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A B S T R A C T

Program analysis tools (such as static analyzers, SMT solvers, and program ver-
ifiers) are extremely important for ensuring the correctness of a large variety of
software systems. Very often, these tools are assumed to be sound (i.e., do not miss
errors) and complete (i.e., have a low rate of false positives), otherwise their results
are not reliable. However, these assumptions do not always hold in practice. Even
if their theoretical designs have been proven correct, the actual implementations
can still contain issues. We thus propose through this dissertation systematic tech-
niques for automatically identifying soundness and completeness errors in the
implementations of program analysis tools. Other types of bugs, such as perfor-
mance or convergence issues, can be also detected as by-products.

Our first contribution is a novel combination of automatic test case generation
approaches for identifying soundness, precision, and termination issues in the
implementations of numerical abstract domains, the main components of static
analyzers based on abstract interpretation. We show that our technique effectively
detects errors in widely-used libraries for numerical analyses, outperforming dy-
namic symbolic execution and grey-box fuzzing. Our work applies also to abstract
domains that rely on machine learning to improve the performance of the analysis.

Our second contribution is an automated approach for synthesizing SMT formu-
las that are satisfiable or unsatisfiable by construction. Together with the known
ground truth, these are used to test the implementations of SMT solvers. We gener-
ate satisfiable formulas together with models, and unsatisfiable formulas together
with unsat cores; being incrementally complex, they facilitate debugging and faster
error localization. We evaluated our work on three widely-used SMT solvers, Z3-
seq, Z3str3, and CVC4 and on the automata-based solver MT-ABC. Our experi-
mental results show that our approach effectively detects soundness, performance,
completeness, and precision problems. It is applicable also to MAX-SMT solvers.

Our third contribution is an automated technique that allows the developers to
detect completeness issues in SMT-based program verifiers and soundness errors
in their axiomatizations. Moreover, our approach helps them devise better trig-
gering strategies for all future runs of their tool with E-matching. We developed
a novel algorithm for synthesizing the triggering terms necessary to complete un-
satisfiability proofs using E-matching. We evaluated our work on benchmarks with
known triggering issues from four program verifiers. Our experiments show that it
successfully synthesized the missing triggering terms in the majority of the cases,
and can significantly reduce the human effort in localizing and fixing the errors.
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Z U S A M M E N FA S S U N G

Werkzeuge zur Programmanalyse (wie etwa Static Analyzer, SMT-Solver und Pro-
grammverifizierer) sind besonders wichtig, um die Korrektheit einer Vielzahl von
Softwaresystemen sicherzustellen. Sehr oft wird davon ausgegangen, dass diese
Tools korrekt sind (d.h. keine Fehler werden übersehen) und vollständig sind (d.h. ei-
ne geringe Anzahl falsch positiver Ergebnisse werden produziert). Ansonsten sind
die Ergebnisse nicht zuverlässig. Diese Annahmen sind jedoch in der Praxis nicht
immer erfüllt. Selbst wenn sich die theoretischen Grundlagen als richtig heraus-
stellen, können die tatsächlichen Implementationen immer noch Fehler enthalten.
Wir schlagen daher in dieser Dissertation systematische Techniken zur automati-
schen Identifizierung von Korrektheits- und Vollständigkeitsfehlern in den Imple-
mentationen von Programmanalysewerkzeugen vor. Andere Arten von Fehlern,
wie Leistungs- oder Konvergenzprobleme, können ebenfalls als Nebenprodukte
erkannt werden.

Unser erster Beitrag ist eine neuartige Kombination von Ansätzen zur automa-
tischen Testfallgenerierung zur Identifizierung von Korrektheits-, Präzisions- und
Terminierungsproblemen in den Implementationen von numerischen abstrakten
Domänen, den Hauptkomponenten von Static Analyzers, die auf abstrakter Inter-
pretation basieren. Wir zeigen, dass unsere Technik Fehler in weit verbreiteten Bi-
bliotheken für numerische Analysen effektiv erkennt und sowohl die dynamische
symbolische Ausführung als auch Grey-Box-Fuzzing übertrifft. Unsere Technik ist
auch auf abstrakte Domänen anwendbar, die maschinelles Lernen anwenden, um
die Performance der Analyse zu verbessern.

Unser zweiter Beitrag ist ein automatisierter Ansatz zur Synthese von SMT-
Formeln, die aufgrund ihrer Konstruktion erfüllbar oder unerfüllbar sind. Die
SMT-Formeln zusammen mit ihren bereits bekannten Grundwahrheiten werden
verwendet, um die Implementationen von SMT-Solvern zu testen. Wir generieren
erfüllbare Formeln zusammen mit ihren entsprechenden Modellen und unerfüll-
baren Formeln zusammen mit ihren unerfüllbaren Kernen; da sie inkrementell
komplex sind, erleichtern sie das Debuggen und ermöglichen eine schnellere Feh-
lerlokalisierung. Wir haben unsere Arbeit an drei weit verbreiteten SMT-Solvern,
Z3-seq, Z3str3 und CVC4, und am automatengestützt Solver MT-ABC evaluiert.
Unsere experimentellen Ergebnisse zeigen, dass unser Ansatz Probleme in Bezug
auf Korrektheit, Leistung, Vollständigkeit und Präzision effektiv erkennt. Er ist
auch auf MAX-SMT-Solvern anwendbar.

Unser dritter Beitrag ist eine automatisierte Technik, die es den Entwicklern er-
möglicht, Vollständigkeitsprobleme in SMT-basierten Programmverifizierern und
Korrektheitsfehler in ihren Axiomatisierungen zu erkennen. Darüber hinaus er-
möglicht unser Ansatz, bessere Trigger Strategien für alle zukünftigen Läufe des
Tools mit E-Matching herzuleiten. Wir haben einen neuartigen Algorithmus ent-
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wickelt, um Trigger Terme zu synthetisieren, die notwendig sind, um Unerfüll-
barkeitsbeweise unter Verwendung von E-Matching zu vervollständigen. Wir ha-
ben unsere Arbeit an Benchmarks mit bekannten Trigger Problemen von vier Pro-
grammverifizierern bewertet. Unsere Experimente zeigen, dass der Algorithmus
die fehlenden Trigger Terme in den meisten Fällen erfolgreich synthetisiert und
den menschlichen Aufwand zur Lokalisierung und Behebung der Fehler erheb-
lich reduzieren kann.
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1
I N T R O D U C T I O N

Static analyzers and SMT-based program verifiers are valuable tools for increasing
the reliability of a large variety of software systems. They can detect errors in early
stages of development, by statically analyzing the behavior of a program without
running it or by verifying if the program fulfills its formal specifications. For ex-
ample, the analyzers Astrée [30], Clousot [73], and SLAM [13] found actual bugs
in industrial code; the Dafny verifier [106] is used by Amazon Web Services [2] for
proving the correctness of security-critical libraries and the Corral verifier [101] is
the main verification engine of the Static Driver Verifier from Microsoft [100].

Numerous static analyzers and SMT-based program verifiers (collectively called
program analysis tools in this dissertation) have been already built or synthesized,
for different programming languages [3, 7, 13, 15, 30, 45, 66, 73, 91, 101, 106, 163].
These tools are very powerful, but also very complex pieces of software. To provide
reliable results, it is thus crucial for them to be correct. Even if certain theoretical
properties of their design have been formally proved, significantly fewer techniques
are available for checking the correctness of their actual implementation.

There are very few formally verified analyzers or verifiers. Verasco [93] (a static
analyzer based on abstract interpretation [51]) is an exception, as its soundness has
been proved in Coq [133]. However, it required a significant proof effort (≈34 000

lines), which "involve[d] large case analyses and difficult proofs over integer and
F.P. arithmetic" [93]. Verasco’s example shows that it is very hard to apply formal
methods to program analysis tools [4, 40]. Other techniques are thus necessary.

Our goal. This dissertation aims to fill this gap, by developing systematic approaches
for identifying errors in the implementation of program analysis tools. We also include
here SMT solvers, as they are used not only by SMT-based program verifiers, but
also by techniques for program synthesis, symbolic execution, and concolic testing.

When checking the correctness, we consider two main properties: soundness, i.e.,
the tools should not miss errors (or for SMT solvers, if there exists a model for an
input formula, they should classify it as satisfiable, otherwise they should report it
is unsatisfiable), and completeness, i.e., they should have a small false positives rate.
In the context of static analyzers, completeness is often also called precision. Perfor-
mance and termination (convergence) issues can be also detected as by-products.

1.1 state-of-the-art

Various approaches have been proposed in the literature for identifying errors
in software systems or for automatic test case generation; some target particular
types of program analysis tools. In the following, we discuss them in more detail.
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2 introduction

Random testing. The simplest way of testing static analyzers is with randomly
generated programs [56]. This approach was used to find errors in Frama-C [95]
with programs randomly generated by Csmith [184]. However, since it is a black-
box testing technique, it does not take into account the actual implementation of
the static analyzer. Thus, it cannot guarantee a high coverage and its effectiveness
depends on the ability to randomly generate programs that exercise the execution
paths that are more error-prone. Moreover, this approach can produce inputs that
cause the analyzer to crash, but it cannot be applied for identifying specific classes
of errors, such as soundness or precision bugs, as it does not have a test oracle.

Systematically checking lattice properties. Midtgaard and Møller’s work [120] im-
proves over random testing by providing a systematic way of quickchecking [49]
algebraic properties (e.g., reflexivity, associativity, commutativity, absorption, etc.).
This approach was designed for static analyzers that use functions operating over
lattices. Its main drawback is that it relies on generators for producing the inputs.
For properties based on exhaustive checks (such as the bottom element of the
lattice is the greatest lower bound of all the elements) this idea cannot be practi-
cally applied. As the authors acknowledge [120], even for simple abstract domains
like Intervals [53], this test would require generating all the pairs of, e.g., 32-bit
integers, which is not feasible. The same limitations apply to other precision tests.

Differential testing. Other classes of techniques were inspired from compiler test-
ing. Differential fuzzing (cross-checking) [40] is an approach that addresses the
oracle problem by comparing the output of two different analyzers, SMT solvers,
or program verifiers, for the same input. Any difference in the results signals an er-
ror, but requires manual inspection to detect which of the two implementations is
at fault. Moreover, this approach assumes that there are at least two analysis tools
available and that their outputs are comparable, which is often not the case [40].

Equivalence Modulo Inputs (EMI) [103] provides a solution to this problem.
Instead of validating two program analysis tools against each other, EMI’s core
idea is to perform semantically preserving transformations on the input program.
These transformations can be: removing code that is never executed, inserting
additional instructions with no side effects, or modifying the program such that
the newly created one is equivalent, with respect to a given input, to the original. If
the tool returns different results for the two programs, then it contains a bug. This
technique was originally designed for validating compilers [103], but it was also
successfully applied for checking the correctness of learned static analyzers [26].

A slightly different approach, also designed for compilers, is skeletal program
enumeration [193]; it exhaustively generates all the programs (up to a fixed size)
that can be obtained from a given syntactic skeleton by enumerating all the pos-
sible variable usage patterns. This technique can be automatically applied only
for finding compiler crashes, because without manual effort, it cannot be deter-
mined which is the expected compiled code for each enumerated program. The
approach was recently adapted for testing SMT solvers [186], using metamorphic
relations [164] as the test oracle. However, this work (like many others in this
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area [6, 34, 35, 126] or for testing static analyzers [4]) require delta debugging [189]
to minimize the inputs that exposed the issues and to facilitate error localization.

(Dynamic) symbolic execution (DSE). A large palette of approaches also covers
the area of automatic test case generation. As opposed to random testing, sym-
bolic execution engines use the structure of the tool under test to generate the test
cases. The programs are evaluated with symbolic variables that abstract classes of
inputs. When a conditional expression is encountered, the execution conceptually
forks, since without concrete values, both branches can be equiprobably explored.
A boolean formula is then constructed for each execution path, cumulating the
corresponding constraints over the symbolic variables. An SMT solver is used to
check the satisfiability of the formula and to generate, if they exists, concrete in-
stantiations of the symbolic variables, which represent the test cases.

One of the disadvantages of symbolic execution is that it tries to explore all the
possible paths, which is not always feasible in practice. If the programs contain
loops that depend on symbolic variables, the number of branches is potentially
infinite [12]. Moreover, SMT solvers are incomplete, thus they cannot provide an-
swers for all the formulas. For example, some SMT solvers cannot handle floating
point arithmetic. Different solutions have been proposed for those cases, such as
unconstrained mathematical optimization (implemented in XSat [76]) or Darulova
and Kuncak’s technique for the sound compilation of reals [60].

Other ways of handling the limitations of random testing and symbolic execu-
tion are provided by white-box fuzzing [81] (also called coverage-guided fuzzing)
and DSE. These techniques combine symbolic and concrete executions; therefore,
they have access to concrete values even when the SMT solver cannot produce
them. Furthermore, they drive the execution towards unexplored paths, by negat-
ing terms of the previous path constraint, increasing the coverage, and avoiding
the generation of redundant inputs. Numerous DSE tools are currently available,
for different programming languages: KLEE [41], DART [80], CUTE [143] for C
(LLVM [102]), PEX [173] for C#, jCUTE [142] and Java PathFinder [178] for Java,
are just a few examples. A complete list can be found in [12]. To the best of our
knowledge, though, (D)SE has not been directly applied to analyzers or verifiers.

Despite its aforementioned advantages, DSE also has its own limitations. A ma-
jor problem in practice is that it cannot handle calls to external libraries when the
parameters are symbolic variables. In those cases DSE applies concretization, i.e.,
it replaces the symbolic variables with concrete values, obtained by solving the
current path constraint. Due to this simplification, DSE loses completeness, leav-
ing some execution paths unexplored [43]. Synthesizing framework models that
can be symbolically executed [92] could be an alternative to concretizing, but this
approach is currently available only for subsets of Swing and Android.

Specification-based testing. Other techniques use formal specifications for auto-
matic test case generation. Korat [33], for example, is a framework for testing Java
applications, which derives the input data from the method’s precondition (ex-
pressed in JML [105]) and uses the postcondition as the test oracle. Nevertheless,
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this approach can be applied only when method contracts and class invariants are
provided for the entire source code, which rarely happens in practice for complex
software, such as static analyzers, SMT solvers, or program verifiers.

1.2 challenges

Designing techniques for identifying errors in program analysis tools is not trivial.
Testing software developed for ensuring the correctness of other pieces of software
is different than searching for issues in regular programs. All the approaches pre-
sented in Section 1.1 have their own advantages, but they have also limitations. In
this dissertation, we aim to create new techniques, to redesign, or to combine the
existing ones for reliably finding soundness and completeness errors in the imple-
mentations of different types of program analysis tools. To achieve our goal, we
have to overcome multiple, interconnected challenges, derived from open research
problems. We discuss them next, together with possible solutions.

Input data. An essential part of any automated testing approach consists in gener-
ating the input data. While static analyzers and program verifiers accept programs
as inputs, these may not provide the optimal level of granularity for soundness and
completeness testing and for fast error localization (as we have seen for random
testing [56] in Section 1.1). The alternative to considering the static analyzer or the
program verifier as a whole is to generate inputs only for those critical components
that are more error-prone (e.g., for the abstract domains, as in [120]). Moreover, to
overcome the limitations of approaches like [120], our scope is to construct repre-
sentative, increasingly complex, and diverse inputs automatically, without relying
on user-provided generators.

Test oracles. As we have explained in Section 1.1, many of the existing techniques
do not have a test oracle, thus they cannot be used for automatically finding sound-
ness bugs, without additional manual effort. To address the limitations of, e.g.,
differential testing [40], another expected property of our work is to identify bugs
without having a reference implementation of the tool under test. This constraint
is often found in practice, as there might not exist alternative, trusted implemen-
tations. It is thus important that we construct test oracles that provide guarantees
about the type of the revealed errors (unsoundness, incompleteness, etc.).

Easy error reporting. The goal of testing is to increase the reliability of a system.
The bugs found by our approach should thus be easy to understand, reproduce,
and report. Various state-of-the-art techniques (see Section 1.1) rely on external
tools for minimizing the failed test cases. However, while these produce syntac-
tically small inputs, they might not always represent the simplest, most intuitive
counterexamples developers would write manually. We thus aim to construct in-
creasingly complex inputs, such that the issues are exposed by simple ones, avoid-
ing minimization and duplicated bug reports (i.e., with the same root cause).
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Figure 1.1: High level overview of our work from Chapter 2, which checks if the imple-
mentation of numerical abstract domains fulfills the theoretical guarantees.

Relevance. A related aspect is relevance, which influences the response of the
developers to the reported issues. The errors identified by our technique should
be relevant for the developers of the program analysis tools (i.e., should represent
bugs they will consider fixing), but also for their users (i.e., should occur in realistic
usage scenarios, and not be caused, e.g., by experimental combinations of options).

Fast error localization. Our work should help the developers identify the root
cause of the errors. This can be achieved by generating minimal test cases.

Usability. To facilitate their adoption in practice, our tools should be easy to use
and integrate into the development process.

Applicability. Our approach is also expected to generalize to other use cases, be-
sides the ones it was designed for. A technique for testing SMT solvers, for exam-
ple, should be also applicable to other provers that accept SMT-LIB [18] inputs.

1.3 this dissertation

In the following, we briefly introduce the three techniques we developed for identi-
fying soundness and completeness errors in program analysis tools; these address
the challenges from Section 1.2. The details are explained in Chapter 2, Chapter 3,
and Chapter 4. Chapter 5 presents possible future research directions.

Our techniques. Figure 1.1 gives a high level overview of our approach for testing
static analyzers based on abstract interpretation (Chapter 2). Our work checks if
the actual implementations of numerical domains (the main components of static
numerical analyses) fulfill their theoretical guarantees, i.e., are sound, precise, and
eventually converge (reach a fixed point). For this, we derived 46 general proper-
ties that they should satisfy and used them as the test oracles. We also developed
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Figure 1.2: High level overview of our work from Chapter 3, which synthesizes increas-
ingly complex formulas with known ground truth for testing SMT solvers.

a novel algorithm for constructing the input data, by applying a sequence of do-
main operations. Our experiments show that our work can find bugs in widely-
used numerical domains, outperforming fuzzing and DSE. Our technique is also
applicable to more complex domains, which use machine learning algorithms to
improve the performance of the analysis.

Figure 1.2 depicts our approach for synthesizing SMT formulas that are satisfi-
able or unsatisfiable by construction; these can be used for testing SMT, as well
as automata-based solvers (Chapter 3). We also generate models or minimal un-
sat cores and consider them as additional oracles. We start with simple formulas
and then derive more complex ones, by applying a set of satisfiability-preserving
transformations that we defined. In this way, most of the bugs are exposed by sim-
ple inputs, which facilitates debugging and error localization. All our generated
benchmarks are publicly available [129]. As the experiments show, our technique
can find soundness and completeness errors in state-of-the-art solvers, which can-
not be identified by the closest-related fuzzing work. Our approach can be also
applied for testing MAX-SMT solvers, by encoding the transformations as hard or
soft constraints, with predefined weights.

Figure 1.3 presents our approach for enabling the developers of SMT-based pro-
gram verifiers identify and fix incompleteness errors in their implementation and
unsoundness in their axiomatizations (Chapter 4). Both problems occur when E-
matching [63] (the prevalent SMT algorithm for verification benchmarks) cannot
complete an unsatisfiability proof due to missing quantifier instantiations (caused
by overly restrictive patterns). We, therefore, propose a novel algorithm that aug-
ments E-matching and synthesizes the triggering terms required to perform the
missing instantiations. Our experimental results show that our work is effective on
inputs produced by a diverse set of mature program verifiers. We also present an
alternative approach for extracting the same information from refutation proofs.
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Figure 1.3: High level overview of our work from Chapter 4, which synthesizes the trig-
gering terms necessary for E-matching to complete unsatisfiability proofs.

Contributions. The main contributions of this dissertation are summarized below:

• Chapter 2: presents our novel combination of automatic test case generation
techniques for identifying soundness, precision, and termination issues in
the implementations of abstract domains. We demonstrate that our approach
effectively detects both seeded and real errors in widely-used libraries for
numerical analyses, outperforming DSE and grey-box fuzzing.

• Chapter 3: describes our automated approach for synthesizing SMT formu-
las for the string theory, which are satisfiable or unsatisfiable by construction.
Together with the known ground truth, these formulas are used to automat-
ically test the implementations of SMT solvers. Our technique generates sat-
isfiable formulas together with models, and unsatisfiable formulas together
with unsat cores; being incrementally complex, they facilitate debugging and
faster error localization. We implemented our technique and evaluated it on
three widely-used SMT solvers, Z3-seq [28, 187], Z3str3 [21], and CVC4 [112]
and on the automata-based solver MT-ABC [9]. Our experimental results
show that our approach effectively detects soundness problems and outper-
forms the closest fuzzing technique for string solvers in doing so. Our work
can also reveal other types of errors, such as performance, completeness, or
precision issues. Moreover, it generalizes to other theories and their combi-
nations and is applicable also to MAX-SMT solvers.

• Chapter 4: introduces the first automated technique that allows the develop-
ers detect completeness issues in program verifiers and soundness problems
in their axiomatizations. Moreover, our approach helps them devise better
triggering strategies for all future runs of their tool with E-matching. We de-
veloped a novel algorithm for synthesizing the triggering terms necessary
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to complete unsatisfiability proofs using E-matching. Since quantifier instan-
tiation is undecidable for first-order formulas over uninterpreted functions,
our algorithm might not terminate. However, all identified triggering terms
are indeed sufficient to refute the formulas, i.e., there are no false positives.
We evaluated our technique on benchmarks with known triggering problems
from four program verifiers. Our experimental results show that it success-
fully synthesized the missing triggering terms in 65.6% of the cases, and can
significantly reduce the human effort in localizing and fixing the errors.

Chapter 2 is mainly based on our ASE’18 paper [39]. The technique from Chap-
ter 3 was introduced in our ICSE’20 paper [37], while the extensions were partly
explored in the context of student projects [20, 99, 172]. Chapter 4 presents the
algorithm from our FM’21 paper [38], as well as additional examples and opti-
mizations from its extended version [36]; the alternative approach for constructing
triggering terms from unsatisfiability proofs builds on a student project [157].



2
I D E N T I F Y I N G S O U N D N E S S A N D P R E C I S I O N E R R O R S I N
N U M E R I C A L A B S T R A C T D O M A I N S

In this chapter, we present our technique for automatically testing the implemen-
tations of numerical abstract domains, which are the main components of state-of-
the-art static analyses. We also show how our approach can be applied for testing
domains that use machine learning for achieving better performance.

2.1 introduction

Static program analyses compute semantic properties of programs, which are the
basis for optimizations and for identifying errors and security vulnerabilities. Since
most program properties are undecidable, static analyses approximate the set of
possible behaviors. For their results to be reliable and useful in practice, the analy-
ses should be sound and precise. A sound analysis considers each possible program
behavior; to capture them, it computes an over-approximation of all possible be-
haviors. A sound analysis should therefore not produce false negatives. A precise
analysis should compute a tight over-approximation, to minimize false positives.

Many static analyses are based on the abstract interpretation framework [51],
in which the program state is represented by elements of abstract domains. For
instance, numerical abstract domains can track intervals of possible values for
numerical variables or constraints between them. The semantics of program oper-
ations is represented by abstract transformers, which specify the effect of an oper-
ation on the abstract state. Even though it is possible to prove properties of the
design of a static analysis, ensuring soundness and precision for its implementation
is challenging. This is even harder for implementations of abstract domains, which
are often complex and highly optimized, to maximize performance and scalabil-
ity [148]. Errors in these implementations likely affect the usefulness of all static
analyzers that build on them, thus it is extremely important to detect them reliably.

Let us consider a static analysis that abstracts numerical variables as intervals
of possible values. The abstract value [0, 5] for an integer variable x expresses
that, in each program execution, the concrete (actual) value of x satisfies the con-
straint 0 ≤ x ≤ 5. Figure 2.1 illustrates a potential unsoundness due to arithmetic
overflow. Without prior knowledge about the parameter p and assuming that the
abstract domain is implemented using bounded integers, the abstract value of
p is [INT_MIN, INT_MAX]; thus the abstract value of a after the assignment is
[INT_MIN + 1, INT_MAX + 1]. A naive implementation of the addition operator
may lead to overflow and produce [INT_MIN + 1, INT_MIN]. This empty interval
indicates that the code after the assignment is unreachable, which is unsound. The
unsoundness might mask errors and security vulnerabilities in subsequent code.

9
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void foo(int p) {
int a := p + 1; // p -> [INT_MIN, INT_MAX]
... // a -> [INT_MIN + 1, INT_MAX + 1] = [INT_MIN + 1, INT_MIN]

}

Figure 2.1: Potential unsoundness due to overflow. The abstract state, captured by the In-
tervals domain implemented with bounded integers, is shown as comments.

This work. In this chapter, we present an automatic testing technique for identi-
fying soundness errors (like the one in Figure 2.1), as well as precision and termina-
tion issues in widely-used implementations of abstract domains. We generate test
inputs using a novel combination of existing ideas: starting from a set of prede-
fined values, we apply abstract-domain operations to create representative domain
elements, and vary the operations by employing an off-the-shelf grey-box fuzzer,
such as AFL [166] or LibFuzzer [113], to maximize the coverage of the tested imple-
mentation. As in earlier work by Midtgaard and Møller [120], we use mathematical
properties of abstract domains as test oracles. However, we target real-world imple-
mentations of complex abstract domains (e.g., APRON’s Octagons domain [121]
and ELINA’s Polyhedra domain [148]), and extend the set of tested properties by
including more precision properties and by approximating termination properties.

Our evaluation on several abstract domains of the APRON [90] and ELINA [148]
libraries shows that our combination of techniques effectively detects soundness
and precision problems in complex, mature implementations. In particular, we
show that it is more effective than purely relying on existing test case generation
techniques, such as grey-box fuzzing and dynamic symbolic execution (DSE), also
known as concolic testing [42, 80].

Contributions. This chapter makes the following contributions:

• We present a novel combination of automatic test case generation techniques
to detect soundness, precision, and termination issues in implementations of
abstract domains.

• We demonstrate that our approach effectively finds both seeded and real
errors in widely-used implementations of numerical abstract domains.

• We show that our technique tests abstract domains more effectively than
standard DSE or grey-box fuzzing approaches.

Our work can help the developers of abstract domains ensure their implementa-
tions are sound and precise. It is also useful for the developers of static analyzers
to assess the quality of existing libraries. Even if the design of an abstract domain
intentionally sacrifices soundness in favor of other qualities [46, 114], it is impor-
tant to detect unintentional unsoundness due to implementation errors.

Outline. The rest of this chapter is structured as follows: Section 2.2 summarizes
background information on abstract domains. Section 2.3 gives an overview of our
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approach and Section 2.4 explains the technical details. In Section 2.5, we present
our experimental evaluation on widely-used implementations of abstract domains.
We illustrate how our technique generalizes to domains that combine abstract in-
terpretation with machine learning in Section 2.6 and present its limitations in
Section 2.7. We discuss related work in Section 2.8 and conclude in Section 2.9.

2.2 background : abstract domains

Abstract interpretation [51] is a theoretical framework for expressing static analy-
ses, used by various industrial analyzers (e.g., Astrée [30], Clousot [73]). It relies
on abstract domains to represent abstractions of concrete program states, and on
abstract transformers to model the behavior of program instructions, such as assign-
ments and conditionals. Abstract domains are often reused across different pro-
gram analyses. Most static analyzers employ numerical domains, which are the
focus of this work. Widely-used numerical domains include Intervals [53], which
capture the range of values for each variable, Octagons [121], which can also ex-
press simple relations between two variables, Polyhedra [55], which can capture
linear inequalities between arbitrarily many variables, and Zonotopes [82], which
express affine relations.

Most abstract domains are represented by complete lattices of the form (Ā, v,
⊥, >, t, u). Ā denotes the set of abstract elements x̄, which are partially ordered
by inclusion v. Each abstract element represents a set of constraints, i.e., mathemat-
ical relations between variables and constants. The bottom element ⊥ is the least
element of the lattice; it represents the empty set of concrete states and corresponds
to an unsatisfiable set of constraints. The top element > is the greatest element of
the lattice and represents the universal set of concrete states; that is, all the vari-
ables are unconstrained. t and u are the join and meet operators, which are used
to compute the union, respectively the intersection, of two abstract elements. Addi-
tionally, an abstract domain whose lattice has an infinite height requires a widening
operator (∇) to ensure that the analysis eventually reaches a fixed point. Some do-
mains (such as Intervals and Octagons) also support a narrowing operator (4),
which can improve the precision of the analysis [52].

Abstract transformers are typically specific to a given analysis and programming
language, but some of them are universal building blocks for many analyses. These
include assign to represent an assignment, cond to assume that a condition holds,
and project to remove any previous information about a variable (e.g., when a new
value is read from a file). Our work focuses on these three transformers as they
are the most complex to implement [147] (and thus the most error-prone).

2.3 overview

Since implementations of abstract domains are often used as libraries by different
program analyses, we apply a unit testing approach. Compared to system testing,
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Figure 2.2: Left: The main components of our technique, represented as white boxes. The
blue boxes illustrate different types of input data, the arrows depict actions.
Those actions marked with dashed lines are performed by the fuzzer. Right:
Structure of the fuzzing data, represented as an array of integers consisting
of: indexes for domain operations (idx do), indexes in the pool of domain
elements/expressions, or in the list of variables for their arguments (idx arg).

unit testing allows us to specify generic test oracles, which are independent of
a specific abstract domain or static analysis. Moreover, it facilitates the construction
of test data because abstract-domain elements can be generated much easier than
input programs for the whole analyzer [120]. In this section, we give an overview
of the three main ingredients of our automatic unit testing approach: test oracles
(Section 2.3.1), input data generation (Section 2.3.2), and test drivers (Section 2.3.3).
They are depicted in Figure 2.2 (left). The details follow in Section 2.4.

As opposed to a related work that requires the users to provide complex genera-
tors for the abstract-domain elements [120], we use a grey-box fuzzer to construct
the input data and to choose the parameters for the property under test (see the
dashed lines in Figure 2.2). Such fuzzers use a lightweight code instrumentation,
which enables us to generate inputs that are likely to execute previously-uncovered
code. All the fuzzing data (i.e., the values created by the fuzzer) can be encoded
into one array of integers, which has the structure shown in Figure 2.2 (right).

2.3.1 Test oracles

The abstract interpretation framework prescribes a number of properties of the
domain operators and abstract transformers (collectively referred to as domain op-
erations in the rest of this chapter), which are required for soundness. For instance,
if the abstract element x (capturing the pre-state of an assignment) is reachable
(that is, different from bottom), the post-state of the assignment v := e should also
be non-bottom for all program variables v and well-formed expressions e:

x 6=⊥ ⇒ assign(x, v, e) 6=⊥ (2.1)
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We use these general soundness conditions as test oracles. We also identify sev-
eral general precision conditions, whose violation indicates that the result of a do-
main operation is over-approximated more than necessary. For this purpose, we
compare the result of a domain operation to the best transformer, that is, the most
precise result representable in a given abstract domain. For instance, the result of
intersecting top with an abstract element should be equal to the element itself:

>u x = x (2.2)

Moreover, we check that widening and narrowing converge within a given num-
ber of iterations, which ensures the termination of any fixed-point computation in
which they are used.

Note that all the properties considered in this chapter are defined under the
assumption that the analyzed programs do not raise exceptions, otherwise the
behavior of the static analyzer depends on the semantics of the programming lan-
guage. In C, for example, division by zero causes undefined behavior. When clas-
sifying the properties into soundness and precision (as described in Section 2.4),
we assume that the abstract domain does not model error states.

2.3.2 Input data

Abstract domains often use sophisticated data structures to optimize performance.
For example, the elements of the Polyhedra domain are typically represented us-
ing both matrices and vectors of floating-point numbers. In our experiments, we
observed that the standard test case generation techniques do not work well for
complex abstract domains. In particular, fuzzing failed to detect subtle interac-
tions between domain operations, and DSE did not effectively explore real-world
implementations that make heavy use of floating-point arithmetic and libraries.
We thus use a combination of test case generation techniques to create a pool
of domain elements, which serve as test inputs to domain operations. The pool
is constructed in two steps, presented in pseudo-code in Algorithm 2.1. The pa-
rameter fuzzingData represents the array of indexes provided by the fuzzer (see
Figure 2.2, right). The other parameters are explained in the following paragraphs.

Step 1: Initialize the pool. We first create an initial pool of a configurable size
(parameter size in Algorithm 2.1), by combining boundary and random test-
ing (Algorithm 2.1, line 2). Each element of a numerical domain can be con-
structed from numerical constraints; e.g., an element of the Intervals domain,
which maps program variables vi to their possible values, is created from the con-
straint kl ≤ vi ≤ ku (the constants kl and ku are the lower and upper bounds). We
generate the constants randomly or choose them from a predefined set of bound-
ary values that are more likely to expose bugs, such as off-by-one errors and arith-
metic overflows. The parameter predefined in Algorithm 2.1 controls which of
these two alternatives is used. For example, if the Intervals domain is implemented
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Algorithm 2.1: Our algorithm for constructing the pool of abstract elements
and the well-formed expressions.
Arguments : size — initial pool size

predefined — whether to use predefined values or not
nbops — number of operations used to increase the initial pool
ops — domain operations
vars — program variables
fuzzingData — indexes provided by the fuzzer

Result: The pool of domain elements and the pool of expressions
1 Procedure constructPool
2 pool←− initialize(size, predefined) // step 1

3 exprs←− generate(vars, predefined)
4 foreach i ∈ {0, nbops− 1} do // step 2

5 op←− ops[nextIndex(fuzzingData)]
6 x ←− pool[nextIndex(fuzzingData)]
7 if op ∈ {t, u, ∇} then
8 y←− pool[nextIndex(fuzzingData)]
9 res←− x op y

10 else if op = assign then
11 v←− vars[nextIndex(fuzzingData)]
12 e←− exprs[nextIndex(fuzzingData)]
13 res←− assign(x, v, e)
14 else if op = project then
15 v←− vars[nextIndex(fuzzingData)]
16 res←− project(x, v)
17 pool←− pool ∪ {res}
18 return (pool, exprs)

using machine integers, the boundary values are {INT_MIN, 0, INT_MAX}. The
initial pool also contains the extreme elements > and ⊥.

Besides domain elements, some transformers (e.g., assign) also require well-
formed expressions. We thus also generate a pool of expressions, which are linear
sums over program variables (parameter vars in Algorithm 2.1); we choose their
coefficients randomly or from a set of boundary values (Algorithm 2.1, line 3).

Selecting inputs from the initial pool (together with a suitable expression e) as ar-
guments to the assign transformer will likely detect the possible unsoundness illus-
trated in Figure 2.1. The pool is likely to contain an element mapping the variable
p to [INT_MIN, INT_MAX], as INT_MIN and INT_MAX are predefined boundary
values; moreover, we are likely to obtain an expression e of the from p+k for some
positive constant k (see Section 2.4 for details). Evaluating the assign transformer
on these inputs violates the soundness property (2.1) from Section 2.3.1.
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The initial pool allows us to test individual domain operations. However, this ap-
proach is insufficient in two situations. First, some implementations rely on com-
plex consistency conditions on their data structures. For Polyhedra, for instance,
the two internal representations must be kept consistent. If a faulty operation vio-
lates this invariant, the effect can be often observed only when applying a subse-
quent operation; it is thus necessary to perform at least two consecutive operations
to detect the bug. Second, there are certain soundness or precision properties of
individual operations that cannot be checked by generic, domain-independent or-
acles. For example, the assign transformer for Octagons should, in some cases,
apply a so-called closure operation; failing to do so or using an imprecise clo-
sure may lead to loss of precision in subsequent operations, such as inclusion or
equality tests [121]. A test oracle that directly detects a missing closure would be
specific to Octagons and, thus, not reusable. A more generic way to detect this
problem is by intersecting the result of the assign transformer with top. The ex-
pected output of the intersection is the same as the result of the assign transformer
itself. However, if the transformer does not apply the closure when expected, the
domain-independent property (2.2) from Section 2.3.1 may fail due to imprecision.

Step 2: Increase the pool. The above situations can both be addressed by executing
at least two consecutive domain operations before checking the oracle. Therefore,
step 2 of our input generation technique (Algorithm 2.1, lines 4–17) expands the
pool of domain elements by iteratively applying a domain operation (from the list
of supported operations ops) to existing elements (and possibly program variables
and expressions — as in Algorithm 2.1, lines 11–12 and 15) and adding the result to
the pool (Algorithm 2.1, line 17). The fuzzer controls which elements, expressions,
and variables should be used in this step, through the parameter fuzzingData (see
Figure 2.2, right). The procedure nextIndex returns the following index provided
by the fuzzer. By repeating this process a configurable number of times (parameter
nbops in Algorithm 2.1), we increase the likelihood of constructing elements that
need to be built incrementally with several domain operations. We are thus more
likely to detect bugs that manifest themselves only in consecutive operations.

2.3.3 Test drivers

For each property under test, we manually write a test driver. Algorithm 2.2 shows
our test driver for checking the soundness property (2.1) for the assign transformer.
It takes as arguments the pool of abstract elements (pool) and the pool of ex-
pressions (exprs), which were constructed according to Algorithm 2.1, a list of
program variables (vars), and three indexes encoded into the fuzzingData. The
driver first obtains the domain element, the variable, and the expression corre-
sponding to the indexes (Algorithm 2.2, lines 2–4), then it applies the transformer,
i.e., it executes its implementation from the tested numerical library (Algorithm 2.2,
line 5). Finally, it asserts the property (2.1) on the result (Algorithm 2.2, line 6).
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Algorithm 2.2: Our test driver for checking the soundness property (2.1) of the
assignment transformer.
Arguments : pool — pool of domain elements

exprs — pool of expressions
vars — program variables
fuzzingData — indexes provided by the fuzzer

1 Procedure testAssign
2 x ←− pool[nextIndex(fuzzingData)]
3 v←− vars[nextIndex(fuzzingData)]
4 e←− exprs[nextIndex(fuzzingData)]
5 res←− assign(x, v, e) // execute assign transformer

6 assert(x 6= ⊥ ⇒ res 6= ⊥) // check property (2.1)

2.4 testing numerical domains

In this section, we provide the technical details of our approach for testing imple-
mentations of numerical domains.

2.4.1 Test oracles

Our test oracles are based on domain-independent mathematical properties of
abstract operations. In the following, we give an overview of these properties and
explain how they are checked by the test drivers.

Properties. Based on the abstract interpretation literature [51, 54] and earlier work
on testing static analyzers [120], we identified 46 properties (Figure 2.3) that need
to be satisfied by domain operations to ensure soundness, precision, and termination.

The soundness properties (marked with [S] in Figure 2.3) are required to ensure
that an abstract-domain element over-approximates the concrete states it repre-
sents. We have discussed an example in Section 2.3.1 (property (2.1), i.e., 35).

To deal with the undecidability of most semantic program properties, static anal-
yses over-approximate the set of concrete program behaviors and then infer or
check properties on this abstraction. Since they are intended to compute an ap-
proximation, one cannot expect the operations of an abstract domain to be precise
w.r.t. the concrete program execution. Therefore, our precision properties (marked
with [P] in Figure 2.3) check that the domain operations do not lead to unneces-
sary information loss, that is, they compare the result of an operation to the most
precise representable result as obtained by applying the best transformer (see Sec-
tion 2.3). For instance, computing the join of the intervals [1, 1] and [3, 3] yields
[1, 3], which loses the information that the variable is different from 2. Despite this
inevitable information loss, a join operator should satisfy a number of precision
properties (6, 10–13, 15); for example, property 13 prevents the join of [1, 1] and
[1, 3] from returning [0, 4] or >, which is sound, but unnecessarily imprecise.
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Partial order Join/Meet bounds

1 ⊥ v x [P] 27 ∀b : (x v b) ∧ (y v b)⇒ (x t y v b) [P]

2 x v > [P] 28 ∀b : (b v x) ∧ (b v y)⇒ (b v x u y) [P]

3 x v x [P]

4 x v y ∧ y v z⇒ x v z [P] Widening

5 x v y ∧ y v x ⇒ x = y [P] 29 x v x∇ y [S]

30 y v x∇ y [S]

Join 31 x∇⊥ = x [P]

6 ⊥t x = x [P] 32 ⊥∇ x = x [P]

7 >t x = > [S] 33 ∇ converges [C]

8 x v x t y [S]

9 y v x t y [S] Assignment

10 x t y = y t x [P] 34 x v y⇒ assign(x, v, e) v assign(y, v, e) [P]

11 (x t y) t z = x t (y t z) [P] 35 x 6=⊥⇒ assign(x, v, e) 6=⊥ [S]

12 x t x = x [P] 36 x =⊥⇒ assign(x, v, e) =⊥ [P]

13 x v y⇒ x t y = y [P] 37 rep(e, x)⇒ assign(x, v, e) 6= > [P]

14 x t y = y⇒ x v y [S]

15 x t (x u y) = x [P] Projection

38 assign(x, v, e) v project(x, v) [P]

Meet

16 ⊥u x = ⊥ [P] Conditional

17 >u x = x [P] 39 x v y⇒ cond(x, e) v cond(y, e) [P]

18 x u y v x [P] 40 x =⊥⇒ cond(x, e) =⊥ [P]

19 x u y v y [P] 41 cond(x, e) v x [P]

20 x u y = y u x [P]

21 (x u y) u z = x u (y u z) [P] Narrowing

22 x u x = x [P] 42 x u y v x4 y [P]

23 x v y⇒ x u y = x [P] 43 x4 y v x [P]

24 x u y = x ⇒ x v y [P] 44 x4⊥ = ⊥ [P]

25 x u (x t y) = x [P] 45 ⊥4 x = ⊥ [P]

26 disj(x, y)⇒ x u y = ⊥ [P] 46 4 converges [C]

Figure 2.3: Algebraic properties of abstract domain operations. We classify them into
soundness [S], precision [P], or convergence [C]. Note that all free variables
are implicitly universally quantified and all variables refer to abstract-domain
elements except for v and e, which refer to a program variable and an expres-
sion, respectively. The predicate disj(x, y) denotes that the intersection of the
set of constraints from x and y is trivially empty, and the predicate rep(e, x)
expresses that e can be precisely represented in the abstract domain of x.

The convergence properties (33 and 46, marked with [C] in Figure 2.3) require
widening and narrowing to eventually reach a fixed point, which is necessary to
ensure that the static analysis of loops and recursion terminates. Since convergence
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Algorithm 2.3: Our test driver for checking whether the Octagons widening
reaches a fixed point within k steps.
Arguments : pool — pool of domain elements

k — maximum number of steps
fuzzingData — indexes provided by the fuzzer

1 Procedure testOctagonsWidening
2 i←− 0
3 x ←− pool[nextIndex(fuzzingData)]
4 while true do
5 i←− i + 1
6 y←− pool[nextIndex(fuzzingData)]
7 res←− x∇ y
8 if res = x then
9 break // a fixed point is reached

10 x ←− res
11 assert(i < k)

is a termination property, which cannot be tested, we instead check the stronger
property that a fixed point is reached within a given number of iterations, as we
explain later in this section.

The soundness and convergence properties need to hold for all abstract domains;
some precision properties may not hold when the best transformers do not exist
or cannot be computed [135]. For instance, domains based on incomplete lattices
(such as Zonotopes) do not have a least upper bound for every pair of abstract
elements. This can force t to return a larger upper bound and, thus, violate prop-
erty 27. For such domains, we require the developers to select the subset of preci-
sion properties that should be checked.

Executable oracles. We manually construct a test driver for every property in Fig-
ure 2.3. This driver selects suitable inputs for each of the free variables of the tested
property, evaluates it, and checks that it holds. For property 3, it selects a domain
element x from the pool and checks that v yields true when applied to x and x.

Translating properties into executable oracles is straightforward for most sound-
ness and precision properties, but slightly more involved for convergence prop-
erties. Algorithm 2.3 shows our test driver for checking whether the Octagons
widening converges after k iterations [121]. The driver computes an increasing
chain of abstract elements x (as checked by property 29), each obtained by widen-
ing the previous abstract element with an arbitrary abstract element y. Widening
converges if the x-chain becomes stable, here, within k steps. We observed that
k = 100 is a sufficient upper bound for all our tested analyzers because widening
converges much faster in practice. Note that, for most abstract domains (such as In-
tervals, Octagons, etc.), widening can be applied to arbitrary elements. There are,
however, some exceptions; for instance, the Polyhedra widening requires mono-
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tonicity of its operands (that is, x v y). In such cases, we use a slightly different test
driver, which replaces x∇ y from Algorithm 2.3, line 7 with x∇ (x t y), because
x v x t y (see property 8). As a consequence of this monotonicity precondition,
property 31 needs to hold for the Polyhedra domain only for x = ⊥.

2.4.2 Input data

Testing the properties from Figure 2.3 requires three kinds of input data: (1) pro-
gram variables, (2) expressions over them (for the assign and cond transformers),
and (3) abstract-domain elements that contain constraints over these variables. We
construct this data as follows.

Program variables. All our test cases operate on a set of predefined integer vari-
ables. The number of variables must be sufficiently small to keep the memory
consumption and execution time of the test cases low. On the other hand, abstract-
domain optimizations, such as decomposition, require enough variables to obtain
nontrivial partitions [148]. In our implementation, the number of variables is con-
figurable; we use eight variables in our experiments.

Expressions. Testing assignments requires expressions. For the numerical domains
considered in this work, these expressions are linear sums over the program vari-
ables with integer coefficients, which are chosen by the fuzzer to increase the
likelihood of constructing suitable expressions. Note that, to test precision proper-
ties, we also need to generate expressions that are not representable in the domain
under test (for instance, polyhedral constraints for testing intervals). For the cond
transformer, we obtain boolean expressions by comparing the linear sums to zero.

Domain elements. As explained in Section 2.3, we create a pool of abstract-domain
elements (such as intervals or octagons) in two steps: step 1 populates the pool by
constructing elements using a combination of boundary and random testing, and
step 2 expands it by applying domain operations to existing pool elements.

Besides > and ⊥, step 1 also creates simple domain elements that contain only
one constraint on the predefined program variables. More complex domain ele-
ments are constructed in step 2. Table 2.1 shows the structure of simple domain
elements for widely-used numerical domains. These elements can be constructed
by choosing values for the constants k (e.g., the bounds of an interval) and the
coefficients c. By default, we pick them from a small set of predefined values (e.g.,
boundary values such as 0 or ∞) and a small set of arbitrary values. The use of
predefined values is optional and their set is configurable (see Section 2.5).

These values depend on both the domain under test and its implementation. For
instance, octagonal coefficients must be in {−1, 0, 1}, while polyhedral coefficients
can be arbitrary integers. Moreover, different implementations represent numbers
differently; e.g., we use the predefined values {INT_MIN, 0, INT_MAX} for integer
intervals if the implementation uses machine integers, {−∞, 0, ∞} for arbitrary-
precision integers, and additionally NaN for floating-point representations. Even
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Domain Abstract element with one constraint

Intervals {kl ≤ vi ≤ ku}

Zonotopes {vi =
kl+ku

2 + ku−kl
2 ∗ εi}

Octagons {civi + cjvj � k}

Polyhedra {c0v0 + c1v1 + . . . + cdim−1vdim−1 � k}

v: variables; c: coefficients; ε ∈ [−1, 1]; k: constants; � ∈ {≥,=}

Table 2.1: Abstract elements with one constraint from widely-used numerical domains.

though we focus on integer program variables, our experiments show that internal
floating-point computations may still lead to rounding errors (see Section 2.5).

The values in both sets are not chosen by the fuzzer. However, the fuzzer can
still control the pool of domain elements by selecting suitable operations in step 2.
This step constructs more diverse domain elements, usually with more complex
constraints, by applying domain operations to the existing elements. Step 2 makes
use of all domain operators that yield domain elements (t, u, ∇), as well as the ab-
stract transformers assign and project. We omit narrowing, which is not supported
by all domains, and conditionals, which are already covered (conditionals are im-
plemented by intersecting a domain element with a linear constraint, i.e., in the
same way in which we construct the initial elements from Table 2.1). Using all
these domain operations not only allows us to detect errors in their implementa-
tion (such as the missing closure in assignments that we discussed in Section 2.3),
but it also efficiently generates a diverse set of valid domain elements. While it
is theoretically possible to create a new element by generating an arbitrary set of
constraints, such an approach would often produce unsatisfiable conjunctions of
constraints, represented by the already considered ⊥ element.

2.5 evaluation

To evaluate the effectiveness of our technique, we used it to test two complex li-
braries for numerical analysis, namely APRON [90] and ELINA [148]. We were
able to find errors in several of the implemented domains, all of which are con-
firmed and most are also fixed. APRON is a mature library with ≈ 73 000 LOC,
used in many academic and industrial static analyzers, such as Astrée [30] and PA-
GAI [85], as well as in the CPAchecker verification platform [24]. ELINA is a more
recent library with ≈ 60 000 LOC, which uses highly-optimized algorithms based
on online decomposition to achieve significant speedups [147, 148]; these algo-
rithms are difficult to implement correctly.

In our experiments, we considered three variants of APRON with different inter-
nal representations for numerical values (Section 2.5.1 and Section 2.5.2), and two



2.5 evaluation 21

Maximum execution time (s)

Domain APRON ELINA

Intervals 750 not considered

Zonotopes 2 400 not considered

Octagons 1 900 700

Polyhedra 17 700 1 800

Table 2.2: Maximum execution time per test driver.

versions of ELINA (Section 2.5.3). We also evaluated different configurations of our
technique (Section 2.5.4), and compared it to pure fuzzing and DSE (Section 2.5.5).

Experimental setup. Since the tested domains have different complexity (i.e., the
implementation of Polyhedra is significantly slower), we estimated the maximum
execution time required to test each property for approximately 1 million times
for Intervals, Zonotopes, and Octagons and half a million times for Polyhedra (see
Table 2.2). The values are smaller for ELINA than for APRON because ELINA’s
code is highly optimized. Intervals and Zonotopes were not considered for ELINA,
as they were not part of the tested artifacts. We used LibFuzzer [113] (version 5.0.0)
to construct the input data. All the experiments were performed on a 3.3 GHz Intel
Xeon E5-4627 v2 CPU with 236 GB memory and RAID6 HDD.

2.5.1 APRON Double and Rll

APRON supports different internal representations for numerical values. For in-
stance, the Double representation uses floating-point numbers, while Rll uses an
approximation of rational numbers based on two 64-bit integers for the numerator
and denominator. Compared to APRON MPQ, which uses arbitrary-precision ra-
tionals (see Section 2.5.2), these representations offer better performance, but may
lose precision and cause non-termination [169]. Intervals and Octagons support
Double, while Rll is available for Polyhedra.

Our experiments indeed uncovered soundness, precision, and termination prob-
lems in several domains from APRON (0.9.10, the latest version in 2018), as shown
in Table 2.3. Here, the three versions of Rll refer to different test configurations that
we discuss later; the domain implementation is always the same. The third column
presents the total number of properties from Figure 2.3 that we attempted to test
for each domain. We tested only the first 41 properties for Intervals and Polyhedra
since narrowing is not implemented for Intervals in APRON and not mathemati-
cally defined for Polyhedra. The reported violations in the fourth column are not
necessarily all caused by different bugs. Nevertheless, observing multiple viola-
tions caused by the same bug can provide additional information for error local-
ization. We used a configuration that initializes the pool with 32 elements (step 1

of the pool population), includes LONG_MIN and LONG_MAX as boundary val-
ues, and applies 16 operations to generate more complex domain elements (step 2).
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Variant Domain #Tests #Failed tests Causes

Double Intervals 41 0 [S] 0 [P] 0 [E] –

Double Octagons 46 0 [S] 3 [P] 0 [E] rounding

Rll v1 Polyhedra 41 0 [S] 0 [P] 41 [E] overflow

Rll v2 Polyhedra 41 5 [S] 15 [P] 21 [E] overflow

Rll v3 Polyhedra 41 5 [S] 19 [P] 4 [E] overflow

[S] = soundness; [P] = precision; [E] = error (causing the driver to crash/time out)

Table 2.3: Results for APRON Double and Rll. The third column reports how many of
the properties from Figure 2.3 were applicable for each tested domain.

This is configuration C2 from Table 2.6, which we discuss in Section 2.5.4, together
with measurements on the testing time.

Intervals and Octagons. All our generic properties hold for Intervals, the simplest
domain we tested. Nonetheless, we indirectly found imprecisions for v and t, by
testing APRON’s implementation of Zonotopes [79] (discussed in Section 2.5.2),
which uses the Interval operations. These issues were confirmed and fixed.

For Octagons, three precision properties (17, 22, and 23) are violated, because the
equality test gives imprecise results due to rounding errors. In Figure 2.4, we show
an example input generated by our approach that violates property 17. oct repre-
sents a call to the Octagons constructor, which intersects the provided constraint
with >. The root cause of the imprecision is the underlying double representation.
For oct3, LONG_MAX cannot be precisely represented as a double value. The re-
sulting rounding error gives approximate results in the subsequent computations
and makes the assertion fail. Note that we do not define separate properties for
equality in Figure 2.3, because for most of the domains this check is implemented
as a double inclusion: x = y ⇔ x v y ∧ y v x. The Octagons are an exception, as
they define the equality based on closure [121].

Polyhedra. With the same test configuration (C2), all the tests fail to terminate for
Polyhedra Rll (Rll v1 in Table 2.3). The problem is that APRON enters infinite loops
during step 1 of the pool construction because of unhandled arithmetic overflows.
The bug can be seen when constructing at least two consecutive domain elements,
as in Figure 2.5. The second constructor call (poly) enters an infinite loop.

oct1 ←− oct(−x0 − x5 + 1 ≥ 0)
oct2 ←− assign(oct1, x2, LONG_MIN)
oct3 ←− oct(x0 + LONG_MAX ≥ 0)
oct4 ←− oct3 u oct2
assert(>u oct4 = oct4)

Figure 2.4: Input violating property 17 for APRON Octagons.



2.5 evaluation 23

poly1 ←− poly(−x5 − x6 + x7 ≥ LONG_MAX)
poly2 ←− poly(−x4 − x5 − x6 − x7 ≥ LONG_MIN)

Figure 2.5: Input entering an infinite loop for APRON Polyhedra.

This bug causes all test drivers to time out before they even reach the test oracle.
To work around this issue and look for additional bugs, we replaced LONG_MIN
and LONG_MAX by INT_MIN and INT_MAX as predefined values. In this case
(Rll v2 in Table 2.3), step 1 of the pool construction succeeds, but for 21 test drivers,
step 2 times out. The remaining 20 test drivers lead to violations of soundness and
precision properties. The root cause of all these failures is unhandled arithmetic
overflows in various operators. Dropping predefined values entirely (Rll v3 in
Table 2.3) allows us to construct the pool in all but four cases. In total, 24 soundness
and precision properties fail, due to overflow.

2.5.2 APRON MPQ

MPQ is an APRON variant that uses arbitrary-precision rationals for its internal
representation. For sub-polyhedral domains (i.e., Intervals, Octagons, and Poly-
hedra) this variant is supposed to be sound and precise [169]. Our experiments
partially confirm these theoretical guarantees: with the same setup as for APRON
Double and Rll, we did not find any (generic) property violations in APRON MPQ
for the three sub-polyhedral domains. However, we revealed imprecisions for Inter-
vals indirectly, by testing Zonotopes. Moreover, to further validate our technique,
we asked three experts in abstract interpretation to insert bugs in any of the sub-
polyhedral domains. Our results are presented in the following paragraphs.

Zonotopes. As opposed to sub-polyhedral domains, the structure of Zonotopes
is an incomplete lattice. For this reason, not all the precision properties from Fig-
ure 2.3 are expected to hold (e.g., as explained in Section 2.4.1, the least upper
bound may not exist for every pair of elements). Moreover, join creates new, input-
related constants [79] and thus the operator is by design non-commutative.

Initially, the pool construction step did not succeed for any of the tests, due to
a memory bug in the meet operator. After this issue was fixed, we detected addi-
tional memory exceptions, raised when creating a high number of input-related
constants. Our tests also revealed imprecisions in the implementation of the equal-
ity check, meet and project operations. Moreover, we discovered a precision bug
in the partial order. Soundness property 8 uses v to check if the result of a join
over-approximates its operands, and the bug led to a violation of this property.
The developers concluded that the root cause is an imprecision in the implemen-
tation of the Intervals domain, when one of the operands of v, t, or ∇ is ⊥,
represented in its canonical form through the empty interval [1,−1]. If ⊥ is not
handled as a special case, [1,−1] t [−10,−5] = [−10,−1], for example, instead
of [−10,−5]. This imprecision is independent of the internal representation used
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Domain #Seeded bugs #Found bugs #Failed tests

Intervals 5 4 1 [S] 14 [P] 0 [E]

Octagons 6 5 2 [S] 15 [P] 5 [E]

Polyhedra 6 5 4 [S] 10 [P] 52 [E]

[S] = soundness; [P] = precision; [E] = error (causing the driver to crash/time out)

Table 2.4: Results for APRON MPQ with seeded bugs.

for numbers. Our tests for Intervals could not detect it directly, because our prop-
erties are generic and do not check the precision based on the Intervals-specific
definitions. All these issues were fixed by the APRON developers.

Seeded bugs in sub-polyhedral domains. We also asked three abstract interpreta-
tion researchers, a post-doc and two senior PhD students with a broad experience
in implementing and using various types of abstract domains and static analyses,
to seed semantic bugs for our evaluation. Each expert had the task of inserting at
least five soundness or precision bugs (at least one of each type) in any of the sub-
polyhedral domains. They could seed them directly in the functions performing
v, t, u, ∇, 4 (if defined), assign, project, or cond or in any other function reach-
able from them. We believe that the seeded bugs are representative for the kind of
semantic errors that occur during the development of abstract domains.

The cumulative results are summarized in Table 2.4. For each domain, we show
how many bugs were seeded, how many our work found, and whether we ob-
served the bugs through violations of soundness or precision properties, or through
crashes and assertion failures in APRON’s internal consistency checks. In total, we
were able to find 14 out of the 17 seeded bugs. In the following, we present two
bugs that we detected and explain why the other three could not be identified.

(1) A seeded bug in Intervals is caused by a slightly modified version of an un-
sound definition for the widening operator [115]. This definition uses ≤ instead of
> to compare two bounds, which leads to a violation of the soundness property 30.
Our tests reveal this problem. (2) A seeded bug in Octagons removes the closure
in one special case of the assignment transformer. As explained in Section 2.3, we
detect this bug by generating an assignment during step 2, followed by a meet,
which violates four of our precision properties, as the equality becomes imprecise.

While our approach found the vast majority of the seeded bugs, there were three
it did not detect. (1) One seeded bug makes the Octagons closure less precise. De-
tecting this problem would require additional, octagon-specific precision proper-
ties for closure [121]. This can be easily done, but our focus here is on domain-
independent properties. (2) Another seeded bug affects the precision of widening
for Intervals in a way that does not violate the properties from Figure 2.3. De-
tecting it would again require additional, domain-specific properties. (3) The last
undetected bug changes the assignment operator for Polyhedra to act like project,
making it trivially sound, but imprecise. This bug can be easily found if the inputs
are polyhedra of dimension 1 (i.e., intervals). Our default configuration excludes
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Variant #Tests #Failed tests Causes

EP1 41 4 [S] 10 [P] 27 [E] overflow, ∇
EOD 41 0 [S] 3 [P] 0 [E] rounding

EO 41 0 [S] 3 [P] 0 [E] rounding

EP2 41 0 [S] 0 [P] 41 [E] overflow, assertions

EP3 41 4 [S] 18 [P] 19 [E] overflow, ∇

[S] = soundness; [P] = precision; [E] = error (causing the driver to crash)

Table 2.5: Results for different variants of ELINA.

such elements; adjusting the range of dimensions to include the value 1 leads to
a violation of the property 37, revealing the imprecision.

2.5.3 ELINA

To evaluate how effective our technique is on highly optimized implementations,
we applied it to test ELINA. We used the same configuration as for APRON (C2) on
the following abstract domains: EP1 – Polyhedra with decomposition [148], EOD –
Octagons with decomposition [149], EO – Octagons without decomposition [149],
EP2 – more recent version (including bug fixes) of EP1, EP3 – decomposed Poly-
hedra with further optimizations [147]. EP1 is the implementation from the arti-
fact [67] from POPL’17 [148], and the other variants are part of the artifact [68]
from POPL’18 [147]. Note that all ELINA domains are based on floating-point
numbers (not on the slower arbitrary-precision rationals). This design decision
may compromise precision to achieve high performance.

Initially, the pool construction for EP1 failed for all the tests due to corner cases
like LONG_MIN

−1 . This step was also not successful for EP2 and EP3 if the poly-
hedra had LONG_MAX coefficients (a similar issue as for APRON Double, see
Section 2.5.1). To find additional errors, we limited the set of predefined values to
{INT_MIN,−1, 0, 1, INT_MAX}. Our results are summarized in Table 2.5. Manual
inspection of the failed tests revealed that most of them were caused by arithmetic
overflows in different operations (e.g., assign and u). We also found issues due to
overly restrictive assertions in the code, as well as an incorrect implementation of
widening for certain cases (e.g., widening with ⊥). We reported these issues (and
others), and they were fixed by the developer.

One of the most interesting bugs we found in EP1 is related to an inconsistency
between the two polyhedral representations, i.e., constraints and generators. To im-
prove performance, ELINA uses an optimized implementation of the Chernikova
algorithm [175] for incremental conversion and applies all the operators on decom-
posed polyhedra. Such optimizations make it much more difficult to keep the two
representations in sync. Our pool-construction approach created polyhedra with
inconsistent internal states, by applying sequences of meet and join operations that
use different internal representations (meet is performed on the constraints repre-
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Configuration Initial pool size #Operations Predefined values?

C1 2 16 yes

C2 32 16 yes

C3 1 024 16 yes

C4 32 0 yes

C5 32 64 yes

C6 32 16 no

Table 2.6: Different configurations of our technique.

sentation, while join is efficiently implemented using generators [148]). As a result,
the subsequent test for the soundness of assign failed (property 35), because the
transformer returned ⊥. The same bug was reported by another ELINA user [180]
a few days before we reported it, which shows that our approach detects bugs that
are relevant for users of numerical libraries. It was fixed in the meantime.

Since narrowing was not available for Octagons through ELINA’s APRON inter-
face (which we use for testing), we did not include the corresponding test drivers
in this experiment (only the first 41 properties were tested, as shown in Table 2.5).
For both variants of Octagons, like for APRON Double (see Section 2.5.1), the prop-
erties 17, 22, and 23 were violated. These imprecisions are caused by rounding er-
rors when performing closure and, implicitly, in the equality tests. We reported the
issues and they were confirmed. As obtaining precise results with finite-precision
representations is very challenging, these problems are not yet fixed.

2.5.4 Sensitivity analysis

Our technique relies on three main configurable parameters: the size of the initial
pool from step 1 (parameter size in Algorithm 2.1), the number of operations
applied in step 2 (parameter nbops in Algorithm 2.1), and whether predefined
values are used to construct elements and expressions (parameter predefined in
Algorithm 2.1). We now assess the impact of these parameters on its effectiveness.

For this experiment, we used the three versions of APRON MPQ with the bugs
seeded by the experts and the configurations shown in Table 2.6. The results are
presented in Table 2.7, Table 2.8, and Table 2.9. All three tables have the same struc-
ture: for each seeded bug, we report the abstract domain in which it was inserted,
the violated properties that exposed it, and the execution time until each configu-
ration detects the violation or the implementation throws an error (which we also
consider as a detected violation, since without the seeded bug, the corresponding
domain operation should neither crash, nor fail internal consistency checks). As
shown in the tables, configurations C2, C5, and C6 all find the maximum number
of violations, and implicitly all the bugs, within the time limits defined in Table 2.2.
However, C2 does so significantly faster than C5 and slightly faster than C6.



2.5 evaluation 27

Domain Failed test C1 C2 C3 C4 C5 C6

Intervals 15 [P] - 0.3 1.36 0.1 1.48 0.38

Intervals 17 [P] - 0.05 1.78 0.05 0.05 0.05

Intervals 18 [P] - 0.51 1.82 0.53 0.6 0.53

Intervals 19 [P] - 0.44 1.89 0.65 0.6 0.52

Intervals 23 [P] - 2.6 1.34 0.93 3.06 0.99

Intervals 24 [P] - 1.94 - - 17.29 2.49

Intervals 25 [P] - 0.33 1.34 0.1 1.71 0.4

Intervals 30 [S] - 0.36 1.25 0.13 0.58 0.52

Octagons 6 [P] 0.04 0.05 0.49 0.1 0.06 0.06

Octagons 9 [S] 0.34 4.73 - 0.18 30.7 3.97

Octagons 10 [P] 0.95 3.05 - 0.13 2.81 5.12

Octagons 11 [P] 6.25 8.35 - 0.5 294.26 2.59

Octagons 13 [P] 0.45 3.23 - 0.22 108.69 7.67

#Failed tests (max 13) 5 13 8 12 13 13

#Bugs found (out of 3) 1 3 3 3 3 3

Table 2.7: Impact of different configurations on finding the bugs seeded by Expert 1. The
last six columns show the time (s) needed by each configuration from Table 2.6.
We grouped the failed tests by the seeded bugs they reveal (dashed lines).

Initial pool size. When the initial poll includes just > and ⊥ (as in C1), no vio-
lations are detected for Intervals in comparison to C2, that is, 4 bugs are missed.
On the other hand, a very large initial pool (C3) increases the execution time with-
out detecting all violations. We attribute this to the fact that the size of the initial
pool directly influences the number of possible arguments to the subsequent op-
erations in step 2 and to the test oracle; exploring all of them takes more time
without necessarily being more effective.

Number of operations. Without using step 2 of the pool construction (C4), some
bugs and property violations are missed (see Section 2.3 for an example). However,
for our technique to be effective, the number of operations should not be too large
since it increases the execution time. C5 is usually slower than C2 even though
both configurations find the same number of violations.

Predefined values. For APRON MPQ, which uses arbitrary precision rationals,
both C2 and C6 find all the violations, C2 being slightly faster. Predefined values
are particularly important for testing abstract-domain implementations based on
fixed-precision numbers such as APRON Double and ELINA; as our experiments
show (see Section 2.5.1 and Section 2.5.3), these implementations may suffer from
arithmetic overflows and rounding errors.
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Domain Failed test C1 C2 C3 C4 C5 C6

Intervals 30 [S] - 0.72 1.24 0.27 2.1 0.45

Octagons 15 [P] 0.5 error 109.56 error error 3.5

Octagons 16 [P] 0.06 0.12 2.47 0.06 0.13 0.05

Octagons 17 [P] 0.72 2.72 - - error error

Octagons 18 [P] error error 23.2 error error error

Octagons 19 [P] error error - error error error

Octagons 20 [P] 0.8 error 771.25 error error error

Octagons 21 [P] error 1.09 7.49 error 1.41 0.9

Octagons 22 [P] 0.72 error - error error error

Octagons 23 [P] 0.73 error 27.81 error error 3.65

Octagons 24 [P] error error - error error error

Octagons 25 [P] 0.56 0.87 4.39 error error 1.03

Octagons 28 [P] error error - error error error

Octagons 42 [P] 0.93 5.17 112.34 error error 1.5

Octagons 38 [P] 0.05 0.07 2.04 0.05 0.07 0.14

Polyhedra 6 [P] 0.05 0.12 63.4 0.11 0.23 0.18

Polyhedra 9 [S] 1.22 30.03 - 0.21 44.47 312.41

Polyhedra 10 [P] 0.65 2.05 - 0.35 295.41 42.94

Polyhedra 11 [P] 54.56 419.51 - 3.06 >4 h 1487.56

Polyhedra 13 [P] 1.18 106.69 - 0.44 483.82 86.3

Polyhedra 34 [P] 5.46 45.58 - 0.62 33.76 85.97

Polyhedra 36 [P] 0.07 0.14 60.4 0.12 0.22 0.17

Polyhedra 37 [P] 0.48 13.0 - 0.16 4.87 217.27

Polyhedra 38 [P] 0.46 41.75 - 0.73 5.42 449.95

#Failed tests (max 24) 23 24 12 23 24 24

#Bugs found (out of 5) 4 5 5 5 5 5

Table 2.8: Impact of different configurations on finding the bugs seeded by Expert 2.
We excluded two bugs seeded in Polyhedra that caused assertions failures in
APRON for all configurations, and masked the other seed bugs. The columns
have the same structure as in Table 2.7.

2.5.5 Fuzzing and dynamic symbolic execution

In this section, we compare our technique to pure grey-box fuzzing and DSE. In
particular, we use LibFuzzer [113] (version 5.0.0, i.e., the same version as for our
tool) and KLEE [41] (version 1.4.0), a state-of-the-art DSE engine, to generate in-
puts for the test oracles corresponding to the properties from Figure 2.3. For a fair
comparison, we wrote alternative test drivers that do not create and populate a pool
of abstract elements. Instead, they allow LibFuzzer and KLEE to directly generate
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Domain Failed test C1 C2 C3 C4 C5 C6

Intervals 5 [P] - 2.09 15.32 9.34 2.39 787

Intervals 13 [P] - 0.86 3.51 0.47 4.94 1.0

Intervals 23 [P] - 0.62 2.19 0.51 1.49 1.17

Intervals 28 [P] - 269 3.59 0.12 1.0 2.02

Intervals 34 [P] - 12.54 70.86 1.23 11.34 12.21

Intervals 39 [P] - 4.37 25.21 1.9 5.99 24.99

Octagons 9 [S] 0.67 0.83 3.53 0.11 0.27 0.4

Octagons 10 [P] 0.45 0.23 2.48 0.11 0.88 0.87

Octagons 13 [P] 0.65 0.55 24.58 0.32 28.67 23.94

Octagons 17 [P] 4.32 23.61 - - 117.56 16.37

Octagons 22 [P] 9.78 24.22 - - 17.3 11.25

Octagons 23 [P] 4.26 9.3 - - 15.08 11.05

Octagons 25 [P] 3.78 11.09 - - 81.92 9.17

Polyhedra 7 [S] 0.07 error error 2.02 error error

Polyhedra 8 [S] 0.07 0.18 64.47 0.16 0.13 error

Polyhedra 9 [S] 0.09 0.23 66.55 0.17 0.13 error

Polyhedra 11 [P] error error error 1.0 error error

Polyhedra 12 [P] 0.08 0.19 65.96 0.29 0.18 0.2

Polyhedra 13 [P] 0.08 0.18 64.67 0.19 0.22 0.2

Polyhedra 25 [P] 0.08 0.2 61.76 0.19 0.14 0.19

Polyhedra 27 [P] 2.99 0.21 65.71 0.26 0.15 error

#Failed tests (max 21) 15 21 17 17 21 21

#Bugs found (out of 4) 3 4 3 3 4 4

Table 2.9: Impact of different configurations on finding the bugs seeded by Expert 3. The
columns have the same structure as in Table 2.7.

the coefficients and constants of up to 50 constraints per element. The test oracles
are the same as in our test drivers.

Grey-box fuzzing. We ran LibFuzzer (with default options) on the three APRON
MPQ versions with seeded bugs, using the same time limits as in Table 2.2, and
compared the results with our configuration C2. LibFuzzer detected 45 out of the
58 property violations that we found. It revealed these violations generally faster
than our approach for Intervals and Polyhedra, but slower for Octagons.

A manual inspection of the generated counterexamples shows that our tech-
nique produces significantly simpler and more readable test inputs, which was
very useful in debugging the detected issues. For instance, the following is an
example octagon generated by LibFuzzer when directly choosing the constraints:
x = {−x0 + x1 = 9999 ∧ x0 + x1 = 19998 ∧−x0 + x5 = 19998 ∧ x0 + x5 = 29997 ∧
−x1 + x5 = 9999 ∧ x1 + x5 = 39996 ∧ −x0 + x6 = 0 ∧ x0 + x6 = 9999 ∧ x1 + x6 =
19998 ∧ x5 + x6 = 29997 ∧ x1 − x6 = 9999 ∧ x5 − x6 = 19998 ∧ x1 + x7 = 0 ∧ x5 +
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Domain Failed test Our work Fuzzing

Intervals 5 [P] 2.09 0.39

Intervals 13 [P] 0.86 0.69

Intervals 23 [P] 0.62 0.49

Intervals 28 [P] 0.27 0.71

Intervals 34 [P] 12.54 0.39

Intervals 39 [P] 4.37 31.07

Octagons 9 [S] 0.83 7.49

Octagons 10 [P] 0.23 8.01

Octagons 13 [P] 0.55 15.16

Octagons 17 [P] 23.61 -

Octagons 22 [P] 24.22 -

Octagons 23 [P] 9.3 -

Octagons 25 [P] 11.09 -

Polyhedra 7 [S] error -

Polyhedra 8 [S] 0.18 -

Polyhedra 9 [S] 0.23 -

Polyhedra 11 [P] error -

Polyhedra 12 [P] 0.19 0.07

Polyhedra 13 [P] 0.18 -

Polyhedra 25 [P] 0.2 -

Polyhedra 27 [P] 0.21 -

#Failed tests (max 21) 21 10

#Bugs found (out of 4) 4 3

Table 2.10: Comparison of our technique with fuzzing for the bugs seeded by Expert 3.

x7 = 9999 ∧ −x0 − x7 = 9999 ∧ x0 − x7 = 19998 ∧ x1 − x7 = 29997 ∧ x5 − x7 =
39996∧−x6 − x7 = 9999∧ x6 − x7 = 19998}.

For the same violated property (number 12), our approach generated the oc-
tagon x = {−x0 − x5 + 1 ≥ 0 ∧ x7 = LONG_MIN}, which was obtained by
performing the assignment x7 = LONG_MIN on the octagon from the initial pool
{−x0 − x5 + 1 ≥ 0}.

Table 2.10 provides additional details for the bugs seeded by Expert 3. The last
two columns show the time it takes to detect a property violation for our technique
(with C2) and for LibFuzzer, respectively. LibFuzzer missed one of the Octagon
bugs. Moreover, its results for Polyhedra suggest that the implementation of join
is imprecise since only property 12 is violated. In contrast, our work revealed that
the expert seeded a more serious soundness bug (properties 7–9 are also violated).

Dynamic symbolic execution. As KLEE does not try to explore all execution paths
in external libraries and APRON makes heavy use of libraries, we performed the
comparison on the EOD and EO ELINA domains, using KLEE’s default options.
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Our alternative test drivers use ELINA’s functions directly, not its APRON inter-
face, to avoid external library calls. However, all but 1 test throw an error for
both domains, since KLEE is not able to model malloc instructions with symbolic
sizes [96]. To overcome this limitation, we extended it with an option for specify-
ing the upper bound for the symbolic size; we used 8 192 in our experiments. For
each tested domain, our technique detected 3 violated properties (see Table 2.5),
but KLEE was not able to detect any, even with a time limit of 17 700 s (the 25-fold
of the time limit used for our work). We believe this is due to the fact that ELINA
heavily relies on floating-point arithmetic, which KLEE does not handle very well.

2.5.6 Threats to validity

We identified two threats to the validity of our experiments:

Test generation tool. Our comparisons to the alternative approaches focus on one
fuzzer and one DSE tool. Since we chose mature, state-of-the-art tools, we believe
that our results are representative. Similarly, we did not use alternative grey-box
fuzzers when evaluating our own approach, but we did use the same fuzzer (Lib-
Fuzzer) both for generating the inputs for our technique and as a related work.
Since most fuzzers make no assumptions about the code under test and support
a uniform input format (an array of bytes or a file), we do not expect to see signif-
icantly different results for other fuzzers.

Random initialization. Our pool initialization step chooses some of the coeffi-
cients and constants randomly. To ensure that our results are deterministic, all test
drivers use the same, predefined random seed.

2.6 testing learning-based abstract interpretation transformers

Our technique is not limited to the classical domain operations. It can be applied
also to learning-based abstract interpretation transformers (LAIT); these were re-
cently introduced by He et al. [83] and rely on machine learning algorithms to im-
prove the performance of the analysis. The key idea of this work is that sequences
of domain elements generated by the static analyzer can contain a high number of
redundant constraints, which are not necessary for computing the final invariants.
Thus He et al. learn a neural classifier that identifies and removes these constraints.
The approach was instantiated for synthesizing approximate join transformers for Oc-
tagons and Polyhedra, which are expected to be sound and almost as precise as
the traditional ones [83]. The implementation is integrated into ELINA [69] and
combines Python libraries for machine learning with ELINA’s highly optimized C
code. Identifying errors in the actual implementation of LAIT requires techniques
(like ours) that can effectively explore complex libraries and heterogeneous code.

For this experiment, we considered the commit [71], not the PLDI’20 artifact [84],
since it provides a more similar interface to the classical join transformers, which
is more suited for unit testing (the artifact focuses on generating loop invariants
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Variant #Tests #Failed tests Causes

EP-LAIT1 10 0 [S] 1 [P] 9 [E] ⊥ elements or loop head

EO-LAIT1 10 0 [S] 0 [P] 9 [E] ⊥ elements or loop head

EP-LAIT2 10 0 [S] 6 [P] 4 [E] overflow, project

EO-LAIT2 10 0 [S] 0 [P] 0 [E] -

[S] = soundness; [P] = precision; [E] = error (causing the driver to crash)

Table 2.11: Results for different variants of ELINA LAIT.

because this is the precision metric used in their evaluation [83]). This code ver-
sion corresponds to the variants EP-LAIT1 (for Polyhedra) and EO-LAIT1 (for
Octagons) from Table 2.11. As LAIT is not available through the APRON interface
(used in Section 2.5.3), we wrote ELINA-specific test drivers.

Recall from Figure 2.3 that join is applied to two abstract elements, x and y.
However, the corresponding LAIT functions (designed for computing loop invari-
ants) accept as inputs two additional parameters: an abstract element representing
the loop head and the result of the precise join of x and y. In our test drivers,
the loop head is also selected by the fuzzer from the pool. Nevertheless, we did
not replace the domain operations used to increase the pool with the LAIT ones,
since the approximate meet, widening, etc. are not implemented in ELINA. This
approach allows us to clearly separate the usage of ELINA transformers and LAIT
and facilitates error localization (we illustrate this aspect later in this section).

We tested all the 10 properties applicable for join (6–15 from Figure 2.3). We used
configuration C2 (see Table 2.6) and the predefined values {LONG_MIN,−1, 0, 1,
LONG_MAX} for Octagons and {INT_MIN,−1, 0, 1, INT_MAX} for Polyhedra,
to avoid infinite loops during the pool construction (as described in Section 2.5.3).
The results are presented in Table 2.11, which has the same structure as Table 2.5.

Initially (Table 2.11, rows 1–2), all Polyhedra tests and 9 Octagons tests failed,
most of them causing the test driver to crash in the LAIT functions that compute
the partitions. This was due to corner cases in which at least one input element or
the loop head is ⊥. We reported these errors and they were fixed. The developers
confirmed that such test cases were not included in their dataset, so our approach
could be used also for generating additional benchmarks for training or testing
the underlying machine learning algorithm.

After applying the provided fixes [70], we retested the domains (these modified
versions are the variants EP-LAIT2 and EO-LAIT2 from Table 2.11). For Polyhedra,
the properties 6, 10–13, and 15 were violated, the approximate join transformer
being imprecise mostly due to overflow. However, in four cases, step 2 of our pool
construction approach did not succeed, revealing an error in ELINA’s code for
handling project; the bug can be reproduced without calling LAIT, by using only
sequences of assign and project (as shown in Figure 2.6). We reported the issue, it
was confirmed and fixed. For Octagons, all our tests passed.
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poly1 ←− poly(−6469x1 + x2 + INT_MINx3 + INT_MAXx5− 2034x6 + 7806x7 = 0)
poly2 ←− assign(poly1, x0,−6469x3 + 9743x5 − 7913x6 − 1148x7 + 8206)
poly3 ←− project(poly2, x4) // >
poly4 ←− assign(poly3, x7,−6199x0 + 4102x1 − 8218x2 + 6483x3 + 5400x4 + 4370x5+

3300x6 − 643x7 − 4345)

Figure 2.6: Input causing segmentation fault for ELINA Polyhedra.

2.7 limitations

Next, we discuss the main limitations of our work, as well as possible solutions.

Finding multiple errors. Our approach is based on grey-box fuzzers, which gener-
ate inputs that cover previously untested code. Due to the search space exploration
strategy, it is thus likely that shallow bugs will be discovered first. To also identify
other (possibly more complex) errors, one needs to fix the revealed issues or to
remove the parts of the code responsible for them, tasks which usually require
expert knowledge. These problems can be avoided by integrating our tool into the
development process. Moreover, having multiple properties for the same domain
operation (as in Figure 2.3) increases the likelihood of finding different errors.

Fuzzers. A prerequisite for our work is the existence of fuzzers for the program-
ming languages in which the abstract domains are implemented. However, we be-
lieve this is not a severe practical limitations for many mainstream programming
languages: e.g., LibFuzzer is currently integrated into Clang [50], which provides
support for the C language family (used in our experiments from Section 2.5),
Haskell, Lua, PHP, Python, Ruby, and Rust can be also compiled to LLVM [102],
while Jazzer [171] (also based on LibFuzzer) can be used for the JVM platform.
Our approach does not depend on any specific feature of the fuzzers; as our re-
sults show (Section 2.5.2), missed bugs are due to the test oracles or to the values
used for the configurable parameters, and not to the fuzzers themselves.

2.8 related work

Our approach is the first to systematically test a wide range of soundness, preci-
sion, and convergence properties on complex abstract domains. It combines sev-
eral existing test case generation techniques in a novel way. On the one hand, we
derive executable test oracles [16] to check high-level, mathematical properties of
abstract-domain implementations. On the other hand, we incorporate ideas from
boundary and random testing (step 1 of the pool construction) and from feedback-
directed random testing [130] (step 2) to obtain inputs for the test oracles. A key
difference with the latter is that, in our case, the fuzzer controls which elements
are added to the pool, by providing the operations and their arguments.

Testing static analyzers. One way to test static analyzers is by randomly gener-
ating input programs [56]. This approach is particularly effective for testing the
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robustness of the analyzers, that is, for detecting input programs that cause the
analyzers to crash. To also test soundness properties, Cuoq et al. instrument the
code of the analyzer under test with assertions about inferred values or relations
between program variables, which are then checked against concrete executions.
A similar instrumentation-based approach was proposed by Klinger et al. [97] and
uses differential testing to determine if the assertions should hold or not. In con-
trast, our technique generates input data systematically and does not require any
modifications to the implementation of the tested analyzers. Moreover, it offers
stronger guarantees than [97]: our ground truth is always known, thus we do not
rely on the existence of multiple analyzers to determine it. Recent work by Casso
et al. [44] tests the abstract interpreters by checking if the properties they inferred
statically are satisfied dynamically. However, this technique uses a random inputs
generator and is thus only applicable to much simpler abstract domains (e.g., for
type inference or aliasing) than those supported by our approach. The technique
of Taneja et al. [165] has a similar scope with ours, i.e., testing the soundness and
precision of static analyzers. However, we use mathematical properties as the test
oracles, whereas [165] implemented sound and precise reference analyzers.

Analysis testing and delta debugging. Similarly to [56], Andreasen et al. [4] com-
pare concrete executions to abstract domain elements to detect soundness and
precision problems. They use delta debugging [189] to reduce the size of the in-
put programs to report the errors concisely. In contrast, we propose a technique
for automatically generating the input domain elements; our approach starts with
simple elements and applies a small number of operations, generating small coun-
terexamples by construction.

Systematically testing lattice properties. Midtgaard and Møller [120] focus on
quickchecking [49] basic lattice properties of abstract interpreters. Our technique
was inspired by their work; it extends the set of tested properties and, as our eval-
uation shows, is effective on widely-used and highly-optimized abstract domain
implementations. A comprehensive experimental comparison with their tool was
not possible, as the authors provide constructors and helper functions for generat-
ing ordered pairs of elements only for Intervals, but not for the complex numerical
domains that we consider. Without them, many of the properties cannot be tested,
as the randomly generated inputs most likely do not satisfy the preconditions. For
this reason, we expect that their technique cannot significantly outperform grey-
box fuzzing, which we showed to be less effective than our approach (Table 2.10).
We solve the problem of generating ordered inputs by applying domain operations
to the existing elements (e.g., the result of join over-approximates its operands).

Formally verified static analyzers. Interactive theorem provers such as Coq [133]
have been used to verify the soundness of the design of static analyses (e.g., in the
context of type systems [65, 144]). However, the proofs do not typically provide
any guarantees about the actual implementation, and, thus, could still benefit from
automated testing techniques like ours. The Verasco project [93] extracts executable
code from verified Coq formalizations of several abstract domains. This approach
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produces implementations that are correct by construction but is not yet practi-
cal for complex, highly-optimized implementations. Madsen and Lhoták [116] use
symbolic evaluation (based on symbolic executions and SMT solvers) to verify the
correctness, i.e., safety and soundness, of abstract-domain implementations. If the
problem is undecidable, they rely on a quickchecking approach inspired by [120].
Recent work by Vishwanathan et al. [177] provides analytical proofs for the op-
erations of the tnums (tristate numbers) abstract domain, and proposes a new
multiplication algorithm which is provably sound. However, none of these works
formally verifies complex numerical domains.

Unsoundness in static analyzers. Even for those analyzers that are unsound by
design [23, 46–48, 114] our technique is useful to detect unintentional sources of
unsoundness and imprecision (e.g., caused by implementation errors).

Testing program analysis tools. Abstract domains are one of the components used
in modern compilers and program analyzers. Besides efforts in proving properties
about such components (e.g., CompCert [110] and Verasco [93]), there is a signifi-
cant body of work on using testing techniques to detect issues in compilers [103,
104, 160, 184], DSE engines [94], model checkers [191], debuggers [174], and SMT
solvers [6, 31, 34, 35, 37, 117, 126, 131, 132, 141, 181, 182, 185, 186, 190].

2.9 conclusions

In this chapter, we presented an automated testing technique for detecting sound-
ness, precision, and convergence errors in abstract-domain implementations, which
are crucial components of many static analyzers. We evaluated our approach on
several complex, real-world abstract domains from two widely-used libraries for
numerical analysis and demonstrated its effectiveness in finding both seeded and
previously unknown errors. Moreover, we showed that our technique is applicable
also to learning-based abstract interpretation transformers.





3
I D E N T I F Y I N G S O U N D N E S S A N D C O M P L E T E N E S S E R R O R S
I N S M T S O LV E R S

In this chapter, we present our technique for automatically generating SMT formu-
las from the string theory that are satisfiable or unsatisfiable by construction, and
show how these formulas with known ground truth can be used for testing state-
of-the-art SMT and automata-based solvers. We also explain how our approach can
be extended to support regular expressions, how it generalizes to other theories
and their combinations, and how it can be used for testing MAX-SMT solvers.

3.1 introduction

SMT solvers have a large variety of applications, from program verification and
synthesis to symbolic execution and concolic testing. For all the tools that rely on
them to be reliable and usable in practice, the solvers have to provide correct results.

For a given formula, an SMT solver returns either sat (together with a model that
associates a value to each free variable and an interpretation to each uninterpreted
function, such that the formula evaluates to true), or unsat (if no model exists, i.e.,
the formula evaluates to false for all possible values assigned to its free variables
and for all possible interpretations for the uninterpreted functions). In the unsat
case, it may also return a set of clauses that lead to a contradiction (the unsat core).

An SMT solver is unsound if it yields an incorrect result, that is, yields sat for
an unsatisfiable formula or unsat for a satisfiable one. The latter case is usually
called refutation unsoundness. The solver is also unsound if it correctly yields sat or
unsat, but produces an invalid model (this is a case of solution unsoundness) or an
incorrect unsat core, i.e., a set of clauses that are in fact satisfiable. Incorrect models
and incorrect unsat cores can significantly affect the results of the applications that
use SMT solvers. For example, SMT-based program verifiers construct counterex-
amples from the models produced by the solver, showing which contract may not
hold and why. Both the models and the unsat cores are used in program synthesis,
for instance, to generate programs that fulfill a given specification or to optimize
the synthesis algorithm (as in [25]), respectively.

The distinction between solution and refutation (un)soundness is particularly
important for the developers of SMT solvers: as automatically checking the correct-
ness of a refutation proof is much harder than checking the correctness of a model,
the developers may prioritize bug reports that expose refutation unsoundness.

Since SMT solvers support undecidable theories, they cannot always determine
the satisfiability of a formula and may sometimes return unknown. However, a sol-
ver is unnecessarily incomplete if it returns unknown for a formula from a decidable
theory, such as F := ∀x, y : Int :: x = y, which falls into Presburger arithmetic. We

37



38 smt solvers

( declare−fun t ( ) S t r i n g )
( declare−fun u ( ) S t r i n g )
( a s s e r t (= ( s t r . r e p l a c e "" t u ) "a" ) )
( check−s a t )

Figure 3.1: A sat formula that exposes an unsoundness in Z3-seq and Z3str3, written in
SMT-LIB syntax [18] (with prefix notation for operators). In the rest of the
chapter, we show examples in mathematical notation, to improve readability.

can also distinguish between refutation and solution incompleteness (i.e., when the
solver cannot prove unsat, as for the previously-defined formula F, or it cannot
find a model). It is also undesirable for a solver to time out (that is, not to solve the
query within a given timespan). Such a result often points to performance issues.

SMT solvers use multiple interconnected decision procedures for various theo-
ries, e.g., uninterpreted functions, linear/non-linear arithmetic, bit-vectors, arrays,
strings, etc. As a result, they are complex software systems and checking that their
implementations are sound is, thus, very challenging. To illustrate the errors solvers
can make, let us consider the formula from Figure 3.1. It uses two free variables of
type String, t and u, and checks if it is possible to obtain the constant string ”a” by
replacing the first occurrence of t by u in an empty string. This is the case accord-
ing to the SMT-LIB standard [18] if t is empty and u is ”a”. However, Z3-seq [28,
187] and Z3str3 [21], two widely-used SMT solvers, incorrectly report unsat.

Prior testing techniques for SMT solvers do not reliably detect such errors.
Fuzzing [31] generates formulas that may crash the solvers or reveal performance
issues, but do not reliably detect soundness problems. Approaches based on differ-
ential testing [119] compare the results of different solvers. Different results may
indicate a soundness problem in one of them. However, determining which solver
is at fault requires manual effort. Moreover, differential testing requires at least
one solver that provides the correct result; this might not be the case in situations
like the one described above, where Z3-seq and Z3str3 are both incorrect.

This work. In this chapter, we propose a novel technique for automatically gener-
ating test cases that reveal, besides others, soundness issues in the implementation
of SMT solvers. We synthesize input formulas that are satisfiable or unsatisfiable
by construction and use this ground truth as the test oracle. Our technique gen-
erates sequences of input formulas of increasing complexity by applying a set of
satisfiability-preserving transformations that we designed. In this way, the bugs
are often found with simple inputs, which facilitates error localization and debug-
ging. We automatically construct a model for each satisfiable formula and a min-
imal, unique unsat core for each unsatisfiable one, and use them as witnesses or
as additional oracles. For concreteness, the discussion in the following sections fo-
cuses on string solvers, but our technique generalizes to other theories and their
combinations (as we show in Section 3.5.1) and can be used also for testing MAX-
SMT (Section 3.5.3) and automata-based solvers (Section 3.4.3).
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Contributions. The contributions of this chapter are the following:

• We present an automated approach for synthesizing SMT formulas for the
string theory, which are satisfiable or unsatisfiable by construction. Together
with the known ground truth, these formulas are used to automatically test
the implementations of SMT solvers. Our technique generates satisfiable for-
mulas together with models, and unsatisfiable formulas together with unsat
cores; as they are incrementally complex, these formulas facilitate debugging
and faster error localization.

• We implemented our technique and evaluated it on three widely-used SMT
solvers, Z3-seq [28, 187], Z3str3 [21], and CVC4 [112], as well as on the
automata-based solver MT-ABC [9]. Our experimental results show that our
approach effectively detects soundness problems and outperforms the clos-
est fuzzing technique for string solvers in doing so. Our work can also reveal
other types of errors, such as performance, completeness, or precision issues.

Outline. The rest of this chapter is organized as follows: in Section 3.2, we give an
overview of our approach for constructing satisfiable and unsatisfiable formulas
from the string theory; the details follow in Section 3.3. We discuss our experimen-
tal results in Section 3.4. We show how our technique can be extended to generate
formulas with regular expressions, how it generalizes to other theories, and why
is applicable also to MAX-SMT solvers in Section 3.5, and explain its limitations in
Section 3.6. We present related work in Section 3.7 and conclude in Section 3.8.

3.2 overview

Our approach automatically generates SMT formulas that are satisfiable or unsatis-
fiable by construction. These formulas are used as inputs for black-box tests, while
the ground truth represents the test oracle. Our formula construction approach
consists of two steps: (1) we generate simple formulas with known truth values,
and (2) from them, we derive more complex, equisatisfiable formulas through au-
tomatic transformations. To perform these steps, our generator requires a set of
operations supported by the theory under test, together with their reference seman-
tics. For concreteness, in this work we use the SMT-LIB standard [18] as the ref-
erence semantics because it provides a rigorous description of the theories. Most
widely-used SMT solvers adhere to SMT-LIB to facilitate comparisons (e.g., in SMT
competitions [151]) and to enable the side-by-side usage of multiple solvers [74].

Our technique tests if the implementation of an SMT solver complies with the
provided reference semantics. For solvers that intentionally deviate from the SMT-
LIB standard, it is straightforward to parameterize our technique with an alterna-
tive reference semantics and use that to test the implementation. For instance, the
CVC4 documentation does not define the result of the replace operation when
the second argument is the empty string [57]. One can use our technique with the
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Return a string Return an integer Return a boolean

at(s, off ) = res∗ indexOf(s, t, off ) = res contains(s, t) = res

concat(s, t) = res length(s) = res equals(s, t) = res

intToStr(n) = res strToInt (s) = res prefixOf(s, t) = res

replace(s, t, u) = res suffixOf(s, t) = res

substr(s, off , len) = res

∗char (i.e., string of length 1) s, t, u: type String; n, off , len: type Int

Table 3.1: String operations, grouped by their return type.

SMT-LIB semantics to check for such deviations from the standard, and with an
alternative reference semantics to check for errors in the implementation.

Table 3.1 summarizes the operations supported by the string theory, which have,
according to SMT-LIB, deterministic semantics [156]. Since some of the operations
take or yield integers, reasoning about them also involves linear integer arithmetic.

In the following, we give an overview of our construction approach for satisfi-
able (Section 3.2.1) and unsatisfiable formulas (Section 3.2.2).

3.2.1 Generating satisfiable formulas

An SMT formula is satisfiable (sat) with respect to some background theory if there
exists at least one model (i.e., variable assignment) within the theory such that the
formula evaluates to true [27]. For example, the formula x + x = 3 is satisfiable
in the theory of real numbers, as it is possible to find at least one solution to
this equation (x = 1.5). Nonetheless, the formula is unsatisfiable (i.e., does not
have a model) in the integer arithmetic theory. Here and in Section 3.2.2 we use
a simplified definition of (un)satisfiability, which does not consider the existence of
an interpretation for each uninterpreted function. These are not relevant for our
discussion, because we generate formulas that contain only interpreted functions
(see Section 3.6 for more details about the applicability of our approach).

Step 1: Simple formulas. In the first step, we construct sat formulas that test each
operation in isolation; this allows developers to localize and fix bugs faster. We
start with the operations supported by the theory under test and automatically
derive a test case for each of them, in which the parameters and the result of each
operation are unconstrained. These simple formulas are thus trivially satisfiable.

An example formula that we synthesize in the first step is shown in Figure 3.2.
This formula is satisfiable: for all string arguments s, t, u, there exists a string
res that is equal to the result of the replace operation (all string operations are

replace(s, t, u) = res

Figure 3.2: A sat formula generated in step 1. All the variables have type String.
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indexOf(s, t, off ) = res

Figure 3.3: A sat formula generated in step 1, which uncovers an incompleteness in Z3-
seq. off and res have type Int, s and t have type String.

total functions), thus the formula has at least one model. Even though they are
very simple, these formulas can still reveal bugs. For example, Z3-seq returns
unknown for the SMT formula from Figure 3.3, which tests the indexOf operation.
Since this initial test case is minimal (and, in particular, does not involve any other
operations), it facilitates identifying the source of this incompleteness: most likely
a bug in handling the indexOf operation in the corresponding decision procedure.

Step 2: More complex formulas. To test more complex cases, as well as the inter-
action between different operations, step 2 of our approach derives additional test
cases by automatically applying a set of transformations on the formulas synthe-
sized before. These transformations preserve the satisfiability of the initial formu-
las, thus creating equisatisfiable, but more complex formulas, with more constrained
models and more (or more complex) terms. We illustrate a very simple transfor-
mation here and present more complex ones in Section 3.3.1.

For the simple formulas from Figure 3.2 and Figure 3.3, the solver can construct
arbitrarily many models, as all the variables are unconstrained. We can strengthen
the formulas by adding constraints on the values of these variables. A possible
transformation is to replace some of the variables with constants. To decide what
values can be assigned to which variables such that the complex formula is still
satisfiable, we rely on concrete execution. That is, we implement an executable version
of the reference semantics for the operations under test and use it to determine
valid parameters and results. This technique can be applied to sat formulas, since
finding a model for which the formula holds is enough for proving its satisfiability.

Having the executable semantics, we can evaluate each operation on concrete
arguments. In this way, we obtain formulas with constant arguments and results.
The test formulas are then synthesized by fixing some of the arguments/results to
the constants used in the concrete execution and leaving the others unconstrained.

Let us consider the replace operation from Figure 3.2. If we evaluate it on the
arguments s = ””, t = ””, u = ”a”, the result is, according to the SMT-LIB se-
mantics, the constant string ”a”. We can thus transform the formula by replacing
the variables s and res with the constants ”” and ”a”, respectively. This substitu-
tion yields the sat formula from Figure 3.1, which has more constrained models
and exposes a soundness bug in two widely-used SMT solvers. This and other
satisfiability-preserving transformations, including some that combine multiple
operations, are described in more detail in Section 3.3.1.
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3.2.2 Generating unsatisfiable formulas

To show that a formula is unsatisfiable (unsat), a solver has to prove that there
does not exist an assignment to the free variables within the background theory
that satisfies the formula; i.e., the formula evaluates to false for all possible, type-
correct values assigned to its variables [27].

Since many SMT theories include infinite sorts such as integers or strings, it is
not possible to enumerate and check all possible value assignments and, thus, we
cannot use our executable semantics to determine the ground truth. To synthesize
formulas that are unsat by construction, we start from the following observation:
conjoining a formula and the negation of an equivalent formula always results in
an unsatisfiable formula. That is, for two equivalent formulas A and B, the for-
mula F := ¬A ∧ B is unsatisfiable by construction. We obtain interesting formulas
F by leveraging equivalences between different operations from the string theory.
Out of the 12 operations from Table 3.1, only concat, length, and equals are con-
sidered primitive operations; all the others can be expressed through them [194].
Table 3.2 shows equivalent formulas for non-primitive string operations and extends
the preprocessing rules from [194] and the string function definitions from [8].

Note that an alternative idea would be to use a weaker condition: if B⇒ A holds
(instead of A ⇔ B), then F := ¬A ∧ B is also unsatisfiable. However, determining
the truth value of the implication without using an SMT solver is not trivial. Since
equivalences can be easily obtained from the literature, we use them in our work.

Step 1: Simple formulas. In the first step of our input construction technique,
we automatically generate a test case from each of the 12 equivalences E1–E12 by
conjoining the negation of the formula from Table 3.2, column 2 (i.e., the negation
of A) and its equivalent formula from column 3 (that is, B).

The equivalences from Table 3.2 are implicitly universally quantified over their
free variables. For example, E1 := ∀s : String, off : Int, res : String :: A ⇔ B, with
A := at(s, off ) = res and B := res = substr(s, off , 1). Thus, the formulas G and H,

G := ∀s : String, off : Int, res : String :: ¬A ∧ B

H := ∃s : String, off : Int, res : String :: ¬A ∧ B

are both unsatisfiable by construction (G is stronger than H). As universal quantifi-
cation poses additional solving challenges and testing various quantifiers instanti-
ations algorithms is beyond the scope of our work, the simple unsat formulas we
construct are similar to H (i.e., use existential instead of universal quantifiers).

However, we also omit these existential quantifiers from all our formulas (that is,
the existentially-quantified variable becomes a fresh free variable). This is possible
as all existential quantifiers are in positive positions, and Q(x) is (un)satisfiable if
and only if ∃x :: Q(x) is (un)satisfiable. Since the resulting formulas do not use any
existentially-quantified variables, we use the terms quantifier and quantified variable
in the rest of the chapter to refer to universal quantifier and universally-quantified
variable, respectively. For the quantifiers from Table 3.2, we specified patterns (also
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Id String operation ⇔ Equivalent formula

E1 at(s, off ) = res ⇔ res = substr(s, off , 1)

E2 intToStr(n) = res ⇔ (res = ”” if n < 0) ∧
(res = ”0” if n = 0) ∧ ... ∧ (res = ”9” if n = 9) ∧
(res = intToStr(n div 10) ++ intToStr(n mod 10) if n ≥ 10)

E3 replace(s, t, u) = res ⇔ i = indexOf(s, t, 0) ∧ (∃s1, s2, s3 :: s = s1 ++ s2 ++ s3 ∧
length(s1) = i ∧ s2 = t ∧ res = s1 ++ u ++ s3 if i ≥ 0) ∧
(res = s otherwise)

E4 substr(s, off , len) = res ⇔ (∃s1, s2, s3 :: s = s1 ++ s2 ++ s3 ∧ length(s2) = len ∧ res = s2 ∧
length(s1) = off if off ≥ 0 ∧ off < length(s) ∧ len > 0) ∧
(res = ”” otherwise)

E5 indexOf(s, t, off ) = res ⇔ (res = off if t = ”” ∧ off ≥ 0 ∧ off ≤ length(s)) ∧
(∃s1, s2, s4 :: s = s1 ++ s2 ++ t ++ s4 ∧ off = length(s1) ∧
(∀i :: {substr(t, 0, i)} i ≥ 0 ∧ i < length(t)⇒
contains(s2 ++ substr(t, 0, i), t) = false) ∧
res = length(s1 ++ s2) if t 6= ”” ∧ off ≥ 0 ∧ off ≤ length(s)) ∧
(res = −1 otherwise)

E6 strToInt(s) = res ⇔ (intToStr(res) = s if s 6= ”” ∧ ∀j :: {at(s, j)} j ≥ 0 ∧
j < length(s)⇒ at(s, j) = ”0” ∨ ... ∨ at(s, j) = ”9”) ∧
(res = −1 otherwise)

E7 contains(s, t) = true ⇔ ∃s1, s3 :: s = s1 ++ t ++ s3

E8 contains(s, t) = false ⇔ ∀s1, s2, s3 :: {s1 ++ s2 ++ s3} (s = s1 ++ s2 ++ s3)⇒ (s2 6= t)

E9 prefixOf(s, t) = true ⇔ ∃t2 :: t = s ++ t2

E10 prefixOf(s, t) = false ⇔ ∀t1, t2 :: {t1 ++ t2} (t = t1 ++ t2)⇒ (t1 6= s)

E11 suffixOf(s, t) = true ⇔ ∃t1 :: t = t1 ++ s

E12 suffixOf(s, t) = false ⇔ ∀t1, t2 :: {t1 ++ t2} (t = t1 ++ t2)⇒ (t2 6= s)

s, s1, s2, s3, s4, t, u: type String; n, off , len, i, j: type Int ++ denotes string concatenation

we use mathematical equality for the equals operation div denotes integer division

patterns for universal quantifiers are shown between {} mod returns the reminder of div

Table 3.2: Equivalent formulas for non-primitive string operations. The formulas E1–E12

are implicitly universally quantified over their free variables.

called triggers). They are used by the solver to decide when to instantiate the quan-
tifiers via E-matching [63] and, thus, affect its ability to refute the inputs.

Our technique can be parameterized with different equivalent formulas. Other
equivalences can be obtained, for example, by rewriting (sub)formulas from Ta-
ble 3.2, column 3 using equalities from column 2. The formulas without quantifiers
can be used also for testing SMT solvers that do not support quantification yet.

A test case that we synthesize in step 1 and corresponds to E3 is shown in Fig-
ure 3.4. For this input, CVC4 times out, and Z3str3 non-deterministically returns
timeout, unsat, unknown, or segmentation fault.
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¬(replace(s, t, u) = res) ∧ i = indexOf(s, t, 0) ∧
(i ≥ 0⇒ s = s1 ++ s2 ++ s3 ∧ length(s1) = i ∧

s2 = t ∧ res = s1 ++ u ++ s3) ∧
(i < 0⇒ res = s)

Figure 3.4: An unsat formula generated in step 1 for which CVC4 times out and Z3str3

has non-deterministic behavior. i has type Int, all the other variables have
type String.

Step 2: More complex formulas. In the second step of our approach, we automat-
ically transform the previously-generated formulas into equisatisfiable, but more
complex ones. These formulas either have larger unsat cores, requiring the solver
to combine more terms to derive a contradiction or contain additional terms that
are not relevant for proving unsat but may complicate the solver’s proof search.

To show, for example, that the formula ∀x : Int :: x 6= 0 ∧ x = 0 is unsatisfiable,
the solver relies on the fact that no number can be at the same time zero and non-
zero. If the conjunct x = 0 is replaced by x′ = 0∧ 2x′ − x′ = x, where x′ is a fresh
integer variable, then all three conjuncts contribute to proving unsat. By removing
any of them, the formula becomes satisfiable. Thus, these three terms represent
the minimal unsat core. The transformations that we designed for the unsat case,
described in detail in Section 3.3.2, are based on similar rewritings.

This concludes the high-level overview of our approach. Given an executable
version of the reference semantics and the equivalent formulas, test case genera-
tion is deterministic and fully automatic. The ground truth is always known, so all
the synthesized formulas can be directly used for testing, without additional hu-
man effort for constructing the test oracles. Our approach produces increasingly
complex test cases, which often allows developers to detect errors with simple
inputs, such that they are easy to reproduce and debug.

3.3 satisfiability-preserving transformations

In this section, we describe our technique for constructing complex SMT formulas
from the string theory through satisfiability-preserving transformations. Our trans-
formations are different for the sat and the unsat case, therefore they are presented
separately in the following subsections.

3.3.1 Transformations for satisfiable formulas

In the first step of the sat input construction technique (described in Section 3.2.1
and presented in pseudo-code in Algorithm 3.1, lines 2–7), we synthesize simple
formulas, with unconstrained parameters and results, which are trivially satisfi-
able. The second step (Algorithm 3.1, lines 8–17) strengthens the initial formulas
by adding constraints on the values of the free variables and synthesizes formu-



3.3 satisfiability-preserving transformations 45

Algorithm 3.1: Our algorithm for synthesizing sat formulas. invokeSolver
yields the solver’s result on the input formula (i.e., sat, unsat, unknown, time-
out, or error), a model for sat formulas, and an unsat core for unsat formulas,
if available. correctModel uses the reference semantics to check the validity of
the model with respect to the input formula. We do not check partial models
(generated by some solvers for unknown results), as their correctness is not
guaranteed. The auxiliary procedures constantAssignment, termsPool, and
termSynthesis are given in Algorithm 3.2, Algorithm 3.3, and Algorithm 3.4.
Arguments : operations — tested operations (e.g., from Table 3.1)

consts — predefined constants
δ — maximum depth for term synthesis (≥ 1)

1 Procedure synthesizeSatFormulas
2 simpleFormulas←− {} // step 1

3 foreach op ∈ operations do
4 simpleFormulas←− simpleFormulas ∪ {op}
5 res, model, _←− invokeSolver(op)
6 if (res 6= SAT ∨ ¬correctModel(model, op)) then
7 reportError()

8 pool←− termsPool (operations, consts, δ) // step 2

9 foreach F ∈ simpleFormulas do
10 foreach input ∈ constantAssignment (F, consts) do // constant assignment

11 res, model, _←− invokeSolver(input)
12 if (res 6= SAT ∨ ¬correctModel(model, input)) then
13 reportError()

14 foreach input ∈ termSynthesis (F, pool, δ) do // term synthesis

15 res, model, _←− invokeSolver(input)
16 if (res 6= SAT ∨ ¬correctModel(model, input)) then
17 reportError()

las that may contain multiple operations to test their interactions. Our algorithm
is deterministic, that is, always tests the same (combination of) operations, in the
same order, and on the same parameters.

We present two satisfiability-preserving transformations in the following. Con-
stant assignment uses the executable semantics to compute models for simple sat
formulas and then transforms them by replacing some of their free variables with
values from the model. Term synthesis enumerates terms from the theory under
test and evaluates them using the executable semantics. It then substitutes free
variables from the simple formulas with more complex terms, such that the for-
mulas remain satisfiable. As we start from quantifier-free sat formulas and none of
these transformations introduces quantifiers, all our sat formulas are quantifier-free.
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Algorithm 3.2: Auxiliary procedure for Algorithm 3.1, which generates more
complex formulas by applying the constant assignment transformation on F.
Arguments : F — simple formula

consts — predefined constants
Result: A set of more complex formulas

1 Procedure constantAssignment
2 complexFormulas←− {}
3 foreach constArgs ∈×typeCorrect(consts, args(F)) do
4 model[res(F)]←− execute(F, constArgs)
5 model[args(F)]←− constArgs
6 foreach vars ∈×freeVars(F) do
7 input←− F[model[vars]/vars]
8 complexFormulas←− complexFormulas ∪ {input}
9 return complexFormulas

Constant assignment transformation. Many software errors are caused by the in-
correct handling of corner cases. For this reason, the first transformation (shown
in Algorithm 3.2) is inspired by boundary testing and consists of assigning pre-
defined constants to (some of) the free variables of the initial formulas. The set
of predefined constants (parameter consts in Algorithm 3.2) is configurable. We
used typical boundary values in our experiments: for the variables of type String
we used empty strings, strings of length one, as well as strings containing quotes,
escape sequences, and non-ASCII characters in hexadecimal format. For integers,
we chose a small set of valid and invalid indices and lengths, e.g., {−1, 0, 2}. The
string operations cannot have other types of parameters, but some do have boolean
results (Table 3.1, column 3), for which we considered both true and false.

Given the simple input formulas that we generated in step 1 (Section 3.2.1), we
use concrete executions to determine their models. For this purpose, we implement
an executable semantics for all string operations based on the reference semantics, i.e.,
the SMT-LIB specification [156]. This implementation is straightforward since most
programming languages (e.g., Java) already provide string libraries that offer most
of the operations. Therefore, the implementation effort mostly consists of ensuring
that the semantics of these library operations and the SMT-LIB standard match. For
example, the Java String method s.replace(t, u) replaces all occurrences of t in s
by u, whereas the SMT-LIB operation replaces just the first occurrence. Moreover,
converting any negative integer to a string in Java will yield its textual represen-
tation, whereas the SMT-LIB result will be the empty string. To handle these and
other similar mismatches, we implement a wrapper for the Java string operations
according to the SMT-LIB semantics, which represents our executable semantics.

We then exhaustively evaluate each operation on all type-correct combinations
of constant arguments from the set of predefined values, which is finite and small
(Algorithm 3.2, line 3). (Here and in the following algorithms, we use the notation
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×Si to represent the Cartesian product of the sets Si.) Since all the string opera-
tions are total functions [156], the evaluation always succeeds, producing witness
models for the simple formulas from step 1 (Algorithm 3.2, lines 4–5). The con-
stant assignment transformation obtains new inputs by replacing some of the free
variables in a simple formula (i.e., its arguments and result) by constants from the
model (Algorithm 3.2, lines 6–8). As this transformation is based on valid models,
it is guaranteed to yield equisatisfiable formulas.

Consider, for example, the replace operation, for which we already generated
a simple test case during step 1 (see Figure 3.2). If the set of predefined constants
includes the string ”a” and the empty string, then one of the concrete evaluations
is replace(””, ””, ”a”) = ”a” . We can use the computed model s = ””, t = ””,
u = ”a”, res = ”a” to derive several new inputs. For instance, we can replace the
free variables s and res by the corresponding constants from the model and obtain
a new sat formula: replace(””, t, u) = ”a”. This formula, presented in SMT-LIB
notation in Figure 3.1, revealed soundness bugs in Z3-seq and Z3str3.

We then run the solver on the transformed formula and report an error if the
result is different from sat (Algorithm 3.1, lines 5–7). Otherwise, we check if the
solver produced a correct model using our executable semantics (Algorithm 3.1,
line 6): we evaluate the string operation on the parameters from the model gen-
erated by the solver and compare the result of the evaluation to the result from
our witness model. If they are unequal, the solver is also unsound; we found such
cases in our evaluation (see Section 3.4.1). Note that we cannot directly compare
the two models, since our witness model is not necessarily unique.

Term synthesis transformation. To test the interactions between different opera-
tions, we transform the simple formulas from step 1 by replacing some of the free
variables with more complex terms (constructed by the procedure termsPool from
Algorithm 3.3). We use terms from the string theory, which are sufficient to supply
string, integer, and boolean parameters or results for all the string operations.

Using the predefined set of constants, we synthesize all type-correct applica-
tions of string operations up to a predefined bound (parameter δ in Algorithm 3.3)
and evaluate them using our executable semantics (Algorithm 3.3, lines 3–13); this
produces a pool of terms (Algorithm 3.1, line 9). We then transform a simple for-
mula from step 1 as follows (Algorithm 3.4): (1) We replace the arguments of the
operation under test with terms from the pool (Algorithm 3.4, line 5). (2) We eval-
uate the resulting term in the executable semantics (Algorithm 3.4, line 6). (3) We
replace the result variable in the simple formula with another term from the pool
with the same result, which ensures that the equality holds (Algorithm 3.4, lines
7–8). (4) The complex formula used to test the solvers is then obtained by replacing
the constants in the resulting equality by free variables, which yields a sat formula
(Algorithm 3.4, lines 9–11). It is important to represent multiple occurrences of the
same constant by the same free variable, to connect the operations more tightly, and
to constrain the set of possible models. The transformation is applied exhaustively
for all the terms from the pool, up to the bound δ (Algorithm 3.4, line 3).
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Algorithm 3.3: Auxiliary procedure for Algorithm 3.1, which generates a pool
of terms by applying operations from the theory under test up to the bound δ.
Arguments : operations — tested operations (e.g., from Table 3.1)

consts — predefined constants
δ — maximum depth for term synthesis (≥ 1)

Result: A pool of terms, grouped by the number of function applications used
to construct them and by their actual result

1 Procedure termsPool
2 pool←− {}
3 foreach op ∈ operations do
4 foreach constArgs ∈×typeCorrect(consts, args(op)) do
5 term←− op [constArgs/args(op)]
6 res←− execute(term)
7 pool[0][res] ←− pool[0][res] ∪ {term}
8 foreach depth ∈ {1, . . . , δ} do
9 foreach op ∈ operations do

10 foreach synArgs ∈×typeCorrect(pool[depth− 1][args(op)]) do
11 term←− op[synArgs/args(op)]
12 res←− execute(term)
13 pool[depth][res] ←− pool[depth][res] ∪ {term}
14 return pool

To illustrate our technique, let us assume that the set of constants includes the
strings ”a” and ”” and the integer −1. The pool will then contain, among oth-
ers, the terms at(”a”,−1) (with concrete result ””), indexOf(”a”, ”a”,−1) (with
concrete result 0), and concat(””, ””) (with result ””). Starting from the simple
formula for the at operation, the transformation proceeds as follows: (1) We sub-
stitute the arguments of at to obtain, e.g., at(at(”a”,−1), indexOf(”a”, ”a”,−1)).
(2) Evaluating this term yields ””. (3) We equate the term to another term with the
same result and obtain, for instance, at(at(”a”,−1), indexOf(”a”, ”a”,−1)) =
concat(””, ””). (4) We replace the constants ”a”, ””, and −1 with three fresh vari-
ables sfresh, resfresh, and offfresh, which yields the input formula from Figure 3.5. This
formula exposes a soundness bug in Z3str3, which incorrectly returns unsat. Note
that when the operations at, indexOf, and concat were tested separately, the
solver returned the expected results. It is their combination that exhibits the error.

at(at(sfresh, offfresh), indexOf(sfresh, sfresh, offfresh)) = resfresh ++ resfresh

Figure 3.5: A sat formula generated in step 2 through term synthesis, which exposes an
unsoundness in Z3str3. offfresh has type Int, sfresh and resfresh have type String.
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Algorithm 3.4: Auxiliary procedure for Algorithm 3.1, which generates more
complex formulas by applying the term synthesis transformation on F.
Arguments : F — simple formula

pool — pool of terms
δ — maximum depth for term synthesis (≥ 1)

Result: A set of more complex formulas
1 Procedure termSynthesis
2 complexFormulas←− {}
3 foreach depth ∈ {1, . . . , δ} do
4 foreach synArgs ∈×typeCorrect(pool[depth− 1][args(F)]) do
5 term←− F[synArgs/args(F)]
6 res←− execute(term)
7 foreach synRes ∈ pool[depth− 1][res] do
8 input←− term = synRes
9 foreach c ∈ constants(input) do

10 input←− input[c f resh/c]
11 complexFormulas←− complexFormulas ∪ {input}
12 return complexFormulas

The formula from Figure 3.5 was obtained with bound δ = 1 for the term pool,
that is, the arguments and the result are all single applications of an operation on
constants; larger bounds lead to more complex formulas.

Once we have synthesized the new input, executing the test and checking if the
solver returned a correct model is analogous to the constant assignment transfor-
mation (Algorithm 3.1, lines 16–18). One can easily combine the two transforma-
tions we proposed by replacing only some of the constants from the last step of the
term synthesis transformation with free variables.

3.3.2 Transformations for unsatisfiable formulas

In the first step of the unsat input construction technique (described in Section 3.2.2
and presented in pseudo-code in Algorithm 3.5, lines 2–9), we test each non-
primitive string operation together with its equivalent formula. Recall that if two
formulas A and B are equivalent then the formula F := ¬A∧ B is by construction
unsatisfiable. To obtain more complex unsat formulas, we transform the simple
ones into formulas with larger unsat cores or with redundant clauses. Therefore,
the solver needs to reason about more properties to prove unsatisfiability.

Consider a simple formula F that contains one variable x that occurs in both A
and B, and one variable y that is existentially bound in B and, thus, becomes a free
variable after the existential quantifier is removed (see Section 3.2.2). This formula
can be written as:

F(x, y) := ¬A(x) ∧ B(x, y)
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Algorithm 3.5: Our algorithm for synthesizing unsat formulas. invokeSolver
yields the same results as in Algorithm 3.1. The auxiliary procedure redundan-
cyIntroduction is given in Algorithm 3.6.
Arguments : operations — tested operations (e.g., from Table 3.2, column 2)

eqForms — equivalent formulas (e.g., from Table 3.2, column 3)
eqConsts — equalities between operations and constants

(e.g., EC1–EC40 from Table 3.3), grouped by type
eqVars — equalities between operations and variables

(e.g., EV1–EV8 from Table 3.3), grouped by type
1 Procedure synthesizeUnsatFormulas
2 simpleFormulas←− {} // step 1

3 foreach op ∈ operations do
4 input←− ¬op∧ eqForms[op] // F

5 expectedCore←− {op, eqForms[op]}
6 simpleFormulas←− simpleFormulas ∪ {input}
7 res, _, core←− invokeSolver(input)
8 if (res 6= UNSAT ∨ core 6= expectedCore) then
9 reportError()

10 foreach F ∈ simpleFormulas | F is ¬A ∧ B do // step 2

11 foreach x ∈ freeVars(A) ∩ freeVars(B) do // variable replacement

12 foreach eq ∈ eqVars[type(x)] | eq is SC ⇒ lhs = x do
13 C ←− (lhs[x f resh/x] = x f resh) ∧ SC
14 input←− ¬A ∧ B[x f resh/x] ∧ C // F’

15 expectedCore←− {¬A, B[x f resh/x], C}
16 res, _, core←− invokeSolver(input)
17 if (res 6= UNSAT ∨ core 6= expectedCore) then
18 reportError()

19 foreach c ∈ constants(B) do // constant replacement

20 foreach eq ∈ eqConsts[type(c)] | eq is SC ⇒ lhs = c do
21 C ←− (lhs = z f resh) ∧ SC
22 input←− ¬A ∧ B[z f resh/c] ∧ C // F’

23 expectedCore←− {¬A, B[z f resh/c], C}
24 res, _, core←− invokeSolver(input)
25 if (res 6= UNSAT ∨ core 6= expectedCore) then
26 reportError()

27 redundancyIntroduction(A, B, eqVars) // redundancy introduction

To obtain an unsat formula with a larger unsat core, we replace all the occur-
rences of x in B by a fresh variable xfresh and conjoin a clause C(x, xfresh) from the
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string theory that implies x = xfresh. The resulting formula is still unsatisfiable, but
the unsat core now also includes C(x, xfresh):

F′(x, xfresh, y) := ¬A(x) ∧ B(xfresh/x, y) ∧ C(x, xfresh)

Based on this general idea, we perform three transformations on the simple
input formulas, which are described next and implemented in Algorithm 3.5,
lines 10–27 and Algorithm 3.6. With all three transformations, the unsat core of
the resulting formula is unique and known by construction. Thus, it can be used
to check the correctness and minimality of the unsat core returned by the solver.

Variable replacement transformation. Our first transformation (presented in Al-
gorithm 3.5, lines 11–18) chooses a variable x that occurs freely in A and B and
constructs a more complex formula as described above. The clause C(x, xfresh) is
obtained from a set of equalities that we derived from the string theory. They are
summarized in Table 3.3; we focus on the equalities EV1–EV8 here and discuss
the others later. For example, the equality EV1 expresses that the first character
of a string is equal to the string itself, for any string of length 1. This additional
constraint about the length of the string represents a side condition SC under which
the equality holds. We can assume that all the equalities from Table 3.3 have a side
condition; if none is explicitly shown, it is equivalent to true.

EV1–EV7 are equalities on strings, while EV8 is for integers. Depending on
the type of the chosen variable x, we select an appropriate equality and obtain
C(x, xfresh) by substituting the right-hand side variable by xfresh, all occurrences of
the same variable on the left-hand side of the equality by x, and all other variables
by fresh variables (Algorithm 3.5, lines 11–13). For example, replacing the variable
res in the formula from Figure 3.4 using EV1 yields C(res, resfresh) := at(res, 0) =
resfresh. With this additional clause, we construct the unsat formula from Figure 3.6.
Note that the side condition SC := length(res) = 1 of EV1 is conjoined to the
formula (as shown in Algorithm 3.5, line 13), making it stronger and preserving
unsatisfiability. (If we use implication instead of conjunction, i.e., SC ⇒ C instead
of C∧ SC, then the resulting formula is satisfiable if ¬A∧ B[x f resh/x]∧¬SC holds.)

To prove that the formula from Figure 3.6 is unsat, an SMT solver can use EV1

(with res for s) and the conjuncts at(res, 0) = resfresh and length(res) = 1 to derive

¬(replace(s, t, u) = res) ∧ i = indexOf(s, t, 0) ∧
(i ≥ 0⇒ s = s1 ++ s2 ++ s3 ∧ length(s1) = i ∧

s2 = t ∧ resfresh = s1 ++ u ++ s3) ∧
(i < 0⇒ resfresh = s) ∧
at(res, 0) = resfresh ∧ length(res) = 1

Figure 3.6: An unsat formula generated in step 2 through variable replacement, which
exposes an unsoundness in Z3str3. i has type Int, all the other variables have
type String.



52 smt solvers

Id Equality

EV1 at(s, 0) = s if length(s) = 1

EV2 concat(s, ””) = s

EV3 concat(””, s) = s

EV4 replace(s, s, s) = s

EV5 replace(s, t, u) = s if contains(s, t) = false

EV6 replace(s, t, u) = s if indexOf(s, t, 0) = −1

EV7 substr(s, 0, length(s)) = s

EV8 indexOf(s, ””, off ) = off if off ≥ 0 ∧ off ≤ length(s)

EC1 at(s, off ) = ”” if off < 0 ∨ off ≥ length(s)

EC2 concat(””, ””) = ””

EC3 intToStr(n) = ”” if n < 0

EC4 replace(””, ””, ””) = ””

EC5 substr(s, off , len) = ”” if off < 0 ∨ off ≥ length(s) ∨ len ≤ 0

EC6 intToStr(n) = ”0” if n = 0

... ...

EC15 intToStr(n) = ”9” if n = 9

EC16 indexOf(s, t, off ) = −1 if off < 0 ∨ off > length(s)

EC17 indexOf(s, t, off ) = −1 if contains(s, t) = false

EC18 strToInt(s) = −1 if s = ””

EC19 strToInt(s) = −1 if ∃i : Int :: i ≥ 0∧ i < length(s) ∧ at(s, i) 6= ”0”∧ ...∧ at(s, i) 6= ”9”

EC20 length(s) = 0 if s = ””

EC21 strToInt(s) = 0 if s = ”0”

EC22 strToInt(s) = 1 if s = ”1”

... ...

EC31 strToInt(s) = 9 if s = ”9”

EC32 contains(s, s) = true

EC33 equals(s, s) = true

EC34 prefixOf(””, s) = true

EC35 prefixOf(s, s) = true

EC36 suffixOf(s, s) = true

EC37 contains(s, t) = false if indexOf(s, t, 0) = −1

EC38 equals(s, t) = false if length(s) 6= length(t)

EC39 prefixOf(s, t) = false if contains(t, s) = false

EC40 suffixOf(s, t) = false if contains(t, s) = false

Table 3.3: Equalities between string operations and variables and constants of type String
(EV1–EV7, EC1–EC15), Int (EV8, EC16–EC31), and Bool (EC32–EC40). All the
equalities are implicitly universally quantified over their free variables.
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res = resfresh, which reduces the formula to the one we started from. This shows
that the solver needs to perform additional reasoning steps, as the unsat core is
extended by the additional conjuncts. For Figure 3.6, Z3str3 unsoundly returns sat.

This transformation is also applied to the other free variables s, t, and u, as our
algorithm considers all free variables that appear both in A and B (Algorithm 3.5,
line 11). It is also possible to replace multiple variables simultaneously, but we
omitted such transformations in our experiments. There, we explore each combi-
nation of a variable and a corresponding equality (see Algorithm 3.5, lines 11–12).

Note that we can choose the granularity of the unsat core by encoding the formu-
las as named assertions. Even if some of them consist of conjuncts (e.g., C from Al-
gorithm 3.5, line 13), the solver can include in the unsat core only an entire named
assertion, not its components. Therefore, the size of the expectedCore from Algo-
rithm 3.5, line 15 is 3, not 4, as we consider C to be a single named assertion. This
design decision allows us to handle free and quantified variables uniformly (the
latter are explained together with the redundancy introduction transformation).

Constant replacement transformation. Analogously to the variable replacement
transformation, we can substitute a constant c by a term that evaluates to c. Starting
from a simple formula F(x, y) := ¬A(x) ∧ B(c, y), we construct the following
formula for some constant c that occurs in B:

F′(x, zfresh, y) := ¬A(x) ∧ B(zfresh/c, y) ∧ C(c, zfresh)

To obtain the additional clause C(c, zfresh), we use known equalities from the string
theory. The equalities EC1–EC40 from Table 3.3 all equate a string term to a con-
stant. For a chosen constant c, we select one of the type-correct equalities of the
form lhs = c and define C(c, zfresh) := zfresh = lhs, as shown in Algorithm 3.5, lines
19–21. As in the previous transformation, this step preserves unsatisfiability and
enlarges the unsat core by the additional equality (Algorithm 3.5, line 23). This in-
formation, known by construction, is used as the test oracle (Algorithm 3.5, lines
24–26). If instead of rewriting res, in Figure 3.6 we replace the constant 0 by EC20

then we obtain an unsat formula that exposes a soundness bug in Z3-seq.
Note that the equalities from Table 3.3 do not contain universal quantifiers. Some

of the constants could have been rewritten by using quantified formulas, but as
explained in Section 3.2.2, we tried to minimize their usage as much as possible.

Redundancy introduction transformation. We also designed a variation of the
variable replacement transformation, where we consider a variable y that occurs
freely in B, but not in A (Algorithm 3.6, lines 2–9). These variables were initially
introduced by the existential quantifiers in the equivalent formulas from Table 3.2.
Consequently, renaming them to yfresh and conjoining C(y, yfresh) to the formula
does not extend the unsat core; it is known by construction that y (and therefore
also yfresh) cannot be part of the contradiction between ¬A and B, since y is not
a shared variable. Nonetheless, this transformation introduces redundancy, that is,
additional variables and terms that may obfuscate the proof of unsatisfiability.
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Algorithm 3.6: Auxiliary procedure for Algorithm 3.5, which generates more
complex formulas by applying the redundancy introduction transformation.
invokeSolver yields the same results as in Algorithm 3.1.
Arguments : A — input formula (e.g., from Table 3.2, column 2)

B — formula equivalent to A (e.g., from Table 3.2, column 3)
eqVars — equalities between operations and variables

(e.g., EV1–EV8 from Table 3.3), grouped by type
1 Procedure redundancyIntroduction
2 foreach y ∈ freeVars(B) \ freeVars(A) do // free variables

3 foreach eq ∈ eqVars[type(y)] | eq is SC ⇒ lhs = y do
4 C ←− (lhs[y f resh/y] = y f resh) ∧ SC
5 input←− ¬A ∧ B[y f resh/y] ∧ C // F’

6 expectedCore←− {¬A, B[y f resh/y]}
7 res, _, core←− invokeSolver(input)
8 if (res 6= UNSAT ∨ core 6= expectedCore) then
9 reportError()

10 foreach y ∈ quantVars(B) | B is D ∧ (∀y :: {P(y)} L⇒ R) do // quantified

11 foreach eq ∈ eqVars[type(y)] | eq is SC ⇒ lhs = y do // variables

12 C ←− SC ⇒ (lhs[y f resh/y] = y f resh)

13 B′ ←− D ∧ (∀y, y f resh :: {P(y, y f resh), lhs}
(C ∧ L[y f resh/y])⇒ R[y f resh/y])

14 input←− ¬A ∧ B′ // F’

15 expectedCore←− {¬A, B′}
16 res, _, core←− invokeSolver(input)
17 if (res 6= UNSAT ∨ core 6= expectedCore) then
18 reportError()

It is also possible to apply the redundancy introduction transformation to quan-
tified variables from B (see Algorithm 3.6, lines 10–18); this requires changes to the
quantifier’s body (which we assume to have the shape L ⇒ R, as shown in Algo-
rithm 3.6, line 10, i.e., the shape that all our quantified equivalent formulas from
Table 3.2 have) and to its pattern {P(y)}. D represents the quantifier-free part of
B (if absent, as in E8, E10, and E12, then D implicitly equals true).

We illustrate the steps of our algorithm on the formula F := ¬(prefixOf(s, t) =
false)∧ (∀t1, t2 : String :: {t1 ++ t2} (t = t1 ++ t2)⇒ (t1 6= s)) from E10, rewriting
the quantified variable t2 using EV7. The additional clause from Table 3.3 (that is,
substr(t2, 0, length(t2)) = t2fresh) is added under the quantifier to strengthen L,
which is now expressed in terms of the fresh variable t2fresh. The new variables
that occur in the clause (here only t2fresh) are added as universally-quantified vari-
ables and the pattern of the quantifier is extended into a multi-pattern, where the
first component mentions all the quantified variables (t1, t2, and t2fresh), while the
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¬(prefixOf(s, t) = false) ∧
∀t1, t2, t2fresh :: {t1 ++ t2fresh, substr(t2, 0, length(t2))}
((substr(t2, 0, length(t2)) = t2fresh) ∧ (t = t1 ++ t2fresh))⇒ (t1 6= s)

Figure 3.7: An unsat formula generated in step 2 through redundancy introduction for
universally-quantified variables, which exposes an unsoundness in and non-
deterministic behavior for Z3str3. All the variables have type String.

second one is the lhs of the additional equality (i.e., substr(t2, 0, length(t2))).
These modifications are shown in Algorithm 3.6, lines 12–13. The side condition
SC (in our example true) is added as an implication (Algorithm 3.6, line 12). The
more conservative approach that conjoins SC (used in Algorithm 3.5 for the other
transformations) is not necessary, since C := SC ⇒ (lhs[y f resh/y] = y f resh) is
added under an universal quantifier. Recall that this additional clause implies that
y = y f resh. To prove that B′ is satisfiable, the solver has to consider all the combi-
nations of values for the quantified variables. When C = false, i.e., y 6= y f resh, the
body of B′ is trivially true, but the solver still needs to reason about the more com-
plex case y = y f resh, which after variable elimination leads to the original formula
B we started from. As for free variables, this transformation does not increase the
size of the unsat core, which remains two (see Algorithm 3.6, line 15). The resulting
formula is presented in Figure 3.7 (to simplify the notation, we do not explicitly
show the side condition) and exposes a soundness issue and non-deterministic
behavior for Z3str3, which returns sat or segmentation fault.

Note that the three unsatisfiability-preserving transformations can be combined
and all of them can be applied multiple times, to increase the complexity of the
previously synthesized formulas. In our experiments, each transformation was
applied independently and the second synthesis step was performed only once, to
facilitate error localization and to avoid generating redundant tests that fail due to
the same bug. Our algorithm is deterministic, it always produces the same tests.

3.4 evaluation

In Section 3.4.1, we present the results we obtained by applying our test case gen-
eration technique to three widely-used SMT solvers: Z3-seq (version 4.7.1), Z3str3

(version 4.7.1), and CVC4 (version 1.6). The two Z3 string solvers use different
approaches: Z3-seq (the default string solver from Z3 4.7.1) encodes string oper-
ations into operations over sequences, while Z3str3 supports strings as built-in
types. The experiments show that our technique is able to synthesize formulas
that reveal soundness bugs in two of the three tested solvers. They also uncover
completeness and performance issues. Section 3.4.2 illustrates that our approach
outperforms prior fuzzing techniques for string solvers. Our work is also effective
in finding bugs in other types of solvers, as we demonstrate in Section 3.4.3 on the
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automata-based solver MT-ABC [9]. In Section 3.4.4 we explain how our technique
differs from subsequent works on testing SMT solvers.

3.4.1 Testing string solvers

In the first experiment, we tested the compliance of Z3-seq’s, Z3str3’s, and CVC4’s
string operations with the semantics defined in the SMT-LIB standard [18]. In the
following, we also discuss the impact of each component of our formula synthesis
technique in finding the bugs.

Experimental setup. All the formulas that we synthesized are encoded, through
the Z3 Java API, into SMT-LIB 2.6 format [18]; patterns are part of this standard.
We used the SMT-LIB Unicode Strings Theory [156] as the reference semantics
and our wrapper of the Java string operations for the executable semantics. We
set a timeout of 15 seconds for each test and we fixed the seed for the solvers’
random number generator, the sat.random_seed (for all three solvers), and the
smt.random_seed (only for Z3-seq and Z3str3) to 0, to reduce non-determinism.
We used the options produce-models and produce-unsat-cores to enable the
generation of the models and of the unsat cores, respectively. We also used the
option strings-exp for CVC4 to enable non-primitive string operations and the
option full-saturate- quant to enable enumerative instantiation [136]. For the
Z3-based solvers, we set the option smt.core.minimize to true to obtain the
minimal unsat core; this option was not supported by CVC4 at the time of writing.
For all other options, we used the default values; in particular, we did not use the
solvers’ own ability to check the validity of the generated models. The experiments
were conducted on a 2.5 GHz Intel Core i7 CPU with 16 GB memory.

Results. The results obtained for the three solvers are summarized in Table 3.4.
There, we report the expected result (column 1), the test category/transformation
as described in Section 3.2 and Section 3.3 (column 2), the total number of tests gen-
erated for each of these categories (column 3), and the actual result produced by
each solver (in the remaining columns). This result can be: incorrect model (when
the solver correctly returned sat, but the generated model is not valid, i.e., eval-
uating the original formula on the model, using our executable semantics, yields
false), incorrect unsat core (when the solver returned unsat, but the unsat core it
produced is not the minimal, expected one), sat, unsat, unknown, timeout, or error
(when the solver crashed or returned an error message). For the unsat formulas,
we report the results for each category without using patterns for quantifiers and
with the patterns specified in Table 3.2 for the formulas that are quantified (unsatp

in Table 3.4). When the patterns are not provided, the solvers infer them auto-
matically, as E-matching [63], the algorithm used for refuting formulas, requires
a pattern for every quantifier. All our sat formulas are quantifier-free.

The categories operation and equivalent formula refer to simple formulas synthe-
sized in step 1 for testing each operation in isolation, or together with its equivalent
formula from Table 3.2, respectively. The category larger unsat core includes the test
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#Tests with actual result (all random seeds = 0)

Z3-seq Z3str3 CVC4

Result Category #Tests IM IC S U K T E IM IC S U K T E IM IC S U K T E

S operation 12 0 - 10 0 2 0 0 0 - 12 0 0 0 0 0 - 12 0 0 0 0

S constant 4 714 24 - 4 158 14 518 0 0 24 - 4 580 105 0 5 0 0 - 4 714 0 0 0 0

S term syn 1 394 2 - 842 0 483 67 0 7 - 1 027 109 0 133 118 0 - 1 394 0 0 0 0

U ⇔ formula 12 - 0 0 9 0 3 0 - 0 0 8 0 3 1 - 0 0 5 0 7 0

Up ⇔ formula 12 - 0 0 9 0 3 0 - 0 0 8 0 3 1 - 0 0 5 0 7 0

U larger ucore 268 - 0 1 153 10 104 0 - 10 5 120 12 71 50 - 0 0 89 0 177 2

Up larger ucore 268 - 0 1 153 9 105 0 - 7 6 120 7 78 50 - 0 0 89 0 176 3

U redundancy 178 - 67 0 50 37 24 0 - 21 10 58 5 41 43 - 23 0 26 0 125 4

Up redundancy 178 - 67 0 42 36 33 0 - 22 16 52 8 30 50 - 25 0 24 0 123 6

#S failed tests (out of 6 120) 1 110 501 0

#U failed tests (out of 458) 254 272 338

#Up failed tests (out of 458) 254 278 340

IM = incorrect model S = sat U = unsat Up = unsat formulas with patterns (from Table 3.2)

IC = incorrect unsat core K = unknown T = timeout E = error

constant = constant assignment redundancy = redundancy introduction ⇔ formula = equivalent formula

term syn = term synthesis larger ucore = larger unsat core n = #failed tests unsoundness

Table 3.4: Overview of our results for Z3-seq, Z3str3, and CVC4.

cases obtained by applying the variable and constant replacement transformations
from Section 3.3.2. For term synthesis, each variable was obtained by exactly one op-
eration (i.e., δ = 1 in Algorithm 3.3 and Algorithm 3.4). For the larger unsat core and
redundancy introduction transformations, each variable and constant was rewritten
in one step, by independently applying all the corresponding equalities from Ta-
ble 3.3. In each test case, only one of them was rewritten, with all its occurrences
(as shown in Algorithm 3.5 and Algorithm 3.6).

In Table 3.4, we also include the results for a variation of the redundancy intro-
duction transformation, which was not described in Section 3.3.2. It is inspired by
the let binder from SMT-LIB [18], which is used to name sub-terms, leading to
more compact formulas. This variation handles a string operation present as a sub-
term in B as if it was stored in a local variable and adds an additional clause from
Table 3.3 that equates this sub-term (instead of a variable) to another operation.

Figure 3.8 shows a more complex unsat formula obtained by applying this trans-
formation for the indexOf operation: the first line represents ¬A (see E5 from Ta-
ble 3.2), lines 2–9 encode its equivalent formula B (we use the boolean variables
cond1 and cond2 to simplify the notation), and the last line is EV4 from Table 3.3,
applied for the sub-term substr(t, 0, i), whose result is a string. This additional
clause trivially holds and has no influence on the unsatisfiability proof. How-
ever, it can complicate the reasoning if the solver introduces a local variable for
substr(t, 0, i), since substr(t, 0, i) from the last line in Figure 3.8 is not the same
as the sub-term from the body of the quantifier; the i in the last line is a free vari-
able, while the one from line 5 is quantified. This formula is syntactically correct,
as the two i variables have different scopes.

Soundness issues. The number of tests that failed due to soundness issues is
shown in Table 3.4 with a grey background. We classify an answer as being un-
sound if the solver returned sat instead of unsat, or vice versa, or if it generated an
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¬(indexOf(s, t, off ) = res) ∧
(cond1 ⇒ res = off ) ∧
(cond2 ⇒ (s = s1 ++ s2 ++ t ++ s4 ∧ off = length(s1) ∧

(∀i :: {substr(t, 0, i)} i ≥ 0 ∧ i < length(t)⇒
contains(s2 ++ substr(t, 0, i), t) = false) ∧

res = length(s1 ++ s2))) ∧
(¬cond1 ∧ ¬cond2 ⇒ res = −1) ∧
(cond1 = (t = ”” ∧ off ≥ 0 ∧ off ≤ length(s)) ∧
(cond2 = (t 6= ””∧ off ≥ 0 ∧ off ≤ length(s)) ∧
(replace(substr(t, 0, i), substr(t, 0, i), substr(t, 0, i)) = substr(t, 0, i))

Figure 3.8: An unsat formula generated in step 2 through the variation of the redundancy
introduction transformation, which exposes an unsoundness in Z3str3. off , res,
and i have type Int, cond1 and cond2 have type Bool, and all the other variables
have type String.

invalid model. An incorrect unsat core represents a soundness problem if the gen-
erated unsat core is not unsatisfiable. We observed this kind of error only for Z3str3,
for the larger unsat core transformation and for the equivalent formula category. For
redundancy introduction, the cores generated by all the solvers were always valid,
but not necessarily minimal; we consider that an imprecision, not an unsoundness.

For CVC4, none of the test cases revealed soundness issues. By contrast, Z3str3

has the highest number of tests that fail due to soundness bugs for both sat and
unsat formulas. The variation of the redundancy introduction transformation de-
scribed before proved to be useful in exposing soundness errors only for Z3str3.
Figure 3.8 presents an unsat formula for which Z3str3 unsoundly returns sat.

Some other example inputs for which Z3str3 produces an incorrect result have
already been discussed in the previous sections. Figure 3.9 shows another type of
unsoundness, i.e., a sat formula obtained through the constant assignment trans-
formation for which the solver correctly answered sat, but generated an invalid
model: sfresh = ”3MayMayMaZ”, tfresh = ”MayM”, offfresh = 1; with these inputs,
the result of indexOf is 1, not 0, as prescribed by the formula in Figure 3.9.

Note that Z3str3 did not support non-ASCII strings at the time of writing. Out of
the 245 sat formulas unsoundly solved by Z3str3, 22 contain such strings. For a fair
evaluation, we replaced them with ASCII strings and repeated the experiments.
The results were the same. Moreover, the solvers use mathematical integers, while
our executable semantics uses bounded integers. We manually inspected the few

indexOf(sfresh, tfresh, offfresh) = 0

Figure 3.9: A sat formula generated in step 2 through constant assignment for which
Z3str3 produces an incorrect model. offfresh has type Int, sfresh and tfresh have
type String.
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contains(intToStr(nfresh), at(sfresh, nfresh)) = contains(sfresh, sfresh)

Figure 3.10: A sat formula generated in step 2 through term synthesis for which Z3-seq’s
result depends on the random seeds. nfresh has type Int, sfresh has type String.

models rejected by our executable semantics that contained large numbers. All of
them were valid and are, thus, not reported as errors in Table 3.4.

Other issues. Besides soundness problems, our tests revealed various complete-
ness, performance, and implementation errors. For instance, the unknown result
points to a completeness issue. Z3-seq returned unknown for approx. 17% of our
sat formulas, blaming incompleteness in the sequence theory in all 1 003 cases.
We reported several failing tests and some of them have already been fixed. The
timeout result suggests a performance problem, frequently observed for unsat
formulas for all three solvers. Several tests also failed for Z3str3 and CVC4 due to
implementation errors. For CVC4, many tests hint at completeness or performance
problems for unsat formulas, both with and without patterns for quantifiers. The
reason, confirmed by the developers, is that with the given patterns, many of the
quantifiers are not instantiated by default through E-matching [62]. Moreover, the
enumerative instantiation [136], which is used by CVC4 when E-matching satu-
rates, does not work optimally for non-primitive string operations. We reported
the problem, and for some of our test cases, it has been already fixed.

Adding patterns for quantifiers did not improve the results for Z3-seq and
Z3str3. This experimental result suggests that the patterns we specified are sim-
ilar to the ones automatically inferred by the two Z3-based solvers, which use the
same engine for instantiating quantifiers. Another reason for the unknown result
is incompleteness in the sequence theory, reported by Z3-seq for 33% of the failed
tests. Z3str3 does not provide details on the reason for the incompleteness.

Our approach can be also used for discriminating between various configura-
tions of the solvers. For example, to test their robustness, we set the random seeds
to 1 465 (a value chosen arbitrarily), and we repeated the experiments. For CVC4

the results were the same. Z3-seq and Z3str3 were less robust. Figure 3.10 shows
a test case for which Z3-seq correctly returned sat when the seeds were 0 but an-
swered unknown for the seeds 1 465. Note that all the other examples from this
chapter were obtained with the random seeds set to 0.

The test cases that failed in our experiments do not necessarily refer to unique
bugs. This is a general problem of any testing tool and is orthogonal to our formu-
las synthesis technique. Several approaches have been proposed in the literature
for clustering static analysis alarms [125]; we could apply these ideas to our work,
to automatically group the failing tests into similarity-based clusters. Note that our
synthesis algorithm reduces by construction the number of redundant test cases;
step 2 applies individual transformations to the simple formulas generated in step 1

(see Algorithm 3.1 and Algorithm 3.5), that is, it does not chain together transfor-
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Z3-seq Z3str3 CVC4

#Issues T WS F T WS F T WS F

closed 9 6 5 3 3 3 5 3 1

open 5 3 1 10 6 5 0 0 0

T = total # of issues; WS = within the scope of this work; F = found issues

Table 3.5: Known bugs for Z3-seq, Z3str3, and CVC4.

mations. However, we do apply step 2 even to those formulas that already lead to
a failing test in step 1, as this may uncover additional bugs. For example, Z3str3

timed out during step 1 for the formulas based on E3 and E5 but was unsound for
tests derived in step 2 from these inputs.

Known bugs. Due to the large number of failed tests and the complexity of the
implementation of the SMT solvers, it is not feasible to manually determine how
many distinct bugs we uncovered. To evaluate how effective our technique is in
detecting distinct bugs, we assessed how many of a set of known bugs are found
by our test cases. For Z3-seq and Z3str3, we considered the closed issues reported
by the users from 23

rd May 2018 until 26
th January 2019, as well as all the currently

open issues with the labels string or z3str3 that were confirmed by the devel-
opers and do not explicitly refer to other versions than 4.7.1. Similarly, for CVC4

we considered the issues reported from 25
th June 2018 until 17

th April 2019 (both
closed and still open) related to the string theory.

The known bugs are summarized in Table 3.5. From the total number of issues
(column 1 for each solver), we removed the ones that are not in the scope of this
work, that is, contain regular expressions, user-defined functions based on string
operations, or formulas combining string operations with bit-vectors, which the
approach presented so far does not support (see Section 3.5 for its extensions).
We also excluded the issues explicitly caused by configurations that we do not
use. We report as found (column 3 for each solver) only those bugs for which we
could manually find a failing test case that exhibits it, based on the description
from the comments or inferred from the fix. Known bugs not reported as found
might still be detected by our test suite, but we were not able to clearly identify
an appropriate test case. That is, the reported number of found bugs is a lower
bound on the actual number. This experiment shows that our technique effectively
detects bugs that occurred in actual applications of the three tested solvers, were
reported and confirmed. In total, we found 15 out of 21 bugs (71%).

Sensitivity analysis. The effectiveness of our technique depends on three ingredi-
ents: (1) the set of predefined constants, (2) the combinations of operations used
in a formula, needed to test their interactions, and (3) the usage of different ran-
dom seeds. The manual inspection of the tests that detected the known bugs from
Table 3.5 shows that all three ingredients are necessary. Finding some of the bugs
required specific ways of constructing the inputs; e.g., the implementation errors
from CVC4 are revealed only by the tests that use the equalities EV1 and EV5
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#Failed tests Z3-seq (4.8.6) Z3str3 (4.8.6) CVC4 (1.7)

S 6 [out of 1 110] 237 [out of 501] 0 [out of 0]

U 156 [out of 254] 267 [out of 272] 335 [out of 338]

Up
156 [out of 254] 274 [out of 278] 337 [out of 340]

S = sat; U = unsat; Up = unsat formulas with patterns (from Table 3.2)

Table 3.6: Failed tests on newer versions of the SMT solvers.

from Table 3.3 to rewrite variables from E10 and E12. Similarly, a soundness bug
in Z3str3 is detected only by the test that replaces the result variable from E3

using the equality EV1. Other bugs are revealed by several inputs that follow
a common pattern, such as formulas obtained through constant assignment that
test the indexOf operation with negative or out-of-bounds offset, or formulas gen-
erated through term synthesis that include intToStr or strToInt as arguments
for other operations. The bug from Figure 3.10 can be observed only when test-
ing the contains operation twice, with different random seeds. Our experiments
do not suggest that certain equivalences (from Table 3.2) or transformations (from
Section 3.3) are substantially more useful than others.

Recent improvements. As mentioned before, we reported several bugs for the
three SMT solvers, many of which were confirmed or fixed. To assess the recent
improvements, we re-ran the failed tests on newer versions of the solvers, i.e., 4.8.6
for Z3-seq and Z3str3 and 1.7 for CVC4. The cumulative results for all types of er-
rors are presented in Table 3.6. In the following, we discuss our main observations,
focusing on the soundness bugs.

Compared to the results from Table 3.4, summarized between square brackets
in Table 3.6, the number of failing tests decreased substantially for the Z3-based
solvers, at least in part due to our bug reports. For Z3-seq, no sat test still failed due
to soundness bugs. For 69 unsat formulas based on intToString, Z3-seq returned
sat; we reported 1 new soundness bug and it was confirmed. For Z3str3, 40 sat and
33 unsat tests failed due to soundness problems. Some of them correspond to open
bugs, and we reported 3 additional soundness errors.

For CVC4 we did not find soundness bugs; the tests failed due to performance
issues and because the minimization of the unsat cores was not yet supported.
This feature was added in the meantime and the developers further improved the
performance in response to our bug reports, but these changes were not yet part
of the main branch at the time of writing.

All these results were obtained with respect to the SMT-LIB semantics. Even
though for some operations the semantics described in the documentation of a par-
ticular solver may be slightly different, none of the bugs we reported were consid-
ered false positives by the developers; all three solvers intend to comply with
the standard. Our experiments show that soundness and completeness bugs in
decision procedures are not uncommon. They are due to various issues, e.g., mis-
interpretations of the expected semantics, flaws in the used algorithms, coding
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errors, etc. These findings have implications for solver’s developers, who need to
systematically test for such bugs. Our work offers a technique to accomplish that.

3.4.2 Comparison with fuzzers for string formulas

In this subsection, we compare our technique with StringFuzz [31], a state-of-the-
art test case generator for string formulas. For this experiment, we ran parts of
a test suite generated by StringFuzz (from the folder generated.zip [158]) on the
three SMT solvers, using the same versions as for our main experiments, i.e., 4.7.1
for Z3-seq and Z3str3, and 1.6 for CVC4. We discarded the tests for which the
expected result was not specified, as for them we could not automatically classify
the actual result as correct or not. In total, we included 700 tests in SMT-LIB 2.5
format, from nine categories: lengths-short, lengths-long, lengths-concats,
concats-small, concats-big, concats-balanced, different-prefix, regex-
small, and regex-big. All of them are quantifier-free and 120 tests include regular
expressions (which our test cases do not contain). We used the same experimental
setup as for our tool (with the random seeds set to 0) and we set the lang option
to smt2 for CVC4, to avoid parsing errors.

Since StringFuzz cannot check if the generated models and unsat cores are cor-
rect, we considered that a test passed when the solver answered sat or unsat, as
expected. Z3-seq and Z3str3 timed out for 82 tests and returned correct results for
all the others. Similarly, 74 tests failed for CVC4 due to timeout, while all the oth-
ers passed. This experiment shows that StringFuzz could detect performance prob-
lems, but no soundness or completeness bugs. A reason may be that, besides regex,
StringFuzz can generate only formulas with primitive string operations, which are
not enough for revealing these classes of errors. In contrast, our technique also
uncovered several soundness and completeness errors in the same versions of the
SMT solvers, including confirmed bugs.

3.4.3 Testing automata-based solvers

Our technique is not specific to SMT solvers; it can also be applied for testing other
types of solvers, such as automata-based solvers. In this subsection, we present the
results for MT-ABC [9], an automata-based solver that performs model counting.
MT-ABC supports both string and numerical constraints and classifies an input
formula as satisfiable if the counted number of models is greater than 0. For some
constraints, it may over-approximate the set of solutions, thus imprecisely answer-
ing sat for an unsat formula. Nonetheless, a sound implementation should not
classify a sat formula as unsat.

As MT-ABC accepts as input a subset of the SMT-LIB format, we used a mod-
ified version of our tests that contains only supported features. We also replaced
the escape sequence for double quotes within a string literal with the correspond-
ing one in MT-ABC. As non-ASCII strings were not yet supported, we discarded
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#Tests with actual result

Result Category #Tests S U E

S operation 12 11 1 0

S constant 3 568 3 145 275 148

S term syn 1 394 974 175 245

U ⇔ formula 6 4
∗

2 0

U larger ucore 121 63
∗

56 2

U redundancy 71 36
∗

35 0

#S failed tests (out of 4 974) 844

#U failed tests (out of 198) 105

S = sat; U = unsat; E = error n = #failed tests unsoundness

constant = constant assignment n∗ = #failed tests imprecision

larger ucore = larger unsat core ⇔ formula = equivalent formula

redundancy = redundancy introduction term syn = term synthesis

Table 3.7: Overview of our results for MT-ABC.

the sat tests that included these constants in the formulas or in the possible model.
The unsat tests based on E2, E5, E6, E8, E10, and E12 from Table 3.2 could not be
handled by MT-ABC because it did not support quantifiers and the mod operator,
so we removed them as well. We tested the code version [123], using default op-
tions. This commit includes a fix for E7, E9, and E11, based on a crash that we
found and reported. We used the SMT-LIB Unicode Strings Theory [156] as the
reference semantics because MT-ABC recently updated the implementation of the
string operations to match this standard.

The results are summarized in Table 3.7. The soundness issues are shown with
a grey background, while the imprecisions are marked with *. As it can be ob-
served, our technique effectively synthesized formulas that exposed various sound-
ness and precision issues, as well as implementation failures for different string op-
erations. For example, MT-ABC unsoundly returned unsat for the formulas from
Figure 3.3 and Figure 3.5. We have already reported 6 distinct soundness bugs and
6 crashes for constant assignment and for the operation category, since they are eas-
ier to debug. The developers confirmed them and appreciated that we sent simple
formulas that expose the bugs. As a result, some of them were fixed within a day.

3.4.4 Subsequent work on testing SMT solvers

Testing SMT solvers is a topic that has received a lot of attention from the research
community in the last two years. Next, we discuss our work in the context of con-
current or subsequent research efforts in this area. These are presented in Table 3.8,
columns 2–10, and are grouped by the testing techniques on which they are based.

For the comparison, we considered the following features (Table 3.8, column 1):
(1) the ground truth of the generated formulas is known by construction; (2) for
sat formulas, the approach can also generate a witness model; (3) the model pro-
vided by the solver can be validated by the technique itself, without using an SMT
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Differential testing Metamorphic testing Fuzzing Semantic fusion Our

Feature [190] [181] [131] [132] [186] [141] [117] [185] [182] work

known ground truth − − − − X − X − X X

witness model − − − − − − − − ≈ X

model validation − − − − − − − − − X

expected unsat core − − − − − − − − − X

no seed formulas − − − − − − − X − ≈
no minimization − − − − − − − − − X

all logics/theories X X X X X − X X − ≈
stable versions − − − − − X − − − X

more configurations − X − X − − X X − −
coverage/traces − X − X X − X X X −

X = fully supported ≈ = partially supported − = not supported

Table 3.8: Comparison between our work and recent techniques for testing SMT solvers.

solver; (4) for unsat formulas, the minimal expected unsat core is known; (5) the
approach does not require seed formulas; (6) no minimization of the formulas is
necessary; (7) the technique generates formulas from all the SMT logics/theories;
(8) the approach was evaluated on stable (release) versions of the solvers; (9) the
work considers various options/configurations of the solvers; (10) the technique
analyzed the coverage/execution traces achieved by the generated test suite.

Our technique has the features (1)–(4), (6), and (8). It tests the solvers using stan-
dard configurations (9), does not consider coverage nor execution traces (10), and
does not generally require seed formulas (5) (but for the unsat case it starts from
a set of given equivalences, which can be seen as seeds). The examples presented
so far and our evaluation from Section 3.4.1 focus on the string theory (7). However,
Section 3.5 discusses how our work generalizes to other theories and Section 3.6
presents possible ways of supporting uninterpreted functions and quantifiers for
sat formulas (some of our unsat formulas are already quantified). In the following,
we explain in more details the comparison from Table 3.8.

Differential testing. Concurrent work by Zhang [190] (Table 3.8, column 2) and
subsequent work by Winterer et al. [181] (Table 3.8, column 3) introduce type-
aware mutation, a technique that generates inputs for differential testing by re-
placing operators of the original formulas with other operators of conforming
types. This approach is further generalized in [131, 132] to generative type-aware
mutation (Table 3.8, columns 4–5). However, it does not have a test oracle (i.e., it
uses two SMT solvers for cross-checking the results), relies on the solver’s internal
checks for validating the models, and requires seed formulas. Our technique syn-
thesizes simple formulas and then increases their complexity through satisfiability-
preserving transformations. Directly comparing our work with [131, 132, 181, 190]
in terms of the number of bugs found can be misleading: we report a lower bound
for the number of unique bugs found in one stable (release) version of each tested
solver, while the related works consider all the commits performed within a time
span (e.g., from September 2019 to September 2020 in [181]). Moreover, their eval-
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uations use formulas from arbitrary (combinations of) logics, whereas our experi-
mental results refer only to the theory of strings, without regular expressions.

Metamorphic testing. It addresses the oracle problem through metamorphic re-
lations [164], which for SMT solvers are usually satisfiability-preserving transfor-
mations; thus a bug is found if the solver returns different results for the original
and the modified input (the mutant). Recent work by Yao et al. [186] (Table 3.8,
column 6) uses as mutants equisatisfiable over- and under-approximations of the
seed formulas, thus the ground truth is known by construction. These are com-
puted based on predefined mutation rules, which are somewhat similar to our
equivalences from Table 3.2 and Table 3.3. Moreover, we automatically synthesize
seed inputs with a known expected output, while [186] starts from existing ones.

Fuzzing. Recent work by Scott et al. [141] (Table 3.8, column 7) combines fuzzing
with reinforcement learning to generate, based on a given input grammar, quantifi-
er-free SMT formulas from the string and floating-point arithmetic theories that
can expose performance issues. Our approach mainly targets soundness problems,
but can reveal also performance, completeness, and implementation errors. Subse-
quent work by Mansur et al. [117] (Table 3.8, column 8) proposes a black-box mu-
tational fuzzing technique, which generates satisfiable formulas from seed inputs.
As opposed to our approach, it considers only one of the four types of unsound-
ness, i.e., the case where the solver returns unsat for a satisfiable formula. We also
construct unsatisfiable formulas and check the validity of the models and of the
unsat cores produced by the solvers. Recent work by Yao et al. [185] (Table 3.8,
column 9) generates seed formulas from a context-free grammar and considers
the fuzzing space two-dimensional: besides the formulas, it mutates also those
solver’s configurations that might be relevant for a particular input. Our technique
focuses on default configurations that allow models and unsat cores construction
and minimization, but our formulas with known ground truth can be used also
with different options (e.g., with a new random seed, as in Section 3.4.1).

Semantic fusion. Subsequent work by Winterer et al. [182] (Table 3.8, column 10)
introduces semantic fusion, a technique that combines two equisatisfiable input
formulas into a new, equisatisfiable one. For this, it relies on manually-provided
fusion and inversion functions, in the same way in which we start from equivalent
formulas when generating unsat inputs. The fusion functions can also construct
a model for each sat formula, from the models of the two fused components (as-
suming these are given). Similar to [117, 131, 132, 181, 190], the approach requires
seed formulas, and additional minimization techniques once a bug has been found.
Our work produces increasingly complex formulas; this allows the developers to
understand and fix the errors faster.

Overall, we believe that our technique offers stronger guarantees than the sub-
sequent approaches, as it synthesizes formulas that are satisfiable or unsatisfiable
by construction, together with models or with minimal unsat cores. It provides
also an independent mechanism (i.e, which does not rely on an SMT solver) for
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model validation and does not require minimization. However, all the works have
been effective in detecting previously-unknown bugs, due to their complemen-
tary strengths. The developers of SMT solvers might thus benefit even more from
a combination of techniques. In particular, our work could be used to generate
seed formulas for semantic fusion. Moreover, our idea of leveraging the concrete
execution for obtaining a witness model could be used to construct the test oracle
(for the sat case) by the fuzzing and type-aware mutations techniques that require
a second solver for checking the returned results.

3.4.5 Threats to validity

We identified four threats to the validity of our experiments:

Ground truth. Our technique relies on an executable semantics for the string op-
erations, on the equivalent formulas from Table 3.2, and on the equalities from
Table 3.3. Errors in these components could lead to incorrect tests. To mitigate this
threat, we carefully reviewed all the components of our approach. Since they are
simple variations of the SMT-LIB semantics, we are confident that they are correct.

Non-deterministic behavior. The solvers use randomized algorithms, which can
lead to non-deterministic behavior (see Section 3.2.2 for an example). We mitigated
this problem by fixing the random seeds and by performing the experiments from
Section 3.4.1 with two different values. Nevertheless, the Z3 Java API that we use
for generating the SMT files can non-deterministically assign names to temporary
variables (from let expressions). Since for some solvers these names can influence
the internal heuristics used for solving, some of the results from Table 3.4, Table 3.6,
and Section 3.4.2 may require multiple runs to be reproduced.

Pattern selection. The patterns chosen for the quantified formulas are independent
of the way in which each solver handles quantifier instantiations. Other patterns
could have been more efficient for proving that certain formulas are unsat or alter-
native rewritings of the formulas could have better triggered particular instantia-
tions. Nonetheless, our patterns are configurable and we ran the experiments with
and without patterns to assess their impact.

Known bugs. To determine if our technique generates test cases that can detect
known bugs, we manually matched some of the failed tests against the confirmed
bugs. As we reported only clear matches as found bugs, we are confident that
Table 3.5 shows a lower bound on the number of known bugs we detected.

3.5 extensions

Next, we explain how our technique can be extended to generate formulas from
other theories (e.g., fixed-size bit-vectors, arrays, etc.) and from combinations of
theories (Section 3.5.1), as well as formulas with regular expressions (Section 3.5.2).
We also show how our work can be used to test MAX-SMT solvers (Section 3.5.3).
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3.5.1 Other theories

The main ingredients of our technique are not specific to strings. One can construct
quantifier-free sat formulas from any theory that has an executable semantics (e.g.,
integers). If the operations are total functions and all their values are specified by
the standard, then the model validation can be also done automatically (partial
functions and operations such as real division ("/") pose additional challenges in
checking the correctness of the model; e.g., division by 0 is defined, by its result is
not specified [18]). Quantified logics and logics that allow uninterpreted functions
are supported by our sat approach in a limited way, as we explain in Section 3.6.

Moreover, unsat formulas can be generated as long as operations or constants
from the theory under test can be expressed in multiple forms. For instance, the
fact that x is a positive real number can be expressed as x ≥ 0 but also as ∃y : Real ::
x = y ∗ y (every positive real number has a square root). The constant 0 can be
also defined through operations from the theory of reals: ∀z : Real :: 0 = z + (−z).
From these equalities, one can generate the formula F := ¬(x ≥ (z+(−z)))∧ (x =
y ∗ y), which is unsatisfiable by construction (we omitted the quantifiers to simplify
the notation). F has the shape ¬A ∧ B from Section 3.2.2, with A ⇔ B. Similar
rewritings or equalities do exist for other theories.

Bit-vectors and arrays. Together with Becker, we showed in his Bachelor thesis [20]
that our technique can be extended to fixed-size bit-vectors and arrays and can also
generate formulas that combine multiple theories. Supporting bit-vectors is mostly
straightforward, both for the sat and the unsat case: the Java BitSet class contains
most of the SMT-LIB bit-vector operations [154] (with minor differences in seman-
tics that we accounted for) and one can write equivalent formulas and equalities
similar with those from Table 3.2 and Table 3.3 (see Table 2 and Table 4 from [20]).
However, the SMT-LIB arrays [152] cannot be mapped to Java arrays, since they
are more generic and allow keys of arbitrary types (not only natural numbers, as
in Java); we can thus use Maps to represent them in Java and to evaluate the sat
formulas on concrete values [20]. Nevertheless, the fact that SMT-LIB defines only
two operations for arrays, select and store [152], poses additional challenges in
generating unsatisfiable formulas.

We addressed them in [20] by adapting the sat constant assignment transforma-
tion (from Section 3.3.1) for synthesizing unsat formulas: we first evaluate each
simple formula F generated in step 1 on a set of predefined constants (as shown
in Algorithm 3.2, lines 4–6), then we construct more complex formulas of the form
F[constArgs/args(F)] = c, where c is a constant from the predefined set different

store([true→ true, false→ true], false, false) =
[true→ false, false→ false]

Figure 3.11: An unsat formula generated in step 2 through the unsat constant assignment
transformation (defined in [20]), for which Z3 unsoundly returns sat.
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store([0000→ ”a”, 0001→ ”a”, . . . , 1111→ ”a”], 0000, ””) =
store([0000→ ””, 0001→ ””, . . . , 1111→ ””], 0010, ”a”)

Figure 3.12: An unsat formula generated in step 2 through the hybrid unsat constant
assignment – term synthesis transformation (defined in [20]), which uses
fixed-size bit-vectors as keys and Strings as values in the array. For this
formula, Z3 unsoundly returns sat.

from the value obtained through the concrete execution. This modified transfor-
mation yields formulas without any free variables (i.e., in which all the parameters
and the result are fixed). Figure 3.11 shows an example input generated by this
transformation. The right-hand side represents a constant array with Boolean keys,
where all the values are false. The left-hand side is obtained by storing the value
false at the key false in an array where all the values were initially set to true.
Since the equality does not hold, the formula is unsatisfiable. However, Z3 (version
4.8.12) unsoundly returns sat (see Chapter 5 from [20] for additional results).

Similarly, we also defined a hybrid unsat transformation that combines constant
assignment with term synthesis. This transformation generates unsatisfiable for-
mulas with more complex results, by equating F[constArgs/args(F)] with terms
from the theory under test (that is, sequences of operations applied to constants,
not only constants, as before), whose concrete values are different from the result
of evaluating F on constArgs [20].

Combinations of theories. Strings, bit-vectors, arrays, booleans, and integers can
be directly combined, as all these theories define operations [152–156] that can
generate arguments or results for the operations available in the other theories,
e.g., the strings length operation produces an integer (see Table 3.1), which can be
used as the first or second argument to the bit-vectors extract operation. Table 8

from [20] provides an overview of the operations, grouped by their return type.
They can be used for the sat case (during term synthesis), as part of the constant/
variable rewritings for unsat formulas, or during the hybrid transformation [20].
Moreover, since the arrays map arbitrary key types to arbitrary value types, the
select operation can return any specific type.

Testing the SMT solvers with formulas containing terms from multiple theories
can reveal bugs that cannot be detected by considering each theory in isolation.
Such a formula that uncovered an unsoundness in Z3 (version 4.8.12) is given in
Figure 3.12. It maps bit-vectors of length 4 to strings and was obtained by applying
the hybrid transformation described above [20]. The bug was confirmed and fixed.

Figure 3.13 shows an example that combines arrays, bit-vectors, booleans, and
strings, for which CVC4 (version 1.8, i.e., the latest version) generated an invalid
model: afresh = [0000 → false, 0001 → true, 0010 → false, . . . , 1111 → false]
(all the positions, except from 0001, are set to false), bfresh = 0000, efresh = false,
sfresh = ””; with these value, the left-hand side evaluates to false, while the right-
hand side is always true. The error has been fixed in CVC5 [59] (the successor of
CVC4 1.8), without an explicit bug report [20].



3.5 extensions 69

select(store(afresh, bfresh, efresh), bvnot(bfresh)) = contains(sfresh, sfresh)

Figure 3.13: An unsat formula generated in step 2 through term synthesis, which uses
fixed-size bit-vectors as keys and booleans as values in the array. afresh has
type Array[BitVector4, Bool], bfresh has type BitVector4, efresh has type Bool,
and sfresh has type String. For it, CVC4 produces an incorrect model.

3.5.2 Regular expressions

The technique presented so far focuses on testing the implementation of the string
operations (from Table 3.1) but does not consider regular expressions (regex), which
are also defined within the theory of strings [156]. Regular expressions are partic-
ularly important for security applications (e.g., they are used by cloud policy lan-
guages, such as [11]), thus it is crucial that the SMT solvers handle them soundly.

However, this is not always the case in practice. Figure 3.14 shows a satisfiable
formula for which Z3-seq (version 4.8.14) and Z3str3RE [22] (a new solver for reg-
ular expressions) return unsat. The range operation produces the set of singleton
strings whose ASCII values are within the ASCII values of the given bounds [156].
Since ASCII(”b”) > ASCII(”a”), the result is the empty set of strings (represented
through the constant regex re.none). Our transformations can be extended to gen-
erate formulas with regular expressions, as well as formulas that combine regex,
strings, arrays, and bit-vectors. For instance, the input from Figure 3.14 was ob-
tained by applying the constant assignment transformation to the range operation.

We explored these ideas together with Kühne, in his Bachelor thesis [99]; there
we proposed two alternative approaches for constructing a pool of representative
regular expressions (which are used by the sat transformations) and defined a set
of equivalent formulas for the unsat case. Moreover, we used the dk.brics.auto-
maton package [170] for implementing the executable semantics, as two regular ex-
pressions are equal if they describe the same regular language, but this comparison
is imprecise on their string representation from standard Java. The package per-
forms the equality check on the level of their corresponding finite-state automata.
Our experiments show (see Chapter 6 from [99]) that state-of-the-art SMT solvers
do not have good support yet for variables of type regular expression and for regex
equality (e.g., CVC5), or they often produce incorrect models (e.g., Z3str3).

Note that it is also possible to design a generalized hybrid unsat transformation,
which combines constant assignment and term synthesis in a more generic way
than our transformation from [20]: the arguments and the result of an operation

range(”b”, ”a”) = re.none

Figure 3.14: A sat formula generated in step 2 through constant assignment, which ex-
poses an unsoundness in Z3-seq and Z3str3RE. re.none is a constant regular
expression denoting the empty set of strings (i.e., the empty language).
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string_in_regex(””, repeat(189, 0, string_to_regex(””))) = true

Figure 3.15: An unsat formula for which Z3 unsoundly returns sat. It can be obtained in
step 2 through the generalized hybrid unsat transformation.

are either constants or sequences of operations over constants; to ensure unsatis-
fiability, the result is chosen such that its concrete value is always different than
the concrete value of the evaluated operation. This transformation allows us to
synthesize formulas similar to the one from Figure 3.15, which checks if the empty
string is included in the regular language described by the regex which repeats the
empty string at least 189 and maximum 0 times. According to SMT-LIB [156], the
repetition where the lower bound is higher than the upper bound yields the empty
language. The formula is thus unsat, but Z3 (version 4.8.7) unsoundly reports sat.
However, we did not include this transformation in our evaluation from [99].

3.5.3 MAX-SMT solvers

Our technique is also applicable for testing a different class of SMT solvers, namely
MAX-SMT solvers, which are designed for optimization problems [29]. These
solvers distinguish between hard constraints (which have to hold) and weighted
soft constraints (which may hold). Given an input formula consisting of both hard
and soft constraints, the task of a MAX-SMT solver is to: (1) determine if the hard
constraints are satisfiable, (2) if they are, then to also identify a subset of the soft
constraints which hold together with the hard constraints, such that the sum of
the corresponding weights is maximized. As opposed to a regular SMT solver,
a MAX-SMT solver produces an invalid model (i.e., is unsound) also when there
exists a different subset of the soft constraints than the one identified by the solver,
whose some of the weights is the maximal sum of the satisfiable soft constraints.

Automatically testing MAX-SMT solvers thus requires inputs that contain hard
and weighted soft constraints; for sat formulas, the maximum sum of the weights
has to be known by construction, as this represents an additional test oracle.

All the formulas presented so far in this chapter contain only hard constraints.
In the following, we briefly describe how our transformations from Section 3.3.1
and Section 3.3.2 can be used to also generate formulas with soft constraints. Note
that the absence of a hard constraint is equivalent to a true hard constraint. For
this reason, formulas that have only soft constraints are by construction satisfiable.

Sat formulas with soft constraints. A possible way to synthesize such inputs is to
encode our simple formulas from step 1 as hard constraints and the sat transfor-
mations as soft constraints with positive weights (MAX-SMT solvers support also
negative weights, which represent the penalty they have to pay for finding models
that satisfy the corresponding soft constraints). Following this approach, we obtain
MAX-SMT formulas where all the constraints (both hard and soft) are satisfiable
together. Figure 3.16 illustrates the MAX-SMT version of our motivating example
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(replace(s, t, u) = res)(H) ∧ (s = ””)(S,w1) ∧ (res = ”a”)(S,w2)

Figure 3.16: A sat MAX-SMT formula generated by encoding the simple formula from
Figure 3.2 as hard constraint (H) and the constant assignment transforma-
tion as soft constraints (S). w1, w2 ∈ N∗ are the weights of the soft constraints.
All the variables have type String.

from Figure 3.1. (For presentation purposes, we mark the hard constraint explicitly
but in SMT-LIB [18] any constraint not declared as soft is considered hard.) This
formula is satisfiable, with a possible model s = ””, t = ””, u = ”a”, res = ”a”
(obtained as before, through concrete execution); the expected maximum sum of
the satisfiable soft constraints is w1 + w2, for any actual weights w1, w2 ∈ N∗.

Unsat formulas with soft constraints. A MAX-SMT formula is unsatisfiable only
if the hard constraints are unsatisfiable. Thus to preserve the known ground truth,
the complex formulas obtained in step 2 through the constant/variable replace-
ment transformations and the redundancy introduction transformation for quanti-
fied variables have to be encoded as hard constraints. The additional clause C from
the redundancy introduction transformation for free variables (see Algorithm 3.6,
line 4) can be represented as both hard and soft constraints (the choice determines
the size of the unsat core). To increase the complexity of the resulting formulas, we
can include additional satisfiable soft constraints, generated as explained for the
sat MAX-SMT case. Figure 3.17 shows an example, where the res variable from E1

was rewritten using EV1. The soft constraints do not influence the satisfiability of
the input, as the hard constraints are by construction unsatisfiable.

Starting from this technique, we defined together with Thommen in his Bache-
lor thesis [172] new transformations, which produce more complex formulas (e.g.,
sat formulas consisting only of soft constraints or containing both satisfiable and
unsatisfiable soft constraints, to check the solver’s ability to identify the optimal
subset, etc.). We are currently also exploring ways to extend our approach to syn-
thesize formulas that model multi-objective problems (the ones from Figure 3.16

and Figure 3.17 are single objective) [172].

(¬(at(s, off ) = res))(H) ∧ (resfresh = substr(s, off , 1))(H) ∧
(at(res, 0) = resfresh ∧ length(res) = 1)(H) ∧
(s = ””)(S,w1) ∧ (res = ”a”)(S,w2)

Figure 3.17: An unsat MAX-SMT formula generated by encoding a complex formula
obtained through variable replacement as hard constraints (H). The soft con-
straints (S) increase its complexity. w1, w2 ∈ N are the weights of the soft
constraints. off has type Int, all the other variables have type String.
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3.6 limitations

Next, we explain the limitations of our technique and discuss possible solutions.

Quantified sat formulas. Our sat transformations are based on concrete execu-
tion and ensure that each complex formula evaluates to true for at least one set
of concrete values. However, this allows us to synthesize only quantifier-free for-
mulas; universally-quantified formulas would require stronger guarantees, which
cannot be provided for variables of infinite types (such as String). For instance,
the truth value of the formula ∀s : String :: length(s) ≥ 0 cannot be determined
automatically, as we cannot evaluate it for all possible strings s. Nonetheless, our
technique is applicable to quantification over finite types (e.g., Boolean, bit-vector
of a predefined size, etc.), since for these types one can efficiently enumerate all
the combinations of values for the free variables.

Uninterpreted functions. Our synthesized formulas contain only interpreted func-
tions from the theories under test. However, SMT-LIB supports also uninterpreted
(user-defined) functions and types. Operations over variables of uninterpreted
types are usually expressed through uninterpreted functions; as they do not have
an executable semantics, our technique for the sat case is not directly applicable.
However, a formula is satisfiable if, besides concrete values for the free variables,
there exists an interpretation for each uninterpreted function such that the formula
evaluates to true. We could thus fix the interpretation of an uninterpreted func-
tion to the interpretation of a particular interpreted function and generate formu-
las that assert properties about it. For instance, we could generate the sat formula
f(”a”) = 1, where f : String → Int is uninterpreted. In our witness model, f can
have the same interpretation as length.

For the unsat case, we could use the mathematical definition of a function and
generate simple unsatisfiable formulas of the form F := (x = y) ∧ ¬(f(x) = f(y)).
The solver cannot find an interpretation for f, since there does not exist a (deter-
ministic) function which applied to the same arguments, returns different results.
If x and y are variables of built-in types, we could then derive more complex for-
mulas by applying the variable replacement transformation from Section 3.3.2. We
could also define new transformations, which introduce additional uninterpreted
functions, and produce, e.g., F := (f(x) = f(y)) ∧ ¬(g(f(x)) = g(f(y))).

3.7 related work

The developers of SMT solvers usually create their own test suites, which include
manually-written tests and regression tests derived from bug reports [58, 188]. Our
approach automates parts of this time-consuming process by generating test cases
of incremental complexity; this facilitates debugging and faster error localization.
Moreover, our experiments demonstrate that our technique is applicable also to
automata-based solvers, which was not shown by any other related work.

In the following, we present the research efforts not considered in Section 3.4.4.
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Differential testing. A common approach used in practice is differential test-
ing [119], which compares the results of different solvers (or of different versions of
the same solver) on a set of benchmarks [21, 112]. Different results suggest a bug in
one of the solvers. However, determining which one is at fault requires additional
effort. In our case, the ground truth is known upfront, so our synthesized input
formulas can be directly used for testing, without requiring a reference implemen-
tation as a test oracle. As opposed to differential testing, our technique can be also
applied when there only exists one implementation of a given semantics.

Fuzzing. Other test case generation techniques are based on fuzzing. Brummayer
et al. apply fuzzing for testing SMT [34], SAT, and QBF solvers [35], while Cyrille
et al. [6] and Niemetz et al. [126] target the solver’s API. Since [34] generates only
quantifier-free formulas over fixed-size bit-vectors, a direct comparison with our
work for string solvers would not be meaningful. However, all these approaches
generate inputs that may cause the solver to crash or may exhibit performance
issues. As opposed to our proposed solution, they do not have a test oracle, so they
do not reliably detect soundness and completeness bugs. The existing techniques
require delta debugging [189] to minimize the inputs that lead to a failure; in our
case, the errors are usually found with formulas that are small by construction.

The closest related work to ours is StringFuzz [31], a state-of-the-art fuzzer and
generator of SMT-LIB instances. StringFuzz can create input formulas with various
properties (e.g., predefined number of variables, configurable depth of expressions,
predefined length for string literals, etc.), but it has generators only for primitive
string operations and for regular expressions. Our evaluation does not consider
regular expressions. However, it focuses also on formulas that cover complex string
operations. StringFuzz can also apply a set of transformations on already existing
benchmarks, but very few of them guarantee equisatisfiability. Using these formu-
las for soundness testing requires manually-written test oracles. In contrast, our
synthesized formulas are sat or unsat by construction, and all our transformations
preserve their satisfiability, therefore soundness testing is fully automatic.

Formal verification. Formal verification has been used to verify SAT and SMT
algorithms [75, 111, 118], but not their implementations. SMT solvers are complex,
highly-optimized software systems, thus formally verifying their implementation
is very challenging. In contrast, our black-box testing technique can handle such
complex implementations and can find bugs with minimal effort.

Validation and proof checking. A complementary body of work focuses on check-
ing the proofs generated by the solvers. Zhang and Malik [192] synthesize a checker
for validating the traces produced by a SAT solver during refutation proofs. Böhme
and Weber [32] encode Z3’s proofs in Isabelle, while Stump et al. [159] propose
a meta-logic for describing and checking proofs for SMT. All these techniques re-
quire either modifications of the original solvers or translations of the proofs into
other formats. Our approach treats the solvers under test as black boxes and does
not depend on a specific implementation or proof format.
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3.8 conclusions

In this chapter, we presented a novel technique for automatically generating SMT
formulas from the string theory that are satisfiable or unsatisfiable by construction.
They are used as inputs for testing mostly the soundness of the implementation of
a solver, but can also reveal completeness and performance issues. Our experimen-
tal evaluation shows that our approach effectively finds errors in the implementa-
tion of widely-used SMT solvers and is also applicable to automata-based solvers.
We synthesize sat formulas together with models and unsat formulas together
with minimal unsat cores; having increasing complexity, our inputs facilitate error
localization and debugging. We also showed how our approach can be extended to
other theories and their combinations, how it can generate formulas with regular
expressions, and how it can be used for testing optimization (MAX-SMT) solvers.



4
I D E N T I F Y I N G O V E R LY R E S T R I C T I V E M AT C H I N G PAT T E R N S
I N S M T- B A S E D P R O G R A M V E R I F I E R S

In this chapter, we present our technique for automatically identifying soundness
issues in the axiomatizations produced by SMT-based program verifiers and for
helping the developers reduce their incompleteness. We show that both problems
occur when E-matching returns unknown for the SMT encoding of an axiomati-
zation or of a proof obligation. As a solution, we propose a novel algorithm that
synthesizes triggering terms and enables E-matching to refute the input formulas.

4.1 introduction

Proof obligations frequently contain universal quantifiers, in the specification and
to encode the semantics of the programming language. Most deductive verifiers [3,
7, 15, 45, 66, 106, 163] rely on SMT solvers to discharge their proof obligations
via E-matching [63]. This SMT algorithm requires syntactic matching patterns of
ground terms (called patterns in the following), to control the instantiations of
the quantifiers. For example, the pattern {f(x, y)} in the formula ∀x : Int, y : Int ::
{f(x, y)} (x = y) ∧ ¬f(x, y) instructs the solver to instantiate the quantifier only
when it finds a triggering term that matches the pattern, e.g., f(7, z), where f is an
uninterpreted function and z is a free variable.

The patterns can be written manually or inferred automatically by the solver or
the verifier. However, devising them is challenging [107, 122]. Too permissive pat-
terns may lead to unnecessary instantiations that slow down verification or even
cause non-termination (if each instantiation produces a new triggering term, in
a so-called matching loop [63]). Overly restrictive patterns may prevent the instan-
tiations needed to complete a proof; they cause two major problems in program
verification: incompleteness and undetected unsoundness.

Incompleteness. Overly restrictive patterns may cause spurious verification errors
when the proof of valid proof obligations fails. Figure 4.1 illustrates this case. The
integer x represents the address of a node, and the uninterpreted functions len
and nxt encode operations on linked lists. The axiom defines len: its result is
positive, the last node points to itself, and any added node increases the length of
the list by one. The assertion directly follows from the axiom, but the proof fails,
as the proof obligation generated by the verifier for the assert statement does not
contain any triggering term that matches the pattern {len(nxt(x))}. Thus, the
axiom does not get instantiated. However, realistic proof obligations often contain
hundreds of quantifiers [168], which makes the manual identification of missing
triggering terms extremely difficult.

75
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function len(x: int): int;
function nxt(x: int): int;

axiom (forall x: int :: {len(nxt(x))}
len(x) > 0 && (nxt(x) == x ==> len(x) == 1) &&
(nxt(x) != x ==> len(x) == len(nxt(x)) + 1));

procedure trivial() { assert len(7) > 0; }

Figure 4.1: Example (written in Boogie [14]) that leads to a spurious verification error.
The assertion follows from the axiom, but the axiom does not get instantiated
without the triggering term len(nxt(7)).

Unsoundness. Most of the universal quantifiers in proof obligations appear in
axioms over uninterpreted functions (to encode type information, heap models,
datatypes, etc.). To obtain sound results, these axioms must be consistent (i.e.,
satisfiable); otherwise, all the proof obligations hold trivially. Consistency can be
proved once and for all by showing the existence of a model that satisfies all the
axioms, as part of the soundness proof of the verification technique. However, this
solution is difficult to apply for those verifiers that generate the axioms dynami-
cally, depending on the program to be verified. Proving consistency then requires
verifying the algorithm that generates the axioms for all possible inputs, and needs
to consider many subtle issues [61, 108, 138].

A more practical approach is to check if the axioms generated for a given pro-
gram are consistent. However, this check also depends on triggering: the SMT
solver may fail to prove unsat if the triggering terms needed to instantiate the
contradictory axioms are missing. The unsoundness can thus remain undetected.

For example, Dafny’s [106] sequence axiomatization from June 2008 contained
an inconsistency found only over a year later. A fragment of this axiomatization is

F0 : ∀t0 : V :: {Type(t0)} t0 = ElemType(Type(t0))

F1 : ∀t1 : V :: {Empty(t1)} typ(Empty(t1)) = Type(t1)

F2 : ∀s2 : U, i2 : Int, v2 : U, l2 : Int :: {Build(s2, i2, v2, l2)}
typ(Build(s2, i2, v2, l2)) = Type(typ(v2))

F3 : ∀s3 : U :: {Len(s3)} ¬(typ(s3) = Type(ElemType(typ(s3))) ∨ (0 ≤ Len(s3))

F4 : ∀s4 : U, i4 : Int, v4 : U, l4 : Int :: {Len(Build(s4, i4, v4, l4))}
¬(typ(s4) = Type(typ(v4))) ∨ (Len(Build(s4, i4, v4, l4)) = l4)

Figure 4.2: Fragment of an old version of Dafny’s [106] sequence axiomatization. U and
V are uninterpreted types. All the named functions are uninterpreted. To
improve readability, we use mathematical notation throughout this chapter
instead of SMT-LIB syntax [18].



4.1 introduction 77

shown in Figure 4.2. It expresses that empty sequences and sequences obtained
through the Build operation are well-typed (F0–F2), that the length of a type-
correct sequence must be non-negative (F3), and that Build constructs a new se-
quence of the required length (F4). The intended behavior of Build is to update the
element at index i4 in sequence s4 to v4. However, since there are no constraints on
the parameter l4, Build can be used with a negative length, leading to a contradic-
tion with F3. This unsoundness cannot be detected by checking the satisfiability of
the formula F0 ∧ . . . ∧ F4, as no axiom gets instantiated.

This work. For SMT-based deductive verifiers, discharging proof obligations and
revealing inconsistencies in axiomatizations require the solver to prove unsat via
E-matching. (Verification techniques based on proof assistants are out of scope.)
Given an SMT formula for which E-matching yields unknown due to insufficient
quantifier instantiations, our technique generates suitable triggering terms that al-
low the solver to complete the unsatisfiability proof. These terms enable tool users
and developers to understand and remedy the revealed completeness or sound-
ness issue. Since the SMT encodings of different input programs and their speci-
fications typically share axiomatizations or parts of the verification condition that
encode the semantics of the programming language, fixing such issues benefits the
verification of many or even all future runs of the verifier.

Fixing the incompleteness. For Figure 4.1, our technique finds the triggering term
len(nxt(7)), which allows one to fix the incompleteness. Tool users (who cannot
change the axioms) can add the triggering term to the program. For example,
adding the lines var t: int; t := len(nxt(7)); before the assertion has no
effect on the execution of the program, but triggers the instantiation of the axiom.
Tool developers can devise less restrictive patterns; e.g., they can move the conjunct
len(x) > 0 to a separate axiom with the pattern {len(x)} (simply changing the
axiom’s pattern to {len(x)} would cause matching loops). Alternatively, they can
use this information to adapt the encoding, to emit additional triggering terms
enforcing certain instantiations [86, 107].

Fixing the unsoundness. In Figure 4.2, our synthesized triggering term Len(Build(
Empty(typ(v)), 0, v,−1)) (for a fresh value v) is sufficient to detect the unsound-
ness (see Section 4.2). Tool users can, based on this triggering term, report bugs in
the implementation of the program verifier, while tool developers can add a precon-
dition to F4, which prevents the construction of sequences with negative lengths.

Soundness modulo patterns. Figure 4.3 illustrates another scenario: Boogie’s [14]
map axiomatization is inconsistent by design at the SMT level [109]; since F2 states
that storing a key-value pair into a map results in a new map with a potentially
different type, one can prove that two different types (e.g., Boolean and Int) are equal
in SMT. However, this behavior cannot be exposed from Boogie, as the type system
prevents the required instantiations. Thus, it does not affect Boogie’s soundness.

It is nevertheless important to detect it because it could surface if Boogie was
extended to support quantifier instantiation algorithms that are not based on E-
matching (such as MBQI [78]) or first-order provers (which also do not consider
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F0 : ∀kt0 : V, vt0 : V :: {Type(kt0, vt0)} ValTypeInv(Type(kt0, vt0)) = vt0

F1 : ∀m1 : U, k1 : U, v1 : U :: {Select(m1, k1, v1)}
typ(Select(m1, k1, v1)) = ValTypeInv(typ(m1))

F2 : ∀m2 : U, k2 : U, x2 : U, v2 : U :: {Store(m2, k2, x2, v2)}
typ(Store(m2, k2, x2, v2)) = Type(typ(k2), typ(v2))

F3 : ∀m3 : U, k3 : U, x3 : U, v3 : U, k′3 : U, v′3 : U :: {Select(Store(m3, k3, x3, v3), k′3, v′3)}
(k3 = k′3) ∨ (Select(Store(m3, k3, x3, v3), k′3, v′3) = Select(m3, k′3, v′3))

Figure 4.3: Fragment of Boogie’s [14] map axiomatization, sound only modulo patterns.
U and V are uninterpreted types. All the named functions are uninterpreted.

patterns). They could unsoundly classify an invalid Boogie program that uses this
map axiomatization as valid. Since the verifier proves the validity of the verifica-
tion condition by showing that its negation is unsatisfiable, if the refutation algo-
rithm yields unsat, the verifier concludes that the program fulfills its specification.
This is the case when checking the axioms from Figure 4.3 with MBQI: the formula
F0 ∧ . . . ∧ F3 is equivalent to false, so any (even invalid) Boogie program whose
SMT encoding contains the axioms F0–F3 is reported as valid.

This example shows that the problems tackled in our work cannot be solved by
switching to alternative instantiation strategies. First, these are not the preferred
choices of most modern verifiers [3, 7, 15, 45, 66, 106, 163], and are, thus, unlikely
to outperform E-matching. Second, they may produce unsound results for those
verifiers designed for E-matching with axiomatizations sound only modulo patterns.

Contributions. This chapter makes the following technical contributions:

1. We present the first automated technique that allows users and developers of
SMT-based program verifiers to detect completeness issues and soundness prob-
lems in their axiomatizations. Moreover, our approach helps them devise
better triggering strategies for all future runs of their tool with E-matching.

2. We developed a novel algorithm for synthesizing the triggering terms nec-
essary to complete unsatisfiability proofs using E-matching. Since quantifier
instantiation is undecidable for first-order formulas over uninterpreted func-
tions, our algorithm might not terminate. However, all identified triggering
terms are sufficient to complete the proof, i.e., there are no false positives.

3. We evaluated our technique on benchmarks with known triggering problems
from four program verifiers. Our experimental results show that it success-
fully synthesized the missing triggering terms in 65.6% of the cases and can
significantly reduce the human effort in localizing and fixing the errors.

Outline. The rest of the chapter is organized as follows: Section 4.2 presents back-
ground information on E-matching. Section 4.3 gives an overview of our technique;
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the details follow in Section 4.4. In Section 4.5, we present our experimental re-
sults, in Section 4.6 we describe various optimizations which allow our algorithm
to scale to real-world inputs, and in Section 4.7 we explain its limitations. In Sec-
tion 4.8 we briefly describe an alternative approach for synthesizing triggering
terms starting from unsatisfiability proofs. We discuss related work in Section 4.9
and conclude in Section 4.10.

4.2 background : e-matching

In this section, we discuss the E-matching-related terminology used in this chapter
and explain how this quantifier-instantiation algorithm works on an example.

Patterns vs. triggering terms. Patterns are syntactic hints attached to quantifiers
which instruct the SMT solver when to perform an instantiation. In Figure 4.2, the
quantified formula F3 will be instantiated only when a triggering term that matches
the pattern {Len(s3)} is encountered during the SMT run (i.e., the triggering term
is present in the quantifier-free part of the input formula or is obtained by the
solver from the body of a previously-instantiated quantifier). Patterns are matched
modulo equalities, that is, F4, which has the pattern {Len(Build(s4, i4, v4, l4))}, will
be instantiated also when the solver is provided the triggering term Len(s) and it
knows that s = Build(s4, i4, v4, l4) holds for some s4 : U, i4 : Int, v4 : U, l4 : Int. How-
ever, our algorithm does not generate such triggering terms, as it automatically
substitutes s by the right hand side of the equality.

E-matching. We now illustrate how E-matching works on the example from Fig-
ure 4.2; in particular, we show how our synthesized triggering term Len(Build
(Empty(typ(v)), 0, v,−1))) helps the solver to prove unsat when added to the ax-
iomatization (v is a fresh variable of type U). To keep the explanation concise, we
omit unnecessary instantiations. First, the sub-terms Empty(typ(v)) and Len(Build
(Empty(typ(v)), 0, v,−1)) trigger the instantation of F1 and F4, respectively. The
solver obtains the body of the quantifiers for these particular values:

B1 : typ(Empty(typ(v))) = Type(typ(v))

B4 : ¬(typ(Empty(typ(v))) = Type(typ(v))) ∨
(Len(Build(Empty(typ(v)), 0, v,−1)) = −1)

As the first disjunct of B4 evaluates to false (from B1), the solver learns that the
second disjunct must hold (i.e., the length must be -1); we abbreviate it as L = −1.
The sub-terms Build(Empty(typ(v)) and Len(Build(Empty(typ(v)), 0, v,−1)) of
the synthesized triggering term lead to the instantiation of F2 and F3, respectively:

B2 : type(Build(Empty(typ(v)), 0, v,−1)) = Type(typ(v))

B3 : ¬(typ(Build(Empty(typ(v)), 0, v,−1)) =

Type(ElemType(typ(Build(Empty(typ(v)), 0, v,−1))))) ∨
(0 ≤ Len(Build(Empty(typ(v)), 0, v,−1))))
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Type(ElemType(typ(Build(Empty(typ(v)), 0, v,−1)))) from B3 triggers F0:

B0 : ElemType(typ(Build(Empty(typ(v)), 0, v,−1))) =

ElemType(Type(ElemType(typ(Build(Empty(typ(v)), 0, v,−1)))))

By equalizing the arguments of the outermost ElemType in B0, the solver learns
that the first disjunct of B3 is false. The second disjunct must thus hold (i.e., the
length should be positive); we abbreviate it as 0 ≤ L. Since (L = −1) ∧ (0 ≤ L) =
false, the unsatisfiability proof succeeds.

4.3 overview

Our goal is to synthesize missing triggering terms, i.e., concrete instantiations
for (a small subset of) the quantified variables of an input formula I, which are
necessary for the solver to prove its unsatisfiablity. Intuitively, these triggering
terms include counterexamples to the satisfiability of I and can be obtained from
a model of its negation. For example, I = ∀n : Int :: n > 7 is unsatisfiable, and
a counterexample n = 6 is a model of its negation ¬I = ∃n : Int :: n ≤ 7.

However, this idea does not apply to formulas over uninterpreted functions,
which are common in proof obligations. The negation of I = ∃f, ∀n : Int :: f(n, 7),
where f is an uninterpreted function, is ¬I = ∀f, ∃n : Int :: ¬f(n, 7). This is
a second-order constraint (it quantifies over functions) and cannot be directly en-
coded in SMT. We thus take a different approach.

Let F be a second-order formula, in which universal quantifiers appear only in
positive positions. We define its approximation as:

F≈ = F[∃f / ∀f] (4.1)

where f are uninterpreted functions. The approximation considers only one inter-
pretation, not all possible interpretations for each uninterpreted function.

We, therefore, construct a candidate triggering term from a model of ¬I≈ and
check if it is sufficient to prove that I is unsatisfiable (due to the approximation,
a model is no longer guaranteed to be a counterexample for the original formula).

The four main steps of our algorithm are depicted in Figure 4.4. The algorithm
is stand-alone, i.e., not integrated into, nor dependent on any specific SMT solver.
We illustrate it on the inconsistent axioms from Figure 4.5 (which we assume are
part of a larger axiomatization). To show that I = F0 ∧ F1 ∧ . . . is unsatisfiable, the
solver requires the triggering term f(g(7)). The corresponding instantiations of F0
and F1 generate contradictory constraints: f(g(7)) 6= 7 and f(g(7)) = 7. In the
following, we explain how we obtain this triggering term systematically.

Step 1: Clustering. As typical proof obligations or axiomatizations contain hun-
dreds of quantifiers, exploring combinations of triggering terms for all of them
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Figure 4.4: Main steps of our algorithm (represented as blue boxes), which helps the de-
velopers of SMT-based verifiers devise better triggering strategies (and enable
E-matching to prove unsat). The arrows depict data.

does not scale. To prune the search space, we exploit the fact that I is unsatisfi-
able only if there exist instantiations of some (in the worst case all) of its quantified
conjuncts F such that they produce contradictory constraints on some uninter-
preted functions. (If there is a contradiction among the quantifier-free conjuncts,
the solver will detect it directly.) We thus identify clusters C of formulas F that
share function symbols and then process each cluster separately. In Figure 4.5, F0
and F1 share the function symbol f, so we build the cluster C = F0 ∧ F1.

Step 2: Syntactic unification. The formulas within clusters usually contain unin-
terpreted functions applied to different arguments (e.g., f is applied to x0 in F0 and
to g(x1) in F1). We thus perform syntactic unification to identify sharing constraints
on the quantified variables (which we call rewritings and denote their set by R)
such that instantiations that satisfy these rewritings generate formulas with com-
mon terms (on which they might set contradictory constraints). F0 and F1 share
the term f(g(x1)) if we perform the rewritings R = {x0 = g(x1)}.

Step 3: Identifying candidate triggering terms. The cluster C = F0 ∧ F1 from
step 1 contains a contradiction if there exists a formula Fi in C such that: (1) Fi is
unsatisfiable by itself, or (2) Fi contradicts at least one other formula from C.

To address scenario (1), we ask a solver for a model of the formula G = ¬C≈,
where ¬C≈ is defined in (4.1). After Skolemization, G is quantifier-free, so the
solver is generally able to provide a model, if one exists. We then obtain a candi-

F0 : ∀x0 : Int :: {f(x0)} f(x0) 6= 7

F1 : ∀x1 : Int :: {f(g(x1))} f(g(x1)) = x1

Figure 4.5: Formulas that set contradictory constraints on the uninterpreted function f.
Synthesizing the triggering term dummy(f(g(7))) requires theory reasoning
and syntactic unification. dummy is a fresh uninterpreted function (see Step 4).
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date triggering term by substituting the quantified variables from the patterns of
the formulas in C with their corresponding values from the model.

However, scenario (1) is not sufficient to expose the contradiction from Fig-
ure 4.5, since both F0 and F1 are individually satisfiable. Our algorithm thus also
derives stronger G formulas corresponding to scenario (2). That is, it will next con-
sider the case where F0 contradicts F1, whose encoding into first-order logic is:
¬F0≈ ∧ F1 ∧

∧
R, where R is the set of rewritings identified in step 2, used to con-

nect the quantified variables. This formula is universally-quantified (since F1 is), so
the solver cannot prove its satisfiability and generate models. We solve this issue
by requiring F0 to contradict the instantiation of F1, which is a weaker constraint.

Let F be an arbitrary formula, with universal quantifiers only in positive posi-
tions. We define its instantiation as:

FInst = F[∃x / ∀x] (4.2)

where x are variables. Then G = ¬F0≈ ∧ F1 Inst ∧
∧

R is equivalent to (f(x0) =
7) ∧ (f(g(x1)) = x1) ∧ (x0 = g(x1)). (To simplify the notation, here and in the
following formulas, we omit existential quantifiers.) All its models set x1 to 7.
Substituting x0 by g(x1) (according to R) and x1 by 7 (its value from the model) in
the patterns of F0 and F1 yields the candidate triggering term f(g(7)).

Step 4: Validation. Once we have found a candidate triggering term, we add it to
the original formula I (wrapped in a fresh uninterpreted function dummy, to make
it available to E-matching, but not affect the input’s satisfiability) and check if the
solver can prove unsat. If so, our algorithm terminates successfully and reports the
synthesized triggering term (after a minimization step that removes unnecessary
sub-terms); otherwise, we go back to step 3 to obtain another candidate. In our
example, the triggering term dummy(f(g(7))) is sufficient to complete the proof.

4.4 synthesizing triggering terms

In the following, we present our algorithm for synthesizing triggering terms re-
quired by E-matching to return unsat: in Section 4.4.1 we define the input formulas
and in Section 4.4.2 we explain the details of the algorithm. Its extensions follow in
Section 4.4.3. We illustrate the algorithm on additional examples in Section 4.4.4.

4.4.1 Input formula

To simplify our algorithm, we pre-process the inputs (i.e., the proof obligations
or the axioms of a verifier): we Skolemize existential quantifiers and transform all
propositional formulas into negation normal form (NNF), where negation is applied
only to literals and the only logical connectives are conjunction and disjunction; we
also apply the distributivity of disjunction over conjunction and split conjunctions
into separate formulas. These steps preserve satisfiability and the semantics of pat-
terns (Section 4.6 addresses scalability issues). The resulting formulas follow the
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I ::= F (∧ F)∗ B ::= D (∨ D)∗

F ::= B | ∀x :: {P(x)} B D ::= L | ¬L | ∀x :: {P(x)} F

Figure 4.6: Grammar of input formulas I. Inputs are conjunctions of formulas F, which
are (typically quantified) disjunctions of literals (L or ¬L) or nested quantified
formulas. Each quantifier has a pattern P. x is a (non-empty) list of variables.

grammar from Figure 4.6. Literals L may include interpreted and uninterpreted
functions, variables and constants. Free variables are nullary functions. Quanti-
fied variables can have interpreted or uninterpreted types, and the pre-processing
ensures that their names are globally unique. We assume that each quantifier is
equipped with a pattern P (if none is provided, we run the solver to infer one).
Patterns are combinations of uninterpreted functions and must mention all quanti-
fied variables. Since there are no existential quantifiers after Skolemization, in the
rest of this chapter we use the term quantifier to denote universal quantifiers.

4.4.2 Algorithm

The pseudo-code of our algorithm is given in Algorithm 4.1. It takes as input
an SMT formula I (defined in Figure 4.6), which we treat in a slight abuse of
notation as both a formula and a set of conjuncts. Three other parameters allow
us to customize the search strategy and are discussed later. The algorithm yields
a triggering term that enables the unsat proof, or None if no term was found. We
assume here that I contains no nested quantifiers and present those later.

The algorithm iterates over each quantified conjunct F of I (Algorithm 4.1, line 3)
and checks if F is individually unsatisfiable (for depth = 0). For complex proofs,
this is usually not sufficient, as I is typically inconsistent due to a combination of
conjuncts (F0 ∧ F1 in Figure 4.5). In such cases, the algorithm proceeds as follows:

Step 1: Clustering. It constructs clusters of formulas similar to F (Algorithm 4.2,
line 4), based on their Jaccard similarity index. Let Fi and Fj be two arbitrary for-
mulas, and Si and Sj their respective sets of uninterpreted function symbols (from
their bodies and the patterns). The Jaccard similarity index is defined as:

J(Fi, Fj) =
|Si∩Sj |
|Si∪Sj |

(the number of common uninterpreted functions divided by

the total number). For Figure 4.5, S0 = {f}, S1 = {f, g}, J(F0, F1) =
|{f}|
|{f,g}| = 0.5.

Our algorithm explores the search space by iteratively expanding clusters to
include transitively-similar formulas up to a maximum depth (parameter δ in Al-
gorithm 4.1). For two formulas Fi, Fj ∈ I, we define the similarity function as:

simδ
I(Fi, Fj, σ) =

 J(Fi, Fj) ≥ σ, δ = 1

∃Fk : simδ−1
I\{Fi}

(Fi, Fk, σ) and J(Fk, Fj) ≥ σ, δ > 1

where σ ∈ [0, 1] is a similarity threshold used to parameterize our algorithm.
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Algorithm 4.1: Our algorithm for synthesizing triggering terms that enable
unsatisfiability proofs. We assume here that all quantified variables are globally
unique and I does not contain nested quantifiers. The auxiliary procedures
clustersRewritings and candidateTerm are presented in Algorithm 4.2 and
Algorithm 4.3, respectively.

Arguments : I — input formula, also treated as set of conjuncts
σ — similarity threshold for clustering
δ — maximum depth for clustering
µ — maximum number of different models

Result: The synthesized triggering term or None, if no term was found

1 Procedure synthesizeTriggeringTerm

2 foreach depth ∈ {0, . . . , δ} do
3 foreach F ∈ I | F is ∀x :: F′ do
4 foreach (C, R) ∈ clustersRewritings(I, F, σ, depth) do // steps 1, 2

5 Inst←− {}
6 foreach f ∈ C | f is ∀x :: D0 ∨ . . . ∨ Dn or D0 ∨ . . . ∨ Dn do
7 Inst[ f ]←− {(∧0≤j<k ¬Dj) ∧ Dk | 0 ≤ k ≤ n}

8 Inst[F]←− {¬F′}
9 foreach H ∈×{Inst[ f ] | f ∈ {F} ∪ C} do // Cartesian product

10 G ←− ∧
H ∧∧

R
11 foreach m ∈ {0, . . . , µ− 1} do
12 resG, model←− checkSat(G)
13 if resG 6= SAT then
14 break // no models if G is not SAT

15 T ←− candidateTerm({F} ∪ C, R, model) // step 3

16 resI, _←− checkSat(I ∧ T) // step 4

17 if resI = UNSAT then
18 return minimized(T) // success

19 G ←− G ∧ ¬model // avoid this model next iteration

20 return None

The initial cluster (depth = 1) includes all the conjuncts of I that are directly
similar to F. Each subsequent iteration adds the conjuncts that are directly similar
to an element of the cluster from the previous iteration, that is, transitively similar
to F. This search strategy allows us to gradually strengthen the formulas G (used
to synthesize candidate terms in step 3) without overly constraining them (an over-
constrained formula is unsatisfiable, and has no models).

Step 2: Syntactic unification. Next (Algorithm 4.2, line 8) we identify rewritings,
i.e., constraints under which two similar quantified formulas share terms. (Sec-
tion 4.4.4 presents the quantifier-free case.) We obtain the rewritings by performing
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Algorithm 4.2: Auxiliary procedure for Algorithm 4.1, which identifies clusters
of formulas similar to F and their rewritings. sim is defined in text (step 1).
unify is a first-order unification algorithm (not shown); it returns a set of
rewritings with restricted shapes, defined in text (step 2).
Arguments : I — input formula, also treated as set of conjuncts

F — quantified conjunct of I, i.e., F ∈ I | F is ∀x :: F′

σ — similarity threshold for clustering
depth — current depth for clustering

Result: A set of pairs, consisting of clusters and their corresponding
rewritings

1 Procedure clustersRewritings
2 if depth = 0 then
3 return {(∅,∅)}
4 simFormulas←− { f | f ∈ I \ {F} and simdepth

I (F, f, σ)} // step 1

66 rewritings←− {}
7 foreach f ∈ simFormulas do
8 rws←− unify(F, f) // step 2

9 if rws = ∅ and ( f is ∀x :: D0 ∨ . . . ∨ Dn) then
10 simFormulas←− simFormulas \ { f }
11 rewritings[ f ]←− rws
12 return {(C, R) | C ⊆ simFormulas and (∀r ∈ R, ∃ f ∈ C : r ∈ rewritings[ f ])

and (∀x ∈ qvars(C): |{r | r ∈ R and x = lhs(r)}| ≤ 1)}

a simplified form of syntactic term unification, which reduces their number to a prac-
tical size. Our rewritings are directed equalities. For two formulas Fi and Fj and an
uninterpreted function f they have one of the following two shapes:

(1) xi = rhsj, where xi is a quantified variable of Fi, rhsj are terms from Fj de-
fined below, Fi contains a term f(xi) and Fj contains a term f(rhsj),

(2) xj = rhsi, where xj is a quantified variable of Fj, rhsi are terms from Fi
defined below, Fj contains a term f(xj) and Fi contains a term f(rhsi),
where rhsk is a constant ck, a quantified variable xk, or a composite function
(f ◦ g0 ◦ . . . ◦ gn)(ck, xk) occurring in the formula Fk and g0, . . . , gn are arbitrary
(interpreted or uninterpreted) functions. That is, we determine the most general
unifier [10] only for those terms that have uninterpreted functions as the outer-
most functions and quantified variables as arguments. The unification algorithm
is standard (except for the restricted shapes), so it is not shown explicitly.

In Figure 4.5, F1 is similar to F0 for any σ ≤ 0.5. We then compute the rewritings
for all the quantified variables of F0 that appear in its body as arguments to some
common uninterpreted functions (in this case, only x0). Unifying the terms f(x0)
and f(g(x1)) generates the rewriting x0 = g(x1), which has shape (1).

Since a term may appear more than once in F, or F unifies with multiple similar
formulas through the same quantified variable, we can obtain alternative rewritings
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F0 : ∀x0 : Int :: {f(x0)} f(x0) = 6

F1 : ∀x1 : Int :: {f(x1)} f(x1) = 7

F2 : ∀x2 : Int :: {f(x2)} f(x2) = 8

Figure 4.7: Formulas that set contradictory constraints on the uninterpreted function f.
Synthesizing the triggering term dummy(f(0)) requires clusters of similar for-
mulas with alternative rewritings.

for a quantified variable. In such cases, we either duplicate or split the cluster,
such that in each cluster-rewriting pair, each quantified variable is rewritten at
most once (see Algorithm 4.2, line 12). In Figure 4.7, both F1 and F2 are simi-
lar to F0 (all three formulas share the uninterpreted symbol f). Since the unifica-
tion produces alternative rewritings for x0 (x0 = x1 and x0 = x2), the procedure
clustersRewritings returns the pairs {({F1}, {x0 = x1}), ({F2}, {x0 = x2})}.

Step 3: Identifying candidate terms. From the clusters and the rewritings (identi-
fied before), we then derive quantifier-free formulas G (Algorithm 4.1, line 10), and,
if they are satisfiable, construct the candidate triggering terms from their mod-
els (Algorithm 4.1, line 15). Each formula G consists of: (1) ¬F≈ (defined in (4.1),
which is equivalent to ¬F′, since F has the shape ∀x :: F′ from Algorithm 4.1,
line 3), (2) the instantiations (defined in (4.2)) of all the similar formulas from the
cluster, and (3) the corresponding rewritings R. (Since we assume that all the quan-
tified variables are globally unique, we do not perform variable renaming when
computing the instantiations).

If a similar formula has multiple disjuncts Dk, the SMT solver may use short-
circuiting semantics when generating the model for G. That is, if it can find
a model that satisfies the first disjunct, it may not consider the remaining ones.
To obtain more diverse models, we synthesize formulas that cover each disjunct,
i.e., make sure that it evaluates to true at last once. We thus compute multiple in-
stantiations of each similar formula, of the form: (

∧
0≤j<k ¬Dj) ∧ Dk, ∀k : 0 ≤ k ≤ n

(see Algorithm 4.1, line 7). To consider all the combinations of disjuncts, we de-
rive the formula G from the Cartesian product of the instantiations (Algorithm 4.1,
line 9). (For presentation purposes, we also store ¬F′ in the instantiations map
(Algorithm 4.1, line 8), even if it does not represent the instantiation of F.)

F0 : ∀x0 : Int :: {f(x0)} ¬(x0 > −1) ∨ f(x0) > 7

F1 : ∀x1 : Int :: {f(x1)} ¬(x1 < 1) ∨ f(x1) = 6

Figure 4.8: Formulas that set contradictory constraints on the uninterpreted function f.
Synthesizing the triggering term dummy(f(0)) requires instantiations that
cover all the disjuncts.
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Algorithm 4.3: Auxiliary procedure for Algorithm 4.1, which constructs a trig-
gering term from the given cluster, rewritings, and SMT model. dummy is a fresh
function symbol, which conveys no information about the truth value of the
candidate term; thus conjoining it to the input preserves (un)satisfiability.
Arguments : C — set of formulas in the cluster

R — set of rewritings for the cluster
model — SMT model, mapping variables to values

Result: A triggering term with no semantic information

1 Procedure candidateTerm
2 P0, . . . , Pk ←− patterns(C)
3 while R 6= ∅ do
4 choose and remove r ←− (x = rhs) from R
5 P0, . . . , Pk ←− (P0, . . . , Pk)[ rhs/x ]
6 R ←− R [ rhs/x ]

7 foreach x ∈ qvars(C) do
8 P0, . . . , Pk ←− (P0, . . . , Pk)[ model(x)/x ]
9 return "dummy" + "(" + P0, . . . , Pk + ")"

In Figure 4.8, F1 is similar to F0 and R = {x0 = x1}. F1 has two disjuncts
and thus two possible instantiations: Inst[F1] = {x1 ≥ 1, (x1 < 1) ∧ (f(x1) = 6)}.
The formula G = (x0 > −1) ∧ (f(x0) ≤ 7) ∧ (x1 ≥ 1) ∧ (x0 = x1) for the first
instantiation is satisfiable, but none of the values the solver can assign to x0 (which
are all greater or equal to 1) are sufficient for the unsatisfiability proof to succeed.
The second instantiation adds additional constraints: instead of x1 ≥ 1, it requires
(x1 < 1) ∧ (f(x1) = 6). The resulting G formula has a unique solution for x0,
namely 0, and the triggering term f(0) is sufficient to prove unsat.

The procedure candidateTerm in Algorithm 4.3 synthesizes a candidate trigger-
ing term T from the models of G and the rewritings R. We first collect all the
patterns of the formulas from the cluster C (Algorithm 4.3, line 2), i.e., of F and of
its similar conjuncts (see Algorithm 4.1, line 15). Then, we apply the rewritings, in
an arbitrary order (Algorithm 4.3, lines 3–6). That is, we substitute the quantified
variable x from the left-hand side of the rewriting with the right-hand side term
rhs and propagate this substitution to the remaining rewritings. This step allows
us to include in the synthesized triggering terms additional information, which
cannot be provided by the solver. Then (Algorithm 4.3, lines 7–8) we substitute the
remaining variables with their constant values from the model (i.e., constants for
built-in types, and fresh, unconstrained variables for uninterpreted types). For in-
terpreted, user-defined types (such as a type IList for representing a List of Int,
where List and Int are both interpreted types), the solver generates constants for
each type component, or a sequence of operations required to construct them. For
instance, insert(0, nil) (i.e., a singleton list containing the constant 0) is a pos-
sible model provided by the SMT solver Z3 [187] for a variable of type IList. The
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F : ∀x : Int, y : Int :: {_div(x, y)} _div(x, y) = x/y

Figure 4.9: Inconsistent axiom from F* [162]. _div : Int× Int → Int is an uninterpreted
function. Synthesizing the triggering term dummy(_div(1, 2)) requires diverse
models.

resulting triggering term is wrapped in an application to a fresh, uninterpreted
function dummy to ensure that conjoining it to I does not change I’s satisfiability.

Step 4: Validation. We validate the candidate triggering term T by checking if
I ∧ T is unsatisfiable, i.e., if these particular interpretations for the uninterpreted
functions generalize to all interpretations (Algorithm 4.1, line 16). If this is the
case then we return the minimized triggering term (Algorithm 4.1, line 18). The
dummy function has multiple arguments, each of them corresponding to one pat-
tern from the cluster (Algorithm 4.3, line 9). This is an over-approximation of the
required triggering terms (once instantiated, the formulas may trigger each other),
so minimized removes redundant (sub-)terms. If T does not validate, we re-iterate
its construction up to a bound µ and strengthen the formula G to obtain a different
model (Algorithm 4.3, lines 19 and 11). The parameter µ allows us to deal with
other sources of incompleteness, as we explain next.

Let us consider the formula from Figure 4.9, which was part of an axiomatization
with 2 495 axioms. F axiomatizes the uninterpreted function _div : Int× Int→ Int
and is inconsistent, because there exist two integers whose real division ("/") is not
an integer. The model produced by Z3 for the formula G = ¬F′ is x = −1, y = 0.
−1/0 is defined ("/" is a total function [18]), but its result is not specified. Thus
the solver cannot validate this model (i.e., it returns unknown).

In such cases, we ask the solver for a different model. In Figure 4.9, if we simply
exclude previous models, we can obtain a sequence of models with different values
for the numerator, but with the same value (0) for the denominator. There are
infinitely many such models, and all of them fail to validate for the same reason.

There are various heuristics one can employ to guide the solver’s search for new
models; our algorithm can be parameterized with different ones. In our experi-
ments, we interpret the conjunct ¬model from Algorithm 4.1, line 19 as (

∧
x∈x x 6=

model(x))∧ (∧xi ,xj∈x, i 6=j, model(xi)=model(xj)
xi 6= xj). This allows us to synthesize the

triggering term dummy(_div(1, 2)) and expose the inconsistency from Figure 4.9.
The first component (

∧
x∈x x 6= model(x)) requires all the variables to have differ-

ent values than before. This requirement may be too strong for some variables, but
as we use only soft constraints, the solver may ignore some of them if it cannot
generate a satisfying assignment. The second part (

∧
xi ,xj∈x, i 6=j, model(xi)=model(xj)

xi 6= xj) requires models from different equivalence classes, where an equivalence
class includes all the variables that are equal in the model. For example, if the
model is x0 = x, x1 = x, where x is a value of the corresponding type, then x0 and
x1 belong to the same equivalence class. Considering equivalence classes is par-
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ticularly important for variables of uninterpreted types; the solver cannot provide
actual values for them, thus it assigns fresh, unconstrained variables. However,
different fresh variables do not lead to diverse models.

Nested quantifiers. Our algorithm also supports nested quantifiers. Nested exis-
tential quantifiers in positive positions and nested universal quantifiers in negative
positions are replaced in NNF by new, uninterpreted Skolem functions. Step 2 is
also applicable to them: Skolem functions with arguments (the quantified variables
from the outer scope) are unified as regular uninterpreted functions; they can also
appear as rhs in a rewriting, but not as the left-hand side (we do not perform
higher-order unification). In such cases, the result is imprecise: the unification of
f(x0, skolem()) and f(x1, 1) produces only the rewriting x0 = x1.

After pre-processing, the conjunct F and the similar formulas may still contain
nested universal quantifiers. F is always negated in G, thus it becomes, after Skolem-
ization, quantifier-free. To ensure that G is also quantifier-free (and the solver can
generate a model for it), we extend the algorithm to recursively instantiate similar
formulas with nested quantifiers when computing the instantiations.

4.4.3 Extensions

Next, we describe various extensions of our algorithm that enable complex proofs.

Combining multiple candidate terms. In Algorithm 4.1, each candidate term is
validated separately. To enable proofs that require multiple instantiations of the same
formula, we developed an extension that validates multiple triggering terms at the
same time. In such cases, the algorithm returns a set of terms that are necessary and
sufficient to prove unsat. Figure 4.10 presents a simple example from SMT-COMP
2019 pending benchmarks [167]. (The files in this category are not guaranteed
to comply with the SMT-LIB standard, but our benchmarks selection algorithm
described in Section 4.5.2 checks this automatically.) The input I = F0 ∧ F1 is un-
satisfiable, as there does not exist an interpretation for the uninterpreted function
U that satisfies all the constraints: F1 requires U(s) to be true; if F0 is instantiated
for x0 = s, the solver learns that U(il) must be true as well; however, if x0 = il,
then U(il) must be false, which is a contradiction. Therefore, exposing the incon-

F0 : ∀x0 : S :: {f(x0)} ¬U(x0) ∨ (U(f(x0)) ∧ f(x0) = il∧ x0 6= il)

F1 : U(s)

Figure 4.10: Benchmark from SMT-COMP 2019 [167]. The formulas set contradictory con-
straints on the uninterpreted function U. S is an uninterpreted type, s and
il are user-defined constants of type S. Synthesizing the triggering term
dummy(f(s), f(il)) requires multiple candidate terms. We use conjunctions
here for simplicity, but our pre-processing applies distributivity of disjunc-
tion over conjunction and splits F0 into three different formulas with unique
names for the quantified variables.
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F : ∀x : Int :: {g(x)} f(x) 6= f(7)

Figure 4.11: Formula that sets contradictory constraints on the uninterpreted function f.
The uninterpreted function g is used only as a pattern (i.e., it does not ap-
pear in the body of F, see Section 4.4.4). Synthesizing the triggering term
dummy(g(7)) requires unification across multiple instantiations.

sistency requires two instantiations of F0, triggered by f(s) and f(il), respectively.
We generate both triggering terms, but in separate iterations (independently, both
fail to validate). However, by validating them simultaneously (i.e., conjoining both
of them to I, as arguments to the fresh function dummy), our algorithm identifies
the required triggering term T = dummy(f(s), f(il)).

Unification across multiple instantiations. The clusters constructed by our algo-
rithm are sets (see Algorithm 4.2, line 12), so they contain a formula at most once,
even if it is similar to multiple other formulas from the cluster. We thus consider
the rewritings for multiple instantiations of the same formula separately, in differ-
ent iterations. To handle cases that require multiple (but boundedly many) instanti-
ations, we extend the algorithm with a parameter Φ, which bounds the maximum
frequency of a quantified conjunct within the formulas G. That is, it allows a similar
quantified formula, as well as F itself, to be added to a cluster (now represented
as a list) more than once (after performing variable renaming, to ensure that the
names of the quantified variables are still globally unique). This results in an equi-
satisfiable formula for which our algorithm determines multiple triggering terms.
Inputs whose unsatisfiability proofs require an unbounded number of instantiations
typically contain a matching loop, thus we do not consider them here. Figure 4.11

presents an example, which consists of a single inconsistent formula F. Our regu-
lar algorithm from Algorithm 4.2 does not identify any rewritings. However, with
this extension, F unifies with itself for any Φ > 1, and one possible rewriting is
x′ = 7 (x′ is a fresh variable representing the second instantiation of F). The corre-
sponding triggering term, T = dummy(g(7)), allows E-matching to prove unsat.

Note that the uninterpreted function g is used only as a pattern. If the pattern
were f(x), any triggering term f(c), where c is an integer constant, were sufficient
to complete the proof: (1) for c = 7, the contradiction would have been exposed di-
rectly; (2) for c 6= 7, the term f(7), obtained from the first instantiation of F, would
have triggered its second instantiation and case (1) would have then applied.

Type-based constraints. The rewritings of the form xi = xj can be too imprecise
(especially for quantified variables of uninterpreted types), as they do not con-
strain the rhs. In Figure 4.12, the solver cannot provide concrete values of the
uninterpreted type U for e1 and op1, it can only assign fresh, unconstrained vari-
ables (e.g., e and op). However, the triggering terms some(e) and get(op), which
can be obtained from these fresh variables, are not sufficient to prove unsat; one
would additionally need the rewriting e1 = get(op1), which cannot be identified
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F0 : ∀e0 : U :: {some(e0)} ¬(some(e0) = none)

F1 : ∀op1 : U, e1 : U :: {some(e1), get(op1)} ¬(get(op1) = e1) ∨ (op1 = some(e1))

F2 : ∀op2 : U, e2 : U :: {some(e2), get(op2)} ¬(op2 = some(e2)) ∨ (get(op2) = e2)

Figure 4.12: Fragment of Gobra’s [183] option types axiomatization. U is an uninter-
preted type, none is a user-defined constant of type U. F1 and F2 have
multi-patterns (discussed in Section 4.4.4). Synthesizing the triggering term
dummy(some(get(none))) requires type-based constraints.

by our unification from Section 4.4.2. To address such scenarios, we extend the
unification to also consider as rhs a constant or an uninterpreted function from
the body of the similar formulas, which has the same type as the quantified vari-
able from the left-hand side. For Figure 4.12, it will thus generate the rewritings
R = {e0 = get(op2), e1 = get(op2), op1 = none, op2 = none} (this is one of the al-
ternatives). These type-based constraints allow us to synthesize the triggering term
T = dummy(some(get(none))), which exposes the unsoundness from Gobra’s [183]
option types axiomatization.

Unification for sub-terms. Figure 4.13 shows an example which cannot be solved
by any extension discussed so far, since it requires semantic reasoning: by applying
f on both sides of the equality, one can learn from F1 that f(g(2020)) = f(g(2021)).
From F0 though, f(g(2020)) = 2020 and f(g(2021)) = 2021, which implies that
2020 = 2021, i.e., false. Our extended algorithm synthesizes the required trig-
gering term T = dummy(f(g(2020)), f(g(2021))) by applying the unification also
to sub-terms; due to our restrictive shapes of the rewritings, the sub-terms can
only be applications of uninterpreted functions. In Figure 4.13, trying to unify
f(g(x0)) does not produce any rewritings, as F1 does not contain f(g). We thus
unify the sub-term g(x0) with g(2020) and g(2021) and obtain the rewritings
R = {x0 = 2020, x0 = 2021}. Together with the extension for combining multiple
candidate terms described above, these rewritings provide sufficient information
for the unsat proof to succeed. This unification is syntactic, but produces the trig-
gering terms that would be obtained if the solver would apply some uninterpreted
function present in the input on a learned predicate (the solver performs semantic
reasoning automatically, but without generating new triggering terms).

F0 : ∀x0 : Int :: {f(g(x0))} f(g(x0)) = x0

F1 : g(2020) = g(2021)

Figure 4.13: Formulas that set contradictory constraints on the uninterpreted function f.
Synthesizing the triggering term dummy(f(g(2020)), f(g(2021))) requires uni-
fication for sub-terms.
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Alternative triggering terms. Our algorithm returns the first candidate term that
successfully validates (Algorithm 4.1, line 18). However, it might also be useful
to synthesize alternative triggering terms for the same input, since they may corre-
spond to different completeness or soundness issues. Our tool provides this option
and can also return all the triggering terms found within the given timeout.

All these extensions (individually or together with other extensions) allow us to
complete the refutation proofs for particular benchmarks. Section 4.5 evaluates
the impact of a few configurations of our technique, which can be obtained by en-
abling some of the extensions or by setting certain values for some of the additional
parameters. Automatically determining which is the most suited configuration for
a particular input is left as future work.

4.4.4 Additional examples

In this section, we illustrate our algorithm on various examples (including those
from Figure 4.1 and Figure 4.2, and an example with nested quantifiers). We also
explain how the algorithm supports quantifier-free formulas, synonym functions
as patterns, multi-patterns, and alternative patterns.

Nested quantifiers. Our algorithm handles inputs with nested quantifiers as de-
scribed in Section 4.4.2. We illustrate this aspect on the formulas from Figure 4.14,
which axiomatize operations over lists of integers. The axioms F3 and F4 set con-
tradictory constraints on indexOf when the element is not contained in the list.
According to Algorithm 4.2, one of the clusters generated for F3 is C = {F2, F0},
with the rewritings R = {l3 = l2, el3 = el2, l2 = l0}. The algorithm then com-
putes the instantiations for F0 and F2; as F2 contains nested quantifiers, we remove
both of them and obtain: Inst[F2] = {¬isEmpty(l2), isEmpty(l2) ∧ ¬has(l2, el2)},
Inst[F0] = {¬(l0 = EmptyList), (l0 = EmptyList) ∧ isEmpty(l0)}. The model of
the corresponding G formula and R allow us to synthesize the required triggering
term T = dummy(isEmpty(EmptyList), has(EmptyList, 0)).

F0 : ∀l0 : L :: {isEmpty(l0)} ¬(l0 = EmptyList) ∨ isEmpty(l0)
F1 : ∀l1 : L :: {isEmpty(l1)} isEmpty(l1) ∨ has(l1, f1(l1))

F2 : ∀l2 : L :: {isEmpty(l2)} ¬isEmpty(l2) ∨ ∀el2 : Int :: {has(l2, el2)} ¬has(l2, el2)

F3 : ∀l3 : L, el3 : Int :: {has(l3, el3)} has(l3, el3) ∨ (indexOf(l3, el3) = −1)

F4 : ∀l4 : L, el4 : Int :: {indexOf(l4, el4)} indexOf(l4, el4) ≥ 0

Figure 4.14: Formulas that set contradictory constraints on the uninterpreted function
indexOf. L is an uninterpreted type, EmptyList is a user-defined constant of
type L. f1 is a Skolem function, which replaces a nested existential quantifier.
F2 contains nested universal quantifiers.
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F0 : ∀x0 : Int :: {len(nxt(x0)} len(x0) > 0

F1 : ∀x1 : Int :: {len(nxt(x1)} (nxt(x1) = x1) ∨ (len(x1) = len(nxt(x1)) + 1)

F2 : ∀x2 : Int :: {len(nxt(x2)} ¬(nxt(x2) = x2) ∨ (len(x2) = 1)

F3 : len(7) ≤ 0

Figure 4.15: Boogie example from Figure 4.1 encoded in our input format. F0–F2 repre-
sent the axiom, while the quantifier-free formula F3 is the negation of the
assertion (to discharge the proof obligation, the verifier considers the axioms
and the negation of the verification condition).

Quantifier-free formulas. Our algorithm iterates only over quantified conjuncts
but leverages the additional information provided by quantifier-free formulas and
includes them in the clusters even if the unification cannot find a rewriting (Algo-
rithm 4.2, line 9). Since quantifier-free conjuncts can be seen as already instantiated
formulas, we only have to cover all their disjuncts (Algorithm 4.1, line 7).

Boogie example. Figure 4.15 shows the example from Figure 4.1 encoded in our
format. The quantifier-free formula F3 (the negation of the verification condition)
is similar to F0 (they share the symbol len) and unifies through the rewritings R =
{x0 = 7}. We obtain the required triggering term dummy(len(nxt(7))) from the
model of G = ¬F′0 ∧ Inst[F3][0]∧

∧
R = (len(x0) ≤ 0) ∧ (len(7) ≤ 0) ∧ (x0 = 7).

Dafny example. Our algorithm can synthesize various triggering terms that ex-
pose the unsoundness from Figure 4.2, depending on the values of its parameters.
We explain here one, for σ = 0.1. For depth = 0, the algorithm checks each for-
mula F0–F4 in isolation. As they are all individually satisfiable, it continues with
depth = 1. To avoid redundant explanations, we present only the iteration for F3.

F3 shares at least two uninterpreted symbols with each of the other formu-
las, so there are various alternative rewritings: s3 = Empty(t1), s3 = s4, s3 =
Build(s4, i4, v4, l4), etc. As we consider clusters-rewritings pairs in which each
quantified variable has maximum one rewriting, one such pair is (C = {F4}, R =
{s3 = Build(s4, i4, v4, l4)}). F4 has two disjuncts, therefore its instantiations are:
Inst[F4] = {typ(s4) = Type(typ(v4), ¬(type(s4) = Type(typ(v4)) ∧ Len(Build(s4,
i4, v4, l4)) = l4}. From these instantiations and the rewritings R, we derive two
formulas: G0 = ¬F′3 ∧ Inst[F4][0] ∧

∧
R, with the model s3 = s, s4 = s′, i4 = 0,

v4 = v, l4 = 1 and G1 = ¬F′3 ∧ Inst[F4][1] ∧
∧

R, with the model s3 = s, s4 = s′,
i4 = 0, v4 = v, l4 = −1, where s, s′, and v are fresh variables of type U. (We use
indexes for the G formulas to refer to them later.) We then construct the candidate
triggering terms from the patterns of the formulas F3 and F4. We replace s3 by its
rhs in the rewriting, i.e., Build(s4, i4, v4, l4), and all the other quantified variables
by their constants from the model. The result after removing redundant terms is:
T0 = dummy(Len(Build(t, 0, v, 1))) and T1 = dummy(Len(Build(t, 0, v,−1))). Since
the validation step fails for both T0 and T1, we continue with the other (C, R) pairs,
the remaining quantified conjuncts, and their similarity clusters.
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F : ∀a : Int, b : Int, size : Int :: {both_ptr(a, b, size)}
both_ptr(a, b, size) ∗ size ≤ a− b

Figure 4.16: Inconsistent formula from a VCC/HAVOC [140, 45] benchmark from SMT-
COMP [168], which cannot be proved unsat by MBQI. Our synthesized trig-
gering term dummy(both_ptr(−2,−1, 0)) allows E-matching to refute it.

If no candidate term is sufficient to prove unsat, our algorithm expends the
clusters. To scale to real-world axiomatizations, it efficiently reuses the results
from the previous iterations; i.e., it prunes the search space if a previously syn-
thesized formula G is unsatisfiable and it strengthens G if it is satisfiable. The pair
(C = {F4}, R = {s3 = Build(s4, i4, v4, l4)}) can be extended to (C = {F4, F1}, R =
{s3 = Build(s4, i4, v4, l4), s4 = Empty(t1), t1 = typ(v4)}), as F1 is similar to F4
through the rewritings R = {s4 = Empty(t1), t1 = typ(v4)}. We thus conjoin the
instantiation of F1 and the two additional rewritings to the formulas G0 and G1
from the previous iteration. This is equivalent to recomputing the similarity cluster,
the rewritings, and the combinations of instantiations. We then obtain: G′0 = G0 ∧
(type(Empty(t1)) = Type(t1)) ∧ (s4 = Empty(t1)) ∧ (t1 = typ(v4)), which is unsat-
isfiable, and G′1 = G1 ∧ (type(Empty(t1)) = Type(t1)) ∧ (s4 = Empty(t1)) ∧ (t1 =
typ(v4)) with the model: s3 = s, s4 = s′, i4 = 0, v4 = v, l4 = −1, t1 = t, where s, s′,
v, and t are fresh variables of types U and V. From this model and the rewritings
we construct the triggering term T = dummy(Len(Build(Empty(typ(v)), 0, v,−1))),
which is sufficient to expose the inconsistency between F3 and F4.

VCC/HAVOC example. Figure 4.16 presents a fragment of a benchmark which
could be solved by our algorithm, but could not be proved unsat by MBQI (which
is a quantifier-instantiation algorithm that does not rely on patterns; Section 4.5 pro-
vides additional experimental results and a detailed comparison with alternative
refutation techniques). F, which was part of a set of 160 formulas, is inconsis-
tent by itself: when size = 0, E-matching can refute it for any integer values a, b,
such that a ≤ b. Our algorithm synthesizes the required triggering term in ≈7 s
because it initially considers each quantified conjunct in isolation. The formula
G = ¬F′ = both_ptr(a, b, size) ∗ size > a− b is satisfiable and the simplest models
the solver can provide (without assigning an interpretation to the uninterpreted
function both_ptr) all include size = 0.

Synonym functions as patterns. For the examples discussed so far, the functions
used as patterns were also present in the body of the quantifiers. However, to have
better control over the instantiations, one can also write formulas where the pat-
terns are additional uninterpreted functions, which do not appear in the bodies.
Such patterns are not uncommon in proof obligations. Figure 4.17 shows an exam-
ple, which uses the synonym functions technique [107] to avoid matching loops.
sum and sum_syn compute the sum of the elements of a sequence, between a lower
and an upper bound. The two functions are identical (according to F0), but only
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F0 : ∀s0 : ISeq, l0 : Int, h0 : Int :: {sum(s0, l0, h0)} sum(s0, l0, h0) = sum_syn(s0, l0, h0)

F1 : ∀s1 : ISeq, l1 : Int, h1 : Int :: {sum(s1, l1, h1)} ¬(l1 ≥ h1) ∨ sum_syn(s1, l1, h1) = 0

F2 : ∀s2 : ISeq, l2 : Int, h2 : Int :: {sum(s2, l2, h2)} ¬(l2 ≤ h2) ∨
(sum_syn(s2, l2, h2) = sum_syn(s2, l2 + 1, h2) + seq.nth(s2, l2))

F3 : seq.nth(empty, 0) = −1

Figure 4.17: Formulas with synonym functions as patterns that axiomatize sequence
comprehensions and set contradictory constraints on the uninterpreted func-
tion sum_syn. ISeq is a user-defined type, empty is a user-defined constant
of type ISeq (i.e., the empty sequence).

sum is used as a pattern. For equal bounds, F1 and F2 set contradictory constraints
on the interpretation of sum_syn. seq.nth returns the n-th element of the sequence.
Using the information from the quantifier-free formula F3, our algorithm gener-
ates the triggering term T = dummy(sum(empty, 0, 0), sum(empty, 0+ 1, 0)). The term
"0+ 1" comes from the rewriting l0 = l2 + 1. The addition is a built-in function but
is used as an argument to the uninterpreted function sum_syn, thus, it is supported
by our unification. Our algorithm is syntactic, so it does not perform arithmetic
operations, it just substitutes l2 with its value from the model. The solver then
performs theory reasoning and concludes unsat.

Multi-patterns and alternative patterns. SMT solvers allow patterns to contain
multiple terms, all of which must be present to perform an instantiation. F1 in
Figure 4.18 has such a multi-pattern and can be instantiated only when trigger-
ing terms that match both {g(b1)} and {f(x1)} are present in the SMT run. Our
algorithm directly supports multi-patterns, as the procedure candidateTerm instan-
tiates all the patterns from the given cluster (see Algorithm 4.3, line 9). For the
example from Figure 4.18, our technique synthesizes the triggering term T =
dummy(f(7), g(b)) from the rewritings R = {x0 = x1} and the model of the formula
G = ¬F′0 ∧ Inst[F1][1] ∧

∧
R = (f(x0) = 7) ∧ (¬g(b1) ∧ f(x1) = x1) ∧ (x0 = x1).

Here b is a fresh, unconstrained variable of the uninterpreted type B.
Formulas can also contain alternative patterns. For example, the quantified for-

mula ∀x : Int :: {f(x)} {h(x)} f(x) 6= 7 ∨ h(x) = 6 is instantiated only if there
exists a triggering term that matches {f(x)} or one that matches {h(x)}. Our algo-
rithm does not differentiate between multi-patterns and alternative patterns, thus

F0 : ∀x0 : Int :: {f(x0)} f(x0) 6= 7

F1 : ∀b1 : B, x1 : Int :: {g(b1), f(x1)} g(b1) ∨ (f(x1) = x1)

F2 : ∀b2 : B :: {g(b2)} ¬g(b2)

Figure 4.18: Formulas that set contradictory constraints on the uninterpreted function f.
B is an uninterpreted type. F1 has a multi-pattern.
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it always synthesizes the arguments for all the patterns of a cluster. For alternative
patterns, this results in an over-approximation of the set of necessary triggering
terms. However, the minimization step (performed before returning the triggering
term that successfully validates), removes the unnecessary terms.

4.5 evaluation

Evaluating our work requires benchmarks with known triggering issues (i.e., for
which E-matching yields unknown). Since there is no publicly available suite, in
Section 4.5.1 we used manually-collected benchmarks from four verifiers [106, 124,
162, 183]. Our algorithm succeeded for 65.6%. To evaluate its applicability to other
verifiers, in Section 4.5.2 we used SMT-COMP [168] inputs. As they were not de-
signed to expose triggering issues, we developed a filtering step to automatically
identify the subset that falls into this category. The results show that our algorithm
is suited also for [15, 45, 140]. Section 4.5.3 illustrates that our triggering terms are
simpler than the unsat proofs produced by quantifier instantiation and refutation
techniques, enabling one to fix the root cause of the revealed issues.

Setup. We used Z3 (4.8.10) [187] to infer the patterns, generate the models, and
validate the candidate terms. However, our tool can be used with any solver that
supports E-matching and exposes the inferred patterns. We used Z3’s NNF tactic
to transform the inputs into NNF and locality-sensitive hashing to compute the
clusters. We fixed Z3’s random seeds to arbitrary values (sat.random_seed to
488, smt.random_seed to 599, and nlsat.seed to 611). We set the (soft) timeout
to 600 s and the memory limit to 6 GB per run and used a 1 s timeout for obtaining
a model and for validating a candidate term. The experiments were conducted on
a Linux server with 252 GB of RAM and 32 Intel Xeon CPUs at 3.3 GHz.

4.5.1 Effectiveness on benchmarks with triggering issues

First, we used manually-collected benchmarks with known triggering issues from
4 state-of-the-art program verifiers: Dafny [106], F* [162], Gobra [183], Viper [124].
We reconstructed 4, respectively 2 inconsistent axiomatizations from Dafny and
F*, based on the changes from the repositories and the messages from the issue
trackers; we obtained 11 inconsistent axiomatizations of arrays and option types
from Gobra’s developers and collected 15 incompleteness issues from Viper’s test
suite [176], with at least one assertion needed only for triggering (we removed
these assertions from the benchmarks, as our work is expected to find the trig-
gering terms automatically). The Viper files contain algorithms for arrays, bino-
mial heaps, binary search trees, and regression tests. The input sizes (minimum-
maximum number of formulas or quantifiers) are shown in Table 4.1, columns 3–4.

Configurations. We ran our tool with five configurations, to also analyze the im-
pact of its parameters (see Algorithm 4.1 and Section 4.4.3). The default configu-
ration C0 has: σ = 0.3 (similarity threshold), β = 64 (batch size, i.e., the number
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# #F #∀ C0 C1 C2 C3 C4 Our Z3 CVC4 Vampire
Source min-max min-max default σ=0.1 β=1 type σ=0.1∧ sub work MBQI enum inst CASC ∧ Z3

Dafny 4 6 - 16 5 - 16 1 1 1 1 0 1 1 0 2

F* 2 18 - 2 388 15 - 2 543 1 1 1 1 2 2 1 0 2

Gobra 11 64 - 78 50 - 63 5 10 1 7 10 11 6 0 11

Viper 15 84 - 143 68 - 203 7 5 3 5 5 7 11 0 15

Total 32 21 (65.6%) 19 (59.3%) 0 (0%) 30 (93.7%)

σ = similarity threshold; β = batch size; type = type-based constraints; sub = sub-terms C0: σ = 0.3; β = 64; ¬type; ¬sub

Table 4.1: Results on verification benchmarks with known triggering issues. The columns
from left to right show: the source of the benchmarks, the number of files (#),
their number of conjuncts (#F) and of quantifiers (#∀), the number of files
for which five different configurations of our algorithm (C0 – C4) synthesized
suited triggering terms, our results across all configurations, the number of un-
sat proofs generated by Z3 (with MBQI [78]), CVC4 (with enumerative instan-
tiation [136]), and Vampire [98] (in CASC mode [161], using Z3 for ground the-
ory reasoning). The columns marked with grey represent E-matching-based
algorithms; only those can be soundly used by verifiers whose SMT encodings
have patterns, i.e., are designed for E-matching.

of candidate terms validated together), ¬type (no type-based constraints), ¬sub
(no unification for sub-terms). The other configurations differ from C0 in the pa-
rameters shown in Table 4.1. All configurations use δ = 2 (maximum transitivity
depth), µ = 4 (maximum number of different models), and 600 s timeout per file.

Results. Columns 5–9 in Table 4.1 show the number of files solved by each con-
figuration, column 10 summarizes those solved by at least one. Overall, we found
suited triggering terms for 65.6%, including all F* and Gobra benchmarks. An
F* unsoundness exposed by all configurations in ≈60 s is given in Figure 4.9. It
required two developers to be manually diagnosed based on a bug report [72].
A simplified Gobra axiomatization for option types is shown in Figure 4.12; the
entire axiomatization (considered in Table 4.1) was solved only by C4 in ≈13 s. Go-
bra’s team spent one week to identify some of the issues. As our triggering terms
for F* and Gobra were similar to the manually-written ones, we believe they could
have reduced the human effort in localizing and fixing the errors.

Our algorithm synthesized missing triggering terms for 7 Viper files, including
the array maximum example [5], for which E-matching could not prove that the
maximal element in a strictly increasing array of size 3 is its last element. Our
triggering term loc(a,2) (loc maps arrays and integers to heap locations) can be
added by a user of the verifier to their postcondition. A developer can fix the root
cause of the incompleteness by including a generalization of the triggering term
to arbitrary array sizes: len(a) != 0 ==> x == loc(a, len(a)-1).val (val al-
lows one to access the value at the corresponding heap location). Both fixes result
in E-matching refuting the proof obligation in under 0.1 s. We also exposed an-
other case where Boogie (which is used by Viper) is sound only modulo patterns
(as in Figure 4.3), i.e., the unsoundness is visible only at the SMT level.



98 overly restrictive patterns in smt-based program verifiers

# #F #∀ C0 C1 C2 C3 C4 Our Z3 CVC4 Vampire
Source min-max min-max default σ=0.1 β=1 type σ=0.1∧ sub work MBQI enum inst CASC ∧ Z3

Spec# 33 28 - 2 363 25 - 645 16 16 14 16 15 16 16 0 29

VCC/Havoc 14 129 - 1 126 100 - 1 027 11 9 5 11 9 11 12 0 14

Simplify 1 256 129 0 0 0 0 0 0 1 0 0

BWI 13 189 - 384 198 - 456 1 1 2 1 1 2 12 0 12

Total 61 29 (47.5%) 41 (67.2%) 0 (0%) 55 (90.1%)

σ = similarity threshold; β = batch size; type = type-based constraints; sub = sub-terms C0: σ = 0.3; β = 64; ¬type; ¬sub

Table 4.2: Results on SMT-COMP inputs. The columns have the structure from Table 4.1.

As Table 4.1 shows, configurations with smaller σ (C1 and C4) were particularly
important for some of the F* and Gobra benchmarks. Our algorithm starts with the
given σ and if it does not find the required triggering terms, it decreases σ by 0.1
and reiterates. Thus C0 also covers the case σ = 0.1, if the overall timeout is large
enough. However, always starting with a small σ may prevent our algorithm from
synthesizing the triggering terms, since the number of rewritings it has to explore
is considerably high. The extensions for unifying sub-terms (C4) and identifying
type-based constraints (C3) were also needed for one, respectively two input files.

4.5.2 Effectiveness on SMT-COMP benchmarks

Next, we considered 61 SMT-COMP [168] benchmarks from Spec# [15], VCC [140],
Havoc [45], Simplify [63], and the Bit-Width-Independent (BWI) encoding [127].
These were selected automatically and are summarized in Table 4.2. To obtain them,
we proceeded as described below.

Benchmarks selection. We collected 27 716 benchmarks from SMT-COMP 2020

(single query track) [168], with ground truth unsat and at least one pattern (as this
suggests they were designed for E-matching). We then ran Z3 to infer the missing
patterns and to transform the formulas into NNF and removed all benchmarks for
which the inference or the transformation did not succeed within 600 s per file
and 4 s per formula. We also removed the files with features not yet supported
by PySMT [77], the parsing library used in our experiments (e.g., sort signatures
in datatypes declarations), but we did extend PySMT to handle, e.g., patterns and
overloaded functions. This filtering resulted in 6 481 benchmarks. We then ran E-
matching and kept only those 61 examples that could not be solved within 600 s
due to incompleteness in instantiating quantifiers (our work only targets this in-
completeness, but the SMT-COMP suite also contains other solving challenges).

Results. The results are shown in Table 4.2, which follows the structure of Table 4.1.
Our algorithm enabled E-matching to refute 47.5% of the files, most of them from
Spec# and VCC/Havoc. We manually inspected some BWI benchmarks (for which
the algorithm had worse results) and observed that the validation step times out
even with a much higher timeout. This shows that some candidate terms trigger
matching loops and explains why C2 (which validates them individually) solved
one more file. Extending our algorithm to avoid matching loops, by construction,
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is left as future work. The other configurations did not prove to be better than C0

for these SMT-COMP inputs.

4.5.3 Comparison with unsatisfiability proofs

As an alternative to our work, tool developers could try to manually identify trig-
gering issues from refutation proofs, but unless these are generated by E-matching-
based algorithms, they do not consider patterns and require expert knowledge to
be understood. (Section 4.8 discusses the challenges of automating this process.)

Columns 11–13 in Table 4.1 and Table 4.2 show the number of unsatisfiability
proofs produced by Z3 with MBQI [78], CVC4 [17] with enumerative instantia-
tion [136] (an algorithm based on E-matching, used when E-matching saturates),
and the first-order theorem prover Vampire [98], using Z3 for ground theory rea-
soning [134] and the CASC [161] portfolio mode with competition presets. CVC4

failed for all examples (it cannot construct proofs for quantified logics), Vampire re-
futed most of them. Our algorithm outperformed MBQI for F* and Gobra and had
similar results for Dafny, Spec#, and VCC/Havoc. All five configurations solved
two VCC/Havoc files not solved by MBQI (Figure 4.16 presents one).

In terms of complexity, our triggering terms are much simpler and directly high-
light the root cause of the issues. For Viper’s array maximum example from Sec-
tion 4.5.1, our triggering term loc(a,2) is easier to understand than MBQI’s proof
(which has 2 135 lines and over 700 reasoning steps) and then Vampire’s proof
(with 348 lines and 101 inference steps). Other proofs have similar sizes.

As Vampire and MBQI do not consider patterns, they cannot replace our tech-
nique. Most deductive verifiers [3, 7, 15, 45, 66, 106, 163] employ E-matching for
discharging their proof obligations, since E-matching is the most efficient SMT al-
gorithm for program verification [78] (the vast majority of the SMT-COMP bench-
marks we initially collected were also directly refuted by E-matching). It is thus im-
portant to help the developers use the algorithm of their choice and return sound
results even if they rely on patterns for soundness (as in Figure 4.3). Therefore, the
only approach from Table 4.1 and Table 4.2 comparable with ours is enumerative
instantiation; the others solve a different problem.

As our algorithm accepts as input an SMT formula, it can also produce trigger-
ing terms required only at the SMT level, but which cannot be encoded into the
input language of the verifier (e.g., Boogie), since they are rejected by the type
system. However, such triggering terms can be filtered out, as lifting them to the
input language is mostly straightforward (we performed this step manually in our
experiments, to identify the cases of soundness modulo patterns; automating this
process is a possible future extension). However, this is not the case for refutation
proofs, whose back translation to the source language is an open research problem.

To enable the developers debug the axiomatizations or fix the incompleteness
more efficiently, our tool can also generate multiple triggering terms (as explained
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in Section 4.4.3). It can thus reveal multiple triggering issues for the same input for-
mula, information which cannot be directly obtained from unsatisfiability proofs.

4.5.4 Threats to validity

We identified the following two threats to the validity of our experiments:

Non-determinism. The SMT solvers use randomized algorithms, which can cause
non-determinism. To mitigate this problem, we fixed all the available random
seeds and used the same seeds in all the phases of our evaluation (i.e., for inferring
the patterns, pre-filtering via E-matching, running our tool and MBQI).

Benchmarks selection. We relied on Z3’s E-matching algorithm to select exam-
ples with incompleteness in instantiating quantifiers. An implementation of E-
matching from another solver could have led to different files. To avoid biases,
we used Z3 in all the experiments.

4.6 optimizations

In this section, we present various optimizations implemented in our tool, which
allow the algorithm to scale to real-world verification benchmarks.

Grammar. The grammar from Figure 4.6 allows us to simplify the presentation of
the algorithm. However, eliminating conjunctions by applying distributivity and
splitting (as described in Section 4.4.1) can result in an exponential increase in the
number of terms and introduce redundancy, affecting the solver’s performance.
Conjunction elimination is not implemented in Z3’s NNF tactic (used in our evalu-
ation, see Section 4.5), thus it is not performed automatically. We apply this trans-
formation only at the top level, i.e., we do not recursively distribute disjunctions
over conjunctions. For this reason, the input conjuncts F supported by our tool can
actually contain conjunctions, in which case we use an extended algorithm when
computing the instantiations, to ensure that all the resulting G formulas are still
quantifier-free. The number of conjuncts and the number of quantifiers reported
in Table 4.1 and Table 4.2 were computed before applying distributivity, thus they
are not artificially increased.

Rewritings. The restrictive shapes of our rewritings (from Section 4.4.2, step 2),
ensure that their number is finite, because if it exists, the most general unifier
is unique up to variable renaming, i.e., substitutions of the type {xi → xj, xj →
xi} [10]. (Such substitutions are rewritings of the shapes (1) and (2) where rhs is
also a quantified variable.) However, for most practical examples, the number of
rewritings is very large, thus our implementation identifies them lazily, in increas-
ing order of cardinality. If a rewriting r ∈ R leads to an unsat G formula for some
instantiations, then we discard all the subsequent G formulas that contain r and
the same instantiations (they will also be unsatisfiable). To make sure that the al-
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gorithm terminates within a given amount of time, in our experiments we bound
the number of G formulas derived for each quantified conjunct F to 100.

Instantiations. Our implementation computes lazily the Cartesian product of the
instantiations (Algorithm 4.1, line 9) since it can also have a high number of el-
ements. However, many of them are in practice unsatisfiable; our tool efficiently
identifies trivial conflicts (e.g., ¬Di ∧ Di), pruning the search space accordingly.

Candidate terms. To improve the performance of our algorithm, we keep track
of all the candidate triggering terms that failed to validate (i.e., of the models
from which they were synthesized). Then, we add constraints (similar to the con-
junct ¬model from Algorithm 4.1, line 19) to ensure the solver does not provide
previously-seen models for the quantified variables from the same set of patterns.

4.7 limitations

In the following, we discuss the limitations of our approach and possible solutions.

Applicability. Our algorithm effectively addresses a common cause of failed un-
satisfiability proofs in program verification, i.e., missing triggering terms. Other
causes (e.g., incompleteness in the solver’s decision procedures due to undecid-
able theories) are beyond the scope of our work. Also, our algorithm is tailored
to unsatisfiability proofs; satisfiability proofs cannot be reduced to unsatisfiability
proofs by negating the input, because the negation cannot usually be encoded in
SMT (as we have illustrated in Section 4.3).

SMT solvers. Our algorithm synthesizes triggering terms as long as the SMT
solver can find models for our quantifier-free formulas. However, solvers are in-
complete, i.e., they can return unknown and generate only partial models, which
are not guaranteed to be correct. Nonetheless, we also use partial models, as the
validation step (step 4 in Figure 4.4) ensures that they do not lead to false positives.

Patterns. Since our algorithm is based on patterns (provided or inferred), it will
not succeed if they do not permit the necessary instantiations. For example, the
formula ∀x : Int, y : Int :: x = y is unsatisfiable. However, the SMT solver cannot
automatically infer a pattern from the body of the quantifier, since equality is
an interpreted function and must not occur in a pattern. Thus E-matching (and
implicitly our algorithm) cannot solve this example, unless the user provides as
pattern some uninterpreted function that mentions both x and y (e.g., f(x, y)).

Bounds and rewritings. Synthesizing triggering terms is generally undecidable.
We ensure termination by bounding the search space through various customiz-
able parameters, thus our algorithm misses results not found within these bounds.
We also only unify applications of uninterpreted functions, which are common
in verification. Efficiently supporting interpreted functions (especially equality) is
very challenging for inputs with a small number of types (e.g., from Boogie [14]).
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Despite these limitations, our algorithm effectively identifies the triggering terms
required in practical examples, as we have experimentally shown in Section 4.5.

4.8 constructing triggering terms from unsatisfiability proofs

In this section, we describe an alternative approach for synthesizing triggering
terms for E-matching, starting from the unsatisfiability proofs generated by other
SMT algorithms or refutation techniques. We explored this idea together with
Strebel in his Bachelor thesis [157] for MBQI [78] and Vampire [98], as a follow
up of the work presented so far.

Explaining unsatisfiability proofs through examples. Since the proofs of MBQI
and Vampire are complex (see Section 4.5.3) and do not follow a common format,
we designed a technique to explain them to (non-expert) users through simple
examples [157]. For an input I (defined based on the grammar from Figure 4.6),
an example consists of a set of quantified conjuncts F of I instantiated for the con-
crete values used in the proofs, together with the quantifier-free conjuncts relevant
for exposing the contradiction. An example is thus a quantifier-free, unsatisfiable
formula, which highlights one scenario in which the solver cannot find an interpre-
tation for (some of) the uninterpreted functions from the original input I.

Figure 4.19 shows the example constructed according to [157] from the proof
produced by MBQI for the inconsistent axiomatization from Figure 4.5. F0 Inst and
F1 Inst are the instatiations of F0 and F1 for the fresh variables x0 and x1; E0 and E1
set their values to g(7) and 7, respectively, terms present in the proof.

Synthesizing triggering terms from examples. The previously-constructed exam-
ples can be also used for synthesizing triggering terms [157], by replacing the
quantified variables from the patterns of those conjuncts F which were instanti-
ated in the example (F0 and F1 from Figure 4.5) with their values from the proofs
(i.e., the right-hand side of the equalities E0 and E1 in Figure 4.19). In this way,
we obtain the triggering term dummy(f(g(7)), g(7)), which enables E-matching to
complete the proof when added to Figure 4.5. This term can be further minimized.

E0 : x0 = g(7)

E1 : x1 = 7

F0 Inst : f(g(x1)) = x1

F1 Inst : f(x0) 6= 7

Figure 4.19: Example (constructed according to [157]) showing a case in which the for-
mulas from Figure 4.5 set contradictory constraints on the uninterpreted
function f. x0 and x1 are fresh integer variables and represent concrete in-
stantiations of the quantified variables with the same names from Figure 4.5.
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# Z3 Z3 API Constructed Triggering terms
Source MBQI MBQI examples from examples

Dafny 4 1 1 1 1

F* 2 1 1 0 0

Gobra 11 6 6 6 6

Viper 15 11 7 7 7

Total 32 19 (59.3%) 15 (46.87%) 14 (43.75%) 14 (43.75%)

Table 4.3: Results of the algorithm for synthesizing triggering terms from MBQI’s un-
satisfiability proofs on the benchmarks from Table 4.1. The last four columns
show: the number of unsat proofs generated by Z3 with MBQI (used from com-
mand line, as in Table 4.1), the number of unsat proofs generated by Z3 API
with MBQI, the number of examples constructed according to our approach
from [157] from the Z3 API’s proofs, and the number of cases in which we
synthesized triggering terms from the previously-constructed examples.

Practical challenges. While the approach described above provides a theoretical
solution for constructing triggering terms from unsatisfiability proofs, there are
various practical challenges one needs to overcome. First, MBQI and Vampire
use different refutation algorithms, which are reflected in their proof format; thus
the actual construction of the examples is prover-specific. Second, while MBQI’s
proofs contain explicit quantifier instantiations, the superposition and resolution
calculi employed by Vampire lead only to implicit instantiations. We defined var-
ious syntactic heuristics [157] to convert them into explicit instantiations, which
proved to be useful for simple, manually-written formulas. However, when eval-
uated on more complex benchmarks (from Table 4.1 and Table 4.2), they enabled
the construction of the examples only for 6 out of 61 SMT-COMP files; Vampire’s
proofs for Dafny, F*, Gobra, and Viper (i.e., all the benchmarks from Table 4.1)
could not be handled. The inputs currently not supported by our technique [157]
would have required a combination of heuristics, and richer, semantic information
from the proofs (see Section 6 from [157] for a detailed discussion of the results).

We extended the implementation from [157] to synthesize triggering terms from
the examples obtained from MBQI’s proofs and evaluated it on the files from Ta-
ble 4.1. The results are summarized in Table 4.3. In our previous experiments (from
Section 4.5.1 and Section 4.5.2), we ran Z3 with MBQI from command line, while
in [157] we used the Z3 API to generate and parse the proofs (to avoid imple-
menting our own parser). We then observed that the Z3 API is less performant
than the command line [157], which our results from Table 4.3 can also confirm
(see columns 3 and 4). We could construct examples for all but one file (column 5)
within a 600 s timeout. The unsupported F* benchmark has 2 388 formulas and our
tool [157] is not optimized to efficiently extract information from very large input
files. Nevertheless, we could synthesize triggering terms that enable E-matching
to complete the proofs from all the constructed examples (column 6). For this, we
had to disable the minimization of the examples, which is performed based on the
unsat core generated by MBQI [157], since a minimal MBQI example may not con-
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tain instantiations for some quantified variables that are relevant for E-matching.
Recall from Section 4.4.1 that a valid pattern should mention all the quantified
variables, thus a triggering term has to provide concrete values for all of them.

Overall, we believe our technique from [157] is an important first step in au-
tomating the time-consuming process of understanding the unsatisfiability proofs
of MBQI and Vampire, but requires additional effort to be useful for E-matching.

4.9 related work

To the best of our knowledge, no other approach automatically produces the infor-
mation needed by users or developers of program verifiers to remedy the effects of
overly restrictive patterns. Quantifier instantiation and refutation techniques (dis-
cussed next) can produce unsatisfiability proofs, but these are much more complex
than our triggering terms (as we have shown in Section 4.5.3).

Quantifier instantiation techniques. Model-based quantifier instantiation (MBQI) [78]
was designed for sat formulas. It checks if the models obtained for the quantifier-
free part of the input satisfy the quantifiers, whereas we check if the synthesized
triggering terms obtained for some interpretation of the uninterpreted functions
generalize to all interpretations. In some cases, MBQI can also generate unsatisfi-
ability proofs, but they require expert knowledge to be understood; our trigger-
ing terms are much simpler. Counterexample-guided quantifier instantiation [137] is
a technique for sat formulas, which synthesizes computable functions from logical
specifications. It is applicable to functions whose specifications have explicit syn-
tactic restrictions on the space of possible solutions, which is usually not the case
for axiomatizations. Thus the technique cannot directly solve the complementary
problem of proving the soundness of the axiomatization.

E-matching-based approaches. Rümmer [139] proposed a calculus for first-order
logic modulo linear integer arithmetic that integrates constraint-based free variable
reasoning with E-matching. Our algorithm does not require reasoning steps, so it
is applicable to formulas from all the logics supported by the SMT solver. Enumer-
ative instantiation [136] is an approach that exhaustively enumerates ground terms
from a set of ordered, quantifier-free terms from the input. It can be used to refute
formulas with quantifiers, but not to construct proofs (see Section 4.5.3). Our algo-
rithm derives quantifier-free formulas and synthesizes the triggering terms from
their models, even if the input does not have a quantifier-free part; we use also
syntactic information (from the rewritings) to construct complex triggering terms.

Theorem provers. First-order theorem provers (e.g., Vampire [98]) also generate
refutation proofs. More recent works combine a superposition calculus with the-
ory reasoning [134, 179], integrating SAT/SMT solvers with theorem provers. We
also use unification, but to synthesize triggering terms required by E-matching.
However, our triggering terms are much simpler than Vampire’s proofs and can
be used to improve the triggering strategies for all future runs of the verifier.
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Testing axiomatizations. Ahn and Denney [1] proposed a technique that identi-
fies inconsistencies in quantified axiomatizations without patterns. The work also
requires a computational model of the axioms, which includes interpretations for
all the function symbols. Thus, it cannot be applied to axiomatizations with un-
interpreted functions and types, which are very common in program verification.
The technique tests each axiom in isolation, so it cannot find non-trivial inconsis-
tencies caused by the interaction between axioms. Our approach is fully automatic
and detects complex errors by identifying sharing constraints between formulas
and synthesizing triggering terms from clusters of similar formulas.

Detecting matching loops. Becker et al. [19] dynamically detect performance is-
sues in quantified SMT formulas that already include triggering terms, by identi-
fying too permissive patterns that lead to matching loops. Our work targets sound-
ness and completeness errors and synthesizes the triggering terms required to
refute SMT inputs with overly restrictive patterns.

4.10 conclusions

In this chapter, we presented the first automated technique that enables developers
and users of verifiers remedy the effects of overly restrictive patterns. As discharg-
ing proof obligations and identifying inconsistencies in axiomatizations require
the SMT solver to prove the unsatisfiability of a formula via E-matching, we devel-
oped a novel algorithm for synthesizing triggering terms that allow the solver to
complete the proof. Our approach is effective for a diverse set of verifiers, and can
significantly reduce the human effort in localizing and fixing triggering issues.





5
C O N C L U S I O N S A N D F U T U R E W O R K

In this chapter, we summarize the main contributions of our work (Section 5.1) and
discuss research directions we would like to explore in the future (Section 5.2).

5.1 conclusions

In this dissertation, we have presented various techniques for automatically identi-
fying soundness and completeness/precision errors in different types of program
analysis tools. Chapter 2 focuses on numerical abstract domains, the main compo-
nents of state-of-the-art static analyses. Chapter 3 describes approaches for testing
SMT and automata-based solvers. Chapter 4 shows that for SMT-based program
verifiers, the incompleteness and the undetected unsoundness in their axiomati-
zations can be solved by enabling E-matching to complete unsatisfiability proofs.
Next, we revisit the challenges from Section 1.2 and summarize our solutions.

Input data. Both Chapter 2 and Chapter 3 describe techniques for automatically
constructing the input data. To identify errors in static analyzers in a unit testing
manner, our input data consists of abstract domain elements. We generate them
in two steps: first, we create a pool of representative elements with maximum one
constraint, then we obtain more complex ones by applying a sequence of domain
operations. This approach produces valid and diverse abstract elements. We use
a similar idea in Chapter 3, where we start with simple SMT formulas that are
satisfiable or unsatisfiable by construction and derive more complex ones through
satisfiability-preserving transformations. Chapter 4 assumes that the input data is
given and consists of the proof obligations or the axiomatizations of a verifier.

Test oracles. In Chapter 2, the test oracles are represented by the 46 algebraic prop-
erties we have derived from the abstract interpretation literature. Chapter 3 uses
as test oracles the known truth value of the SMT formulas (which is preserved by
our transformations), as well as the minimal unsat core for unsatisfiable formulas
(which is unique by construction). Chapter 4 considers the E-matching implemen-
tation from Z3 as the test oracle, i.e., it uses it to determine which of the inputs
cannot be refuted due to incompleteness in instantiating quantifiers.

Easy error reporting. The input construction techniques from Chapter 2 and Chap-
ter 3 facilitate error reporting, as the issues are usually exposed by small test cases.
However, the same bug can be revealed by multiple inputs; to avoid reporting the
same problem multiple times, we manually identified similar test cases. We believe
this process can be automated, as we explain in Section 5.2. Our algorithm from
Chapter 4 also minimizes the synthesized triggering terms, avoiding unnecessary
quantifier instantiations which would complicate the unsatisfiability proofs.

107
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Relevance. All the bugs we reported to the developers of APRON and ELINA
(Chapter 2) and of Z3, CVC4, and MT-ABC (Chapter 3) were considered relevant.
Moreover, as our experiments showed, our techniques revealed also bugs reported
by other users. We believe this is mainly due to the fact that we use common
configuration options, which lead to realistic errors. The benchmarks with known
triggering issues we have collected in Chapter 4 contain either serious unsound-
nesses which have been fixed or prior incompleteness cases the developers of Viper
included in their test suite, to ensure they are not reintroduced by regressions.

Fast error localization. Most of the errors we reported in Chapter 2 and Chap-
ter 3 were confirmed or fixed within days, the developers of MT-ABC explicitly
saying that our simple test cases enabled them to understand the root cause of
the issues. Moreover, we reported problematic inputs together with the properties
expected to hold (in Chapter 2) or with the known ground truth and a possible
model or the expected unsat core (in Chapter 3), which we believe contributed to
faster error localization. The Gobra developers also confirmed that once they knew
which are the required triggering terms (Chapter 4), fixing the unsoundness was
considerably faster than manually debugging the axiomatizations. We drew a sim-
ilar conclusion from the issue tracker of F*, where two developers were initially
required to localize an error among 2 388 axioms. We believe the triggering term
our algorithm found in ≈60 s would have significantly accelerated this process.

Usability. All our techniques are currently implemented as external tools; integrat-
ing them into the development process is mostly an engineering effort.

Applicability. In Chapter 2 and Chapter 3, we have shown that our techniques gen-
eralize beyond their initial purpose: the approach for testing classical numerical
domains is also effective in finding issues in learning-based transformers; the tech-
nique for generating SMT formulas with string operations can also produce formu-
las that include regular expressions, operations from other theories and their com-
binations, as well as formulas with soft constraints for testing MAX-SMT solvers.
Other possible applications (also for Chapter 4) are discussed in Section 5.2.

5.2 future work

Next, we discuss various directions in which our work could be extended and the
challenges that might need to be addressed. Our techniques were designed at the
intersection of programming languages and software engineering, but they could
also incorporate approaches from other research areas, such as machine learning,
program synthesis, program repair, and education technologies. Table 5.1 presents
an overview of the possible extensions; the details follow below. Future work spe-
cific to a particular type of program analysis tool is presented in Section 5.2.1 (for
static analyzers, based on Table 5.1, column 1), Section 5.2.2 (for SMT solvers, as
described in Table 5.1, column 2), and Section 5.2.3 (for SMT-based program ver-
ifiers, according to Table 5.1, column 3). Section 5.2.4 summarizes open research
problems applicable to multiple types of tools (listed in Table 5.1, column 4).
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Possible extensions

Static analyzers SMT solvers SMT-based program verifiers Program analysis tools

string & heap domains (PL) clustering (ML) avoiding matching loops (PL) generic framework (SE)

NNs verification domains (ML) generating⇔ (ML&PSyn) extended unification (PL&ML) non-expert users (PSyn)

benchmark programs (SE) E-matching & MBQI (SE) best configuration (ML) fixing the errors (PR&ML)

other provers (SE) new QI algorithm (PL&SE) exam questions (EdTech)

triggering semantics (PL)

PL = programming languages ML = machine learning PSyn = program synthesis

SE = software engineering EdTech = education technologies PR = program repair

NNs = neural networks ⇔ = equivalent formulas/equivalences QI = quantifier instantiation

Table 5.1: Overview of possible extensions of our work across different research areas.

5.2.1 Static analyzers

In the following, we explain possible extensions for our approach from Chapter 2.

String and heap domains. Our work focuses on numerical abstract domains, but
its main ingredients might carry over to other domains, such as string or heap
domains (for testing points-to analyzers). However, these domains may require
different techniques to construct the domain elements, as well as suitable parame-
ters for assignments and conditionals, since fuzzers may not be able to effectively
explore the search space of non-numerical domain implementations.

Domains for neural networks verification. We have experimentally shown that
our technique is also applicable to domains that combine abstract interpretation
with machine learning. Recently, there have been also proposed several abstract
domains specifically designed for verifying neural networks that support ReLU,
Sigmoid, and Tanh activation functions, such as DeepZ [145] (which contains point-
wise Zonotope transformers) and DeepPoly [146] (which combines floating-point
Polyhedra with Intervals). Since these domains are integrated into ELINA, our
approach can be easily extended to test them as well.

Benchmark programs. Our technique performs unit testing, thus it only checks the
implementation of domain operations, which are critical parts of a static analyzer.
However, this approach may miss errors in other components (e.g., which parse
the source code, transform it into intermediate representations, such as abstract
syntax trees or control flow graphs, etc.). An alternative would be to consider the
analyzer as a whole and to generate benchmark programs as inputs. To facilitate
error localization, these could have increasing complexity and contain different
classes of issues (e.g., they could throw, by construction, a particular type of ex-
ception). We explored this research direction together with Hurmuz, in her Master
thesis [89], for null pointer analysis in Java. Our experimental results (see Chapter
6.2 from [89]) show that this approach can effectively identify soundness errors in
Infer [64], a widely-used static analyzer. We believe that our work can be further
generalized to other types of analysis (e.g., division by zero, buffer overrun, etc.).



110 conclusions and future work

5.2.2 SMT solvers

Next, we present possible future extensions for our technique from Chapter 3.

Clustering. Multiple failed tests may have the same root cause. To be able to match
them with known issues, we manually inspected and grouped some of the failed
tests by their common reason. To reduce the human effort, one could cluster the
failed tests and characterize the inputs belonging to the cluster automatically (e.g.,
all of them contain indexOf operations with negative offsets). One may also try to
express these conditions as regular expressions.

Generating equivalent formulas. Our approach relies on equivalent formulas and
equivalences for variables and constants, which are currently written manually.
However, this process could be automated by using machine learning or synthesis
techniques, as in the works of Singh and Solar-Lezama [150] or Nötzli et al. [128].

Testing E-matching and MBQI. Another research direction would be to automat-
ically test the quantifier instantiation mechanism of an SMT solver, i.e., its two
main algorithms, E-matching and MBQI. While our unsat formulas with quanti-
fiers were designed for E-matching, our technique does not provide any guaran-
tees that they contain all the necessary triggering terms for the proof to succeed.
It would thus be necessary to extend our approach to also know, by construction,
if a formula is expected to be solved by a particular algorithm.

Other provers. Our synthesized formulas with known ground truth could be also
used for testing other provers that accept SMT inputs (e.g., Vampire) and decision
procedures with machine-checkable proofs (i.e., formalized in Coq, as in [87]).

5.2.3 SMT-based program verifiers

Next, we discuss future research directions for the work presented in Chapter 4.

Avoiding matching loops. Our experimental results showed that our synthesized
triggering terms can sometimes trigger matching loops. To improve the perfor-
mance of our algorithm, we could thus identify the (combinations of) triggering
terms that cause the validation step to time out and avoid them in future iterations.

Extended unification. Our simplified unification identifies rewritings only when
the outermost function is uninterpreted (this considerably reduces their number).
An extended version, which also unifies outermost interpreted functions, could be
more precise, but we believe much more inefficient (especially for axiomatizations
with a few, user-defined types, where only equality would result in a significant
number of possible rewritings). For an efficient extended unification, one could
first identify, from the previous fixes, which of the arguments of an interpreted
function are more error-prone. These could then be prioritized in the rewritings.

Best configuration. We evaluated our algorithm on a few, manually-defined con-
figurations. However, other configurations may have been more effective for par-
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ticular benchmarks. Since the space of all combinations of parameters is very large,
our approach could be extended to automatically identify the best combination for
a given input (or to apply various configurations, in a portfolio manner).

New quantifier instantiation algorithm. Our work could also serve as a starting
point for developing a new, E-matching-based, quantifier instantiation algorithm.
Integrating it into an SMT solver could also improve its performance (for example,
our tool identifies simple, syntactic conflicts between instantiations; these can be
automatically and more efficiently detected by a solver during pre-processing).

Encoding the triggering semantics. Algorithms such as MBQI or first-order refu-
tation techniques (available in Vampire) proved to be effective in generating unsat-
isfiability proofs. However, they do not consider patterns, thus they can produce
unsound results for those axiomatizations which are, by construction, only sound
module patterns. To benefit from these approaches (and to allow SMT-based veri-
fiers also run in a portfolio mode), we believe it is possible to encode the triggering
semantics in SMT, and thus to prevent those instantiations which would be per-
formed by alternative algorithms, but not by E-matching.

5.2.4 Program analysis tools

The following possible extensions apply to more than one kind of analysis tool.

Generic framework. Our work is not the only one targeting program analysis
tools. There have been significant research efforts (summarized in Chapter 2) in au-
tomatically identifying errors in compilers, debuggers, DSE engines, model check-
ers, SMT solvers, and static analyzers. While all proposed approaches showed
improvements over the state-of-the-art, there is no definite solution. We, therefore,
believe that based on the strengths and weaknesses of each technique, it is possible
to build a generic framework for testing program analysis tools that unifies (some
of) the existing approaches. The framework will then select the combination of
techniques that is more likely to be effective for the particular tool under test.

Non-expert users. Despite the increased effort of the research community in mak-
ing formal methods in general, and program analysis tools in particular, more
accessible to a wider audience, their usage still requires expert knowledge. How-
ever, our techniques allow one to understand which parts are more challenging to
implement correctly (i.e., are more error-prone). The approaches presented in this
dissertation could be extended to capture the user intent and provide support for
automatic code generation: e.g., they could help less experienced developers im-
plement sound join transformers or decision procedures for string concatenation.

Fixing the errors. Another extension would be to automatically localize the source
of the errors in the implementation, based on our test cases or synthesized trigger-
ing terms, and to suggest a possible fix. To obtain realistic fixes, one could learn
this information from the code changes made by the developers.
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Exam questions and grading. Our proposed techniques could be used to automat-
ically generate exam questions, following Hozzova et al.’s line of work [88]. For
example, for a course on Program Verification that presents the E-matching algo-
rithm, the students could be given an inconsistent axiomatization together with
the required triggering terms and they could be asked to explain how E-matching
proves unsat. The Axiom Profiler [19] can automatically generate a possible solu-
tion for this problem. Moreover, our test cases from Chapter 2 could be used to
automatically grade a project for a Program Analysis course, where the students
are required to implement their own, simplified, static analyzer.
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178. Visser, W., Pǎsǎreanu, C. S. & Khurshid, S. Test Input Generation with Java PathFinder.
SIGSOFT Softw. Eng. Notes 29, 97 (2004).

179. Voronkov, A. AVATAR: The Architecture for First-Order Theorem Provers in Computer
Aided Verification (eds Biere, A. & Bloem, R.) (Springer International Publishing,
Cham, 2014), 696.

180. Wei, S., Mardziel, P., Ruef, A., Foster, J. S. & Hicks, M. Evaluating Design Tradeoffs in
Numeric Static Analysis for Java in ESOP 10801 (Springer, 2018), 653.

181. Winterer, D., Zhang, C. & Su, Z. On the Unusual Effectiveness of Type-Aware Opera-
tor Mutations for Testing SMT Solvers. Proc. ACM Program. Lang. 4 (2020).

182. Winterer, D., Zhang, C. & Su, Z. Validating SMT Solvers via Semantic Fusion in Pro-
ceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and
Implementation (Association for Computing Machinery, London, UK, 2020), 718.

183. Wolf, F. A., Arquint, L., Clochard, M., Oortwijn, W., Pereira, J. C. & Müller, P. Go-
bra: Modular Specification and Verification of Go Programs in Computer Aided Verification
(CAV) (eds Silva, A. & Leino, K. R. M.) (Springer International Publishing, 2021), 367.

184. Yang, X., Chen, Y., Eide, E. & Regehr, J. Finding and understanding bugs in C compilers
in PLDI (ACM, 2011), 283.

185. Yao, P., Huang, H., Tang, W., Shi, Q., Wu, R. & Zhang, C. Fuzzing SMT Solvers via
Two-Dimensional Input Space Exploration in Proceedings of the 30th ACM SIGSOFT In-
ternational Symposium on Software Testing and Analysis (Association for Computing
Machinery, Virtual, Denmark, 2021), 322.

186. Yao, P., Huang, H., Tang, W., Shi, Q., Wu, R. & Zhang, C. Skeletal Approximation
Enumeration for SMT Solver Testing in (Association for Computing Machinery, Athens,
Greece, 2021), 1141.

187. Z3 SMT Solver https://github.com/Z3Prover/z3/.

188. Z3 Test Suite https://github.com/Z3Prover/z3/tree/master/src/test.

189. Zeller, A. & Hildebrandt, R. Simplifying and Isolating Failure-Inducing Input. IEEE
Trans. Softw. Eng. 28, 183 (2002).

190. Zhang, C. Stress Testing SMT Solvers via Type-aware Mutation in 2020 IEEE/ACM
42nd International Conference on Software Engineering: Companion Proceedings (ICSE-
Companion) (2020), 119.

191. Zhang, C., Su, T., Yan, Y., Zhang, F., Pu, G. & Su, Z. Finding and Understanding Bugs in
Software Model Checkers in Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engineer-
ing (Association for Computing Machinery, Tallinn, Estonia, 2019), 763.

192. Zhang, L. & Malik, S. Validating SAT solvers using an independent resolution-based
checker: practical implementations and other applications in 2003 Design, Automation and
Test in Europe Conference and Exhibition (2003), 880.

https://github.com/viperproject/silver/tree/master/src/test/resources
https://github.com/viperproject/silver/tree/master/src/test/resources
https://github.com/Z3Prover/z3/
https://github.com/Z3Prover/z3/tree/master/src/test


124 Bibliography

193. Zhang, Q., Sun, C. & Su, Z. Skeletal Program Enumeration for Rigorous Compiler Testing
in Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design
and Implementation (ACM, Barcelona, Spain, 2017), 347.

194. Zheng, Y., Zhang, X. & Ganesh, V. Z3-str: A Z3-based String Solver for Web Application
Analysis in Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineer-
ing (ACM, Saint Petersburg, Russia, 2013), 114.



C U R R I C U L U M V I TA E

personal data

Name Alexandra-Olimpia Bugariu
Date of Birth 12.01.1990

Place of Birth Timisoara, Romania
Citizen of Romania

Email alexandra.bugariu@inf.ethz.ch

education

2016 – 2022 PhD in Computer Science
ETH Zurich, Switzerland
Advisor: Prof. Dr. Peter Müller
Dissertation: Automatically Identifying Soundness and Completeness
Errors in Program Analysis Tools

2013 – 2015 MSc. in Computer Science
(European Master in Software Engineering, Double Degree)
Free University of Bozen-Bolzano, Italy and Technische Universität
Kaiserslautern, Germany
Grade: 110 cum laude/110 (Italy) and 1.0/1.0 (Germany)
Thesis: Alternative Approaches for Quantitative State/Event
Fault Trees Analysis

2009 – 2013 BSc. in Computer and Software Engineering
(Major in Software Engineering)
Politehnica University of Timisoara, Romania
Grade: 9.67/10

Thesis: Extensions of the phantm Analyzer to support Model
Extraction from PHP Web Applications

honors & awards

2021 Young Researcher at the 8th Heidelberg Laureate Forum
Selected among 200 young researchers from Mathematics and
Computer Science

125



126 Bibliography

2020 Young Researcher at the Virtual Heidelberg Laureate Forum
Selected among 200 young researchers from Mathematics and
Computer Science

2015 DAAD STIBET Scholarship
3 months scholarship for finalizing my master studies at the Technical
University of Kaiserslautern

2013 – 2015 Erasmus Mundus Consortium Scholarship
2 years scholarship for the European Master in Software Engineering

2009 Valedictorian
Award for the high school student with the highest grade (10/10)

employment

September 2016

September 2022

Teaching Assistant (TA)
ETH Zurich, Switzerland
BSc./MSc. seminars/exercise sessions for: Informatik I (AS’16),
Software Architecture and Engineering (SS’17, SS’18 - Head TA),
Concepts of Object-Oriented Programming (AS’17, AS’18, AS’19,
AS’20 - Head TA, AS’21 - Head TA), Research Topics in Software
Engineering (AS’17, AS’19), Parallel Programming (SS’19),
Rigorous Software Engineering (SS’20)

March 2016

August 2016

Software engineer intern
itemis AG Stuttgart, Germany
Development of formal analysis tools (based on the Z3 SMT solver)
for domain specific languages

February 2013

July 2013

Research intern
e-Austria Institute Timisoara, Romania
Development of formal analysis tools (based on the Yices and Z3

SMT solvers) for systems modeled as state automata, development
of my BSc. thesis

August 2012

September 2012

Research intern
fortiss GmbH München, Germany
Development of formal analysis tools (based on the Yices SMT solver
and on the NuSMV model checker) for checking the compatibility of
components and the feasibility of message sequence charts

July 2010

September 2010

Student intern
TRW Automotive Timisoara, Romania
Testing, development of tools for internal use (Word reports generator
from XML files using C#)



Bibliography 127

service

Scientific staff
representative

ETH Zurich Hiring Committee for Computer Science – Security,
Software Engineering, and Programming Languages’21

Subreviewer SEFM’20, ISSTA’19, EMSOFT’18, FM’18

PC PLDI’22 AEC, CAV’21 AEC, PLDI’21 AEC

Student
volunteer

PLDI’19, ECOOP/PLDI’17

students advised

AS’21 Sebastian Kühne: Automatically Testing Solvers for String and Regular
Expressions Constraints
(ETH Zurich, BSc Thesis)

Kevin Thommen: Automatically Testing MAX-SMT Solvers
(ETH Zurich, BSc Thesis)

Madalina Hurmuz: Automatically Generating Java Benchmarks with
Known Errors
(ETH Zurich, MSc Thesis)

Olivier Becker: Automatically Testing SMT Solvers
(ETH Zurich, BSc Thesis)

SS’21 Pascal Strebel: Explaining Unsatisfiability Proofs through Examples
(ETH Zurich, BSc Thesis, co-advised with Dr. Malte Schwerhoff)

SS’18 Radwa Sherif Abdelbar: Automated Checking of Implicit Assumptions
on Textual Data
(ETH Zurich, BSc Thesis, co-advised with Dr. Caterina Urban)

AS’17 Madelin Schumacher: Automated Generation of Data Quality Checks
(ETH Zurich, MSc Thesis, co-advised with Dr. Caterina Urban)

publications

[FM’21] Identifying Overly Restrictive Matching Patterns in SMT-based
Program Verifiers (acceptance rate: 26.7%)
Alexandra Bugariu, Arshavir Ter-Gabrielyan, Peter Müller

[ICSE’20] Automatically Testing String Solvers (acceptance rate: 20.9%)
Alexandra Bugariu, Peter Müller

[ASE’18] Automatically Testing Implementations of Numerical Abstract
Domains (acceptance rate: 19.9%)
Alexandra Bugariu, Valentin Wüstholz, Maria Christakis, Peter Müller


	Abstract
	Zusammenfassung
	Thesis Publications
	Acknowledgements
	Contents
	1 Introduction
	1.1 State-of-the-art
	1.2 Challenges
	1.3 This Dissertation

	2 Numerical Abstract Domains
	2.1 Introduction
	2.2 Background: Abstract Domains
	2.3 Overview
	2.3.1 Test oracles
	2.3.2 Input data
	2.3.3 Test drivers

	2.4 Testing Numerical Domains
	2.4.1 Test oracles
	2.4.2 Input data

	2.5 Evaluation
	2.5.1 APRON Double and Rll
	2.5.2 APRON MPQ
	2.5.3 ELINA
	2.5.4 Sensitivity analysis
	2.5.5 Fuzzing and dynamic symbolic execution
	2.5.6 Threats to validity

	2.6 Testing Learning-based Abstract Interpretation Transformers
	2.7 Limitations
	2.8 Related Work
	2.9 Conclusions

	3 SMT solvers
	3.1 Introduction
	3.2 Overview
	3.2.1 Generating satisfiable formulas
	3.2.2 Generating unsatisfiable formulas

	3.3 Satisfiability-Preserving Transformations
	3.3.1 Transformations for satisfiable formulas
	3.3.2 Transformations for unsatisfiable formulas

	3.4 Evaluation
	3.4.1 Testing string solvers
	3.4.2 Comparison with fuzzers for string formulas
	3.4.3 Testing automata-based solvers
	3.4.4 Subsequent work on testing SMT solvers
	3.4.5 Threats to validity

	3.5 Extensions
	3.5.1 Other theories
	3.5.2 Regular expressions
	3.5.3 MAX-SMT solvers

	3.6 Limitations
	3.7 Related Work
	3.8 Conclusions

	4 Overly Restrictive Patterns in SMT-Based Program Verifiers
	4.1 Introduction
	4.2 Background: E-matching
	4.3 Overview
	4.4 Synthesizing Triggering Terms
	4.4.1 Input formula
	4.4.2 Algorithm
	4.4.3 Extensions
	4.4.4 Additional examples

	4.5 Evaluation
	4.5.1 Effectiveness on benchmarks with triggering issues
	4.5.2 Effectiveness on SMT-COMP benchmarks
	4.5.3 Comparison with unsatisfiability proofs
	4.5.4 Threats to validity 

	4.6 Optimizations
	4.7 Limitations
	4.8 Constructing Triggering Terms from Unsatisfiability Proofs
	4.9 Related Work
	4.10 Conclusions

	5 Conclusions and Future Work
	5.1 Conclusions
	5.2 Future Work
	5.2.1 Static analyzers
	5.2.2 SMT solvers
	5.2.3 SMT-based program verifiers
	5.2.4 Program analysis tools


	Bibliography
	Curriculum Vitae

