be governed by the refinement-specific ghost commands
Init and Next in a way such that G is indeed a ghost lock.

4.2 Programming Language and Operational Semantics

We now extend the programming language from Sec. 3.1 with an output opera-
tion print(E) and the refinement-specific commands Init {C } and Next {C }.
Formally, we expand the grammar in Sec. 3.1 as follows:

C ::= print(E) | Init {C } | Next {C } | . . .

We use ghost addresses taken from GhostAddrs to formalize the semantics of
each of the above commands; Fig. 6 summarizes how we formally extend the
execution relation → from Sec. 3.3. We briefly go over the new rules:

print(E) appends the value of E to the standard output stream, which we
represent by a mathematical sequence stored at the ghost address stdOut ∈
GhostAddrs. Print thus modifies the only observable variable of the abstract
mode ATS . If stdOut has not been allocated, we abort execution.

The command Init {C } is, operationally speaking, a dedicated command
for declaring the ghost lock G. In fact, the rule (Init) desugars it to an explicit
lock declaration lock G {C }.1 Conceptually, Init takes the important role of
marking the system as initialized, i.e., after entering Init, the concrete model
must be in an observable state that matches the (observable part of) the abstract
model’s initial state. The command Next { C } is, operationally speaking again,
a dedicated command for the conditional critical region that acquires the ghost
lock G, executes C, and releases G, that is, it can be viewed as syntactic sugar for
with G when true {C }. However, to ensure that G is indeed a ghost lock and can
thus be safely erased at runtime, we additionally require that every command C
put into a Next {C } block is atomic. That is, C can be executed in a single step
without interference from other threads. Consequently, Next {C } is atomic and

1 While we do not allow programmers to explicitly use the ghost lock G, the rules of
our operational semantics can use it like any other lock.

18 A. Bílý et al.

thus executed in a single step, as reflected by the (Next) rule: if the execution
of C terminates in a configuration c, then Next {C } transitions to configuration
c in a single step.

We assume that I/O operations, such as print(E), are atomic and that
adding ghost code to an atomic command yields an atomic command. Apart
from these assumptions, our methodology does not prescribe how to ensure
atomicity—be it through known atomic statements, a global locking strategy,
or formal proofs of atomicity in a program logic (cf. Sec. 2).

Observable Traces. To formalize program refinement, we need to define the ob-
servable traces induced by a program configuration. Similar to the definition of
traces of the abstract model ATS , we project every program configuration in an
execution c1 . . . cn to its observable state once the system has been initialized,
which is recorded by the operational semantics in its command structure:

Definition 4. A command C is initialized, written init (C), if and only if the
ghost lock G is declared in C, i.e., G ∈ Locks(C). 4

In our formalization, only the content of the standard output stream, which
is modified via print(E) calls, is observable. The observable state obs(c) of a
configuration c is defined as the empty or singleton sequence

obs(c) ,

{
[h(stdOut)] if c = (C, s, h) and init (C)
[] otherwise.

A trace is then obtained from a (finite) execution by mapping configurations to
their observable state and concatenating the resulting sequences:

Definition 5. The set Traces(I) of finite traces induced by a set I ⊆ Confs is

Traces(I) , { obs(c1) . . . obs(cn) |n ∈ N and c1 ∈ I, c2, . . . , cn ∈ Confs
and c1 → . . . → cn } . 4

The definition of obs() ignores the observable state as long as the system is
not initialized, i.e., we have not reached Init { . . . } yet. This is justified as
long as observable state is never modified before initialization and, thus, the
implementation performs no observable action that needs to be matched by the
abstract model. Our proof system will guarantee this property.

4.3 Proof System

Recall from Sec. 3.5 the proof system of concurrent separation logic (CSL). We
now extend CSL to a sound program logic for proving refinement in the extended
programming language introduced earlier in this section. Our assertion language
is the same as for CSL, i.e., it consists of all SL assertions (see Sec. 3.4).

Flexible Refinement Proofs in Separation Logic 19

(Init)
Γ,G : G, I : emp `R {P} C {Q}

Γ `R {(∃~y . b~xc(~y) ∧ Init(~y) ∧G) ∗ P} Init {C } {G ∗ Q}

(Next)

atomic (C)
Γ `R {(b~xc(~o) ∧G) ∗ P} C {(∃~y . b~xc(~y) ∧Next(~o, ~y) ∧G) ∗ Q)}

Γ,G : G `R {P} Next {C } {Q}

(Print)
Γ, I : emp `R

{
stdOut

17−→ E′
}

print(E)
{
stdOut

17−→ (E′ ++E)
}

Fig. 7. Proof rules for the new commands. Here, ~o = (o1, . . . , ok) are fresh variables.
Moreover, for some ρ > 0, b~xc(~y) , bx1c

ρ
↪−→ y1 ∗ . . . ∗ bxkc

ρ
↪−→ yk.

Judgments. Judgments that can be derived in our logic (notice the `R to dis-
tinguish our judgments from CSL judgments) are of the form

Γ `R {P} C {Q} ,

where Γ is a lock environment such that FL∈LocksΓ (L) describes the shared
state, P ∈ SL is the precondition evaluated in the local state, C is a command
and Q ∈ SL is the postcondition evaluated in the local state.

Fig. 7 shows the proof rules for the new commands Init, Next, and print(E).
Furthermore, our proof system inherits all proof rules from CSL (cf. Fig. 5 where
we tacitly replace ` by `R and exclude dedicated ghost locks in the rules (Lock)
and (With)). We briefly go over the rules for the new commands:

Initialization Blocks. The rule (Init) can be viewed as a stronger version of
the rule (Lock), which declares two locks at once—the ghost lock G with lock
invariant G and a second dedicated ghost lock I with an empty lock invariant.

The ghost lock G has already been used in our operational semantics; it gov-
erns access to the state of the abstract model ATS . The lock I is never acquired
but serves as a marker in our proof system to record that an initialization block
has been reached; we will explain why we need it in more detail further below.

(Init) is a stronger version of (Lock); in addition to declaring a lock, it
verifies that the abstract model’s state, i.e., the contents y1, . . . , yk of the ghost
addresses bx1c , . . . , bxkc, is a valid initial state in ATS , i.e., Init(y1, . . . , yk)
holds. By Assumption 1, we know that the ghost lock’s invariant G holds the
necessary permissions to access the contents of these ghost addresses.

Regarding the second ghost lock I, notice that the output stream, that is,
the observable content of stdOut, needs to be part of the program state before
initialization, since the ghost address stdOut cannot be allocated by the imple-
mentation itself. In Def. 5, we formalized the traces of an implementation in a
way such that the content of stdOut is ignored before initialization. The under-
lying rationale is that the implementation performs no observable action before
it is initialized and we know the state of the abstract model ATS . To guarantee
that there are indeed no modifications of observable state—in our case: there
are no print(E) calls—before initialization, we use the ghost lock I. It acts as a

20 A. Bílý et al.

token that is created upon initialization, stays in the lock environment, since it
is never acquired (in contrast to the ghost lock G), and needs to be part of the
lock environment Γ for all rules that modify observable state, such as (Print).

Next Blocks. The rule (Next) can be viewed as a specialized version of the rule
(With), applied to ghost lock G and wait condition true. However, it contains
an additional premise to ensure that executing Next {C } can be simulated by
taking a single transition of ATS . Since C is atomic, the postcondition Next(~o, ~y)
in the premise achieves this effect (where ~o and ~y capture the state of ATS be-
fore and after execution of Next {C }). For initialized commands, Assumption 1
guarantees that changes to the transition system’s state are possible only when
holding the lock G, i.e., inside of Next {C } blocks; outside of such blocks, ATS
will perform a stutter step for every step of the concrete implementation.

Print Statements. Finally, to understand the (Print) rule, we notice that print(E)
is—if we ignore atomicity—syntactic sugar for the command

C , x := [stdOut] ; [stdOut] := x ++E,

where x is a fresh variable that is not used anywhere else. Assuming that
print(E) and C are identical, the rule (Print) can then be derived using the
standard rules in Fig. 5 (in sequential separation logic, i.e., for Γ = ∅).

4.4 Soundness

Intuitively, soundness means that deriving Γ `R {P} C {Q} implies that, for
every execution of C that starts in a configuration with a local state given by P
and a shared state given by Γ , the trace of the execution is also a trace of the
abstract model ATS . We now formalize and prove the above soundness claim for
our refinement logic. We build upon Vafeiadis’ [35] existing soundness proof for
CSL (cf. Sec. 3). Hence, we first restate the main ingredients for proving CSL
sound, where we slightly generalize to simplify their re-use.

Let succ(c, c′) be a predicate over two program configurations; we will use
succ(c, c′) only if there is a transition c → c′. Soundness of CSL as well as our
refinement logic is based on the following notion of configuration safety:

Definition 6 (Generalized Configuration Safety). The n-step safety pred-
icate safenJ succ K (C, s, h, Γ,Q) is recursively defined as follows:

– safe0J succ K (C, s, h, Γ,Q) holds always.
– safen+1J succ K (C, s, h, Γ,Q) holds if and only if

1. accesses(C, s) ⊆ dom (h);
2. for all hF, if def (h⊕ hF), then (C, s, h⊕ h) 6→ abort;
3. if C = skip, then s, h |= Q;
4. for all C ′, s′, hF, hS, h′, if s, hS |= FL∈locked(C′)\locked(C)Γ (L)

and (C, s, h⊕hS⊕hF)→ (C ′, s′, h′), then there exist h′′ and h′S such that
(a) h′ = h′′ ⊕ h′S ⊕ hF;

Flexible Refinement Proofs in Separation Logic 21

(b) s′, h′S |= FL∈locked(C)\locked(C′)Γ (L);
(c) succ(C, s, h⊕ hS ⊕ hF, C

′, s′, h′) holds; and
(d) safenJ succ K (C ′, s′, h′′, Γ,Q) holds. 4

Intuitively, safenJ succ K (C, s, h, Γ,Q)means that every configuration c with com-
mand C, local state h and shared state hS given by Γ , and, optionally, additional
global state hF, is safe w.r.t. lock environment Γ and postcondition Q for n ≥ 0
steps; that is, every configuration c′ reached from c via one transition (1) has no
data race, (2) does not abort execution, (3) satisfies postcondition Q if execution
terminated, (4 a,b) respects the lock invariants in Γ , (4 c) if we reached c′ via a
transition c′′ → c′, then succ(c′′, c′) holds, and (4 d) is itself safe for n− 1 steps.

Definition 7 (Valid CSL Triples). We write Γ |= {P}C {Q} (read: the triple
{P}C {Q} is valid given lock environment Γ) if and only if

∀n, s, h : s, h |= P implies safenJ true K (C, s, h, Γ,Q) .

Vafeiadis [35] used the above notions of configuration safety and validity to prove
that every CSL judgment that can be derived using the rules in Fig. 5 yields a
valid triple; the original soundness proof for CSL is due to Brookes [4]. Formally:

Theorem 1 (Soundness of CSL). If Γ ` {P} C {Q}, then Γ |= {P}C {Q}.

Compared to CSL, our refinement logic introduces one rule for each of the new
commands Init {C }, Next {C }, and print(E) (see Fig. 7). If we only consider
configuration safety as in CSL, then, as discussed in Sec. 4.3, each of these rules
is either a special case of the existing rules ((Print)) or a variant of an existing
rule with an even stronger precondition ((Init), (Next)). Hence, the soundness
of CSL carries over to our logic (recall that `R indicates refinement judgments):

Lemma 1. If Γ `R {P} C {Q}, then Γ |= {P}C {Q}.

App. C provides further details. To formalize that the implementation refines
the abstract model ATS , we extend the above definition of configuration safety
such that, if the system is initialized, every concrete transition c → c′ taken is
simulated by a transition of ATS (or stutters). Moreover, if the system becomes
initialized after a step, we require that the encoded state of ATS is a valid initial
state.

Our formalization uses the state extraction function get_state from Def. 3
to refer to the abstract model’s state encoded in the heap. We then consider the
configuration safety predicate safenJ refsucc K (C, s, h, Γ,Q), where the predicate
refsucc((C, s, h), (C ′, s′, h′)) holds iff

(i) if init (C) holds, then |= Next(get_state(h), get_state(h′));
(ii) if init (C) does not hold and init (C ′) holds, then |= Init(get_state(h′)).

22 A. Bílý et al.

Definition 8 (Valid Refinement Triples).We write Γ |=R {P}C {Q} (read:
the triple {P}C {Q} is valid for refinement of ATS given Γ) if and only if

∀n, s, h : s, h |= P implies safenJ refsucc K (C, s, h, Γ,Q) .

As for CSL, our refinement logic is sound in the sense that formally derived
judgments yield valid triples:

Theorem 2. If Γ `R {P} C {Q}, then Γ |=R {P}C {Q}.

Proof (Sketch). The proof is by structural induction over the rules of our refine-
ment logic (found in Fig. 5 and Fig. 7). In each case, we show that the predicate
safen+1J refsucc K (C, s, h, Γ,Q) holds; we first invoke Lemma 1 such that only
two proof obligations remain for every possible step

c = (C, s, h⊕ hS ⊕ hF)→ (C ′, s′, h′′ ⊕ h′S ⊕ hF) = c′ (†)

considered in Def. 6.(4): (a) refsucc(c, c′) and (b) safenJ refsucc K (C ′, s′, h′′, Γ,Q).
There are three main cases: First, for axioms and (Next), we have C ′ = skip;
then (a) is immediate, since ¬init (C) and ¬init (C ′) hold; (b) follows from
Lemma 2 below. Second, for the (Init) rule, (a) is immediate by the rule’s
premise; (b) follows from Lemma 3 below. Third, and finally, for all other rules,
(a) and (b) follow directly from the induction hypothesis. Further details are
found in App. D. ut

Lemma 2. For all n, s, h, Γ,Q, if s, h |= Q, then safenJ refsucc K (skip, s, h, Γ,Q).

Lemma 3. If C contains no two different sub-commands C1 and C2 such that
locked(C1) ∩ locked(C2) 6= ∅ and FV(G) ∩Mod(C) = ∅, then

Γ,G : G `R {P} C {Q} implies Γ |=R {P ∗ G} lock G {C } {Q ∗ G} .

We will use validity in the proof of trace inclusion. Furthermore, we need to
define the initial configurations that determine the traces of the concrete imple-
mentation. We consider those traces of the concrete implementation that start in
a (global) state that at least covers the local state specified by the precondition
P and the shared state described by the lock invariants in Γ .

Definition 9 (Initial Configurations). For a command C, an assertion P ,
and a lock environment Γ , the set I(C,P, Γ) of initial configurations is

I(C,P, Γ) , {(C, s, h⊕ hS ⊕ hF) | def (h⊕ hS ⊕ hF) and s, h |= P

and s, hS |= FL∈Locks\locked(C)Γ (L)} .

To guarantee trace inclusion, we exclude commands that suddenly become “unini-
tialized” because the Init {C } block expires but execution continues, e.g.,
Init {C ′ } ; bx2c := 17 ; Init{C ′′ }. Such ill-formed commands can easily
be detected by a syntactic check. More precisely, we call a command C con-
tinuously initialized if there exist commands C1, C2 such that C1 contains no
sub-command of the form Init { . . . } and C = (C1 ; Init {C2 }).

Flexible Refinement Proofs in Separation Logic 23

Table 2. Case studies used for evaluation. Data ref. indicates whether there is inter-
esting data refinement between the abstract model and the implementation. Threads
indicates the number of nodes or worker threads in the implementation, where a ∗
means the threads are spawned dynamically after the model was already initialized.
Sync. indicates the kind of synchronization primitive used, if any. Idiom indicates
the reasoning used on top of our methodology. SLOC indicates standard lines of code
including annotations. Time indicates verification time in seconds, measured as an
average of the wall-clock runtime over 10 runs using Viper’s symbolic execution verifi-
cation backend on an Intel Core i9-10885H 2.40GHz CPU with 16 GiB of RAM.

Example Data ref. Threads Sync. Idiom SLOC Time
alternating — 2 Lock Owicki-Gries 118 3.78
barrier — N Barrier Guards 383 6.88
cons_producer — 2 Lock Guards 213 4.15
echo_server — 1 — — 69 3.39
ring_leader — N — — 279 7.74
trees_product X N∗ — — 192 3.48
trees_record X N∗ — Rely-guarantee 268 4.45

Theorem 3 (Soundness). For every continuously-initialized command C,

Γ `R {P} C {Q} implies Traces(I(C,P, Γ)) ⊆ Traces(ATS) .

A detailed proof is found in App. E.

5 Evaluation

To evaluate our verification technique, we verified seven case studies using the
separation logic-based automated verifier Viper [23]. All of our examples verify
using Viper’s existing verification backends, demonstrating that our methodol-
ogy is supported by readily available verification tools. We will make our case
studies available as an artifact. The examples show the flexibility of our proofs
in the four dimensions mentioned in Sec. 1 and are summarized in Tab. 2. We
briefly describe each of the examples in the following.

alternating demonstrates how multiple threads can collaborate to achieve
the overall behavior of an abstract system. This example is described in Sec. 2.

barrier is an adaptation of the barrier example from Armada [22], originally
from Cohen and Schirmer [7]. In this example, multiple threads are started and
must pass a barrier before exiting. A guarded transition system is used to ensure
that each thread can only perform transitions related to its own state.

cons_producer is an example with a consumer-producer setup, in which one
thread adds values to a shared buffer and the other consumes them. We show
that at all points an invariant is maintained, namely the relationship between the
number of values produced, the number of values consumed, and the number of
values left in the shared buffer. echo_server demonstrates the use of I/O methods
to model both standard input and standard output.

24 A. Bílý et al.

ring_leader implements leader election in a ring, with a TLA+specification
adapted from the TLA+examples repository, based on Chang and Roberts [6].

trees_product and trees_record are both examples demonstrating data re-
finement: the abstract model uses a mathematical datatype to represent a tree of
values, whereas the implementation uses a heap-allocated array representation
of the tree. The trees_record example further demonstrates dynamic threading
to process the input tree in parallel, and a two-state monotonicity invariant.

Discussion. Our case studies demonstrate that our methodology is highly flexible
w.r.t. to the structure of both programs and proofs. In particular, they use local
and shared mutable state (including dynamic heap data structures), concurrency
with dynamic thread creation and synchronization via locks and barriers, as well
as three different reasoning idioms.

The evaluation also shows that our methodology enables automating refine-
ment proofs using an off-the-shelf verification tool. While we used Viper as a
concrete tool, no example relies on features that are genuinely Viper-specific,
which supports the claim that our approach is flexible w.r.t. to the underlying
logic. The verification time for each example is below 8s, which demonstrates
that our methodology is well-suited for SMT-based automation.

6 Related Work

In this section, we survey refinement techniques that combine abstract models
and executable code.

Various approaches [20,28,32,36] develop implementations that are correct
by construction by refining abstract models within Coq and then extracting ex-
ecutable OCaml programs. Similarly, Liu et al. [21] model distributed systems
in Maude’s rewriting logic and compile them into implementations running in
distributed Maude sessions. The code extracted by these approaches is typically
sub-optimal (for instance, does not use mutable data structures) and cannot in-
terface with existing libraries, which is often necessary in practice. In contrast,
our methodology uses bottom-up verification and can handle efficient implemen-
tations using concurrency and mutable state.

Trillium [34] is a refinement technique based on separation logic. Like our
methodology, it supports a wide range of program and data structures. Trillium is
based on Iris [13] and formalized in Coq, which enables foundational proofs at the
expense of substantial manual effort. Trillium inherits some of Iris’s limitations.
In particular, it is limited to finitary behaviors and, thus, does not support the
common case that abstract models choose a value non-deterministically from an
infinite set. Moreover, Trillium expresses coupling invariants via Iris’s invariants,
which complicates reasoning about system initialization, especially allocation.
Our methodology does not have these limitations. Trillium supports liveness
properties, which we do not handle yet.

Armada [22] supports the verification of concurrent, high-performance code
written in a C-like language. To achieve refinement against an abstract model,

Flexible Refinement Proofs in Separation Logic 25

the user specifies a sequence of steps to gradually transform the implementation
into the specification. Non-trivial refinement steps require complex Dafny [18]
proofs showing a connection between two state machines. Unlike Armada, our
methodology does not convert programs to state machines and the coupling
between the abstract model and the implementation can be much looser.

The CIVL verifier [11,16] also organizes the refinement proof into multiple
layers. Each layer is a structured concurrent program, where the concurrent be-
havior is reflected in the program structure. This structure simplifies the proof
obligations and allows automation, but also reduces program flexibility. Refine-
ment steps are based on a set of trusted tactics. By contrast, our methodology
imposes no restrictions on the program or proof structure.

Igloo [33] connects abstract models to concrete implementations via dedi-
cated I/O specifications [27]. Similarly to our work, they support a variety of
separation logics to reason about concrete implementations. However, their tech-
nique does not allow threads to perform I/O operations concurrently, whereas
our methodology has no such limitation.

Similar to our methodology, IronFleet [10] embeds abstract models as ghost
state into executable programs and automates verification using an SMT-based
verifier, in their case Dafny. However, their refinement technique imposes severe
restrictions on the executable program. It must be sequential and its structure
must mirror the structure of the abstract model. IronFleet supports both safety
and liveness properties, whereas our approach focuses on safety properties and
leaves liveness as future work.

The refinement technique [15] used in DeepSpec [2] is based on the Verified
Software Toolchain (VST) [5], a framework for verifying C programs via a sep-
aration logic embedded in Coq. Instead of transition systems, they specify the
intended system behavior using interaction trees [37], which are embedded into
VST’s separation logic. In contrast, our methodology allows us to apply standard
separation logics and existing program verifiers.

Oortwijn and Huisman [25] embed process calculus models into a concurrent
SL, which is automated using Viper. Their refinement approach preserves state
assertions, but it is unclear whether arbitrary trace properties are preserved.

7 Conclusion

We have introduced a methodology for refinement proofs in separation logic
that is flexible in terms of the type of abstract model used, the structure of
the concrete implementation, the underlying logic and tool chain, as well as the
structure of the proofs themselves. We have formalized the methodology on top
of concurrent separation logic and demonstrated its applicability on several case
studies using the automated verifier Viper. As future work, we plan to extend
our methodology to liveness properties.

26 A. Bílý et al.

References

1. Abrial, J.: Modeling in Event-B - System and Software Engineering. Cambridge
University Press (2010)

2. Appel, A.W., Beringer, L., Chlipala, A., Pierce, B.C., Shao, Z., Weirich, S.,
Zdancewic, S.: Position paper: the science of deep specification. Philosophical
Transactions of the Royal Society A 375 (Oct 2017)

3. Boyland, J.: Checking interference with fractional permissions. In: Cousot, R. (ed.)
Static Analysis (SAS). pp. 55–72 (2003)

4. Brookes, S.: A semantics for concurrent separation logic. Theor. Comput. Sci.
375(1-3), 227–270 (2007)

5. Cao, Q., Beringer, L., Gruetter, S., Dodds, J., Appel, A.W.: VST-Floyd: A separa-
tion logic tool to verify correctness of C programs. J. Autom. Reasoning 61(1-4),
367–422 (2018)

6. Chang, E., Roberts, R.: An improved algorithm for decentralized extrema-finding
in circular configurations of processes. Communications of the ACM 22(5), 281–283
(1979)

7. Cohen, E., Schirmer, B.: From total store order to sequential consistency: A practi-
cal reduction theorem. In: Kaufmann, M., Paulson, L.C. (eds.) Interactive Theorem
Proving. pp. 403–418. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

8. Coq Development Team, T.: The Coq Reference Manual, version 8.10 (2019), avail-
able electronically at http://coq.inria.fr/documentation

9. Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M.J., Vafeiadis, V.: Con-
current abstract predicates. In: D’Hondt, T. (ed.) European Conference on Object-
Oriented Programming (ECOOP). Lecture Notes in Computer Science, vol. 6183,
pp. 504–528. Springer (2010)

10. Hawblitzel, C., Howell, J., Kapritsos, M., Lorch, J.R., Parno, B., Roberts, M.L.,
Setty, S.T.V., Zill, B.: IronFleet: proving practical distributed systems correct. In:
Miller, E.L., Hand, S. (eds.) Symposium on Operating Systems Principles (SOSP).
pp. 1–17. ACM (2015)

11. Hawblitzel, C., Petrank, E., Qadeer, S., Tasiran, S.: Automated and modular refine-
ment reasoning for concurrent programs. In: International Conference on Computer
Aided Verification. pp. 449–465. Springer (2015)

12. Jones, C.B.: Developing methods for computer programs including a notion of
interference. Ph.D. thesis, University of Oxford, UK (1981), http://ethos.bl.uk/
OrderDetails.do?uin=uk.bl.ethos.259064

13. Jung, R., Krebbers, R., Jourdan, J.H., Bizjak, A., Birkedal, L., Dreyer, D.: Iris
from the ground up: A modular foundation for higher-order concurrent separation
logic. Journal of Functional Programming (2018)

14. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elka-
duwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Win-
wood, S.: sel4: formal verification of an OS kernel. In: Matthews, J.N., Anderson,
T.E. (eds.) Symposium on Operating Systems Principles (SOSP). pp. 207–220.
ACM (2009)

15. Koh, N., Li, Y., Li, Y., Xia, L., Beringer, L., Honoré, W., Mansky, W., Pierce,
B.C., Zdancewic, S.: From C to interaction trees: specifying, verifying, and testing
a networked server. In: Mahboubi, A., Myreen, M.O. (eds.) Certified Programs and
Proofs (CPP). pp. 234–248. ACM (2019)

16. Kragl, B., Qadeer, S., Henzinger, T.A.: Refinement for structured concurrent pro-
grams. In: Lahiri, S.K., Wang, C. (eds.) Computer Aided Verification (CAV). Lec-
ture Notes in Computer Science, vol. 12224, pp. 275–298. Springer (2020)

http://coq.inria.fr/documentation
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.259064
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.259064

Flexible Refinement Proofs in Separation Logic 27

17. Lamport, L.: Specifying Systems, The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley (2002)

18. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness. In:
Clarke, E.M., Voronkov, A. (eds.) Logic for Programming, Artificial Intelligence,
and Reasoning (LPAR). Lecture Notes in Computer Science, vol. 6355, pp. 348–
370. Springer (2010)

19. Leroy, X.: Formal certification of a compiler back-end or: programming a com-
piler with a proof assistant. In: Morrisett, J.G., Jones, S.L.P. (eds.) Principles of
Programming Languages (POPL). pp. 42–54. ACM (2006)

20. Lesani, M., Bell, C.J., Chlipala, A.: Chapar: certified causally consistent distributed
key-value stores. In: Bodík, R., Majumdar, R. (eds.) Principles of Programming
Languages (POPL). pp. 357–370. ACM (2016)

21. Liu, S., Sandur, A., Meseguer, J., Ölveczky, P.C., Wang, Q.: Generating correct-by-
construction distributed implementations from formal maude designs. In: Lee, R.,
Jha, S., Mavridou, A. (eds.) NASA Formal Methods. Lecture Notes in Computer
Science, vol. 12229, pp. 22–40. Springer (2020)

22. Lorch, J.R., Chen, Y., Kapritsos, M., Parno, B., Qadeer, S., Sharma, U., Wilcox,
J.R., Zhao, X.: Armada: low-effort verification of high-performance concurrent pro-
grams. In: Donaldson, A.F., Torlak, E. (eds.) Programming Language Design and
Implementation (PLDI). pp. 197–210. ACM (2020)

23. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: A verification infrastructure for
permission-based reasoning. In: Jobstmann, B., Leino, K.R.M. (eds.) Verification,
Model Checking, and Abstract Interpretation (VMCAI). LNCS, vol. 9583, pp. 41–
62. Springer (2016)

24. O’Hearn, P.W.: Resources, concurrency and local reasoning. In: Gardner, P.,
Yoshida, N. (eds.) Concurrency Theory (CONCUR). Lecture Notes in Computer
Science, vol. 3170, pp. 49–67. Springer (2004)

25. Oortwijn, W., Huisman, M.: Practical abstractions for automated verification of
message passing concurrency. In: Ahrendt, W., Tarifa, S.L.T. (eds.) Integrated
Formal Methods (iFM). Lecture Notes in Computer Science, vol. 11918, pp. 399–
417. Springer (2019)

26. Owicki, S.S., Gries, D.: Verifying properties of parallel programs:
An axiomatic approach. Commun. ACM 19(5), 279–285 (1976).
https://doi.org/10.1145/360051.360224, https://doi.org/10.1145/360051.360224

27. Penninckx, W., Jacobs, B., Piessens, F.: Sound, modular and compositional verifi-
cation of the input/output behavior of programs. In: Vitek, J. (ed.) European Sym-
posium on Programming (ESOP). Lecture Notes in Computer Science, vol. 9032,
pp. 158–182. Springer (2015)

28. Rahli, V., Vukotic, I., Völp, M., Veríssimo, P.J.E.: Velisarios: Byzantine fault-
tolerant protocols powered by coq. In: Ahmed, A. (ed.) European Symposium on
Programming (ESOP). Lecture Notes in Computer Science, vol. 10801, pp. 619–
650. Springer (2018)

29. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. pp.
55–74 (2002)

30. da Rocha Pinto, P., Dinsdale-Young, T., Gardner, P.: TaDA: A logic for time
and data abstraction. In: European Conference on Object-Oriented Programming
(ECOOP). Lecture Notes in Computer Science, vol. 8586, pp. 207–231. Springer
(2014)

31. Sergey, I., Nanevski, A., Banerjee, A.: Mechanized verification of fine-grained con-
current programs. In: Grove, D., Blackburn, S.M. (eds.) Programming Language
Design and Implementation (PLDI). pp. 77–87. ACM (2015)

https://doi.org/10.1145/360051.360224
https://doi.org/10.1145/360051.360224

28 A. Bílý et al.

32. Sergey, I., Wilcox, J.R., Tatlock, Z.: Programming and proving with distributed
protocols. PACMPL 2(POPL), 28:1–28:30 (2018)

33. Sprenger, C., Klenze, T., Eilers, M., Wolf, F.A., Müller, P., Clochard, M., Basin, D.:
Igloo: Soundly linking compositional refinement and separation logic for distributed
system verification. In: Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA). vol. 4. ACM (2020)

34. Timany, A., Gregersen, S.O., Stefanesco, L., Gondelman, L., Nieto, A., Birkedal,
L.: Trillium: Unifying refinement and higher-order distributed separation logic.
CoRR abs/2109.07863 (2021)

35. Vafeiadis, V.: Concurrent separation logic and operational semantics. In: MFPS.
Electronic Notes in Theoretical Computer Science, vol. 276, pp. 335–351. Elsevier
(2011)

36. Woos, D., Wilcox, J.R., Anton, S., Tatlock, Z., Ernst, M.D., Anderson, T.E.: Plan-
ning for change in a formal verification of the Raft consensus protocol. In: Avigad,
J., Chlipala, A. (eds.) Certified Programs and Proofs (CPP). pp. 154–165 (2016)

37. Xia, L., Zakowski, Y., He, P., Hur, C., Malecha, G., Pierce, B.C., Zdancewic, S.:
Interaction trees: representing recursive and impure programs in coq. Proc. ACM
Program. Lang. 4(POPL), 51:1–51:32 (2020)

Flexible Refinement Proofs in Separation Logic 29

Table 3. Notational conventions and metavariables used throughout the paper.

Entities Metavariables Domain Defined

Commands C Cmds Sec. 3.1
Variables x, y, z, . . . Vars Sec. 3.1
Expressions E Stacks→ Vals Sec. 3.3
Locks L, R Locks Sec. 3.1
Values v Vals Sec. 3.2
Stacks s Stacks Sec. 3.2
Heaps h Heaps Sec. 3.4
Normal heaps h NormHeaps Sec. 3.2
Addresses a Addrs Sec. 3.2
Configurations c Confs Sec. 3.3
Assertions P,Q,R, . . . SL Sec. 3.4
Lock environments Γ Sec. 3.5
Ghost addresses stdOut, bx1c , . . . , bxkc GhostAddrs Sec. 4.1
Ghost lock with invariant G : G Sec. 4.1

A Quick Reference

As a quick reference, Tab. 3 summarizes the notational conventions that have
been introduced in Sec. 3 (above the line) and Sec. 4 (below the line).

B Lemmas from CSL

We will use the following lemmas taken from [35]:

Lemma 4. For all n, s, h, Γ,Q, if s, h |= Q, then safenJ true K (skip, s, h, Γ,Q).

Lemma 5. If ∀n : safenJ true K (C, s, h, Γ,Q) and def (h⊕ hF) and

C, s, h⊕ hF →∗ skip, s′, h′,

then there exists h′′ such that h′ = h′′ ⊕ hF and s′, h′′ |= Q.

C Proof of Lemma 1

Claim. If Γ `R {P} C {Q}, then Γ |= {P}C {Q}.

Proof. By Def. 7, it suffices to show that

Γ `R {P} C {Q} implies (1)
∀n, s, h : s, h |= P implies safenJ true K (C, s, h, Γ,Q) .

30 A. Bílý et al.

Since safe0J true K (C, s, h, Γ,Q) holds always by Def. 6, it suffices to prove that
safen+1J true K (C, s, h, Γ,Q) holds for an arbitrary, but fixed n ∈ N.

By structural induction over the rules for of our refinement logic for deriving
judgments Γ `R {P} C {Q} (found in Fig. 5 and Fig. 7).

We present the case (Print) in detail further below. As discussed in Sec. 4.3,
the rule (Init) is a variant of the CSL rule (Lock) with a stronger precondition,
and the rule (Next) is a special case of the CSL rule (With); we thus omit
detailed proofs. since all other rules are identical to the CSL proof rules; their
proof is thus completely analogous to the proof of Thm. 1.

The case (Print). Recall the rule

(Print)
Γ, I : emp `R

{
stdOut

17−→ E′
}

print(E)
{
stdOut

17−→ (E′ ++E)
}

and assume

s, h |= stdOut
17−→ E′. (2)

Consequently,

h =
{
stdOut

17−→ E′(s)
}
. (3)

We discharge all items in Def. 6 to show that

safen+1J true K
(
print(E), s, h, Γ, I : emp, stdOut 17−→ (E′ ++E)

)
. (4)

For Def. 6.1, consider the following:

accesses(print(E), s) = { stdOut } (5)
= dom (h) (by (3))

Def. 6.2 is immediate by (3) and the rules of our operational semantics. Def. 6.3
is trivial. For Def. 6.4, assume C ′, s′, hF, hS, h′ such that

s, hS |= FL∈locked(C′)\locked(C)Γ (L) (6)
and

(print(E), s, h⊕ hS ⊕ hF)→ (C ′, s′, h′) (7)

By our operational semantics and (3), there is only one transition as above. For
this transition, we have

C ′ = skip, and hS = emp, and (8)

h′ =
{
stdOut

17−→ E′(s) ++E(s)
}
⊕ hF (9)

Hence, for h′′ = h′ and h′S = emp, Def. 6.(a)-(c) hold immediately. Def. 6.(d)
holds by Lemma 4. ut

Flexible Refinement Proofs in Separation Logic 31

D Missing lemmas for the proof of Thm. 2

D.1 Proof of Lemma 2

Claim. For all n, s, h, Γ,Q, if s, h |= Q, then safenJ refsucc K (skip, s, h, Γ,Q).

Proof. By definition, safe0J refsucc K (skip, s, h, Γ,Q) holds always. Assume

s, h |= Q. (10)

By Lemma 4, we know that

safen+1J true K (skip, s, h, Γ,Q) . (11)

Then safen+1J refsucc K (skip, s, h, Γ,Q) holds as well, because Def. 6.(1-3) holds
by (11). Furthermore, since our operational semantics does not admit any tran-
sition starting with command skip, Def. 6.4 holds vacuously. ut

D.2 Proof of Lemma 3

Claim. If C contains no two different sub-commands C1 and C2 such that
locked(C1) ∩ locked(C2) 6= ∅ and FV(G) ∩Mod(C) = ∅,

Γ,G : G `R {P} C {Q} implies Γ |=R {P ∗ G} lock G {C } {Q ∗ G} .

Proof (Sketch). By structural induction on the rules of our refinement logic we
show that Γ,G : G `R {P} C {Q} and s, h ∗ G |= P implies

∀n ∈ N : safenJ refsucc K (lock G {C }, s, h, Γ,Q ∗ G) . (12)

We present the case for the (Next) in detail as it is the only rule, where the
predicate refsucc is not immediately discharged by either applying the induction
hypothesis or performing a stutter step.

The remaining cases are very similar to Vafeiadis [35] soundness proof for
CSL (and in particular require an additional complete induction on n for some
cases, such as parallel composition).

The case (Next). Recall from Fig. 7 the rule

(Next)

atomic (C)

Γ `R {(b~xc(~o) ∧G) ∗ P} C

∃~y . b~xc(~y) ∧Next(~o, ~y) ∧G) ∗ Q)︸ ︷︷ ︸
R

Γ,G : G `R {P} Next {C } {Q}

and assume that

s, h |= P ∗ G. (13)

We then need to show that, for all n ∈ N,

safenJ refsucc K (lock G { Next {C } }, s, h, Γ,Q ∗ G) . (14)

The case n = 0 always holds by Def. 6. For n > 0, we discharge Def. 6.(1)-(4):

32 A. Bílý et al.

– Def. 6.(1) is immediate, since accesses(lock G { Next {C } }, s) = ∅;
– Def. 6.(2) is immediate, by Lemma 1 and the rules of our operational seman-

tics;
– Def. 6.(3) is trivial; and
– for Def. 6.(4) assume C ′, s′, hF, hS, h′ such that

s, hS |= FL∈locked(C′)\locked(C)Γ (L) (15)
and
(C, s, h⊕ hS ⊕ hF)→ (C ′, s′, h′). (16)

Our operational semantics has exactly one rule that admits such a transition,
namely the one with premise C, s, h ⊕ hS ⊕ hF →∗ skip, s′, h′. Now, by the
(Next) rule’s premise and Thm. 1, we have

∀m : safemJ true K (C, s, h, Γ,R) . (17)

Hence, by Lemma 5, there exist h′′ such that

h′ = h′′ ⊕ (hS ⊕ hF) and (18)
s′, h′′ |= R. (19)

Then Def. 6.(4a) holds for h′′ as above and h′S = h∅; Def. 6.(4b) holds, since
locked(lock G { Next {C } }lock G { Next {C } }) = locked(lock G { skip });
Def. 6.(4c) follows from (13) and s′, (h′′ ⊕ (hS ⊕ hF)) |= R, where R is the
(Next) rule’s postcondition; and Def. 6.(dc) holds by Lemma 2.

ut

E Proof of Thm. 3

Claim. For every continuously initialized command C,

Γ `R {P} C {Q} implies Traces(I(C,P, Γ)) ⊆ Traces(ATS) .

Proof. By Thm. 2, we have

Γ |=R {P}C {Q} (20)

Moreover, since init (C) holds iff G ∈ LocksC and there is no proof rule for
(sub-)commands of the form lock G . . ., we have

¬init (C) (21)

Now, assume that

c1 = (C1, s1, h1) ∈ I(C1, P, Γ) (22)

and, for some arbitrary, but fixed, n ∈ N,

c1 → c2 → . . . → cn . (23)

Flexible Refinement Proofs in Separation Logic 33

By (20), (22), Def. 9, and Def. 8 we have

safen+2J refsucc K (C, s, h, Γ,Q) . (24)

By Def. 6.(2) and (22), we can safely assume that

∀i ∈ { 1, . . . , n } : ci = (Ci, si, hi) . (25)

We distinguish two cases: First, assume there exists an m′ ∈ { 1, . . . , n } such
that init (Cm′); let m be the minimal such index m′. By (21), we know that
m ≥ 2. Hence, by Lemma 6 below,

get_state(hm) . . . get_state(hn) ∈ Paths(ATS) (26)

Now, if Cn = skip, then we have:

Traces(I(C1, P, Γ))
3 obs(c1) . . . obs(cn)
= obs(c1) . . . obs(cm−1)︸ ︷︷ ︸

= []

obs(cm) . . . obs(cn−1) obs(cn)︸ ︷︷ ︸
= []

(Def. of obs(.), ¬init (skip))
= obs(cm) . . . obs(cn−1) (Def. of obs(.); m is minimal by assumption)
= get_state(hm) . . . get_state(hn−1) (Def. of obs(.))
∈ Paths(ATS). (by (26))

Conversely, if Cn 6= skip, then we have:

Traces(I(C1, P, Γ))
3 obs(c1) . . . obs(cn)
= obs(c1) . . . obs(cm−1)︸ ︷︷ ︸

= []

obs(cm) . . . obs(cn−1)obs(cn)

= obs(cm) . . . obs(cn−1)obs(cn) (Def. of obs(.); m is minimal by assumption)
= get_state(hm) . . . get_state(hn) (Def. of obs(.))
∈ Paths(ATS). (by (26))

Second, assume there for all m′ ∈ { 1, . . . , n }, we have ¬init (Cm′). Then, by
Def. of obs(.), we have

Traces(I(C1, P, Γ)) 3 obs(c1) . . . obs(cn) = [] ∈ Paths(ATS). (27)

Lemma 6. For all 2 ≤ m ≤ n and all (C1, s1, h1), . . . , (Cn, sn, hn), if

(i) C1 is continuously initialized and
(ii) |=R {P}C1 {Q} and
(iii) (C1, s1, h1) ∈ I(C,P, Γ) and
(iv) C1, s1, h1 → . . . → Cn, sn, hn and
(v) init (Cm) and, for all j < m, not init (Cj),

then get_state(hm) . . . get_state(hn) ∈ Paths(ATS).
Proof. By induction on n.

34 A. Bílý et al.

Induction base. Assume (i)-(v) hold for n = m = 2. By (iii), there exist heaps
h, hS such that

h1 = h⊕ hS (28)
s1, h = P (29)
s1, hS |= FL∈Locks\locked(C1)Γ (L) (30)

(31)

Hence, by (ii),

safe3J refsucc K (C1, s1, h, Γ,Q) . (32)

Now, consider the transition

C1, s1, h⊕ hS ⊕ h∅ → . . . → C2, s2, h2 (33)

which exists by (iv). By (v), we have init (C1) does not hold and init (C2) holds.
Hence, by Def. 6.(4c) and definition of refsucc,

|= Init(get_state(h2)) (34)

and thus also get_state(h2) ∈ Paths(ATS).

Induction hypothesis. For an arbitrary, but fixed, n ≥ 2, assume that (i)-(v)
imply get_state(hm) . . . get_state(hn) ∈ Paths(ATS).

Induction step. Assume that (i)-(v) hold for some 2 ≤ m ≤ n+ 1, where n ≥ 2.
The casem = n+1 is analogous to the induction base. Hence, assumem < n+1.
By (iii), there exist heaps h, hS such that

h1 = h⊕ hS (35)
s1, h = P (36)
s1, hS |= FL∈Locks\locked(C1)Γ (L) (37)

(38)

Hence, by (ii),

safen+3J refsucc K (C1, s1, h, Γ,Q) . (39)

By repeated unfolding the above predicate, we know that there exist h′ and h′S
such that

hn = h′ ⊕ h′S (40)
safe2J refsucc K (Cn, sn, h′, Γ,Q) (41)
s1, hS |= FL∈Locks\locked(Cn)Γ (L) (42)

(43)

Flexible Refinement Proofs in Separation Logic 35

Now, consider the transition below, which exists by (iv).

Cn, sn, h
′ ⊕ h′S ⊕ h∅ → . . . → Cn+1, sn+1, hn+1 (44)

Since m < n + 1, (i) and (v) yield that init (Cn) holds. By Def. 6.(4c) and
definition of refsucc, this means

|= Next(get_state(hn), get_state(hn+1)) (45)

By I.H., we also know that

get_state(hm) . . . get_state(hn) ∈ Paths(ATS) (46)

Hence,

get_state(hm) . . . get_state(hn)get_state(hn+1) ∈ Paths(ATS), (47)

which finishes the proof. ut

	Flexible Refinement Proofs in Separation Logic

