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Abstract
Most multi-threaded programs synchronize threads via blocking operations such as acquiring
locks or joining other threads. An important correctness property of such programs is for each
thread to make progress, that is, not to be blocked forever. For programs in which all threads
terminate, progress essentially follows from deadlock freedom. However, for the common case
that a program contains non-terminating threads such as servers or actors, deadlock freedom is
not sufficient. For instance, a thread may be blocked forever by a non-terminating thread if it
attempts to join that thread or to acquire a lock held by that thread.

In this paper, we present a verification technique for finite blocking in non-terminating pro-
grams. The key idea is to track explicitly whether a thread has an obligation to perform an
operation that unblocks another thread, for instance, an obligation to release a lock or to ter-
minate. Each obligation is associated with a measure to ensure that it is fulfilled within finitely
many steps. Obligations may be used in specifications, which makes verification modular. We
formalize our technique via an encoding into Boogie, which treats different kinds of obligations
uniformly. It subsumes termination checking as a special case.
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1 Introduction

Most multi-threaded programs synchronize threads via blocking operations such as acquiring
locks, receiving messages on a channel, awaiting conditions, or joining other threads. The
correctness of such programs typically relies on all threads being able to make progress, that
is, not being blocked forever. For instance, a producer-consumer system typically requires
that each producer will eventually succeed in acquiring the lock to a shared buffer. Existing
work [10, 15] has demonstrated that for terminating programs, progress can be ensured by
(1) avoiding starvation through fair scheduling and (2) showing that the program does not
create circular situations akin to deadlock, where each thread on a cycle waits for the next
thread to perform an action to unblock it.

However, this solution is insufficient for programs that contain potentially non-terminating
threads such as actors, servers, watch-dogs, etc. Such threads potentially defer the execu-
tion of an unblocking operations forever. For instance, a thread may be blocked forever by
a non-terminating thread if it attempts to join that thread or to acquire a lock held by that
thread.

In this paper, we present a verification technique for finite blocking in non-terminating
programs. The key idea is to track explicitly whether a thread has an obligation to perform

© Pontus Boström and Peter Müller;
licensed under Creative Commons License CC-BY

29th European Conference on Object-Oriented Programming (ECOOP’15).
Editor: John Tang Boyland; pp. 1–35

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.999
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


2 Modular Verification of Finite Blocking in Non-terminating Programs

an operation that unblocks another thread. For instance, a thread may receive on a channel
only if another thread has an obligation to send a message on that channel, and a thread
may join another thread only if the latter has an obligation to terminate. To handle non-
termination, we associate each obligation with a measure (also called variant or ranking
function) and check that each thread satisfies its obligations within finitely many steps,
even if the thread does not terminate. Our verification technique guarantees finite blocking
for programs with a finite number of threads in each state and fair scheduling. That is, each
thread in an execution of a verified program either terminates or runs forever, but no thread
is blocked forever.

Even though the finite blocking guarantee relies on fairness, our technique is also useful
for non-fair systems. First, proving that no thread postpones unblocking another thread
indefinitely is still necessary (although not sufficient without fairness) for progress; a viola-
tion of this property is an error. Second, although this paper focuses on finite blocking, the
concept of obligations is more general and can be used to specify and verify other liveness
properties for both sequential and concurrent programs, for instance, that each asynchronous
task will be awaited or that a given I/O operation will be performed eventually.

Our verification technique is modular, that is, verifies each method independently, with-
out knowledge of the program context in which it is used and the threads executing con-
currently. We formalize the technique for a language without heap memory, but the style
of reasoning integrates well with permission logics such as separation logic [22] and implicit
dynamic frames [23], and can be automated in a similar way. In particular, our tech-
nique produces verification conditions that are amenable to automation using SMT-solvers.
We have manually encoded several challenging examples and verified them successfully in
Boogie [1]. These examples include producer-consumer communicating over a channel, bi-
directional channels, and parallel binary tree processing; they exercise all major features of
our approach.

Contributions and Outline. This paper makes the following contributions:

1. It presents the first modular verification technique for finite blocking in non-terminating
programs.

2. It introduces explicit obligations with measures to uniformly specify guarantee proper-
ties [16] and verify them in standard program logics.

3. It unifies verification tasks such as proving termination, deadlock freedom, and finite
blocking in one coherent methodology.

4. It adopts ideas from the Chalice verifier [15], but encodes them in a simpler way and
fixes a soundness problem.

We give an informal overview of our verification technique in Sec. 2 and introduce the
programming and assertion language in Sec. 3. We present the encoding of assertions in
Sec. 4 and of statements in Sec. 5. Sec. 6 provides an informal soundness argument. We
discuss related work in Sec. 7 and conclude in Sec. 8. App. A illustrates the treatment of
message passing and deadlock freedom that we adopted from Chalice.

2 Verification Technique

This section presents the main ideas of our verification technique informally.



P. Boström and P. Müller 3

2.1 Obligations
An obligation is associated with a thread and specifies an action that this thread must
eventually perform, either itself or by delegating it to another thread. The action could be
executing a certain statement, establishing certain conditions, or reaching certain program
points. Since this paper focuses on the verification of finite blocking, we use obligations
to enforce actions that a thread must perform to unblock another thread. We introduce a
different kind of obligation for each blocking operation. For instance, a releases-obligation
indicates that a thread must release a given lock to unblock a thread possibly trying to
acquire it, and a terminates-obligation indicates that a thread must terminate to unblock a
thread possibly trying to join it.

The obligations for different blocking operations have different characteristics along three
dimensions:

1. Some obligations can be accumulated (for instance, to express that several messages must
be sent on a channel or that a re-entrant lock must be released several times), whereas
others cannot (for instance, an obligation to terminate).

2. For some obligations, there is a dual concept of credit, which expresses the permission
to execute a blocking operation. We view credits as negative obligations. In particular,
creating a credit creates also the corresponding obligation. Credits are necessary for
those blocking operations where the very first execution will block. For instance, if
channels are initially empty then receiving on a channel requires a credit to ensure that
some thread has the obligation to send a message eventually. In contrast, acquiring a
lock does not require a credit because the very first acquire for each lock always succeeds;
each acquire then creates a releases-obligation to ensure that subsequent acquires also
succeed eventually.

3. Some obligations may be delegated to other threads (for instance, an obligation to send
a message), whereas others may not (for instance, obligations to terminate or to release
a lock).

Despite these different characteristics, our verification technique treats obligations uni-
formly. To enable modular verification, we track the obligations held by the current thread
on the level of individual method executions rather than the entire thread. Obligations may
be passed between different method executions when a method is called, when a method
terminates, and when a method is forked in a different thread (but not upon thread-join,
as we will discuss later). Which obligations get transferred is expressed in the method
specifications, analogously to the transfer of access permissions in implicit dynamic frames
[14, 23]. For each kind of obligation, we provide an assertion that can be used in method
pre and postconditions. When a method is called (or forked), the obligations required in
the method precondition are transferred from the caller to the callee; analogously, the obli-
gations provided by the method postcondition are transferred from the method to its caller
upon termination. Loops are treated analogously: we track obligations per loop iteration,
and the loop invariant specifies the permissions required and provided by a loop iteration.

Proof rules ensure that each obligation is held by an active method execution (an exe-
cution on the stack of any thread) or loop invariant until it is satisfied. In particular, a leak
check ensures that when a method execution terminates, all of its remaining obligations are
transferred to the caller. Moreover, well-formedness checks ensure that obligations cannot
be lost by sending them in a message (that might never get received) or by putting them
in the postcondition of a forked method (since the forked thread may never get joined).
However, leaking or losing credit is permitted.

ECOOP’15



4 Modular Verification of Finite Blocking in Non-terminating Programs

method A(l: Lock)
{
acquire l;
call R(l);

}

method R(l: Lock)
requires releases(l);

{
release l;

}

Figure 1 An example illustrating the use and transfer of obligations. We omit specifications
related to concepts introduced later, in particular, obligation measures and deadlock prevention.

Fig. 1 illustrates some of the concepts introduced so far. Method A acquires lock l,
thereby obtaining an obligation to release it eventually. Method R requires a releases-
obligation to l in its precondition. Therefore, when A calls R, its obligation is transferred
to R. After the call, A does not contain any obligations and, thus, passes the leak check.
Method R gets rid of its obligation by releasing l and, thus, also passes the leak check.

2.2 Obligation Measures

Obligations allow one to track modularly which method execution is expected to perform
a given unblocking operation. However, the proof rules sketched above are not sufficient to
prevent a non-terminating thread from blocking another thread forever. Assume method R

from Fig. 1 was implemented as follows:

method R(l: Lock)
requires releases(l);

{
while(true)
invariant releases(l);

{ }
release l;

}

This implementation passes the leak check since no obligations are held at the end of the
method or at the end of a loop iteration after the releases-obligation has been transferred to
the next loop iteration. However, the method obviously fails to release l because it enters a
non-terminating loop before reaching the release operation.

A naïve solution would be to require that a method holds no obligations when it enters
a possibly non-terminating loop or calls a possibly non-terminating method. However, this
solution is too restrictive for many useful implementations. For instance, the Await method
in Fig. 2 encodes a busy version of Java’s wait method. The method loops until a condition
P holds, where P refers to fields that are protected by a lock l. Therefore, Await will be called
in states where the executing thread holds lock l and, hence, the method has a releases-
obligation for l. In each loop iteration, the method releases and then re-acquires the look
such that other threads may obtain the lock and establish P.

The naïve solution would disallow method Await unless one could prove that the loop
will always terminate, which may be difficult in a modular setting. However, since the
loop releases and re-acquires the lock l in each iteration, it is guaranteed not to block
indefinitely any other thread that attempts to acquire l (assuming fair scheduling and fair
locks). A similar situation occurs when a thread is expected to send an unbounded number
of messages over a channel. Its send-loop might not be guaranteed to terminate, but holds
a sends-obligation in each iteration (see App. A for the full example); it would therefore be
rejected by the naïve solution.
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method Await(l: Lock)
requires releases(l, 1);
ensures releases(l, 1);

{
while(!P)
invariant releases(l, 1);

{
release l;
acquire l;

}
}

Figure 2 A busy version of Java’s wait method. In contrast to method R above, the lock is
released and re-acquired in each loop iteration. We omit specifications related to deadlock preven-
tion.

Measures. These two examples show that the naïve solution is overly conservative. It
should be possible for a thread to hold obligations during a non-terminating execution
as long as these obligations will be satisfied eventually. To verify this liveness property
without resorting to temporal reasoning, we reduce it to a safety property by associating
each obligation with a measure (also called variant or ranking function). Analogously to a
termination measure, an obligation’s measure is an expression that evaluates to a value in
a well-founded set. Proof rules ensure that the measure is decreased in each loop iteration
or recursive call, and that the obligation gets satisfied before its measure expires. This
check would fail for the non-terminating version of method R above because there is no
measure that one could choose for the releases-obligation that gets decreased during the
non-terminating loop.

Fresh Obligations. Measures alone cannot distinguish between the situations in method
R and method Await. In both of them, a possibly non-terminating loop holds a releases-
obligation before and after each loop iteration. However, method R might cause indefinite
blocking because the obligation is held throughout the loop body, whereas method Await is
safe because the releases-obligation is satisfied and re-obtained in each iteration, giving other
threads a chance to acquire the lock in between. To distinguish these two situations, we
track explicitly whether an obligation is fresh, that is, has been obtained since the prestate
of the current method execution or loop iteration. Fresh obligations are exempted from the
check that their measure decreases before the next recursive call or loop iteration. In the
Await method above, the measure of all releases-obligations is the constant 1, expressing that
lock l will be released within one loop iteration. This constant measure is not decreased in
the loop body. However, since acquiring the lock l obtains a fresh releases-obligation, it is
exempted from the check that the measure decreases, and the method verifies.

Termination. Associating obligations with measures allows us to treat termination like any
other obligation. Therefore, termination proofs are a special case of the general technique
we propose. For instance, the factorial method in Fig. 3 promises to terminate after at most
n recursive calls if its argument is non-negative. This termination guarantee is expressed
by including a terminates-obligation with measure n in the method’s precondition. We
assume here that programmers provide the measures for termination and other obligations.
Combining our technique with inference of termination measures (see Cook et al. [4] for an
overview) is future work. The termination guarantee of Fac ensures that the join in method
Main will not block indefinitely.

ECOOP’15



6 Modular Verification of Finite Blocking in Non-terminating Programs

method Fac(n: int) returns (res: int)
requires 0 ≤ n ⇒ terminates(n);

{
if (n ≤ 1)
res := 1;

else
res := n * Fac(n - 1);

}

method Main(n: int) returns (res: int)

{
if (0 ≤ n) {

fork t := Fac(n);
join res := t;

}
}

Figure 3 A recursive factorial method. The terminates-obligation in the precondition expresses
that the method will terminate if n is non-negative. The antecendent ensures that the measure of
the obligation is well-founded. The main method forks a new thread to execute Fac. It may join this
thread only because Fac is guaranteed to terminate and, thus, the join will not block indefinitely.

It might initially seem un-intuitive that termination as well as the satisfaction of other
obligations is specified as a method precondition rather than a postcondition. However, this
approach is consistent with the treatment of permissions in permission-based logics such as
separation logic. The precondition specifies which resources get transferred from the caller
to the callee. In permission logics, the transferred resources are partial heaps; here, they
are obligations. So one should think of a precondition as the obligations consumed by the
callee and of a postcondition as the obligations provided by the callee.

2.3 Wait Order
Finite blocking implies the absence of deadlock because each thread involved in a deadlock
blocks indefinitely. A deadlock occurs if one or more threads form a cycle where each thread
is blocked by its successor on the cycle. Obligations allow us to define this blocked-by relation
uniformly for different blocking operations: a thread t is blocked by another thread t′ if t is
blocked on a blocking operation and t′ holds an obligation to unblock it. For instance, t is
blocked by t′ if t tries to acquire a lock and t′ holds the lock (and thus has an obligation to
release it), or if t tries to join t′ (and thus t′ has an obligation to terminate).

We guarantee deadlock freedom by preventing cycles in the blocked-by relation. For this
purpose, we introduce a strict partial order on threads and ensure via proof obligations for
all blocking operations that a thread t may be blocked by a thread t′ only if t is (strictly)
less than t′. The order on threads is defined by letting the programmer define a strict partial
wait order on obligations. A thread t is less than t′ if for each obligation o held by t there
exists an obligation o′ held by t′ such that o is less than o′. Cycles in the blocked-by relation
are then prevented by proving for each blocking operation that each obligation held by the
thread executing the blocking operation is less than the obligation to unblock it. Since this
proof obligation refers only to the current thread, it can be checked in thread-modularly (we
will discuss later how to check it procedure-modularly).

The wait order on obligations generalizes our earlier work [15] to arbitrary obligations.
Like that work, we assume that the wait order on obligations is fixed throughout the exe-
cution of a program (but the order on threads changes dynamically as they obtain and lose
obligations).

3 Programming and Assertion Language

In this section, we introduce the programming and assertion language. Their semantics will
be defined in the next two sections.
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S ::= v := new lock

| acquire e

| release e

| v := new C

| send e1(e2)
| receive v := e

| call v := e1.M(e2)
| fork v := e1.M(e2)
| join v := e

| while(e) invariant A { S1 }

Figure 4 The relevant statements of our programming language. We omitted assignment, se-
quential composition, and conditional statements because their treatment is straightforward. A
fork statement yields a token, which can be used to join the forked thread.

3.1 Programming Language

We present our technique for a simple imperative programming language with iteration and
recursion, threads, as well as dynamically-created locks and channels. For simplicity, we
omit other heap-allocated objects because their treatment is orthogonal to the focus of this
paper. However, our technique is compatible with permission-based program logics that
handle them.

A program consists of a sequence of method declarations and channel type declarations.
A method declaration has the form

method M(p: T1) returns (r: T2)
requires A1;
ensures A2;

{ S }

where M is a unique method name and each Ti is one of the following types: bool, int,
lock, token, or a channel type. Ai are assertions and S is a statement, see below. Like in
the Chalice language [15], a channel type declaration has the form

channel C(p: T) where A;

where C is a unique channel type name. Messages sent over such a channel are values of
type T . The where clause specifies a channel invariant, that is, constraints on the messages;
it also specifies the credits sent with each message.

Statements (Fig. 4) include operations on non-reentrant locks (creation, acquire, release),
operations on channels (creation, send, receive), method call, thread fork and join, and loops
with loop invariants. We also assume to have assignments, sequential composition, and con-
ditional statements, but do not formalize them because they are straightforward. Expres-
sions e include constants, variables v, and the usual boolean and arithmetic operations. We
will explain and formalize the semantics of statements in Sec. 5.

For simplicity, channels have unbounded buffers such that send operations never block.
Therefore, the blocking operations in our language are acquiring a lock, receiving a message,
and joining a thread.

ECOOP’15



8 Modular Verification of Finite Blocking in Non-terminating Programs

A ::= e

| A1 && A2
| e ⇒ A1
| releases(e1, e2)
| sends(e1, e2, e3)
| terminates(e)
| joinable(e)
| waitlevel� e

Figure 5 The assertion language. The three kinds of obligations exhibit all different character-
istics of obligations discussed in Sec. 2.1.

3.2 Assertion Language

Assertions are used as method pre and postconditions, loop invariants, and channel invari-
ants. Besides the usual constraints on variables, they specify which obligations and credits
get transferred between method executions and loop iterations, along with their measures.

Measures. In order to define measures for obligations, we adopt Dafny’s approach [13]
and assume a pre-defined well-founded strict partial order @ on all values of a program
execution. For instance, for integers x and y, we define x @ y ⇔ x < y ∧ 0 ≤ y, whereas
for an integer x and a lock l, x @ l is undefined. The resulting well-founded set forms a
complete lattice (V,@) with top element > and bottom element ⊥. Assuming a pre-defined
order simplifies the presentation of the verification technique. An adaptation to user-defined
orders is possible, but reveals nothing interesting.

Wait levels. As explained in Sec. 2.3, we use a strict partial order on obligations to prove
deadlock freedom. To encode this order, we assign every obligation a wait level, that is, a
value in a dense lattice (L,�) with strict order � and bottom element ⊥.

Assertions. The assertion language is summarized in Fig. 5. It includes boolean expres-
sions, conjunction, and implication. Moreover, there are assertions for three kinds of obliga-
tions. For a releases-obligation releases(e1, e2), e1 of type lock denotes the lock that must
be released and e2 ∈ V is the measure. For a sends-obligation sends(e1, e2, e3), e1 is of a
channel type and denotes the channel on which messages must be sent, e2 is an integer that
denotes how many messages must be sent, and e3 is the measure. When e2 is negative, the
assertion denotes credits, that is, permissions to receive rather than obligations to send. For
a terminates-obligation terminates(e), e is the measure. For all three obligation assertions,
the measure can be any value in V, including > and ⊥. The assertion joinable(e), where e is
of type token provides the permission to join the thread denoted by e. A thread may have a
join-permission for e if the thread represented by the token e is guaranteed to terminate and
has not been joined yet, and if no other thread has the permission to join it. The assertion
waitlevel � e expresses that the wait level of each obligation held by the current thread
is strictly less than the wait level of e. Thus, the current thread may execute a blocking
operation, where the corresponding obligation to unblock has level e, without creating a
deadlock. We say that e is above the current wait level if waitlevel� e. One can think of
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waitlevel as the maximum wait level of all obligations held by the current thread; however,
we will use it to specify and check only upper bounds one these levels.

Conjunction && is analogous to separating conjunction in separation logic. In particular,
releases(l, n) && releases(l, n) expresses that the current thread must release lock l twice.
Since this is not possible for non-reentrant locks, the conjunction is equivalent to false.
The conjunction sends(c, 1, n) && sends(c, 1, n) expresses that the current thread has two
obligations to send a message on channel c; that is, it is equivalent to sends(c, 2, n).

Note that the use of sends-obligations and credits is not new [15] (see App. A for an
example). We include them here to demonstrate how our technique handles a range of
obligations uniformly and to exhibit all different characteristics of obligations discussed in
Sec. 2.1. Sends-obligations can be accumulated, have the dual concept of sends-credits, and
can be transferred between threads, whereas releases-obligations and terminates-obligations
cannot be accumulated, have no credits, and cannot be transferred. Therefore, our assertion
language is representative for a wide range of obligations including for instance obligations
to await an asynchronous task or perform I/O.

Well-formedness Conditions. We impose several well-formedness conditions on assertions.
(1) Method postconditions must not contain terminates-obligations because these obligations
are satisfied when the method terminates and, thus, not returned to the caller. (2) A
method may be forked only if its precondition does not contain any releases-obligations.
This condition reflects that a lock must be released by the thread that acquired it; neither
the held lock nor the releases-obligation can be transferred to another thread. (3) A method
may be forked only if its postcondition does not contain any obligations. This condition
prevents leaking of obligations when a forked thread is never joined. For terminates and
releases-obligations, this condition can be checked syntactically. If the postcondition contains
an assertion sends(c, e, n), we verify that e evaluates to a non-positive number, that is, the
assertion denotes a credit. (4) A channel invariant must not contain any obligations (but
credits are allowed). This condition ensures that obligations cannot be leaked by sending
them in a message that might never get received. (5) A channel invariant must not contain
wait level constraints because these constraints cannot be interpreted consistently in the
sending and receiving thread of a message.

4 Encoding of Assertions

In this section, we present an encoding of assertions into a guarded command language
similar to Boogie [1]. For readability, we use dedicated operators and constant symbols for
measures and wait levels rather than Boogie’s uninterpreted functions, and bulk updates
(foreach statements) instead of encoding them via Boogie’s havoc and assume statements.
In the following, we introduce the representation of program states, explain how we encode
the transfer of obligations, and then formalize the meaning of assertions.

4.1 Encoding of States
The state of a method execution consists of the method’s parameter and result variables, its
local variables, as well as the obligations (and credits) held by this method execution. To
treat the different kinds of obligations uniformly, we introduce a type

obl = lock ∪ channel ∪ {term}

ECOOP’15



10 Modular Verification of Finite Blocking in Non-terminating Programs

where channel includes all channel types declared in the program. Here, a lock identifies
a releases-obligation, a channel identifies a sends-obligation (or credit), and the identifier
term identifies a terminates-obligation. Using the obl type, we declare a global map that
stores the obligations and credits held by the current method execution or loop iteration:

B : obl→ Z

B[o] = n encodes that the current method execution has n obligations for o if n is positive,
and −n credits if n is negative, The latter occurs only if o is a channel.

As we explained in Sec. 2.2, we track separately which obligations are fresh, that is, have
been obtained since the prestate of the current method execution or loop iteration. The
number of fresh obligations is stored in a global map:

F : obl→ N

F [o] yields how many of the obligations in B[o] are fresh. If there are no obligations, F [o] is
zero. That is, the following invariants hold in all states:

∀o ∈ obl · 0 ≤ B[o]⇒ F [o] ≤ B[o]
∀o ∈ obl · B[o] ≤ 0⇒ F [o] = 0

Since the first execution of a join statement for any thread t may block, we need in
principle a credit that provides the permission to join t (see the characteristics of obligations
in Sec. 2.1). This credit is the dual of the terminates-obligation for t. That is, the forker of t

obtains the credit needed to join t if t promises to terminate, that is, consumes a terminates-
obligation. It is possible to encode join-permissions as terminates-credits, but such an
encoding complicates terminates assertions (which would need an argument that identifies
the thread) and the encoding of fork (since terminates-obligations in the precondition of the
forked method must be interpreted differently in the forker and in the forkee). Therefore,
we choose a different encoding here. The map B does not contain termination information
about threads other than the current thread; such information is stored in a separate map
that yields whether a thread may be joined:

J : token→ B

Finally, we record the wait level of each obligation in the following map, where L is the
set of wait levels:

L : obl ∪ token→ L

For a lock or channel o, L[o] denotes the wait level of the corresponding releases- or sends-
obligations. L[term] denotes the level of the terminates-obligation of the current thread,
and for a token t, L[t] denotes the level of the terminates-obligation of the thread represented
by t.

4.2 Transfer of Obligations and Credits
Our assertions do not only express conditions on the state but also specify which obligations
(and credits) get transferred between method executions and loop iterations. This behavior
is similar to assertions in permission logics, which describe how ownership of resources is
transferred. We formalize the meaning of assertions via two operations, exhale and inhale
(sometimes called produce and consume). In this subsection, we explain how to exhale and
inhale obligations and credits. A key virtue of our approach is that these operations are
uniform for all kinds of obligations. Exhaling and inhaling assertions will be explained in
the next subsection.
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Exhaleobl(o, n, m, creditsAllowed, P ) =
assert creditsAllowed ∨ n ≤ B[o];
if (m = >) {

assert n ≤ F [o] ∨ B[o] ≤ F [o];
F [o] := max(F [o]− n, 0);
} else {

assert 0 < n ∧ F [o] < B[o]⇒ m @ P [o];
}
B[o] := B[o]− n;
if (B[o] < F [o]) {
F [o] := max(B[o], 0);
}

Figure 6 The exhale operation for obligations and credits. o ∈ obl is the obligation, n ∈
Z indicates the number of obligations (or credits) to exhale, and m ∈ V is the measure of the
obligations to be exhaled. The boolean flag creditsAllowed indicates whether credits are allowed
for the kind of obligations to be exhaled. P ∈ obl → V provides the measure of obligations in the
prestate of the enclosing method or loop for the check that the measure decreases.

Exhale. Exhaling obligations is formalized in Fig. 6. Exhaleobl(o, n, m, creditsAllowed, P )
exhales n obligations (or −n credits, if n is negative) for o (where o is a lock, channel, or
term) with measure m. It first asserts that credits are permitted for this kind of obligation
or that the current state has enough obligations to exhale. (Applications of Exhaleobl will
ensure that creditsAllowed is true if n is negative.)

For the rest of the operation, let us first consider the case that we exhale obligations,
that is, 0 < n. If the exhaled obligations are fresh (indicated by m = >), we check that
there are enough fresh obligations available or that there are no non-fresh obligations. In the
former case, the fresh obligations are given away. In the latter case, the exhale gives away
all available fresh obligations and obtains some credits. It would be unsound to exhale fresh
obligations if neither case applied because reducing the number of obligations would then
treat non-fresh obligations as fresh, thereby providing a way to postpone their satisfaction.
If the exhaled obligations are non-fresh (m 6= >), we check that if the current state holds
non-fresh obligations (F [o] < B[o]), their measure decreased w.r.t. the prestate measure
of the enclosing method or loop, provided by the map P ∈ obl → V. In both cases, we
remove the exhaled obligations from the state and adjust the number of fresh obligations to
maintain the invariants mentioned in Sec. 4.1.

If we exhale credits (that is, n ≤ 0), the assertions in both branches of the conditional
hold trivially (recall that 0 ≤ F [o]). Giving away fresh credits increases the number of fresh
obligations, and giving away any credits always increases the number of obligations. It is
therefore preferable to make all credits in assertions fresh.

Creation and Cancellation of Credits. A sends-credit for a channel c is created by exhaling
a sends-obligation for c in a state that holds no such obligation. However, the inverse
operation—canceling an obligation with a credit— is not permitted. That is, inhaling a
credit in a state that holds a corresponding obligation, or inhaling an obligation in a state
that holds a corresponding credit leads to a verification error. It would be unsound to
create a credit by exhaling an obligation with a small measure and then cancel the credit
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12 Modular Verification of Finite Blocking in Non-terminating Programs

Inhaleobl(o, n, m, P ) =
if (0 < n) {

P [o] := P [o] um;
}
assert (0 < n⇒ 0 ≤ B[o]) ∧ (n < 0⇒ B[o] ≤ 0);
Exhaleobl(o,−n, m, true, P>);

Figure 7 The inhale operation for obligations and credits. The parameters o, n, and m are
analogous to Exhaleobl. Inhaling obligations records their measures in the map P ∈ obl → V for
later checks. Note that we treat the inhale operation as a parameterized macro such that updates
to P modify the argument map at the call site. P> ∈ obl → V yields > for all obligations and is
used to suppress the measure check in Exhaleobl

, which is not needed during inhale.

with an obligation that has a larger measure. This would effectively increase the measure
of the obligation and, thus, provide a way to postpone the satisfaction of the obligation
indefinitely. Even if the obligations involved in creating and canceling a credit had the same
measure, one could postpone the satisfaction of the obligation indefinitely by arranging a
sequence of threads where each thread obtains a credit from its successor to cancel its own
obligation, creating another obligation in the successor, and so on.

One could prevent this unsoundness by recording the measure of the exhaled obligation
when creating a credit and then enforcing that the credit may cancel only obligations that
have a strictly larger measure. Since this solution requires substantial bookkeeping and
since the main purpose of sends-credits is to enable receive operations (rather than canceling
sends-obligations), we simply forbid cancellation of obligations and credits altogether. This
rule is reflected in the encoding of inhale below.

Inhale. Inhaling obligations is formalized in Fig. 7. Inhaleobl(o, n, m, P ) inhales n obliga-
tions (or −n credits, if n is negative) for o with measure m. The operation records the
measures of inhaled obligations in map P . If there are multiple obligations for o, we ab-
stract their measures by storing their minimum. This is achieved by using the meet u of the
measure lattice. We treat the inhale operation as a parameterized macro such that updates
to P modify the argument map at the call site (that is, P behaves like an in-out parameter).
We will record measures only in the prestates of method executions and loop iterations; in
all other cases, we will pass a dummy map for P .

The assertion after the update of P prevents credit cancellation as explained above.
Finally, obligations are added by exhaling the corresponding credits, and vice versa. Since
the decrease-checks for measures before recursive calls and at the end of loop iterations will
be encoded via exhale, inhale does not have to perform any such checks. Therefore, it passes
P>, which yields > for all obligations, to Exhaleobl, such that the check m @ P [o] there will
trivially succeed.

4.3 Exhaling and Inhaling Assertions
Exhaling an assertion A checks that the constraints specified by A hold and removes the
obligations and credits specified in A from the current state. The definition is provided in
Fig. 8. Exhaling proceeds in two phases. The first phase checks all constraints except those
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Exhale(A, P ) = Exhale1(A, P ) Exhale2(A,_)

Exhalei(A1 && A2, P ) = Exhalei(A1, P ) Exhalei(A2, P )
Exhalei(e ⇒ A, P ) = if (bbecc) { Exhalei(A, P ) }

Exhale1(e,_) = assert bbecc;
Exhale1(releases(e1, e2), P ) = Exhaleobl(bbe1cc, 1, bbe2cc, false, P )
Exhale1(sends(e1, e2, e3), P ) = Exhaleobl(bbe1cc, bbe2cc, bbe3cc, true, P )
Exhale1(terminates(e), P ) = Exhaleobl(term, 1, bbecc, true, P )
Exhale1(joinable(e),_) = assert J [bbecc];J [bbecc] := false;

Exhale2(waitlevel� e,_) = assert levelBelow(B,L[bbecc]);

Figure 8 Encoding of exhale. A is an assertion, and P ∈ obl → V provides the prestate measures
for the check that obligation measures decrease. All cases not mentioned here are defined as skip.
bb_cc encodes expressions of the programming language; it is straightforward and, therefore, omitted.

on wait level and handles the transfer of obligations and credits. The second phase only
checks wait level constraints. This encoding via two phases is necessary to treat wait level
constraints soundly. It checks wait level constraints during exhale after obligations and cred-
its have been removed from the state, and assumes wait level constraints during inhale before
obligations and credits have been added (see Fig. 9 below). That is, in both cases, waitlevel
refers to a state that does not contain the transferred obligations and credits. This fixes
an unsoundness in Chalice [15], where it was possible to interpret waitlevel inconsistently
during exhale and inhale and, thus, exhale assertions that lead to an inconsistency when
inhaled.

In both phases of exhale, conjunction is treated multiplicatively by sequentially exhal-
ing the two conjuncts. This is analogous to an encoding of separating conjunction [21].
Implication is encoded via a conditional statement.

Phase 1 uses Exhaleobl from Fig. 6 to transfer obligations and credits, and to check that
measures decrease. Even though there are no terminates-credits, we set the creditsAllowed
parameter of Exhaleobl to true for terminates-obligations because our encoding of statements
will lead to intermediate states with a negative number of terminates-obligations. Exhaling
a join-permission asserts that such a permission is held and removes it.

Phase 2 checks wait level constraints. In order to be useful to prove deadlock freedom,
waitlevel � e expresses that the wait level of each obligation held by the current thread
is strictly less than the wait level of e. In our procedure-modular verification technique,
we cannot check this condition directly because we record (in map B) only the obligations
held by the current method execution or loop iteration, but not those held by other method
executions on the call stack or enclosing loops. To account for those, our encoding uses a
local variable residue ∈ token in each method. We leave the value of residue unspecified,
but ensure that we can prove that its level is less than an upper bound u only if the level of
all obligations held by the current thread, but not by the current method execution or loop
iteration, is less than u. Therefore, we can prove waitlevel� e by proving that the level of
all obligations recorded in B as well as the level of residue are less than e’s level. We encode
this via the following predicate:

levelBelow(B, u) = (∀o ∈ obl · 0 < B[o] ⇒ L[o]� u) ∧ L[residue]� u
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14 Modular Verification of Finite Blocking in Non-terminating Programs

Inhale(A, P ) = var Bold := B; Inhale1(A, P )

Inhale1(A1 && A2, P ) = Inhale1(A1, P ) Inhale1(A2, P )
Inhale1(e ⇒ A, P ) = if (bbecc) { Inhale1(A, P ) }
Inhale1(e,_) = assume bbecc;
Inhale1(releases(e1, e2), P ) = Inhaleobl(bbe1cc, 1, bbe2cc, P )
Inhale1(sends(e1, e2, e3), P ) = Inhaleobl(bbe1cc, bbe2cc, bbe3cc, P )
Inhale1(terminates(e), P ) = Inhaleobl(term, 1, bbecc, P )
Inhale1(joinable(e),_) = J [bbecc] := true;
Inhale1(waitlevel� e,_) = assume levelBelow(Bold ,L[bbecc]);

Figure 9 Encoding of inhale. A is an assertion, and P ∈ obl → V is used to record the measures
of inhaled obligations.

Our encoding ensures that the only information obtained about residue’s level is the upper
bounds when inhaling wait level constraints as part of method pre or postconditions, or
loop invariants. Therefore, the prover needs check assertions for any value of residue’s level
below these upper bounds, including a value above the levels of the obligations held by the
transitive callers of the current method. To understand why such a value always exists,
consider a method m with precondition waitlevel� e. This condition constrains the level
of m’s residue variable to be less than e’s level. When exhaling this precondition in the caller
n, we check that the levels of all obligations held by n are less than e’s level. Therefore,
since wait levels form a dense lattice, there exists a possible value for the level of m’s residue
variable that is above all obligations held by n and less than e’s level. By checking (as part
of exhaling the precondition) that the level of n’s residue variable is less than e’s level, we
know that there exists a value for the level of m’s residue variable that is above the level of
n’s residue variable and less than e’s level. The argument applies inductively to n’s residue
variable, the one in n’s caller, and so on. That is, m’s residue also reflects the obligations
held by those method executions. The argument is analogous for enclosing loops.

The definition of inhale in Fig. 9 is analogous to exhale. It stores the current obligations
map B before transferring obligations or credits in order to interpret wait level constraints
consistently with exhale. Inhaling a constraint assumes it. Obligations and credits are
transferred using the Inhaleobl macro from Fig. 7, and join-permissions are inhaled by adding
them.

5 Encoding of Methods and Statements

In this section, we present the proof rules for our verification technique via an encoding into
Boogie [1]. The resulting Boogie program contains neither obligations (which are encoded
by accesses to the maps B and F) nor exhale and inhale operations (which are replaced by
their definitions). Therefore, we can verify the program by computing weakest preconditions
over the guarded commands and proving them in an SMT solver. Verification is procedure
and thread-modular. That is, each method is verified without considering its caller or
interference from other threads.
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〈〈method M(p) returns (r) requires preM (this, p) ensures postM (this, p, r) { S }〉〉 =
assume ∀o ∈ obl · B[o] = 0;
var residue;
var Pmethod := P>;
Inhale(preM (this, p), Pmethod)
foreach o ∈ obl { F [o] := 0; }
[[S]]
Exhale(postM (this, p, r), P>)
B[term] := 0;
assert ∀o ∈ obl · B[o] ≤ 0;

Figure 10 Encoding 〈〈_〉〉 of methods. The assertions preM (this, p) and postM (this, p, r) are the
method precondition and postcondition, resp.

5.1 Methods
Fig. 10 shows the encoding of methods. Before inhaling the precondition, the execution
of a method holds neither obligations nor credits. The value of the local variable residue
is unspecified; its level is constrained when inhaling wait level constraints. The subsequent
inhale operation assumes the method precondition and transfers obligations and credits from
the caller to the callee. It records the measures of obligations in a map Pmethod , which will
be used in call and fork statements to ensure that measures decrease. The recording works
by passing the all-top map P> into the inhale macro, which, for each inhaled obligation,
takes the minimum (that is, the meet) of the stored measure and the measure of the inhaled
obligation (see Fig. 7). After inhaling the precondition, we make all fresh obligations non-
fresh since obligations that are fresh to the caller are not fresh to the callee as they existed
before the execution of the callee started. This step is necessary to prevent fresh obligations
from being transferred indefinitely from method execution to method execution.

The method body is encoded using the encoding function for statements [[_]]. After
executing the body, we exhale the postcondition. During this exhale, we do not need to
check that measures have decreased (which happens only at call and fork sites and at the
end of loop iterations). Therefore, we pass the all-top map P> as last argument to the exhale
operation such that the decrease-check succeeds trivially. After the exhale, we remove the
terminates-obligation from the obligation map since the method is about to terminate. The
final step is the leak check: upon termination, the method may hold no obligations. That
is, all obligations passed in from the caller or obtained during the execution of the method
must be satisfied, transferred to other threads (during a fork), or returned to the caller when
exhaling the postcondition.

5.2 Call, Fork, and Join
A call statement (Fig. 11) is verified by exhaling the precondition of the callee and then in-
haling its postcondition. The exhale needs to check that the measures of exhaled obligations
decreased since the prestate of the caller. This is achieved by passing the measures from
this state (variable Pmethod , which is initialized at the beginning of the enclosing method,
see Fig. 10) into the exhale operation. After the exhale, we assert that the caller retains
no obligations unless the callee promises to terminate. This assertion ensures obligations
cannot be left behind in the caller in cases where the control flow might never return. The
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16 Modular Verification of Finite Blocking in Non-terminating Programs

condition B[term] < term expresses that the callee promises to terminate. In this case,
exhaling its precondition will transfer a terminates-obligation from the caller to the callee,
that is, decrease the value of B[term] compared to the value before the exhale (stored in
local variable term). Finally, since the assertion after the exhale quantifies over all obli-
gations, including terminates-obligations, it enforces that the callee promises to terminate
if the caller does (otherwise the caller would still hold its terminates-obligation after the
exhale). Since terminates-obligations must be satisfied by each individual method and can-
not be delegated, we restore the terminates-obligations after the exhale. The final inhale
does not have to record measures since this is necessary only in the prestate of a method
execution or loop iteration; therefore, it uses the dummy map Pd, which is never read from.

[[call v := e1.M(e2)]] = var term := B[term];
Exhale(preM (bbe1cc, bbe2cc), Pmethod)
assert ∀o ∈ obl · B[o] ≤ 0 ∨ B[term] < term;
B[term] := term;
Inhale(postM (bbe1cc, bbe2cc, v), Pd)

[[fork v := e1.M(e2)]] = var term := B[term];
Exhale(preM (bbe1cc, bbe2cc), Pmethod)
havoc v; assume L[v] = ⊥;
J [v] := (B[term] < term);
B[term] := term;
havoc w; assume levelBelow(B, w);
L[v] := w;

[[join v := e]] = assert levelBelow(B, bbecc);
assert J [bbecc];
Inhale(poste(v), Pd)
J [bbecc] := false;

Figure 11 Encoding of call, fork, and join statements. Pd ∈ obl → V is a dummy map that is
never read. The function poste yields the postcondition of the method that was forked to obtain
token e. We assume that the receiver and arguments of the fork are stored in the token, but omit
this aspect in the encoding.

Allowing the caller to retain obligations when calling a terminating method is crucial for
modularity; otherwise, the callee’s precondition would have to mention different obligations
for different call sites. Nevertheless, these obligations are accounted for in variable residue
and, thus, affect wait level constraints. In particular, it is not possible for a caller to hold
an obligation to unblock its callee (which might create a deadlock) because the obligation
in the caller affects the wait level of the callee (via residue) and, thus, prevents the callee
from executing the blocking operation (see for instance the first assertion in the encoding of
join statements in Fig. 11).

The encoding of a fork statement is similar to a call. In particular, the measures of
transferred obligation must decrease to ensure that they cannot be transferred from thread
to thread indefinitely. However, since the forked method will be executed in a new thread,
there are no restrictions on the obligations that remain in the forker. After the exhale, we
pick a fresh token for the new thread. The fact that this token is different from existing
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token is encoded by assuming that its level in the wait order is ⊥, whereas all tokens for
existing threads are implicitly assumed to have larger levels. The new thread can be joined
if it promises to terminate, that is, if the forker’s terminates-obligations get decreased by
exhaling the forked method’s precondition. Like for calls, the terminates-obligations get
restored afterwards. Finally, we choose a wait level for the new thread that is above the
current wait level, which will allow the current thread to join it later.

Since join is a blocking operation, it asserts that the token of the thread to be joined
is above the current wait level (to avoid deadlock) and that the current thread has the
appropriate join-permission (to avoid waiting on a non-terminating thread). We then inhale
the joined method’s postcondition and remove the join-permission to prevent a thread from
being joined more than once, which could forge credits in the postcondition.

5.3 Lock Operations

The encoding of lock operations is presented in Fig. 12. To focus on the essentials, we do
not associate locks with an invariant. An extension is straightforward, but requires that
the invariant does not contain obligations (credits are permitted) [15]. Otherwise, a thread
could get rid of its obligations by storing them in a lock, which might never get acquired
again.

[[v := new lock]] = havoc v; assume L[v] = ⊥;
havoc w; assume levelBelow(B, w);
L[v] := w;
B[v] := 0;F [v] := 0;

[[acquire e]] = assert levelBelow(B, bbecc);
Inhaleobl(bbecc, 1,>, Pd)

[[release e]] = Exhaleobl(bbecc, 1,⊥, P>)

Figure 12 Encoding of lock operations.

Creating a new lock picks a fresh lock value. The fact that this value is different from
existing locks is encoded by assuming that its level in the wait order is ⊥, whereas all
other locks are assumed to have larger levels. The new lock is then inserted into the wait
order above the current wait level, which allows the current thread to acquire it (specifying
different levels for the new lock is possible [15], but omitted here for simplicity). Initially,
the current thread does not hold any obligations for the new lock.

Acquiring a lock checks that the lock is above the current wait level to prevent deadlock.
It then inhales a fresh releases-obligation for the lock to ensure that the acquired lock will
eventually be released. Inhaling this obligation implicitly raises the current thread’s wait
level.

Releasing a lock exhales the corresponding releases-obligation. This exhale operation
does not have to check that the obligation measure has been decreased. We achieve that
by passing a non-> measure for the obligation (here, ⊥) and P> for the prestate map, such
that the decrease-check succeeds trivially (since ⊥ @ >).
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18 Modular Verification of Finite Blocking in Non-terminating Programs

5.4 Message Passing
The encoding of channel operations is presented in Fig. 13. Channel creation is analogous
to lock creation (see Fig. 12). Since receive is a blocking operation, we first assert that
the channel is above the current wait level. Moreover, to ensure that some thread has an
obligation to send on the channel (or has sent already), we require that the current thread
has a sends-credit, which is subsequently consumed by exhaling it. Finally, we inhale the
channel invariant inv, without recording any obligations measures. Since we assume sending
to be a non-blocking operation, we simply exhale a sends-obligation (which got satisfied)
and exhale the channel invariant.

[[v := new C]] = havoc v; assume L[v] = ⊥;
havoc w; assume levelBelow(B, w);
L[v] := w;
B[v] := 0;F [v] := 0

[[receive v := e]] = assert levelBelow(B, bbecc);
assert B[bbecc] < 0;
Exhaleobl(bbecc,−1,⊥,_)
Inhale(inv(bbecc, v), Pd)

[[send e1(e2)]] = Exhaleobl(bbe1cc, 1,⊥, P>)
Exhale(inv(bbe1cc, bbe2cc), P>)

Figure 13 Encoding of channel operations. C is a channel type, and inv denotes its invariant,
which may refer to the channel itself, for instance, to denote sends-credits for the channel.

Our well-formedness conditions (Sec. 3.2) ensure that channel invariants do not contain
obligations. Therefore, it is neither possible to get rid of obligations by sending them in a
message that is never received, nor to send obligations in circles indefinitely. It is also not
possible to transfer obligations indirectly from one thread to another by sending a credit in
the opposite direction. Such an indirect transfer would have to cancel the obligation in the
receiver of the message with the credit contained in the message, which is prevented by our
definition of inhale (see Sec. 4.2).

5.5 Loops
The encoding of loops (Fig. 14) includes both the representation of the loop within the
enclosing code and the verification of the loop body. The two aspects are encoded by a non-
deterministic choice (if(*)). The former resembles the encoding of a method call, whereas
the latter is similar to a method body.

In both cases, we proceed by exhaling the loop invariant. This exhale does not check
obligation measures since the measures of the loop encoded here are independent of the
measures used by the enclosing method or loop (if any). Hence, we pass the all-top map P>
to the exhale operation. The check after exhaling the loop invariant ensures that the code
before the loop does not retain any obligations unless the loop promises to terminate. This
assertion is identical to the one for calls (Fig. 11). In particular, it enforces that the loop
must promise to terminate if the enclosing loop or method has a terminates-obligation. We
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[[while(e) invariant A { S }]] =
var term := B[term];
Exhale(A, P>)
assert ∀o ∈ obl · B[o] ≤ 0 ∨ B[term] < term;
havoc loop targets;
if (∗) {
Inhale(A, Pd)
assume ¬bbecc;

} else {
havoc B,F , residue;
assume ∀o ∈ obl · B[o] = 0;
var Ploop := P>;
Inhale(A, Ploop)
foreach o ∈ obl { F [o] := 0; }
assume bbecc;
[[S]]
Exhale(A, Ploop)
assert ∀o ∈ obl · B[o] ≤ 0;
assume false;

}

Figure 14 Encoding of while statements. The first branch of the non-deterministic choice encodes
the loop within the enclosing code and resembles a method call. The second branch verifies the
loop body and resembles the encoding of a method.

then havoc the loop targets, that is, all local variables that get assigned to in the loop body.
Any information about these variables that should be retained must be included in the loop
invariant.

To represent the loop within the enclosing code, we simply inhale the loop invariant
(without recording obligation measures), assume that the loop condition is false, and proceed
to the statements after the loop.

To verify the loop body, we consider an arbitrary loop iteration. We first havoc the
obligation maps and residue to remove any information from before the loop. The following
steps are analogous to the encoding of methods (Fig. 10): Before inhaling the loop invariant,
the loop iteration holds neither obligations nor credits. Then we inhale the loop invariant
and record obligation measures in a map Ploop for the decrease-check at the end of the
loop body. Finally, we make all fresh obligations non-fresh (to prevent them from being
transferred indefinitely from iteration to iteration), and execute the loop body. After the
loop body, we exhale the loop invariant, checking that obligation measures decreased during
the loop body, and perform the same leak check as for methods. Finally, we stop verification
by assuming false, in order to prevent verification from proceeding with the code after the
loop (which is done in the other branch of the non-deterministic choice).

6 Soundness

Our technique guarantees that in any execution of a verified program, no thread blocks
indefinitely. This guarantee holds under the assumptions that (1) all thread transitions are
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strongly fair and (2) the number of threads in each execution state is finite. A strongly-
fair transition executes infinitely often if it is enabled infinitely often. Hence, we make the
assumption that the thread scheduler ensures strong fairness and that we have fair locks
and fair message reception. The number of threads in each state must be finite to prevent
infinite chains of threads where each thread is blocked by its successor and, thus, never
gets unblocked. This requirement is met by any execution platform with finite memory; to
implement it, a fork operation aborts the entire program execution when a certain (unknown)
number of threads is reached. Note that the number of threads is finite, but unbounded.
That is, verification guarantees finite blocking for program executions with an arbitrary
finite number of threads in each state. In this section, we provide the main arguments why
our technique is sound.

The following properties hold in each execution state of a verified program:

1. A thread t holds a lock l iff t has a releases-obligation for l. This property is preserved by
all lock operations (Fig. 12). The other operations preserve it because they neither add
nor remove releases-obligations. In particular, our well-formedness conditions (Sec. 3.2)
ensure that releases-obligations cannot be transferred to another thread during fork, join,
or message passing.

2. For each channel c, the total number of credits in the system (that is, held by a thread
or stored in a message) is at most the total number of obligations plus the number of
messages stored in c’s buffer. This inequality is preserved by all channel operations
(Fig. 13). For all other operations, each exhale has a corresponding inhale, keeping the
total number of obligations and credits in the system constant. The only exception is
exhaling the postcondition of a forked method if the thread does not get joined. However,
our well-formedness conditions ensure that postconditions of forked methods do not
contain obligations. Moreover, our leak checks ensure that the termination of method
executions and loop iterations maintains the number of obligations in the system and
does not increase the number of credits, thus, preserving the inequality.

3. If a thread t has a join-permission for a thread t′ then t′ has a terminates-obligation or
has terminated already. Fork and join (Fig. 11) preserve the property. In particular,
fork provides a join-permission only if the new thread promises to terminate, and join
removes this permission. Moreover, a thread keeps its terminates-obligation until the
forked method terminates.

4. If a thread t is blocked, the number of obligations to unblock it held by all other threads is
positive. This property follows from the encoding of the three blocking statements and
Properties 1–3.

5. There is no cycle among threads such that each thread on the cycle waits for the next
one to unblock it; that is, there is no deadlock. Each blocking statement checks that the
wait level of the current thread is strictly less than the wait level of the thread that must
unblock it, that is, the thread that (a) holds the lock to be acquired (since held locks
contribute to the wait level by Property 1), (b) has a sends-obligation for the channel
on which to receive, or (c) needs to terminate (since the thread’s current wait level is no
smaller than its initial wait level, which is the level of its token).

The following properties hold for each execution of a verified program:

6. A fresh obligation gets satisfied or becomes non-fresh within finitely many execution steps.
A single thread t can hold on to a fresh obligations only for a finite number of steps
because every fresh obligation becomes non-fresh at the beginning of each method or
loop body, that is, before the thread can transfer the obligations to another thread.
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7. A non-fresh obligation gets satisfied within finitely many execution steps. A non-fresh
obligation cannot stay in one thread forever since its measure must decrease for each
recursive call or loop iteration. It can be transferred to other threads only via fork,
which also checks that the measure decreases. The well-formedness conditions ensure
that transfers through join or message passing are not possible.

These properties imply soundness as follows. Whenever there is a blocked thread t0 then
there is a sequence t0, t1, . . . such that ti+1 has an obligation to unblock ti. By the assumption
that the number of threads is finite, this sequence is finite. By Properties 4 and 5, its last
thread tn is not blocked, that is, is enabled. By the assumption of fair scheduling, tn

will eventually make progress and, by Properties 6 and 7, its obligation will eventually be
satisfied, unblocking thread tn−1. Thread tn−1 might re-block immediately if another thread
acquires the lock or receives the message tn−1 is waiting for. However, since we assume fair
locks and message reception, enabling tn−1 infinitely often ensures that it will make progress
eventually. Therefore, the argument applies inductively.

7 Related Work

Chalice. The work most closely related to ours is Leino et al.’s approach to verifying dead-
lock freedom in Chalice [15]. However, their verification technique uses a partial correctness
semantics and, thus, provides no guarantees for the common case that a program contains
non-terminating threads. It also does not support termination proofs. In contrast, the key
contribution of our work is a technique to prove finite blocking even in the presence of non-
terminating threads, and this technique subsumes termination checking. Leino et al. handle
blocking receive statements via credits and obligations (called debt). We generalize this
idea to arbitrary blocking operations, which gives us a uniform treatment of locks, chan-
nels, and thread join, and provides a systematic way to encode further blocking operations.
This uniform treatment also allows us to replace several ad-hoc solutions in Chalice such
as holds-predicates and lockchange-clauses [14]. We adopted the general approach of pre-
venting deadlock via a wait order that includes locks, channels, and threads from Chalice.
However, the encoding of wait level constraints presented by Leino et al. is unsound because
it does not interpret waitlevel consistently during exhale and inhale. Our encoding fixes
this problem via the 2-phase exhale and a consistent interpretation during inhale.

Liveness. Finite blocking and termination are liveness properties that can be proved using
linear-time temporal logic [17]. For instance, Manna et al. [18] verify liveness properties of
concurrent programs running an arbitrary number of (identical) threads. In contrast to this
work, we present a methodology based on obligations that provides a strategy how to struc-
ture specifications and proofs. In particular, our technique supports modular verification,
where each method is verified without knowledge of their callers or concurrently executing
threads. Like our work, Manna et al. use strong fairness as one of their fairness notions.

Gotsman et al. [8] present a verification technique to show that a non-blocking algorithm
is wait-free, lock-free, or obstruction-free. These liveness properties are checked by proving
termination of an arbitrary number of operations running in parallel. The authors use
a rely-guarantee logic to reason about the interference between these parallel executions,
which is non-modular. Our work focuses on blocking operations. In this context, we can
use specifications based on obligations and credits to make verification modular.

Model checkers are able to verify general temporal logic properties in LTL or CTL,
including liveness properties. Many model checkers bound the number of threads (such as
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SPIN [9]) or the number of context switches (such as CHESS [19]), whereas our technique
verifies programs for any finite number of threads and any number of context switches.
Software model checking can also be applied to infinite state programs by utilizing different
(automatic) abstraction techniques [2]. In contrast to these approaches, our technique is
procedure-modular, which makes it applicable to libraries and improves scalability, at the
price of having to write specifications.

Termination. Our technique is closely related to existing work on termination checking.
However, it goes beyond termination checking in two major ways. First, it allows one to prove
finite blocking in concurrent programs, which includes termination checking as a special case.
In particular, finite blocking requires a solution that distinguishes safe implementations
where a thread unblocks another thread and then obtains yet another obligation to unblock
(for instance, by releasing and re-acquiring a lock) from unsafe situations where a thread
continues to block another thread. Such situations do not occur during termination checking.
Second, our technique handles different kinds of obligations and supports the dual notion
of credit. In particular, credits may be transferred between threads, which requires extra
checks to prevent unsound cancellation. Again, this problem does not occur in termination
checking.

Le et al. [12] propose a verification logic for termination and non-termination. Similar
to our work, their logic uses a resource that reflects termination and that is manipulated
similarly to permissions in permission logics. Le et al. associate their termination resources
with upper and lower bounds on their lifetimes, which allows them to prove termination as
well as definite non-termination.

We adopted Dafny’s approach to obtain measures by defining a well-founded order on all
values of a program execution [13]. Dafny lifts this order to define a lexicographic order on
sequences of values and includes the import relation among modules as a part of this order.
These extensions are compatible with our use of measures.

There exist powerful automated termination checkers for both sequential and concurrent
programs [2, 3, 4, 6]. The focus of most work in this area is on inferring termination
measures. By contrast, we assume the measure to be provided by the programmer and use
it to prove finite blocking. Combining our work with inference techniques is an interesting
direction for future work, especially in the presence of credits.

Deadlock freedom. There are numerous verification techniques and type systems to check
deadlock freedom of programs that either synchronize via locks [7, 11, 24] or communicate
via messages [5, 10]. Our work adopts Chalice’s solution to checking deadlock freedom, and
we refer to Leino et al. [15] for a detailed comparison to related work. The contribution of
our work is to recast the Chalice solution in a uniform framework that supports a variety of
blocking operations and to fix the soundness issue in Chalice that we mentioned above.

8 Conclusion

This paper introduces a novel verification technique to prove finite blocking in concurrent
programs. At its core is a general framework for obligations, which express that a thread
must perform a certain operation eventually. We present uniform proof rules for the ma-
nipulation of obligations and use them to encode three common blocking operations, which
are representative for the various characteristics of obligations. By associating obligations
with measures, our technique guarantees finite blocking even for programs containing non-
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terminating threads under the assumption that scheduling, locks, and message receipt are
strongly fair. Our technique subsumes termination checking and integrates verification of
deadlock freedom.

As future work, we plan to use additional kinds of obligations to remove the main limi-
tations or our technique. For instance, one could allow sending obligations over channels by
introducing another form of obligation to ensure that every sent message will eventually be
received such that the contained obligations do not get lost. Obligations to establish condi-
tions on shared state could be used to prove that the busy-wait loop of a thread terminates.
However, obligations are not limited to finite blocking. We plan to use the framework in-
troduced here to prove other liveness properties, for instance, that every asynchronous task
will be awaited eventually or that certain objects will be de-allocated eventually. Another
direction for future work is to add support for abstract predicates [20] in order to denote
statically-unknown sets of obligations in specifications, and to support information hiding.
Finally, it would also be interesting to combine our work with approaches to infer termination
measures.
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A Credits and Deadlock Freedom

As explained in Sec. 2.1, blocking operations where the very first execution blocks (such as
receiving on a channel) are handled by credits. Creating a credit simultaneously creates a
corresponding obligation. Therefore, by enforcing that a thread executing a receive state-
ment holds a sends-credit, we ensure that some other thread has a sends-obligation and,
thus, the receive will not block indefinitely.

The producer-consumer example in Fig. 15 demonstrates this idea. The consumer
method Cons requires a sends-credit for the channel c, which allows it to receive one message
on this channel. Because of Cons’s precondition, this initial credit is provided by the Main

method when it forks the consumer, which leaves the corresponding sends-obligation in Main.
This obligation is transferred to the producer when the Prod method is forked. Note that
Main could not terminate without forking the producer first because it would still hold an
obligation and, thus, not pass the leak check at the end of the method. Note further that
neither the producer nor the consumer promise to terminate and, thus, cannot be joined
since the join operation might block indefinitely.

Once the producer and consumer have been forked, they communicate via the channel
c. The declaration of c’s type C specifies that messages sent over the channel are boolean
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channel C(b: bool) where b ⇒ sends(this, -1, >);

method Main() {
c := new C;
fork t1 := Cons(c) below c;
fork t2 := Prod(c);

}

method Prod(c: C)
requires sends(ch, 1, 1);

{
while(*)
invariant sends(c, 1, 1);

{ send c(true); }
send c(false);

}

method Cons(c: C)
requires sends(c, -1, >)
requires waitlevel � c;

{
more := true;
while(more)

invariant more ⇒ sends(c, -1, 1);
invariant waitlevel � c;

{ receive more := c; }
}

Figure 15 A producer-consumer example. The producer and consumer communicate over an
asynchronous channel c. The main method transfers a sends-credit to the consumer, which allows
it to receive the first message, and the corresponding sends-obligation to the producer, forcing it
to send a message. With every message except the final one, the producer sends another sends-
credit to the consumer, which allows the consumer to receive the next message. The measure > is
explained in Sec. 3.2.

values. Its channel invariant expresses that whenever the value true is sent over the channel,
the message includes one sends-credit for the channel. Therefore, with every send operation
inside the while loop of method Prod, the producer sends a credit to the consumer. Con-
sequently, the producer has one sends-obligation throughout the loop because it satisfies
one obligation by sending a message and obtains a new one by sending away a credit. This
property is expressed by its loop invariant. Since the sends-obligation gets satisfied in each
loop iteration, its measure is constant 1. However, similar examples require other measures;
for instance, if the producer sent messages to several channels in a round-robin fashion, the
sends-obligation for each of the channels would be the number of channels. Once the loop
has terminated, the producer sends a final message not containing a credit. This send oper-
ation satisfies the remaining sends-obligation, allowing method Prod to pass its leak check
and terminate. The consumer obtains another credit with every message it receives, which
allows it to receive the next message. The final message (with value false) contains no credit,
forcing the consumer to terminate its receive-loop.

To prevent deadlock, the receive operation in the consumer requires that the consumer’s
wait level is strictly below the level of the channel c. This constraint is required in the
precondition and maintained throughout the loop. In order to satisfy the precondition,
method Main forks the consumer with an initial wait level that is below c’s level (indicated
by the below-clause). We omit such constraints from our encoding, but their treatment is
straightforward [15].

B Soundness

This appendix contains a detailed informal soundness argument including proof sketches for
the properties discussed in Sec. 6. We start with informally giving an operational semantics
for programs written in the language defined in Fig. 4. We then show that programs do
not lose obligations (Properties 1–4 in Sec. 6). Using these properties, we prove deadlock
freedom (Property 5). The properties discussed next are termination, i.e., that an obligation
can stay in a program only for a finite number of steps (Properties 6 and 7). Finally, we
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put all the pieces together to prove that always when a thread is blocked, it is eventually
unblocked.

Our overall strategy is to assume an operational semantics that follows the definition
of the proof rules in Sec. 5. In particular, the semantics is instrumented with obligations,
credits, and join-permissions, which are manipulated analogously to the proof rules. It also
contains all assertions from our proof rules; if an assertion fails at runtime, the execution of
the entire program aborts. We then show that if the execution of this instrumented program
does not abort, it enjoys finite blocking.

B.1 Definitions and Properties of Exhale and Inhale
We start with definitions of programs and threads, as well as the state tracked for each
thread. The operational semantics outlined below is defined based on the encoding in Sec. 5.
The transitions in the operational semantics are given by the statements in Fig. 4. However,
method calls are split into separate call and return transitions, and loops are split into loop
entry and loop iteration (re-evaluating the loop condition and then re-entering or leaving
the loop) transitions.

I Definition 1 (Threads and program).

We assume the set of locks, the set of channels, the set of join tokens and the set {term}
are disjoint.
The state of a thread consists of a stack of method and loop activations. Each activation
holds at least the masks B and F , as well as a token residue.
The program has a global mask L for storing the wait level of each obligation and the
residue-tokens.
Threads can communicate over asynchronous channels. Each channel c represents an
unbounded queue that contains messages. Each message m contains a mask Bm repre-
senting the credit that are carried by the message.
A program execution consists of a set of threads.
In the initial state, there is one thread with a main method activation where B[_] = 0
and F [_] = 0.
A program aborts if some thread aborts. A thread aborts if it executes an assert state-
ment where the condition evaluates to false.
To focus on the essentials, we prove that a program that does not abort will not block
indefinitely.
We use the notation begin to denote the creation of a new method or loop activation
on the thread stack and end to pop an activation from the thread stack.

I Definition 2 (Atomic transitions). We have the following atomic transitions in a program:
assignment, lock creation, channel creation, acquire, release, send, receive, method call,
method return, fork, join, loop entry, and loop iteration.

I Definition 3 (Method call and return).

A call to a method consists of executing the statement Scall; begin var B,F = [_ 7→
0], [_ 7→ 0]; var residue; init(residue); Sstart. Scall contains the first statements in the
encoding of method calls (see Fig. 11), including exhaling the precondition and checking
for obligation leaks and resetting B[term]. Sstart consists of the statements from the
encoding of method bodies before the encoding method body itself (see Fig. 10) including
inhaling preconditions and setting the F-mask to zero. The initialization of residue is
discussed later.
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A return from a method (see Fig. 10 and Fig. 11) consists of executing the statement
Send; end; Sreturn. Send consists of exhaling the postcondition, setting B[term] := 0 and
performing the leak check, while Sreturn inhales the postcondition.

Fork is analogous to call, but a new thread is created by begin. Join is analogous to
method return. However, additionally we need to consider the wait level in join, since join
is a blocking operation.

A loop is considered to push a loop activation on the thread stack. This way we can
uniformly handle loops that leave obligations or credit outside of the loop in the same manner
as method calls.

I Definition 4 (Loop entry, loop iteration, and loop exit).

If the loop guard g evaluates to true, a loop entry consists of executing the statement
Sentry; begin var B,F = [_ 7→ 0], [_ 7→ 0]; var residue; init(residue); Sstart otherwise
as Sentry; Sexit. The statement Sentry consists of the statements in the encoding of loop
entry (see Fig. 14), while Sexit consists of the statements in the encoding of loop exit
(see Fig. 14).
If the loop guard g evaluates to true at the end of the loop body, a loop iteration consists
of executing the statement Send; end; begin var B,F = [_ 7→ 0], [_ 7→ 0]; var residue;
init(residue); Sstart otherwise it consists of executing Send; end; Sexit. The encoding of
the start of loop bodies Sstart is similar to the start of method bodies (see Fig. 14).

We also need the number of obligations stored in an assertion.

I Definition 5 (Obl(A)). Let A denote an assertion. Obl(A) denotes the obligations and
credits specified by A in a given state (which is implicit in the notation).

I Theorem 6 (Exhale-inhale correspondence). In a verified program, each exhale operation
and the corresponding inhale operation of an assertion A transfer the same obligations and
credits, Obl(A).

Proof. Inhaling permissions is defined in terms of exhale (see Fig. 7). The encoding uses
exhale and inhale such that all expressions e in assertions and, therefore, all antecedents of
implications, evaluate to the same values. J

I Theorem 7 (Obligation and credit transfer). Obligations and credits can be transferred only
between activations via exhale and inhale.

Proof. This property follows directly from the definitions of the transitions. J

The variable residue in each activation represents an upper bound on the wait levels
of all obligations lower in the thread stack. It is initialized at the start of the activation
and not modified elsewhere. Below we use the notation levelBelow(B, residue, u) to denote
evaluation of levelBelow(B, u) (see Sec. 4.3) with the given residue.

I Definition 8 (init(residue)). Let A denote the assertion inhaled at the start of the new
activation. The wait level of residue is chosen such that levelBelow(B0, residue0,L[residue]),
where B0, residue0 are the obligations and residue in the previous activation after exhaling A.
Additionally, the value L[residue] is chosen small enough to fulfil the wait level constraints
inhaled in A.
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It is always possible to find a value for L[residue]. The exhale of A will check all wait
level constraints for an object o in the assertion, levelBelow(B0, residue0,L[o]), during ex-
hale. Since (L, <<) is a dense lattice we can then always choose a value v such that
levelBelow(B0, residue0, v) and v << L[o] for any exhaled constraint concerning o.

I Theorem 9 (Ascending wait level). The wait level of residue in the top activation is above
the wait levels of all obligations on the rest the stack levelBelow(Bc, residuec,L[residue])
where Bc and residuec are the obligation mask and residue in any activation c below the top
activation.

Proof. The proof is by induction on the height of the activation stack. If there is only one
activation on the stack then the condition holds trivially. Otherwise, assume the prop-
erty levelBelow(Bc, residuec,L[residued]) for an activation d on the stack. Then when
pushing a new activation on top of d then the initialization of residue in the new acti-
vation ensures levelBelow(Bd, residued,L[residue]). Since, << is transitive the property
levelBelow(Bc, residuec,L[residue]) holds. J

Credit can be stored in messages. The same amount of credit exhaled to the message in
send, is inhaled from the message in receive.

I Definition 10 (Update of message mask Bm in send and receive). Consider a channel
invariant A. After exhale of an assertion A in send, the mask Bm in the sent message has
the value Bm = Obl(A) and after inhale of the assertion A in receive, we assume Bm[o] = 0
for all obligations o.

Hence, the mask Bm yields the number of credits for each channel (a negative number)
transferred in the message, while it is in transit.

B.2 Obligation Preservation

After the definition of the operational semantics and the basic properties of inhale and exhale,
we can now state the main preservation properties of obligations for verified programs.
Theorem 11, Theorem 12, Theorem 13, and Theorem 14 correspond to Properties 1–3 in
Sec. 6. Since acquire, receive, and join are the only blocking operations, Property 4 follows
from these three properties.

I Theorem 11 (Preservation of sends-obligations). For every channel c, the total number of
credits in the system (that is, held by a thread or stored in a message) is at most the total
number of obligations plus the number of messages stored in c’s buffer:

Σ(t : Threads :: Σ(ac : Activationt :: Bt
ac[c]))+

Σ(o : Channels :: Σ(m : Message :: m in o · Bm[c]))+
length(c)
≥ 0

Here Bt
ac refers to the B-mask in the activation ac of thread t. The condition states that

the sum of obligations in threads and the number of messages in c should be greater than
the number of credits in threads and in messages. This is the same preservation property
for sends-obligations as in [15]. Note that the second line denote credits, that is, negative
values. length(c) denotes the number of messages buffered in channel c in the current state.
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Proof. The property holds trivially in the initial state, when no channels exist. All channel
operations (Fig. 13) preserve the property: New channels have empty buffers, and no thread
has obligations or credits for them. When a thread t receives a message on a channel c,
it loses one credit and removes one message from the buffer, preserving the property. Any
credits contained in the message are transferred to t, keeping the total number of credits
in the system constant. When t sends a message, it loses one obligation and adds one
message to the buffer, preserving the property. Any credits contained in the message are
removed from t, keeping the total number of credits in the system constant. All other
statements preserve the property because every exhale of a method pre or postcondition,
or loop invariant has a corresponding inhale (and vice versa), such that the total number
of obligations remains constant. The only exception is the exhaling the postcondition of
a method that was forked; if the thread does not get joined, there is no corresponding
inhale. Our well-formedness conditions (Sec. 3.2) ensure that such a postcondition must
not contain any obligations; therefore, exhaling the postcondition may reduce the number
of credits in the system, thereby preserving the inequality. Finally, our leak checks ensure
that the termination of method executions and loop iterations maintains the number of
obligations in the system and does not increase the number of credits, thus, preserving the
inequality. J

I Theorem 12 (Preservation of releases-obligations). A thread t holds a lock l if and only
if t has exactly one releases-obligation for l, that is, iff ∃ac : Activationt · Bt

ac[l] = 1 ∧ ∀c :
Activationt · c 6= ac⇒ Bt

c[l] = 0.

Proof. The property holds trivially in the initial state, when no locks exist. All lock oper-
ations (Fig. 12) preserve the property: New locks are initially not held and no thread has
an obligation for them. When a thread t acquires a lock, it obtains one releases-obligation
for it. When t releases a lock, it looses one obligation. Additionally, to release a lock a
thread must hold the releases-obligation in its top activation Bt

top[l] = 1. Finally, all other
statements preserve the property because they neither add releases-obligations to the sys-
tem nor remove any. In particular releases-obligations are moved (not copied) to and from
activations and the leak check at the end of loop and method bodies prevents activations
from losing obligations upon exit. Our well-formedness conditions (Sec. 3.2) also ensure that
releases-obligations cannot be transferred to another thread during fork, join, or message
passing.

J

I Theorem 13 (Preservation of terminates-obligations).

Each atomic statement in an activation preserves the value B[term]. Only the method
return transition sets B[term] = 0 in the exited activation;
If an activation has B[term] > 0 then all later pushed activations have B[term] > 0.

Proof. Method call transitions transfer a terminates-obligation to the callee and preserve
it inside the caller, and loop entry and loop iteration transitions maintain any terminates-
obligations by transferring any terminates-obligations from their enclosing context to the
loop and back (which is enforced by the leak checks before the loop and at the end of the
loop body). J

I Theorem 14 (Join-permission-terminates correspondence). If a thread t has a join-permission
for a thread t′ then t′ has a terminates-obligation, Bt′

top[term] > 0, or has terminated already.
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Proof. The property holds trivially in the initial state, when no join-permissions are held.
Fork and join (Fig. 11) preserve the property: Forking a thread t′ provides a join-permission
to the forking thread only if t′ takes a terminates-obligation. Joining a thread t′ happens
only when t′ has terminated, and then the joining thread loses its join-permission. All other
operations preserve the number of join-permissions in the system. The thread t′ can never
lose its terminates-obligation (Theorem 13). J

I Theorem 15 (Non-freshness of terminates-obligations). For all activations in all threads
F [term] = 0.

Proof. If a fresh terminates-obligation is inhaled at the start of new activation, which can
be done through method calls, loop entry, or loop iteration then F [term] := 0 after inhale.
All other transitions leave F [term] unchanged. J

I Theorem 16 (Preservation of non-fresh sends-obligations). The number non-fresh sends-
obligations Σ(t : Threads :: Σ(ac : Activationt Bt

ac[o] − F t
ac[o]) for a channel o can be

decreased only by sending on the channel o, send o.

Proof. Only the B and F masks currently on the top activation on the thread stack can be
modified in a transition. This follows directly from the definitions of the transitions. Let t

be a thread that has non-fresh sends-obligations Bt[o] − F t[o] > 0 in the top activation in
an arbitrary state in the program execution, then when executing a:

Method call, fork, loop entry and loop iteration: If an obligation is exhaled as non-fresh,
it will remain non-fresh in inhale. If it is not exhaled, it will also remain non-fresh.
Hence, the number of non-fresh obligations can only increase.
Send: A send on any channel may exhale credit for o, creating n new fresh obligations.
However, the non-fresh obligations are preserved.
Receive: Receive cannot be done on o, since Bt[o] > 0. If send is done on another channel
o′ then credit can be inhaled for o. This credit cannot cancel obligations, so Bt[o]−F t[o]
is unchanged.
Join: Join behaves as receive.
Acquire, release, as well as lock and channel creation: These statements do not affect
Bt[o] or F t[o] when o is a channel.

J

I Theorem 17 (Preservation of non-fresh releases-obligations). A non-fresh releases-obligation
will remain non-fresh or it will be satisfied by a release operation. A releases-obligation for
lock o is non-fresh if for some activation record B[o] > 0 ∧ F [o] = 0.

Proof. Only the B and F masks on the top activation on the thread stack can be modified
in a transition. This follows directly from the definitions of the transitions. Let t be a thread
that has non-fresh releases-obligations B[o]− F [o] > 0 in the top activation in an arbitrary
state in the program execution, then when executing a:

Method call, fork, loop entry and loop iteration: If an obligation is exhaled as non-fresh
it will remain non-fresh in inhale. If it is not exhaled, it will also remain non-fresh.
Release: If release is done on o the obligation is satisfied and B[o] := 0, otherwise release
has no effect on B[o].
Acquire: Acquire cannot be done on o, since B[o] > 0, release of other locks has no effect
on B[o].
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Send, receive, join, as well as lock and channel creation: These statements do not affect
B[o] or F [o] when o is a lock for which releases-obligations exist.

J

I Theorem 18 (Obligations and termination). If for a lock or channel o, B[o] > 0 on more
than the top activation of a thread activation stack, then also Btop[term] > 0.

Proof. Method calls, loop entry and loop iterations, create new activation on the tread
stack. Due to the leak check assertion after exhale in these transitions, if obligations are
left in the activation then a terminates-obligation must be exhaled. This obligation must
be inhaled in the new activation. Theorem 13 states that the terminates-obligation will be
preserved in subsequent activations. J

B.3 Deadlock Freedom
Threads can block on acquiring a lock that is held by another thread, on receiving on a
channel that is empty, or by joining a thread that is running. We define a graph representing
how blocked threads depend on others to unblock them. The definition of the blocking graph
is the same as in [15] with the addition of join. Based on the blocking graph being acyclic,
deadlock freedom can then be proved. Theorem 20 corresponds to Property 5 in Sec. 6.

I Definition 19 (Blocking graph). The nodes in the graph are given by the threads in the
program. There is a directed edge from a thread t to a thread t′ iff

1. t is executing a statement acquire o and t′ holds a releases-obligation for o (that is,
Bt′

c [o] > 0 in any activation c on the stack of t′), or
2. t is executing a statement receive o, o contains no messages, and t′ holds a sends-

obligation for o (Bt′

c [o] > 0 in any activation c on the stack of t′), or
3. t is executing a statement join tok, the thread t′ associated with token tok has not

terminated.

A program is deadlock-free if the blocking graph is acyclic.

I Theorem 20 (Deadlock freedom). The blocking graph in Def. 19 is acyclic

Proof. We will prove the property by showing that for any edge from t to t′, the wait level
of t is strictly smaller than the wait level of t′. The only operations that add an edge from
t to t′ are the three blocking operations acquire, receive, and join.

If t acquires a lock l, we assert that t’s wait level is strictly less than l’s. According to
Theorem 9 this means that the thread holds only obligations with wait level below l or the
thread aborts. By Theorem 12, if t′ holds l, it has a releases-obligation for l and, thus its
wait level is at least as large as l’s.

If t receives on a channel c, we assert that t’s wait level is strictly less than c’s. According
to Theorem 9 this means that the thread holds only obligations with wait level below l or
the thread aborts. If t′ holds a sends-obligation for c, then its wait level is at least as large
as c’s.

If t joins a token tok then we assert that its wait level is strictly smaller than tok’s.
According to Theorem 9 this means that the thread holds only obligations with wait level
below l or the thread aborts. Moreover, the wait level of t′ is at least as large as tok’s since
the initial wait level of t′ is the same is tok, and can only grow afterwards by obtaining
obligations according to Theorem 9. J
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B.4 Termination
We need to ensure that no obligation is transferred infinitely many times without being
satisfied in any execution of a verified program. This is expressed in Properties 6 and 7 in
Sec. 6. An obligation for a lock, channel or token o is transferred in a transition in thread
t, if B[o] > 0 in an activation on the stack of t before the transition and the obligation was
not satisfied in the transition. We show that obligations are not transferred indefinitely by
proving that all method calls, loops, and forks decrease a termination measure in case an
obligation is transferred. Note that the measure used for proving termination of loops is
independent of the one used for method calls. The intuition is that a method does not care
in how many steps a loop terminates as long as it does.

I Theorem 21 (Termination of methods). If a method holds a terminates-obligation (B[term] >

0) then it will terminate.

Proof. We need to show that each loop eventually terminates and that all recursive method
calls terminate. From Theorem 13, we know that if B[term] > 0 in an activation, all
activations higher on the stack will also have B[term] > 0. We then need to prove two
things:

1. Each loop iteration decreases the measure for its terminates-obligation
2. Each nested method call decreases the measure for the terminates-obligation

To prove (1), we need to show that each loop iteration transition decreases the mea-
sure. Let T [term] be the measure for term inhaled at the start of the loop iteration.
When exhaling the loop invariant, a terminates-obligation must be exhaled according to
Theorem 13, with some measure e1, since the terminates-obligation must be transferred in
exhale/inhale (Theorem 7). In order to exhale the assertion either the obligation must be
fresh F [term] > 0 or e1 @ T [term]. According to Theorem 15, F [term] = 0 and therefore
e1 @ T [term]. In the start of the new iteration the measure T ′[term] is assigned a value v

(with v v e1) during the inhale of the loop invariant. Hence, T ′[term] @ T [term].
To prove (2), we need to show that all methods called from a method m uses a smaller

measure than m. Consider a call of method n from m, where Tm[term] denotes the measure
for B[term] inhaled at the start of the method activation m. When exhaling the precondition
of method n, a terminates-obligation with some measure e1 must be exhaled according to
Theorem 13. In order to exhale the assertion either the obligation must be fresh F [term] > 0
or en @ Tm[term]. According to Theorem 15, F [term] = 0, so en @ Tm[term]. The
measure Tn[term] inhaled for B[term] is then assigned a value v in inhale such that v v en.
Hence, Tn[term] @ Tm[term]. J

I Theorem 22 (Non-fresh sends-obligations). If a thread holds a non-fresh sends-obligation
(B[o]−F [o] > 0), they cannot be transferred indefinitely.

Proof. From Theorem 16, we know that non-fresh obligations are never lost. Furthermore,
they cannot be held in messages or join tokens. Hence, they must be held in threads.

For non-fresh obligations (a thread holds B[o]−F [o] > 0) to be transferred indefinitely,
there has to be an infinite execution sequence where the sequence has to have either (1)
an infinite number of occurrences of loop iteration transitions from the same loop or an
infinite number of occurrences of method call transitions where the obligation is held in the
thread or (2) infinite number of fork transitions where an obligation is transferred, or (3)
the obligations are repeatedly canceled by credit inhaled in receiving on a channel or joining
a thread. In loop iterations and method calls all sends-obligations have to be transferred to
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the next activation via exhale and inhale. In fork, an obligation can also only be transferred
via exhale and inhale. Cancellation with credit is not allowed (see Fig. 9). We have different
measures that need to be decreased when transferring obligations in loops, method calls and
fork. We show that any thread that holds a non-fresh obligation decreases at least one of
them, and thereby there cannot be an infinite execution sequence that holds the obligation.
The measures are not increased by any transition, since they refer to constant values inhaled
when pushing new activation on thread stacks.

We have two cases: Either the obligation is on the top activation of the thread stack
or it is not. If it is not then by Theorem 18 the top activation contains a terminates
obligation. Since the computation is then terminating (Theorem 21) the activation with the
send-obligation must eventually be on the top of the stack. Then it remains to show that a
sends-obligation on the top of the stack cannot be held in an infinite execution:

Loop iteration: Assume that T [o] is the measure for o at the start of the iteration. T [o]
has the value inhaled from the loop invariant or if no obligations for o was inhaled then
T [o] = >. At the loop exit, the obligations B[o] > 0 must be transferred via exhaling a
sends-obligation for o for some measure e1. If F [o] < B[o] then exhale checks that e1 @ T .
Then in the next loop iteration, the inhaled measure T ′[o] v e1, since the new measure
is the minimum of inhaled measures. Hence, the new measure satisfies T ′[o] @ T [o].
Method call: Assume the current method has the measure T [o]. T [o] has the value inhaled
from the method precondition or if no obligations for o was inhaled then T [o] = >. All
the obligations must be transferred in the method call via exhaling a sends-obligation
for o for some measure e1. Since F [o] < B[o], we have e1 @ T [o]. In the called method
the inhaled measure T ′[o] satisfies T ′[o] v e1, since the new measure is the minimum of
inhaled measures. Hence, the new measure satisfies T ′[o] @ T [o].
Fork: Assume that T0[o] is the measure for B[o] > 0 inhaled when the current thread was
forked or > if no obligation B[o] > 0 was inhaled in fork. This is also the method measure
of the forked method. From the case for method call transitions above, we know this
measure is decreased in each method call if an obligation for o is transferred in the call.
Let T [o] denote the current method measure, where T [o] v T0[o]. Then obligations must
be transferred in the fork via exhaling a sends-obligation for o and some measure e1.
Since F [o] < B[o], then e1 @ T [o]. In the forked method, the inhaled measure satisfies
T ′[o] v e1, since the new measure is the minimum of inhaled measures. Hence, the new
measure satisfies T ′[o] @ T0[o].

J

I Theorem 23 (Fresh sends-obligations). Fresh sends-obligation (B[o] ≥ F [o] > 0) cannot be
transferred indefinitely.

Proof. Obligations are always stored in threads and not in messages or join tokens. As
for non-fresh obligations, for a fresh obligations (a thread has F [o] > 0) to be transferred
indefinitely in the system there has to an infinite execution sequence, the sequence must
contain an infinite number of call transitions, loop iteration transitions or fork-transitions
where the fresh obligation is transferred. Additionally, obligations could be transferred by
cancelling them with credit inhaled in receiving on a channel or joining a thread, but this
is not allowed (Fig. 9). Any infinite execution sequence of a single thread must contain an
infinite number of method calls, loop iterations. When performing loop iteration or a method
call transitions, a thread must (a) transfer all sends-obligations in the method precondition
or loop invariant or (b) hold a terminates-obligation. In case (a), if a fresh obligation
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for o is transferred in any of the above transitions then this obligation is made non-fresh
(F [o] := 0). In case (b) the computation is terminating (Theorem 21). Fresh obligations
cannot be transferred indefinitely in fork either, since F [o] := 0 for all transferred obligations
for o after inhale of precondition. J

I Theorem 24 (Non-fresh releases-obligations). If a thread holds a non-fresh releases-obligation
(B[o]−F [o] > 0), they cannot be transferred indefinitely.

I Theorem 25 (Fresh releases-obligations). If a thread holds fresh releases-obligation (B[o] ≥
F [o] > 0) for some activation on a thread stack, they cannot be transferred indefinitely.

The proof that release-obligations cannot be transferred indefinitely is a special case
of the proof for sends-obligations. The difference is that releases-obligations cannot be
transferred to other threads (well-formedness).

B.5 Finite Blocking
We like to prove that no thread is blocked forever, i.e., that all threads always eventually
make progress. This is not ensured by deadlock freedom, since there is no guarantee that
eventually held locks are released or messages are sent, due to nonterminating threads. We
can express the desired liveness property in Linear-time Temporal Logic (LTL) [16, 17].

I Definition 26 (Progress). All threads always make progress infinitely often, ∀t ∈ Threads·
GF progress(t), when all thread transitions are assumed to be strongly fair.

Here G denotes that a property holds always in a program execution and F denotes that
a property holds eventually. A strongly-fair transition makes progress infinitely often if it
is enabled (non-blocked) infinitely often. Hence, we make the assumption that the thread
scheduler ensures strong fairness and that we have fair locks and fair message reception.
The property we must ensure to guarantee progress is stated in Theorem 27.

I Theorem 27 (Finite blocking). Always when a thread is blocked on acquiring a lock,
receiving on a channel or joining a thread it will become infinitely often enabled, ∀t ∈
Threads ·G(blocked(t)⇒ F¬blocked(t))

Standard proof rules exist to prove properties like Theorem 27 under our fairness as-
sumptions [17]. To apply the proof rules, we need a finite set of transitions, which is implied
by the following assumption:

I Assumption 1 (Finite number of threads). The number of threads in any execution state is
finite. A fork operation aborts the entire program execution if a certain (unknown) number
of threads is reached.

Theorem 27 can then be divided into three cases, one for each blocking operation.

I Theorem 28 (Progress of receive). In a verified program, always if a thread t is blocked
on a statement receive o then it will be eventually unblocked.

Proof. Manna and Pnueli [17] give a proof rule to prove reactivity for a set of (strongly) fair
transitions. Reactivity refers to the temporal logic property that always when a property
p holds then eventually q holds, G(p ⇒ Fq). Here we prove that always when the receive
is blocked it will eventually be unblocked. The transitions are partitioned into helpful
transitions that are guaranteed to make progress towards q and other transitions that might
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not. In our case a helpful transition is a transition in a thread that t depends on in the
blocking graph in Def. 19. Theorem 11 states that this set is non-empty.

To apply the rule we need to define an invariant such that each transition maintains the
invariant or establishes the property we are interested in. The invariant is: if a thread is
blocked on receive o, there exists another thread with obligation to send a message on o.

The properties to prove are then [17]:

1. For a thread to execute statement receive o, it has to establish the invariant above or
receive does not block. This follows from Theorem 11.

2. All the transitions maintain the invariant above or enable (unblock) the receive. This
follows from Theorem 11.

3. The transitions make progress towards enabling receive. From Theorem 23 we have
that eventually fresh obligations become non-fresh or the obligation gets satisfied. From
Theorem 22 follows that all non-fresh sends-obligations cannot be transferred by helpful
transitions indefinitely.

4. Enabledness of the helpful transitions. The transitions in the helpful set can also be
blocked. We need to show that they also are always eventually unblocked. As the
blocking graph is acyclic (Theorem 20) and every path has finite length due to the finite
number of threads, we can apply the arguments above and the ones in Theorem 29 and
Theorem 30 recursively on each thread in the graph.

J

I Theorem 29 (Progress of acquire). In a verified program, if a thread is blocked on a
statement acquire o then it will be infinitely often enabled.

Proof. The proof is analogous to the proof for receive. J

I Theorem 30 (Progress of join). In a verified program, if a thread is blocked on a statement
join o then it will be infinitely often enabled.

Proof. We apply the same proof rule as in the proof of Theorem 28. The invariant is: if
there is a thread that is blocked on join o then the thread corresponding to the join token o

holds a terminates-obligation.
The properties to prove are then [17]:

1. For a thread to execute statement join o, it has to establish the invariant above or join
does not block. In order for the token o to be joinable, the corresponding thread needs
to be hold a terminates-obligation (see Theorem 14) or it has terminated. According to
Theorem 13, the terminates-obligation is never lost.

2. All the transitions maintain the invariant above or enable the join when the corresponding
thread terminates. This follows from Theorem 13.

3. The transitions make progress towards enabling join. From Theorem 21 we have that any
method with a terminates-obligation terminates. Hence, since the thread was created by
forking method with a terminates-obligation the thread terminates.

4. Enabledness of the helpful transitions. The transitions in the helpful set can also be
blocked. The proof is analogous to case 4 in the proof of Theorem 28.

J
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