
TouchGuru: Integrating Static Analysis
with a Mobile Development Environment

Lucas Brutschy
Department of Computer Science

ETH Zurich
lucas.brutschy@inf.ethz.ch

Pietro Ferrara
IBM Thomas J. Watson

Research Center
pietroferrara@us.ibm.com

Peter Müller
Department of Computer Science

ETH Zurich
peter.mueller@inf.ethz.ch

Abstract
Mobile apps often expose bugs only under specific environ-
ment conditions or after specific interactions, making it hard
to detect them via testing. By approximating the program
behavior under all possible conditions, static analysis is able
to fill this gap. In this invited talk, we present TouchGuru, a
static analyzer for Microsoft TouchDevelop scripts. In par-
ticular, we present how the design of TouchGuru takes into
account the user’s perspective.

1. Introduction
TouchDevelop [2] is a novel programming environment and
language to develop mobile apps on mobile devices. These
so-called scripts are typically developed by non-expert users,
rather small, and published in the cloud. The short script in
Figure 1 defines an event handler that is executed each time
the mobile device is shaken. The body of the event handler
selects and plays a random song from the media library of
the device.

The development of mobile applications is challenging,
because they might be executed on diverse platforms, access
a volatile environment and are driven by an unpredictable
sequence of events. This makes testing challenging especially
for non-professional developers, who did not receive formal
training and do not have access to testing infrastructures.

Static semantic program analysis provides a viable solu-
tion to this problem: It is automatic, requiring only minimal
interaction with the user, and it can model the behavior of
the program under all viable execution conditions to detect
reliability issues. In this talk we present TouchGuru [1], a
static analysis for TouchDevelop scripts.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MobileDeLi ’14, October 21, 2014, Portland, OR, USA..
Copyright is held by the owner/author(s).
ACM 978-1-4503-2190-7/14/10.
http://dx.doi.org/10.1145/2688412.2688421

Figure 1. Playing a random song of the media library

For instance, the example in Figure 1 contains a reliability
issue exposed only when executed on devices with an empty
song list. In this case, random will return an invalid value,
causing the script to crash when play is executed. TouchGuru
reports potential runtime errors like this one. Other examples
of the alarms reported are incorrect initialization of values,
not verifying the existence of certain hardware peripherals
before accessing them, or simply accessing a collection out-
of-bounds.

Traditionally, there are three main properties that re-
searchers consider when developing a static analyzer: (1)
soundness, that is, no real violation of the checked property is
missed, (2) precision, that is, few or zero alarms are not real
violations, and (3) efficiency, that is, the analysis terminates
quickly. However, users may have slightly different require-
ments. In particular, efficiency for them means also that the
analysis can be used efficiently, e.g., that the alarms can be
understood and fixed quickly. Similarly for soundness, the
analysis should report the alarms they care about, and they
can fix.

In this talk, we present three core design choices we
made to specifically take into account the user’s perspective.
Our previous work [1] presents the technical details and
experimental results of the analysis.

2. Late Failing and Error Reporting
When a script performs an infeasible action, such as access-
ing an unavailable sensor, TouchDevelop APIs do not abort
execution but instead return an invalid value. The execution
is aborted only if the invalid value is used as receiver or pa-
rameter of a method call. We call this behavior late failing.
TouchGuru has to reflect late failing in its analysis methodol-
ogy: An operation that may fail and return an invalid value
is not reported as an error. However, once an invalid value is
used in an inappropriate context, an alarm is emitted.



Figure 2. TouchGuru User Interface. The list of all alarms is shown on the left. The yellow box on the right indicates one of
them, an illegal use of an invalid value.

Consider again the script in Figure 1. The program does
not check if media->songs is empty before calling random,
and therefore random might produce an invalid value. How-
ever, the program execution continues until the invalid value
is used as the receiver of the play method.

In this minimal example, the cause and the effect happen
to be in the same line; however, in longer programs, the
cause is typically located different lines, functions or libraries,
which makes it hard for the user to understand and fix the
alarm. To address this problem, TouchGuru tracks the source
of invalid values by annotating each abstract invalid value
with the program point that generates it as well as a textual
cause description. This information is then propagated to the
location of the alarm, allowing the user to immediately jump
to the origin of the invalid value and fix it.

3. Environment and Error Model
Assume the user fixes the bug from Figure 1 by introducing a
check whether the media library contains at least one song:

This change seems to fix the problem and the user might
expect the alarm to disappear. However, the program could
still crash: The media library is shared with other applications
on the device, and it may be emptied between the first and
the second line in the example above. Therefore, a strictly
sound static analysis would still report the alarm. However,
since the script does not have exclusive access to the media
collection of the device, the code cannot be fixed. Therefore,
it is useful to report it.

We have developed an environment model for TouchGuru
that finds the right balance between soundness and usefulness
of the analysis. For example, we assume that the music library
does not change during the execution of a single action or
event handler, but may change in between. This choice is
based on the intuition that a script may run for a long time,
but actions and event handlers typically terminate quickly,
making media library changes during an action or event
handler unlikely. Under this assumption, no alarm has to
be emitted for the above example.

4. Cloud Integration
The integration of TouchGuru into the development environ-
ment is crucial for allowing efficient use. The TouchDevelop
IDE runs as a web application in the cloud, and is thereby
constantly connected with a variety of services. TouchGuru
is integrated directly into this environment as an installation-
free plugin.

The TouchGuru plugin is integrated into the web applica-
tion running on the programmer’s device, and communicates
with a dedicated analysis server based at ETH Zurich. When
a user requests the analysis of a script, the code is sent to the
analysis server together with a unique ID. The analysis server
acquires the required libraries from the TouchDevelop cloud
and starts the analysis. When analysis terminates, the results
are sent back to the TouchGuru plugin and displayed to the
user. Thanks to the dedicated server and the strong integration
with the IDE, the user can efficiently run the analysis and
access its results.

5. Accessing TouchGuru
Figure 2 shows a screenshot of TouchGuru. TouchGuru is
accessible to any TouchDevelop user. You can find TouchDe-
velop at http://www.touchdevelop.com. To make use of
TouchGuru, select ”Plugins” while editing a script and search
for ”TouchGuru”. Click on the corresponding search result
and press ”Run analysis”. When the analysis terminates suc-
cessfully, a list of all alarms are displayed on the left. Clicking
on one of the alarms takes the user to the location of the po-
tential program crash. From here, additional buttons on the
bottom of the screen can be used to highlight the cause of the
alarm, or ignore the error message.

References
[1] L. Brutschy, P. Ferrara, and P. Müller. Static analysis for

independent app developers. In Proceedings of OOPSLA ’14,
2014.

[2] N. Tillmann, M. Moskal, J. de Halleux, and M. Fahndrich.
Touchdevelop: Programming cloud-connected mobile devices
via touchscreen. In Proceedings of SPLASH/Onward! ’11.


