
Identifying Overly Restrictive Matching
Patterns in SMT-Based Program Verifiers

Alexandra Bugariu(B), Arshavir Ter-Gabrielyan, and Peter Müller

Department of Computer Science, ETH Zurich, Zürich, Switzerland
{alexandra.bugariu,ter-gabrielyan,peter.mueller}@inf.ethz.ch

Abstract. Universal quantifiers occur frequently in proof obligations
produced by program verifiers, for instance, to axiomatize uninterpreted
functions and to express properties of arrays. SMT-based verifiers typi-
cally reason about them via E-matching, an SMT algorithm that requires
syntactic matching patterns to guide the quantifier instantiations. Devis-
ing good matching patterns is challenging. In particular, overly restric-
tive patterns may lead to spurious verification errors if the quantifiers
needed for a proof are not instantiated; they may also conceal unsound-
ness caused by inconsistent axiomatizations. In this paper, we present
the first technique that identifies and helps the users remedy the effects
of overly restrictive matching patterns. We designed a novel algorithm
to synthesize missing triggering terms required to complete a proof. Tool
developers can use this information to refine their matching patterns and
prevent similar verification errors, or to fix a detected unsoundness.

Keywords: Matching patterns · Triggering terms · SMT · E-matching

1 Introduction

Proof obligations frequently contain universal quantifiers, both in the specification
and to encode the semantics of the programming language. Most deductive veri-
fiers [4,5,8,12,15,19,36] rely on SMT solvers to discharge the proof obligations
via E-matching [14]. This SMT algorithm requires syntactic matching patterns of
ground terms (called patterns in the following), to control the instantiations. The
pattern {f(x, y)} in the formula ∀x : Int, y : Int :: {f(x, y)} (x = y) ∧ ¬f(x, y)
instructs the solver to instantiate the quantifier only when it finds a triggering
term that matches the pattern, e.g., f(7, z). The patterns can be written manually
or inferred automatically. However, devising them is challenging [20,23]. Too per-
missive patterns may lead to unnecessary instantiations that slow down verifica-
tion or even cause non-termination (if each instantiation produces a new triggering
term, in a so-called matching loop [14]). Overly restrictive patterns may prevent
the instantiations needed to complete a proof; they cause two major problems in
program verification, incompleteness and undetected unsoundness.

Incompleteness. Overly restrictive patterns may cause spurious verification
errors when the proof of valid proof obligations fails. Figure 1 illustrates this

c© Springer Nature Switzerland AG 2021
M. Huisman et al. (Eds.): FM 2021, LNCS 13047, pp. 273–291, 2021.
https://doi.org/10.1007/978-3-030-90870-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90870-6_15&domain=pdf
https://doi.org/10.1007/978-3-030-90870-6_15

274 A. Bugariu et al.

function len(x: int): int;
function nxt(x: int): int;

axiom (forall x: int :: {len(nxt(x))}
len(x) > 0 && (nxt(x) == x ==> len(x) == 1) &&
(nxt(x) != x ==> len(x) == len(nxt(x)) + 1));

procedure trivial () { assert len(7) > 0; }

Fig. 1. Example (in Boogie [7]) that leads to a spurious error. The assertion follows
from the axiom, but the axiom does not get instantiated without a triggering term.

case. The integer x represents the address of a node, and the uninterpreted func-
tions len and nxt encode operations on linked lists. The axiom defines len: its
result is positive and the last node points to itself. The assertion directly follows
from the axiom, but the proof fails because the proof obligation does not contain
the triggering term len(nxt(7)); thus, the axiom does not get instantiated. How-
ever, realistic proof obligations often contain hundreds of quantifiers [33], which
makes the manual identification of missing triggering terms extremely difficult.

Unsoundness. Most of the universal quantifiers in proof obligations appear in
axioms over uninterpreted functions (to encode type information, heap mod-
els, datatypes, etc.). To obtain sound results, these axioms must be consistent
(i.e., satisfiable); otherwise all proof obligations hold trivially. Consistency can be
proved once and for all by showing the existence of a model, as part of the sound-
ness proof. However, this solution is difficult to apply for those verifiers which
generate axioms dynamically, depending on the program to be verified. Proving
consistency then requires verifying the algorithm that generates the axioms for
all possible inputs, and needs to consider many subtle issues [13,21,30].

A more practical approach is to check if the axioms generated for a given
program are consistent. However, this check also depends on triggering: an SMT
solver may fail to prove unsat if the triggering terms needed to instantiate the
contradictory axioms are missing. The unsoundness can thus remain undetected.

For example, Dafny’s [19] sequence axiomatization from June 2008 contained
an inconsistency found only over a year later. A fragment of this axiomatization
is shown in Fig. 2. It expresses that empty sequences and sequences obtained
through the Build operation are well-typed (F0–F2), that the length of a type-
correct sequence must be non-negative (F3), and that Build constructs a new
sequence of the required length (F4). The intended behavior of Build is to update
the element at index i4 in sequence s4 to v4. However, since there are no con-
straints on the parameter l4, Build can be used with a negative length, leading
to a contradiction with F3. This error cannot be detected by checking the satis-
fiability of the formula F0 ∧ . . . ∧ F4, as no axiom gets instantiated.

This Work. For SMT-based deductive verifiers, discharging proof obligations
and revealing inconsistencies in axiomatizations require a solver to prove unsat

Identifying Overly Restrictive Matching Patterns 275

F0 : ∀t0 : V :: {Type(t0)} t0 = ElemType(Type(t0))

F1 : ∀t1 : V :: {Empty(t1)} typ(Empty(t1)) = Type(t1)

F2 : ∀s2 : U, i2 : Int, v2 : U, l2 : Int :: {Build(s2, i2, v2, l2)}
typ(Build(s2, i2, v2, l2)) = Type(typ(v2))

F3 : ∀s3 : U :: {Len(s3)} ¬(typ(s3) = Type(ElemType(typ(s3))) ∨ (0 ≤ Len(s3))

F4 : ∀s4 : U, i4 : Int, v4 : U, l4 : Int :: {Len(Build(s4, i4, v4, l4))}
¬(typ(s4) = Type(typ(v4))) ∨ (Len(Build(s4, i4, v4, l4)) = l4)

Fig. 2. Fragment of an old version of Dafny’s sequence axiomatization. U and V are
uninterpreted types. All the named functions are uninterpreted. To improve readability,
we use mathematical notation throughout this paper instead of SMT-LIB syntax [10].

via E-matching. (Verification techniques based on proof assistants are out of
scope.) Given an SMT formula for which E-matching yields unknown due to
insufficient quantifier instantiations, our technique generates suitable triggering
terms that allow the solver to complete the proof. These terms enable users to
understand and remedy the revealed completeness or soundness issue. Since the
SMT queries for the verification of different input programs are typically very
similar, fixing such issues benefits the verification of many or even all future runs
of the verifier.

Fixing the Incompleteness. For Fig. 1, our technique finds the triggering term
len(nxt(7)), which allows one to fix the incompleteness. Tool users (who cannot
change the axioms) can add the term to the program; e.g., adding var t: int;

t := len(nxt(7)) before the assertion has no effect on the execution, but triggers
the instantiation of the axiom. Tool developers can devise less restrictive pat-
terns. For instance, they can move the conjunct len(x) > 0 to a separate axiom
with the pattern {len(x)} (simply changing the axiom’s pattern to {len(x)}

would cause matching loops). Alternatively, tool developers can adapt the encod-
ing to emit additional triggering terms enforcing certain instantiations [17,20].

Fixing the Unsoundness. In Fig. 2, our triggering term Len(Build(Empty
(typ(v)), 0, v,−1)) (for a fresh value v) is sufficient to detect the unsoundness
(as shown in Appx. A of [11]). Tool developers can use this information to add a
precondition to F4, which prevents the construction of sequences with negative
lengths.

Soundness Modulo Patterns. Figure 3 illustrates another scenario: Boogie’s [7]
map axiomatization is inconsistent by design at the SMT level [22], but this
behavior cannot be exposed from Boogie, as the type system prevents the
required instantiations. Thus it does not affect Boogie’s soundness. It is nev-
ertheless important to detect it because it could surface if Boogie was extended
to support quantifier instantiation algorithms that are not based on E-matching
(such as MBQI [16]) or first-order provers. They could unsoundly classify an
incorrect program that uses this map axiomatization as correct. Since F2 states

276 A. Bugariu et al.

F0 : ∀kt0 : V, vt0 : V :: {Type(kt0, vt0)} ValTypeInv(Type(kt0, vt0)) = vt0

F1 : ∀m1 : U, k1 : U, v1 : U :: {Select(m1, k1, v1)}
typ(Select(m1, k1, v1)) = ValTypeInv(typ(m1))

F2 : ∀m2 : U, k2 : U, x2 : U, v2 : U :: {Store(m2, k2, x2, v2)}
typ(Store(m2, k2, x2, v2)) = Type(typ(k2), typ(v2))

F3 : ∀m3 : U, k3 : U, x3 : U, v3 : U, k′
3 : U, v′

3 : U :: {Select(Store(m3, k3, x3, v3), k′
3, v

′
3)}

(k3 = k′
3) ∨ (Select(Store(m3, k3, x3, v3), k′

3, v
′
3) = Select(m3, k

′
3, v

′
3))

Fig. 3. Fragment of Boogie’s map axiomatization, which is sound only modulo patterns.
U and V are uninterpreted types. All the named functions are uninterpreted.

that storing a key-value pair into a map results in a new map with a potentially
different type, one can prove that two different types (e.g., Boolean and Int)
are equal in SMT. This example shows that the problems tackled in this paper
cannot be solved by simply switching to other instantiation strategies: these are
not the preferred choices of most verifiers [4,5,8,12,15,19,36], and may produce
unsound results for verifiers designed for E-matching with axiomatizations sound
only modulo patterns.

Contributions. This paper makes the following technical contributions:

1. We present the first automated technique that allows the developers to detect
completeness issues in program verifiers and soundness problems in their
axiomatizations. Moreover, our approach helps them devise better triggering
strategies for all future runs of their tool with E-matching.

2. We developed a novel algorithm for synthesizing the triggering terms nec-
essary to complete unsatisfiability proofs using E-matching. Since quantifier
instantiation is undecidable for first-order formulas over uninterpreted func-
tions, our algorithm might not terminate. However, all identified triggering
terms are indeed sufficient to complete the proof; there are no false positives.

3. We evaluated our technique on benchmarks with known triggering problems
from four program verifiers. Our experimental results show that it success-
fully synthesized the missing triggering terms in 65,6% of the cases, and can
significantly reduce the human effort in localizing and fixing the errors.

Outline. The rest of the paper is organized as follows: Sect. 2 gives an overview of
our technique; the details follow in Sect. 3. In Sect. 4, we present our experimental
results. We discuss related work in Sect. 5, and conclude in Sect. 6. Extensions of
our algorithm, optimizations, more details about E-matching and the evaluation,
and additional examples can be found in the extended version of our paper [11].

2 Overview

Our goal is to synthesize missing triggering terms, i.e., concrete instantiations
for (a small subset of) the quantified variables of an input formula I, which are

Identifying Overly Restrictive Matching Patterns 277

Fig. 4. Main steps of our algorithm that helps the developers of program verifiers devise
better triggering strategies. Rounded boxes depict processing steps and arrows data.

necessary for the solver to prove its unsatisfiablity. Intuitively, these triggering
terms include counter-examples to the satisfiability of I and can be obtained
from a model of its negation. For example, I = ∀n : Int :: n > 7 is unsatisfiable,
and a counter-example n = 6 is a model of its negation ¬I = ∃n : Int :: n ≤ 7.

However, this idea does not apply to formulas over uninterpreted functions,
which are common in proof obligations. The negation of I = ∃f,∀n : Int :: f(n, 7),
where f is an uninterpreted function, is ¬I = ∀f,∃n : Int :: ¬f(n, 7). This is a
second-order constraint (it quantifies over functions), and cannot be encoded in
SMT, which supports only first-order logic. We thus take a different approach.

Let F be a second-order formula. We define its approximation as:

F≈ = F [∃f / ∀f] (*)

where f are uninterpreted functions. The approximation considers only one inter-
pretation, not all possible interpretations for each uninterpreted function.

We therefore construct a candidate triggering term from a model of ¬I≈ and
check if it is sufficient to prove that I is unsatisfiable (due to the approximation, a
model is no longer guaranteed to be a counter-example for the original formula).

The four main steps of our algorithm are depicted in Fig. 4. The algorithm is
stand-alone, i.e., not integrated into, nor dependent on any specific SMT solver.
We illustrate it on the inconsistent axioms from Fig. 5 (which we assume are
part of a larger axiomatization). To show that I = F0 ∧ F1 ∧ . . . is unsatisfiable,
the solver requires the triggering term f(g(7)). The corresponding instantiations
of F0 and F1 generate contradictory constraints: f(g(7)) �= 7 and f(g(7)) = 7.
In the following, we explain how we obtain this triggering term systematically.

Fig. 5. Formulas that set contradictory constraints on the function f. Synthesizing the
triggering term f(g(7)) requires theory reasoning and syntactic term unification.

278 A. Bugariu et al.

Step 1: Clustering. As typical proof obligations or axiomatizations contain hun-
dreds of quantifiers, exploring combinations of triggering terms for all of them
does not scale. To prune the search space, we exploit the fact that I is unsatisfi-
able only if there exist instantiations of some (in the worst case all) of its quan-
tified conjuncts F such that they produce contradictory constraints on some
uninterpreted functions. (If there is a contradiction among the quantifier-free
conjuncts, the solver will detect it directly.) We identify clusters C of formulas
F that share function symbols and then process each cluster separately. In Fig. 5,
F0 and F1 share the function symbol f, so we build the cluster C = F0 ∧ F1.

Step 2: Syntactic Unification. The formulas within clusters usually contain unin-
terpreted functions applied to different arguments (e.g., f is applied to x0 in F0

and to g(x1) in F1). We thus perform syntactic unification to identify sharing
constraints on the quantified variables (which we call rewritings and denote their
set by R) such that instantiations that satisfy these rewritings generate formulas
with common terms (on which they might set contradictory constraints). F0 and
F1 share the term f(g(x1)) if we perform the rewritings R = {x0 = g(x1)}.

Step 3: Identifying Candidate Triggering Terms. The cluster C = F0 ∧ F1 from
step 1 contains a contradiction if there exists a formula F in C such that: (1) F
is unsatisfiable by itself, or (2) F contradicts at least one other formula from C.

To address scenario (1), we ask an SMT solver for a model of the formula G =
¬C≈, where ¬C≈ is defined in (*) above. After Skolemization, G is quantifier-
free, so the solver is generally able to provide a model if one exists. We then
obtain a candidate triggering term by substituting the quantified variables from
the patterns of the formulas in C with their corresponding values from the model.

However, scenario (1) is not sufficient to expose the contradiction from Fig. 5,
since both F0 and F1 are individually satisfiable. Our algorithm thus also derives
stronger G formulas corresponding to scenario (2). That is, it will next consider
the case where F0 contradicts F1, whose encoding into first-order logic is: ¬F0≈∧
F1 ∧ ∧

R, where R is the set of rewritings identified in step 2, used to connect
the quantified variables. This formula is universally-quantified (since F1 is), so
the solver cannot prove its satisfiability and generate models. We solve this
problem by requiring F0 to contradict the instantiation of F1, which is a weaker
constraint. Let F be an arbitrary formula. We define its instantiation as:

FInst = F [∃x / ∀x] (**)

where x are variables. Then G = ¬F0≈ ∧ F1Inst ∧ ∧
R is equivalent to (f(x0) =

7) ∧ (f(g(x1)) = x1) ∧ (x0 = g(x1)). (To simplify the notation, here and in the
following formulas, we omit existential quantifiers.) All its models set x1 to 7.
Substituting x0 by g(x1) (according to R) and x1 by 7 (its value from the model)
in the patterns of F0 and F1 yields the candidate triggering term f(g(7)).

Step 4: Validation. Once we have found a candidate triggering term, we add it
to the original formula I (wrapped in a fresh uninterpreted function, to make it

Identifying Overly Restrictive Matching Patterns 279

I ::= F (∧ F)∗ B ::= D (∨ D)∗

F ::= B | ∀x :: {P (x)} B D ::= L | ¬L | ∀x :: {P (x)} F

Fig. 6. Grammar of input formulas I. Inputs are conjunctions of formulas F , which are
(typically quantified) disjunctions of literals (L or ¬L) or nested quantified formulas.
Each quantifier is equipped with a pattern P . x denotes a (non-empty) list of variables.

available to E-matching, but not affect the input’s satisfiability) and check if the
solver can prove unsat. If so, our algorithm terminates successfully and reports
the synthesized triggering term (after a minimization step that removes unnec-
essary sub-terms); otherwise, we go back to step 3 to obtain another candidate.
In our example, the triggering term f(g(7)) is sufficient to complete the proof.

3 Synthesizing Triggering Terms

Next, we define the input formulas (Sect. 3.1), explain the details of our algorithm
(Sect. 3.2) and discuss its limitations (Sect. 3.3). Appx. C and Appx. E of [11]
present extensions that enable complex proofs and optimizations used in Sect. 4.

3.1 Input Formula

To simplify our algorithm, we pre-process the inputs (i.e., the proof obligations
or the axioms of a verifier): we Skolemize existential quantifiers and transform
all propositional formulas into negation normal form (NNF), where negation is
applied only to literals and the only logical connectives are conjunction and dis-
junction; we also apply the distributivity of disjunction over conjunction and split
conjunctions into separate formulas. These steps preserve satisfiability and the
semantics of patterns (Appx. E of [11] addresses scalability issues). The result-
ing formulas follow the grammar in Fig. 6. Literals L may include interpreted
and uninterpreted functions, variables and constants. Free variables are nullary
functions. Quantified variables can have interpreted or uninterpreted types, and
the pre-processing ensures that their names are globally unique. We assume that
each quantifier is equipped with a pattern P (if none is provided, we run the
solver to infer one). Patterns are combinations of uninterpreted functions and
must mention all quantified variables. Since there are no existential quantifiers
after Skolemization, we use the term quantifier to denote universal quantifiers.

3.2 Algorithm

The pseudo-code of our algorithm is given in Algorithm 1. It takes as input an SMT
formula I (defined in Fig. 6), which we treat in a slight abuse of notation as both
a formula and a set of conjuncts. Three other parameters allow us to customize
the search strategy and are discussed later. The algorithm yields a triggering term
that enables the unsat proof, or None, if no term was found. We assume here that
I contains no nested quantifiers and present those later in this section.

280 A. Bugariu et al.

Algorithm 1: Our algorithm for synthesizing triggering terms that enable
unsatisfiability proofs. We assume that all quantified variables are globally
unique and I does not contain nested quantifiers. The auxiliary procedures
clustersRewritings and candidateTerm are presented in Algorithm 2 and
Algorithm 3.

Arguments : I — input formula, also treated as set of conjuncts
σ — similarity threshold for clustering
δ — maximum depth for clustering
μ — maximum number of different models

Result: The synthesized triggering term or None, if no term was found

1 Procedure synthesizeTriggeringTerm

2 foreach depth ∈ {0, . . . , δ} do
3 foreach F ∈ I | F is ∀x :: F ′ do
4 foreach (C, R) ∈ clustersRewritings(I, F, σ, depth) do // Steps 1, 2

5 Inst ←− {}
6 foreach f ∈ C | f is ∀x :: D0 ∨ . . . ∨ Dn or D0 ∨ . . . ∨ Dn do
7 Inst[f] ←− {(

∧
0≤j<k ¬Dj) ∧ Dk | 0 ≤ k ≤ n}

8 Inst[F] ←− {¬F ′}
9 foreach H ∈×{Inst[f] | f ∈ {F} ∪ C} do // Cartesian product

10 G ←− ∧
H ∧ ∧

R
11 foreach m ∈ {0, . . . , μ − 1} do
12 resG, model ←− checkSat(G)

13 if resG 	= SAT then
14 break // No models if G is not SAT

15 T ←− candidateTerm({F} ∪ C, R, model) // Step 3

16 resI, ←− checkSat(I ∧ T) // Step 4

17 if resI = UNSAT then
18 return minimized(T) // Success

19 G ←− G ∧ ¬model // Avoid this model next iteration

20 return None

The algorithm iterates over each quantified conjunctF of I (Algorithm1, line 3)
and checks if F is individually unsatisfiable (for depth = 0). For complex proofs,
this is usually not sufficient, as I is typically inconsistent due to a combination of
conjuncts (F0 ∧ F1 in Fig. 5). In such cases, the algorithm proceeds as follows:

Step 1: Clustering. It constructs clusters of formulas similar to F (Algorithm 2,
line 4), based on their Jaccard similarity index. Let Fi and Fj be two arbitrary
formulas, and Si and Sj their respective sets of uninterpreted function symbols
(from their bodies and the patterns). The Jaccard similarity index is defined as:

J(Fi, Fj) = |Si∩Sj |
|Si∪Sj | (the number of common uninterpreted functions divided

by the total number). For Fig. 5, S0 = {f}, S1 = {f, g}, J(F0, F1) = |{f}|
|{f,g}| = 0.5.

Our algorithm explores the search space by iteratively expanding clusters to
include transitively-similar formulas up to amaximumdepth (parameter δ inAlgo-
rithm 1). For two formulas Fi, Fj ∈ I, we define the similarity function as:

Identifying Overly Restrictive Matching Patterns 281

Algorithm 2: Auxiliary procedure for Algorithm 1, which identifies clus-
ters of formulas similar to F and their rewritings. sim is defined in text
(step 1). unify is a first-order unification algorithm (not shown); it returns
a set of rewritings with restricted shapes, defined in text (step 2).
Arguments : I — input formula, also treated as set of conjuncts

F — quantified conjunct of I, i.e., F ∈ I | F is ∀x :: F ′

σ — similarity threshold for clustering
depth — current depth for clustering

Result: A set of pairs, consisting of clusters and their corresponding rewritings

1 Procedure clustersRewritings
2 if depth = 0 then
3 return {(∅, ∅)}
4 simFormulas ←− {f | f ∈ I \ {F} and sim

depth
I (F, f, σ)} // Step 1

66 rewritings ←− {}
7 foreach f ∈ simFormulas do
8 rws ←− unify(F, f) // Step 2

9 if rws = ∅ and (f is ∀x :: D0 ∨ . . . ∨ Dn) then
10 simFormulas ←− simFormulas \ {f}
11 rewritings[f] ←− rws

12 return {(C, R) | C ⊆ simFormulas and (∀r ∈ R, ∃f ∈ C : r ∈ rewritings[f])
and (∀x ∈ qvars(C): |{r | r ∈ R and x = lhs(r)}| ≤ 1)}

simδ
I(Fi, Fj , σ) =

{
J(Fi, Fj) ≥ σ, δ = 1

∃Fk : simδ−1
I\{Fi}(Fi, Fk, σ) and J(Fk, Fj) ≥ σ, δ > 1

where σ ∈ [0, 1] is a similarity threshold used to parameterize our algorithm.
The initial cluster (depth = 1) includes all the conjuncts of I that are directly

similar to F . Each subsequent iteration adds the conjuncts that are directly sim-
ilar to an element of the cluster from the previous iteration, that is, transitively
similar to F . This search strategy allows us to gradually strengthen the formu-
las G (used to synthesize candidate terms in step 3) without overly constraining
them (an over-constrained formula is unsatisfiable, and has no models).

Step 2: Syntactic Unification. Next (Algorithm 2, line 8) we identify rewritings,
i.e., constraints under which two similar quantified formulas share terms. (Appx.
D of [11] presents the quantifier-free case.) We obtain the rewritings by perform-
ing a simplified form of syntactic term unification, which reduces their number
to a practical size. Our rewritings are directed equalities. For two formulas Fi and
Fj and an uninterpreted function f they have one of the following two shapes:

(1) xi = rhsj , where xi is a quantified variable of Fi, rhsj are terms from Fj

defined below, Fi contains a term f(xi) and Fj contains a term f(rhsj),
(2) xj = rhsi, where xj is a quantified variable of Fj , rhsi are terms from Fi

defined below, Fj contains a term f(xj) and Fi contains a term f(rhsi),

282 A. Bugariu et al.

where rhsk is a constant ck, a quantified variable xk, or a composite function
(f◦g0 ◦ . . . ◦gn)(ck, xk) occurring in the formula Fk and g0, . . . , gn are arbitrary
(interpreted or uninterpreted) functions. That is, we determine the most general
unifier [6] only for those terms that have uninterpreted functions as the outer-
most functions and quantified variables as arguments. The unification algorithm
is standard (except for the restricted shapes), so it is not shown explicitly.

Since a term may appear more than once in F , or F unifies with multiple similar
formulas through the same quantified variable, we can obtain alternative rewritings
for a quantified variable. In such cases, we either duplicate or split the cluster, such
that in each cluster-rewriting pair, each quantified variable is rewritten at most
once (see Algorithm 2, line 12). In Fig. 7, both F1 and F2 are similar to F0 (all three
formulas share the uninterpreted symbol f). Since the unification produces alter-
native rewritings for x0 (x0 = x1 and x0 = x2), the procedure clustersRewritings

returns the pairs {({F1}, {x0 = x1}), ({F2}, {x0 = x2})}.

Step 3: Identifying Candidate Terms. From the clusters and the rewritings (iden-
tified before), we then derive quantifier-free formulas G (Algorithm 1, line 10),
and, if they are satisfiable, construct the candidate triggering terms from their
models (Algorithm 1, line 15). Each formula G consists of: (1) ¬F≈ (defined
in (*), which is equivalent to ¬F ′, since F has the shape ∀x :: F ′ from Algo-
rithm 1, line 3), (2) the instantiations (see (**)) of all the similar formulas from
the cluster, and (3) the corresponding rewritings R. (Since we assume that all the
quantified variables are globally unique, we do not perform variable renaming
for the instantiations).

If a similar formula has multiple disjuncts Dk, the solver uses short-circuiting
semantics when generating the model for G. That is, if it can find a model that
satisfies the first disjunct, it does not consider the remaining ones. To obtain more
diverse models, we synthesize formulas that cover each disjunct, i.e., make sure
that it evaluates to true at least once. We thus compute multiple instantiations
of each similar formula, of the form: (

∧
0≤j<k ¬Dj) ∧ Dk,∀k : 0 ≤ k ≤ n (see

Algorithm 1, line 7). To consider all the combinations of disjuncts, we derive the
formula G from the Cartesian product of the instantiations (Algorithm 1, line 9).
(Topresent thepseudo-code ina conciseway,we store¬F ′ in the instantiationsmap
as well (Algorithm 1, line 8), even if it does not represent the instantiation of F .)

In Fig. 8, F1 is similar to F0 and R = {x0 = x1}. F1 has two disjuncts and
thus two possible instantiations: Inst[F1] = {x1 ≥ 1, (x1 < 1) ∧ (f(x1) = 6)}.
The formula G = (x0 > −1) ∧ (f(x0) ≤ 7) ∧ (x1 ≥ 1) ∧ (x0 = x1) for the first
instantiation is satisfiable, but none of the values the solver can assign to x0

F0 : ∀x0 : Int :: {f(x0)} f(x0) = 6

F1 : ∀x1 : Int :: {f(x1)} f(x1) = 7

F2 : ∀x2 : Int :: {f(x2)} f(x2) = 8

Fig. 7. Formulas that set contradictory constraints on the function f. Synthesizing the
triggering term f(0) requires clusters of similar formulas with alternative rewritings.

Identifying Overly Restrictive Matching Patterns 283

Algorithm 3: Auxiliary procedure for Algorithm 1, which constructs a
triggering term from the given cluster, rewritings, and SMT model. dummy
is a fresh function symbol, which conveys no information about the truth
value of the candidate term; thus conjoining it to the input preserves
(un)satisfiability.
Arguments : C — set of formulas in the cluster

R — set of rewritings for the cluster
model — SMT model, mapping variables to values

Result: A triggering term with no semantic information

1 Procedure candidateTerm
2 P0, . . . , Pk ←− patterns(C)

3 while R 	= ∅ do
4 choose and remove r ←− (x = rhs) from R
5 P0, . . . , Pk ←− (P0, . . . , Pk)[rhs/x]
6 R ←− R [rhs/x]

7 foreach x ∈ qvars(C) do
8 P0, . . . , Pk ←− (P0, . . . , Pk)[model(x)/x]
9 return "dummy" + "(" + P0, . . . , Pk + ")"

(which are all greater or equal to 1) are sufficient for the unsatisfiability proof to
succeed. The second instantiation adds additional constraints: instead of x1 ≥ 1,
it requires (x1 < 1)∧ (f(x1) = 6). The resulting G formula has a unique solution
for x0, namely 0, and the triggering term f(0) is sufficient to prove unsat.

The procedure candidateTerm from Algorithm 3 synthesizes a candidate trig-
gering term T from the model of G and the rewritings R. We first collect all
the patterns of the formulas from the cluster C (Algorithm 3, line 2), i.e., of
F and of its similar conjuncts (see Algorithm 1, line 15). Then, we apply the
rewritings, in an arbitrary order (Algorithm 3, lines 3–6). That is, we substitute
the quantified variable x from the left hand side of the rewriting with the right
hand side term rhs and propagate this substitution to the remaining rewritings.
This step allows us to include in the synthesized triggering terms additional
information, which cannot be provided by the solver. Then (Algorithm 3, lines
7–8) we substitute the remaining variables with their constant values from the
model (i.e., constants for built-in types, and fresh, unconstrained variables for
uninterpreted types). The resulting triggering term is wrapped in an application
to a fresh, uninterpreted function dummy to ensure that conjoining it to I does
not change I’s satisfiability.

F0 : ∀x0 : Int :: {f(x0)} ¬(x0 > −1) ∨ (f(x0) > 7)

F1 : ∀x1 : Int :: {f(x1)} ¬(x1 < 1) ∨ (f(x1) = 6)

Fig. 8. Formulas that set contradictory constraints on the function f. Synthesizing the
triggering term f(0) requires instantiations that cover all the disjuncts.

284 A. Bugariu et al.

Step 4: Validation. We validate the candidate triggering term T by checking if
I∧T is unsatisfiable, i.e., if these particular interpretations for the uninterpreted
functions generalize to all interpretations (Algorithm 1, line 16). If this is the case
then we return the minimized triggering term (Algorithm 1, line 18). The dummy
function has multiple arguments, each of them corresponding to one pattern from
the cluster (Algorithm 3, line 9). This is an over-approximation of the required
triggering terms (once instantiated, the formulas may trigger each other), so
minimized removes redundant (sub-)terms. If T does not validate, we re-iterate its
construction up to a bound μ and strengthen the formula G to obtain a different
model (Algorithm 1, lines 19 and 11). Appx. B of [11] discusses heuristics for
obtaining diverse models.

Nested Quantifiers. Our algorithm also supports nested quantifiers. Nested exis-
tential quantifiers in positive positions and nested universal quantifiers in neg-
ative positions are replaced in NNF by new, uninterpreted Skolem functions.
Step 2 is also applicable to them: Skolem functions with arguments (the quanti-
fied variables from the outer scope) are unified as regular uninterpreted functions;
they can also appear as rhs in a rewriting, but not as the left-hand side (we do
not perform higher-order unification). In such cases, the result is imprecise: the
unification of f(x0, skolem()) and f(x1, 1) produces only the rewriting x0 = x1.

After pre-processing, the conjunct F and the similar formulas may still con-
tain nested universal quantifiers. F is always negated in G, thus it becomes, after
Skolemization, quantifier-free. To ensure that G is also quantifier-free (and the
solver can generate a model), we extend the algorithm to recursively instantiate
similar formulas with nested quantifiers when computing the instantiations.

3.3 Limitations

Next, we discuss the limitations of our technique, as well as possible solutions.

Applicability. Our algorithm effectively addresses a common cause of failed
unsatisfiability proofs in program verification, i.e., missing triggering terms.
Other causes (e.g., incompleteness in the solver’s decision procedures due to
undecidable theories) are beyond the scope of our work. Also, our algorithm
is tailored to unsatisfiability proofs; satisfiability proofs cannot be reduced to
unsatisfiability proofs by negating the input, because the negation cannot usu-
ally be encoded in SMT (as we have illustrated in Sect. 2).

SMT Solvers. Our algorithm synthesizes triggering terms as long as the SMT
solver can find models for our quantifier-free formulas. However, solvers are incom-
plete, i.e., they can return unknown and generate only partialmodels, which are not
guaranteed to be correct. Nonetheless, we also use partial models, as the validation
step (step 4 in Fig. 4) ensures that they do not lead to false positives.

Patterns. Since our algorithm is based on patterns (provided or inferred), it will
not succeed if they do not permit the necessary instantiations. For example, the
formula ∀x : Int, y : Int :: x = y is unsatisfiable. However, the SMT solver cannot
automatically infer a pattern from the body of the quantifier, since equality is

Identifying Overly Restrictive Matching Patterns 285

an interpreted function and must not occur in a pattern. Thus E-matching (and
implicitly our algorithm) cannot solve this example, unless the user provides as
pattern some uninterpreted function that mentions both x and y (e.g., f(x, y)).

Bounds and Rewritings. Synthesizing triggering terms is generally undecidable.
We ensure termination by bounding the search space through various customizable
parameters, thus our algorithm misses results not found within these bounds. We
also only unify applications of uninterpreted functions, which are common in ver-
ification. Efficiently supporting interpreted functions (especially equality) is very
challenging for inputs with a small number of types (e.g., from Boogie [7]).

Despite these limitations, our algorithm effectively synthesizes the triggering
terms required in practical examples, as we experimentally show next.

4 Evaluation

Evaluating our work requires benchmarks with known triggering issues (i.e., for
which E-matching yields unknown). Since there is no publicly available suite, in
Sect. 4.1 we used manually-collected benchmarks from four verifiers [19,25,35,38].
Our algorithm succeeded for 65,6%. To evaluate its applicability to other verifiers,
in Sect. 4.2 we used SMT-COMP [33] inputs. As they were not designed to expose
triggering issues, we developed a filtering step (see Appx. F of [11]) to automat-
ically identify the subset that falls into this category. The results show that our
algorithm is suited also for [8,12,32]. Section 4.3 illustrates that our triggering
terms are simpler than the unsat proofs produced by quantifier instantation and
refutation techniques, enabling one to fix the root cause of the revealed issues.

Setup. We used Z3 (4.8.10) [24] to infer the patterns, generate the models and
validate the candidate terms. However, our tool can be used with any solver that
supports E-matching and exposes the inferred patterns. We used Z3’s NNF tactic
to transform the inputs into NNF and locality-sensitive hashing to compute the
clusters. We fixed Z3’s random seeds to arbitrary values (sat.random_seed to 488,
smt.random_seed to 599, and nlsat.seed to 611). We set the (soft) timeout to
600s and the memory limit to 6 GB per run and used a 1s timeout for obtaining
a model and for validating a candidate term. The experiments were conducted
on a Linux server with 252 GB of RAM and 32 Intel Xeon CPUs at 3.3 GHz.

4.1 Effectiveness on Verification Benchmarks with Triggering Issues

First, we used manually-collected benchmarks with known triggering issues from
Dafny [19], F* [35], Gobra [38], and Viper [25]. We reconstructed 4, respectively
2 inconsistent axiomatizations from Dafny and F*, based on the changes from
the repositories and the messages from the issue trackers; we obtained 11 incon-
sistent axiomatizations of arrays and option types from Gobra’s developers and
collected 15 incompleteness issues from Viper’s test suite [3], with at least one
assertion needed only for triggering. These contain algorithms for arrays, bino-
mial heaps, binary search trees, and regression tests. The file sizes (minimum-
maximum number of formulas or quantifiers) are shown in Table 1, columns 3–4.

286 A. Bugariu et al.

Table 1. Results on verification benchmarks with known triggering issues. The columns
show: the source of the benchmarks, the number of files (#), their number of conjuncts
(#F) and of quantifiers (#∀), the number of files for which five configurations (C0–C4)
synthesized suited triggering terms, our results across all configurations, the number
of unsat proofs generated by Z3 (with MBQI [16]), CVC4 (with enumerative instantia-
tion [28]), and Vampire [18] (in CASC mode [34], using Z3 for ground theory reasoning).

#F #∀ C0 C1 C2 C3 C4 Our Z3 CVC4 Vampire

Source min-max min-max default σ=0.1 β=1 type σ=0.1 ∧ sub work MBQI enum inst CASC ∧ Z3

Dafny 4 6 - 16 5 - 16 1 1 1 1 0 1 1 0 2

F* 2 18 - 2388 15 - 2543 1 1 1 1 2 2 1 0 2

Gobra 11 64 - 78 50 - 63 5 10 1 7 10 11 6 0 11

Viper 15 84 - 143 68 - 203 7 5 3 5 5 7 11 0 15

Total 32 21 (65,6%) 19 (59,3%) 0 (0%) 30 (93,7%)

σ = similarity threshold; β = batch size; type = type-based constraints; sub = sub-
terms C0: σ = 0.3; β = 64; ¬type; ¬sub

Configurations. We ran our tool with five configurations, to also analyze the
impact of its parameters (see Algorithm 1 and Appx. C of [11]). The default con-
figuration C0 has: σ = 0.3 (similarity threshold), β = 64 (batch size, i.e., the
number of candidate terms validated together),¬type (no type-based constraints),
¬sub (no unification for sub-terms). The other configurations differ from C0 in the
parameters shown in Table 1. All configurations use δ = 2 (maximum transitivity
depth), μ = 4 (maximum number of different models), and 600s timeout per file.

Results. Columns 5–9 in Table 1 show the number of files solved by each config-
uration, column 10 summarizes the files solved by at least one. Overall, we found
suited triggering terms for 65,6%, including all F* and Gobra benchmarks. An
F* unsoundness exposed by all configurations in ≈60s is given in [11] (Fig. 9). It
required two developers to be manually diagnosed based on a bug report [2]. A
simplified Gobra axiomatization for option types, solved by C4 in ≈13s, is shown
in [11] (Fig. 11). Gobra’s team spent one week to identify some of the issues. As
our triggering terms for F* and Gobra were similar to the manually-written ones,
they could have reduced the human effort in localizing and fixing the errors.

Our algorithm synthesized missing triggering terms for 7 Viper files, including
the array maximum example [1], for which E-matching could not prove that the
maximal element in a strictly increasing array of size 3 is its last element. Our
triggering term loc(a,2) (loc maps arrays and integers to heap locations) can be
added by a user of the verifier to their postcondition. A developer can fix the root
cause of the incompleteness by including a generalization of the triggering term
to arbitrary array sizes: len(a)!=0 ==> x==loc(a,len(a)-1).val. Both result in
E-matching refuting the proof obligation in under 0.1s. We also exposed another
case where Boogie (used by Viper) is sound only modulo patterns (as in Fig. 3).

4.2 Effectiveness on SMT-COMP Benchmarks

Next, we considered 61 SMT-COMP [33] benchmarks from Spec# [8], VCC [32],
Havoc [12], Simplify [14], and the Bit-Width-Independent (BWI) encoding [26].

Identifying Overly Restrictive Matching Patterns 287

Table 2. Results on SMT-COMP inputs. The columns have the structure from Table 1.

#F #∀ C0 C1 C2 C3 C4 Our Z3 CVC4 Vampire

Source min-max min-max default σ=0.1 β=1 type σ=0.1 ∧ sub work MBQI enum inst CASC ∧ Z3

Spec# 33 28 - 2363 25 - 645 16 16 14 16 15 16 16 0 29

VCC/Havoc 14 129 - 1126 100 - 1027 11 9 5 11 9 11 12 0 14

Simplify 1 256 129 0 0 0 0 0 0 1 0 0

BWI 13 189 - 384 198 - 456 1 1 2 1 1 2 12 0 12

Total 61 29 (47,5%) 41 (67,2%) 0 (0%) 55 (90,1%)

σ = similarity threshold; β = batch size; type = type-based constraints; sub = sub-
terms C0: σ = 0.3; β = 64; ¬type; ¬sub

Results. The results are shown in Table 2. Our algorithm enabled E-matching to
refute 47.5% of the files, most of them from Spec# and VCC/Havoc. We manually
inspected some BWI benchmarks (for which the algorithm had worse results)
and observed that the validation step times out even with a much higher time-
out. This shows that some candidate terms trigger matching loops and explains
why C2 (which validates them individually) solved one more file. Extending our
algorithm to avoid matching loops, by construction, is left as future work.

4.3 Comparison with Unsatisfiability Proofs

As an alternative to our work, tool developers could try to manually identify trig-
gering issues from refutation proofs, but these do not consider patterns and are
harder to understand. Columns 11–13 in Table 1 and Table 2 show the number
of proofs produced by Z3 with MBQI [16], CVC4 [9] with enumerative instanti-
ation [28], and Vampire [18] using Z3 for ground theory reasoning [27] and the
CASC [34] portfolio mode with competition presets. CVC4 failed for all examples
(it cannot construct proofs for quantified logics), Vampire refuted most of them.
Our algorithm outperformed MBQI for F* and Gobra and had similar results for
Dafny, Spec# and VCC/Havoc. All our configurations solved two VCC/Havoc files
not solved by MBQI (Appx. D of [11] shows an example). Moreover, our triggering
terms are much simpler and directly highlight the root cause of the issues. Com-
pared to our generated term loc(a,2), MBQI’s proof for Viper’s array maximum
example has 2135 lines and over 700 reasoning steps, while Vampire’s proof has
348 lines and 101 inference steps. Other proofs have similar complexity.

Vampire and MBQI cannot replace our technique: as most deductive verifiers
employ E-matching, it is important to help the developers use the algorithm of
their choice and return sound results even if they rely on patterns for soundness
(as in Fig. 3). Our tool can also produce multiple triggering terms (see Appx. C
of [11]), thus it can reveal multiple triggering issues for the same input formula.

5 Related Work

To our knowledge, no other approach automatically produces the information
needed by developers to remedy the effects of overly restrictive patterns. Quanti-
fier instantiation and refutation techniques (discussed next) can produce unsat-
isfiability proofs, but these are much more complex than our triggering terms.

288 A. Bugariu et al.

Quantifier Instantiation Techniques. Model-based quantifier instantiation [16]
(MBQI) was designed for sat formulas. It checks if the models obtained for the
quantifier-free part of the input satisfy the quantifiers, whereas we check if the
synthesized triggering terms obtained for some interpretation of the uninter-
preted functions generalize to all interpretations. In some cases, MBQI can also
generate unsatisfiability proofs, but they require expert knowledge to be under-
stood; our triggering terms are much simpler. Counterexample-guided quantifier
instantiation [29] is a technique for sat formulas, which synthesizes computable
functions from logical specifications. It is applicable to functions whose specifica-
tions have explicit syntactic restrictions on the space of possible solutions, which
is usually not the case for axiomatizations. Thus the technique cannot directly
solve the complementary problem of proving soundness of the axiomatization.

E-matching-Based Approaches. Rümmer [31] proposed a calculus for first-order
logic modulo linear integer arithmetic that integrates constraint-based free vari-
able reasoning with E-matching. Our algorithm does not require reasoning steps,
so it is applicable to formulas from all the logics supported by the SMT solver.
Enumerative instantiation [28] is an approach that exhaustively enumerates
ground terms from a set of ordered, quantifier-free terms from the input. It
can be used to refute formulas with quantifiers, but not to construct proofs (see
Sect. 4.3). Our algorithm derives quantifier-free formulas and synthesizes the
triggering terms from their models, even if the input does not have a quantifier-
free part. It uses also syntactic information to construct complex triggering
terms.

Theorem Provers. First-order theorem provers (e.g., Vampire [18]) also generate
refutation proofs. More recent works combine a superposition calculus with the-
ory reasoning [27,37], integrating SAT/SMT solvers with theorem provers. We
also use unification, but to synthesize triggering terms required by E-matching.
However, our triggering terms are much simpler than Vampire’s proofs and can
be used to improve the triggering strategies for all future runs of the verifier.

6 Conclusions

We have presented the first automated technique that enables the developers of
verifiers remedy the effects of overly restrictive patterns. Since discharging proof
obligations and identifying inconsistencies in axiomatizations require an SMT
solver to prove the unsatisfiability of a formula via E-matching, we developed a
novel algorithm for synthesizing triggering terms that allow the solver to com-
plete the proof. Our approach is effective for a diverse set of verifiers, and can
significantly reduce the human effort in localizing and fixing triggering issues.

Acknowledgements. We would like to thank the reviewers for their insightful com-
ments. We are also grateful to Felix Wolf for providing us the Gobra benchmarks, and
to Evgenii Kotelnikov for his detailed explanations about Vampire.

Identifying Overly Restrictive Matching Patterns 289

References

1. Array maximum, by elimination (2021). http://viper.ethz.ch/examples/max-
array-elimination.html

2. F* issue 1848 (2021). https://github.com/FStarLang/FStar/issues/1848
3. Viper test suite (2021). https://github.com/viperproject/silver/tree/master/src/

test/resources
4. Amighi, A., Blom, S., Huisman, M.: Vercors: a layered approach to practical ver-

ification of concurrent software. In: PDP, pp. 495–503. IEEE Computer Society
(2016). https://ieeexplore.ieee.org/abstract/document/7445381

5. Astrauskas, V., Müller, P., Poli, F., Summers, A.J.: Leveraging Rust types for
modular specification and verification. In: Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA), vol. 3, pp. 147:1–147:30. ACM (2019).
https://doi.org/10.1145/3360573

6. Baader, F., Snyder, W.: Unification theory. In: Robinson, J.A., Voronkov, A. (eds.)
Handbook of Automated Reasoning, pp. 445–532. Elsevier and MIT Press (2001)

7. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
364–387. Springer, Heidelberg (2006). https://doi.org/10.1007/11804192 17

8. Barnett, M., Fähndrich, M., Leino, K.R.M., Müller, P., Schulte, W., Venter, H.:
Specification and verification: the Spec# experience. Commun. ACM 54(6), 81–91
(2011)

9. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1 14

10. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.6. Techni-
cal report, Department of Computer Science, The University of Iowa (2017). www.
SMT-LIB.org

11. Bugariu, A., Ter-Gabrielyan, A., Müller, P.: Identifying overly restrictive match-
ing patterns in SMT-based program verifiers (extended version). Technical report,
2105.04385, arXiv (2021)

12. Chatterjee, S., Lahiri, S.K., Qadeer, S., Rakamarić, Z.: A reachability predicate
for analyzing low-level software. In: Grumberg, O., Huth, M. (eds.) TACAS 2007.
LNCS, vol. 4424, pp. 19–33. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-71209-1 4

13. Darvas, Á., Leino, K.R.M.: Practical reasoning about invocations and implemen-
tations of pure methods. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS,
vol. 4422, pp. 336–351. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-71289-3 26

14. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program check-
ing. J. ACM 52(3), 365–473 (2005). https://doi.org/10.1145/1066100.1066102

15. Eilers, M., Müller, P.: Nagini: a static verifier for Python. In: Chockler, H., Weis-
senbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 596–603. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-96145-3 33

16. Ge, Y., de Moura, L.: Complete instantiation for quantified formulas in satisfi-
abiliby modulo theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 306–320. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-02658-4 25

http://viper.ethz.ch/examples/max-array-elimination.html
http://viper.ethz.ch/examples/max-array-elimination.html
https://github.com/FStarLang/FStar/issues/1848
https://github.com/viperproject/silver/tree/master/src/test/resources
https://github.com/viperproject/silver/tree/master/src/test/resources
https://ieeexplore.ieee.org/abstract/document/7445381
https://doi.org/10.1145/3360573
https://doi.org/10.1007/11804192_17
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
www.SMT-LIB.org
www.SMT-LIB.org
https://doi.org/10.1007/978-3-540-71209-1_4
https://doi.org/10.1007/978-3-540-71209-1_4
https://doi.org/10.1007/978-3-540-71289-3_26
https://doi.org/10.1007/978-3-540-71289-3_26
https://doi.org/10.1145/1066100.1066102
https://doi.org/10.1007/978-3-319-96145-3_33
https://doi.org/10.1007/978-3-642-02658-4_25
https://doi.org/10.1007/978-3-642-02658-4_25

290 A. Bugariu et al.

17. Heule, S., Kassios, I.T., Müller, P., Summers, A.J.: Verification condition genera-
tion for permission logics with abstract predicates and abstraction functions. In:
Castagna, G. (ed.) ECOOP 2013. LNCS, vol. 7920, pp. 451–476. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-39038-8 19

18. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-39799-8 1

19. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4 20

20. Leino, K.R.M., Monahan, R.: Reasoning about comprehensions with first-order
SMT solvers. In: Proceedings of the 2009 ACM Symposium on Applied Computing,
SAC 2009, pp. 615–622. Association for Computing Machinery, New York (2009).
https://doi.org/10.1145/1529282.1529411

21. Leino, K.R.M., Müller, P.: Verification of equivalent-results methods. In:
Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 307–321. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-78739-6 24

22. Leino, K.R.M., Rümmer, P.: A polymorphic intermediate verification language:
design and logical encoding. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010.
LNCS, vol. 6015, pp. 312–327. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-12002-2 26

23. Moskal, M.: Programming with triggers. In: SMT. ACM International Conference
Proceeding Series, vol. 375, pp. 20–29. ACM (2009)

24. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

25. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: a verification infrastructure for
permission-based reasoning. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016.
LNCS, vol. 9583, pp. 41–62. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49122-5 2

26. Niemetz, A., Preiner, M., Reynolds, A., Zohar, Y., Barrett, C., Tinelli, C.: Towards
bit-width-independent proofs in SMT solvers. In: Fontaine, P. (ed.) CADE 2019.
LNCS (LNAI), vol. 11716, pp. 366–384. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-29436-6 22

27. Reger, G., Bjorner, N., Suda, M., Voronkov, A.: AVATAR modulo theories. In:
Benzmüller, C., Sutcliffe, G., Rojas, R. (eds.) GCAI 2016. 2nd Global Conference
on Artificial Intelligence. EPiC Series in Computing, vol. 41, pp. 39–52. EasyChair
(2016). https://doi.org/10.29007/k6tp. https://easychair.org/publications/paper/
7

28. Reynolds, A., Barbosa, H., Fontaine, P.: Revisiting enumerative instantiation. In:
Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10806, pp. 112–131.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89963-3 7

29. Reynolds, A., Deters, M., Kuncak, V., Tinelli, C., Barrett, C.: Counterexample-
guided quantifier instantiation for synthesis in SMT. In: Kroening, D., Păsăreanu,
C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 198–216. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21668-3 12

30. Rudich, A., Darvas, Á., Müller, P.: Checking well-formedness of pure-method spec-
ifications. In: Cuellar, J., Maibaum, T., Sere, K. (eds.) FM 2008. LNCS, vol. 5014,
pp. 68–83. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68237-
0 7

https://doi.org/10.1007/978-3-642-39038-8_19
https://doi.org/10.1007/978-3-642-39799-8_1
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1145/1529282.1529411
https://doi.org/10.1007/978-3-540-78739-6_24
https://doi.org/10.1007/978-3-642-12002-2_26
https://doi.org/10.1007/978-3-642-12002-2_26
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-030-29436-6_22
https://doi.org/10.1007/978-3-030-29436-6_22
https://doi.org/10.29007/k6tp
https://easychair.org/publications/paper/7
https://easychair.org/publications/paper/7
https://doi.org/10.1007/978-3-319-89963-3_7
https://doi.org/10.1007/978-3-319-21668-3_12
https://doi.org/10.1007/978-3-540-68237-0_7
https://doi.org/10.1007/978-3-540-68237-0_7

Identifying Overly Restrictive Matching Patterns 291

31. Rümmer, P.: E-matching with free variables. In: Bjørner, N., Voronkov, A. (eds.)
LPAR 2012. LNCS, vol. 7180, pp. 359–374. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-28717-6 28

32. Schulte, W.: VCC: contract-based modular verification of concurrent C. In: 31st
International Conference on Software Engineering, ICSE 2009. IEEE Computer
Society, January 2008. https://www.microsoft.com/en-us/research/publication/
vcc-contract-based-modular-verification-of-concurrent-c/

33. SMT-COMP 2020: The 15th international satisfiability modulo theories competi-
tion (2020). https://smt-comp.github.io/2020/

34. Sutcliffe, G.: The CADE ATP system competition - CASC. AI Mag. 37(2), 99–101
(2016)

35. Swamy, N., et al.: Dependent types and multi-monadic effects in F*. In: Proceed-
ings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2016, pp. 256–270. Association for Computing
Machinery, New York (2016). https://doi.org/10.1145/2837614.2837655

36. Swamy, N., Weinberger, J., Schlesinger, C., Chen, J., Livshits, B.: Verifying higher-
order programs with the Dijkstra monad. In: Proceedings of the 34th annual
ACM SIGPLAN conference on Programming Language Design and Implementa-
tion, PLDI 2013, pp. 387–398 (2013). https://www.microsoft.com/en-us/research/
publication/verifying-higher-order-programs-with-the-dijkstra-monad/

37. Voronkov, A.: AVATAR: the architecture for first-order theorem provers. In: Biere,
A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 696–710. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-08867-9 46

38. Wolf, F.A., Arquint, L., Clochard, M., Oortwijn, W., Pereira, J.C., Müller, P.:
Gobra: modular specification and verification of Go programs. In: Silva, A., Leino,
K.R.M. (eds.) CAV 2021. LNCS, vol. 12759, pp. 367–379. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-81685-8 17

https://doi.org/10.1007/978-3-642-28717-6_28
https://doi.org/10.1007/978-3-642-28717-6_28
https://www.microsoft.com/en-us/research/publication/vcc-contract-based-modular-verification-of-concurrent-c/
https://www.microsoft.com/en-us/research/publication/vcc-contract-based-modular-verification-of-concurrent-c/
https://smt-comp.github.io/2020/
https://doi.org/10.1145/2837614.2837655
https://www.microsoft.com/en-us/research/publication/verifying-higher-order-programs-with-the-dijkstra-monad/
https://www.microsoft.com/en-us/research/publication/verifying-higher-order-programs-with-the-dijkstra-monad/
https://doi.org/10.1007/978-3-319-08867-9_46
https://doi.org/10.1007/978-3-030-81685-8_17

	Identifying Overly Restrictive Matching Patterns in SMT-Based Program Verifiers
	1 Introduction
	2 Overview
	3 Synthesizing Triggering Terms
	3.1 Input Formula
	3.2 Algorithm
	3.3 Limitations

	4 Evaluation
	4.1 Effectiveness on Verification Benchmarks with Triggering Issues
	4.2 Effectiveness on SMT-COMP Benchmarks
	4.3 Comparison with Unsatisfiability Proofs

	5 Related Work
	6 Conclusions
	References

