
Automatically Testing String Solvers
Alexandra Bugariu

Department of Computer Science, ETH Zurich
Zurich, Switzerland

alexandra.bugariu@inf.ethz.ch

Peter Müller
Department of Computer Science, ETH Zurich

Zurich, Switzerland
peter.mueller@inf.ethz.ch

ABSTRACT
SMT solvers are at the basis of many applications, such as program
verification, program synthesis, and test case generation. For all
these applications to provide reliable results, SMT solvers must
answer queries correctly. However, since they are complex, highly-
optimized software systems, ensuring their correctness is challeng-
ing. In particular, state-of-the-art testing techniques do not reliably
detect when an SMT solver is unsound.

In this paper, we present an automatic approach for generating
test cases that reveal soundness errors in the implementations of
string solvers, as well as potential completeness and performance
issues. We synthesize input formulas that are satisfiable or unsat-
isfiable by construction and use this ground truth as test oracle.
We automatically apply satisfiability-preserving transformations to
generate increasingly-complex formulas, which allows us to detect
many errors with simple inputs and, thus, facilitates debugging.

The experimental evaluation shows that our technique effec-
tively reveals bugs in the implementation of widely-used SMT
solvers and applies also to other types of solvers, such as automata-
based solvers. We focus on strings here, but our approach carries
over to other theories and their combinations.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging.
KEYWORDS
automatic testing, soundness testing, string solvers, SMT solvers

ACM Reference Format:
Alexandra Bugariu and Peter Müller. 2020. Automatically Testing String
Solvers. In 42nd International Conference on Software Engineering (ICSE ’20),
May 23–29, 2020, Seoul, South Korea. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3377811.3380398

1 INTRODUCTION
SMT solvers have a large variety of applications, from program ver-
ification and synthesis to symbolic execution and concolic testing.
For all these tools to be reliable and usable in practice, the SMT
solvers have to provide correct answers.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7121-6/20/05. . . $15.00
https://doi.org/10.1145/3377811.3380398

For a given formula, an SMT solver returns either sat (together
with a model that associates a value to each free variable, such
that the formula evaluates to true), or unsat (and optionally a set
of clauses that lead to a contradiction—the unsat core). A solver
is unsound if it yields an incorrect result, that is, yields sat for an
unsatisfiable formula or unsat for a satisfiable one. It is also unsound
if it correctly yields sat or unsat, but produces an invalid model or
an incorrect unsat core, i.e., a sub-formula that is satisfiable.

Since SMT solvers support undecidable theories, they cannot
always determine whether a formula is satisfiable and may some-
times return unknown. However, a solver is unnecessarily incomplete
if it returns unknown for a formula from a decidable theory, such as
∀ x ,y : Int : x = y, which falls into Presburger arithmetic. It is also
undesirable for a solver to timeout (i.e., not to solve a query within
a given timespan). Such a result often points to performance issues.

SMT solvers combine multiple communicating decision proce-
dures for various theories (e.g., uninterpreted functions, linear/non-
linear arithmetic, bit vectors, arrays, strings, etc.) As a result, they
are complex software systems, and checking that their implemen-
tations are sound is, therefore, challenging.

To illustrate the errors solvers can make, consider for example
the SMT formula from List. 1. It uses two string variables, t and
u, and checks if it is possible to obtain the constant string ”a” by
replacing the first occurrence of t by u in an empty string. This is
the case according to the SMT-LIB standard [12] if t is empty and u
is ”a”. Nevertheless, Z3-seq [7, 15] and Z3str3 [13], two widely-used
SMT solvers, incorrectly report unsat for this formula.

(d e c l a r e −fun t () S t r i n g)
(d e c l a r e −fun u () S t r i n g)
(a s s e r t (= (s t r . r e p l a c e " " t u) " a "))
(check− s a t)

Listing 1: A sat formula that exposes a soundness bug in Z3-
seq and Z3str3, written in SMT-LIB syntax (with prefix nota-
tion for operators). In the rest of the paper, we show exam-
ples in mathematical notation, to improve readability.

State-of-the-art testing techniques for SMT solvers do not reli-
ably detect such errors. Fuzzing [16] generates formulas that may
crash the solvers or reveal performance issues, but do not reliably
detect soundness problems. Approaches based on differential test-
ing [28] compare the results of different solvers. Different results
may indicate a soundness problem in one of them. However, deter-
mining which solver is at fault requires manual effort. Moreover,
differential testing requires at least one solver that provides the
correct result; this might not be the case in situations like the one
described above, where Z3-seq and Z3str3 are both incorrect.

In this paper, we propose a novel technique for automatically
generating test cases that reveal, besides others, soundness issues in
the implementation of SMT solvers. We synthesize input formulas

1459

2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE)

https://doi.org/10.1145/3377811.3380398
https://doi.org/10.1145/3377811.3380398

ICSE ’20, May 23–29, 2020, Seoul, South Korea Alexandra Bugariu and Peter Müller

that are sat or unsat by construction and use this ground truth
as test oracle. Our technique generates sequences of input formu-
las of increasing complexity by applying satisfiability-preserving
transformations. In this way, the bugs are often found with sim-
ple inputs, which facilitates error localization and debugging. We
automatically construct a model for each satisfiable formula and
a minimal, unique unsat core for each unsatisfiable one, and use
them as additional oracles. For concreteness, this paper focuses on
string solvers, but our technique generalizes to other theories.

Contributions. Our contributions are the following:
• We present an automated approach for synthesizing SMT
formulas for the string theory, which are satisfiable or unsat-
isfiable by construction. Together with the known ground
truth, these formulas are used to automatically test the im-
plementations of SMT solvers. Our technique generates sat-
isfiable formulas together with models, and unsatisfiable
formulas together with unsat cores; as they are incremen-
tally complex, these formulas facilitate debugging and faster
error localization.
• We implemented our technique and evaluated it on three
widely-used SMT solvers, Z3-seq [7, 15], Z3str3 [13], and
CVC4 [25], as well as on the automata-based solver MT-
ABC [11]. Our experimental results show that our technique
effectively detects soundness problems, and outperforms
state-of-the-art fuzzing techniques in doing so. Our approach
can also reveal other types of errors, such as performance,
completeness or precision issues.

Outline. The rest of this paper is organized as follows: In Sect. 2
we give an overview of our solution for constructing sat and unsat
formulas; the details follow in Sect. 3. We discuss our experimental
results in Sect. 4, related work in Sect. 5 and conclude in Sect. 6.

2 OVERVIEW
Our approach automatically generates SMT formulas that are sat-
isfiable or unsatisfiable by construction. These formulas are used
as inputs for black-box tests, while the ground truth is used as test
oracle. Our formula construction approach consists of two steps:

(1) We generate simple formulas with known truth values.
(2) From these formulas, we derive more complex, equisatisfi-

able formulas through automatic transformations.
To perform these steps, our generator requires a set of operations

supported by the theory under test, together with their reference
semantics. For concreteness, in this paper we use the SMT-LIB stan-
dard [12] as the reference semantics, because it provides a rigourous
description of the theories. Most widely-used SMT solvers adhere
to SMT-LIB to facilitate comparisons (e.g., in SMT competitions [4])
and to enable the side-by-side usage of multiple solvers [22].

Our technique tests whether the implementation of an SMT
solver complies with the provided reference semantics. For solvers
that intentionally deviate from the SMT-LIB standard, it is straight-
forward to parameterize our techniquewith an alternative reference
semantics and use that to test the implementation. For instance, the
CVC4 documentation does not define the result of the replace op-
eration when the second argument is the empty string [1]. One can
use our technique with the SMT-LIB semantics to check for such

Table 1: String operations, grouped by their return type

Return a string Return an integer Return a boolean

at(s, off)∗ indexOf(s, t, off) contains(s, t)
concat(s, t) length(s) equals(s, t)
intToStr(n) strToInt(s) prefixOf(s, t)
replace(s, t, u) suffixOf(s, t)
substr(s, off , len)

∗returns a char (i.e., a string of length 1) s , t , u : type String; n, off , len: type Int

replace(s, t, u) = res
Figure 1: The simple sat formula for replace, generated in
step 1. All the variables have type String.

deviations from the standard, and with an alternative reference
semantics to check for errors in the implementation.

Tab. 1 gives an overview of the operations supported by the string
theory; these operations have, according to SMT-LIB, deterministic
semantics [5]. As some of the operations take or yield integers,
reasoning about them also involves linear integer arithmetic.

In the following subsections, we give an overview of our con-
struction approach for satisfiable and unsatisfiable formulas.

2.1 Generating satisfiable formulas
An SMT formula is satisfiable (sat) with respect to some background
theory if there exists at least one model (i.e., variable assignment)
within the theory such that the formula evaluates to true [14]. For
example, the formula x + x = 3 is satisfiable in the theory of real
numbers, as it is possible to find at least one solution to this equation
(x = 1.5). Nonetheless, the formula is unsatisfiable (i.e., does not
have a model) in the integer arithmetic theory.

In the first step of our technique, we construct sat formulas that
test each operation in isolation; this allows developers to localize
and fix bugs faster. We start with the operations supported by the
theory under test and automatically derive a test case for each of
them, in which the parameters and the result of each operation are
unconstrained. These simple formulas are thus trivially satisfiable.

An example formula that we synthesize during the first step
is shown in Fig. 1. This formula is satisfiable, since for all string
arguments s, t, u, there exists a string res that is equal to the
result of the replace operation (because all string operations are
total functions). Even though they are very simple, these formulas
can still reveal bugs. For example, Z3-seq returns unknown for
the SMT formula from Fig. 2, which tests the indexOf operation.
Since this initial test case is minimal (and, in particular, does not
involve any other operations), it facilitates identifying the source
of this incompleteness: most likely a bug in handling the indexOf
operation in the corresponding decision procedure.

To test more complex cases, as well as the interaction between
different operations, step 2 of our approach derives additional test
cases by automatically applying a set of transformations on the
formulas synthesized before. These transformations preserve the
satisfiability of the initial formulas, thus creating equisatisfiable, but
more complex formulas, with more constrained models and more
(or more complex) terms. We illustrate a very simple transformation
here and present more complex ones in Sect. 3.1.

1460

Automatically Testing String Solvers ICSE ’20, May 23–29, 2020, Seoul, South Korea

indexOf(s, t, off) = res
Figure 2: A simple sat formula generated in step 1 that un-
covers an incompleteness in Z3-seq. off and res have type Int,
s and t have type String.

For the simple formulas from Fig. 1 and Fig. 2, the solver can
construct arbitrarily many models, as all the variables are uncon-
strained. We can strengthen the formulas by adding constraints on
the values of these variables. A possible transformation is to replace
some of the variables by constants. To decide what values can be
assigned to which variables such that the complex formula is still
satisfiable, we rely on concrete execution. That is, we implement
an executable version of the reference semantics for the operations
under test and use it to determine valid parameters and results. This
technique can be applied to sat formulas, because finding a model
for which the formula holds is enough for proving its satisfiability.

Having the executable semantics, we can evaluate each operation
on concrete arguments. In this way, we obtain formulas in which
all the arguments and the results are constants. The test formulas
are then synthesized by fixing some of them to the constants used
in the concrete execution, and leaving the others unconstrained.

Let us consider the replace operation from Fig. 1. If we evaluate
it on the arguments s = ””, t = ””, u = ”a”, the result is, according
to the SMT-LIB semantics, the constant string ”a”. We can thus
transform the formula by replacing the variables s and reswith the
constants ”” and ”a”. This replacement yields the sat formula from
List. 1, which has more constrainedmodels and exposes a soundness
bug in two widely-used SMT solvers. This and other satisfiability-
preserving transformations, including some that combine multiple
operations, are described in more detail in Sect. 3.1.

2.2 Generating unsatisfiable formulas
To show that a formula is unsatisfiable (unsat), a solver has to prove
that there does not exist an assignment to the free variables within
the background theory that satisfies the formula; i.e., the formula
evaluates to false for all possible values assigned to its variables [14].

Sincemany SMT theories include infinite sorts such as integers or
strings, it is not possible to enumerate and check all possible value
assignments and, thus, we cannot use our executable semantics
to determine the ground truth. To synthesize formulas that are
unsat by construction, we start from the following observation:
conjoining a formula and the negation of an equivalent formula
always results in an unsatisfiable formula. That is, for equivalent
formulas A and B, the formula F defined as ¬A ∧ B is unsatisfiable.

We obtain interesting formulas F by leveraging equivalences
between different operations of the string theory. Out of the 12
string operations from Tab. 1, only concat, length, and equals
are considered primitive operations. All the other string operations
can be expressed through these primitive operations [35]. Tab. 2
presents an overview of equivalent formulas for non-primitive string
operations. This table is an extended variant of the preprocessing
rules from [35] and of the string function definitions from [10].

In the first step of our input construction technique, we auto-
matically generate a test case from each of the 12 equivalences by
conjoining the negation of the formula from column 2 in Tab. 2
and the corresponding formula from column 3. In this step, we

¬(replace(s, t, u) = res) ∧ i = indexOf(s, t, 0) ∧
(0 ≤ i ⇒ s = s1 ++ s2 ++ s3 ∧ length(s1) = i ∧

s2 = t ∧ res = s1 ++ u ++ s3) ∧
(i < 0⇒ res = s)

Figure 3: An unsat formula generated in step 1 for which
CVC4 times out and Z3str3 has non-deterministic behavior.
i has type Int, all the other variables have type String.

omit existential quantifiers in the formulas from column 3 (that
is, the existentially-quantified becomes a fresh free variable). This
is possible because all existential quantifiers in the equivalent for-
mulas are in positive positions, and Q (x) is (un)satisfiable if and
only if ∃ x : Q (x) is (un)satisfiable. Since the resulting formulas
do not use any existentially-quantified variables, we use the terms
quantifier and quantified variable in the rest of the paper to refer to
universal quantifier and universally-quantified variable, respectively.
For the quantifiers from Tab. 2, we specified patterns (also called
triggers), which are used by the solver to decide how to instantiate
the quantifiers and, thus, affect the search for a model [21].

Our technique can be parameterized with different equivalent
formulas. Other equivalences can be obtained, for instance, by
rewriting formulas on the right-hand side in Tab. 2 using equalities
from the left-hand side. The inputs without quantifiers can be used
also for testing SMT solvers that do not support quantification yet.

An example test case that we synthesize in step 1 and corre-
sponds to E3 is shown in Fig. 3. For this test, CVC4 times out, and
Z3str3 non-deterministically returns timeout, unsat, unknown, or
segmentation fault. In the second step of our approach, we auto-
matically transform the previously generated formulas into equisat-
isfiable, but more complex ones. These formulas either have larger
unsat cores, requiring the solver to combine more terms to derive
a contradiction, or contain additional terms that are not relevant for
proving unsat, but may complicate the proof search for the solver.

To show, for example, that the formula x , 0 ∧ x = 0 is un-
satisfiable for all integers x , the solver relies on the fact that no
number can be at the same time zero and non-zero. If the conjunct
x = 0 is replaced by x ′ = 0 ∧ 2x ′ − x ′ = x then all three conjuncts
contribute to proving unsat. By removing any of them, the formula
becomes satisfiable. Thus, these three terms represent the minimal
unsat core. The transformations that we designed for the unsat case,
described in detail in Sect. 3.2, are based on similar rewritings.

This concludes the high-level overview of our approach. Given
an executable version of the reference semantics and the equivalent
formulas, test case generation is deterministic and fully automatic.
The ground truth is always known, so all the synthesized formulas
can be directly used for testing, without additional human effort for
constructing the test oracles. Our approach produces increasingly
complex test cases, which often allows developers to detect errors
with simple inputs such that errors are easy to reproduce and debug.

The main ingredients of our technique are not specific to the
string theory. One can construct quantifier-free sat formulas from
any theory that has an executable semantics, such as fixed-size
bit-vectors or integers. Moreover, unsat formulas can be generated
as long as operations or constants from the theory can be expressed
in multiple ways. For instance, the fact that x is a positive real can
be expressed as x : Real : x ≥ 0 but also as ∃y : Real : x = y ∗ y

1461

ICSE ’20, May 23–29, 2020, Seoul, South Korea Alexandra Bugariu and Peter Müller

Table 2: Equivalent formulas for non-primitive string operations

Id String operation ⇔ Equivalent formula

E1 at(s, off) = res ⇔ res = substr(s, off , 1)
E2 intToStr(n) = res ⇔ (res = ”” if n < 0) ∧ (res = ”0” if n = 0) ∧ ... ∧ (res = ”9” if n = 9) ∧

(res = intToStr(n / 10) ++ intToStr(n % 10) if n ≥ 10)
E3 replace(s, t ,u) = res ⇔ i = indexOf(s, t , 0) ∧ (∃ s1, s2 , s3 : s = s1 ++ s2 ++ s3 ∧ length(s1) = i ∧ s2 = t ∧

res = s1 ++ u ++ s3 if i ≥ 0) ∧ (res = s otherwise)
E4 substr(s, off , len) = res ⇔ (∃ s1, s2 , s3 : s = s1 ++ s2 ++ s3 ∧ length(s1) = off ∧ length(s2) = len ∧ res = s2

if off ≥ 0 ∧ off < length(s) ∧ len > 0) ∧ (res = ”” otherwise)
E5 indexOf(s, t , off) = res ⇔ (res = off if t = ”” ∧ off ≥ 0 ∧ off ≤ length(s)) ∧

(∃ s1, s2 , s4 : s = s1 ++ s2 ++ t ++ s4 ∧ off = length(s1) ∧ (∀ i {substr(t , 0, i)} : i ≥ 0 ∧
i < length(t) ⇒ contains(s2 ++ substr(t , 0, i), t) = f alse) ∧ res = length(s1 ++ s2) if t , ”” ∧
off ≥ 0 ∧ off ≤ length(s)) ∧ (res = −1 otherwise)

E6 strToInt(s) = res ⇔ (intToStr(res) = s if s , ”” ∧ ∀ j {at(s, j)} : j ≥ 0 ∧ j < length(s) ⇒ at(s, j) = ”0” ∨ ...∨
at(s, j) = ”9”) ∧ (res = −1 otherwise)

E7 contains(s, t) = true ⇔ ∃ s1, s3 : s = s1 ++ t ++ s3
E8 contains(s, t) = false ⇔ ∀ s1, s2 , s3 {s1 ++ s2 ++ s3 } : (s = s1 ++ s2 ++ s3) ⇒ (s2 , t)
E9 prefixOf(s, t) = true ⇔ ∃ t2 : t = s ++ t2
E10 prefixOf(s, t) = false ⇔ ∀ t1, t2 {t1 ++ t2 } : (t = t1 ++ t2) ⇒ (t1 , s)
E11 suffixOf(s, t) = true ⇔ ∃ t1 : t = t1 ++ s
E12 suffixOf(s, t) = false ⇔ ∀ t1, t2 {t1 ++ t2 } : (t = t1 ++ t2) ⇒ (t2 , s)

s, t, u, s1, s2 , s3 , s4 , t1, t2 : type String; n, off , len, i, j: type Int ++ denotes string concatenation.
All formulas are implicitly universally quantified over all the arguments. Patterns for universal quantifiers are shown between {}.

(every positive number has a square root). The constant 0 can be
also defined through operations from the theory of real numbers:
0 = z + (−z). From these equalities, one can generate the formula
¬[x ≥ (z + (−z))] ∧ (x = y ∗ y), unsatisfiable by construction.
Similar rewritings and equalities do exist for other theories.

Our technique is also not specific to SMT solvers. Since it treats
the solver under test as a black box, it can be also applied to test the
soundness and precision of other solvers, for instance, automata-
based solvers, like SMC [26], ABC [10], and MT-ABC [11]. These
solvers encode the input constraints as finite automata and deter-
mine their satisfiability by counting the number of possible models.

3 SATISFIABILITY-PRESERVING
TRANSFORMATIONS

In this section, we describe our technique for constructing com-
plex SMT formulas from the string theory through satisfiability-
preserving transformations. Our transformations for the sat and
the unsat case are presented in the following subsections.

3.1 Transformations for satisfiable formulas
In the first step of the sat input construction technique (described
in Sect. 2.1 and presented in pseudo-code in Fig. 4, lines 1–7), we
synthesize simple formulas, with unconstrained parameters and
results, which are trivially satisfiable. The second step (lines 9–20
in Fig. 4) strengthens the initial formulas by adding constraints on
the values of the free variables and synthesizes formulas that may
contain multiple operations to test their interactions. Our algorithm
is deterministic, always generates the same tests, in the same order.

We present two satisfiability-preserving transformations in the
following. Constant assignment uses an executable semantics to

1 / / s t e p 1
2 foreach suppor t ed op e r a t i o n op {
3 i npu t = genS imp leSa tFormula (op) ;
4 / / i n p u t has t h e form op (a r g s) = r e s
5 res , model , _ : = i n vok eSo l v e r (i npu t) ;
6 as se r t r e s == s a t && co r r e c tMode l (model , i npu t) ;
7 }
8

9 / / s t e p 2
10 foreach fo rmula f s y n t h e s i z e d in s t e p 1 {
11 / / c o n s t a n t a s s i g nmen t
12 i npu t : = per form con s t a n t a s s ignment on f ;
13 res , model , _ : = i n vok eSo l v e r (i npu t) ;
14 as se r t r e s == s a t && co r r e c tMode l (model , i npu t) ;
15

16 / / t e rm s y n t h e s i s
17 i npu t : = per form term s y n t h e s i s on f ;
18 res , model , _ : = i n vok eSo l v e r (i npu t) ;
19 as se r t r e s == s a t && co r r e c tMode l (model , i npu t) ;
20 }

Figure 4: Algorithm for synthesizing sat input formulas.
invokeSolver yields the solver’s result on the input formula
(i.e., sat, unsat, unknown, timeout or error), a model for sat
formulas, and an unsat core for unsat formulas, if available.
correctModel uses the reference semantics to check the va-
lidity of the model with respect to the input formula. We
do not check partial models (generated by some solvers for
unknown results), as their correctness is not guaranteed.

compute models for simple sat formulas and then transforms these
formulas by replacing some of their free variables by values from
the model. Term synthesis enumerates terms from the theory under
test and evaluates them using an executable semantics. It then

1462

Automatically Testing String Solvers ICSE ’20, May 23–29, 2020, Seoul, South Korea

substitutes free variables from the simple input formulas with more
complex terms, such that the formulas remain satisfiable. Both
transformations yield quantifier-free sat formulas.

Constant assignment transformation.Many software errors
are caused by the incorrect handling of corner cases. For this rea-
son, the first transformation is inspired by boundary testing and
consists of assigning predefined constants to (some of) the free
variables of the initial formulas. The set of predefined constants is
configurable; we used typical boundary values in our experiments.
For example, for the variables of type String we considered empty
strings, strings of length one, as well as strings containing quotes,
escape sequences, and non-ASCII characters in hexadecimal format.
For integers, we picked a small set of valid and invalid indices and
lengths, such as {−1, 0, 2}. The string operations cannot have other
types of parameters, but some of them have boolean results (see
column 3 from Tab. 1), for which we considered both true and false.

Given the simple input formulas that we generated in step 1 (see
Sect. 2.1), we use concrete executions to determine their models. For
this purpose, we implement an executable semantics for all string
operations based on the reference semantics, in our case, the SMT-
LIB specification [5]. This implementation is straightforward since
most programming languages (e.g., Java) already provide string
libraries that offer most of the operations. Therefore, the implemen-
tation effort mostly consists of ensuring that the semantics of these
library operations and the SMT-LIB standard match. For example,
the Java String.replace method replaces all occurrences of t in
s, whereas the SMT-LIB operation replaces just the first occurrence.
Moreover, converting any negative integer to a string in Java will
yield its textual representation, whereas the SMT-LIB result will be
the empty string. To handle these and other similar mismatches, we
implement a wrapper for the Java string operations according to the
SMT-LIB semantics, which represents our executable semantics.

We then exhaustively evaluate each operation on all possible
combinations of constant arguments from the set of predefined
values. As all string operations are total [5], the evaluation always
succeeds, producingmodels for the simple formulas from step 1. The
constant assignment transformation obtains new input formulas by
replacing some of the free variables in a simple formula by constants
from the computed model. Since this transformation is based on
valid models, it is guaranteed to produce satisfiable formulas.

Consider, for example, the replace operation, for which we al-
ready generated a simple test case during the first step (see Fig. 1). If
the set of predefined constants includes the string ”a” and the empty
string, then one of the concrete evaluations is replace(””, ””, ”a”) =
”a” . We can use this computed model to derive several new inputs.
For instance, we can replace the free variables s and res from the
simple formula by the corresponding constants from the model
(here, an empty string and ”a”, respectively) to obtain a new sat for-
mula: replace(””, t ,u) = ”a”. This formula, presented in SMT-LIB
notation in List. 1, revealed soundness bugs in Z3-seq and Z3str3.

As shown in Fig. 4 (lines 11–14), we run the solver on the trans-
formed formula and report an error if the result is different from sat
(lines 13–14). Otherwise, we check if the solver produces a correct
model using our executable semantics (line 14): we evaluate the
string operation on the parameters from the model generated by the
solver and compare the result of the evaluation to the result from

at(at(tmp_str0, tmp_int1), indexOf(tmp_str0, tmp_str0, tmp_int1))
= tmp_str2 ++ tmp_str2

Figure 5: A sat formula generated in step 2 through term syn-
thesis, which exposes a soundness bug inZ3str3. tmp_int1 has
type Int, tmp_str0 and tmp_str2 have type String.

the generated model. If they are unequal, the solver is unsound; we
found such cases in our evaluation (see Sect. 4.1).

Term synthesis transformation. To test interactions between
different operations, we transform the simple formulas from step 1
by replacing some free variables with more complex terms. We use
terms from the string theory, which are sufficient to supply string,
integer, and boolean parameters or results for the string operations.

Starting from a set of constants, we synthesize all type-correct
applications of string operations up to a predefined bound and
evaluate them using our executable semantics; this produces a pool
of terms. We transform a simple formula from step 1 in four steps:
(1) We replace the arguments of the operation under test with terms
from the pool. (2) We evaluate the resulting term in the executable
semantics. (3) We replace the result variable in the simple formula
by another term from the pool with the same result, which ensures
that the equality holds. (4) The complex formula used to test the
solvers is then obtained by replacing the constants in the resulting
equality by free variables, which yields a sat formula. It is important
to represent multiple occurrences of the same constant by the same
free variable, to connect the operations more tightly and to further
constrain the set of possible models. The transformation is applied
exhaustively for all terms from the pool.

To illustrate our technique, let us assume that the initial set of
strings includes the constants ”a” and ””, and the initial set of ints
contains the value −1. The pool will then contain, among others,
the terms at(”a”,−1) (with concrete value ””), indexOf(”a”, ”a”,−1)
(with concrete value 0), and concat(””, ””) (with value ””). Starting
from the simple formula for the at operation, the transformation
proceeds as follows: (1) We substitute the arguments of at to ob-
tain, for instance, at(at(”a”,−1), indexOf(”a”, ”a”,−1)). (2) Eval-
uating this term yields ””. (3) We equate the term with another
term with the same result and obtain, for example, at(at(”a”,−1),
indexOf(”a”, ”a”,−1)) = concat(””, ””). (4) We replace the con-
stants ”a”, ””, and−1with three fresh variables tmp_str0, tmp_str2,
and tmp_int1, which yields the input formula from Fig. 5. This for-
mula exposes a soundness bug in Z3str3, which incorrectly returns
unsat. Note that when the operations at, indexOf, and concat
were tested separately, the solver returned the expected results. It
is their combination that exhibits the error. The formula from Fig. 5
was obtained with bound 1 for the term pool, that is, the arguments
and result are all single applications of an operation on constants;
larger bounds lead to more complex formulas.

Once we have synthesized the new input, executing the test
and checking if the solver returned a correct model is analogous
to the constant assignment transformation (see lines 16–19 from
Fig. 4). Note that one can easily combine the two transformations we
proposed by replacing only some of the constant occurrences in the
last step of the term synthesis transformation with free variables.

1463

ICSE ’20, May 23–29, 2020, Seoul, South Korea Alexandra Bugariu and Peter Müller

1 / / s t e p 1
2 foreach suppor t ed op e r a t i o n op {
3 input , expec t edCore = genS impleUnsa tFormula (op) ;
4 / / i n p u t has t h e form !A(x) && B (x , y) , where
5 / / A i s t h e f o rmu la from column 2 in Tab l e 2 and
6 / / B i s t h e c o r r e s p o n d i n g f o rmu la from column 3
7 res , _ , co r e : = i n vokeSo l v e r (i npu t) ;
8 as se r t r e s == unsa t && core == expec t edCore ;
9 }
10

11 / / s t e p 2
12 foreach fo rmula f s y n t h e s i z e d in s t e p 1 {
13 / / v a r i a b l e r e p l a c em en t
14 foreach v a r i a b l e x t h a t i s f r e e both in A and B {
15 foreach a p p l i c a b l e e q u a l i t y eq in NC1−NC8 {
16 input , expec t edCore : = r e p l a c e a l l x in f u s ing eq
17 res , _ , co r e : = i n vok eSo l v e r (i npu t) ;
18 as se r t r e s == unsa t && core == expec t edCore ;
19 }
20 }
21

22 / / c o n s t a n t r e p l a c em en t
23 foreach c on s t a n t c in B {
24 foreach a p p l i c a b l e e q u a l i t y eq in C1−C40 {
25 input , expec t edCore : = r e p l a c e a l l c in f u s ing eq
26 res , _ , co r e : = i n vok eSo l v e r (i npu t) ;
27 as se r t r e s == unsa t && core == expec t edCore ;
28 }
29 }
30

31 / / r edundancy i n t r o d u c t i o n
32 foreach v a r i a b l e y t h a t i s f r e e only in B {
33 foreach a p p l i c a b l e e q u a l i t y eq in NC1−NC8 {
34 input , expec t edCore : = r e p l a c e a l l y in f u s ing eq
35 res , _ , co r e : = i n vok eSo l v e r (i npu t) ;
36 as se r t r e s == unsa t && core == expec t edCore ;
37 }
38 }
39 }

Figure 6: Algorithm for synthesizing unsat input formulas.
invokeSolver yields the solver’s result on the input formula
(i.e., sat, unsat, unknown, timeout or error), a model for sat
formulas, and an unsat core for unsat formulas, if available.

3.2 Transformations for unsatisfiable formulas
In the first step of the unsat input construction technique (described
in Sect. 2.2 and presented in pseudo-code in Fig. 6, lines 1–9), we test
each non-primitive string operation together with its equivalent
formula. Recall that if two formulas A and B are equivalent then
the formula F := ¬A ∧ B is by construction unsatisfiable. To obtain
more complex unsat formulas, we transform the simple ones into
formulas with larger unsat cores. Therefore, the solver needs to
reason about more properties to prove unsatisfiability.

Consider a simple input formula F that contains one variable x
that occurs in both A and B, and one variable y that is existentially
bound in B and, thus, becomes a free variable after the existential
quantifier is removed (see Sect. 2.2). This formula can be written as:

F (x, y) := ¬A(x) ∧ B(x, y)

To obtain an unsat formula with larger unsat core, we replace all
the occurrences of x in B by a fresh variable xfresh and conjoin

Table 3: Equalities between the string operations and non-
constant and constant strings (NC1–NC7 and C1–C15), inte-
gers (NC8 and C16–C31), and booleans (C32–C40)

Id Equality

NC1 at(s, 0) = s if length(s) = 1
NC2 concat(s, ””) = s
NC3 concat(””, s) = s
NC4 replace(s, s, s) = s
NC5 replace(s, t, u) = s if contains(s, t) = false
NC6 replace(s, t, u) = s if indexOf(s, t, 0) = −1
NC7 substr(s, 0, length(s)) = s
NC8 indexOf(s, ””, off) = off if off ≥ 0 ∧ off ≤ length(s)

C1 at(s, off) = ”” if off < 0 ∨ off ≥ length(s)
C2 concat(””, ””) = ””
C3 intToStr(n) = ”” if n < 0
C4 replace(””, ””, ””) = ””
C5 substr(s, off , len) = ”” if off < 0 ∨ off ≥ length(s) ∨ len ≤ 0
C6 intToStr(n) = ”0” if n = 0
... ...
C15 intToStr(n) = ”9” if n = 9
C16 indexOf(s, t, off) = −1 if off < 0 ∨ off > length(s)
C17 indexOf(s, t, off) = −1 if contains(s, t) = false
C18 strToInt(s) = −1 if s = ””
C19 strToInt(s) = −1 if ∃ i : i ≥ 0 ∧ i < length(s) ∧

at(s, i) , ”0” ∧ ... ∧ at(s, i) , ”9”
C20 length(s) = 0 if s = ””
C21 strToInt(s) = 0 if s = ”0”
C22 strToInt(s) = 1 if s = ”1”
... ...
C31 strToInt(s) = 9 if s = ”9”
C32 contains(s, s) = true
C33 equals(s, s) = true
C34 prefixOf(””, s) = true
C35 prefixOf(s, s) = true
C36 suffixOf(s, s) = true
C37 contains(s, t) = false if indexOf(s, t, 0) = −1
C38 equals(s, t) = false if length(s) , length(t)
C39 prefixOf(s, t) = false if contains(t, s) = false
C40 suffixOf(s, t) = false if contains(t, s) = false

a clause C (x ,xfresh) from the string theory that implies x = xfresh.
The resulting formula is still unsat, but the unsat core now also
includes C (x ,xfresh):

F (x, xfresh, y) := ¬A(x) ∧ B(xfresh, y) ∧ C (x, xfresh)

Based on this general idea, we perform three transformations on the
simple input formulas, which are described next and implemented
in lines 11–39 of Fig. 6. With all three transformations, the unsat
core of the resulting formula is unique and known by construction
and, thus, can be used to check the correctness and minimality of
the unsat core returned by the solver.

Variable replacement transformation. Our first transforma-
tion chooses a variable x that occurs freely inA andB and constructs
a more complex formula as described above.

The clause C (x ,xfresh) is obtained from a set of equalities that
we derived from the string theory. They are summarized in Tab. 3;
we focus on the equalities NC1–NC8 here and will discuss the
others later. For example, the equality NC1 expresses that the first
character of a string is equal to the string itself, for any string of
length 1. This additional constraint about the length of the string
represents a side condition under which the equality holds.

Note that NC1–NC7 are equalities on strings, whereas NC8 is
for integers. Depending on the type of the chosen variable x , we
select an appropriate equality and obtainC (x ,xfresh) by substituting

1464

Automatically Testing String Solvers ICSE ’20, May 23–29, 2020, Seoul, South Korea

¬(replace(s, t, u) = res) ∧ i = indexOf(s, t, 0) ∧
(0 ≤ i ⇒ s = s1 ++ s2 ++ s3 ∧ length(s1) = i ∧

s2 = t ∧ res_fresh = s1 ++ u ++ s3) ∧
(i < 0⇒ res_fresh = s) ∧
at(res, 0) = res_fresh ∧ length(res) = 1

Figure 7: An unsat formula generated in step 2 by increas-
ing the unsat core, which exposes an unsoundness in Z3str3.
i has type Int, all the other variables have type String.

the right-hand side variable by xfresh, all occurrences of the same
variable on the left-hand side of the equality by x , and all other
variables by fresh variables.

For example, replacing the variable res in the formula from Fig. 3
using NC1 yields C (res, resfresh) := at(res, 0) = resfresh. With
this additional clause, we construct the unsat formula from Fig. 7.
Note that the side condition length(res) = 1 of NC1 is conjoined
to the formula, making it stronger and preserving unsatisfiability.

To prove that this formula is unsat, an SMT solver can use NC1
(with res for s) and the last two conjuncts from Fig. 7 to derive
res = resfresh, which reduces the formula to the one we started
from. This shows that the prover needs to perform additional reason-
ing steps, as the unsat core is extended by the additional conjuncts.
For the formula from Fig. 7, Z3str3 unsoundly returns sat.

The same transformation can also be applied to the other free
variables s, t, and u. It is also possible to replace multiple variables
simultaneously, but we omitted such transformations in our exper-
iments. There, we explore each combination of one variable and
a corresponding equality, as summarized in Fig. 6, lines 13–20.

Constant replacement transformation. Analogously to the
previous transformation, we can replace a constant c by a term that
evaluates to c . Starting from a simple formula F (x ,y) := ¬A(x) ∧
B (c,y), we construct the following formula for some constant c:

F (x , zfresh,y) := ¬A(x) ∧ B[zfresh/c,y] ∧C (c, zfresh)

To obtain the additional clauseC (c, zfresh), we use known equalities
from the string theory. The equalities C1–C40 from Tab. 3 all equate
a string term to a constant. For a chosen constant c , we select one of
the equalities of the form t = c and define C (c, zfresh) := zfresh = t ,
as shown in pseudo-code in Fig. 6, lines 22–25. As in the previous
transformation, this step preserves unsatisfiability and enlarges the
unsat core by the additional equality. This information, known by
construction, is used as the test oracle (lines 26–27). If instead of
rewriting res, in Fig. 7 we replace the constant 0 by C20 then we
obtain an unsat formula that exposes a soundness bug in Z3-seq.

Redundancy introduction transformation. We also experi-
mented with a variation of the variable replacement transformation,
where we apply the same transformation to a variable y that occurs
freely in B, but not in A (see Fig. 6, lines 31–39). These variables
were initially introduced by existential quantifiers in the equivalent
formulas from Tab. 2. Consequently, renaming them to yfresh and
conjoiningC (y,yfresh) to the formula does not extend the unsat core.
Nonetheless, it introduces redundancy, that is, additional variables
and terms that may obfuscate the proof of unsatisfiability.

It is also possible to apply this transformation to universally-
bound variables in B. In this case, the additional clause from Tab. 3 is
added under the quantifier such that it implies the quantifier’s body;

¬(prefixOf(s, t) = false) ∧
∀ t1, t2, t2_fresh {t1 ++ t2_fresh, substr(t2, 0, length(t2)) } :
(substr(t2, 0, length(t2) = t2_fresh) ⇒

((t = t1 ++ t2_fresh) ⇒ t1 , s)
Figure 8: An unsat formula generated in step 2 by introduc-
ing redundancy for universally-bound variables, which ex-
poses a soundness bug and non-deterministic behavior for
Z3str3. All the variables have type String.

the new variables that occur in the clause are added as universally-
bound variables, and the pattern of the quantifier is extended to
mention all the quantified variables. The new triggering terms are
directly derived from the additional equality, and the side condition
is added as an implication. In our experiments, redundancy introduc-
tion produced test cases that did reveal errors. Fig. 8 shows an exam-
ple, where the quantified variable t2 from E10 was rewritten using
NC7. This formula exposes a soundness issue and non-deterministic
behavior for Z3str3, which returns sat or segmentation fault.

Note that the three transformations can be combined and all
of them can be applied multiple times, to increase the complexity
of the previously synthesized formulas. In our experiments, each
transformation was applied independently and the second synthesis
step was performed only once, to facilitate error localization and to
avoid generating redundant tests that fail due to the same bug. As
our algorithm is deterministic, it always produces the same tests.

4 EXPERIMENTAL EVALUATION
In this section, we present the results obtained by applying our
test case generation technique on three widely-used SMT solvers:
Z3-seq (version 4.7.1), Z3str3 (version 4.7.1), and CVC4 (version
1.6). The two Z3 string solvers use different approaches: Z3-seq
(the default string solver from Z3) encodes string operations into
operations over sequences, while Z3str3 supports strings as built-in
types. Our experiments show that our technique is able to synthe-
size formulas that reveal soundness bugs in two of the three tested
solvers. They also uncover completeness and performance issues.

The experimental results show that our approach outperforms
fuzzing and is also effective in finding bugs in other types of solvers,
as we demonstrate on the automata-based solver MT-ABC [11].

4.1 Testing SMT solvers
In the first experiment, we tested the compliance of Z3-seq, Z3str3,
and CVC4 string operations with the semantics defined in the SMT-
LIB standard. In the following, we also discuss the impact of each
component of our formula synthesis technique in finding the bugs.

Experimental setup. All the formulas that we synthesized are
encoded into SMT-LIB 2.6 format [12]; patterns are part of this stan-
dard. We used the SMT-LIB Unicode Strings Theory [5] as the refer-
ence semantics and our wrapper of the Java string operations for the
executable semantics. We set a timeout of 15 seconds for each test
and we fixed the seed for the solvers’ random number generator, the
sat.random_seed (for all three solvers) and the smt.random_seed
(only for Z3-seq and Z3str3), to reduce non-determinism. We used
the options produce-models and produce-unsat-cores to enable
the generation of the models and of the unsat cores, respectively.

1465

ICSE ’20, May 23–29, 2020, Seoul, South Korea Alexandra Bugariu and Peter Müller

Table 4: Overview of our results for Z3-seq, Z3str3, and CVC4
of tests with actual result (All random seeds = 0)

Expected Category / # of tests Z3-seq Z3str3 CVC4
result Transformation generated IM IC S U K T E IM IC S U K T E IM IC S U K T E

sat operation 12 0 - 10 0 2 0 0 0 - 12 0 0 0 0 0 - 12 0 0 0 0
sat constant assignment 4714 24 - 4158 14 518 0 0 24 - 4580 105 0 5 0 0 - 4714 0 0 0 0
sat term synthesis 1394 2 - 842 0 483 67 0 7 - 1027 109 0 133 118 0 - 1394 0 0 0 0

unsat equivalent formula 12 - 0 0 9 0 3 0 - 0 0 8 0 3 1 - 0 0 5 0 7 0
unsat [+p] equivalent formula 12 - 0 0 9 0 3 0 - 0 0 8 0 3 1 - 0 0 5 0 7 0
unsat larger unsat core 268 - 0 1 153 10 104 0 - 10 5 120 12 71 50 - 0 0 89 0 177 2
unsat [+p] larger unsat core 268 - 0 1 153 9 105 0 - 7 6 120 7 78 50 - 0 0 89 0 176 3
unsat redundancy introduction 178 - 67 0 50 37 24 0 - 21 10 58 5 41 43 - 23 0 26 0 125 4
unsat [+p] redundancy introduction 178 - 67 0 42 36 33 0 - 22 16 52 8 30 50 - 25 0 24 0 123 6

total # of sat failed tests (out of 6120) 1110 501 0
total # of unsat failed tests (out of 458) 254 272 338

total # of unsat [+p] failed tests (out of 458) 254 278 340

IM = incorrect model; IC = incorrect unsat core; S = sat; U = unsat; K = unknown; T = timeout; E = error; [+p] = with patterns for quantifiers; n = # of tests that failed due to soundness issues

We also used the option strings-exp for CVC4 to enable non-
primitive string operations and the option full-saturate-quant
to enable enumerative instantiation [31]. For the Z3-based solvers,
we set the option smt.core.minimize to true to obtain the min-
imal unsat core; this option was not supported by CVC4 at the
time of writing. For all other options, we used the default values;
in particular, we did not use the solvers’ own ability to check the
validity of the generated models. The experiments were conducted
on a 2.5 GHz Intel Core i7 CPU with 16 GB memory.

Results. The results obtained for the three solvers are summa-
rized in Tab. 4. In this table, we report the expected result (column
1), the test category/transformation as described in Sect. 2 and
Sect. 3 (column 2), the total number of tests generated for each of
these categories (column 3), and the actual result returned by each
solver (in the remaining columns). This result can be: incorrect
model (when the solver correctly returned sat, but the produced
model is not valid, i.e., evaluating the original formula on the model,
using our executable semantics, yields false), incorrect unsat core
(when the solver returned unsat, but the generated unsat core is
not the minimal, expected one), sat, unsat, unknown, timeout, or
error (when the solver crashed or returned an error message). For
the unsat formulas, we report the results for each category without
using patterns for quantifiers and with the patterns specified in
Tab. 2 for the formulas that are quantified (unsat [+p] in Tab. 4). All
our sat formulas are quantifier-free. Note that when the patterns
are not provided, the solvers will try to infer them automatically.

The categories operation and equivalent formula refer to sim-
ple formulas synthesized in step 1 for testing each operation in
isolation, or together with its equivalent formula from Tab. 2, re-
spectively. The category larger unsat core includes the test cases
obtained by applying the variable and constant replacement trans-
formations from Sect. 3.2. For term synthesis, each variable was
obtained by exactly one operation. For the larger unsat core and
redundancy introduction transformations, each variable and con-
stant was rewritten in one step, by independently applying all the
corresponding equalities from Tab. 3. In each test case, only one of
them was rewritten, with all its occurrences (as shown in Fig. 6).

Soundness issues. The number of tests that failed due to sound-
ness issues, for each category, is showed with gray background.

indexOf(tmp_str0, tmp_str1, tmp_int2) = 0
Figure 9: A sat formula generated in step 2 through constant
assignment for which Z3str3 produces an incorrect model.
tmp_int2 has type Int, tmp_str0 and tmp_str1 have type String.

We classify an answer as being unsound if the solver returned sat
instead of unsat, or vice versa, or if it generated an invalid model.
An incorrect unsat core represents a soundness problem if the gen-
erated unsat core is not unsatisfiable. We observed this kind of error
only for Z3str3, for the larger unsat core transformation and for the
equivalent formula category. For redundancy introduction, the cores
generated by all the solvers were always valid, but not necessary
minimal; we consider that an imprecision, not a soundness issue.

For CVC4, none of the test cases revealed soundness issues. By
contrast, Z3str3 has the highest number of tests that fail due to
soundness bugs for both sat and unsat formulas. Some example
inputs for which Z3str3 returned an incorrect result have already
been presented in the previous sections. Fig. 9 shows another type
of unsoundness, i.e., a sat formula obtained through the constant
assignment transformation for which the solver correctly answered
sat, but generated an invalid model: tmp_str0 = ”3MayMayMaZ ”,
tmp_str1 = ”MayM”, tmp_int2 = 1; with these inputs, the result
of indexOf is 1, not 0, as prescribed by the input formula in Fig. 9.

Note that Z3str3 does not support non-ASCII strings yet. Out of
the 245 sat formulas unsoundly solved by Z3str3, 22 contain such
strings. For a fair evaluation, we replaced them with ASCII strings
and repeated the experiments. The results were the same. Moreover,
the solvers use mathematical integers, while our executable seman-
tics uses bounded integers. We manually inspected the few models
rejected by our executable semantics that contained large numbers.
All of them were valid and are, thus, not reported as errors in Tab. 4.

Other issues. Besides soundness problems, our tests revealed
various completeness, performance, and implementation errors. For
instance, the unknown result points to a completeness issue. Z3-seq
returned unknown for approx. 17% of our sat formulas, blaming in-
completeness in the sequence theory in all 1003 cases. We reported
several failing tests and some of them have already been fixed.
The timeout result suggests a performance problem, frequently
observed for unsat formulas with all three solvers. Several tests

1466

Automatically Testing String Solvers ICSE ’20, May 23–29, 2020, Seoul, South Korea

contains(intToStr(tmp_int0), at(tmp_str2, tmp_int0))
= contains(tmp_str2, tmp_str2)

Figure 10: A sat formula generated in step 2 through term
synthesis for which the result of Z3-seq depends on the ran-
dom seeds. tmp_int0 has type Int, tmp_str2 has type String.

Table 5: Known bugs for Z3-seq, Z3str3, and CVC4
Z3-seq Z3str3 CVC4

issues T WS F T WS F T WS F

closed 9 6 5 3 3 3 5 3 1
open 5 3 1 10 6 5 0 0 0

T = total number of issues; WS = within the scope of this paper: issues caused by
regular expressions, user-defined functions, bit-vectors, or different configurations
were excluded; F = issues we could find by manually inspecting the failing tests.

also failed for Z3str3 and CVC4 due to implementation errors. For
CVC4, many tests hint at completeness or performance problems
for unsat formulas, both with and without patterns for quantifiers.
The reason, confirmed by the developers, is that with the given
patterns, many of the quantifiers are not instantiated by default
through E-matching [20]. Moreover, the enumerative instantiation
[31], which is used by CVC4 when E-matching saturates, does not
work optimally for non-primitive string operations. We reported
the problem, and for some of our test cases it has been already fixed.

Adding patterns for quantifiers did not improve the results for Z3-
seq and Z3str3. This experimental result suggests that the patterns
we specified are similar to the ones automatically inferred by the
two Z3-based solvers, which use the same engine for instantiating
quantifiers. Other reason for the unknown result is incompleteness
in the sequence theory, reported by Z3-seq for 33% of the failed tests.
Z3str3 does not provide details on the reason of the incompleteness.

Our approach can be also used for discriminating between vari-
ous configurations. For example, to test the solvers’ robustness, we
set the random seeds to 1465 (a value chosen arbitrarily), and we
repeated the experiments. For CVC4 the results were the same. Z3-
seq and Z3str3 were less robust. Fig. 10 shows a test case for which
Z3-seq correctly returned sat when the seeds were 0, but answered
unknown for the seeds 1465. Note that all the other examples from
this paper were obtained with the random seeds set to 0.

The test cases that failed in our experiments do not necessarily
refer to unique bugs. This is a general problem of any testing tool
and is orthogonal to our formulas synthesis technique. Several ap-
proaches have been proposed in the literature for clustering static
analysis alarms [29]; we could apply these ideas to our work, to auto-
matically group the failing tests into similarity-based clusters. Note
that our synthesis algorithm reduces by construction the number
of redundant test cases; step 2 applies individual transformations
to the simple formulas generated in step 1 (see Fig. 4 and Fig. 6),
that is, it does not chain together transformations. However, we do
apply step 2 even to those formulas that already lead to a failing
test in step 1, which may uncover additional bugs. For example,
Z3str3 timed out during step 1 for the formulas based on E3 and
E5, but was unsound for tests derived in step 2 from these inputs.

Known bugs. Due to the large number of failed tests and the
complexity of the implementation of the SMT solvers, it is not feasi-
ble to manually determine how many distinct bugs we uncovered.

Table 6: Failed tests on the latest versions of the SMT solvers

total # of still Z3-seq Z3str3 CVC4
failing tests (4.8.6) (4.8.6) (1.7)

sat 6 [out of 1110] 237 [out of 501] 0 [out of 0]
unsat 156 [out of 254] 267 [out of 272] 335 [out of 338]
unsat [+p] 156 [out of 254] 274 [out of 278] 337 [out of 340]
[+p] = with patterns for quantifiers (given in Tab. 2)

To evaluate how effective our technique is in detecting distinct
bugs, we assessed howmany of a set of known bugs are found by our
test cases. For Z3-seq and Z3str3, we considered the closed issues
reported by the users from 23rd May 2018 until 26th January 2019,
as well as all the currently open issues with the labels string or
z3str3 that were confirmed by the developers and do not explicitly
refer to other versions than 4.7.1. Similarly, for CVC4 we considered
the issues reported from 25th June 2018 until 17th April 2019 (both
closed and still open) related to the string theory.

The known bugs are summarized in Tab. 5. From the total number
of issues (column 1 for each solver), we removed the ones that are
not in the scope of this paper, that is, contain regular expressions,
user-defined functions based on string operations, or formulas com-
bining string operations with bit vectors, which we do not support.
We also excluded the issues explicitly caused by additional config-
uration options that we do not use. We report as found (column
3) only those bugs for which we could manually find a failing test
case that exhibits it, based on the description from the comments
or inferred from the fix. Known bugs not reported as found might
still be detected by our test suite, but we were not able to clearly
identify an appropriate test case. That is, the reported number of
found bugs is a lower bound on the actual number. This experiment
shows that our technique effectively detects bugs that occurred in
actual applications of the tested SMT solvers and were reported
and confirmed. In total, we found 15 of the 21 bugs (71%).

Sensitivity analysis. The effectiveness of our technique de-
pends on three ingredients: (1) the set of predefined constants,
(2) the combinations of operations used in a formula, needed to
test their interactions, and (3) the usage of different random seeds.
The manual inspection of the tests that detected the known bugs
from Tab. 5 shows that all three ingredients are necessary. Finding
some of the bugs required specific ways of constructing the inputs;
e.g., the implementation errors from CVC4 are revealed only by the
tests that use the equalities NC1 and NC5 from Tab. 3 to rewrite
variables from E10 and E12. Similarly, a soundness bug in Z3str3 is
detected only by the test that replaces the result variable from E3
using the equality NC1. Other bugs are revealed by several inputs
that follow a common pattern, such as formulas obtained through
constant assignment that test the indexOf operation with negative
or out-of-bounds offset, or formulas generated through term syn-
thesis that include intToStr or strToInt as arguments for other
operations. The bug from Fig. 10 can be observed only when testing
the contains operation twice, with different random seeds. Our
experiments do not suggest that certain equivalences (from Tab. 2)
or transformations are substantially more useful than others.

Recent improvements. As we mentioned above, we reported
several bugs for the three solvers, many of which were confirmed
or fixed. To assess the recent improvements, we re-ran the failed

1467

ICSE ’20, May 23–29, 2020, Seoul, South Korea Alexandra Bugariu and Peter Müller

tests on the latest versions of the solvers at the time of writing, i.e.,
4.8.6 for Z3-seq and Z3str3 and 1.7 for CVC4. The cumulative results
for all types of errors are presented in Tab. 6. In the following, we
discuss our main observations, focusing on the soundness bugs.

Compared to the results from Tab. 4, summarized between square
brackets, the number of failing tests decreased substantially for the
Z3-based solvers, at least in part due to our bug reports. For Z3-seq,
no sat test still failed due to soundness bugs. For 69 unsat formulas
based on intToString, Z3-seq returned sat; we reported 1 new
soundness bug and it was confirmed. For Z3str3, 40 sat and 33 unsat
tests failed due to soundness problems. Some of them correspond to
open bugs, andwe reported 3 additional soundness errors. For CVC4
we did not find soundness bugs; the tests failed due to performance
issues and because the minimization of the unsat cores was not
yet supported. This feature was added in the meantime and the
developers further improved the performance in response to our
bug reports, but these changes are not yet part of the main branch.

All these results were obtained with respect to the SMT-LIB se-
mantics. Even though for some operations the semantics described
in the documentation of a particular solver may be slightly different,
none of the bugs we reported were considered false positives by
the developers. All three solvers intend to comply to the standard.
Our experiments show that soundness and completeness bugs in
decision procedures are not uncommon. They are due to various
issues, including mis-interpretations of the expected semantics,
flaws in the used algorithms, and coding errors. These findings
have implications for solver developers, who need to systematically
test for such bugs. Our work offers a technique to accomplish that.

4.2 Comparison with fuzzing
In this subsection, we compare our technique with StringFuzz [16],
a state-of-the-art test case generator for string formulas. For this
experiment, we ran parts of a test suite generated by StringFuzz
(from the folder generated.zip [6]) on the three SMT solvers, us-
ing the same versions as for our main experiments, i.e., 4.7.1 for
Z3-seq and Z3str3, and 1.6 for CVC4. We discarded the tests for
which the expected result was not specified, as for them we could
not automatically classify the actual result as correct or not. In
total, we included 700 tests in SMT-LIB 2.5 format, from nine differ-
ent categories: lengths-short, lengths-long, lengths-concats,
concats-small, concats-big, concats-balanced, regex-small,
regex-big, and different-prefix. All of them are quantifier-free
and 120 tests include regular expressions. We used the same exper-
imental setup as for our tool (with the random seeds set to 0) and
we set the lang option to smt2 for CVC4, to avoid parsing errors.

As StringFuzz cannot check if the generated models and unsat
cores are correct, we considered that a test passed when the solver
answered sat or unsat, as expected. Z3-seq and Z3str3 timed out for
82 tests, and returned correct results for all the others. Similarly, 74
tests failed for CVC4 due to timeout, while all the others passed.

The experiment shows that StringFuzz could detect performance
problems, but no soundness or completeness bugs. A reason may
be that, besides regex, StringFuzz can generate only formulas with
primitive string operations, which are not enough for revealing
these classes of errors. In contrast, our technique also uncovered

Table 7: Overview of our results for MT-ABC

Expected Category / # of tests # of tests with actual result
result Transformation generated S U E

sat operation 12 11 1 0
sat constant assignment 3568 3145 275 148
sat term synthesis 1394 974 175 245

unsat equivalent formula 6 4∗ 2 0
unsat larger unsat core 121 63∗ 56 2
unsat redundancy introduction 71 36∗ 35 0

total # of sat failed tests (out of 4974) 844
total # of unsat failed tests (out of 198) 105

S = sat; U = unsat; E = error; ∗imprecision due to over-approximation
n = # of tests that failed due to soundness issues

several soundness and completeness errors in the same versions of
the SMT solvers, including confirmed bugs.

4.3 Testing automata-based solvers
Our technique is not limited to SMT solvers; it can also be applied
for testing other types of solvers, such as automata-based solvers.
In this subsection, we present the results for MT-ABC [11], an
automata-based solver that performs model counting. It supports
both string and numerical constraints, and classifies an input for-
mula as satisfiable if the counted number of models is greater than 0.
For some constraints, it may over-approximate the set of solutions,
thus imprecisely answering sat for an unsat formula. Nonetheless,
a sound implementation should not classify a sat formula as unsat.

As MT-ABC accepts as input a subset of the SMT-LIB format, we
used a modified version of our tests that contains only supported
features. We also replaced the escape sequence for double quotes
within a string literal with the corresponding one in MT-ABC. As
non-ASCII strings are not yet supported, we discarded the sat tests
that included these constants in the formulas or in the possible
model. The unsat tests based on E2, E5, E6, E8, E10, E12 from
Tab. 2 could not be handled by MT-ABC because it does not support
quantifiers and the mod operator, so we removed them as well.

We tested the code version [3], using default options. This com-
mit includes a fix for E7, E9, and E11, based on a crash that we
found and reported. We used the SMT-LIB Unicode Strings Theory
[5] as the reference semantics, because MT-ABC recently updated
the implementation of the string operations to match this standard.

The results are summarized in Tab. 7. The soundness problems
are showed with gray background, while the imprecise answers
are marked with *. As it can be observed, our technique effectively
synthesized formulas that exposed various soundness and preci-
sion issues, as well as implementation failures for different string
operations. For example, MT-ABC unsoundly returned unsat for
the formulas from Fig. 2 and Fig. 5. We already reported 6 distinct
soundness bugs and 6 crashes for constant assignment and for the
operation category, because they are easier to debug. The developers
confirmed them and appreciated that we sent simple formulas that
expose the bugs. As a result, some of them were fixed within a day.

4.4 Threats to validity
We identified four threats to the validity of our experiments:

1468

Automatically Testing String Solvers ICSE ’20, May 23–29, 2020, Seoul, South Korea

Ground truth. Our technique relies on an executable semantics
for the string operations, on the equivalent formulas from Tab. 2 and
on the equalities from Tab. 3. Errors in these components could lead
to incorrect tests. To mitigate this threat, we carefully reviewed all
the components of our approach. Since they are simple variations
of the SMT-LIB semantics, we are confident that they are correct.

Non-deterministic behavior. The solvers use randomized al-
gorithms, which can lead to non-deterministic behavior (see Sect. 2.2
for an example). We mitigated this problem by fixing the random
seeds and by performing the experiments from Sect. 4.1 with two
different values. Nevertheless, some of the results from Tab. 4, Tab. 6,
and Sect. 4.2 may require multiple runs to be reproduced.

Pattern selection. The patterns chosen for the quantified for-
mulas are independent of the way in which each solver handles
quantifier instantiations. Other patterns could have been more ef-
ficient for proving that certain formulas are unsat or alternative
rewritings of the formulas could have better triggered particular in-
stantiations. Nonetheless, our patterns are configurable and we ran
the experiments with and without patterns to asses their impact.

Known bugs. To determine if our technique generates test cases
that can detect known bugs, we manually matched some of the
failed tests against the confirmed bug reports. As we reported only
clear matches as found bugs, we are confident that the values from
Tab. 5 are a lower bound on the number of known bugs we detected.

5 RELATED WORK
The developers of SMT solvers usually create their own test suites,
which include manually-written tests and regression tests derived
from bug reports [2, 8]. Our approach automates parts of this time-
consuming process by automatically generating test cases of incre-
mental complexity; this facilitates debugging and error localization.

Differential testing. An effective approach used in practice is
differential testing [28], which compares the results produced by
different solvers on a set of benchmarks [13, 25]. Different results
suggest a bug in one of the solvers; determining which one is at
fault requires additional effort. In our case, the ground truth is
known upfront, so our synthesized inputs can be directly used for
testing, without requiring a reference implementation as test oracle.
As opposed to differential testing, our technique can be also applied
when there only exists one implementation of a given semantics.

Fuzzing. Other test case generation techniques are based on
fuzzing. Brummayer et al. apply fuzzing for testing SMT [18], SAT,
and QBF solvers [19], while Cyrille et al. [9] and Niemetz et al. [30]
target the solver’s API. Note that [18] generates only quantifier-free
formulas over fixed-size bit-vectors, thus a direct comparison with
our work would not be meaningful. However, all these approaches
generate inputs that may cause the solver to crash or may exhibit
performance issues. As opposed to our approach, they do not have
a test oracle, so they do not reliably detect soundness and complete-
ness bugs. The existing techniques require delta debugging [33] to
minimize the inputs that lead to a failure; in our case, the errors
are usually found with formulas that are small by construction.

The closest related work to ours is StringFuzz [16], a state-of-the-
art fuzzer and generator of SMT-LIB instances. StringFuzz can create
input formulas with various properties (e.g., predefined number of

variables, configurable depth of expressions, predefined length for
string literals, etc.), but it has generators only for primitive string
operations and regular expressions. We do not support regular ex-
pressions, but our formulas cover complex string operations. String-
Fuzz can also apply a set of transformations on already existing
benchmarks, but very few of them guarantee equisatisifability. Us-
ing these formulas for soundness testing requires manually-written
test oracles. In contrast, our synthesized formulas are sat or unsat
by construction, and all our transformations preserve their satisfia-
bility, therefore soundness testing is fully automatic.

Formal verification. Formal verification has been used to verify
SAT and SMT algorithms [23, 24, 27], but not their implementations.
SMT solvers are complex, highly-optimized software systems, thus
formally verifying their implementation is very challenging. In
contrast, our black-box testing technique can handle such complex
implementations and can find bugs with minimal effort.

Validation and proof checking. A complementary body of
work focuses on checking the proofs generated by the solvers.
Zhang and Malik [34] synthesize a checker for validating the traces
produced by a SAT solver during refutation proofs. Böhme and
Weber [17] encode the proofs generated by Z3 in Isabelle, while
Stump et al. [32] propose a meta-logic for describing and checking
proofs for SMT. All these techniques require either modifications of
the original solvers or translations of the proofs into other formats.
Our technique treats the solvers under test as black boxes and does
not depend on a specific implementation and proof format.

6 CONCLUSIONS
We have presented a novel technique for automatically generating
SMT formulas from the string theory that are satisfiable or unsatis-
fiable by construction. These formulas are used as inputs for testing
mostly the soundness of the implementation of a solver, but can
also reveal completeness and performance issues. Our experimental
evaluation shows that our approach effectively finds errors in the
implementation of widely-used SMT solvers and is also applicable
to automata-based solvers. We synthesize sat formulas together
with models and unsat formulas together with minimal unsat cores;
having increasing complexity, our inputs facilitate error localization
and debugging. This paper focuses on strings, but the approach
can be directly extended to other theories and their interactions.
As future work, we plan to enhance our technique to also cover
other classes of solvers and other components. For example, we
plan to automatically test MAX-SMT solvers and the quantifier
instantiation mechanism of an SMT solver. Applying our approach
to testing decision procedures with machine-checkable proofs is
another research direction we would like to explore in the future.

ACKNOWLEDGMENTS
We would like to thank the reviewers for their insightful comments.
We are also grateful to the developers of Z3-seq, Nikolaj Bjørner, of
Z3str3, Murphy Berzish, of CVC4, Andrew Reynolds and Andres
Nötzli, and of MT-ABC, William Eiers, for their detailed explana-
tions and support. We also appreciate their valuable feedback on
previous drafts of this paper. We are grateful to Vytautas Astrauskas
and Arshavir Ter-Gabrielyan for their comments on our artifact.

1469

ICSE ’20, May 23–29, 2020, Seoul, South Korea Alexandra Bugariu and Peter Müller

REFERENCES
[1] [n.d.]. CVC4 Documentation for the String Theory. http://cvc4.cs.stanford.edu/

wiki/Strings.
[2] [n.d.]. CVC4 Regression Test Suite. https://github.com/CVC4/CVC4/tree/master/

test/regress.
[3] [n.d.]. MT-ABC Tested Version. https://github.com/vlab-cs-ucsb/ABC/commit/

86b00141fddd183de7b9ae5c92c240e19dda1950.
[4] [n.d.]. SMT-COMP. https://smt-comp.github.io.
[5] [n.d.]. SMT-LIB Unicode Strings Theory. http://smtlib.cs.uiowa.edu/theories-

UnicodeStrings.shtml/.
[6] [n.d.]. StringFuzz Test Suite. http://stringfuzz.dmitryblotsky.com/problems/.
[7] [n.d.]. Z3 SMT Solver. https://github.com/Z3Prover/z3/.
[8] [n.d.]. Z3 Test Suite. https://github.com/Z3Prover/z3/tree/master/src/test.
[9] Cyrille Artho, Armin Biere, and Martina Seidl. 2013. Model-Based Testing for

Verification Back-Ends. In Tests and Proofs, Margus Veanes and Luca Viganò
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 39–55.

[10] Abdulbaki Aydin, Lucas Bang, and Tevfik Bultan. 2015. Automata-Based Model
Counting for String Constraints. In Computer Aided Verification, Daniel Kroening
and Corina S. Păsăreanu (Eds.). Springer International Publishing, Cham, 255–
272.

[11] Abdulbaki Aydin, William Eiers, Lucas Bang, Tegan Brennan, Miroslav Gavrilov,
Tevfik Bultan, and Fang Yu. 2018. Parameterized Model Counting for String
and Numeric Constraints. In Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (Lake Buena Vista, FL, USA) (ESEC/FSE 2018). ACM, New
York, NY, USA, 400–410. https://doi.org/10.1145/3236024.3236064

[12] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. 2017. The SMT-LIB Standard:
Version 2.6. Technical Report. Department of Computer Science, The University
of Iowa. Available at www.SMT-LIB.org.

[13] Murphy Berzish, Vijay Ganesh, and Yunhui Zheng. 2017. Z3str3: A String Solver
with Theory-aware Heuristics. In 2017 Formal Methods in Computer Aided Design
(FMCAD). 55–59. https://doi.org/10.23919/FMCAD.2017.8102241

[14] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh. 2009. Handbook
of Satisfiability: Volume 185 Frontiers in Artificial Intelligence and Applications.
IOS Press, Amsterdam, The Netherlands, The Netherlands.

[15] Nikolaj Bjørner, Vijay Ganesh, Raphaël Michel, and Margus Veanes. 2012. An
SMT-LIB Format for Sequences and Regular Expressions. Strings (01 2012).

[16] Dmitry Blotsky, Federico Mora, Murphy Berzish, Yunhui Zheng, Ifaz Kabir, and
Vijay Ganesh. 2018. StringFuzz: A Fuzzer for String Solvers. In Computer Aided
Verification, Hana Chockler and Georg Weissenbacher (Eds.). Springer Interna-
tional Publishing, Cham, 45–51.

[17] Sascha Böhme and Tjark Weber. 2010. Fast LCF-Style Proof Reconstruction for
Z3. In Interactive Theorem Proving, Matt Kaufmann and Lawrence C. Paulson
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 179–194.

[18] Robert Brummayer and Armin Biere. 2009. Fuzzing and delta-debugging SMT
solvers. ACM International Conference Proceeding Series (01 2009), 1–5. https:
//doi.org/10.1145/1670412.1670413

[19] Robert Brummayer, Florian Lonsing, and Armin Biere. 2010. Automated Testing
andDebugging of SAT andQBF Solvers. In Theory and Applications of Satisfiability
Testing – SAT 2010, Ofer Strichman and Stefan Szeider (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 44–57.

[20] Leonardo de Moura and Nikolaj Bjørner. 2007. Efficient E-Matching for SMT
Solvers. InAutomated Deduction – CADE-21, Frank Pfenning (Ed.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 183–198.

[21] David Detlefs, Greg Nelson, and James B. Saxe. 2005. Simplify: A Theorem Prover
for Program Checking. J. ACM 52, 3 (May 2005), 365–473. https://doi.org/10.
1145/1066100.1066102

[22] Jean-Christophe Filliâtre and Andrei Paskevich. 2013. Why3—Where Programs
Meet Provers. In Programming Languages and Systems (ESOP) (Lecture Notes
in Computer Science), Matthias Felleisen and Philippa Gardner (Eds.), Vol. 7792.
Springer, 125–128.

[23] Jonathan Ford and Natarajan Shankar. 2002. Formal Verification of a Combina-
tion Decision Procedure. In Proceedings of the 18th International Conference on
Automated Deduction (CADE-18). Springer-Verlag, Berlin, Heidelberg, 347–362.
http://dl.acm.org/citation.cfm?id=648238.751562

[24] Stéphane Lescuyer and Sylvain Conchon. 2008. A Reflexive Formalization of a
SAT Solver in Coq. In In Proceedings of TPHOLs.

[25] Tianyi Liang, Andrew Reynolds, Nestan Tsiskaridze, Cesare Tinelli, Clark Barrett,
and Morgan Deters. 2016. An Efficient SMT Solver for String Constraints. Form.
Methods Syst. Des. 48, 3 (June 2016), 206–234. https://doi.org/10.1007/s10703-
016-0247-6

[26] Loi Luu, Shweta Shinde, Prateek Saxena, and Brian Demsky. 2014. A Model
Counter for Constraints over Unbounded Strings. In Proceedings of the 35th
ACM SIGPLAN Conference on Programming Language Design and Implementation
(Edinburgh, United Kingdom) (PLDI ’14). ACM, New York, NY, USA, 565–576.
https://doi.org/10.1145/2594291.2594331

[27] Filip Mari. 2010. Formal Verification of a Modern SAT Solver by Shallow Em-
bedding into Isabelle/HOL. Theor. Comput. Sci. 411, 50 (Nov. 2010), 4333–4356.
https://doi.org/10.1016/j.tcs.2010.09.014

[28] William M. McKeeman. 1998. Differential Testing for Software. DIGITAL TECH-
NICAL JOURNAL 10, 1 (1998), 100–107.

[29] Tukaram Muske and Alexander Serebrenik. 2016. Survey of Approaches for
Handling Static Analysis Alarms. In 2016 IEEE 16th International Working Con-
ference on Source Code Analysis and Manipulation (SCAM). 157–166. https:
//doi.org/10.1109/SCAM.2016.25

[30] Aina Niemetz, Mathias Preiner, and Armin Biere. 2017. Model-Based API Testing
for SMT Solvers. In Proceedings of the 15th International Workshop on Satisfiability
Modulo Theories, SMT 2017), affiliated with the 29th International Conference on
Computer Aided Verification, CAV 2017, Heidelberg, Germany, July 24-28, 2017,
Martin Brain and Liana Hadarean (Eds.). 10 pages.

[31] Andrew Reynolds, Haniel Barbosa, and Pascal Fontaine. 2018. Revisiting Enu-
merative Instantiation. In Tools and Algorithms for the Construction and Analysis
of Systems, Dirk Beyer and Marieke Huisman (Eds.). Springer International Pub-
lishing, Cham, 112–131.

[32] Aaron Stump, Duckki Oe, Andrew Reynolds, Liana Hadarean, and Cesare Tinelli.
2013. SMT Proof Checking Using a Logical Framework. Form. Methods Syst. Des.
42, 1 (Feb. 2013), 91–118. https://doi.org/10.1007/s10703-012-0163-3

[33] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and Isolating Failure-
Inducing Input. IEEE Trans. Softw. Eng. 28, 2 (Feb. 2002), 183–200. https://doi.
org/10.1109/32.988498

[34] Lintao Zhang and Sharad Malik. 2003. Validating SAT solvers using an indepen-
dent resolution-based checker: practical implementations and other applications.
In 2003 Design, Automation and Test in Europe Conference and Exhibition. 880–885.
https://doi.org/10.1109/DATE.2003.1253717

[35] Yunhui Zheng, Xiangyu Zhang, and Vijay Ganesh. 2013. Z3-str: A Z3-based String
Solver for Web Application Analysis. In Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering (Saint Petersburg, Russia) (ESEC/FSE 2013).
ACM, New York, NY, USA, 114–124. https://doi.org/10.1145/2491411.2491456

1470

http://cvc4.cs.stanford.edu/wiki/Strings
http://cvc4.cs.stanford.edu/wiki/Strings
https://github.com/CVC4/CVC4/tree/master/test/regress
https://github.com/CVC4/CVC4/tree/master/test/regress
https://github.com/vlab-cs-ucsb/ABC/commit/86b00141fddd183de7b9ae5c92c240e19dda1950
https://github.com/vlab-cs-ucsb/ABC/commit/86b00141fddd183de7b9ae5c92c240e19dda1950
https://smt-comp.github.io
http://smtlib.cs.uiowa.edu/theories-UnicodeStrings.shtml/
http://smtlib.cs.uiowa.edu/theories-UnicodeStrings.shtml/
http://stringfuzz.dmitryblotsky.com/problems/
https://github.com/Z3Prover/z3/
https://github.com/Z3Prover/z3/tree/master/src/test
https://doi.org/10.1145/3236024.3236064
https://doi.org/10.23919/FMCAD.2017.8102241
https://doi.org/10.1145/1670412.1670413
https://doi.org/10.1145/1670412.1670413
https://doi.org/10.1145/1066100.1066102
https://doi.org/10.1145/1066100.1066102
http://dl.acm.org/citation.cfm?id=648238.751562
https://doi.org/10.1007/s10703-016-0247-6
https://doi.org/10.1007/s10703-016-0247-6
https://doi.org/10.1145/2594291.2594331
https://doi.org/10.1016/j.tcs.2010.09.014
https://doi.org/10.1109/SCAM.2016.25
https://doi.org/10.1109/SCAM.2016.25
https://doi.org/10.1007/s10703-012-0163-3
https://doi.org/10.1109/32.988498
https://doi.org/10.1109/32.988498
https://doi.org/10.1109/DATE.2003.1253717
https://doi.org/10.1145/2491411.2491456

