
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated
*

O
O
P
S
LA
*

Ar
tifact *

A
E
C

Static Analysis for Independent App Developers

Lucas Brutschy
Department of Computer Science

ETH Zurich
lucas.brutschy@inf.ethz.ch

Pietro Ferrara
IBM Thomas J. Watson Research Center

pietroferrara@us.ibm.com

Peter Müller
Department of Computer Science

ETH Zurich
peter.mueller@inf.ethz.ch

Abstract
Mobile app markets have lowered the barrier to market entry for
software producers. As a consequence, an increasing number of in-
dependent app developers offer their products, and recent platforms
such as the MIT App Inventor and Microsoft’s TouchDevelop en-
able even lay programmers to develop apps and distribute them in
app markets.

A major challenge in this distribution model is to ensure the
quality of apps. Besides the usual sources of software errors, mobile
apps are susceptible to errors caused by the non-determinism of
an event-based execution model, a volatile environment, diverse
hardware, and others. Many of these errors are difficult to detect
during testing, especially for independent app developers, who are
not supported by test teams and elaborate test infrastructures.

To address this problem, we propose a static program analysis
that captures the specifics of mobile apps and is efficient enough
to provide feedback during the development process. Experiments
involving 51,456 published TouchDevelop scripts show that our
analysis analyzes 98% of the scripts in under a minute, and five
seconds on average. Manual inspection of the analysis results for a
selection of all scripts shows that most of the alarms are real errors.

1. Introduction
Mobile app markets have transformed the software industry fun-
damentally by lowering the barrier to market entry for software
producers. As a consequence, many apps are offered by indepen-
dent developers rather than software companies. Recent platforms
such as the MIT App Inventor [30] and Microsoft’s TouchDevelop
[29] enable even lay programmers and children to develop apps and
distribute them in app markets.

A major challenge in this distribution model is to ensure the
quality of apps. Besides the usual sources of errors, mobile apps are
susceptible to a number of specific errors. For instance, the event-
based execution model leads to error-prone non-determinism; mo-
bile apps are executed in a volatile environment, where access to
resources such as network connectivity may be intermittent and
shared data such as the device’s media collection may change ar-
bitrarily; apps run on diverse hardware with different features such
as sensors. These characteristics make mobile apps very difficult to

[Copyright notice will appear here once ’preprint’ option is removed.]

test, especially for independent app developers, for whom it is typi-
cally not economically viable to have access to test teams and elab-
orate test infrastructures. The situation is even more difficult for lay
programmers because they cannot be expected to be familiar with
advanced testing techniques. When apps are developed directly on
the device like in TouchDevelop, the limited resources preclude the
use of test infrastructure such as hardware emulators. On the other
hand, publishing a faulty app is potentially very harmful for a de-
veloper in a market that relies heavily on customer reviews.

To address this problem, we propose a static program analysis
that allows app developers to detect errors in mobile apps. A static
analysis checks a program for any sequence of input events, any ex-
ecution environment, and any hardware configuration. Therefore, it
reveals errors that are difficult to find during testing. Our analysis
targets independent app developers by being fully automatic, by
being sufficiently efficient to provide timely feedback during the
development, and by favoring precision over scalability to mini-
mize the number of spurious alarms. The latter choice is motivated
by the fact the independent app developers tend to build apps of
limited size such as small utilities and simple games. Our exper-
imental results on 51,456 published scripts demonstrate that our
analysis analyzes 98% of the scripts in under a minute, and five
seconds on average. Manual inspection of the analysis results for a
selection of all scripts shows that most of the alarms are real errors.

We developed our analysis for TouchDevelop in order to fo-
cus on the specifics of mobile apps, which are largely orthogonal
to the problems of analyzing programs written in general-purpose
programming languages. The higher abstraction level of TouchDe-
velop programs (called scripts) allows us to define an analysis
that is both precise and efficient. Moreover, many TouchDevelop
scripts are written by laymen and on the device, which makes a
static analysis particularly useful. TouchDevelop has become pop-
ular with over 90,290 scripts on the TouchDevelop marketplace [1].
The source code of all published scripts is publicly available and,
thus, accessible to our analysis.

Most of the challenges our analysis deals with (such as an event-
based execution model and a volatile environment) are not specific
to TouchDevelop, but shared by other mobile platforms such as An-
droid and iOS. These platforms pose several additional challenges
such as a more involved event model, the need to analyze main-
stream programming languages, a larger API, and more complex
heap data structures. Nevertheless, we believe that our solutions
could also be useful in the context of a more elaborate analysis for
mainstream platforms.

TouchDevelop. TouchDevelop is a sequential, statically-typed,
imperative programming language. Data is stored in local variables,
persistent global variables, heap-allocated records and objects, and
in cloud tables. The language and its libraries offer many features
that simplify the development of mobile apps such as direct access
to the mobile device (to its sensors, text-to-speech system, media

1 2014/8/5

library, etc.), asynchronous events to handle various forms of input,
persistent variables, and support for web services (for instance, for
handling XML and JSON structures). TouchDevelop scripts can be
written and executed via a designated app or in any browser. They
can also be bundled with a runtime system and offered as regular
apps in the WindowsPhone Marketplace.

The following “Song Shaker” script, which is taken from a
TouchDevelop tutorial, illustrates how TouchDevelop scripts inter-
act with the mobile device. It declares an event handler that gets
invoked each time the user shakes their device. The event handler
accesses the media library via the API service media, selects a ran-
dom element from the song list, and plays it.

event shake() {
media→songs→random→play;

}

The script also illustrates a typical error in mobile apps: if the media
library does not contain any songs when the phone is shaken, the
script crashes. Testing will not reveal this error unless the developer
has access to a configuration (on an actual device or in an emulator)
with an empty song list. This is particularly unlikely when the script
is being written on the device because the developer would have to
delete all songs in order to catch the error. In contrast, the error is
easily detected by a static analysis that has a semantics of the API
operations and a suitable abstraction of collections.

The TouchDevelop platform is closely integrated with the cloud.
In particular, every script that is being developed gets replicated in
the cloud every 10 seconds. We build on this infrastructure to run
our static analysis as a cloud service, which will allow us to provide
timely feedback to developers, even if they write their scripts on
devices that are not powerful enough to perform a static analysis.

Contributions and Outline. The main contribution of this paper
is a precise and efficient static program analysis for the analysis
of mobile apps, in particular, apps developed by independent app
developers and lay programmers. To achieve that, we extend a
generic abstract interpreter (Sec. 2) to address five key challenges
in the static analysis of mobile apps:

1. How to detect and report errors in a late-failing model, where
the execution may continue long after an error has occurred
(Sec. 3).

2. How to obtain sufficiently precise information for collections
without using an expensive heap analysis (Sec. 4).

3. How to abstract the execution environment of a mobile device
precisely and efficiently (Sec. 5).

4. How to soundly abstract persistent variables, especially when
apps are frequently aborted (Sec. 6).

5. How to improve the performance of the analyzer by reducing
the abstraction of the execution environment to aspects that are
actually relevant for the script to be analyzed (Sec. 7).

The focus of this paper is on providing (not necessarily novel)
solutions to these challenges that strike a good trade-off between
precision, efficiency, and soundness and, in combination, result in a
practically-useful analysis. We briefly discuss our implementation
and report experimental results in Sec. 8. We discuss related work
in Sec. 9 and conclude in Sec. 10.

2. Generic Analyzer
We phrase our analysis as an abstract interpretation [9, 10]. In
this section, we introduce the overall structure of the analysis; the
individual components will be refined in the subsequent sections.

The structure of the abstract domain is formalized in Fig. 2.1.
An abstract state in Σ] consists of an abstract heap in Heap] to track

Σ
] := Value]×Heap]

Heap] := Id]→ Obj]

Value] := Numeric]×String]

Id] := Var∪
(

Obj]×FieldNames
)

Obj] ⊆ Label

Figure 2.1: The structure of the abstract domains. The individual
components will be refined in subsequent sections.

references and an abstract value state in Value] to track information
about primitive values such as numbers.

Abstract Identifiers. Both the heap and the value domains give
values to abstract identifiers in Id]. An abstract identifier represents
data that the analysis needs to track, in particular, the values of
local variables (in Var) and of abstract heap locations (in Obj]×
FieldNames). Each abstract heap location represents a potentially
unbounded set of concrete locations. Ferrara [15] showed how
to combine the heap and value analyses in the presence of such
identifiers. We will introduce more identifiers later to represent
collections and components of the mobile device.

Heap Analysis. We adopt an allocation site-based abstraction of
the heap. All objects allocated at the same program point (in Label)
are summarized into one node, making the heap representation
bounded. Since complex (in particular, recursive) data structures
are uncommon in TouchDevelop, this abstraction yields an efficient
yet sufficiently precise analysis. In Sec. 4, we will refine the heap
abstraction by adding an abstract domain for collections.

Value Analysis. Our value analysis uses a combination of do-
mains that approximate primitive values. An important application
of the numerical domain Numeric] in our setting is to check ac-
cesses to numerically-indexed collections. Therefore, we use Oc-
tagons [22] to efficiently track linear inequalities among abstract
identifiers, but our implementation also supports other numerical
domains. For relational domains, we treat summary identifiers fol-
lowing the technique introduced by Gopan et al. [16].

Besides numbers, our value analysis tracks string values, which
are used in TouchDevelop for instance to encode enumerations and
to access XML and JSON structures. Our string domain String]
assigns to each string variable a k-bounded set of string constants
(or >). In Sec. 3, we will introduce an additional value domain.

Abstract Semantics. A TouchDevelop script c ∈ Π consists of a
set Ac of actions (procedures and methods) and a set Ec of event
handlers. Each action and each event handler has a statement as
body. Statements (in Stmt) include the usual operations such as
assignments, conditionals, loops, and action calls.

Following the abstract interpretation framework, we define a
computable semantics of statements as a small-step abstract seman-
tics Ŝ : Stmt→

(
Σ]→

(
Label→ Σ]

))
. For a given statement and

initial abstract state, Ŝ yields a mapping from each program point
(in Label) in this statement to the abstract state at that point. We call
such a mapping a state mapping. The definition of Ŝ is standard. In
particular, the semantics of loops and recursive calls is determined
by a fixpoint computation. Calls are analyzed inter-procedurally.
We refer the interested reader to Cousot [8] for more details.

We also use a function ŜSCRIPT : Π→
(
Label→ Σ]

)
that defines

the semantics of an entire script. We assume here that program
points are globally unique. This function, as well as the initial state
of a script, will be defined in Sec. 6.

2 2014/8/5

1 if ($index ≥ 0 and $index ≤ $boards→ size) {
2 $board := $boards→ at ($index);
3 } else {
4 $board := media→ create board;
5 }
6 $board→ post to wall;

Figure 3.1: An example illustrating late failing. Line 2 contains an
off-by-one error, which may cause the script to abort in line 6.

3. Challenge #1: Late Failing
Late failing is a common strategy to improve the robustness of ap-
plications. Instead of throwing an exception or aborting the execu-
tion when an error occurs, the erroneous operation results in a spe-
cial value such as JavaScript’s undefined or NaN (not a number),
and the execution continues. Late failing is also common in pro-
gramming models for mobile apps. For instance, while Objective-
C provides exceptions, Cocoa, the library for programming iPhone
applications, makes extensive use of the NSError object, which pro-
vides a late-failing mechanism.

TouchDevelop supports late failing through a special invalid-
value InvalidT for every type T , including primitive types (we omit
the subscript in the following). Whenever an operation cannot be
completed successfully, it yields the invalid-value of the appropri-
ate type. Examples include accessing a sensor that does not exist,
accessing a collection out of bounds, or reading an uninitialized
variable. An invalid-value may be used in only two contexts: as
argument to the is invalid action and as right-hand side of an as-
signment. However, the execution of a script is aborted when an
invalid-value is passed to a local action or an API action, or if it
is used as condition in control structures such as conditional state-
ments or loops.

Late failing often makes debugging difficult because the error
may become visible long after it has occurred. Elaborate debug-
gers that help finding the cause of an error through conditional data
break points or reverse debugging may not be available to indepen-
dent app developers and lay programmers, especially when they de-
velop scripts on the device. Therefore, the challenge for our static
analysis is to provide error messages that point programmers to the
cause of the error.

Example. The code snippet in Fig. 3.1 contains a potential off-
by-one error. $boards is a list of Board objects. If $index is equal to
$boards→size when accessing this list in line 2, the call to at will
return Invalid. When post to wall is called on this value in line 6,
the script crashes.

Solution. To provide useful error messages in the presence of
late failing, our analysis reports not only where invalid-values may
abort the execution, but also where they originate from. To achieve
that, we extend the value domain from Sec. 2 with a designated
invalid-domain. This domain tracks whether a value is valid or
invalid, and for invalid-values where they may have been computed.
Therefore, the domain maps each abstract identifier to a set whose
possible elements are Valid and pairs of Invalid together with the
program point where the invalid-value was created. The lattice
structure is given by set operators (for instance, the join operator
corresponds to set union):

InvalidDom] := Id]→P ({Valid}∪ ({Invalid}×Label))

Example Revisited. In the example from Fig. 3.1, Octagons infer
that 0≤ $index ≤ $boards→ size in the then-branch (line 2). Con-
sequently, the abstract semantics of the assignment in line 2 deter-
mines that the right-hand side may result in a valid or in an invalid

value and, thus, assigns {Valid,(Invalid, l2)} to $board, where l2 is
the program point of the call to at.

Since line 4 results in a valid value for $board, the join-operation
after the conditional statement yields {Valid,(Invalid, l2)} for
$board. Since this set contains invalid-values, the check at line 6
that the argument to post to wall is valid fails. Tracking the origin
of invalid-values allows us to report a precise alarm: “When calling
post to wall in line 6, the receiver expression $board may contain
an invalid value due to the call in line 2”.

Discussion. Our abstract domain for tracking validity is efficient,
yet sufficiently precise for most cases. The precision of the analysis
could be improved further by tracking relational information. For
instance, initialization code typically assigns valid values to a set of
variables. Checking whether one of them contains a valid value is
then sufficient to determine that they all do, but our non-relational
domain is not able to conclude that.

Moreover, our approach does not always point directly at the
cause of an error. For instance, arguably the error in Fig. 3.1 is
caused by a wrong condition in line 1. Our experience so far
suggests that the information where the invalid-value was created
is sufficient to find the cause of an error, but one could also apply
backward analyses for this purpose [26].

4. Challenge #2: Collections
Mobile apps typically make heavy use of collections, for instance,
the song collection of the media library, the JSON objects parsed
from a web query, or the sprites currently visualized on a game
board. However, testing apps for different contents of collections
is difficult. For instance, developers would need to change the data
on their devices or have access to emulators in order to test for
different song lists, would need stub implementations to test for
different results of web services, and would need advanced GUI
testing to create different sprite configurations on a game board.
None of these can be expected from independent developers and lay
programmers. The challenge for our static analysis is to provide a
precise abstraction of collections without resorting to an expensive
heap analysis, which is typically not needed for TouchDevelop
scripts.

Example. The following code snippet obtains a JSON object, in
this case, an object that maps strings (representing field names) to
strings, and stores it in variable $presidents.

1 $presidents := web→ download json(...);
2 if ($presidents→ keys→ contains ("USA"))
3 $presidents→ field ("USA")→ post to wall;

To show that the access to the field "USA" in line 3 yields a valid
value and, thus, that the subsequent post to wall does not crash, the
analysis requires information about the contents of the $presidents
map. In particular, the analysis must be able to infer from line 2
that there is an element in the map whose key is "USA".

This example illustrates the need for a must-analysis that tracks
which elements are definitely contained in a collection. Other ex-
amples require the analysis to show that certain elements are not in
a collection. That is, they require a may-analysis that tracks which
elements are possibly contained in a collection.

Solution. To track contents of collections, we complement the
heap domain from Sec. 2 with a collections domain. In this do-
main, we treat different kinds of collections (maps, lists, and sets)
uniformly as maps. Lists are represented as maps from natural num-
bers (indices) to the list elements. In TouchDevelop, the elements
of a set are implicitly ordered, which allows us to use the same
representation for sets.

Similarly to the treatment of objects in our heap analysis
(Sec. 2), we represent a collection by the program point (label)

3 2014/8/5

at which it is accessed for the first time. To ensure that we need to
track only a bounded number of keys and values, we also represent
those via the program point where they are accessed or added. That
is, we introduce additional abstract identifiers from Label×{key}
and Label×{value} to represent the keys and values that are ac-
cessed at the given program point. Since a program point may be
executed several times, these identifiers may represent many con-
crete keys or values. Additionally, for every collection l ∈ Label, we
introduce another abstract identifier llength to represent the number
of elements in the collection. The values of these abstract identifiers
are tracked by our value and heap domains.

Our collections domain maps a collection (represented by a
label) to a set of may-elements and a set of must-elements:

Label︸ ︷︷ ︸
collection

→P (Label)︸ ︷︷ ︸
may elements

×P (Label)︸ ︷︷ ︸
must elements

The may-elements over-approximate the set of elements contained
in a collections, while the must-elements under-approximate it. The
join operator is therefore defined as (a,b)t (c,d) := (a∪ c,b∩d).

Example Revisited. Our analysis determines the safety of the
access in line 3 of the above example as follows. The call to
download json in line 1 introduces a new collection, represented by
label l1. Initially, nothing is known about the contents and length
of this collection. So the numerical domain tracks that 0≤ l1length,
while the collections domain maps l1 to (>, /0), expressing that any
element is possibly and no element is definitely contained.

The conditional statement in line 2 accesses the collection and,
therefore, adds the abstract identifiers (l2,key) and (l2,value) to
the abstract domain, where l2 is the label for line 2. Our string do-
main tracks that (l2,key) has value "USA", and the invalid-domain
tracks that both identifiers are valid (TouchDevelop does not allow
invalid-values in collections). Moreover, the collections domain is
updated to map l1 to (>,{l2}), gaining the knowledge that the col-
lection must contain a key-value pair with identifiers (l2,key) and
(l2,value). Using this information, our analysis determines that the
collection access in line 3 yields a valid element, and therefore the
call to post to wall is safe.

Discussion. When developing the collections domain, we built
on experimental results for a large set of TouchDevelop scripts
[4] to determine the appropriate trade-off between precision and
efficiency. These experimental results show that, compared to a
smashing analysis (where all elements are represented by a single
abstract identifier that is weakly updated), the may-/must-analysis
with a separate key-value pair for each program point reduces the
number of alarms by 13.3%, while the average analysis time per
script is increased from 0.62s to 0.82s. We conclude that the gain
in precision outweighs the loss in performance.

When applying our collections domain to existing TouchDe-
velop scripts, we observed that the must-analysis is indispensable
for the keys of a map, but is hardly used for its values. Therefore,
the must-analysis is essential for collections with non-numerical
keys. For collections with numerical keys, it would be sufficient to
track the length of the collection; Octagons are then usually able to
show that the key is present, that is, non-negative and less than the
length.

5. Challenge #3: Mobile Environment
Like other mobile apps, TouchDevelop scripts interact with the
environment of the mobile device in three ways. First, they use API
actions to perform operations on the device, for instance, to call a
phone number or to store a picture in the media library. Second,
they use API actions to query data from the device, for instance,
to take a picture or to obtain a song from the media library. Third,

1 event shake {
2 if (media→ songs→ is empty→ not)
3 media→ songs→ random→ play;
4 }

Figure 5.1: An example illustrating changes to the environment. A
sound analysis would report an alarm for line 3 because the song
list could have changed between lines 2 and 3.

they declare event handlers that get invoked by the environment
when certain event occur, for instance, when the device is shaken.
TouchDevelop provides over 1,000 API actions and supports 28
kinds of events.

It is impossible for independent app developers and lay pro-
grammers to adequately test the interaction of a script with the mo-
bile environment. They are neither able to explore the possible in-
teractions among event handlers nor to test their app for more than
a few device configurations. The challenge for our static analysis
is to reflect the non-determinism of the event-based execution and
to provide a useful semantics to the large number of API actions.
In particular, this semantics needs to reflect when aspects of the
mobile environment may change.

Example. The event handler in Fig. 5.1 is a slight variation of
the one described in the introduction. When it is invoked, it first
checks if the song list in the media library is empty and, if not,
plays a random song.

Even though the conditional statement guards the access to
the song list, this event handler may crash because TouchDevelop
provides no atomicity guarantees for accesses to the device. In
particular, the device’s media library may be modified by other
(non-TouchDevelop) apps running on the mobile device between
lines 2 and 3 such that songs may be non-empty in line 2, but empty
in line 3.

Modeling this semantics soundly would lead to a large num-
ber of alarms for errors that rarely occur in practice. Even though
these are true alarms, programmers would find them annoying since
TouchDevelop does not provide a way to fix the errors because it
has no feature that ensures exclusive access to parts of the device.
On the other hand, assuming that data on the device never changes
would ignore many errors that are likely to occur in practice, espe-
cially for volatile data sources such as the compass.

Solution. We present our approach to modeling the interactions
with the environment in three steps. (1) We explain how we capture
the interactions through events, (2) we discuss our general approach
to defining the semantics of API actions, and (3) we explain how
we model the mobile environment and changes to it.

Events. The execution of a TouchDevelop script starts by execut-
ing any of its actions1. When this action has terminated, the ex-
ecution enters an event loop, which executes the handlers for in-
coming events sequentially. In particular, an incoming event does
not interrupt the execution of actions or event handlers, that is,
there is no interleaved execution. Therefore, a single execution of
a TouchDevelop script c with actions Ac and event handlers Ec can
be represented by a sequence a→ e1→ ...→ en where a ∈ Ac and
∀i ∈ [1..n] : ei ∈ Ec. We capture this execution model in the seman-
tics as follows: First, we analyze each action in Ac separately for
an initial state σ0 that contains only information that is true for all
possible environments. Second, we join the states after these public
actions to obtain the initial state of the event loop. Third, we ana-

1 We ignore the difference between public and private actions here for
simplicity.

4 2014/8/5

lyze the event loop by computing a fixpoint of all event handlers in
Ec in order to soundly handle any number and order of events. See
below for a formalization of this semantics.

API Semantics. In contrast to the actions defined in a TouchDe-
velop script, we cannot obtain the semantics of API actions by ana-
lyzing their bodies because they are implemented natively and typi-
cally cannot even be expressed in TouchDevelop. Re-analyzing the
API actions during our inter-procedural analysis would also not be
efficient.

To obtain a static analysis that is both efficient and sufficiently
precise, we define the semantics of each API action lazily. We start
from the following imprecise semantics, which we extracted from
the informal API documentation:

1. If the API action may return Invalid, we precisely define the
conditions under which this happens. Otherwise, we define the
return value to be > in the value domains (and Valid in the
invalid-domain).

2. If the API action may have side-effects, we define an abstract
semantics that applies an over-approximation of the docu-
mented side-effects to the abstract state.

The precise treatment of invalid-values is necessary to avoid false
alarms whenever a script operates on the result of an API call.
Otherwise, the above semantics yields a sound, efficient, but ex-
tremely imprecise analysis. Starting from this initial semantics, we
improved the semantics of an API action whenever we found that
it caused false alarms in existing TouchDevelop scripts.

This approach is not only important for a pragmatic implemen-
tation of the analysis, but also to preserve its efficiency. It ensures
that only the relevant aspects of the API are represented in detail by
our abstract semantics, while we adopt a rough and efficient repre-
sentation for everything else.

Environment Representation. To represent the state of the envi-
ronment that can be accessed through API actions, we introduce
abstract identifiers in addition to those described in Secs. 2 and 4.
These additional environment identifiers represent for instance the
song list and picture albums of the media library and the values ob-
tained from various sensors. The values of the environment identi-
fiers are tracked by the abstract domains described so far. The envi-
ronment identifiers are also used to define the semantics of the API
actions that access the environment. For instance, the semantics of
media→ songs is defined to yield the value of the environment
identifier representing the song list.

An important aspect of the semantics is what we assume about
the stability of the environment. As we have illustrated above, mod-
eling the actual behavior, where the environment may change arbi-
trarily between any two operations, is impractical, whereas assum-
ing that the environment is stable is highly unsound. To address this
issue, we partition the set EId of environment identifiers into three
sets: (1) Identifiers in EIdvolatile represent parts of the environment
that change very frequently, for instance the values of certain sen-
sors such as the compass. (2) Identifiers in EIdstable represent parts
of the environment that are statically unknown, but stable during
the execution of a script, for instance, the existence of a front cam-
era. (3) Identifiers in EIdoccasional represent parts of the environ-
ment that in theory may change during the execution of a script,
but will rarely do so, for instance the device’s song list.

We capture these behaviors in our semantics as follows. For
the environment identifiers in EIdvolatile, we track only information
that holds in all possible states. Since these parts of the environment
are volatile, any other assumptions about these identifiers would
make it likely for the analysis to miss errors. The information about
the environment identifiers in EIdstable is persistent throughout the
execution of the script. For example, once the script has checked

that a front camera exists, this information will be retained for the
analysis of the rest of the script. For the environment identifiers in
EIdoccasional, we use the following compromise between soundness
and practicality. We assume them to be stable throughout the exe-
cution of one action or event handler, but allow them to be modified
in between. This semantics is practical because it avoids alarms for
code like in Fig. 5.1, and it is unlikely to miss errors that actually
occur in practice because most actions and event handlers termi-
nate quickly, which makes it unlikely that the environment changes
during their short execution.

Formalization. We define the semantics of executing one action
or event handler as follows:

ACTIONc (σ) := λ l.
⊔

a∈Ac

ŜJaK(σ)(l)

EVENTc (τ) := λ l.
⊔

e∈Ec

ŜJeK

(⊔
l′∈Exitc

τ(l′)|EIdoccasional

)
(l)

For a script c, ACTIONc takes an initial abstract state σ and yields
the state mapping that is obtained by executing any action of the
script. For a label l, this mapping yields the result of applying the
semantic function for the body of an action a to l (see Sec. 2) and
then applying the join-operator over all actions in the script.

EVENTc is defined similarly, but takes a state mapping τ as
argument rather than just a state. It applies the semantic function
for the body of an event e to the state obtained by joining the states
at all exit labels l′ in τ . An exit label is the program point after the
last statement in an action or event handler; Exitc denotes the set
of all exit labels in script c. Before computing this join, we remove
all information about the environment identifiers in EIdoccasional
from the exit states because these identifiers may change arbitrarily
after each action or event handler. This is achieved by the operator
|EIdoccasional

, which takes an abstract state and, for each environment
identifier in EIdoccasional, assigns > in the value domains and,
depending on the part of the environment an abstract identifier
represents, Valid or > in the invalid-domain.

Finally, the semantic function ŜEV takes a script and an initial
abstract state, and yields a state mapping. It computes the fixpoint
for the event loop. The ∇ operator computes the join of all incoming
state mappings and, after a fixed number of iterations, instead
applies widening to accelerate and ensure the convergence of the
analysis.

ŜEV (c,σ) := lfpvACTIONc(σ)
λτ.(τ∇EVENTc (τ))

Example Revisited. Assume that the abstract identifier mss ∈
EIdoccasional represents the number of songs in the media library.
In the abstract state after line 2 of Fig. 5.1, we have mss > 0. Our
abstract semantics retains this information throughout the body of
the event handler, which allows it to conclude that random yields a
valid value.

For comparison, consider the following script, which checks
only once at the beginning of the script if the song library is empty
and, if so, terminates the event loop:

1 action main {
2 if (media→ songs→ is empty)
3 time→ stop;
4 }
5
6 event shake {
7 media→ songs→ random→ play;
8 }

5 2014/8/5

Like for Fig. 5.1, our analysis infers mss > 0 at the end of main.
However, this information is dropped from the exit state of main
before applying the semantic function for shake. As a result, the
analysis issues an alarm on line 7, stating that the result of random
may be invalid and that play cannot be executed on an invalid-value.

6. Challenge #4: Persistent Storage
Instead of using a traditional file system, some mobile app plat-
forms provide a more abstract way of storing objects persistently
in order to simplify programming and to avoid security issues. For
instance, Android’s SharedPreferences store key-value pairs per-
sistently. TouchDevelop stores the values of all global variables,
and everything reachable from them, persistently. The runtime en-
vironment automatically loads persistent data when the script is
started. Every update to a global variable (or an object reachable
from them) is immediately reflected in the persistent storage. In the
following, the term persistent variable subsumes the global vari-
ables of a script and all memory locations reachable from them.

Persistent variables may lead to two kinds of errors. First, a pro-
grammer might break the initialization code for a persistent vari-
able after the variable has been initialized on their device (during
an earlier run of the script). When the script with the broken ini-
tialization code is executed on other devices, variables will remain
un-initialized. This problem is found during testing only if the tester
explicitly resets the persistent storage on their device.

Second, some mobile platforms may abort apps without notify-
ing them. For instance, iOS may suspend an app and may purge a
suspended app when the system runs out of memory. Similarly, a
TouchDevelop script may get aborted at any time. When the script
is re-started later, its persistent variables will have the values they
had when the script was aborted. These values may be unexpected,
for instance, because they do not satisfy invariants that the pro-
grammer intended to maintain. This kind of error is difficult to test
since one would have to abort the script after each update of a per-
sistent variable and observe whether it behaves correctly after a
re-start. The challenge for our static analysis is to soundly model
persistent storage such that it can detect errors caused by faulty ini-
tialization code and by abortion.

Example. The script in Fig. 6.1 declares a persistent global vari-
able level in line 1. Let’s assume that $boards is a list with ex-
actly three elements. To ensure that the access in line 4 yields a
valid result, the programmer intends to maintain an invariant that
0≤ data→ level ≤ 2 at line 4. However, this invariant may be vi-
olated if line 6 sets data→ level to 3, and the script gets aborted
before line 9. When the script is re-started, data→ level is 3, and
the script crashes in line 4. From now on, the script will always
crash until the user resets the persistent storage manually.

Solution. To detect the kinds of errors described above, our anal-
ysis models that a script could be started either in a fresh state (if it
is the very first execution on the device or if the persistent storage
has been reset since the last execution) or in a state that resulted
from terminating the previous execution at any point (by aborting
it or by executing it to completion). That is, we view the process
of starting, aborting, and re-starting a script as an iteration and an-
alyze its effect on the persistent variables. Technically, our analysis
computes two nested fixpoints. The inner fixpoint handles the event
loop of a single script as was explained in the previous section. The
outer fixpoint handles re-starts of the entire script as is explained in
the following.

A fresh execution starts in an initial abstract state σ0 with the
following properties: (1) Global variables are set to the default
values of their types T , that is, 0 if T is Number, the empty string
if T is String, and Invalid otherwise. (2) Abstract environment
identifiers in EIdstable ∪ EIdoccasional are set to > in the String

1 data level : Number
2 action main {
3 ...
4 $boards→ at(data→ level)→ post to wall;
5 ...
6 data→level := data→ level +1;
7 if (data→ level = 3) {
8 "Game over!"→ post to wall;
9 data→ level := 0;

10 }
11 }

Figure 6.1: A script illustrating the use of persistent variables. The
developer intended to maintain an invariant at line 4 that the global
variable data→level is at most two. This invariant may be violated
if the script gets aborted between lines 7 and 9.

and numerical domains. The state of the invalid-domain reflects
whether the TouchDevelop platform guarantees that their values
are definitely valid (for instance, for media→ pictures) or not (for
instance, for senses→ front camera). We extend the initial abstract
state σ0 to an initial state mapping τ0, which maps the start label of
each action to σ0, and all other labels to ⊥.

The function SCRIPTc computes a state mapping that reflects
one execution of the entire script c, starting from an initial state
mapping τ , which is either the initial state mapping or a state map-
ping obtained from a previous execution. ŜEV denotes the compu-
tation of the inner fixpoint, see Sec. 5.

SCRIPTc(τ) := ŜEV

(
c,

⊔
l∈Labelc

τ(l)|Pc∪EIdstable

)

To reflect that the previous execution might have been aborted
at any program point, we determine the start state for the next
execution by joining the states at all labels of the script c. If τ is the
initial state mapping τ0, this join yields the initial state σ0. Before
computing the join, we apply the operator |Pc∪EIdstable to remove
all information from the abstract states except the values of the
abstract identifiers Pc for the persistent variables and the values of
the abstract environment identifiers EIdstable for the stable parts of
the environment. To remove information for an abstract identifier,
the operator assigns> in the value domains and, depending on what
the identifier represents, Valid or > in the invalid-domain.

We can now define the semantic function ŜSCRIPT that we in-
troduced in Sec. 2. It takes a script and yields a state mapping by
computing the fixpoint for the abort-restart loop, that is, the outer
fixpoint of our analysis. It applies widening to ensure termination:

ŜSCRIPT(c) := lfpvτ0
λτ.(τ∇SCRIPTc(τ))

Example Revisited. Applying our analysis to the script in Fig. 6.1
detects the error described above. In the initial state σ0, data→ level
has its default value 0. After the first execution of the script, that is,
in the state mapping SCRIPTc(τ0), data→ level is 0 in line 4, and 1
after line 6. Therefore, the next application of SCRIPTc in the outer
fixpoint computation uses the interval [0,1] as the abstract value of
data→ level in line 4. Depending on the widening limit, the analy-
sis infers that after some iterations, we have data→ level ∈ [0,3] or
just 0≤ data→ level. In either case, the analysis reports an alarm
that the access to $boards in line 4 may yield an invalid-value such
that the subsequent post to wall might crash.

6 2014/8/5

Discussion. Our experience shows that the computation of the
outer fixpoint over all script executions is expensive, but necessary
in practice. To increase efficiency, we considered two alternatives.

First, one could avoid the outer fixpoint computation by not
making any assumptions about the persistent variables at the be-
ginning of an execution. However, this solution causes false alarms
for two major reasons. (1) It loses information about the initializa-
tion of persistent variables from default values or previous script
executions. Therefore, the analysis must consider the option that all
persistent variables may initially have invalid values, which leads
to many false alarms. For instance in Fig. 6.1, the analysis would
consider the case that data→ level may be initially invalid, such
that the call to at in line 4 would crash the script. (2) Making no
assumptions about the persistent variables at the beginning of an
execution means in particular that the heap analysis would have
to consider maximal aliasing among heap structures such that all
updates to global data would have to be non-destructive. To evalu-
ate this alternative, we performed an experiment on 334 randomly
selected scripts. Avoiding the outer fixpoint computation reduced
the average analysis time per script from 1.03 to 0.71s. However,
the number of alarms increased from 336 to 378. That is, the outer
fixpoint computation avoided 42 false alarms; almost all of them
are caused by the two reasons mentioned above. We decided that
avoiding these false alarms justifies the slower analysis.

Second, one could speed up the computation of the outer fix-
point by unsoundly ignoring script abortions and considering only
the exit state of terminating scripts. Experiments on the same set
of scripts showed that, compared to our solution, this approach re-
duces the average analysis time per script from 1.03 to 0.63s and the
number of alarms from 336 to 333. All three alarms missed by the
unsound alternative are real errors (in the scripts appla and arwba).
We decided to adopt the sound treatment of abortions because the
analysis is sufficiently efficient for almost all TouchDevelop scripts
such that we can afford to be sound.

7. Challenge #5. Demand-Driven Abstraction
As we have discussed in Sec. 5, an analysis for mobile apps re-
quires precise information about the execution environment of the
mobile device. This environment typically contains a large num-
ber of components. For example, the TouchDevelop API makes 15
different components of the device accessible through media and
senses alone. Many of these, such as the media library, are rep-
resented by nested object structures, which are reachable immedi-
ately after the start of the script. Moreover, some frequently used
objects provide a large number of fields. For instance, instances
of the box type, which represents user interface elements, provide
42 properties. Introducing abstract identifiers for all components
of the mobile device and all fields of the used objects leads to an
intractable amount of reachable abstract identifiers and, thus, an in-
efficient analysis. The challenge for our static analysis is to reduce
the number of abstract identifiers without sacrificing precision.

Example. Even though the following script uses only two com-
ponents (game boards and the front camera), a naïve analysis would
create abstract identifiers for every reachable field in the initial
state.

action main {
var $board := media→ create board(640);
$board→ create rectangle($board→ width/2,

senses→ front camera→ height);
}

Moreover, the abstract semantics of media→ create board will ini-
tialize all fields of the new board to their default values. However,
most of these fields, such as the background color, a background

image, and a reference to a Camera object, are irrelevant for the
script above.

Solution. Before running the actual analysis of the script, we
use a type-based static pre-analysis to collect which fields are
actually accessed by the script. This pre-analysis yields an element
in P (Type×FieldName), which is used by the actual analysis
to determine which abstract identifiers are needed to represent
the relevant parts of the execution environment and the relevant
fields of objects. Since TouchDevelop is statically typed and has no
subtyping, computing these fields is straightforward.

Example Revisited. For the script above, our pre-analysis infers
the set { (Board,width), (senses, front camera), (Camera,height) }.
The initial state σ0 will only represent those three fields and omit
all other components of the environment.

Discussion. The type-based pre-analysis is a simple, yet effective
way to increase the performance of the analysis. For the above
script, it reduces the analysis time from 47.71 to 0.43s.

Instead of our coarse type-based pre-analysis, one could use a
conservative pointer analysis, possibly in combination with a live
variable analysis, to determine sets of objects instead of types for
which certain fields should be represented. We have not explored
this options since our experiments showed that our simple pre-
analysis is sufficient.

8. Experimental Results
In this section, we present and discuss the experimental results
of our analysis in terms of performance and precision. For these
experiments, we configured our analysis to emit alarms when an
invalid-value is passed as argument to an action (which include
arithmetic operations). With late failing (see Sec. 3), this check
covers many faults in the code, most importantly:

• Out-of-bounds access to collections
• Access to unavailable device features (e.g., a front camera)
• Access to unavailable resources (e.g., network connection)
• Operations on uninitialized persistent variables
• Operations on canceled or invalid user input
• Failed conversions (e.g., string to date)
• Operations on non-existent data (e.g., a contact with an invalid

phone number field)

Besides these common errors, our analysis can report additional
issues without extending the abstract domain. These include for in-
stance drawing outside of picture bounds (which has no effect),
invalid numeric computations such as division by zero (which pro-
duces a NaN value, which may be handled correctly by subsequent
code), and violations of certain API protocols such as pausing a
media player only in states in which it is not playing (which has no
effect). These issues are not necessarily fatal errors, but may indi-
cate undesired program behavior. Since it is often difficult to judge
whether such issues are actual errors, we do not check them in the
experimental evaluation.

8.1 Implementation
We implemented our analysis on top of Sample, a generic static
analyzer that supports the combination of various heap and value
analyses [15]. We used the Octagons implementation of APRON
[19] as numerical domain and an abstract domain of k-bounded sets
of constant strings (with k = 3) as string domain.

We extended Sample with a standard inter-procedural analysis
based on a supergraph approach, which corresponds to a control

7 2014/8/5

flow graph where each callee is connected by an edge to its call and
return site. To make this simple approach scalable, we employed a
restricted form of access-based localization of abstract states [24].
When we analyze an action call, we propagate directly to the return
site of the call the portion of the abstract state that is not accessed
inside the callee action (according to the type-based pre-analysis
described in Sec. 7). For the portion that is accessed or modified
inside the callee action, we rely on the abstract semantics of the
action’s body.

The analysis is accessible to TouchDevelop users through a pre-
liminary web interface that can be found under the following URL:
http://tb.inf.ethz.ch . In cooperation with the developers of
TouchDevelop, the analysis described in this paper is currently be-
ing integrated in the programming environment itself.

8.2 Performance
For an evaluation of the performance of our analysis, we ran it
on a wide set of existing TouchDevelop scripts. From all scripts
published before March, 22nd 2014, we selected all scripts that
satisfy the following properties:

• The script is accessible through the TouchDevelop cloud API
and has neither syntax nor type errors.

• The script is a root script, that is, a newly published script rather
than a variation of an existing script. Focusing on root scripts
avoids a bias towards popular scripts of which several tens of
variations are published.

Out of 90,290 scripts published at the time of writing, 51,456
scripts satisfy these criteria. We were unable to analyze 335 scripts
because they use very recent or even experimental and undocu-
mented language features which our tool does not support yet. 96
scripts could not be analyzed due to a memory error in the most
recent version of APRON, which has been confirmed but not yet
fixed.

On the remaining 51,025 scripts, we ran our analysis with a
time-out of one minute per script. 594 scripts (1.1%) could not be
analyzed within this limit. Time-outs were mainly caused (1) by a
large number of numerical variables, for which the cubic complex-
ity of Octagons is too high, and (2) by dense call-graphs, which
is a well-known problem for whole-program analyses. The first
problem could be addressed by reducing the number of variables
through a more aggressive pre-analysis (see Sec. 7) or by using a
less precise numerical domain. For the second problem, we may
adopt a less precise inter-procedural analysis. Nevertheless, we did
not explore these optimizations since we believe that being able to
analyze more than 98% of the scripts in less than a minute is suffi-
cient to provide feedback to app developers.

The following evaluation is based on the 50,431 root scripts that
were successfully analyzed within the one-minute limit. We will
refer to this set of scripts as the root set. We assessed the run time
and the number of alarms for the root set. A qualitative analysis of
the alarms in presented in the next subsection.

We ran all the experiments on an Intel Core 2 Quad CPU
(2.83GHz) and 4GB of memory running Ubuntu Linux 13.04.
The analyzer is written in Scala (and therefore compiled to Java
Bytecode), and we executed it on an Oracle Java 7 Virtual Machine.

Table 1 reports the experimental results obtained by our analy-
sis. The first row summarizes the results for all scripts in the root
set. The 50,431 scripts have in total 17MLOC (an average of 340
LOC per script)2. The analysis takes in total about 2 days and 22
hours, that is, on average five seconds per script. This shows that

2 TouchDevelop has no textual syntax since the editor works directly on
the abstract syntax tree. Therefore, there is no fixed textual representation
that can be used to count the number of code lines. We chose to count the

our analysis is efficient and may be applied during the development
of a script, giving timely feedback to the developer in most cases.

TouchDevelop developers have the option to categorize their
scripts using pre-defined tags. In Table 1, we also report the exper-
imental results for the root scripts in some categories. We noticed
that a relatively small number of root scripts is tagged, probably
because root scripts are early versions of a script and developers
tend to tag more mature versions. It is interesting to observe that,
while the tagged scripts are on average shorter than the average root
script, our analysis reports more alarms for the tagged scripts. We
suspect that the tagged scripts perform more complex computations
and interactions with the device than an average script. Therefore,
they are likely to contain more errors but also to lead to more false
alarms (like the CloudHopper script that we discuss in next subsec-
tion) in case our analyzer is not precise enough for these complex
computations.

Comparing different categories shows that scripts in the games
category are shorter than the average script, but are more expensive
to analyze. We believe that games take longer to analyze because
(1) they modify large portions of the state (for instance, a large
number of sprites on the screen) during a recurring event loop,
and (2) the placement of game elements on the screen is based
on numerical computations that are expensive to handle in the
numerical domain. It is also interesting to note that the average
length of tagged scripts is less than the average length of all root
scripts (and that the most frequently executed scripts, which are
described in the next subsection, are all shorter than the average of
all root scripts).

8.3 Precision
To evaluate the precision of the analysis, we manually inspected
the alarms for some scripts and checked how many of them are
false alarms. Since it is not feasible to manually inspect the alarms
for all scripts, we focus our inspection on two sets of scripts, one
containing a random selection and the other one consisting of the
ten most frequently executed scripts. We define the ratio # true alarms

alarms
as the precision of the analysis.

Random Scripts. To evaluate the precision of our analysis on
average scripts, we chose 51 scripts randomly by taking all those
scripts from the root set whose randomly-assigned identifier starts
with “aa”. For these scripts, our analysis reported 34 alarms in total.
Five of these are false alarms, which yields a precision of 85%.
This precision rate is far above state-of-the-art static analyzers
and suggests that our analysis may provide useful feedback to
programmers without overwhelming them with false alarms.

Out of the 29 true alarms, one is caused by accessing an unini-
tialized persistent variable, ten are caused by incorrect assumptions
about the media library (for instance, assuming that at least one
song is in the library), eleven are caused by incorrect assumptions
about the capabilities of the device (for instance, about the avail-
ability of sensors), one is caused by a missing check of user input,
and six are caused by not checking whether the JSON result from
a web service contains the expected fields.

Out of the five false alarms, three are in the script aanpa3, which
stores a collection persistently. Our heap analysis represents the
content of this collection as summary node, such that the analy-
sis cannot prove that the collection is non-empty. We could ad-
dress this issue by adopting a more precise heap abstraction, but

number of lines in the textual representation returned by the TouchDevelop
compiler API, which may differ from the visualization in the editor. Note
that experiments have shown that Android implementations are about four
times longer than TouchDevelop scripts with the same functionality [23].
3 The source code of a script with identifier PID is available at http:
//www.touchdevelop.com/api/PID/text.

8 2014/8/5

http://tb.inf.ethz.ch
http://www.touchdevelop.com/api/PID/text
http://www.touchdevelop.com/api/PID/text

#Scripts #LOC #Alarms Time
Sum Avg. Sum Avg. Sum Avg. [s]

root set 50,431 17,149,776 340.06 23,466 0.47 2d22h29’04" 5.03
games 199 60,418 303.60 533 2.68 22’17" 6.71
entertainment 169 32,156 190.27 304 1.80 7’44" 2.74
tools 108 11,951 110.65 123 1.14 1’54" 1.06
music 65 4,584 70.52 146 2.25 2’11" 2.01
education 65 8,745 134.53 152 2.34 1’49" 1.67
productivity 51 6,757 132.49 147 2.88 2’05" 2.44
kids 49 13,298 271.38 58 1.18 4’40" 5.71
action 43 11,858 275.76 52 1.20 4’36" 6.42

Table 1: Results of the analysis for the root set and for some script tags. The columns show the number of scripts, code lines, and alarms, as
well as the total processing time.

Script PID #LOC #Runs Time [s] #True #False
Flip a Virtual Coin! htmh 30 45,300 0.01 0 0
My Online Meetings mpuj 333 41,100 1.47 0 3
WiFi/3G Swap kmjn 44 40,800 0.07 0 0
Line Runner dvvx 261 16,600 11.48 1 0
internet speedtest qwzu 39 9,150 0.05 0 0
doodle jump ajkc 221 9,000 9.14 1 0
where am I ?? kblp 98 8,100 0.40 2 0
CloudHopper wbxsa 255 8,050 19.43 1 9
BreakIt! Touch zids 180 7,700 3.98 0 2
doodle jump ybcy 221 6,700 6.10 1 0
Total 1,682 52.13 6 14

Table 2: Results of the analysis for the ten most frequently executed scripts. For each script, the columns show the identifier, number of code
lines, number of executions, total processing time, as well as the number of true and false alarms.

this would affect performance negatively. For the other two false
alarms, our analysis abstracts away some disjunctive information
about boolean variables. We could address this issue by adopt-
ing trace partitioning [21], which is already supported by Sample.
However, trace partitioning needs to be tuned manually and would
slow down the analysis.

Most Frequently Executed Scripts. To evaluate the precision of
our analysis on scripts that users seem to find useful, we analyzed
the ten most frequently executed scripts. (The number of execu-
tions is provided by the TouchDevelop platform.) These scripts are
not necessarily in the root set, that is, they may be variations of
other scripts. They range from 30 to 333 lines of code. The most
frequently executed scripts include five games (doodle jump in two
versions, CloudHopper, Line Runner, and BreakIt! Touch) and five
small utilities. Such utilities are similarly popular on other plat-
forms, see for instance the immensely popular flashlight apps on
Google Play and Apple’s App Store.

The analysis times for the utilities range from 0.01 to 1.47
seconds, whereas the times for games range from 4 to 20 seconds,
confirming our earlier observations about games (see Table 1).

Among the five utilities, only My Online Meetings produced
false alarms. They are all caused by code that concatenates and
splits strings, and then makes assumptions about the size of the
resulting strings. We could address this issue by adopting a more
precise (and more expensive) string analysis [7]. However, our
experience shows that this additional precision would be useful
only in a few cases; therefore, we decided to opt for a faster but
less precise string analysis. Among the five games, two produced
false alarms. Nine out of the 14 false alarms that we found occur in
one script (CloudHopper). All of them are caused by the fact that

our analysis fails to infer the size of a collection because of missing
narrowing operators.

With 30%, the precision obtained for the most frequently exe-
cuted scripts is much lower than for the random scripts. This result
can be explained in part (1) by the fact that these scripts are very
well tested during several thousand executions and, therefore, are
likely to contain fewer errors, resulting in fewer true alarms (one
per 280 code lines versus one per 175 code lines for the random
scripts); and (2) by the CloudHopper script being on outlier. Dis-
counting these two effects would increase the precision to 62%.
Finding six true errors in these frequently executed scripts illus-
trates that our static analysis is able to detect errors that are not
found during extensive testing.

9. Related Work
To the best of our knowledge, the only generic analyzer that has
been applied to detect errors in mobile (Android) apps is Julia [25].
Julia extends a generic analyzer for Java to handle some typical fea-
tures of Android apps such as representing user interfaces through
XML files. Julia checks mostly for termination and null pointer ac-
cesses. It analyzes projects between 54 and 6300 LOC in the order
of minutes, but with a very high rate of false alarms. Compared
to Julia, our analysis benefits from the higher abstraction level of
TouchDevelop code, such that the performance and precision num-
bers cannot be compared in a meaningful way.

Clousot [13] is a generic static analyzer for .NET that checks for
run-time errors as well as user-provided assertions. Clousot relies
on contracts to perform an intra-procedural analysis, while our
analysis is inter-procedural. This makes our analysis less efficient,

9 2014/8/5

but avoids the need for annotations, which seems more suitable for
independent app developers and lay programmers.

ASTRÉE [3] analyzes embedded software to prove the absence
of run-time errors. Like our analysis, it combines various abstrac-
tions (numerical and heap domains), and handles the interaction
with various external components (such as sensors). ASTRÉE is
highly specialized to obtain zero false alarms for specific industrial
software, while we targeted arbitrary TouchDevelop scripts.

Null pointer analyses [18] are similar to analyzing late failing.
Like invalid-values, computing a null value is not an error, while
certain uses (especially dereferencing) are. Our approach of track-
ing the origin of an invalid-value seems applicable to improve the
feedback provided by null pointer analyses.

Heap analysis has been widely explored leading to various
pointer [28] and shape [27] analyses with different trade-offs be-
tween efficiency and precision. Since TouchDevelop scripts mostly
rely on built-in collections and objects rather than implementing
their own heap structures, we adopted a standard allocation site-
based pointer analysis and complemented it with a collections
domain. This combination is efficient and sufficiently precise for
typical TouchDevelop scripts.

Marron et al. [20] introduce an analysis to approximate the
contents of sets. It extends shape analysis to track equality and
subset relations among sets of references. These relations are must-
relations, whereas our collections domain tracks must- and may-
elements. Besides sets, our domain also supports lists and maps.

Dillig et al. [12] describe a very expressive analysis to de-
termine may- and must-properties of the contents of containers
(such as maps and sets). Their work adopts numerical first-order
logic constraints to specify the elements of containers. Practically,
their approach relies on an SMT solver that is called for each ac-
cess to a collection. Our collection analysis tracks may- and must-
information as well, but it is less precise than their approach. The
design of our abstract domain has been driven by the properties we
needed to track for existing TouchDevelop scripts, which are usu-
ally simple enough to not require full first-order logic expressive-
ness. The performance of our overall analysis is similar to theirs,
although it includes a rich and precise model of the mobile envi-
ronment and semantics, not just properties of containers.

Existing static analyses of array contents [11, 17] have a differ-
ent focus than our collections analysis. On the one hand, they are
less general because they focus on collections of numbers, whereas
we support arbitrary content, such as strings. On the other hand, for
arrays of numbers, they can infer more complex invariants using
expressive numerical domains.

Several recent analyses target security properties of mobile apps
such as inference of Android permissions [14] or information flow
[6]. They do not require a precise abstraction of the mobile envi-
ronment, only knowledge on which APIs require permissions or
read confidential information. They also do not have to capture the
non-deterministic interaction among events since it is sufficient to
know which events are reachable (to check the required permis-
sions), or how information flows within an event handler. In con-
trast, our analysis crucially depends on a precise abstraction of the
environment and on possible interactions among event handlers to
detect errors.

TouchDevelop as well has been the target of an information flow
[31] and a data flow [2] analysis to detect leaking of confidential
data and cloned apps, respectively. These analyses do not need to
precisely abstract the mobile environment and the event semantics.

10. Conclusions and Future Work
We presented a static analyzer for mobile apps written in TouchDe-
velop. In order to support independent app developers and lay pro-

grammers, we designed an analysis that does not require user input,
is efficient, and produces a low number of false positives. These
goals guided our solutions to five challenges of analyzing TouchDe-
velop code. Our experimental results demonstrate that our design
indeed achieves these goals and, thus, a practically-useful analysis.
In particular, our analysis detects errors that are very hard to test
such as errors caused by certain sequences of events or abortions
of the app. Our analysis benefits from the simplicity and high ab-
straction level of TouchDevelop. Although analyses for other mo-
bile platforms such as Android and iOS face similar challenges and
may be able to adopt some of our solutions, they will be more in-
volved.

Besides improving the quality of apps, we also hope to achieve
an educational effect, especially on lay programmers, by detecting
errors that are easy to miss otherwise.

As future work, we plan to extend our analysis to some re-
cent TouchDevelop features such as cloud types [5], which we cur-
rently handle imprecisely. In cooperation with the developers of
TouchDevelop, the analysis described in this paper is currently be-
ing integrated in the programming environment itself. Interesting
future work will be to evaluate how end-users interact with our
analysis and to reflect these findings in the analysis design.

Acknowledgments. We are grateful to Nikolai Tillmann for many
helpful discussions about TouchDevelop, to Antoine Miné for his
help with the Apron library, and to Yves Bonjour for implementing
the container analysis.

References
[1] TouchDevelop cloud statistics. https://www.touchdevelop.com/

api/stats. Accessed: 2013-09-17.
[2] M. Akhin, N. Tillmann, M. Fähndrich, J. de Halleux, and M. Moskal.

Code similarity in TouchDevelop: Harnessing clones. Technical re-
port, Microsoft Technical Report MSR-TR-2011-103, 2011.

[3] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
D. Monniaux, and X. Rival. A static analyzer for large safety-critical
software. In Proceedings of PLDI ’03. ACM Press, 2003.

[4] Y. Bonjour. Must analysis of collection elements. Master’s thesis,
ETH Zürich, 2013.

[5] S. Burckhardt, M. Fähndrich, D. Leijen, and B. Wood. Cloud types for
eventual consistency. In Proceedings of ECOOP ’12, LNCS. Springer,
2012.

[6] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner. Analyzing
inter-application communication in Android. In Proceedings of Mo-
biSys ’11. ACM, 2011.

[7] G. Costantini, P. Ferrara, and A. Cortesi. Static analysis of string
values. In Proceedings of ICFEM ’11, LNCS. Springer, 2011.

[8] P. Cousot. The calculational design of a generic abstract interpreter.
In Calculational System Design. IOS Press, 1999.

[9] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approxima-
tion of fixpoints. In Proceedings of POPL ’77. ACM, 1977.

[10] P. Cousot and R. Cousot. Systematic design of program analysis
frameworks. In Proceedings of POPL ’79. ACM, 1979.

[11] P. Cousot, R. Cousot, and F. Logozzo. A parametric segmentation
functor for fully automatic and scalable array content analysis. In
Proceedings of POPL ’11. ACM, 2011.

[12] I. Dillig, T. Dillig, and A. Aiken. Precise reasoning for programs using
containers. In Proceedings of POPL ’11. ACM, 2011.

[13] M. Fähndrich and F. Logozzo. Static contract checking with abstract
interpretation. In Procedings of FoVeOOS ’10, LNCS. Springer, 2010.

[14] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android
permissions demystified. In Proceedings of CCS ’11. ACM, 2011.

[15] P. Ferrara. Generic combination of heap and value analyses in abstract
interpretation. In Proceedings of VMCAI ’14, LNCS. Springer, 2014.

10 2014/8/5

https://www.touchdevelop.com/api/stats
https://www.touchdevelop.com/api/stats

[16] D. Gopan, F. DiMaio, N. Dor, T. Reps, and M. Sagiv. Numeric
domains with summarized dimensions. In Proceedings of TACAS ’04,
LNCS. Springer, 2004.

[17] N. Halbwachs and M. Péron. Discovering properties about arrays in
simple programs. In Proceedings of PLDI ’08. ACM, 2008.

[18] D. Hovemeyer, J. Spacco, and W. Pugh. Evaluating and tuning a static
analysis to find null pointer bugs. In Proceedings of PASTE ’05. ACM,
2005.

[19] B. Jeannet and A. Miné. Apron: A library of numerical abstract
domains for static analysis. In Proceedings CAV ’09, LNCS. Springer,
2009.

[20] M. Marron, R. Majumdar, D. Stefanovic, and D. Kapur. Shape analysis
with reference set relations. In Proceedings of VMCAI ’10, LNCS.
Springer, 2010.

[21] L. Mauborgne and X. Rival. Trace partitioning in abstract interpre-
tation based static analyzers. In Proceedings of ESOP ’05, LNCS.
Springer, 2005.

[22] A. Miné. The octagon abstract domain. Higher-Order and Symbolic
Computation, 19(1):31–100, 2006.

[23] T. Nguyen, S. Rumee, C. Csallner, and N. Tillmann. An experiment
in developing small mobile phone applications comparing on-phone
to off-phone development. In Proceedings of USER ’12, 2012.

[24] H. Oh, L. Brutschy, and K. Yi. Access analysis-based tight localization
of abstract memories. In Proceedings of VMCAI ’11, LNCS. Springer,
2011.

[25] É. Payet and F. Spoto. Static analysis of Android programs. Informa-
tion and Software Technology, 54(11):1192 – 1201, 2012.

[26] X. Rival. Understanding the origin of alarms in Astrée. In Proceedings
of SAS ’05, LNCS. Springer, 2005.

[27] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via
3-valued logic. ACM Transactions on Programming Languages and
Systems, 24(3):217–298, May 2002.

[28] M. Sridharan, S. Chandra, J. Dolby, S. J. Fink, and E. Yahav. Alias
analysis for object-oriented programs. In Aliasing in Object-Oriented
Programming, LNCS. Springer, 2013.

[29] N. Tillmann, M. Moskal, J. de Halleux, and M. Fähndrich. TouchDe-
velop: programming cloud-connected mobile devices via touchscreen.
In Proceedings of SPLASH/Onward! ’11. ACM, 2011.

[30] D. Wolber, H. Abelson, E. Spertus, and L. Looney. App Inventor.
O’Reilly Media, 2011.

[31] X. Xiao, N. Tillmann, M. Fähndrich, J. de Halleux, and M. Moskal.
User-aware privacy control via extended static-information-flow anal-
ysis. In Proceedings of ASE ’12. ACM, 2012.

11 2014/8/5

	Introduction
	Generic Analyzer
	Challenge #1: Late Failing
	Challenge #2: Collections
	Challenge #3: Mobile Environment
	Challenge #4: Persistent Storage
	Challenge #5. Demand-Driven Abstraction
	Experimental Results
	Implementation
	Performance
	Precision

	Related Work
	Conclusions and Future Work

