
Constraint Semantics for Abstract Read Permissions

John Tang Boyland
∗†

boyland@uwm.edu
Peter Müller

†

peter.mueller@inf.ethz.ch

Malte Schwerhoff
†

malte.schwerhoff@inf.ethz.ch
Alexander J. Summers

†

alexander.summers@inf.ethz.ch

ABSTRACT
The concept of controlling access to mutable shared data via
permissions is at the heart of permission logics such as sep-
aration logic and implicit dynamic frames, and is also used
in type systems, for instance, to give a semantics to “read-
only” annotations. Existing permission models have differ-
ent strengths in terms of expressiveness. Fractional permis-
sions, for example, enable unbounded (recursive) splitting,
whereas counting permissions enable unbounded subtraction
of the same permission amount. Combining these strengths
in a single permission model appeared to increase the com-
plexity for the user and tools. In this paper we extend our
previous work on abstract read permissions by providing
them with a novel constraint semantics, which retains the
use of the domain of rational numbers but enables unboun-
ded subtraction of identical amounts. Thus we can keep
an intuitive model conducive to SMT solvers while enabling
“counting.”

Categories and Subject Descriptors
F.3.1 [Logics and Meaning of Programs]: Specifying
and Verifying and Reasoning about Programs—mechanical
verification,specification techniques

General Terms
Verification

1. INTRODUCTION
Access permissions enable sound, modular reasoning about

shared mutable state. Program logics based on permissions,
such as separation logic [12] and implicit dynamic frames
[13], associate a permission with each memory location. A
thread may access a shared location only if it has the cor-
responding permission. This rule prevents data races since

∗Dept. of EECS, University of Wisconsin, Milwaukee, USA
†Dept. of Computer Science, ETH Zurich, Switzerland

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
FTfJP ’14, July 29 2014, Uppsala, Sweden
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2866-1/14/07...$15.00
http://dx.doi.org/10.1145/2635631.2635847

at most one thread can hold permission to any location,
and enables framing since no thread can modify a location
while another thread holds permission to it. Many permis-
sion systems distinguish between read and write permis-
sions to enable concurrent reads while enforcing exclusive
writes. These systems allow a write (or full) permission to
be split into several read permissions, which can later be
re-combined into a write permission.

To be useful for automatic program verification, a per-
mission system must have three key properties. First, the
underlying permission model must be sufficiently expressive.
Second, the permission system should require low annotation
overhead, both in terms of complexity and verbosity of the
permission assertions. Third, the permission model should
be amenable to automatic provers, especially SMT solvers.

Bornat and others [1] identify two criteria for expressive
permission models: Some programs require unbounded di-
visibility (or “infinite splitting”), for instance, when threads
are forked recursively, and all sub-threads need read permis-
sion to a shared location. Other programs require unbounded
counting, for instance, when one thread forks off an unboun-
ded number of threads each with an identical permission and
then waits for them to finish, in arbitrary order. Specific-
ation techniques that express data abstraction via abstract
predicates [11] also require support for multiplication if one
wishes to scale arbitrary predicates by fractions.

To our knowledge, no existing implementation of a per-
mission system satisfies all of these requirements. For in-
stance, fractional permissions [2] support unbounded divis-
ibility and multiplication since one can use rational num-
bers (or real numbers) as a model, which also leads to low
annotation overhead and good support from SMT solvers.
However, unbounded counting seems impossible since if one
starts with a write permission (fraction 1), then however
small a positive fraction q > 0 one chooses to give to each
sub-thread, there always is a point n after which 1 − nq is
no longer positive.

Counting permissions [1] support unbounded counting by
splitting a permission into an unbounded number of units
and the remainder. The system then tracks how many units
a thread holds (or how many it lacks for a full permission).
However, counting permissions support neither unbounded
divisibility (because units cannot be divided further), nor
multiplication.

It is possible to compound fractional and counting mod-
els [1], for example, by representing permissions as a fraction
plus a positive or negative number of units [10]. Dockins et
al. [4] achieve this combination with a tree model for per-

missions, but multiplication is not supported, and the encod-
ing of counting imposes additional structure (each counting
permission is represented differently), which we believe is
challenging for an implementation. The implemented de-
cision procedures by Le et al. based on this model [8] do not
support counting. In our experience, an implementation of
a compound model can lead to many disjunctions in proof
obligations (since a thread may read a location if the frac-
tion or the unit count is positive), which slows down SMT
solving. Boyland [3] proposes Z[ε]+ (positive polynomials
over an infinitesimal) which satisfies all three criteria, but
we are unaware of any implementation using this complex
and subtle model.

In this paper, we present a permission system that sup-
ports unbounded divisibility, unbounded counting, and mul-
tiplication. Since its model is based on rational numbers,
it is well suited for SMT solvers and offers a simple nota-
tion for permission assertions. However, as in our previous
work on abstract read permissions (ARPs) [5], most permis-
sion assertions do not even have to indicate concrete frac-
tions. It is typically sufficient to specify whether read or
write permission is required. The actual fraction for a read
permission is neither specified by the programmer nor de-
termined by the verifier. Instead, when a read permission
is transferred from a thread T1 to a thread T2, its fraction
is suitably constrained to ensure that it is positive (to en-
sure that it permits read access) and that it is strictly less
than the permission currently held by T1 (to ensure that T1

can still read). Appropriate proof obligations ensure that
the constraints generated for an abstract read permission
are satisfiable, that is, that there are fractions that could be
chosen, although that never actually happens.

Like our earlier work on abstract read permissions, the
proposed system supports unbounded divisibility and mul-
tiplication (since it is based on rational numbers), but un-
like the previous work it also supports unbounded counting.
The additional expressiveness is achieved by extending ab-
stract read permissions with a more expressive constraint
generation. Intuitively, if we have forked off n threads, each
with an identical, not yet specified, fraction k, we have the
constraint that k < 1

n
. If we fork off further threads, k is

further constrained. But at all times, there are (an infinite
number of) possible values for k that satisfy the constraints.
In this work, we explain how this idea works in the context
of a few illustrative examples, formalize the intuition, and
discuss how to implement it in a program verifier.

2. MOTIVATION
The key idea of abstract read permissions (as presented in

[5]) is to introduce symbolic names to represent read permis-
sion amounts (that is, strictly positive amounts of permis-
sion which are otherwise unspecified). When introducing a
fresh symbolic amount, no information is known about its
value, other than these bounds. The intuitive idea is that
this amount may now be used when giving away permissions
(e.g., when forking a new thread) and, whatever amount
of permission is currently held (provided it is not already
zero), the symbolic amount given away can be assumed to be
strictly smaller than what is held, leaving both the caller and
the callee with some permission left-over. Thus, constraints
can be added on-the-fly to these symbolic amounts, which
are never concretely chosen, neither at the source level, nor
in an implementation such as Chalice; the symbolic amounts

(abstract read permissions) can be seen as a kind of prophecy
variable, always denoting a judiciously-chosen fraction.

Our and others’ earlier work [5] employs this idea in a lim-
ited sense; extra constraints can be added only for method
calls, for which a fresh symbolic amount is introduced and
constrained only locally, that is, in the encoding of the call.
The reasons for this restriction are elaborated in Sec. 5, but
are essentially due to the difficulty of designing an encod-
ing that yields constraints which are guaranteed to be satis-
fiable. Lifting these restrictions was difficult, since the essen-
tial property for soundness was not explained independently
of the restrictions in [5]. We improve on this work by cleanly
pulling out a property characterising sound constraint sys-
tems (Sec. 3), and by showing how this property can be
used to lift previously necessary restrictions, which enables
further examples to be verified, as shown in the following
subsections.

2.1 Language
We use a Java-like language enriched with specification

constructs such as method pre- and postconditions and per-
missions. The ghost keyword is used to declare fields, ar-
guments or local variables that are needed only for verific-
ation and can be erased at run-time. We use acc(x.g, 1)

(or just acc(x.g)) to denote full permissions to field x.g,
and acc(x.g, f) to denote read access (with f permissions).
The semantics of acc(x.g, f) are such, that 0 < f is as-
sumed whenever permissions are gained, respectively, asser-
ted when given away. The ghost-type ARP is used to declare
permission-typed variables that can be constrained on-the-
fly, as mentioned above, and fresh() is used to assign a fresh
symbolic value to such a variable. For brevity, we ignore
orthogonal issues such as exceptions, starvation and numer-
ical overflows. Another simplification we allow ourselves is
reading final fields without having the corresponding per-
missions, since such fields are immutable. This assumption
ignores issues related to the initialisation of immutable data,
but we regard these as orthogonal as well.

2.2 Example 1: Counting
Figure 1 shows a simple multiple-reader single-writer mu-

tual exclusion class (an “RW controller”) protecting a mut-
able cell. One can create an RW controller for a given cell by
calling the constructor and transferring write permission to
the cell that the controller is meant to protect. Any thread
may request reads or writes to the controlled data; these re-
quests block until access is granted and then proceed. Con-
current reads are supported by (temporarily) giving each
reader a read permission to the protected data. This in-
tuition is captured in the controller’s invariant, which says
that the controller holds all permissions to the shared data,
minus what has been given to the currently active readers.

The RW controller extends a Java-like non-reentrant Lock

class, instances of which can be acquired (locked) and re-
leased (unlocked). The lock is exclusive and does thus not
permit concurrent reads per se, which is therefore provided
by the controller. Each lock has a lock invariant that, for
simplicity, we require to be established at the end of the
lock’s constructor. A thread that acquires the lock gets
to assume the invariant, and consequently, has to ensure
it when it releases the lock.

Method doWrite is straight-forward: The thread busily
waits for the lock to be available in a state where no reader

class Cell { public int val = 0 }

interface Reader {
void read(Cell data, ghost ARP frac)

requires acc(data.val, frac)
ensures acc(data.val, frac)

}

interface Writer {
void write(Cell data)
requires acc(data.val)
ensures acc(data.val)

}

class RWController extends Lock {
private int rds = 0; // No. of active readers
private final Cell data; // Shared data
private final ghost ARP frac = fresh();

/* Lock invariant */
invariant acc(rds) && rds >= 0 &&

acc(data.val, 1 - rds * frac)

public RWController(Cell data)
requires acc(rds) && acc(data.val)

{
this.data = data
// Lock invariant established

}

public void doWrite(Writer r)
requires r != null

{
while(true) {
acquire(this); // Gives acc(data.val, 1 - rds*frac)
if (rds == 0) break;
release(this); // Takes acc(data.val, 1 - rds*frac)

}
// We have acc(data.val, 1) since rds = 0
r.write(data); // Takes and returns acc(data.val, 1)
release(this); // Takes acc(data.val, 1)

}

public doRead(Reader r)
requires r != null

{
acquire(this); // Let R = rds at this point
// Gives acc(data.val, 1 - R * frac)
// Due to def. of acc, we also get
// 0 < 1 - R * frac

rds++;
release(this);
// Takes acc(data.val, 1 - (R+1) * frac),
// Due to def. of acc we have to show
// 0 < 1 - (R+1) * frac
// <=> frac < 1 / (R+1)
// We add this as a new constraint (assumption)
// We still have: acc(data.val, frac)

r.read(x,frac); // Takes, returns acc(data.val, frac)
acquire(this); // Let R’ = rds
// Gives acc(data.val, 1 - R’ * frac)
// Together: acc(data.val, 1 - (R’-1)*frac)

rds--;
// rds = R’-1, ready to release

release(this);
}

}

Figure 1: Reader/Writer Interfaces and Controller.
In our examples, access expressions acc(x.g, 1) and
acc(x.g, f) imply that x is non-null.

is currently active (rds == 0), in which case it holds on to the
exclusive lock, writes to the shared data, and finally releases
the lock again.

Method doRead is more interesting: After locking the con-
troller, and thus gaining the permissions stored in the invari-

ant, the controller increases the number of currently active
readers, followed by releasing the lock again. Afterwards,
the reader’s read operation is performed. The permission-
related challenge in this situation is to ensure that the lock
invariant can be re-established while still holding on to frac

of the permission to the shared data data.val, which must
be passed to r.read. This entails checking that we are ac-
tually able to subtract yet another frac of the permission
from the amount stored in the invariant, which we achieve
by constraining frac accordingly. Intuitively, this constraint
is satisfiable because we never require any lower bound for
frac other than zero, and thus, any arbitrarily small value
for frac would suffice (we never actually have to make this
choice, as will be explained in Sec. 3). When the reader is
done, it returns the permissions to the shared data, which
are placed back into the lock invariant after having acquired
the lock again1.

Note that the verification of this example requires un-
bounded permission counting because we want to give each
reader the same amount of permissions, which simplifies per-
mission bookkeeping and yields a simpler lock invariant. An
alternative based on unbounded splitting would be to give
each reader half of the remaining permission. This, however,
would require the invariant to include a sum over a (ghost)
list of permission amounts, which is less intuitive, and causes
additional work both in the specifications and for the SMT
solver [9].

2.3 Example 2: Splitting and Counting
The example in Fig. 2 sketches a tree-based concurrent

work division framework that parallelises a computation over
a tree structure by recursively forking off a new task thread
for each node in the tree. In order to perform its compu-
tation, each task requires read access to a shared resource.
Eventually, the individual results are combined in order to
yield the result of the overall computation. The example
exercises unbounded permission splitting when recursively
going from one level in the tree to the next deeper level, and
unbounded permission counting when iterating over the dir-
ect children of a node.

We use a Java-like Thread class whose instances can be
forked (start) and later on joined (join) again. Method run

must be implemented by clients and is invoked when the
thread starts. Hence, start requires run’s precondition, and
join ensures run’s postcondition. We regard issues related to
joining an already joined thread as orthogonal to our work.

The constructor is unremarkable, except that it already
starts the new thread, and thus has to establish the precon-
dition of run.

Method run performs its own computation – here trivial,
but the important aspect is that it requires read access to the
shared data data.val – and it also forks subtasks, joins them
again and aggregates the results (again trivial). We assume
that it is not possible, or efficient, to compute the number of
subtasks upfront; Java’s iterators, for example, don’t even
provide a way of querying the number of elements to come.
For simplicity, we ignore the permissions required to use the
list and the iterator in the loop invariant.

As done in the first example, we make use of unboun-
ded permission counting to yield straight-forward assertions

1Note that rds cannot become negative before the release,
because this would imply holding more than 1 permissions
to data.val, which is impossible.

interface Node {
public Iterator<Node> children()

}

class TreeTask extends Thread {
private final ghost ARP frac;
private int result;
private final Node node;
private final Cell data;

public TreeTask(Node n, Cell c, ghost ARP f)
requires acc(c.val, f) && acc(result)

{
node = n; data = c; frac = f;
start() // Requires run()’s precondition

}

public void run()
requires acc(data.val, frac) && acc(result)
ensures acc(data.val, frac) && acc(result)

{
if (node == null) result = data.val;
else {
ghost ARP f = fresh();
List subs = new List<TreeTask>();
for (Iterator it = node.children(); it.hasNext())
invariant acc(data.val, frac - subs.size()*f) &&

forall s in subs ::
s.frac == f && s.data == data

{
// Let S = subs.size(). We have
// acc(data.val, frac - S * f)

TreeTask sub = new TreeTask(it.next(), data, f);
// Requires acc(data.val, f). Hence, that
// f < frac - S * f
// <=> f < frac / (S+1)
// We add this as a constraint

subs.add(sub);
}

// We have acc(data.val, frac - subs.size()*f)

while (subs.size() > 0)
invariant acc(data.val, frac - subs.size()*f) &&

forall s in subs ::
s.frac == f && s.data == data

{
// Let S = subs.size(). We have
// acc(data.val, frac - S * f)

TreeTask sub = subs.removeLast();
sub.join(); // Returns run()’s postcondition

// We have acc(data.val, frac - S * f + f),
// since sub.frac == f

result += sub.result;
// Show that we have at least
// acc(data.val, frac - (S - 1) * f)
// which is exactly what we have

}
}

}
}

Figure 2: A Recursive Tree Worker.

(here, loop invariants). That is, each subtask receives the
same amount f of permissions to the shared data. Since we
do not compute the number of subtasks upfront, we again
need to constrain f on-the-fly. At the end of run, all permis-
sions have been collected back again, and the task can itself
return its frac permission.

3. CONSTRAINT SYSTEM
In this section, we introduce a notion of constraint sys-

tem that can be used to explicitly explain (and justify) the
assumptions made by techniques such as abstract read per-
missions. Recall that explicit values for these read permis-

L-Const

q ∈ Q+

v ≺ q

L-Plus
v ≺ E1 v ≺ E2

v ≺ (E1 + E2)

L-Mult
v ≺ E1 v ≺ E2

v ≺ (E1 * E2)

L-Div
v ≺ E1 v ≺ E2

v ≺ (E1 / E2)

L-Minus
v ≺ v′ v′ ≺ E
v ≺ (E - v′)

Figure 3: Extending ≺ to Expressions: v ≺ E.

sions are not chosen in our approach [5], but rather con-
strained via assumptions at various points in the encoding.
The constraint system introduced in this section is designed
to reflect the accumulation of these constraints as upper
bounds on symbolic permission amounts (we model these as
permission-typed variables), such that the satisfiability of
the constraints can be reduced to requiring an ordering on
these symbolic amounts; we explain the role of this ordering
in Sec. 3.1.

Definition 1. A positive fractional constraint system over
a set of variables V (we use v to range over V) is a finite
set C of inequalities of the form v < E where E is an ex-
pression formed from the following grammar (in which q is
a positive rational constant: an element of Q+).

E ::= q | v | E+E | E*E | E-E | E/E

A constraint system is satisfiable if there exists a partial
mapping σ : V ⇀ Q+ such that for all (vi < Ei) ∈ C,
we have that σ(vi) < σ(Ei) is (defined and) true, where σ
is lifted from variables to expressions in the obvious way,
except that if an intermediate result of a subtraction were
to be non-positive, the entire result is undefined, and the
enclosing constraint is considered not satisfied.2

3.1 Layered Fractional Constraint Systems
It is easy to define constraint systems that are unsatis-

fiable, for example C =
{
v < v − 1

2

}
. In this section, we

define a sufficient condition for satisfiability: it must be pos-
sible for the constraints to be “layered”, with respect to a
partial ordering of the occurring variables. In particular:

• We need a partial order ≺ over the variables.

• All constraints must respect the order, in that vari-
ables can be constrained only with respect to “larger”
variables in the ordering: if v′ occurs in the expression
E in a constraint v < E, then we must have v ≺ v′.

• Furthermore, the only form of subtraction permitted is
where a variable v′ is subtracted from an expression E,
where E contains only variables that may (according to
≺) constrain v′. Effectively, the subtraction implicitly
prescribes an additional constraint v′ < E that ensures
that the result is positive.

Formally, we extend partial orders on variables ≺ to expres-
sions, according to the rules of Fig. 3.

2Since we do not permit 0 as a constant, or as a binding
of a variable, then as long as the results of subtractions are
always positive, division by zero will not happen.

Definition 2 (Layerable Constraint Systems). A
constraint system C is layered by a partial order ≺ if, for
every constraint (v < E) ∈ C, we have v ≺ E.

A constraint system C is layerable if there exists a partial
order ≺ such that C is layered by ≺.

Note that the choice of a partial order ≺ for layering a par-
ticular constraint system need not be unique.

Theorem 1. If a positive fractional constraint system C
is layerable then it is satisfiable.

Proof. (Sketch) First we augment the set of constraints
with v < E for every subterm E − v that exists in an exist-
ing constraint. We also add the constraint v < 1 for every
variable, to make sure every variable is constrained. Since
this process creates no new subtraction subterms, it will ter-
minate. Let C∗ be this augmented set of constraints. By
the definition of layering, C∗ is also layerable.

Then we extend the partial order of variables to a total
order of the variables occurring in C, and assign concrete
values to the variables in descending order, according to
this total order. That is, for each variable, we collect its
constraints, evaluate all of the constraining expressions, and
assign the variable half of the minimum of these values.

σ′(v) =
1

2
(min {σ(E) | (v < E) ∈ C∗})

Layering ensures we never try to use the value of a variable
before it is defined. The only danger is subtraction but, by
augmentation, every subtraction is reflected in a constraint
that ensures that the result is positive.

3.2 Extending Layerable Constraint Systems
Given an existing layerable constraint system, one can add

a fresh symbolic constant to the system, by extending the
original set of variables V with an additional variable v′.
The resulting constraint system is still layerable, since none
of the constraints in C will mention v′. More usefully, one
can also extend the partial order ≺, such that v′ ≺ v for all
v ∈ V ; this is guaranteed to produce a partial order, since v′

was not previously mentioned. In particular, the resulting
layered constraint system can now be extended further by
adding additional constraints to C of the form v′ < E where
E is an expression of the original constraint system (i.e., v′

does not occur in E). The resulting constraint system will
still be layerable; routine inductive arguments can show that
this property is preserved by all of the above steps.

So long as one always moves from one layerable system of
constraints to another layerable system of constraints then
the set of constraints will always be satisfiable. Concrete
values for the symbolic permission amounts need never ac-
tually be chosen, even in an implementation (see Sec. 4);
in a soundness argument one can argue that, at any given
program point, one could assign a suitable value to every
variable and evaluate all symbolic expressions to positive
rational numbers. The critical property that an implement-
ation must therefore satisfy, is that the constraints generated
must always be guaranteed to be layerable.

The format of constraints directly supported by our layered
constraint systems is very restricted (particularly for sub-
tractions). However, constraints that are not of the permit-
ted form can be accepted, so long as they have the same
meaning as some rewritten constraint that would be per-
mitted. For example, the constraint v < 1− (v + 1

2
) can be

rewritten as v < 1
4
, which is allowed according to Fig. 3.

4. IMPLEMENTATION
It may seem that a model of permissions based around

symbolic permission amounts (and expressions over them),
along with a constraint system of assumptions, is much more
complex to implement than some more direct mathemat-
ical structure (such as rationals). However, the very fact
that these values need not be fixed at any point, along with
the argument that such constraints can be constructed to
be satisfiable, means that the symbolic amounts themselves
can be treated by a verification tool just like any other sym-
bolic value (e.g., a program variable), about which limited
information is known. In other words, a symbolic permis-
sion amount v can be simply encoded as a program variable
v with a particular unknown rational value. This would not
be the case if we used a more complex explicit mathematical
domain, such as Z[ε]+ as the domain. As a result, we re-
tain the simplicity of rational numbers and arithmetic, while
achieving the expressive power of a more powerful domain.

On the other hand, the constraint system can still ex-
ploit the staging differences; the value of an expression that
does not depend on a constraint variable can be considered
a constant for the purposes of the constraint system. Thus
for example, the expression 1 / (rds + 1) in our first ex-
ample, which is used as a bound for frac, is a constant at
the (dynamic) program point where the constraint is (no-
tionally) added to the constraint system. Furthermore, since
the monitor invariant ensures rds >= 0, it can be considered
a positive constant, thus meeting the requirements for lay-
ering. Similar reasoning applies to our second example with
the result returned by the size method.

The fact that permission expressions must have a specific
shape in order to be layered, and thus, that certain expres-
sions such as v < 1 − v have to be rewritten in order to
be layered (as discussed in the previous section), does not
impose additional complexity in an actual implementation.
The required rewriting is purely conceptual: as long as it is
guaranteed that a constraint can be appropriately rewritten
– which needs to be established in the soundness proof of
the verifier – it is sound to add any constraints which are
semantically equivalent to those permitted by our definition
of layering.

It is also worth noting that constraints of the form“v is less
than the current amount of permission held” can be soundly
added even though a static verifier will in general not be
able to track the precise amount of permissions held, for ex-
ample, because of unknown aliasing relations, or incomplete-
ness in the underlying prover. In such cases, a sound verifier
is forced to work with weaker assumptions about the per-
missions currently held; provided that it knows that strictly
positive amounts are held, this results only in stronger, but
nonetheless satisfiable constraints.

We implemented the constraint permission system in our
intermediate verification language Silver, which is part of our
Viper verification infrastructure [7]. Silver provides a built-
in permission type that can be used to declare permission-
typed variables, a construct to assign fresh symbolic values
to such variables, and a construct that instructs the verifiers
to generate appropriate constraints when giving away read
permissions. Following the argumentation above, we make it
the responsibility of front-ends, that is, of tools that generate
Silver code, to ensure that these constructs are used in a way
such that all generated constraints are layerable.

5. RELATED WORK
We discussed several permissions models in the introduc-

tion. In this section, we focus on the permission models
supported by our own verifier Chalice and by VeriFast.

5.1 Abstract Read Permissions in Chalice
Chalice implements our previous model of abstract read

permissions [5]. This model is a special case of the model
presented in this paper. The basic idea of ARPs in Chalice
is as explained in Sec. 2. The restriction that constraints on
a symbolic permission amount can be added only together
with the symbolic variable being constrained (in the encod-
ing of method calls) is, as already explained, a consequence
of the fact that our previous work did not precisely work
out a property that guarantees that a permission constraint
system is satisfiable.

An interesting aspect of ARPs in Chalice is the treat-
ment of symbolic variables that occur negatively in permis-
sion expressions, as in 1 − v. Taking a fresh symbolic read
permission v and then giving away 1 − v permission (leav-
ing exactly v behind), followed by giving away a further v
amount of permission, would, in a näıve encoding, gener-
ate the unsound assumption v < v (to guarantee that some
permission is left after the last transfer). To avoid such
unsound constraints, without making the constraints overly
weak, Chalice rearranges method preconditions to handle
all permission expressions in which the constrained variable
v occurs negatively last. Constraints are only added while
handling permission expressions with positive occurrences of
v. Consequently, while introducing the constraints for the
positive occurrences of v, the current permission amount re-
mains expressible by expressions of the form E−n∗v, where
v does not occur in E. Every time v is given away from
such an expression, the assumption generated is effectively
v < E − n ∗ v. This assumption is equivalent to v < E

n+1
,

which matches our definition of a layered constraint system.

5.2 VeriFast
Another automated verifier that supports fractional per-

missions is the separation-logic-based verifier VeriFast [6];
fractions are encoded as real numbers. This allows un-
bounded splitting, but not unbounded counting. However,
VeriFast’s standard library contains an encoding of count-
ing permissions as tickets, supported by ghost methods op-
erating on auxiliary separation logic predicates. The idea
is as follows: counting starts by calling a ghost method
start_counting(r, f) that consumes f permissions to a field
r. Intuitively, the initially consumed permission amount f is
used as a “pool” from which an unbounded number of tick-
ets can be taken by calling a ghost method create_ticket(r),
which requires a predicate provided by start_counting. Un-
like counting permissions however, the tickets cannot be
“summed up” easily (e.g. to represent holding n such tick-
ets), because they are encoded as predicate instances. To
sum up ticket predicates, ones needs additional recursive
predicates that essentially encode a list of tickets.

Extending VeriFast with abstract read permissions as presen-
ted in this paper could potentially simplify bookkeeping in
situations where tickets are currently used. Our constraint
system could also be used to prove the soundness of ticket
permissions, because the constraint implicitly generated for
each call to create_ticket(r) is that the fraction associated
with the new ticket is strictly less than the permission cur-

rently in the “pool” and, thus, satisfies our rules for layering.

6. CONCLUSIONS
We have presented a permission model based on the novel

concept of layered constraints that supports unbounded di-
visibility and counting, as well as unrestricted multiplica-
tion. The formal model of constraints over symbolic rational
variables is actually quite complex; however, it is possible to
treat it as if it were the rational numbers with their usual
arithmetic laws, which makes it intuitive to understand by
users and straight-forward to implement. We have shown
two non-trivial examples that illustrate the expressiveness
of our model, and we have argued how it can be used in a
proof of soundness of the permission models used in Chalice
and VeriFast. Moreover, we have implemented support for
it in the intermediate verification language Silver [7].

7. REFERENCES
[1] R. Bornat, C. Calcagno, P. O’Hearn, and

M. Parkinson. Permission accounting in separation
logic. In POPL, pages 259–270. ACM, 2005.

[2] J. Boyland. Checking interference with fractional
permissions. In SAS, volume 2694 of LNCS, pages
55–72. Springer, 2003.

[3] J. Boyland. Fractional permissions. In Aliasing in
Object-Oriented Programming, volume 7850 of LNCS,
pages 270–288. Springer, 2013.

[4] R. Dockins, A. Hobor, and A. W. Appel. A fresh look
at separation algebras and share accounting. In
APLAS, volume 5904 of LNCS, pages 161–177.
Springer, 2009.

[5] S. Heule, K. R. M. Leino, P. Müller, and A. J.
Summers. Abstract read permissions: Fractional
permissions without the fractions. In VMCAI, volume
7737 of LNCS, pages 315–334. Springer, 2013.

[6] B. Jacobs and F. Piessens. The VeriFast program
verifier. Technical Report CW-520, KU Leuven, Aug.
2008.

[7] U. Juhasz, I. T. Kassios, P. Müller, M. Novacek,
M. Schwerhoff, and A. J. Summers. Viper: A
verification infrastructure for permission-based
reasoning. Technical report, ETH Zurich, 2014.

[8] X. B. Le, C. Gherghina, and A. Hobor. Decision
procedures over sophisticated fractional permissions.
In APLAS, volume 7705 of LNCS, pages 368–385.
Springer, 2012.

[9] K. R. M. Leino and R. Monahan. Reasoning about
comprehensions with first-order SMT solvers. In SAC,
pages 615–622. ACM, 2009.

[10] K. R. M. Leino and P. Müller. A basis for verifying
multi-threaded programs. In ESOP, volume 5502 of
LNCS, pages 378–393. Springer, 2009.

[11] M. J. Parkinson and G. M. Bierman. Separation logic
and abstraction. In POPL, pages 247–258. ACM, 2005.

[12] J. C. Reynolds. Separation logic: A logic for shared
mutable data structures. In LICS, pages 55–74. IEEE,
2002.

[13] J. Smans, B. Jacobs, and F. Piessens. Implicit
dynamic frames: Combining dynamic frames and
separation logic. In ECOOP, volume 5653 of LNCS,
pages 148–172. Springer, 2009.

