Using Lightweight Formal Methods to Validate a
Key-Value Storage Node in Amazon S3

James Bornholt
Amazon Web Services
& The University of Texas at Austin

Brendan Cully

Amazon Web Services

Kyle Sauri

Amazon Web Services

Serdar Tasiran

Rajeev Joshi Vytautas Astrauskas
Amazon Web Services ETH Zurich
Bernhard Kragl Seth Markle
Amazon Web Services Amazon Web Services
Drew Schleit Grant Slatton
Amazon Web Services Amazon Web Services
Jacob Van Geffen Andrew Warfield

Amazon Web Services

Abstract

This paper reports our experience applying lightweight for-
mal methods to validate the correctness of ShardStore, a new
key-value storage node implementation for the Amazon S3
cloud object storage service. By “lightweight formal methods”
we mean a pragmatic approach to verifying the correctness
of a production storage node that is under ongoing feature
development by a full-time engineering team. We do not aim
to achieve full formal verification, but instead emphasize
automation, usability, and the ability to continually ensure
correctness as both software and its specification evolve over
time. Our approach decomposes correctness into indepen-
dent properties, each checked by the most appropriate tool,
and develops executable reference models as specifications
to be checked against the implementation. Our work has
prevented 16 issues from reaching production, including sub-
tle crash consistency and concurrency problems, and has
been extended by non-formal-methods experts to check new
features and properties as ShardStore has evolved.

CCS Concepts: « Software and its engineering — Soft-
ware verification and validation.

Keywords: cloud storage, lightweight formal methods

ACM Reference Format:

James Bornholt, Rajeev Joshi, Vytautas Astrauskas, Brendan Cully,
Bernhard Kragl, Seth Markle, Kyle Sauri, Drew Schleit, Grant Slat-
ton, Serdar Tasiran, Jacob Van Geffen, and Andrew Warfield. 2021.

@080

This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs International 4.0 License.

SOSP °21, October 26-28, 2021, Virtual Event, Germany
© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8709-5/21/10.
https://doi.org/10.1145/3477132.3483540

University of Washington

Amazon Web Services

Using Lightweight Formal Methods to Validate a Key-Value Storage
Node in Amazon S3. In ACM SIGOPS 28th Symposium on Operating
Systems Principles (SOSP °21), October 26—28, 2021, Virtual Event,
Germany. ACM, New York, NY, USA, 15 pages. https://doi.org/10.
1145/3477132.3483540

1 Introduction

Amazon S3 is a cloud object storage service that offers cus-
tomers elastic storage with extremely high durability and
availability. At the core of S3 are storage node servers that
persist object data on hard disks. These storage nodes are
key-value stores that hold shards of object data, replicated
by the control plane across multiple nodes for durability. S3
is building a new key-value storage node called ShardStore
that is being gradually deployed within our current service.
Production storage systems such as ShardStore are notori-
ously difficult to get right [25]. To achieve high performance,
ShardStore combines a soft-updates crash consistency proto-
col [16], extensive concurrency, append-only IO and garbage
collection to support diverse storage media, and other com-
plicating factors. Its current implementation reflects that
complexity, comprising over 40,000 lines of Rust code. The
implementation is fast moving and frequently changing, and
even the specification is not set in stone. It is developed and
operated by a team of engineers whose changes are continu-
ously deployed worldwide, and currently stores hundreds of
petabytes of customer data as part of a gradual rollout.
This paper reports our experiences applying lightweight
formal methods [24] such as property-based testing and state-
less model checking to validate ShardStore’s correctness. We
sought lightweight methods that were automated and usable
by non-formal-methods experts to validate new features
on their own; our goal was to mainstream formal methods
into our daily engineering practice. We sought formal meth-
ods because we wanted to validate deep properties of the
implementation—functional correctness of API-level calls,
crash consistency of on-disk data structures, and concurrent

https://doi.org/10.1145/3477132.3483540
https://doi.org/10.1145/3477132.3483540
https://doi.org/10.1145/3477132.3483540
https://creativecommons.org/licenses/by-nc-nd/4.0/

SOSP 21, October 26-28, 2021, Virtual Event, Germany

correctness of API calls and background maintenance tasks—
not just general properties like memory safety. In return
for being lightweight and easy to apply, we were willing to
accept weaker correctness guarantees than full formal verifi-
cation, which is currently impractical for storage systems at
this scale and level of complexity. We were inspired by recent
efforts on verified storage systems [8, 18, 49] and hope that
our experience provides encouragement for future work.

We settled on an approach with three elements. First, we
distill specifications of desired behavior using executable
reference models that define the expected semantics of the
system. A reference model defines the allowed sequential,
crash-free behaviors of a component in the system. Reference
models are written in the same language as the implemen-
tation and embedded in its code base, allowing them to be
written and maintained by the engineering team rather than
languishing as separate expert-written artifacts. The refer-
ence models developed for ShardStore are small executable
specifications (1% of the implementation code) that empha-
size simplicity; for example, the reference model for a log-
structured merge tree [41] implementation is a hash map. We
also reuse these reference models as mock implementations
for ShardStore unit tests, effectively requiring engineers to
update the reference model specifications themselves when
developing new code.

Second, we validate that the ShardStore implementation
satisfies our desired correctness properties by checking that
it refines the reference model. To make the best use of avail-
able lightweight formal methods tools, we decompose these
properties and apply the most appropriate tool for each com-
ponent. For functional correctness, we apply property-based
testing [9] to check that the implementation and model agree
on random sequences of API operations. For crash consis-
tency, we augment the reference models to define the specific
recent mutations that soft updates allow to be lost during
a crash, and again apply property-based testing to check
conformance on histories that include arbitrary crashes. For
concurrency, we apply stateless model checking [5, 35] to
show that the implementation is linearizable [19] with re-
spect to the reference model. In all three cases the checkers
are highly automated and the infrastructure is compact (the
combined property definitions and test harnesses comprise
12% of the ShardStore code base). These checks have pre-
vented 16 issues from reaching production, including subtle
crash-consistency and concurrency issues that evaded tradi-
tional testing methods, and anecdotally have prevented more
issues from even reaching code review. These checks are also
“pay-as-you-go”, in the sense that we can run them for longer
to increase the chance of finding issues (like fuzzing), and
so they can be run both locally on an engineer’s machine
during development and at scale before deployments.

Third, we ensure that the results of this validation effort
remain relevant as the system evolves by training the en-
gineering team to develop their own reference models and

837

Bornholt et al.

checks. Formal methods experts wrote the initial validation
infrastructure for ShardStore, but today 18% of the total ref-
erence model and test harness code has been written by the
engineering team to check new features and properties, and
we expect this percentage to increase as we continue to adopt
formal methods across S3. We apply code coverage metrics
to monitor the quality of checks over time and ensure that
new functionality remains covered.
In summary, this paper makes three main contributions:

o A lightweight approach to specifying and validating a
production-scale storage system in the face of frequent
changes and new features.

e A decomposition of storage system correctness that
allows applying a diverse suite of formal methods tools
to best check each property.

e Our experience integrating lightweight formal meth-
ods into the practice of a production engineering team
and handing over the validation artifacts to be main-
tained by them rather than formal methods experts.

2 ShardStore

ShardStore is a key-value store currently being deployed
within the Amazon S3 cloud object storage service. This
section provides background on ShardStore’s design and its
crash consistency protocol.

Context. The ShardStore key-value store is used by S3 as a
storage node. Each storage node stores shards of customer
objects, which are replicated across multiple nodes for dura-
bility, and so storage nodes need not replicate their stored
data internally. ShardStore is API-compatible with our exist-
ing storage node software, and so requests can be served by
either ShardStore or our existing key-value stores.

2.1 Design Overview

ShardStore presents a key-value store interface to the rest of
the S3 system, where keys are shard identifiers and values
are shards of customer object data. Customer requests are
mapped to shard identifiers by S3’s metadata subsystem [53].

ShardStore’s key-value store comprises a log-structured
merge tree (LSM tree) [41] but with shard data stored out-
side the tree to reduce write amplification, similar to Wisc-
Key [31]. Figure 1 shows an overview of how this LSM tree
stores object data on disk. The LSM tree maps each shard
identifier to a list of (pointers to) chunks, each of which is
stored within an extent. Extents are contiguous regions of
physical storage on a disk; a typical disk has tens of thou-
sands of extents. ShardStore requires that writes within each
extent are sequential, tracked by a write pointer defining the
next valid write position, and so data on an extent cannot be
immediately overwritten. Each extent has a reset operation
to return the write pointer to the beginning of the extent
and allow overwrites.

Using Lightweight Formal Methods to Validate a Key-Value Storage Node in Amazon S3

LSM tree

shardID 0x13 | @

shardID 0x28 | @ @

shardID 0x75 ‘ (XX J

o=

extent 17

extent 18

extent 19 extent 20

(a) Initial state

LSM tree

shardID 0x1 |@

shardID 0x2 (@@

shardID 0x75 ‘0 (X J

_0n

extent 17

extent 19

extent 18 extent 20

(b) After reclamation of extent 18 and LSM-tree flush

Figure 1. ShardStore’s on-disk layout. Each extent offers
append-only writes. A log-structured merge tree (LSM tree)
maps shards to their data, stored as chunks on the extents.
The LSM tree itself is also stored as chunks on disk (on
extent 17). In (a), extent 18 has an unreferenced chunk left
by a deleted shard. To make that space available for reuse,
chunk reclamation evacuates live chunks from extent 18 to
elsewhere on disk, resulting in the state in (b).

Rather than centralizing all shard data in a single shared
log on disk, ShardStore spreads shard data across extents.
This approach gives us flexibility in placing each shard’s data
on disk to optimize for expected heat and access patterns
(e.g., to minimize seek latency). However, the lack of a single
log makes crash consistency more complex, as §2.2 describes.

Chunk storage and chunk reclamation. All persistent
data is stored in chunks, including the backing storage for the
LSM tree itself, as Fig. 1 shows. A chunk store abstraction ar-
ranges the mapping of chunks onto extents. The chunk store
offers PUT(data) — locator and GET(locator) — data in-
terfaces, where locators are opaque chunk identifiers and
used as pointers. A single shard comprises one or more
chunks depending on its size.

Because extents are append-only, deleting a shard cannot
immediately recover the free space occupied by that shard’s
chunks. For example, in Fig. 1a, extent 18 has a hole left
behind by a chunk whose corresponding shard has recently
been deleted. To recover and reuse free space, the chunk store
has a reclamation background task that performs garbage
collection. Reclamation selects an extent and scans it to find
all chunks it stores. For each chunk, reclamation performs a
reverse lookup in the index (the LSM tree); chunks that are
still referenced in the index are evacuated to a new extent
and their pointers updated in the index as Fig. 1b shows,

838

SOSP 21, October 26-28, 2021, Virtual Event, Germany

while unreferenced chunks are simply dropped. Once the
entire extent has been scanned, its write pointer is reset and
it is available for reuse. Resetting an extent’s write pointer
makes all data on that extent unreadable even if not yet
physically overwritten (ShardStore forbids reads beyond an
extent’s write pointer), and so the chunk store must enforce
a crash-consistent ordering for chunk evacuations, index
updates, and extent resets.

As noted above, the LSM tree itself is also stored as chunks
written to extents. Maintenance operations like LSM com-
paction can render these chunks unused. The free space
those chunks occupy is reclaimed in the same way as above,
except that the reverse lookup is into the LSM tree’s meta-
data structure (stored on disk in a reserved metadata extent)
that records locators of chunks currently in use by the tree.

RPC interface. ShardStore runs on storage hosts with mul-
tiple HDDs. Each disk is an isolated failure domain and runs
an independent key-value store. Clients interact with Shard-
Store through a shared RPC interface that steers requests to
target disks based on shard IDs. The RPC interface provides
the usual request-plane calls (put, get, delete) and control-
plane operations for migration and repair.

Append-only IO. To support both zoned and conventional
disks, ShardStore provides its own implementation of the
extent append operation in terms of the write system call.
It does this by tracking in memory a soft write pointer for
each extent, internally translating extent appends to write
system calls accordingly, and persisting the soft write pointer
for each extent in a superblock flushed on a regular cadence.

2.2 Crash Consistency

ShardStore uses a crash consistency approach inspired by
soft updates [16]. A soft updates implementation orches-
trates the order in which writes are sent to disk to ensure
that any crash state of the disk is consistent. Soft updates
avoid the cost of redirecting writes through a write-ahead log
and allow flexibility in physical placement of data on disk.
Correctly implementing soft updates requires global rea-
soning about all possible orderings of writebacks to disk. To re-
duce this complexity, ShardStore’s implementation specifies
crash-consistent orderings declaratively, using a Dependency
type to construct dependency graphs at run time that dictate
valid write orderings. ShardStore’s extent append operation,
which is the only way to write to disk, has the type signature:

fn append(&self, ..., dep: Dependency) -> Dependency

both taking as input and returning a dependency. The con-
tract for the append API is that the append will not be issued
to disk until the input dependency has been persisted. Shard-
Store’s 10 scheduler ensures that writebacks respect these
dependencies. The dependency returned from append can
be passed back into subsequent append operations, or first
combined with other dependencies (e.g., dep1.and(dep2))

SOSP 21, October 26-28, 2021, Virtual Event, Germany

PUT #1 PUT #2 -
- 12
LSM-tree Soft write
metadata pointer for
extent 9
extent 9 extent 0
e e

Index entry Index entry ol Index entry Soft write
pointer for
extent 12

extent 12 extent 12 extent 12 extent 0
v T
Shard data Shard data Soft write Shard data Soft write
chunk chunk pointer for chunk pointer for
extent 27 extent 4
extent 27 extent 27 extent 0 extent 4 extent 0
(a) Dependency graph
LSM tree
shardID
shardID []

shardID 0x3 | @

0x40 0x36 0x34
4) v

extent 4

0x44 0x60
f f

EM tree i

41 0x36 ||
9»0x34 |
12 0x44 |
27+ 060 |

LSM tree |

metadata_| data

extent 0 (superblock) extent 9 extent 12 extent 27

(b) On-disk layout

Figure 2. Dependency graph for three put operations (a)
and the corresponding on-disk data (b) after all three puts
persist successfully. Each put is only durable once both the
shard data and the index entry that points to it are durable.
Writing to each extent also requires updating the soft write
pointers stored in the superblock.

to construct more complex dependency graphs. Dependen-
cies also have an is_persistent operation that clients can
use to poll the persistence of an operation.

Example. Figure 2a shows dependency graphs for three put
operations to ShardStore, which after completion result in
the on-disk state in Fig. 2b. Each put’s graph follows the
same pattern involving three writes:

(a) the shard data is chunked and written to an extent.

(b) the index entry for the put is flushed in the LSM tree.

(c) the metadata for the LSM tree is updated to point to
the new on-disk index data.

In addition to these writes, every time ShardStore appends to
an extent it also updates the corresponding soft write pointer
in the superblock (extent 0).

The dependency graphs for these puts are constructed
dynamically at run time. The chunk store allocated the shard
data chunks for puts #1 and #2 to the same extent on disk, so
their writebacks can be coalesced into one IO by the sched-
uler, and thus their soft write pointer updates are combined
into the same superblock update. The shard data chunk for
put #3 is allocated to a different extent and so requires a
separate soft write pointer update. All three puts arrive close

839

Bornholt et al.

enough together in time to participate in the same LSM-tree
flush, which writes a new chunk of LSM tree data (on extent
12) and then updates the LSM tree metadata (on chunk 9) to
point to that new chunk.

Why be crash consistent? Amazon S3 is designed for eleven
nines of data durability, and replicates object data across mul-
tiple storage nodes, so single-node crash consistency issues
do not cause data loss. We instead see crash consistency as
reducing the cost and operational impact of storage node
failures. Recovering from a crash that loses an entire storage
node’s data creates large amounts of repair network traffic
and IO load across the storage node fleet. Crash consistency
also ensures that the storage node recovers to a safe state
after a crash, and so does not exhibit unexpected behavior
that may require manual operator intervention.

3 Validating a Storage System

A production storage system combines several difficult-to-
implement complexities [25]: intricate on-disk data struc-
tures, concurrent accesses and mutations to them, and the
need to maintain consistency across crashes. The scale of a
realistic implementation mirrors this complexity: ShardStore
is over 40,000 lines of code and changes frequently.

Facing these challenges early in ShardStore’s design pro-
cess, we took inspiration from recent successes in storage
system verification [8, 18, 49] and resolved to apply formal
methods to increase our confidence. We chose formal meth-
ods because they would allow us to validate deep properties
of ShardStore’s implementation that are difficult to test with
off-the-shelf tools at S3’s scale and complexity—functional
correctness of API-level calls, crash consistency of on-disk
data structures, and correctness of concurrent executions
including API calls and maintenance tasks like garbage col-
lection. Given the complexity of the system and the rapid rate
of change, we needed our results to outlast the involvement
of formal methods experts, and so we sought a lightweight
approach that could be automated and developed by the
engineering team itself.

This section gives an overview of our approach to vali-
dating ShardStore, including the properties we focused on
and how we distilled reference model specifications to check
against the implementation. §4-7 detail how we check that
the implementation conforms to these specifications. §8 sum-
marizes our experiences with this approach, which has pre-
vented subtle issues from reaching production.

3.1 Correctness Properties

Correctness for a production storage system is multifaceted:
it should be durable in the absence of crashes, consistent
in the presence of crashes and concurrency, highly avail-
able during normal operation, and meet our performance
goals. Our validation effort considers availability and per-
formance properties out of scope, as S3 has successfully

Using Lightweight Formal Methods to Validate a Key-Value Storage Node in Amazon S3

established other methods for validating these properties,
including integration tests, load testing in pre-production
environments, and staggered deployments with monitoring
in production [29]. We chose to focus on durability and con-
sistency properties, which are hard to establish by traditional
testing alone and more difficult to recover from if violated.

In our approach, we ask developers to write an executable
reference model (§3.2) to specify the expected state of the
system after each API call. Our durability property then is
that the model and implementation remain in equivalent
states after each API call. Since the system is a key-value
store, we define equivalence as having the same key-value
mapping. This invariant establishes durability because it
ensures that the implementation only loses or changes data
when the specification allows (e.g., by a delete operation).
However, this property is too strong in the face of two types
of non-determinism: crashes may cause data loss that the
reference model does not allow, and concurrency allows
operations to overlap, meaning concurrent operations may
be in flight when we check equivalence after each API call.

To address these limitations, we found it useful to de-
compose the durability property into three parts and reason
about each separately:

1. For sequential crash-free executions, we check for
equivalence directly (§4).

2. For sequential crashing executions, we extend the ref-
erence model to define which data can be lost after a
crash, and check a corresponding weaker equivalence
that establishes both durability and consistency (§5).

3. For concurrent crash-free executions, we write sepa-
rate reference models and check linearizability (§6).

(We do not currently check properties of concurrent crash-
ing executions because we have not found an effective auto-
mated approach.) This decomposition aids the specification
effort by allowing us to separate concerns—the initial ref-
erence models are simple and easy to audit, and then we
extend them separately to handle more complex properties.
Decomposition also helps us scale the validation effort by
using the most appropriate tools for each type of execution,
including property-based testing [9] and stateless model
checking [5, 35].

Additional properties. While these properties cover the
core functionality of ShardStore, we also identified cases
where checking localized properties (about undefined be-
havior, bounds checking, etc) with specialized tools would
improve our confidence. §7 covers these properties and how
we check them in a lightweight fashion.

3.2 Reference Models

For each ShardStore component we developed a reference
model—an executable specification in Rust that provides the
same interface as the component but using a simpler imple-
mentation. For instance, for the index component that maps

840

SOSP 21, October 26-28, 2021, Virtual Event, Germany

shard identifiers to chunk locators, we define a reference
model that uses a simple hash table to store the mapping,
rather than the persistent LSM-tree described in §2.1.

Since the reference models provide the same interface as
the implementation, ideally they should give identical re-
sults, so that equivalence would be a simple equality check.
This is true on the happy path, but we found it very difficult
to enforce strict equality for failures. The reference models
can fail in limited ways (e.g., reads of keys that were never
written should fail), but we choose to omit other implemen-
tation failures (IO errors, resource exhaustion, etc.) from the
models. This choice simplifies the models at the expense
of making checking slightly more complex and precluding
us from reasoning about most availability or performance
properties. §4.4 discusses failure testing in more detail.

Implementing the reference model as executable code is
a design choice. We could instead have used a language
intended for modeling (Alloy [23], Promela [22], P [12], etc.),
which would have given us better expressiveness and built-in
checking tools. However, we found that by writing reference
models in the same language as the implementation, we
make them easier for engineers to keep up to date. We also
minimize the cognitive burden of learning a new language
and mapping concepts between model and implementation.

Mocking. Writing reference models in the implementation
language means we can also use them as mocks during unit
testing. For example, unit tests at ShardStore’s API layer use
the index reference model (a hash map) as a mock of the
index component, rather than instantiating the real LSM tree.
This reuse helps keep the reference models up-to-date over
time, as writing unit tests for new features often requires
updating the mock. We have already seen several ShardStore
developers extend the models this way in the course of their
development work, as §8.2 details.

Model verification. The reduced complexity of the refer-
ence model makes it possible in principle to verify desirable
properties of the model itself to increase confidence in its
sufficiency (similar to declarative specifications in Hyperk-
ernel [37]). For example, we could prove that the LSM-tree
reference model removes a key-value mapping if and only
if it receives a delete operation for that key. We have ex-
perimented with writing these proofs using the Prusti [2]
verifier for Rust. Our early experience with these proofs has
been limited but positive. We have been collaborating with
the Prusti maintainers to open-source benchmarks based on
our code and to implement the additional features we need
for these proofs. We are also excited by rapid progress in
auto-active [27] Rust verifiers [3, 14, 15, 40, 48] that promise
to make this verification effort easier and more scalable.

SOSP 21, October 26-28, 2021, Virtual Event, Germany

4 Conformance Checking

Once we have a reference model specifying the expected
behavior of the system, we need to check that the imple-
mentation conforms to the reference model according to the
correctness properties above. This section details how we
implement this check using property-based testing, and how
we ensure good coverage of the possible behaviors of the
implementation.

4.1 Property-Based Testing

To check that the implementation satisfies the reference
model specification, we use property-based testing [9], which
generates inputs to a test case and checks that a user-provided
property holds when that test is run. Property-based test-
ing can be thought of as an extension of fuzzing with user-
provided correctness properties and structured inputs, which
allow it to check richer behaviors than fuzzing alone. When
a property-based test fails, the generated inputs allow the
failure to be replayed (provided the test is deterministic).

We use property-based testing to check that implementa-
tion code refines the reference model: any observable behav-
ior of the implementation must be allowed by the model. We
frame this check as a property-based test that takes as input a
sequence of operations drawn from an alphabet we define. For
each operation in the sequence, the test case applies the oper-
ation to both reference model and implementation, compares
the output of each for equivalence, and then checks invari-
ants that relate the two systems. To ensure determinism and
testing performance, the implementation under test uses an
in-memory user-space disk, but all components above the
disk layer use their actual implementation code.

Fig. 3 shows an example of this property-based test for
the index component. The IndexOp enumeration (lines 1-7)
defines an alphabet of allowed operations. It covers both
the component’s API operations (lines 2—-4: Get, Put, etc.)
and background operations such as reclamation and clean
reboots (lines 5-6). These background operations are no-ops
in the reference model (they do not change the key-value
mapping of the index) but including them validates that
their implementations do not corrupt the index. Each test
run chooses a set of arbitrary sequences from the operation
alphabet with arbitrarily chosen arguments (e.g., keys and
values), and invokes proptest_index (line 10) with each
sequence. For each operation in a sequence, the test applies
it both to the implementation (line 17) and the reference (line
18) and compare the results as §3.2 describes. Finally (line
24), after each operation we perform additional invariant
checks comparing the implementation and the reference (e.g.,
checking that both store the same key-value mapping).

4.2 Coverage

Property-based testing selects random sequences of oper-
ations to test, and so can miss bugs. We reduce this risk

© N O U A WN =

NN NNNNR NS S & 0 o oo o o o
O U R WN—=- O ©O0WNOUN»MWN=0 ©

841

Bornholt et al.

enum IndexOp<Key, Value> {

Get(Key),
Put (Key, Value),
Reclaim,
Reboot,
3
#[proptest]

fn proptest_index(ops: Vec<IndexOp<u32, u32>>) {
let mut reference = Referencelndex::new();
let mut implementation = PersistentLSMTIndex::new();
for op in ops {
match op {
Put(key, value) => {
compare_results!(
implementation.put(key, value),
reference.put(key, value),

)5
}
Get(key) => { ... }

}

check_invariants(&reference, &implementation);

}

Figure 3. Property-based test harness for the index reference
model.

by increasing the scale of testing—we routinely run tens of
millions of random test sequences before every ShardStore
deployment—but these tests can only ever check system
states that the test harness is able to reach. The key challenge
in using property-based testing for validation is ensuring
that it can reach interesting states of the system. We do this
by introducing domain knowledge into argument selection
via biasing, and by employing code coverage mechanisms to
monitor test effectiveness.

Argument bias. We apply biases in the property-based test
harnesses when selecting arguments for operations in a test’s
alphabet. For example, a naive implementation of Fig. 3
would generate random keys for Get and Put operations,
which would rarely coincide, and so would almost never test
the successful Get path. We instead bias the argument to
Get to prefer to choose from keys that were Put earlier. We
also bias argument selection towards corner cases, such as
read/write sizes close to the disk page size, which in our
experience are frequent causes of bugs. These biases are al-
ways probabilistic: they only increase the chance of selecting
desirable cases, but other cases remain possible. For example,
we still want to test Gets that are unsuccessful, so we do
not require the key to be one we have previously Put, only
increase the probability that it is.

Argument biasing is important for increasing coverage,
but it also has limitations. While elaborate argument selec-
tion strategies can often be easily justified (“our production
customer traffic follows this distribution so we should mirror
it here”), we have found little benefit to them. For example,
we experimented with replicating production object size and

Using Lightweight Formal Methods to Validate a Key-Value Storage Node in Amazon S3

Get/Put ratio distributions with no effect. More generally,
biasing introduces the risk of baking our assumptions into
our tests, when our goal in adopting formal methods is to
invalidate exactly such assumptions by checking behaviors
we did not consider. Our methodology has settled on trusting
default randomness wherever possible, and only introducing
bias where we have quantitative evidence that it is beneficial
(as in the page-size example above).

Coverage metrics. As the code evolves over time, new func-
tionality may be added that is not reachable by the existing
property-based test harness. At the interface level, a compo-
nent may gain new API methods or arguments that need to
be incorporated into the operation alphabet. At the imple-
mentation level, a component may gain new functionality
(e.g., a cache) that affects the set of states reachable by the
existing test harness. Both types of changes risk eroding the
coverage of property-based tests and increase the chance
that testing misses bugs. To mitigate these risks, our test
harnesses generate code coverage metrics for the implemen-
tation code to help us identify blind spots that are not suf-
ficiently checked, including newly added functionality that
the reference model may not know about, and we tune our
argument selection strategies to remedy them.

4.3 Minimization

Our property-based tests generate random sequences of op-
erations as input, and when they find a failing test case, the
sequence of operations can be used to reproduce the failure
as a unit test. Most property-based testing tools automati-
cally minimize the failing input to simplify the debugging
experience [20, 32, 44]. Given a failing sequence of opera-
tions, the testing tool repeatedly applies reduction heuristics
to simplify the sequence until the reduced version no longer
fails. These reduction heuristics are generally simple trans-
formations such as “remove an operation from the sequence”
or “shrink an integer argument towards zero”. They usually
do not make any guarantees about finding a minimum failing
input, but are effective in practice, and we have not found
the need to develop custom heuristics. For example, when
discovering bug #9 in Fig. 5, the first random sequence that
failed the test had 61 operations, including 9 crashes and
14 writes totalling 226 KiB of data; the final automatically
minimized sequence had 6 operations, including 1 crash and
2 writes totalling 2B of data.

Although the minimization process is automated, we ap-
ply two design techniques to improve its effectiveness. First,
we design ShardStore components to be as deterministic
as possible, and where non-determinism is required we en-
sure it can be controlled during property-based testing. Non-
determinism interferes with minimization because the re-
duction process stops as soon as a test execution does not
fail. Determinism as a system design principle is not new,
but non-determinism sneaks into modern code in surprising

842

SOSP 21, October 26-28, 2021, Virtual Event, Germany

ways; for example, the default hash algorithm for HashMap
types in Rust is randomized and so the iteration order of a
map’s contents varies across runs. Second, we design our
alphabet of operations with minimization heuristics in mind.
For example, the property-based testing tool we use [30]
minimizes enumeration types by preferring earlier variants
in the definition (i.e., it will prefer Get in the IndexOp enu-
meration in Fig. 3), and so we arrange operation alphabets
in increasing order of complexity.

4.4 Failure Injection

In addition to checking correctness in ideal conditions, we
also use property-based testing to check that ShardStore
correctly handles failures in its environment. Hard disks fail
at a non-trivial rate [43], and at scale these failures must be
handled automatically without operator intervention. We
consider three distinct classes of environmental failures:

1. Fail-stop crashes (e.g., power outages, kernel panics)

2. Transient or permanent disk IO failures (e.g., HDD
failures, timeouts)

3. Resource exhaustion (e.g., out of memory or disk space)

Fail-stop crashes involve the ShardStore software itself crash-
ing and recovering; §5 describes how we test crash consis-
tency in this failure mode.

Disk IO failures. To test transient or permanent IO failures
while ShardStore continues running, we extend our property-
based tests to inject IO failures into their in-memory disk. We
extend the operation alphabet with new failure operations
(e.g., FailDiskOnce (ExtentId) causes the next IO to the
chosen extent to fail) and allow the property-based test to
generate those operations like any other.

Failure injection requires us to relax the conformance
check in Fig. 3 slightly, as implementation operations may
not be atomic with respect to injected failures. For example, if
a single implementation operation performed three IOs, and
one of those I0s suffered an injected failure, the other two I0s
may have succeeded and so their effects will be visible. This
would cause divergence between the reference model and the
implementation—the reference model does not keep enough
state to tell which effects should be visible after an IO failure—
and so the strict compare_results check in Fig. 3 is too
strong. One solution would be to track all possible states of
the reference model after a failure, but this blows up quickly
in the face of multiple failures. We could instead try to de-
termine the semantic effect of individual IOs and so track
which data a failure is expected to affect, but this would be
fragile and make the reference model expensive to maintain.

Instead, the harness tracks a simple “has failed” flag that re-
laxes equivalence checks between reference and implementa-
tion after a failure is injected. The relaxed check allows oper-
ations to disagree with the reference model, but only in some
ways; for example, a Get operation with an injected IO error
is allowed to fail by returning no data, but is never allowed to

SOSP 21, October 26-28, 2021, Virtual Event, Germany

return the wrong data—we expect ShardStore components to
detect and fail operations that involve corruption even in the
presence of IO errors (e.g., by validating checksums). To en-
sure these relaxations do not cause our testing to miss bugs
unrelated to failures, we separately run our property-based
tests with and without failure injection enabled.

Resource exhaustion. We do not currently apply property-
based testing for resource exhaustion failures such as run-
ning out of disk space. We have found these scenarios difficult
to test automatically because we lack a correctness oracle:
resource exhaustion tests need to distinguish real bugs (e.g.,
a space leak) from failures that are expected because the
test allocates more space than the environment has avail-
able. However, all storage systems introduce some amount
of space overhead and amplification (due to metadata, check-
sums, block alignment, allocation, etc.). To distinguish real
failures requires accounting for these overheads, but they
are intrinsic to the implementation and difficult to compute
abstractly. We think adopting ideas from the resource analy-
sis literature [21] would be promising future work to address
this problem.

5 Checking Crash Consistency

Crash consistency can be a source of bugs in storage sys-
tems [42]. ShardStore uses a crash consistency protocol based
on soft updates (§2.2), which introduces implementation com-
plexity. For ShardStore, reasoning about crash consistency
was a primary motivation for introducing formal methods
during development, and so it was a focus of our efforts.

We validate crash consistency by using the user-space
dependencies discussed in §2.2. Each mutating ShardStore
operation returns a Dependency object that can be polled to
determine whether it has been persisted. As a specification,
we define two crash consistency properties in terms of these
dependencies:

1. persistence: if a dependency says an operation has per-
sisted before a crash, it should be readable after a crash
(unless superseded by a later persisted operation)

2. forward progress: after a non-crashing shutdown, every
operation’s dependency should indicate it is persistent

Forward progress rules out dependencies being so strong that
they never complete. We do not enforce any finer-grained
properties about dependency strength, and so a dependency
returned by the implementation could be stronger than strictly
necessary to ensure consistency, but the persistence property
ensures it is not too weak.

To check that the implementation satisfies these crash con-
sistency properties, we extend the property-based testing ap-
proach in §4 to generate and check crash states. We augment

the operation alphabet to include a DirtyReboot (RebootType)

operation. The RebootType parameter controls which data

Bornholt et al.

in volatile memory is persisted to disk by the crash; for ex-
ample, it can choose whether to flush the in-memory section
of the LSM-tree, whether to flush the buffer cache, etc.

After reboot and recovery, the test iterates through the
dependencies returned by each mutating operation on the
implementation and checks the two properties above. For the
ReferenceIndex example in Fig. 3, the persistence check is:
for (key, dependency) in dependency_map {

assert!(
Idependency.is_persistent()
|| reference.get(key) == implementation.get(key)
,);
Here, the check first polls each operation’s Dependency ob-
ject to determine whether it was persisted before the crash;
if so, it then checks that the corresponding data can be read
and has the expected value. If the check fails, there is a crash
consistency bug, such as the Dependency graph missing a
required ordering (edge) or write operation (vertex) to en-
sure consistency. To validate forward progress, the model
checks the stronger property
assert! (dependency.is_persistent());

for each dependency on a clean reboot.

Block-level crash states. This approach generates crash
states at a coarse granularity: the RebootType parameter
makes a single choice for each component (e.g., the LSM
tree) about whether its entire state is flushed to disk. Coarse
flushes can miss bugs compared to existing techniques that
exhaustively enumerate all crash states at the block level [42]
or use symbolic evaluation to check all crash states within
an SMT solver [4].

To increase the chance of finding bugs, the operation alpha-
bet for the crash-consistency tests includes flush operations
for each component that can be interleaved with other oper-
ations. For example, a history like Put (@, 3), IndexFlush,
Put(1, 7),DirtyReboot(None) would flush the index en-
try for key 0 to the on-disk LSM tree, even though the later
DirtyReboot does not specify any components to flush. The
resulting crash state would therefore reflect an index that is
only partially flushed.

We have also implemented a variant of DirtyReboot that
does enumerate crash states at the block level, similar to
BOB [42] and CrashMonkey [33]. However, this exhaustive
approach has not found additional bugs and is dramatically
slower to test, so we do not use it by default.

Example. Issue #10 in Fig. 5 was a crash consistency bug in-
volving a planned change to chunk reclamation that our val-
idation uncovered. Because our methodology is lightweight
and automated, the developer was able to run property-based
tests locally and discover this issue before even submitting
for code review:.

The issue arose from how chunk data is serialized. Chunk
data is framed on disk with a two-byte magic header (“M”
below) and a random UUID, repeated on both ends to allow

Using Lightweight Formal Methods to Validate a Key-Value Storage Node in Amazon S3

validating the chunk’s length. The issue involved a chunk
whose serialized form spilled the UUID onto a second page
on an extent:

L
payload l UUID ‘

[ee 1

M l UUID Ilenglhl

page 0

At this point, a crash occurs and loses the data on page 1 but
not the data on page 0, which had been flushed before the
crash. This data loss corrupts the chunk, but so far there is
no consistency issue because we never considered the chunk
persistent (as the Dependency graph for the chunk includes
both page 0 and page 1). After reboot and recovery, a second
chunk is written to the same extent, starting from page 1
(the current write pointer):

M l UuUID Ilengthl l Uy M| UUID |length| payload | UUID |

page 1

payload

page 0

This second chunk is then flushed to disk, and so is con-
sidered persistent. Next, the scenario runs reclamation on
this extent, which scans all the chunks on the extent. Nor-
mally this reclamation would see the first chunk is corrupted
because its leading and trailing UUIDs do not match, and
so it would skip to the second chunk, which it can decode
successfully. However, this logic fails if the trailing bytes of
the first chunk’s UUID (the bytes that spilled onto page 1
and were lost in the crash) are the same as the magic bytes.
In that case, the reclamation will successfully decode that
first chunk, and then skip over the second chunk because
reclamation does not expect overlapping chunks. Once the
reclamation finishes, the second chunk becomes inaccessible,
as resetting the extent prevents access to data stored on it.
This outcome is a consistency violation: the Dependency for
the second chunk was considered persistent once the chunk
was flushed to disk, but after a subsequent reclamation, the
chunk was lost.

This was a subtle issue that involved a particular choice of
random UUID to collide with the magic bytes, a chunk that
was the right size to just barely spill onto a second page, and
a crash that lost only the second page. Nonetheless, our con-
formance checks automatically discovered and minimized
this test case.

6 Checking Concurrent Executions

Our validation approach thus far deals only with sequential
correctness, as the conformance checking approach in §4
tests only deterministic single-threaded executions. In prac-
tice, a production storage system like ShardStore is highly
concurrent, with each disk servicing several concurrent re-
quests and background maintenance tasks (e.g., LSM tree
compaction, buffer cache flushing, etc). Rust’s type system
guarantees data-race freedom within the safe fragment of
the language [52], but cannot make guarantees about higher-
level race conditions (e.g., atomicity violations), which are

844

SOSP 21, October 26-28, 2021, Virtual Event, Germany

difficult to test and debug as they introduce non-determinism
into the execution.

To extend our approach to check concurrent properties,
we hand-wrote harnesses for key properties and validated
them using stateless model checking [17], which explores con-
current interleavings of a program. We use this approach
both to check concurrent executions of the storage system
and to validate some ShardStore-specific concurrency primi-
tives. Stateless model checkers can both validate concurrency
properties (e.g., consistency) and test for deadlocks (by find-
ing interleavings that end with all threads blocked).

Properties and tools. In principle, we would like to check
that concurrent executions of ShardStore are linearizable
with respect to the sequential reference models. We check
such fine-grained concurrency properties using the Loom
stateless model checker for Rust [28], which implements
the CDSChecker [39] algorithm for sound model checking
in the release/acquire memory model, and uses bounded
partial-order reduction [10] to reduce state explosion.

However, sound stateless model checking tools like Loom
are not scalable enough to check linearizability of end-to-end
ShardStore tests—even a relatively small test involves tens
of thousands of atomic steps whose interleavings must be
explored, and the largest tests involve over a million steps.
For these tests, we developed and open-sourced the stateless
model checker Shuttle [47], which implements randomized
algorithms such as probabilistic concurrency testing [5]. The
two tools offer a soundness—scalability trade-off. We use
Loom to soundly check all interleavings of small, correctness-
critical code such as custom concurrency primitives, and
Shuttle to randomly check interleavings of larger test har-
nesses to which Loom does not scale such as end-to-end
stress tests of the ShardStore stack.

Fig. 4 shows an example of a Loom test harness for Shard-
Store’s LSM-tree-based index (a corresponding Shuttle test
harness looks similar). The test mocks out the persistent
chunk storage that backs the LSM tree as a conceit to scal-
ability. The harness first initializes the index’s state with a
fixed set of keys and values. It then spawns three concurrent
threads: chunk reclamation for a single arbitrarily chosen
extent (line 11), LSM tree compaction for the index (line 14),
and a thread that overwrites some keys in the index and then
reads them back (line 17). The test checks read-after-write
consistency for a fixed read/write history: interleavings of
concurrent background threads between the line 20 write and
line 21 read should not affect the read-after-write property.

Example. Issue #14 in Fig. 5 was a race condition in the LSM
tree implementation that was caught by the Loom test har-
ness in Fig. 4 before even reaching code review. The LSM tree
implementation uses an in-memory metadata object to track
the set of chunks that are currently being used to store LSM
tree data on disk. This metadata is mutated by two concur-
rent background tasks: (1) LSM tree compaction flushes the

© N o U A WN =

1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

SOSP 21, October 26-28, 2021, Virtual Event, Germany

loom: :model(]| {
let chunk_store = MockChunkStore: :new();
let index = PersistentLSMTIndex::new(chunk_store);

// Set up some initial state in the index

for (key, value) in &[...] {
index.put(key, value);

}

// Spawn concurrent operations

let t1 = thread::spawn(]|| {
chunk_store.reclaim();

D

let t2 = thread::spawn(]|| {

index.compact();
D

let t3 = thread::spawn(]|| {

// Overwrite keys and check the new value sticks
for (key, value) in &[...] {
index.put(key, value);
let new_value = index.get(key);
assert_eq! (new_value, value);
}
D
t1.join(); t2.join(); t3.join();
i)
Figure 4. Stateless model checking harness for the index.
The test validates that the index exhibits read-after-write
consistency for a set of keys under concurrent background
maintenance tasks (chunk reclamation and LSM tree com-
paction). The Loom stateless model checker [28] explores
all concurrent interleavings of the closure passed to model.
(Some Arc code to please the borrow checker is omitted.)

in-memory section of the index to disk, creating new chunks
to be added to the metadata and removing chunks whose
contents have been compacted; and (2) chunk reclamation
scans extents used by the LSM tree to recover free space, and
updates the metadata to point to relocated chunks.

The issue involved a concurrent compaction and reclama-
tion on an index where the metadata pointed to three chunks
currently storing the LSM tree:

XY
\

C 11T |

extent 0 extent 1 extent 2
From this state, the compaction thread ran and stored the

in-memory section of the LSM tree into a new chunk, which
was small enough to write into extent 0:

C 0] |

extent 0 extent 1 extent 2
The compaction thread’s next step is to update the in-memory

metadata to include a pointer to the new chunk (the dashed
pointer above). However, before it could do this, it was pre-
empted by the reclamation thread, which chose to perform
a reclamation on extent 0. The reclamation thread scanned

845

Bornholt et al.

the three chunks on that extent. The first two were refer-
enced by the metadata, and so were evacuated to extent 2.
However, the newly written chunk was not yet referenced
by the metadata (as the compaction thread was preempted
before it could update the metadata), and so the reclamation
dropped the new chunk and reset the extent:

\
| T 17]
extent 0 extent 1 extent 2

Now when the compaction thread resumes and updates the
metadata, it will introduce a dangling pointer to a chunk that
was dropped by reclamation, and so the index entries the
LSM tree wanted to store on that chunk are lost. The fix was
to make compaction lock the extents it writes new chunks
into until it can update the metadata to point to them.

7 Other Properties

The validation approach described so far covers the proper-
ties in §3.1. However, while developing ShardStore, we iden-
tified two more localized classes of issues that our existing
approach would not detect, and adopted specific reasoning
techniques to check for them.

Undefined behavior. ShardStore is written in Rust, which
ensures type and memory safety for the safe subset of the lan-
guage. However, as a low-level system, ShardStore requires a
small amount of unsafe Rust code, mostly for interacting with
block devices. Unsafe Rust is exempt from some of Rust’s
safety guarantees and introduces the risk of undefined behav-
ior [1]. To rule out this class of bugs, we run ShardStore’s test
suite under the Miri interpreter [50], a dynamic analysis tool
built into the Rust compiler that can detect certain classes
of undefined behavior. We had to extend Miri to support
basic concurrency primitives (threads and locks), and have
upstreamed that work to the Rust compiler.

Serialization. ShardStore has a number of serializers and
deserializers that marshal data between in-memory and on-
disk formats. Both bit rot and transient failures can corrupt
on-disk data, and so we treat data read from disk as untrusted.
We want to ensure that deserialization code running on such
untrusted data is robust to corruption. We worked with the
developers of Crux [51], a bounded symbolic evaluation en-
gine, to prove panic-freedom of our deserialization code. We
proved that for any sequence of on-disk bytes (up to a size
bound), our deserializers cannot panic (crash the thread) due
to out of bounds accesses or other logic errors. We also fuzz
the same deserializer code on larger inputs to work around
the small size bound required to make symbolic evaluation
tractable. We also supplied benchmarks based on these prob-
lems to the Crux developers to aid in further development.

Using Lightweight Formal Methods to Validate a Key-Value Storage Node in Amazon S3

8 Experience

This section reports on our experience validating ShardStore,
including the effort to perform validation and the level of
adoption by the engineering team.

8.1 Bugs Prevented

Figure 5 presents a catalog of issues detected by our valida-
tion effort, broken down by the top-level property violated.
Two of these issues were presented in more detail in §5
and §6. Each of these issues was prevented from reaching
production, and detected using the mechanisms described
in §4-6 (property-based testing for functional correctness
and crash consistency issues; stateless model checking for
concurrency issues). Most issues related to data integrity—
they could cause data to be lost or stored incorrectly—while
one concurrency issue (#12) was an availability issue caused
by a deadlock. Each issue was detected automatically by
our tools, although diagnosis remains a developer-intensive
manual effort aided by automated test-case minimization for
property-based testing.

The issues in Fig. 5 span most of ShardStore’s components
and suggest that our approach has been effective at prevent-
ing bugs in practice. One aspect these results do not measure
is effectiveness at detecting bugs early in development, as
they include only issues that reached (and were blocked by)
our continuous integration pipeline. Anecdotally, developers
have told us of more bugs our checks detected during local
development that never made it to to code review.

8.2 Validation Effort

Figure 6 shows the size of the ShardStore code base. Ex-
cluding the reference models and validation test harnesses
described in this paper, unit and integration tests comprise
31% of the code base. Figure 6 also tallies the size of the
reference models and validation test harnesses for each of
the top-level properties in §3.1. From the code base’s per-
spective, the validation tests are just unit tests like any other:
they are run using Rust’s built-in testing infrastructure, and
they are distinguished from other tests only by naming con-
ventions and module hierarchy. These artifacts combined
are only 13% of the total code base and 20% of the size of
the implementation code, an overhead that compares favor-
ably to formal verification approaches that report 3-10%
overhead [8, 18, 49].

Development of the reference models and test harnesses
was led initially by two formal methods experts working full-
time for nine months and a third expert who joined for three
months. However, since that initial effort, most work on them
has been taken over by the ShardStore engineering team,
none of whom have any prior formal methods experience.
As a crude measure of this adoption, 18% of the lines of
code in the test harnesses were last edited by a non-formal-
methods expert according to git blame. Three engineers have

846

SOSP 21, October 26-28, 2021, Virtual Event, Germany

each written more than 100 lines of code extending these
tests, including crash consistency conformance checks for
new functionality. Four engineers have written new stateless
model checking harnesses for concurrent code they have
added, and the need for such harnesses is now a standard
question during code review of new concurrent functionality.

8.3 Limitations

As discussed in §4, our validation checks can miss bugs—their
reporting success does not mean the code is correct, only that
they could not find a bug. We are not currently aware of any
bugs that have reached production after being missed due to
this limitation, but of course we cannot rule it out. We have
seen one example of a bug that our validation should have
caught but did not, and was instead caught during manual
code review. That issue involved an earlier code change that
had added a new cache to a ShardStore component. Our
existing property-based tests had trouble reaching the cache-
miss code path in this change because the cache size was
configured to be very large in all tests. The new bug was in
a change to that cache-miss path, and so was not reached
by the property-based tests; after reducing the cache size,
the tests automatically found the issue. This missed bug was
one motivation for our work on coverage metrics §4.2.

A non-trivial amount of ShardStore’s code base is parsing
of S3’s messaging protocol, request routing, and business
logic, which we are still working on validating. We also do
not have a complete reference model (§3.2) for some oper-
ations ShardStore exposes to S3’s control plane. As future
work, we plan to model the parts of these control plane inter-
actions that are necessary to establish durability properties.

8.4 Lessons Learned

Our lightweight formal methods approach was motivated by
two goals: to detect bugs as early as possible in development,
and to ensure that our validation work remains relevant as
the code changes over time. We learned useful lessons in
both directions in the course of doing this work.

Early detection. We began formal methods work on Shard-
Store early in development, when the design was still being
iterated on and code was being delivered incrementally. To
fit this development process, we focused on delivering mod-
els and tests one component at a time. As soon as we had
a reference model for one ShardStore component (chunk
storage and reclamation), we integrated that into the code
base and began training engineers, while in parallel extend-
ing the models to cover more components. This approach
both helped detect bugs early and increased interest in the
results of our work—having seen the issues detected even
in this one component, engineers encouraged us to make
the tests release blockers for continuous delivery, while also
independently starting to develop models and properties for
the components they owned.

SOSP 21, October 26-28, 2021, Virtual Event, Germany

Bornholt et al.

ID Component Description

Functional Correctness

#1 Chunk store
#2 Buffer cache
#3 Index

#4 API

#5 Chunk store

Off-by-one error in reclamation for chunks of size close to PAGE_SIZE

Cache was not correctly drained after resetting an extent

Metadata was not flushed correctly during shutdown if an extent was reset
Shards could be lost if a disk was removed from service and then later returned
Reclamation could forget chunks after a transient read IO error

Crash Consistency

#6 Superblock Superblock Dependency for extent ownership was incorrect after a reboot

#7 Superblock Mismatch between soft and hard write pointers in a crash after an extent reset

#8 Buffer cache Writes did not include a dependency on the soft write pointer update

#9 Chunk store Reference model was not updated correctly after a crash during reclamation

#10 Chunk store Reclamation could forget chunks after a crash and UUID collision

Concurrency

#11 Chunk store Chunk locators could become invalid after a race between write and flush

#12 Superblock Buffer pool exhaustion could cause threads waiting for a superblock update to deadlock
#13 API Race between control plane operations for listing and removal of shards

#14 Index Race between reclamation and LSM compaction could lose recent index entries

#15 Chunk store Reference model could re-use chunk locators, which other code assumed were unique
#16 APIL Race between control plane bulk operations for creating and removing shards

Figure 5. ShardStore issues prevented from reaching production by our validation effort.

Component Lines
ShardStore

Implementation 44,048
Unit tests & integration tests 19,540
Specification

Reference models (§3.2) 450
Validation

Functional correctness checks (§3) 4,860
Crash consistency checks (§5) 2,661
Concurrency checks (§6) 901
Total 72,460

Figure 6. Lines of code for ShardStore implementation and
validation artifacts. All lines are Rust code.

By focusing on modeling components whose APIs had
become stable, we avoided too much churn in the specifi-
cation and code for the models, which would have made
them much more expensive to maintain. Had we started
looking at formal methods later, when design and code were
more stable, we would have been tempted to write a single
reference model for just the public interface to ShardStore.
This approach would lower the overhead of writing specifi-
cations, but we think it would have been the wrong decision
and would have caught fewer bugs. We found it much easier
to exercise corner case scenarios (especially fault scenarios)
by writing tests that directly exercise internal component
APIs, and engineers have found it easier to debug and fix
failures in their own changes by not having to trace them
back through the entire implementation stack.

847

Continuous validation. Tightly integrating reference mod-
els into the code base has been crucial for ensuring that our
validation remains effective as the code changes over time.
Developers must update the models whenever code changes
in order to avoid breaking the build; having the models in
Rust makes the overhead of these updates low enough to be
practical. From the formal methods perspective, this integra-
tion is a way to convince engineers to write specifications
themselves. In practice, after the first iteration of the refer-
ence models was written by formal methods experts, they
have been updated almost exclusively by the engineering
team.

We focused heavily on lowering the marginal cost of fu-
ture validation: we would not have considered this work
successful if future code changes by engineers required kick-
ing off new formal methods engagements. Early in our work,
we wrote reference models using modeling languages we
were familiar with (Alloy [23], SPIN [22], and Yggdrasil-style
Python [49]) and imagined developing tooling to check the
Rust code against them. It was only when we discussed
long-term maintenance implications with the team that we
realized writing the models themselves in Rust was a much
better choice, and even later when we realized the reference
models could serve double duty as mocks for unit testing.

Future directions. While we’re pleased with the effective-
ness of our validation work for ShardStore, we’re not done.
Our work so far has focused on modeling and checking key
correctness properties (such as crash consistency) of Shard-
Store viewed as a single storage node. But Amazon S3 is a
complex distributed system with hundreds of microservices,
several of which interact with ShardStore storage nodes to

Using Lightweight Formal Methods to Validate a Key-Value Storage Node in Amazon S3

replicate customer data and perform control plane opera-
tions. AWS has been using the P language for asynchronous
programs [11-13] to validate the correctness of new S3 fea-
tures such as strong consistency [36], and using TLA+ to
validate the designs of a number of systems [38]. We are
exploring ways of combining P with Rust to extend these
results to include reasoning about ShardStore’s role in the
S3 system. We also continue to explore ways to strengthen
the guarantees provided by our validation work, including
the recent rapid advances in Rust verification tools [45].

9 Related Work

Storage verification. There has been significant recent in-
terest in formally verified storage systems. Yggdrasil [49]
is a “push-button” verified file system implementation that
formalizes a refinement to define allowed states after a crash.
FSCQ [8] is a formally verified filesystem that instead adopts
a crash-aware Hoare logic to define the allowed crash behav-
iors of each POSIX system call. VeriBetrKV [18] is a more
recent effort to verify a key-value store with a focus on auto-
mated proofs that delivers stronger guarantees than we do at
the cost of more overhead (“tedium” in their terms): 7 lines of
proof for every line of implementation. Our approach does
not have the soundness guarantees of these examples—we
can miss bugs these systems would have caught—but our
lightweight tools dramatically increase the ability for our
engineering teams to adopt and integrate formal methods
into their development practice.

We considered dealing with concurrency essential for our
approach to be successful. Recent verification efforts for
concurrent storage systems have focused on simple repli-
cated disks [6] and journaling file systems [7]. ShardStore
is substantially more complex than these designs, and so
we focused on lightweight stateless model checking and on
providing a good debugging experience for concurrent test
failures using the Shuttle model checker [47], again at the
cost of potentially missing bugs.

Storage testing. Several projects have explored using model
checking or fuzzing techniques to find bugs in storage sys-

tem, with a particular focus on crash consistency. EXPLODE [54]

uses model checking to validate a file system against a user-
written test harness. We take a similar approach but with

richer specifications and less reliance on user-written harnesses—

with property-based testing we ask the user to write only an
operation alphabet, and the testing harness chooses inputs
to run. Ferrite [4] includes an SMT-based model checker for
detecting file system crash consistency bugs, but reasons
only about an abstract model of the file system rather than
implementation code. CrashMonkey [33] checks metadata
crash consistency of an unmodified file system by running
small workloads and interposing at the block layer to trace

848

SOSP 21, October 26-28, 2021, Virtual Event, Germany

writes. We take a coarser-grained approach to crash con-
sistency (§5) that scales our testing to larger scenarios and
covers data consistency.

Storage specifications. The POSIX standard for file systems
is imprecise prose, and so difficult to build a validation ap-
proach around. SibylFS [46] is an effort to build an executable
formal model in Lem [34] of the POSIX file system interface
and test conformance of file system implementations. Kang
and Jackson [26] develop a formal model of a flash file system
in Alloy [23] and check its correctness against an abstract
POSIX specification. In contrast to these approaches, our ref-
erence model specifications are written in the same language
as the implementation, making them easier to update by an
engineering team as requirements change over time.

10 Conclusion

ShardStore is a new storage backend for Amazon S3 for
which we decided early in the design process to involve
formal methods. Our experience with lightweight formal
methods has been positive, with a number of issues pre-
vented from reaching production and substantial adoption
by the ShardStore engineering team. We are excited to fur-
ther improve our results by applying stronger verification
techniques and expanding the scope of our effort to validate
more of S3.

Acknowledgments

We thank the anonymous reviewers, Murat Demirbas, Emina
Torlak, Xi Wang, and our shepherd Manos Kapritsos for
their feedback on this paper. We thank Stuart Pernsteiner for
his work applying the Crux symbolic execution engine to
ShardStore. Finally, we thank the entire S3 ShardStore team
at AWS for their collaboration and ongoing support of this
effort.

References

[1] Vytautas Astrauskas, Christoph Matheja, Federico Poli, Peter Miiller,
and Alexander J. Summers. 2020. How do programmers use unsafe
Rust? Proc. ACM Program. Lang. 4, OOPSLA (2020), 136:1-136:27.
Vytautas Astrauskas, Peter Miller, Federico Poli, and Alexander J.
Summers. 2019. Leveraging Rust types for modular specification and
verification. Proc. ACM Program. Lang. 3, OOPSLA (2019), 147:1-
147:30.

Marek Baranowski, Shaobo He, and Zvonimir Rakamaric. 2018. Ver-

ifying Rust Programs with SMACK. In Proceedings of the 16th Inter-

national Symposium on Automated Technology for Verification and

Analysis (ATVA). Los Angeles, CA, USA, 528-535.

[4] James Bornholt, Antoine Kaufmann, Jialin Li, Arvind Krishnamurthy,
Emina Torlak, and Xi Wang. 2016. Specifying and checking file sys-
tem crash-consistency models. In Proceedings of the 21st International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). Atlanta, GA, USA, 83-98.

[5] Sebastian Burckhardt, Pravesh Kothari, Madanlal Musuvathi, and San-
tosh Nagarakatte. 2010. A randomized scheduler with probabilistic
guarantees of finding bugs. In Proceedings of the 15th International

[2

—

[3

[t}

SOSP 21, October 26-28, 2021, Virtual Event, Germany

[10

[12

[13

(14

[15

[16

(17

[18

[19

[20

[21

[22

[23

—

—

—

—

[t

=

]

[l

—_ =

—

=

—

[t

]

—_ =

Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). Pittsburgh, PA, USA, 167-178.

Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and Nickolai Zel-
dovich. 2019. Verifying concurrent, crash-safe systems with Perennial.
In Proceedings of the 27th ACM Symposium on Operating Systems Prin-
ciples (SOSP). Huntsville, ON, Canada, 243-258.

Tej Chajed, Joseph Tassarotti, Mark Theng, Ralf Jung, M. Frans
Kaashoek, and Nickolai Zeldovich. 2021. GoJournal: a verified, concur-
rent, crash-safe journaling system. In Proceedings of the 15th Sympo-
sium on Operating Systems Design and Implementation (OSDI). Virtual,
423-439.

Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans
Kaashoek, and Nickolai Zeldovich. 2015. Using Crash Hoare Logic
for Certifying the FSCQ File System. In Proceedings of the 25th ACM
Symposium on Operating Systems Principles (SOSP). Monterey, CA,
USA, 18-37.

Koen Claessen and John Hughes. 2000. QuickCheck: a lightweight tool
for random testing of Haskell programs. In Proceedings of the 5th ACM
SIGPLAN International Conference on Functional Programming (ICFP).
Montreal, Canada, 268-279.

Katherine E. Coons, Madan Musuvathi, and Kathryn S. McKinley.
2013. Bounded partial-order reduction. In Proceedings of the 28th ACM
SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA). Indianapolis, IN, USA,
833-848.

Ankush Desai. 2021. P. https://github.com/p-org/p

Ankush Desai, Vivek Gupta, Ethan K. Jackson, Shaz Qadeer, Sriram K.
Rajamani, and Damien Zufferey. 2013. P: safe asynchronous event-
driven programming. In Proceedings of the 34th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI).
Seattle, WA, USA, 321-332.

Ankush Desai, Amar Phanishayee, Shaz Qadeer, and Sanjit A. Seshia.
2018. Compositional programming and testing of dynamic distributed
systems. Proc. ACM Program. Lang. 2, OOPSLA (2018), 159:1-159:30.

Craig Disselkoen, Sunjay Cauligi, Dean Tullsen, and Deian Stefan.
2020. Finding and Eliminating Timing Side-Channels in Crypto Code
with Pitchfork. In TECHCON.

Facebook. 2021. MIRAL https://github.com/facebookexperimental/
MIRAI

Gregory R. Ganger and Yale N. Patt. 1994. Metadata Update Perfor-
mance in File Systems. In Proceedings of the 1st Symposium on Operating
Systems Design and Implementation (OSDI). Monterey, CA, USA, 49-60.

Patrice Godefroid. 1997. Model Checking for Programming Languages
using Verisoft. In Proceedings of the 24th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL). Paris, France,
174-186.

Travis Hance, Andrea Lattuada, Chris Hawblitzel, Jon Howell, Rob
Johnson, and Bryan Parno. 2020. Storage Systems are Distributed
Systems (So Verify Them That Way!). In Proceedings of the 14th Sympo-
sium on Operating Systems Design and Implementation (OSDI). Virtual
Event, 99-115.

Maurice Herlihy and Jeannette M. Wing. 1990. Linearizability: A
Correctness Condition for Concurrent Objects. ACM Trans. Program.
Lang. Syst. 12, 3 (1990), 463-492.

Ralf Hildebrandt and Andreas Zeller. 2000. Simplifying failure-
inducing input. In Proceedings of the International Symposium on Soft-
ware Testing and Analysis (ISSTA). Portland, OR, USA, 135-145.

Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. 2012. Resource
Aware ML. In Proceedings of the 24th International Conference on Com-
puter Aided Verification (CAV). Berkeley, CA, USA, 781-786.

Gerard J. Holzmann. 1997. The Model Checker SPIN. IEEE Trans. Softw.
Eng. 23, 5 (May 1997), 279-295.

Daniel Jackson. 2009. Software Abstractions: logic, language, and anal-
ysis (2nd ed.). MIT Press.

849

[24]
[25]
[26]
[27]
[28]
[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Bornholt et al.

Daniel Jackson and Jeannette Wing. 1996. Lightweight Formal Meth-
ods. Computer 29, 4 (1996).

Rajeev Joshi and Gerard J. Holzmann. 2007. A Mini Challenge: Build a
Verifiable Filesystem. Formal Aspects of Computing 19, 2 (June 2007),
269-272.

Eunsuk Kang and Daniel Jackson. 2008. Formal Modeling and Analysis
of a Flash Filesystem in Alloy. In Proceedings of the 1st International
Conference of Abstract State Machines, B, and Z (ABZ). London, UK.
K. Rustan M. Leino and Michat Moskal. 2010. Usable Auto-Active
Verification. In Workshop on Usable Verification. Redmond, WA, USA.
Carl Lerche. 2020. Loom. https://github.com/tokio-rs/loom

Clare Ligouri. 2020. Automating safe, hands-off deployments. Ama-
zon Builders’ Library. https://aws.amazon.com/builders-library/
automating-safe-hands-off-deployments/

Jason Lingle. 2020. Proptest. https://github.com/AltSysrq/proptest
Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. 2016. WiscKey: Separating
Keys from Values in SSD-conscious Storage. In Proceedings of the 14th
USENIX Conference on File and Storage Technologies (FAST). Santa Clara,
CA, USA, 133-148.

David Maciver and Alastair F. Donaldson. 2020. Test-Case Reduction
via Test-Case Generation: Insights from the Hypothesis Reducer. In
Proceedings of the 34th European Conference on Object-Oriented Pro-
gramming (ECOOP). Berlin, Germany, 13:1-13:27.

Jayashree Mohan, Ashlie Martinez, Soujanya Ponnapalli, Pandian Raju,
and Vijay Chidambaram. 2018. Finding Crash-Consistency Bugs with
Bounded Black-Box Crash Testing. In Proceedings of the 13th Sympo-
sium on Operating Systems Design and Implementation (OSDI). Carlsbad,
CA, USA, 33-50.

Dominic P. Mulligan, Scott Owens, Kathryn E. Gray, Tom Ridge, and
Peter Sewell. 2014. Lem: reusable engineering of real-world semantics.
In Proceedings of the 19th ACM SIGPLAN International Conference on
Functional Programming (ICFP). Gothenburg, Sweden, 175-188.
Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gérard Basler, Pi-
ramanayagam Arumuga Nainar, and Iulian Neamtiu. 2008. Finding
and Reproducing Heisenbugs in Concurrent Programs. In Proceedings
of the 8th Symposium on Operating Systems Design and Implementa-
tion (OSDI). San Diego, CA, USA, 267-280.

Vishwas Narendra, Serdar Tasiran, and Ankush Desai. 2021. Ama-
zon S3 Strong Consistency.
BOyXz6EeCaA

Luke Nelson, Helgi Sigurbjarnarson, Kaiyuan Zhang, Dylan Johnson,
James Bornholt, Emina Torlak, and Xi Wang. 2017. Hyperkernel: Push-
Button Verification of an OS Kernel. In Proceedings of the 26th ACM
Symposium on Operating Systems Principles (SOSP). Shanghai, China,
252-269.

Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc
Brooker, and Michael Deardeuff. 2015. How Amazon Web Services
Uses Formal Methods. Commun. ACM 58, 4 (March 2015), 66-73.
Brian Norris and Brian Demsky. 2013. CDSchecker: checking con-
current data structures written with C/C++ atomics. In Proceedings
of the 28th ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA). Indi-
anapolis, IN, USA, 131-150.

Project Oak. 2021. Rust Verification Tools. https://github.com/project-
oak/rust-verification-tools/

Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil.
1996. The Log-Structured Merge-Tree (LSM-Tree). Acta Informatica
33, 4 (June 1996), 351-385.

Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram, Ram-
natthan Alagappan, Samer Al-Kiswany, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. 2014. All File Systems Are Not Created
Equal: On the Complexity of Crafting Crash-Consistent Applications.
In Proceedings of the 11th Symposium on Operating Systems Design and

https://www.youtube.com/watch?v=

https://github.com/p-org/p
https://github.com/facebookexperimental/MIRAI
https://github.com/facebookexperimental/MIRAI
https://github.com/tokio-rs/loom
https://aws.amazon.com/builders-library/automating-safe-hands-off-deployments/
https://aws.amazon.com/builders-library/automating-safe-hands-off-deployments/
https://github.com/AltSysrq/proptest
https://www.youtube.com/watch?v=B0yXz6EeCaA
https://www.youtube.com/watch?v=B0yXz6EeCaA
https://github.com/project-oak/rust-verification-tools/
https://github.com/project-oak/rust-verification-tools/

Using Lightweight Formal Methods to Validate a Key-Value Storage Node in Amazon S3

[43]

[44]

[45]

[46]

[47]

Implementation (OSDI). Broomfield, CO, USA, 433-448.

Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz André Barroso. 2007.
Failure Trends in a Large Disk Drive Population. In Proceedings of the
5th USENILX Conference on File and Storage Technologies (FAST). San
Jose, CA, USA, 17-28.

John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and
Xuejun Yang. 2012. Test-case reduction for C compiler bugs. In Proceed-
ings of the 33rd ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI). Beijing, China, 335-346.

Alastair Reid and Shaked Flur. 2021. Rust Verification Tools: Retro-
spective. https://project-oak.github.io/rust-verification-tools/2021/
09/01/retrospective.html

Tom Ridge, David Sheets, Thomas Tuerk, Andrea Giugliano, Anil Mad-
havapeddy, and Peter Sewell. 2015. SibylFS: formal specification and
oracle-based testing for POSIX and real-world file systems. In Proceed-
ings of the 25th ACM Symposium on Operating Systems Principles (SOSP).
Monterey, CA, USA, 38-53.

Amazon Web Services. 2020. Shuttle.
shuttle

https://github.com/awslabs/

850

[48]

[49]

[50]
[51]

[52]

[53]

SOSP 21, October 26-28, 2021, Virtual Event, Germany

Amazon Web Services. 2021. Rust Model Checker (RMC).
//github.com/model-checking/rmc

Helgi Sigurbjarnarson, James Bornholt, Emina Torlak, and Xi Wang.
2016. Push-Button Verification of File Systems via Crash Refinement.
In Proceedings of the 12th Symposium on Operating Systems Design and
Implementation (OSDI). Savannah, GA, USA, 1-16.

Miri team. 2021. Miri. https://github.com/rust-lang/miri

Aaron Tomb. 2020. Crux: Introducing our new open-source tool
for software verification. https://galois.com/blog/2020/10/crux-
introducing-our-new-open-source-tool-for-software-verification/
Aaron Turon. 2015. Fearless Concurrency with Rust. https://blog.rust-
lang.org/2015/04/10/Fearless-Concurrency.html

Werner Vogels. 2021. Diving Deep on S3 Consistency. https://www.
allthingsdistributed.com/2021/04/s3-strong-consistency.html

https:

[54] Junfeng Yang, Paul Twohey, Dawson Engler, and Madanlal Musuvathi.

2006. EXPLODE: A Lightweight, General System for Finding Serious
Storage System Errors. In Proceedings of the 7th Symposium on Oper-
ating Systems Design and Implementation (OSDI). Seattle, WA, USA,
131-146.

https://project-oak.github.io/rust-verification-tools/2021/09/01/retrospective.html
https://project-oak.github.io/rust-verification-tools/2021/09/01/retrospective.html
https://github.com/awslabs/shuttle
https://github.com/awslabs/shuttle
https://github.com/model-checking/rmc
https://github.com/model-checking/rmc
https://github.com/rust-lang/miri
https://galois.com/blog/2020/10/crux-introducing-our-new-open-source-tool-for-software-verification/
https://galois.com/blog/2020/10/crux-introducing-our-new-open-source-tool-for-software-verification/
https://blog.rust-lang.org/2015/04/10/Fearless-Concurrency.html
https://blog.rust-lang.org/2015/04/10/Fearless-Concurrency.html
https://www.allthingsdistributed.com/2021/04/s3-strong-consistency.html
https://www.allthingsdistributed.com/2021/04/s3-strong-consistency.html

	Abstract
	1 Introduction
	2 ShardStore
	2.1 Design Overview
	2.2 Crash Consistency

	3 Validating a Storage System
	3.1 Correctness Properties
	3.2 Reference Models

	4 Conformance Checking
	4.1 Property-Based Testing
	4.2 Coverage
	4.3 Minimization
	4.4 Failure Injection

	5 Checking Crash Consistency
	6 Checking Concurrent Executions
	7 Other Properties
	8 Experience
	8.1 Bugs Prevented
	8.2 Validation Effort
	8.3 Limitations
	8.4 Lessons Learned

	9 Related Work
	10 Conclusion
	Acknowledgments
	References

