
Modular Verification of Finite Blocking in
Non-terminating Programs

Pontus Boström1 and Peter Müller2

1 Åbo Akademi University, Finland, pontus.bostrom@abo.fi
2 Department of Computer Science, ETH Zurich, Switzerland,

peter.mueller@inf.ethz.ch

Abstract. Most multi-threaded programs synchronize threads via block-
ing operations such as acquiring locks or joining other threads. An im-
portant correctness property of such programs is for each thread to make
progress, that is, not to be blocked forever. For programs in which all
threads terminate, progress essentially follows from deadlock freedom.
However, for the common case that a program contains non-terminating
threads such as servers or actors, deadlock freedom is not sufficient. For
instance, a thread may be blocked forever by a non-terminating thread if
it attempts to join that thread or to acquire a lock held by that thread.
In this paper, we present a verification technique for finite blocking in
non-terminating programs. The key idea is to track explicitly whether
a thread has an obligation to perform an operation that unblocks an-
other thread, for instance, an obligation to release a lock or to termi-
nate. Each obligation is associated with a measure to ensure that it is
fulfilled within finitely many steps. Obligations may be used in specifi-
cations, which makes verification modular. We formalize our technique
via an encoding into Boogie, which treats different kinds of obligations
uniformly. It subsumes termination checking as a special case.

1 Introduction

Most multi-threaded programs synchronize threads via blocking operations such
as acquiring locks, receiving messages on a channel, awaiting conditions, or join-
ing other threads. The correctness of such programs typically relies on all threads
being able to make progress, that is, not being blocked forever. For instance, a
producer-consumer system typically requires that each producer will eventually
succeed in acquiring the lock to a shared buffer. Existing work [8, 13] has demon-
strated that for terminating programs, progress can be ensured by (1) avoiding
starvation through fair scheduling and (2) showing that the program does not
create circular situations akin to deadlock, where each thread on a cycle waits
for the next thread to perform an action to unblock it.

However, this solution is insufficient for programs that contain potentially
non-terminating threads such as actors, servers, watch-dogs, etc. Such threads
potentially defer the execution of an unblocking operations forever. For instance,
a thread may be blocked forever by a non-terminating thread if it attempts to
join that thread or to acquire a lock held by that thread.



In this paper, we present a verification technique for finite blocking in non-
terminating programs. The key idea is to track explicitly whether a thread has an
obligation to perform an operation that unblocks another thread. For instance, a
thread may receive on a channel only if another thread has an obligation to send
a message on that channel, and a thread may join another thread only if the
latter has an obligation to terminate. To handle non-termination, we associate
each obligation with a measure (also called variant or ranking function) and
check that each thread satisfies its obligations within finitely many steps, even
if the thread does not terminate. Our verification technique guarantees finite
blocking for programs with a finite number of threads and fair scheduling. That
is, each thread in an execution of a verified program either terminates or runs
forever, but no thread is blocked forever.

Even though the finite blocking guarantee relies on fairness, our technique
is also useful for non-fair systems. First, proving that no thread postpones un-
blocking another thread indefinitely is still necessary (although not sufficient
without fairness) for progress; a violation of this property is an error. Second,
although this paper focuses on finite blocking, the concept of obligations is more
general and can be used to specify and verify other liveness properties for both
sequential and concurrent programs, for instance, that each asynchronous task
will be awaited or that a given I/O operation will be performed eventually.

Our verification technique is modular, that is, verifies each method inde-
pendently, without knowledge of the program context in which it is used and
the threads executing concurrently. We formalize the technique for a language
without heap memory, but the style of reasoning integrates well with permission
logics such as separation logic [18] and implicit dynamic frames [19], and can
be automated in a similar way. In particular, our technique produces verifica-
tion conditions that are amenable to automation using SMT-solvers. We have
manually encoded several challenging examples and verified them successfully in
Boogie [1]. These examples exercise all major features of our approach.

Contributions and Outline. This paper makes the following contributions:
1. It presents the first modular verification technique for finite blocking in non-

terminating programs.
2. It introduces explicit obligations with measures to uniformly specify guar-

antee properties [14] and verify them in standard program logics.
3. It unifies verification tasks such as proving termination, deadlock freedom,

and finite blocking in one coherent methodology.
4. It adopts ideas from the Chalice verifier [13], but encodes them in a simpler

way and fixes a soundness problem.

We give an informal overview of our verification technique in Sec. 2 and introduce
the programming and assertion language in Sec. 3. We present the encoding of
assertions in Sec. 4 and of statements in Sec. 5. Sec. 6 provides an informal
soundness argument. We discuss related work in Sec. 7 and conclude in Sec. 8.
App. A illustrates the treatment of message passing and deadlock freedom that
we adopted from Chalice. App. B provides a detailed soundness argument.

2



2 Verification Technique

This section presents the main ideas of our verification technique informally.

2.1 Obligations

An obligation is associated with a thread and specifies an action that this thread
must eventually perform, either itself or by delegating it to another thread. The
action could be executing a certain statement, establishing certain conditions,
or reaching certain program points. Since this paper focuses on the verification
of finite blocking, we use obligations to enforce actions that a thread must per-
form to unblock another thread. We introduce a different kind of obligation for
each blocking operation provided by the programming language. For instance, a
releases-obligation indicates that a thread must release a given lock to unblock
a thread possibly trying to acquire it, and a terminates-obligation indicates that
a thread must terminate to unblock a thread possibly trying to join it.

The obligations for different blocking operations have different characteristics
along three dimensions. (1) Some obligations can be accumulated (for instance,
to express that several messages must be sent on a channel or that a re-entrant
lock must be released several times), whereas others cannot (for instance, an
obligation to terminate). (2) For some obligations, there is a dual concept of
credit, which expresses the permission to execute a blocking operation. We view
credits as negative obligations. In particular, creating a credit creates also the
corresponding obligation. Credits are necessary for those blocking operations
where the very first execution will block. For instance, if channels are initially
empty then receiving on a channel requires a credit to ensure that some thread
has the obligation to send a message eventually. In contrast, acquiring a lock does
not require a credit because the very first acquire for each lock always succeeds;
each acquire then creates a releases-obligation to ensure that subsequent acquires
also succeed eventually. (3) Some obligations may be delegated to other threads
(for instance, an obligation to send a message), whereas others may not (for
instance, obligations to terminate or to release a lock).

Despite these different characteristics, our verification technique treats obli-
gations uniformly. To enable modular verification, we track the obligations held
by the current thread on the level of individual method executions rather than
the entire thread. Obligations may be passed between different method exe-
cutions when a method is being called, when a method terminates, and when
a method is forked in a different thread (but not upon thread-join, as we will
discuss later). Which obligations get transferred is expressed in the method spec-
ifications, analogously to the transfer of access permissions in implicit dynamic
frames [12, 19]. For each kind of obligation, we provide an assertion that can be
used in method pre and postconditions. When a method is called (or forked),
the obligations required in the method precondition are transferred from the
caller to the callee; analogously, the obligations provided by the method post-
condition are transferred from the method to its caller upon termination. Loops

3



method A(l: Lock)
{

acquire l;
call R(l);

}

method R(l: Lock)
requires releases(l);

{
release l;

}

Fig. 1: An example illustrating the use and transfer of obligations. We omit spec-
ifications related to concepts introduced later, in particular, obligation measures
and deadlock prevention.

are treated analogously: we track obligations per loop iteration, and the loop
invariant specifies the permissions required and provided by a loop iteration.

Proof rules ensure that each obligation is held by an active method execution
(an execution on the stack of any thread) or loop invariant until it is satisfied. In
particular, a leak check ensures that when a method execution terminates, all of
its remaining obligations are transferred to the caller. Moreover, well-formedness
checks ensure that obligations cannot be lost by sending them in a message (that
might never get received) or by putting them in the postcondition of a forked
method (since the forked thread may never get joined). However, leaking or
losing credit is permitted.

Fig. 1 illustrates some of the concepts introduced so far. Method A acquires
lock l, which creates an obligation to release it eventually. Method R requires a
releases-obligation to l in its precondition. Therefore, when A calls R, its obliga-
tion is transferred to R. After the call, A does not contain any obligations and,
thus, passes the leak check. Method R gets rid of its obligation by releasing l
and, thus, also passes the leak check.

2.2 Obligation Measures

Obligations allow one to track modularly which method execution is expected to
perform a given unblocking operation. However, the proof rules sketched above
are not sufficient to prevent a non-terminating thread from blocking another
thread forever. Assume method R from Fig. 1 was implemented as follows:
method R(l: Lock)

requires releases(l);
{

while(true)
invariant releases(l);

{ }
release l;

}

This implementation passes the leak check since no obligations are held at the
end of the method or at the end of a loop iteration after the releases-obligation
has been transferred to the next loop iteration. However, the method obviously
fails to release l because it enters a non-terminating loop before reaching the
release operation.

4



method Await(l: Lock)
requires releases(l, 1);
ensures releases(l, 1);

{
while(!P)

invariant releases(l, 1);
{

release l;
acquire l;

}
}

Fig. 2: A busy version of Java’s wait method. We omit specifications related to
deadlock prevention.

A naïve solution would be to require that a method holds no obligations when
it enters a possibly non-terminating loop or calls a possibly non-terminating
method. However, this solution is too restrictive for many useful implementa-
tions. For instance, the Await method in Fig. 2 encodes a busy version of Java’s
wait method. The method loops until a condition P holds, where P refers to fields
that are protected by a lock l. Therefore, Await will be called in states where the
executing thread holds lock l and, hence, the method has a releases-obligation
for l. In each loop iteration, the method releases and then re-acquires the look
such that other threads may obtain the lock and establish P.

The naïve solution would disallow method Await unless one could prove that
the loop will always terminate, which may be difficult in a modular setting.
However, since the loop releases and re-acquires the lock l in each iteration, it is
guaranteed not to block indefinitely any other thread that attempts to acquire
l (assuming fair scheduling and fair locks). A similar situation occurs when a
thread is expected to send an unbounded number of messages over a channel.
Its send-loop might not be guaranteed to terminate, but would hold a sends-
obligation in each iteration (see App. A for the full example); it would therefore
be rejected by the naïve solution.

Measures. These two examples show that the naïve solution is overly con-
servative. It should be possible for a thread to hold obligations during a non-
terminating execution as long as these obligations will be satisfied eventually. To
verify this liveness property without resorting to temporal reasoning, we reduce
it to a safety property by associating each obligation with a measure (also called
variant or ranking function). Analogously to a termination measure, an obliga-
tion’s measure is an expression that evaluates to a value in a well-founded set.
Proof rules ensure that the measure is decreased in each loop iteration or recur-
sive call, and that the obligation gets satisfied before its measure expires. This
check would fail for method R above because there is no measure that one could
choose for the releases-obligation that gets decreased during the non-terminating
loop.

5



method Fac(n: int) returns (res: int)
requires 0 ≤ n ⇒ terminates(n);

{
if (n ≤ 1)

res := 1;
else

res := n * Fac(n - 1);
}

method Main(n: int) returns (res: int)
{
if (0 ≤ n) {
fork t := Fac(n);
join res := t;

}
}

Fig. 3: A recursive factorial method. The terminates-obligation in the precon-
dition expresses that the method will terminate if n is non-negative. The ante-
cendent ensures that the measure of the obligation is well-founded. The main
method forks a new thread to execute Fac. It may join this thread only because
Fac is guaranteed to terminate and, thus, the join will not block indefinitely.

Fresh Obligations. Measures alone cannot distinguish between the situations
in method R and method Await. In both of them, a possibly non-terminating loop
holds a releases-obligation before and after each loop iteration. However, method
R might cause finite blocking because the obligation is held throughout the loop
body, whereas method Await is safe because the releases-obligation is satisfied
and re-obtained in each iteration, giving other threads a chance to acquire the
lock in between. To distinguish these two situations, we track explicitly whether
an obligation is fresh, that is, has been obtained since the prestate of the current
method execution or loop iteration. Fresh obligations are exempted from the
check that their measure decreases before the next recursive call or loop iteration.
In the Await method above, the measure of all releases-obligations is the constant
1, expressing that lock l will be released within one loop iteration. This constant
measure is not decreased in the loop body. However, since acquiring the lock
l obtains a fresh releases-obligation, it is exempted from the check that the
measure decreases, and the method verifies.

Termination. Associating obligations with measures allows us to treat ter-
mination like any other obligation. Therefore, termination proofs are a special
case of the general technique we propose. For instance, the factorial method
in Fig. 3 promises to terminate after at most n recursive calls if its argument is
non-negative. This termination guarantee is expressed by including a terminates-
obligation with measure n in the method’s precondition. We assume here that
programmers provide the measures for termination and other obligations. Com-
bining our technique with inference of termination measures (see Cook et al. [3]
for an overview) is future work. The termination guarantee of Fac ensures that
the join in method Main will not block indefinitely.

It might initially seem un-intuitive that termination as well as the satisfaction
of other obligations is specified as a method precondition rather than a postcon-
dition. However, this approach is consistent with the treatment of permissions
in permission-based logics such as separation logic. The precondition specifies
which resources get transferred from the caller to the callee. In permission log-

6



ics, the transferred resources are partial heaps; here, they are obligations. So one
should think of a precondition as the obligations consumed by the callee and of
a postcondition as the obligations provided by the callee.

3 Programming and Assertion Language

In this section, we introduce the programming and assertion language. Their
semantics will be defined in the next two sections.

3.1 Programming Language

We present our technique for a simple imperative programming language with
iteration and recursion, threads, as well as dynamically-created locks and chan-
nels. For simplicity, we omit other heap-allocated objects because their treatment
is orthogonal to the focus of this paper. However, our technique is compatible
with permission-based program logics.

A program consists of a sequence of method declarations and channel type
declarations. A method declaration has the form
method M(p: T) returns (r: T)
requires A;
ensures A;

{ S }

where M is a unique method name and T is one of the following types: bool,
int, lock, token, or a channel type. A is an assertion and S is a statement, see
below. Like in the Chalice language [13], a channel type declaration has the form
channel C(p: T) where A;

where C is a unique channel type name. Messages sent over such a channel
are values of type T . The where clause specifies a channel invariant, that is,
constraints on the messages; it also specifies the credits sent with each message.

Statements (Fig. 4) include operations on non-reentrant locks (creation, ac-
quire, release), operations on channels (creation, send, receive), method call,
thread fork and join, and loops with loop invariants. We also assume to have
assignments, sequential composition, and conditional statements, but do not for-
malize them because they are straightforward. Expressions e include constants,
variables v, and the usual boolean and arithmetic operations. We will explain
and formalize the semantics of statements in Sec. 5.

For simplicity channels have unbounded buffers such that send operations
never block. Therefore, the blocking operations in our language are acquiring a
lock, receiving a message, and joining a thread.

3.2 Assertion Language

Assertions are used as method pre and postconditions, loop invariants, and chan-
nel invariants. Besides the usual constraints on variables, they specify which
obligations and credits get transferred between method executions and loop it-
erations, along with their measures.

7



S ::= v := new lock
| acquire e
| release e
| v := new C
| send e1(e2)
| receive v := e
| call v := e1.M(e2)
| fork v := e1.M(e2)
| join v := e
| while(e) invariant A { S }

Fig. 4: The relevant statements of our programming language. We omitted assign-
ment, sequential composition, and conditional statements because their treat-
ment is straightforward. A fork statement yields a token, which can be used to
join the forked thread.

Measures. In order to define measures for obligations, we adopt Dafny’s ap-
proach [11] and assume a pre-defined well-founded partial order @ on all values
of a program execution. For instance, for integers x and y, we define x @ y ⇔
x < y ∧ 0 ≤ y, whereas for an integer x and a lock l, x @ l is undefined. The
resulting well-founded set forms a complete lattice (V,@) with top element >
and bottom element ⊥. Assuming a pre-defined order simplifies the presentation
of the verification technique. An adaptation to user-defined orders is possible,
but reveals nothing interesting.

Wait levels. One aspect of proving finite blocking is to prevent deadlock. We
achieve that by building on existing work [13] and introducing a global wait order
on all locks, channels, and threads (see App. A for an example). To encode this
order, we assign every lock, channel, and thread a wait level, that is, a value in
a dense lattice (L,�) with bottom element ⊥. We will use this order to prevent
cyclic wait conditions where each thread on the cycle waits on the next one to
release a lock, send a message, or terminate.

Assertions. The assertion language is summarized in Fig. 5. It includes boolean
expressions, conjunction, and implication. Moreover, there are assertions for
three kinds of obligations. For a releases-obligation releases(e1, e2), e1 of type
lock denotes the lock that must be released and e2 ∈ V is the measure. For a
sends-obligation sends(e1, e2, e3), e1 is of a channel type and denotes the chan-
nel on which messages must be sent, e2 is an integer that denotes how many
messages must be sent, and e3 is the measure. When e2 is negative, the asser-
tion denotes credits, that is, permissions to receive rather than obligations to
send. For a terminates-obligation terminates(e), e is the measure. For all three
obligation assertions, the measure can be any value in V, including > and ⊥.
The assertion joinable(e), where e is of type token provides the permission to
join the thread denoted by e. A thread may have a join-permission for e if the

8



A ::= e
| A1 && A2
| e ⇒ A
| releases(e1, e2)
| sends(e1, e2, e3)
| terminates(e)
| joinable(e)
| waitlevel� e

Fig. 5: The assertion language. The three kinds of obligations exhibit all different
characteristics of obligations discussed in Sec. 2.1.

thread represented by the token e is guaranteed to terminate and has not been
joined yet, and if no other thread has the permission to join it. The assertion
waitlevel � e expresses that the wait level of each lock held by the current
thread as well as of each channel for which the current thread has a sends-
obligation is strictly less than the wait level of e such that the current thread
may block on a lock, channel, or thread with level e without creating a deadlock.
One can think of waitlevel as the maximum wait level of any releases-obligation
or sends-obligation held by the current thread; however, we will use it to specify
only upper bounds one these levels.

Conjunction && is analogous to separating conjunction in separation logic.
In particular, releases(l, n) && releases(l, n) expresses that the current thread
must release lock l twice. Since this is not possible, the conjunction is equivalent
to false. The conjunction sends(c, 1, n) && sends(c, 1, n) expresses that the current
thread has two obligations to send a message on channel c; that is, it is equivalent
to sends(c, 2, n).

Note that the use of sends-obligations and credits is not new [13] (see App. A
for an example). We include them here to demonstrate how our technique han-
dles a range of obligations uniformly and to exhibit all different characteristics of
obligations discussed in Sec. 2.1. Sends-obligations can be accumulated, have the
dual concept of sends-credits, and can be transferred between threads, whereas
releases-obligations and terminates-obligations cannot be accumulated, have no
credits, and cannot be transferred. Therefore, our assertion language is represen-
tative for a wide range of obligations including for instance obligations to await
an asynchronous task or perform I/O.

Well-formedness Conditions. We impose several well-formedness conditions
on assertions. (1) Method postconditions must not contain terminates-obligations
because these obligations are satisfied when the method terminates and, thus,
not returned to the caller. (2) A method may be forked only if its precondi-
tion does not contain any releases-obligations. This condition reflects that a
lock must be released by the thread that acquired it; neither the lock nor the
releases-obligation can be transferred to another thread. (3) A method may be
forked only if its postcondition does not contain any obligations. This condition

9



prevents leaking of obligations when a forked thread is never joined. For ter-
minates and releases-obligations, this condition can be checked syntactically. If
the postcondition contains an assertion sends(c, e, n), we verify that e evaluates
to a non-positive number, that is, the assertion denotes a credit. (4) A channel
invariant must not contain any obligations (but credits are allowed). This con-
dition ensures that obligations cannot be leaked by sending them in a message
that might never get received. (5) A channel invariant must not contain wait
level constraints because these constraints cannot be interpreted consistently in
the sender and receiver of a message.

4 Encoding of Assertions

In this section, we present an encoding of assertions into a guarded command lan-
guage similar to Boogie [1]. We introduce the representation of program states,
explain how we encode the transfer of obligations, and then formalize the mean-
ing of assertions.

4.1 Encoding of States

The state of a method execution consists of the method’s parameter and result
variables, its local variables, as well as the obligations and (credits) held by
this method execution. To treat the different kinds of obligations uniformly, we
introduce a type

obl = lock ∪ channel ∪ {term}

where channel includes all channel types declared in the program. Here, a lock
identifies a releases-obligation, a channel identifies a sends-obligation (or credit),
and the identifier term identifies a terminates-obligation. Using the obl type,
we can declare a global map that stores the obligations and credits held by the
current method execution or loop iteration:

B : obl→ Z

B[o] = n encodes that the current method execution has n obligations for o, if n
is positive, and −n credits, if n is negative, The latter occurs only for channels.

As we explained in Sec. 2.2, we track separately which obligations are fresh,
that is, have been obtained since the prestate of the current method execution
or loop iteration. The number of fresh obligations is stored in a global map:

F : obl→ N

F [o] yields how many of the obligations in B[o] are fresh. If there are no obliga-
tions, F [o] is zero. That is, we maintain the following invariants:

∀o ∈ obl · 0 ≤ B[o]⇒ F [o] ≤ B[o]
∀o ∈ obl · B[o] ≤ 0⇒ F [o] = 0

10



Since the first execution of a join statement for any thread t may block, we
need in principle a credit that provides the permission to join t (see the char-
acteristics of obligations in Sec. 2.1). This credit is the dual of the terminates-
obligation for t. That is, the forker of t obtains the credit needed to join t if t
promises to terminate, that is, consumes a terminates-obligation. It is possible
to encode join-permissions as terminates-credits, but such an encoding compli-
cates terminates assertions (which would need an argument that identifies the
thread) and the encoding of fork (since terminates-obligations in the precondi-
tion of the forked method must be interpreted differently in the forker and in
the forkee). Therefore, we choose a different encoding here. The map B does not
contain termination information about threads other than the current thread;
such information is stored in a separate map that yields whether a thread may
be joined:

J : token→ B

Finally, we record the wait level of each lock, channel, and token in the
following map, where L is the set of wait levels:

L : obl ∪ token→ L

4.2 Transfer of Obligations and Credits

Our assertions do not only express conditions on the state but also specify which
obligations (and credits) get transferred between method executions and loop
iterations. This behavior is similar to assertions in permission logics, which de-
scribe how ownership of resources is transferred. We formalize the meaning of
assertions via two operations, exhale and inhale (sometimes called produce and
consume). In this subsection, we explain how to exhale and inhale obligations
and credits. A key virtue of our approach is that these operations are uniform
for all kinds of obligations. Exhaling and inhaling assertions will be explained in
the next subsection.

Exhale. Exhaling obligations and credits is formalized in Fig. 6. The operation
Exhaleobl(o, n,m, creditsAllowed, P ) exhales n obligations (or −n credits, if n is
negative) for o (where o is a lock, channel, or term) with measure m. It first
asserts that credits are permitted for this kind of obligation or that the current
state has enough obligations to exhale. (Applications of Exhaleobl will ensure
that creditsAllowed is true if n is negative.)

For the rest of the operation, let us first consider the case that we exhale
obligations, that is, 0 < n. If the exhaled obligations are fresh (indicated by
m = >), we check that there are enough fresh obligations available or that there
are no non-fresh obligations. In the former case, the fresh obligations are given
away. In the latter case, the exhale gives away all available fresh obligations and
obtains some credits. It would be unsound to exhale fresh obligation if neither

11



Exhaleobl(o, n, m, creditsAllowed, P ) =
assert creditsAllowed ∨ n ≤ B[o];
if (m = >) {

assert n ≤ F [o] ∨ B[o] ≤ F [o];
F [o] := max(F [o]− n, 0);

} else {
assert 0 < n ∧ F [o] < B[o]⇒ m @ P [o];

}
B[o] := B[o]− n;
if (B[o] < F [o]) {
F [o] := max(B[o], 0);

}

Fig. 6: The exhale operation for obligations and credits. o ∈ obl is the obligation,
n ∈ Z indicates the number of obligations (or credits) to exhale, and m ∈ V is
the measure of the obligations to be exhaled. The boolean flag creditsAllowed
indicates whether credits are allowed for the kind of obligations to be exhaled.
P ∈ obl→ V provides the measure of obligations in the prestate of the enclosing
method or loop for the check that the measure decreases.

case applied because reducing the number of obligations would then treat non-
fresh obligations as fresh, thereby providing a way to postpone their satisfaction.
If the exhaled obligations are non-fresh (m 6= >), we check that if the current
state holds non-fresh obligations (F [o] < B[o]), their measure decreased w.r.t.
the prestate measure of the enclosing method or loop, provided by the map
P ∈ obl → V. In both cases, we remove the exhaled obligations from the state
and adjust the number of fresh obligations to maintain the invariant mentioned
in Sec. 4.1.

Let us now consider the case that we exhale credits, that is, n ≤ 0. In this
case, the assertions in both branches of the conditional hold trivially (recall that
0 ≤ F [o]). Giving away fresh credits increases the number of fresh obligations,
and giving away any credits always increases the number of obligations. It is
therefore preferable to make all credits in assertions fresh.

Creation and Cancellation of Credits. A sends-credit for a channel c is
created by exhaling a sends-obligation for c in a state that holds no such obli-
gation. However, the inverse operation—canceling an obligation with a credit—
is not permitted. That is, inhaling a credit in a state that holds a correspond-
ing obligation, or inhaling an obligation in a state that holds a corresponding
credit leads to a verification error. It would be unsound to create a credit by
exhaling an obligation with a small measure and then cancel the credit with an
obligation that has a larger measure. This would effectively increase the measure
of the obligation and, thus, provide a way to postpone the satisfaction of the
obligation indefinitely. Even if the obligation resulting from creating a credit
and the obligation used to cancel the credit had the same measure, one could

12



postpone the satisfaction of the obligation indefinitely by arranging a sequence
of threads where each thread obtains a credit from its successor to cancel its
own obligation, creating another obligation in the successor, and so on.

One could prevent this unsoundness by recording the measure of the exhaled
obligation when creating a credit and then enforcing that the credit may cancel
only obligations that have a strictly larger measure. Since this solution requires
substantial bookkeeping and since the main purpose of sends-credits is to enable
receive operations (rather than canceling sends-obligations), we simply forbid
cancellation of obligations and credits altogether. This rule is reflected in the
encoding of inhale below.

Inhale. Inhaling obligations is formalized in Fig. 7. Inhaleobl(o, n,m, P ) inhales
n obligations (or−n credits, if n is negative) for o with measurem. The operation
records the measures of inhaled obligations in map P . If there are multiple
obligations for o, we abstract their measures by storing their minimum. This is
achieved by using the meet of the measure lattice. We treat the inhale operation
as a parameterized macro such that updates to P modify the argument map at
the call site. We will record measures only in the prestates of method executions
and loop iterations; in all other cases, we will pass a dummy map for P .

Inhaleobl(o, n, m, P ) =
if (0 < n) {

P [o] := P [o] um; }
}
assert (0 < n⇒ 0 ≤ B[o]) ∧ (n < 0⇒ B[o] ≤ 0);
Exhaleobl(o,−n, m, true, P>);

Fig. 7: The inhale operation for obligations and credits. The parameters o, n,
and m are analogous to Exhaleobl. Inhaling obligations records their measures in
the map P ∈ obl→ V for later checks. Note that we treat the inhale operation
as a parameterized macro such that updates to P modify the argument map at
the call site. P> ∈ obl → V yields > for all obligations and is used to suppress
the measure check during exhale, which is not needed during inhale.

The assertion after the update of P prevents credit cancellation as explained
above. Finally, obligations are added by exhaling the corresponding credits, and
vice versa. Since the decrease-checks for measures before recursive calls and at the
end of loop iterations will be encoded via exhale, inhale does not have to perform
any such checks. Therefore, it passes P>, which yields > for all obligations, to
Exhaleobl, such that the check m @ P [o] there will trivially succeed.

4.3 Exhaling and Inhaling Assertions
Exhaling an assertion A checks that the constraints specified by A hold and
removes the obligations and credits specified in A from the current state. The

13



definition is provided in Fig. 8. Exhaling proceeds in two phases. The first phase
checks all constraints except those on wait level and handles the transfer of
obligations and credits. The second phase only checks wait level constraints.
This encoding via two phases is necessary to treat wait level constraints soundly.
It checks wait level constraints during exhale after obligations and credits have
been removed from the state, and assumes wait level constraints during inhale
before obligations and credits have been added (see Fig. 9 below). That is, in
both cases, waitlevel refers to a state that does not contain the transferred
obligations and credits. This fixes an unsoundness in Chalice [13], where it was
possible to interpret waitlevel inconsistently during exhale and inhale and, thus,
exhale assertions that lead to an inconsistency when inhaled.

Exhale(A, P ) = Exhale1(A, P ) Exhale2(A,_)

Exhalei(A1 && A2, P ) = Exhalei(A1, P ) Exhalei(A2, P )
Exhalei(e ⇒ A, P ) = if (bbecc) { Exhalei(A, P ) }

Exhale1(e,_) = assert bbecc;
Exhale1(releases(e1, e2), P ) = Exhaleobl(bbe1cc, 1, bbe2cc, false, P )
Exhale1(sends(e1, e2, e3), P ) = Exhaleobl(bbe1cc, bbe2cc, bbe3cc, true, P )
Exhale1(terminates(e), P ) = Exhaleobl(term, 1, bbecc, true, P )
Exhale1(joinable(e),_) = assert J [bbecc];J [bbecc] := false;

Exhale2(waitlevel� e,_) = assert levelBelow(B,L[bbecc]);

Fig. 8: Encoding of exhale. A is an assertion, and P ∈ obl → V provides the
prestate measures for the check that obligation measures decrease. All cases not
mentioned here are defined as skip. bb_cc encodes expressions of the programming
language. It is straightforward and, therefore, omitted.

In both phases of exhale, conjunction is treated multiplicatively by sequen-
tially exhaling the two conjuncts. This is analogous to an encoding of separating
conjunction [17]. Implication is encoded via a conditional statement. Phase 1
uses Exhaleobl from Fig. 6 to transfer obligations and credits, and to check that
measures decrease. Even though there are no terminates-credits, we set the cred-
itsAllowed parameter of Exhaleobl to true for terminates-obligations because our
encoding of statements will lead to temporary situations where a method may
have a negative number of terminates-obligations. Exhaling a join-permission
asserts that such a permission is held and removes it. Phase 2 checks wait level
constraints. The encoding uses the following abbreviation:

levelBelow(B, u) = (∀o ∈ obl \ { term } · 0 < B[o] ⇒ L[o]� u)

14



which expresses that the levels of all locks and channels for which the current
method execution or loop iteration holds obligations are strictly smaller than
the upper bound u.

Inhale(A, P ) = var Bold := B; Inhale1(A, P )

Inhale1(A1 && A2, P ) = Inhale1(A1, P ) Inhale1(A2, P )
Inhale1(e ⇒ A, P ) = if (bbecc) { Inhale1(A, P ) }
Inhale1(e,_) = assume bbecc;
Inhale1(releases(e1, e2), P ) = Inhaleobl(bbe1cc, 1, bbe2cc, P )
Inhale1(sends(e1, e2, e3), P ) = Inhaleobl(bbe1cc, bbe2cc, bbe3cc, P )
Inhale1(terminates(e), P ) = Inhaleobl(term, 1, bbecc, P )
Inhale1(joinable(e),_) = J [bbecc] := true;
Inhale1(waitlevel� e,_) = assume levelBelow(Bold ,L[bbecc]);

Fig. 9: Encoding of inhale. A is an assertion, and P ∈ obl→ V is used to record
the measures of inhaled obligations.

The definition of inhale in Fig. 9 is analogous to exhale. It stores the current
obligations map B before transferring obligations or credits in order to interpret
wait level constraints consistently with exhale. Inhaling a constraint assumes it.
Obligations and credits are transferred using the Inhaleobl macro from Fig. 7,
and join-permissions are inhaled by adding them.

5 Encoding of Methods and Statements

In this section, we present the proof rules for our verification technique via an en-
coding into a guarded command language similar to Boogie [1]. Verification then
proceeds by computing weakest preconditions over the guarded commands and
proving them in an SMT solver. Verification is thread and procedure-modular.
That is, each method is verified without considering its caller or interference
from other threads.

5.1 Methods

When a method is called, the caller must transfer all its obligations to the callee
to ensure that the callee is aware of the obligations it needs to satisfy. How-
ever, the caller is allowed to retain releases-obligations iff the callee promises
to terminate; in this case, control will return to the caller, and the caller can
satisfy these obligations then. Not having to transfer releases-obligations into
terminating methods is crucial for modularity; otherwise, the callee’s precon-
dition would have to mention different obligations for different call sites. Note
that this exception applies to releases-obligations, but not to sends-obligations
because canceling obligations with credits is not permitted; to pass the check

15



that no cancellation occurs when obtaining a sends-obligation or sends-credit,
the method needs to know that its caller does not hold any such credits or obliga-
tions. Consequently, the execution of a method body starts in a state in which we
assume that the thread holds no credits and no obligations other than releases-
obligations. Our encoding of call statements does not actually ensure that the
caller has no credits. However, this is sound because credits that are not passed
into the callee will not get canceled during the execution of the callee. If the
callee returns obligations to its caller, the cancellation will be detected when the
postcondition of the callee gets inhaled by the caller.

〈〈method M(p) returns (r) requires preM (this, p) ensures postM (this, p, r) { S }〉〉 =
var Bmethod := B;
assume (∀o ∈ obl · 0 ≤ B[o] ∧ (o 6∈ lock⇒ B[o] = 0));
var Pmethod := P>;
Inhale(preM (this, p), Pmethod)
foreach o ∈ obl { F [o] := 0; }
[[S]]
Exhale(postM (this, p, r), P>)
B[term] := 0;
assert ∀o ∈ obl · (o ∈ lock⇒ B[o] = Bmethod [o]) ∧ (o 6∈ lock⇒ B[o] ≤ 0);

Fig. 10: Encoding 〈〈_〉〉 of methods. The assertions preM (this, p) and
postM (this, p, r) are the method precondition and postcondition, resp.

This observation is reflected in the encoding of methods (Fig. 10) as follows.
We store the unknown initial obligations map in a local variable Bmethod , which
is used in the leak check at the end of the method. The initial obligations map is
constrained by the properties discussed above. The subsequent inhale operation
assumes the method precondition and transfers obligations and credits from the
caller to the callee. It records the measures of obligations in a map Pmethod ,
which will be used in call and fork statements to ensure that measures decrease.
The recording works by passing the all-top map P> into the inhale macro, which,
for each inhaled obligation, takes the minimum (that is, the meet) of the stored
measure and the measure of the inhaled obligation (see Fig. 7). Finally, we make
all fresh obligations non-fresh since obligations that are fresh to the caller are not
fresh to the callee as they existed before the execution of the callee started. This
step is necessary to prevent fresh obligations from being transferred indefinitely
from method execution to method execution.

The method body is encoded using the encoding function for statements [[_]].
After executing the body, we exhale the postcondition. During this exhale, we
do not need to check that measures have decreased (which happens only at call
sites and at the end of loop iterations). Therefore, we pass the all-top map P>
as last argument to the exhale operation such that the decrease-check succeeds

16



trivially. Finally, we remove the terminates-obligation from the obligation map
since the method is about to terminate. The final step is the leak check: upon
termination, the method may hold at most the obligations it held in the prestate,
that is, the same releases-obligations as in Bmethod and no other obligations. In
other words, all obligations passed in from the caller or obtained during the
execution of the method must be satisfied, transferred to other threads (during
a fork), or returned to the caller when exhaling the postcondition.

5.2 Call, Fork, and Join

A call statement (Fig. 11) is verified by exhaling the precondition of the callee
and then inhaling its postcondition. The exhale needs to check that the measures
of exhaled obligations decreased since the prestate of the caller. This is achieved
by passing the measures from this state (variable Pmethod , which is initialized at
the beginning of the enclosing method, see Fig. 10) into the exhale operation.
After the exhale, we assert that the caller retains no obligations other than
releases-obligations in case the callee promises to terminate. This assertion refers
to the underspecified initial obligation map Bold of the enclosing method or
loop. If the call occurs inside a loop, Bold denotes Bloop of the enclosing loop
(see Fig. 14) and otherwise Bmethod of the enclosing method (see Fig. 10). The
condition B[term] < term expresses that the callee promises to terminate. In
this case, exhaling its precondition will transfer a terminates-obligation from
the caller to the callee, that is, decrease the value of B[term] compared to
the value before the exhale (stored in local variable term). Finally, since the
assertion after the exhale quantifies over all obligations, including terminates-
obligations, it enforces that the callee promises to terminate if the caller does
(otherwise the caller would still hold its terminates-obligation after the exhale).
Since terminates-obligations must be satisfied by each individual method and
cannot be delegated, we restore the terminates-obligations after the exhale. The
final inhale does not have to record measures since this is necessary only in the
prestate of a method execution or loop iteration; therefore, it uses the dummy
map Pd, which is never read from.

The encoding of a fork statement is similar to a call. In particular, the mea-
sures of transferred obligation must decrease to ensure that they cannot be
transferred from thread to thread indefinitely. However, since the forked method
will be executed in a new thread, there are no restrictions on the obligations
that remain in the forker. After the exhale, we pick a fresh token for the new
thread. The fact that this token is different from existing token is encoded by
assuming that its level in the wait order is ⊥, whereas all tokens for existing
threads are implicitly assumed to have larger levels. The new thread can be
joined if it promises to terminate, that is, if the forker’s terminates-obligations
get decreased by exhaling the forked method’s precondition. Like for calls, the
terminates-obligations get restored afterwards. Finally, we choose a wait level
for the new thread that is above the current thread’s wait level, which will allow
the current thread to join it later.

17



[[call v := e1.M(e2)]] = var term := B[term];
Exhale(preM (bbe1cc, bbe2cc), Pmethod)
assert (∀o ∈ obl · B[o] ≤ 0 ∨ B[o] ≤ Bold [o]∨

(o ∈ lock ∧ B[term] < term);
B[term] := term;
Inhale(postM (bbe1cc, bbe2cc, v), Pd)

[[fork v := e1.M(e2)]] = var term := B[term];
Exhale(preM (bbe1cc, bbe2cc), Pmethod)
havoc v; assume L[v] = ⊥;
J [v] := (B[term] < term);
B[term] := term;
havoc w; assume levelBelow(B, w);
L[v] := w;

[[join v := e]] = assert levelBelow(B, bbecc);
assert J [bbecc];
Inhale(poste(v), Pd)
J [bbecc] := false;

Fig. 11: Encoding of call, fork, and join statements. Bold denotes Bloop of the
enclosing loop or Bmethod of the enclosing method, if the call is not within a
loop. Pd ∈ obl → V is a dummy map that is never read. The function poste

yields the postcondition of the method that was forked to obtain token e. We
assume that the receiver and arguments of the fork are stored in the token, but
omit this aspect in the encoding.

Since join is a blocking operation, it asserts that the token of the thread to
be joined is strictly above the current wait level (to avoid deadlock) and that
the current thread has the appropriate join-permission (to avoid waiting on a
non-terminating thread). We then inhale the joined method’s postcondition and
remove the join-permission to prevent a thread from being joined more than
once, which could forge credits in the postcondition.

5.3 Lock Operations

The encoding of lock operations is presented in Fig. 12. To focus on the essentials,
we do not associate locks with an invariant. An extension is straightforward, but
requires that the invariant does not contain obligations (credits are permitted)
[13]. Otherwise, a thread could get rid of its obligations by storing them in a
lock, which might never get acquired again.

Creating a new lock picks a fresh lock value. The fact that this value is
different from existing locks is encoded by assuming that its level in the wait
order is ⊥, whereas all other locks are assumed to have larger levels. The new
lock is then inserted into the wait order above the current wait level, which allows
the current thread to acquire it (specifying different levels for the new lock is

18



[[v := new lock]] = havoc v; assume L[v] = ⊥;
havoc w; assume levelBelow(B, w);
L[v] := w;
B[v] := 0;F [v] := 0;

[[acquire e]] = assert levelBelow(B, bbecc);
Inhaleobl(bbecc, 1,>, Pd)

[[release e]] = Exhaleobl(bbecc, 1,⊥, P>)

Fig. 12: Encoding of lock operations.

possible [13], but omitted here for simplicity). Initially, the current thread does
not hold any obligations for the new lock.

Acquiring a lock checks that the lock is strictly above the current wait level
to prevent deadlock. It then inhales a fresh releases-obligation for the lock to
ensure that the acquired lock will eventually be released. Inhaling this obligation
implicitly raises the current thread’s wait level, which is defined as the maximum
of the levels of all held obligations.

Releasing a lock exhales the corresponding releases-obligation. This exhale
operation does not have to check that the obligation measure has been decreased.
We achieve that by passing a non-> measure for the obligation (here, ⊥) and
P> for the prestate map, such that the decrease-check succeeds trivially (since
⊥ @ >).

5.4 Message Passing

The encoding of channel operations is presented in Fig. 13. Channel creation is
analogous to lock creation (see Fig. 12). Since receive is a blocking operation, we
first assert that the channel is strictly above the current wait level. Moreover,
to ensure that some thread has an obligation to send on the channel (or has
sent already), we require that the current thread has a sends-credit, which is
subsequently consumed by exhaling it. Finally, we inhale the channel invariant
inv, without recording any obligations measures. Since we assume sending to
be a non-blocking operation, we simply exhale a sends-obligation (which got
satisfied) and exhale the channel invariant.

Our well-formedness conditions (Sec. 3.2) ensure that channel invariants do
not contain obligations. Therefore, it is neither possible to get rid of obligations
by sending them in a message that is never received, nor to send obligations
in circles indefinitely. It is also not possible to transfer obligations indirectly
from one thread to another by sending a credit in the opposite direction. Such
an indirect transfer would have to cancel the obligation in the receiver of the
message with the credit contained in the message, which is prevented by our
definition of inhale (see Sec. 4.2).

19



[[v := new C]] = havoc v; assume L[v] = ⊥;
havoc w; assume levelBelow(B, w);
L[v] := w;
B[v] := 0;F [o] := 0

[[receive v := e]] = assert levelBelow(B, bbecc);
assert B[bbecc] < 0;
Exhaleobl(bbecc,−1,⊥,_)
Inhale(inv(bbecc, v), Pd)

[[send e1(e2)]] = Exhaleobl(bbe1cc, 1,⊥, P>)
Exhale(inv(bbe1cc, bbe2cc), P>)

Fig. 13: Encoding of channel operations. C is a channel type, and inv denotes its
invariant, which may refer to the channel itself, for instance, to denote sends-
credits for the channel.

5.5 Loops

The encoding of loops (Fig. 14) includes both the representation of the loop
within the enclosing code and the verification of the loop body. The two aspects
are encoded by a non-deterministic choice (if(*)). The former resembles the
encoding of a method call, whereas the latter is similar to a method body.

In both cases, we proceed by exhaling the loop invariant. This exhale does
not check obligation measures since the measures of the loop encoded here are
independent of the measures used by the enclosing method or loop (if any).
Hence, we pass the all-top map P> to the exhale operation. The check after
exhaling the loop invariant ensures that the code before the loop does not re-
tain any obligations other than releases-obligations in case the loop promises to
terminate. This assertion, including the interpretation of Bold , is identical to the
one for calls (Fig. 11). In particular, it enforces that the loop must promise to
terminate if the enclosing loop or method has a terminates-obligation. We then
havoc the loop targets, that is, all local variables that get assigned to in the loop
body. Any information about these variables that should be retained must be
included in the loop invariant.

To represent the loop within the enclosing code, we simply inhale the loop in-
variant (without recording obligation measures), assume that the loop condition
is false, and proceed to the statements after the loop.

To verify the loop body, we consider an arbitrary loop iteration. We first
havoc the obligation maps to remove any information from before the loop. The
following steps are analogous to the encoding of methods (Fig. 10): we save
the unknown initial obligation map in a fresh local variable Bloop and constrain
the initial obligation map to contain no credits and no obligations other than
releases-obligations. Then we inhale the loop invariant and record obligation
measures in a map Ploop for the decrease-check at the end of the loop body.

20



[[while(e) invariant A { S }]] =
var term := B[term];
Exhale(A, P>)
assert (∀o ∈ obl · B[o] ≤ 0 ∨ B[o] ≤ Bold [o] ∨ (o ∈ lock ∧ B[term] < term);
havoc loop targets;
if (∗) {
Inhale(A, Pd)
assume ¬bbecc;

} else {
havoc B,F ;
var Bloop := B;
assume (∀o ∈ obl · 0 ≤ B[o] ∧ (o 6∈ lock⇒ B[o] = 0));
var Ploop := P>;
Inhale(A, Ploop)
foreach o ∈ obl { F [o] := 0; }
assume bbecc;
[[S]]
Exhale(A, Ploop)
assert ∀o ∈ obl · (o ∈ lock⇒ B[o] = Bloop[o]) ∧ (o 6∈ lock⇒ B[o] ≤ 0);
assume false;

}

Fig. 14: Encoding of while statements. The first branch of the non-deterministic
choice encodes the loop within the enclosing code and resembles a method
call. The second branch verifies the loop body and resembles the encoding of
a method.

Finally, we make all fresh obligations non-fresh (to prevent them from being
transferred indefinitely from iteration to iteration), and execute the loop body.
After the loop body, we exhale the loop invariant, checking that obligation mea-
sures decreased during the loop body, and perform the same leak check as for
methods. Finally, we stop verification by assuming false, in order to prevent ver-
ification from proceeding with the code after the loop (which is done in the other
branch of the non-deterministic choice).

6 Soundness

Our technique guarantees that in any execution of a verified program, no thread
blocks indefinitely. This guarantee holds under the assumptions that (1) all
thread transitions are strongly fair and (2) the number of threads in any ex-
ecution state is bounded. A strongly-fair transition executes infinitely often if
it is enabled infinitely often. Hence, we make the assumption that the thread
scheduler ensures strong fairness and that we have fair locks and fair message
reception. To ensure a bounded number of threads, we assume that a fork op-
eration aborts the entire program execution if an arbitrary, but fixed limit is

21



reached. In this section, we provide the main arguments why our technique is
sound. A detailed soundness argument is presented in App. B.

The following properties hold in each execution state of a verified program:

1. A thread t holds a lock l iff t has a releases-obligation for l. This property is
preserved by all lock operations (Fig. 12). The other operations preserve it
because they neither add nor remove releases-obligations. In particular, our
well-formedness conditions (Sec. 3.2) ensure that releases-obligations cannot
be transferred to another thread during fork, join, or message passing.

2. For each channel c, the total number of credits in the system (that is, held
by a thread or stored in a message) is at most the total number of obligations
plus the number of messages stored in c’s buffer. This inequality is preserved
by all channel operations (Fig. 13). For all other operations, each exhale has
a corresponding inhale, keeping the total number of obligations and credits
in the system constant. The only exception is exhaling the postcondition
of a forked method if the thread does not get joined. However, our well-
formedness conditions ensure that postconditions of forked methods do not
contain obligations. Moreover, our leak checks ensure that the termination of
method executions and loop iterations maintains the number of obligations
in the system and does not increase the number of credits, thus, preserving
the inequality.

3. If a thread t has a join-permission for a thread t′ then t′ has a terminates-
obligation or has terminated already. Fork and join (Fig. 11) preserve the
property. In particular, fork provides a join-permission only if the new thread
promises to terminate, and join removes this permission. Moreover, a thread
keeps its terminates-obligation until the forked method terminates.

4. If a thread t is blocked, the number of obligations to unblock it held by all
other threads is positive. This property follows from the encoding of the three
blocking statements and Properties 1–3.

5. There is no cycle among threads such that each thread on the cycle waits
for the next one to unblock it; that is, there is no deadlock. Each blocking
statement checks that the wait level of the current thread is strictly less than
the wait level of the thread that must unblock it, that is, the thread that
(a) holds the lock to be acquired (since held locks contribute to the wait
level by Property 1), (b) has a sends-obligation for the channel on which to
receive, or (c) needs to terminate (since the thread’s current wait level is no
smaller than its initial wait level, which is the level of its token).

The following properties hold for each execution of a verified program:

6. A fresh obligation gets satisfied or becomes non-fresh within finitely many
execution steps. A single thread t can hold on to a fresh obligations only for
a finite number of steps because every fresh obligation becomes non-fresh
at the beginning of each method or loop body. In particular, before it can
transfer the obligations to another thread.

7. A non-fresh obligation gets satisfied within finitely many execution steps.
A non-fresh obligation cannot stay in one thread forever since its measure

22



must decrease for each recursive call or loop iteration. It can be transferred
to other threads only via fork, which also checks that the measure decreases.
The well-formedness conditions ensure that transfers through join or message
passing are not possible.

These properties imply soundness as follows. Whenever there is a blocked thread
t0 then there is a sequence t0, t1, . . . such that ti+1 has an obligation to unblock
ti. By the assumption that the number of threads is bounded, this sequence is
finite. By Properties 4 and 5, its last thread tn is not blocked, that is, is enabled.
By the assumption of fair scheduling, tn will eventually make progress and, by
Properties 6 and 7, its obligation will eventually be satisfied, unblocking thread
tn−1. Thread tn−1. might re-block immediately if another thread acquires the
lock or receives the message tn−1 is waiting for. However, since we assume fair
locks and message reception, enabling tn−1 infinitely often ensures that it will
make progress eventually. Therefore, the argument applies inductively.

7 Related Work

Chalice. The work most closely related to ours is Leino et al.’s approach to
verifying deadlock freedom in Chalice [13]. However, their verification technique
uses a partial correctness semantics and, thus, provides no guarantees for the
common case that a program contains non-terminating threads. It also does
not support termination proofs. In contrast, the key contribution of our work
is a technique to prove finite blocking even in the presence of non-terminating
threads, and this technique subsumes termination checking. Leino et al. handle
blocking receive statements via credits and obligations (called debt). We general-
ize this idea to arbitrary blocking operations, which gives us a uniform treatment
of locks, channels, and thread join, and provides a systematic way to encode fur-
ther blocking operations. This uniform treatment also allows us to replace several
ad-hoc solutions in Chalice such as holds-predicates and lockchange-clauses [12].
We adopted the general approach of preventing deadlock via a wait order that in-
cludes locks, channels, and threads from Chalice. However, the encoding of wait
level constraints presented by Leino et al. is unsound because it does not inter-
pret waitlevel consistently during exhale and inhale. Our encoding fixes this
problem via the 2-phase exhale and a consistent interpretation during inhale.

Liveness. Finite blocking and termination are liveness properties that can be
proved using linear-time temporal logic [15]. For instance, Manna et al. [16]
verify liveness properties of concurrent programs running an arbitrary number
of (identical) threads. In contrast to this work, we present a methodology based
on obligations that provides a strategy how to structure specifications and proofs.
In particular, our technique supports modular verification, where each method
is verified without knowledge of their callers or concurrently executing threads.
Like our work, Manna et al. also use strong fairness as one of their fairness
notions.

23



Gotsman et al. [7] present a verification technique to show that a non-blocking
algorithm is wait-free, lock-free, or obstruction-free. These liveness properties are
checked by proving termination of an arbitrary number of operations running in
parallel. The authors use a rely-guarantee logic to reason about the interference
between these parallel executions, which is non-modular. Our work focuses on
blocking operations. In this context, we can use specifications based on obliga-
tions and credits to make verification modular.

Termination. Our technique is closely related to existing work on termination
checking. However, it goes beyond termination checking in two major ways. First,
it allows one to prove finite blocking in concurrent programs, which includes
termination checking as a special case. In particular, finite blocking requires a
solution that distinguishes safe implementations where a thread unblocks an-
other thread and then obtains yet another obligation to unblock (for instance,
by releasing and re-acquiring a lock) from unsafe situations where a thread con-
tinues to block another thread. Such situations do not occur during termination
checking. Second, our technique handles different kinds of obligations and sup-
ports the dual notion of credit. In particular, credits may be transferred between
threads, which requires extra checks to prevent unsound cancellation. Again, this
problem does not occur in termination checking.

Le et al. [10] propose a verification logic for termination and non-termination.
Similar to our work, their logic uses a resource that reflects termination and that
is manipulated similarly to permissions in permission logics. Le et al. associate
their termination resources with upper and lower bounds on their lifetimes, which
allows them to prove termination as well as definite non-termination.

We adopted Dafny’s approach to obtain measures by defining a well-founded
order on all values of a program execution [11]. Dafny lifts this order to define
a lexicographic order on sequences of values and includes the import relation
among modules as a part of this order. These extensions are compatible with
our use of measures.

There exist powerful automated termination checkers for both sequential and
concurrent programs [2, 3, 5]. The focus of most work in this area is on inferring
termination measures. By contrast, we assume the measure to be provided by
the programmer and use it to prove finite blocking. Combining our work with
inference techniques is an interesting direction for future work, especially in the
presence of credits.

Deadlock freedom. There are numerous verification techniques and type sys-
tems to check deadlock freedom of programs that either synchronize via locks [6,
9, 20] or communicate via messages [4, 8]. Our work adopts Chalice’s solution to
checking deadlock freedom, and we refer to Leino et al. [13] for a detailed com-
parison to related work. The contribution of our work is to recast the Chalice
solution in a uniform framework that supports a variety of blocking operations
and to fix the soundness issue in Chalice that we mentioned above.

24



8 Conclusion

This paper introduces a novel verification technique to prove finite blocking in
concurrent programs. At its core is a general framework for obligations, which
express that a thread must perform a certain operation eventually. We present
uniform proof rules for the manipulation of obligations and use them to encode
three common blocking operations, which are representative for the various char-
acteristics of obligations. By associating obligations with measures, our technique
guarantees finite blocking even for programs containing non-terminating threads
under the assumption that scheduling, locks, and message receipt are strongly
fair. Our technique subsumes termination checking and integrates verification of
deadlock freedom.

Obligations are not limited to finite blocking. As future work, we plan to use
the framework introduced here to prove other liveness properties, for instance,
that every asynchronous task will be awaited eventually or that certain objects
will be de-allocated eventually. Another direction for future work is to combine
our work with approaches to infer termination measures.

Acknowledgments. We would like to Alex Summers for various discussions.
Pontus Boström was partially funded by a scholarship from Svenska kultur-
fonden. Peter Müller’s work was funded in part by the Hasler Foundation.

References

1. M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. Boogie:
A modular reusable verifier for object-oriented programs. In FMCO, volume 4111
of LNCS. Springer, 2005.

2. B. Cook, A. Podelski, and A. Rybalchenko. Proving thread termination. In PLDI,
2007.

3. B. Cook, A. Podelski, and A. Rybalchenko. Proving program termination. Com-
mun. ACM, 54(5), 2011.

4. M. Dezani-Ciancaglini, D. Mostrous, N. Yoshida, and S. Drossopoulou. Session
types for object-oriented languages. In ECOOP, volume 4067 of LNCS, 2006.

5. P. Ganty and S. Genaim. Proving termination starting from the end. In CAV,
volume 8044 of LNCS. Springer, 2013.

6. C. S. Gordon, M. D. Ernst, and D. Grossman. Static lock capabilities for deadlock
freedom. In TLDI. ACM, 2012.

7. A. Gotsman, B. Cook, M. Parkinson, and V. Vafeiadis. Proving that non-blocking
algorithms don’t block. In POPL, 2009.

8. N. Kobayashi. A new type system for deadlock-free processes. In CONCUR’06,
volume 4137 of LNCS. Springer, 2006.

9. D.-K. Le, W.-N. Chin, and Y.-M. Teo. An expressive framework for verifying
deadlock freedom. In ATVA, volume 8172 of LNCS. Springer, 2013.

10. T. C. Le, C. Gherghina, A. Hobor, and W.-N. Chin. A resource-based logic for ter-
mination and non-termination proofs. In ICFEM, volume 8829 of LNCS. Springer,
2014.

25



11. K. R. M. Leino. Dafny: An automatic program verifier for functional correctness.
In LPAR, volume 6355 of LNCS. Springer, 2010.

12. K. R. M. Leino and P. Müller. A basis for verifying multi-threaded programs. In
ESOP, volume 5502 of LNCS. Spinger, 2009.

13. K. R. M. Leino, P. Müller, and J. Smans. Deadlock-free channels and locks. In
ESOP, volume 6012 of LNCS. Springer, 2010.

14. Z. Manna and A. Pnueli. A hierarchy of temporal properties. In PODC. ACM,
1990.

15. Z. Manna and A. Pnueli. Completing the temporal picture. Theoretical Computer
Science, 83(1), 1991.

16. Z. Manna and A. Pnueli. Verification of parameterized programs. Specification
and Validation Methods, 1994.

17. M. J. Parkinson and A. J. Summers. The relationship between separation logic
and implicit dynamic frames. In ESOP, volume 6602 of LNCS. Springer, 2011.

18. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In
LICS. IEEE Computer Society Press, 2002.

19. J. Smans, B. Jacobs, and F. Piessens. Implicit dynamic frames: Combining dynamic
frames and separation logic. In ECOOP, volume 5653 of LNCS. Springer, 2009.

20. K. Suenaga. Type-based deadlock-freedom verification for non-block-structured
lock primitives and mutable references. In APLAS, volume 5356 of LNCS. Springer,
2008.

A Credits and Deadlock Freedom

As explained in Sec. 2.1, blocking operations where the very first execution
blocks (such as receiving on a channel) are handled by credits. Creating a credit
simultaneously creates a corresponding obligation. Therefore, by enforcing that
a thread executing a receive statement holds a sends-credit, we ensure that
some other thread has a sends-obligation and, thus, the receive will not block
indefinitely.

The producer-consumer example in Fig. 15 demonstrates this idea. The con-
sumer method Cons requires a sends-credit for the channel c, which allows it to
receive one message on this channel. Because of Cons’s precondition, this initial
credit is provided by the Main method when it forks the consumer, which leaves
the corresponding sends-obligation in Main. This obligation is transferred to the
producer when the Prod method is forked. Note that Main could not terminate
without forking the producer first because it would still hold an obligation and,
thus, not pass the leak check at the end of the method. Note further that neither
the producer nor the consumer promise to terminate and, thus, cannot be joined
since the join operation might block indefinitely.

Once the producer and consumer have been forked, they communicate via
the channel c. The declaration of c’s type C specifies that messages sent over the
channel are boolean values. Its channel invariant expresses that whenever the
value true is sent over the channel, the message includes one sends-credit for the
channel. Therefore, with every send operation inside the while loop of method
Prod, the producer sends a credit to the consumer. Consequently, the producer
has one sends-obligation throughout the loop because it satisfies one obligation

26



channel C(b: bool) where b ⇒ sends(this, -1, >);

method Main() {
c := new C;
fork t1 := Cons(c) below c;
fork t2 := Prod(c);

}

method Prod(c: C)
requires sends(ch, 1, 1);

{
while(*)
invariant sends(c, 1, 1);

{ send c(true); }
send c(false);

}

method Cons(c: C)
requires sends(c, -1, >)
requires waitlevel � c;

{
more := true;
while(more)

invariant more ⇒ sends(c, -1, 1);
invariant waitlevel � c;

{ receive more := c; }
}

Fig. 15: A producer-consumer example. The producer and consumer communi-
cate over an asynchronous channel c. The main method transfers a sends-credit
to the consumer, which allows it to receive the first message, and the correspond-
ing sends-obligation to the producer, forcing it to send a message. With every
message except the final one, the producer sends another sends-credit to the
consumer, which allows the consumer to receive the next message. The measure
> is explained in Sec. 3.2.

by sending a message and obtains a new one by sending away a credit. This
property is expressed by its loop invariant. Since the sends-obligation gets satis-
fied in each loop iteration, its measure is constant 1. However, similar examples
require other measures; for instance, if the producer sent messages to several
channels in a round-robin fashion, the sends-obligation for each of the channels
would be the number of channels. Once the loop has terminated, the producer
sends a final message not containing a credit. This send operation satisfies the
remaining sends-obligation, allowing method Prod to pass its leak check and ter-
minate. The consumer obtains another credit with every message it receives,
which allows it to receive the next message. The final message (with value false)
contains no credit, forcing the consumer to terminate its receive-loop.

To prevent deadlock, the receive operation in the consumer requires that the
consumer’s wait level is strictly below the level of the channel c. This constraint
is required in the precondition and maintained throughout the loop. In order
to satisfy the precondition, method Main forks the consumer with an initial
wait level that is below c’s level (indicated by the below-clause). We omit such
constraints from our encoding, but their treatment is straightforward [13].

B Soundness

This appendix contains a detailed informal soundness argument including proof
sketches for the properties discussed in Sec. 6. We start with informally giving
an operational semantics for programs written in the language defined in Fig. 4.

27



We then show that programs do not lose obligations (Properties 1–4 in Sec. 6).
Using these properties, we prove deadlock freedom (Property 5). The properties
discussed next are termination, i.e., that an obligation can stay in a program
only for a finite number of steps (Properties 6 and 7). Finally, we put all the
pieces together to prove that always when a thread is blocked, it is eventually
unblocked.

Our overall strategy is to assume an operational semantics that follows the
definition of the proof rules in Sec. 5. In particular, the semantics is instru-
mented with obligations, credits, and join-permissions, which are manipulated
analogously to the proof rules. It also contains all assertions from our proof rules;
if an assertion fails at runtime, the execution of the entire program aborts. We
then show that if the execution of this instrumented program does not abort, it
enjoys finite blocking.

B.1 Definitions and Properties of Exhale and Inhale

We start with definitions of programs and threads, as well as the state tracked for
each thread. The operational semantics outlined below is defined based on the
encoding in Sec. 5. The transitions in the operational semantics are given by the
statements in Fig. 4. However, method calls are split into separate call and return
transitions, and loops are split into loop entry and loop iteration (re-evaluating
the loop condition and then re-entering or leaving the loop) transitions.

Definition 1 (Threads and program).

– We assume the set of locks, the set of channels, the set of join tokens and
the set {term} are disjoint.

– The state of a thread consists of a stack of method and loop activations. Each
activation holds at least the masks B and F .

– The program has a global mask L for storing the wait level of each obligation.
– Threads can communicate over asynchronous channels. Each channel c rep-

resents an unbounded queue that contains messages. Each message m con-
tains a mask Bm representing the credit that can be carried by the message.

– A program consists of a set of threads.
– In the initial state, there is one thread with a main method activation where
B[_] = 0 and F [_] = 0.

– A program aborts if some thread aborts. A thread aborts if it executes an
assert statement where the condition evaluates to false.

– To focus on the essentials, we prove that a program that does not abort will
not block indefinitely. We do that by assuming that no thread aborts in a
verified program during a proof of finite blocking.

– We use the notation begin . . . end to denote a method or loop activation on
the thread stack.

Definition 2 (Atomic transitions). We have the following atomic transitions
in a program: assignment, lock creation, channel creation, acquire, release, send,
receive, method call, method return, fork, join, loop entry and loop iteration.

28



Definition 3 (Method call and return).

– A call to a method consists of executing the statement Scall; begin var B,F ;
init(B);Sstart. Scall contains the first statements in the encoding of method
calls (see Fig. 11), including exhaling the precondition and checking for obli-
gation leaks and resetting B[term]. Sstart consists of the statements from the
encoding of method bodies before the encoding method body itself (see Fig. 10)
including inhaling preconditions and setting the F-mask to zero.

– A return from a method (see Fig. 10 and Fig. 11) consists of executing
the statement Send; end;Sreturn. Send consists of exhaling the postcondition,
setting B[term] := 0 and performing the leak check, while Sreturn inhales
the postcondition.

Fork is analogous to call, but a new thread is created by begin, which initially
has no obligations. Join is analogous to method return. However, additionally
we need to consider the wait level in join, since join is a blocking operation.

A loop is considered to push a loop activation on the thread stack. This way
we can uniformly handle loops that leave obligations or credit outside of the loop
in the same manner as method calls.

Definition 4 (Loop entry, loop iteration, and loop exit).

– If the loop guard g evaluates to true, a loop entry consists of executing the
statement Sentry; begin var B,F ; init(B);Sstart otherwise as Sentry;Sexit.
The statement Sentry consists of the statements in the encoding of loop entry
(see Fig. 14), while Sexit consists of the statements in the encoding of loop
exit (see Fig. 14).

– If the loop guard g evaluates to true at the end of the loop body, a loop itera-
tion consists of executing the statement Send; end; begin var B,F ; init(B);
Sstart otherwise it consists of executing Send; end;Sexit. The encoding of
the start of loop bodies Sstart is similar to the start of method bodies (see
Fig. 14).

In the Boogie encoding we omitted the exact initialization of the mask B. To
make the verification modular, we only assume properties local to the activation.
Here we need to be more precise and we give a definition of the initialization
macro init(B). However, the F-mask is given a precise value in the Boogie en-
coding. We first need the number of obligations stored in an assertion.

Definition 5 (Obl(A)). Let A denote an assertion. Obl(A) denotes the obliga-
tions and credits specified by A in a given state (which is implicit in the notation).

Theorem 1 (Exhale-inhale correspondence). In a verified program, each
exhale operation and the corresponding inhale operation of an assertion A trans-
fer the same obligations and credits, Obl(A).

Proof. Inhaling permissions is defined in terms of exhale (see Fig. 7). The encod-
ing uses exhale and inhale such that all expressions e in assertions and, therefore,
all antecedents of implications, evaluate to the same values.

29



Definition 6 (init(B)). Let B0 denote the B-mask in an activation before a
transition that creates a new activation and the assertion A is used in the tran-
sition, then init(B) =̂ foreach(o : obl){B[o] := (o ∈ lock?B0[o]−Obl(A)[o] : 0)}.

Note that B0 refers to the value of the mask before the assertion A has been
exhaled. The obligations transferred in init(B), are those releases-obligations not
transferred in the assertion A. Note that init(B) does not record information
if an obligation was fresh or not. This information is not needed here. Other
obligations than releases-obligations and credits can only be transferred between
activations via exhale and inhale.

Theorem 2 (Obligation and credit transfer). Obligations and credits can
be transferred only between activations via exhale and inhale with the exception
of releases-obligations, which can also be directly copied.

Proof. This property follows directly from the definitions of the transitions.

Credit can be stored in messages. The same amount of credit exhaled to the
message in send, is inhaled from the message in receive.

Definition 7 (Update of message mask Bm in send and receive). Con-
sider a channel invariant A. After exhale of an assertion A in send, the mask Bm

in the sent message has the value Bm = Obl(A) and after inhale of the assertion
A in receive, we assume Bm = 0.

Hence, the mask Bm yields the number of credits for each channel (a negative
number) transferred in the message, while it is in transit.

Obligations are always transferred to the top activation of the thread stack.

Theorem 3 (Obligation preservation). Consider the activation-stack in the
thread. Then if at some level i in the stack Bi[o] > 0 then also also on the top
level Btop[o] > 0.

Proof. All sends- and terminates-obligations are transferred to a new activation
when it is created in exhale and inhale. This is ensured by the leak check assertion
after exhale. However, releases-obligations can be copied. If a copied releases-
obligation would then be satisfied (the lock released) the property would be
violated. However, this cannot occur since the leak check assertion in loop exit
and method return checks that all copied locks are still held at the method return
or loop exit.

The above property relates to releases-obligations left outside method calls
and loops. This ensures that it is sufficient to only refer to Btop in assertion
involving the wait level. Note that it also means that only obligations that have
been inhaled into an activation can be satisfied in the activation.

30



B.2 Obligation Preservation

After the definition of the operational semantics and the basic properties of
inhale and exhale, we can now state the main preservation properties of obliga-
tions for verified programs. Theorem 4, Theorem 5, and Theorem 7 correspond
to Properties 1–3 in Sec. 6. Since acquire, receive, and join are the only blocking
operations, Property 4 follows from these three properties.

Theorem 4 (Preservation of sends-obligations). For every channel c, the
total number of credits in the system (that is, held by a thread or stored in a
message) is at most the total number of obligations plus the number of messages
stored in c’s buffer:

Σ(t : Threads :: Σ(ac : Activationt :: Bt
ac[c] ≤ 0 · Bt

ac[c]))+
Σ(t : Threads :: Bt

top[c] > 0 · Bt
top[c])+

Σ(o : Channels :: Σ(m : Message :: m in o · Bm[c]))+
length(c)
≥ 0

Here Bt
top refers to the B-mask in the top activation of thread t. All obligations

of a thread are in the top activation (Theorem 3), while credit can be left in other
activations as well. The condition states that the sum of obligations in threads
and the number of messages in o should be greater than the number of credits
in threads and in messages. This is the same preservation property for sends-
obligations as in [13]. Note that the first and third lines denote credits, that is,
negative values. length(c) denotes the number of messages buffered in channel c
in the current state.

Proof. The property holds trivially in the initial state, when no channels ex-
ist. All channel operations (Fig. 13) preserve the property: New channels have
empty buffers, and no thread has obligations or credits for them. When a thread
t receives a message on a channel c, it loses one credit and removes one message
from the buffer, preserving the property. Any credits contained in the message
are transferred to t, keeping the total number of credits in the system constant.
When t sends a message, it loses one obligation and adds one message to the
buffer, preserving the property. Any credits contained in the message are re-
moved from t, keeping the total number of credits in the system constant. All
other statements preserve the property because every exhale of a method pre
or postcondition, or loop invariant has a corresponding inhale (and vice versa),
such that the total number of obligations remains constant. The only exception
is the exhaling the postcondition of a method that was forked; if the thread does
not get joined, there is no corresponding inhale. Our well-formedness conditions
(Sec. 3.2) ensure that such a postcondition must not contain any obligations;
therefore, exhaling the postcondition may reduce the number of credits in the
system, thereby preserving the inequality. Finally, our leak checks ensure that
the termination of method executions and loop iterations maintains the number
of obligations in the system and does not increase the number of credits, thus,
preserving the inequality.

31



Theorem 5 (Preservation of releases-obligations). A thread t holds a lock
l if and only if t has one releases-obligation for l, Bt

top[l] = 1.

Proof. The property holds trivially in the initial state, when no locks exist.
All lock operations (Fig. 12) preserve the property: New locks are initially not
held and no thread has an obligation for them. When a thread t acquires a
lock, it obtains one releases-obligation for it. When t releases a lock, it looses
one obligation. Finally, all other statements preserve the property because they
neither add releases-obligations to the system nor remove any. In particular, loop
exit and method transitions could increase Bt

top[l] if a lock was released in the
exited activation, but not in the activation returned to. According to Theorem 3,
this situation cannot occur. Our well-formedness conditions (Sec. 3.2) also ensure
that releases-obligations cannot be transferred to another thread during fork,
join, or message passing.

Theorem 6 (Preservation of terminates-obligations).

– Each atomic statement in an activation preserves the value B[term]. Only
the method return transition sets B[term] = 0 in the exited activation;

– If an activation has B[term] > 0 then all later pushed activations have
B[term] > 0.

Proof. Method call transitions transfer a terminates-obligation to the callee and
preserve it inside the caller, and loop entry and loop iteration transitions main-
tain any terminates-obligations by transferring any terminates-obligations from
their enclosing context to the loop and back (which is enforced by the leak checks
before the loop and at the end of the loop body).

Theorem 7 (Join-permission-terminates correspondence). If a thread t
has a join-permission for a thread t′ then t′ has a terminates-obligation, Bt′

top[term] >
0, or has terminated already.

Proof. The property holds trivially in the initial state, when no join-permissions
are held. Fork and join (Fig. 11) preserve the property: Forking a thread t′

provides a join-permission to the forking thread only if t′ takes a terminates-
obligation. Joining a thread t′ happens only when t′ has terminated, and then the
joining thread loses its join-permission. All other operations preserve the number
of join-permissions in the system. The thread t′ can never lose its terminates-
obligation (Theorem 6).

Theorem 8 (Non-freshness of terminates-obligations). For all activa-
tions in all threads F [term] = 0.

Proof. If a fresh terminates-obligation is inhaled at the start of new activation,
which can be done through method calls, loop entry, or loop iteration then
F [term] := 0 after inhale. All other transitions leave F [term] unchanged.

Theorem 9 (Preservation of non-fresh sends-obligations). The number
non-fresh sends-obligations Σ(t : Threads :: Bt[o]− F t[o]) for a channel o can
only be decreased by sending on the channel o, send o.

32



Proof. Let t be a thread that has non-fresh sends-obligations Bt[o] − F t[o] > 0
in an arbitrary state in the program execution, then when executing a:

– Method call, fork, loop entry and loop iteration: If an obligation is exhaled
as non-fresh, it will remain non-fresh in inhale. If it is not exhaled, it will
also remain non-fresh. Hence, the number of non-fresh obligations can only
increase.

– Send: If send is done on o the obligation is satisfied. If send is done on another
channel o′, credit can be exhaled for o creating n new fresh obligations.
However, the non-fresh obligations are preserved: Bt[o]−F [o] = Bt[o] + n−
max((F t[o] + n), 0).

– Receive: Receive cannot be done on o, since Bt[o] > 0. If send is done on
another channel o′ then credit can be inhaled for o. This credit cannot cancel
obligations, so Bt[o]−F t[o] is unchanged.

– Join: Join behaves as receive.
– Acquire, release, as well as lock and channel creation: These statements do

not affect Bt[o] or F t[o] when o is a channel.

Theorem 10 (Preservation of non-fresh releases-obligations). A non-
fresh releases-obligation will remain non-fresh or it will be satisfied by a release
operation. A releases-obligation is non-fresh if for all activations F [o] = 0 in a
thread stack where Btop[o] > 0.

Proof. Let t be a thread that has non-fresh releases-obligations B[o]− F [o] > 0
in an arbitrary state in the program execution, then when executing a:

– Method call, fork, loop entry and loop iteration: If an obligation is exhaled
as non-fresh it will remain non-fresh in inhale. If it is not exhaled, it will also
remain non-fresh.

– Release: If release is done on o the obligation is satisfied and B[o] := 0,
otherwise release has no effect on B[o].

– Acquire: Acquire cannot be done on o, since B[o] > 0, release of other locks
has no effect on B[o].

– Send, receive, join, as well as lock and channel creation: These statements do
not affect B[o] or F [o] when o is a lock for which releases-obligations exist.

Theorem 11 (Releases-obligations and termination). If for a lock o, B[o] >
0 on more than the top level of a thread activation stack, then also Btop[term] >
0.

Proof. Method calls, loop entry and loop iterations, create new activation on
the tread stack. Due to the leak check assertion after exhale in these transitions,
if locks are left in the activation then a terminates-obligation must be exhaled.
This obligation must be inhaled in the new activation. Theorem 6 states that
the terminates-obligation will be preserved in subsequent activations.

33



B.3 Deadlock Freedom

Threads can block on acquiring a lock that is held by another thread, on receiving
on a channel that is empty, or by joining a thread that is running. We define
a graph representing how blocked threads depend on others to unblock them.
The definition of the blocking graph is the same as in [13] with the addition of
join. Based on the blocking graph being acyclic, deadlock freedom can then be
proved. Theorem 12 corresponds to Property 5 in Sec. 6.

Definition 8 (Blocking graph). The nodes in the graph are given by the
threads in the program. There is a directed edge from a thread t to a thread
t′ iff

1. t is executing a statement acquire o and t′ holds a releases-obligation for o
(that is, Bt′ [o] > 0), or

2. t is executing a statement receive o, o contains no messages, and t′ holds
a sends-obligation for o (Bt′ [o] > 0), or

3. t is executing a statement join tok, the thread t′ associated with token tok
has not terminated.

Note that Bt′ here denotes the B-mask in the top activation on the stack of
t′. A program is deadlock-free is the blocking graph is acyclic.

Theorem 12 (Deadlock freedom). The blocking graph in Def. 8 is acyclic

Proof. We will prove the property by showing that for any edge from t to t′, the
wait level of t is strictly smaller than the wait level of t′. The only operations
that add an edge from t to t′ are the three blocking operations acquire, receive,
and join.

If t acquires a lock l, we assert that t’s wait level is strictly less than l’s. By
Theorem 5, if t′ holds l, it has a releases-obligation for l and, thus, its wait level
is at least as large as l’s.

If t receives on a channel c, we assert that t’s wait level is strictly less than
c’s. If t′ holds a sends-obligation for c, its wait level is at least as large as c’s.

If t joins a token tok then we assert that its wait level is strictly smaller than
tok’s. Moreover, the wait level of t′ is at least as large as tok’s since the initial
wait level of t′ is the same is tok, and can only grow afterwards by obtaining
obligations.

B.4 Termination

We need to ensure that no obligation is held forever in any execution of a pro-
gram. This is expressed in Properties 6 and 7 in Sec. 6. We show this by proving
that all method calls, loops, and forks decrease a termination measure in case
an obligation is transferred. Note that the measure used for proving termination
of loops is independent of the one used for method calls. The intuition is that a
method does not care in how many steps a loop terminates as long as it does.

34



Theorem 13 (Termination of methods). If a method holds a terminates-
obligation (B[term] > 0) then it will terminate eventually.

Proof. We need to show that each loop eventually terminates and that all re-
cursive method calls terminate. From Theorem 6, we know that if B[term] > 0
in an activation, all activations higher on the stack will also have B[term] > 0
We then need to prove two things:

1. Each loop iteration decreases the measure for its terminates-obligation
2. Each nested method call decreases the measure for the terminates-obligation

To prove (1), we need to show that each loop iteration transition decreases
the measure. Let T [term] be the measure for term inhaled at the start of the
loop iteration. When exhaling the loop invariant, a terminates-obligation must
be exhaled according to Theorem 6, with some measure e1, since the terminates-
obligation must be transferred in exhale/inhale (Theorem 2). In order to exhale
the assertion either the obligation must be fresh F [term] > 0 or e1 @ T [term].
According to Theorem 8, F [term] = 0 and therefore e1 @ T [term]. In the start
of the new iteration the measure T ′[term] is assigned a value v (with v v e1)
during the inhale of the loop invariant. Hence, T ′[term] @ T [term].

To prove (2), we need to show that all methods called from a method m uses
a smaller measure than m. Consider a call of method n from m, where Tm[term]
denotes the measure for B[term] inhaled at the start of the method activation
m. When exhaling the precondition of method n, a terminates-obligation with
some measure e1 must be exhaled according to Theorem 6. In order to exhale the
assertion either the obligation must be fresh F [term] > 0 or en @ Tm[term]. Ac-
cording to Theorem 8, F [term] = 0, so en @ Tm[term]. The measure Tn[term]
inhaled for B[term] is then assigned a value v in inhale such that v v en. Hence,
Tn[term] @ Tm[term].

Theorem 14 (Non-fresh sends-obligations). If a thread holds a non-fresh
sends-obligation (B[o]−F [o] > 0), they will not stay in the system indefinitely.

Proof. From Theorem 9, we know that non-fresh obligations are never lost. Fur-
thermore, they cannot be held in messages or join tokens. Hence, they must be
held in threads.

For non-fresh obligations (a thread holds B[o] − F [o] > 0) to be held indef-
initely in the system, there has to be an infinite execution sequence where the
sequence has to have either (1) an infinite number of occurrences of loop iteration
transitions from the same loop or an infinite number of occurrences of method
call transitions where the obligation is held in the thread or (2) infinite num-
ber of fork transitions where an obligation is transferred, or (3) the obligations
are repeatedly canceled by credit inhaled in receiving on a channel or joining
a thread. In loop iterations and method calls all sends-obligations have to be
transferred to the next activation via exhale and inhale. In fork, an obligation
can also only be transferred via exhale and inhale. Cancellation with credit is
not allowed (see Fig. 9). We have different measures that need to be decreased

35



when transferring obligations in loops, method calls and fork. We show that
any thread that holds a non-fresh obligation decreases at least one of them, and
thereby there cannot be an infinite execution sequence that holds the obligation.
The measures are not increased by any transition, since they refer to constant
values inhaled when pushing new activation on thread stacks.

– Loop iteration: Assume that T [o] is the measure for o at the start of the
iteration. T [o] has the value inhaled from the loop invariant or if no obli-
gations for o was inhaled then T [o] = >. At the loop exit, the obligations
B[o] > 0 must be transferred via exhaling a sends-obligation for o for some
measure e1. If F [o] < B[o] then exhale checks that e1 @ T . Then in the next
loop iteration, the inhaled measure T ′[o] v e1, since the new measure is the
minimum of inhaled measures. Hence, the new measure satisfies T ′[o] @ T [o].

– Method call: Assume the current method has the measure T [o]. T [o] has
the value inhaled from the method precondition or if no obligations for o
was inhaled then T [o] = >. All the obligations must be transferred in the
method call via exhaling a sends-obligation for o for some measure e1. Since
F [o] < B[o], we have e1 @ T [o]. In the called method the inhaled measure
T ′[o] satisfies T ′[o] v e1, since the new measure is the minimum of inhaled
measures. Hence, the new measure satisfies T ′[o] @ T [o].

– Fork: Assume that T0[o] is the measure for B[o] > 0 inhaled when the current
thread was forked or > if no obligation B[o] > 0 was inhaled in fork. This is
also the method measure of the forked method. From the case for method
call transitions above, we know this measure is decreased in each method
call if an obligation for o is transferred in the call. Let T [o] denote the
current method measure, where T [o] v T0[o]. Then obligations must be
transferred in the fork via exhaling a sends-obligation for o and some measure
e1. Since F [o] < B[o], then e1 @ T [o]. In the forked method, the inhaled
measure satisfies T ′[o] v e1, since the new measure is the minimum of inhaled
measures. Hence, the new measure satisfies T ′[o] @ T0[o].

Theorem 15 (Fresh sends-obligations). If a thread holds fresh sends-obligation
(B[o] ≥ F [o] > 0) they will eventually be non-fresh or satisfied.

Proof. Obligations are always stored in threads and not in messages or join to-
kens. As for non-fresh obligations, for a fresh obligations (a thread has F [o] > 0)
to be held indefinitely in the system there has to an infinite execution sequence,
the sequence must contain an infinite number of call transitions, loop iteration
transitions or fork-transitions where the obligation is transferred. Additionally,
obligations could be transferred by cancelling them with credit inhaled in re-
ceiving on a channel or joining a thread, but this is not allowed (Fig. 9). Any
infinite execution sequence of a single thread must contain an infinite number
of method calls, loop iterations. When performing any of these two transitions
a thread must transfer all sends-obligations in the method precondition or loop
invariant. If a fresh obligation o is transferred in any of these transitions then
F [o] := 0. Fresh obligations cannot be transferred indefinitely in fork, since
F [o] := 0 for all o after inhale of precondition.

36



Theorem 16 (Non-fresh releases-obligations). If a thread holds a non-
fresh releases-obligation (B[o] − F [o] > 0), they will not stay in the system
indefinitely.

Proof. From Theorem 10, we know that non-fresh releases-obligations are never
lost. Furthermore, they cannot be held in messages or join tokens. Hence, they
must be held in threads. Furthermore, releases-obligations cannot be transferred
to other threads (well-formedness).

For a thread to have infinite execution sequences that holds a releases-
obligation, it has to have an infinite number of occurrences method call tran-
sitions or loop iteration transitions from the same loop. In loop iterations and
method calls all releases-obligations have to be transferred to the next activation
via exhale and inhale or it was copied from the previous activation. If the obli-
gation was copied, we know from Theorem 11 that the current activation holds
a terminates-obligation.

We have different measures that need to be decreased when transferring obli-
gations in loops, method calls depending on the obligation was inhaled into the
new activation or if it was copied from the previous activation. If the obligation
was copied and the activation then holds a terminates-obligation, according to
Theorem 13 we cannot have infinite execution of a method or loop then. The
remaining cases is to show that a measure is decreased also if B[term] = 0. The
measures are not increased by any transition, since they refer to constant values
in method activations.

– Loop iteration where B[term] = 0 in the current loop activation: Assume
that T [o] is the measure for o at the start of the iteration. T [o] has the value
inhaled from the loop invariant or if no obligations for o was inhaled then
T [o] = >. At the loop exit, the obligations B[o] > 0 must be transferred
via exhaling a releases-obligation for o and some measure e1 (Theorem 11
and B[term] = 0). If F [o] < B[o] then exhale checks that e1 @ T . Then in
the next loop iteration, the inhaled measure satisfies T ′[o] v e1, since the
new measure is the minimum of inhaled measures. Hence, the new measure
satisfies T ′[o] @ T [o].

– Method call where B[term] = 0 in the current method activation: Assume
the current method has the measure T [o]. T [o] has the value inhaled from the
method precondition or if no obligations for o was inhaled then T [o] = >. The
obligations must be transferred in the method call via exhaling a releases-
obligation for o and some measure e1 (Theorem 11 and B[term] = 0). Since
F [o] < B[o], then e1 @ T [o]. In the called method the inhaled measure
T ′[o] satisfies T ′[o] v e1, since the new measure is the minimum of inhaled
measures. Hence, the new measure satisfies T ′[o] @ T [o].

Theorem 17 (Fresh releases-obligations). If a thread holds fresh releases-
obligation (B[o] ≥ F [o] > 0) for some activation on a thread stack, they will
eventually be non-fresh or satisfied.

Proof. Obligations are always stored in threads and not in messages or join
tokens. Any infinite execution sequence of a thread must contain an infinite

37



number of method calls or iterations of the same loop. When performing any
of these two transitions a thread must transfer the releases-obligations in the
method precondition or loop invariant or the obligations are copied. If they are
copied, obligations fresh in the previous activation will remain fresh there. If a
fresh obligation o is transferred in loop iteration or method call by exhale and
inhale then F [o] := 0. In case they are copied, the activation holds a terminates-
obligation (Theorem 11) and must eventually terminate (Theorem 13).

B.5 Finite Blocking

We like to prove that no thread is blocked forever, i.e., that all threads always
eventually make progress. This is not ensured by deadlock freedom, since there
is no guarantee that eventually held locks are released or messages are sent,
due to nonterminating threads. We can express the desired liveness property in
Linear-time Temporal Logic (LTL) [14, 15].

Definition 9 (Progress). All threads always make progress infinitely often,
∀t ∈ Threads · � � progress(t), when all thread transitions are assumed to be
strongly fair.

Here � denotes that a property holds always in a program execution and
� denotes that a property holds eventually. A strongly-fair transition makes
progress infinitely often if it is enabled (non-blocked) infinitely often. Hence, we
make the assumption that the thread scheduler ensures strong fairness and that
we have fair locks and fair message reception. The property we must ensure to
guarantee progress is stated in Theorem 18.

Theorem 18 (Finite blocking). Always when a thread is blocked on acquiring
a lock, receiving on a channel or joining a thread it will become infinitely often
enabled, ∀t ∈ Threads ·�(blocked(t)⇒ �¬blocked(t))

Standard proof rules exist to prove properties like Theorem 18 under our fair-
ness assumptions [15]. To apply the proof rules, we need a finite set of transitions,
which is implied by the following assumption:

Assumption 1 (Bounded number of threads). The number of threads in
any execution state is bounded. A fork operation aborts the entire program exe-
cution if an arbitrary, but fixed limit is reached.

Theorem 18 can then be divided into three cases, one for each blocking operation.

Theorem 19 (Progress of receive). In a verified program, always if a thread
t is blocked on a statement receive o then it will be eventually unblocked.

Proof. Manna and Pnueli [15] give a proof rule to prove reactivity for a set of
(strongly) fair transitions. Reactivity refers to the temporal logic property that
always when a property p holds then eventually q holds, �(p ⇒ �q). Here we
prove that always when the receive is blocked it will eventually be unblocked.

38



The transitions are partitioned into helpful transitions that are guaranteed to
make progress towards q and other transitions that might not. In our case a
helpful transition is a transition in a thread that t depends on in the blocking
graph in Def. 8. Theorem 4 states that this set is non-empty.

To apply the rule we need to define an invariant such that each transition
maintains the invariant or establishes the property we are interested in. The
invariant is: if a thread is blocked on receive o, there exists another thread with
obligation to send a message on o.

The properties to prove are then [15]:

1. For a thread to execute statement receive o, it has to establish the invariant
above or receive does not block. This follows from Theorem 4.

2. All the transitions maintain the invariant above or enable (unblock) the
receive. This follows from Theorem 4.

3. The transitions make progress towards enabling receive. From Theorem 15
we have that eventually fresh obligations become non-fresh or the obligation
gets satisfied. From Theorem 14 follows that all non-fresh sends-obligations
cannot stay in the system forever.

4. Enabledness of the helpful transitions. The transitions in the helpful set
can also be blocked. We need to show that they also are always eventually
unblocked. As the blocking graph is acyclic (Theorem 12) and every path
has finite length due to the finite number of threads, we can apply the
arguments above and the ones in Theorem 20 and Theorem 21 recursively
on each thread in the graph.

Theorem 20 (Progress of acquire). In a verified program, if a thread is
blocked on a statement acquire o then it will be infinitely often enabled.

Proof. The proof is analogous to the proof for receive. The difference is that we
have to use the measure for B[term] > 0 when releases-obligations have been
copied into the current activation.

Theorem 21 (Progress of join). In a verified program, if a thread is blocked
on a statement join o then it will be infinitely often enabled.

Proof. We apply the same proof rule as in the proof of Theorem 19. The invariant
is: if there is a thread that is blocked on join o then the thread corresponding to
the join token o holds a terminates-obligation.

The properties to prove are then [15]:

1. For a thread to execute statement join o, it has to establish the invariant
above or join does not block. In order for the token o to be joinable, the cor-
responding thread needs to be hold a terminates-obligation (see Theorem 7)
or it has terminated. According to Theorem 6, the terminates-obligation is
never lost.

2. All the transitions maintain the invariant above or enable the join when the
corresponding thread terminates. This follows from Theorem 6.

39



3. The transitions make progress towards enabling join. From Theorem 13 we
have that any method with a terminates-obligation terminates. Hence, since
the thread was created by forking method with a terminates-obligation the
thread terminates.

4. Enabledness of the helpful transitions. The transitions in the helpful set can
also be blocked. The proof is analogous to case 4 in the proof of Theorem 19.

40


