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Abstract

This dissertation focuses on narrowing the gap between verification and
systematic testing, in two directions: (1) by complementing verification with
systematic testing, and (2) by pushing systematic testing toward reaching
verification.

In the first direction, we explore how to effectively combine unsound
static analysis with systematic testing, so as to guide test generation toward
properties that have not been checked (soundly) by a static analyzer. Our
combination significantly reduces the test effort while checking more unver-
ified properties. In the process of testing properties that are typically not
soundly verified by static analyzers, we identify important limitations in ex-
isting test generation tools, with respect to considering sufficient oracles and
all factors that affect the outcome of these oracles. Specifically, testing tools
that use object invariants as filters on input data do not thoroughly check
whether these invariants are actually maintained by the unit under test.
Moreover, existing test generation tools ignore the potential interaction of
static state with a unit under test. We address these issues by presenting
novel techniques based on static analysis and dynamic symbolic execution.
Our techniques detected a significant number of errors that were previously
missed by existing tools. We also investigate in which ways it is beneficial to
complement sound, interactive verification with systematic testing for the
properties that have not been verified yet.

In the second direction, we push systematic testing toward verification, in
particular, toward proving memory safety of the ANI Windows image parser.
This is achieved by concentrating on the main limitations of systematic
dynamic test generation, namely, imperfect symbolic execution and path
explosion, in the context of this parser. Based on insights from attempting
to reach verification of the ANI parser using only systematic testing, we then
define IC-Cut, a new compositional search strategy for automatically and
dynamically discovering simple function interfaces, where large programs
can be effectively decomposed. IC-Cut preserves code coverage and increases
bug finding in significantly less exploration time compared to the current
search strategy of the dynamic symbolic execution tool SAGE. An additional
novelty of IC-Cut is that it can identify which decomposed program units
are exhaustively tested and, thus, dynamically verified.
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Résumé

Cette thèse s’efforce de combler le fossé qui existe aujourd’hui entre vérifica-
tion et test systématique en explorant deux axes: d’une part, en complétant
la vérification par des tests systématiques, et d’autre part, en repoussant les
limites des tests systématiques pour obtenir des garanties proches de celles
obtenues par la vérification.

Dans un premier temps, nous étudions l’interaction des analyses sta-
tiques non-sûres avec le test systématique ; nous montrons comment orienter
la génération de tests de manière à couvrir des propriétés qui n’ont pas été
vérifiées (de manière sûre) par l’analyseur statique. Notre technique combi-
nant les deux approches réduit de manière significative les efforts consacrés
au test, tout en vérifiant davantage de propriétés. Lorsqu’il s’agit de tester
les propriétés qui ne sont généralement pas vérifiées de manière correcte par
les analyseurs statiques, nous mettons en exergue d’importantes limitations
des outils de génération de tests préexistants ; en particulier, nous soulignons
l’importance du choix d’un oracle correct, ainsi que l’importance de prendre
en compte tous les facteurs susceptibles d’influencer les résultats de l’oracle.
Plus précisément, les outils de test qui se basent sur des invariants d’objets
pour filtrer leurs entrées ne vérifient généralement pas que ces invariants
sont bel et bien maintenus dans le module présentement soumis aux tests.
De plus, les outils actuels de génération de tests ne prennent pas en compte
l’interaction entre l’état global du programme et le comportement du mod-
ule testé. Nous proposons une réponse à ces problèmes, et présentons des
techniques novatrices basées sur l’analyse statique et l’exécution symbol-
ique dynamique. Nos techniques ont réussi à identifier un nombre tout à
fait significatif d’erreurs qui n’avaient jusqu’alors jamais été décelées par les
outils existants. Nous explorons également différents contextes où il peut
s’avérer utile de compléter une phase de vérification interactive sûre par du
test systématique visant les propriétés qui n’ont pas encore été vérifiées.

Dans un second temps, nous rapprochons le test systématique de la véri-
fication, plus particulièrement, en essayant de prouver l’absence d’erreurs
mémoires dans l’analyseur syntaxique d’images Windows ANI. Ce résultat
est obtenu en se focalisant sur les limitations fondamentales de la généra-
tion systématique de tests dynamiques, à savoir, dans le cas de cet analyseur
syntaxique, une exécution symbolique imparfaite et une explosion combina-
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toire. Ce que nous avons appris en vérifiant l’analyseur syntaxique ANI, et
ce uniquement à l’aide de test systématique, a été mis à profit dans le projet
IC-Cut: IC-Cut est une nouvelle procédure de recherche pour le test systé-
matique, qui opère de manière compositionnelle, et permet de découvrir les
interfaces simples des fonctions existantes. Il est ainsi possible de décom-
poser de larges programmes. Comparé à la stratégie de recherche de l’outil
SAGE (exécution symbolique dynamique), IC-Cut garde la même surface de
code couvert, tout en consacrant beaucoup moins de temps à l’exploration.
Un apport supplémentaire d’IC-Cut est qu’il permet d’identifier lesquels
des modules ont été testés de manière exhaustive, c’est-à-dire, vérifiés de
manière dynamique.
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Chapter 1

Introduction

On May 1, 2015, the Federal Aviation Administration published a new air-
worthiness directive [60] for all The Boeing Company Model 787 airplanes,
which requires a repetitive maintenance task for electrical power deacti-
vation. The directive was prompted by a software error, detected during
laboratory testing, that causes the electricity generators of a Boeing 787 to
shut down every 248 days. This issue, which can arise even in flight, is the
consequence of an arithmetic overflow that occurs when incrementing an
integer counter over 248 days of continuous power. Although it is expected
that such issues should occur, especially since it is standard procedure to
reboot flight-control software systems very frequently, it is surprising that
this error was discovered so late in the development process.

Software systems are ubiquitous in modern, everyday life. Their ro-
bustness and reliability is, therefore, vital in our society and constitutes a
primary goal of the computer-science community. Formal verification and
automated, systematic testing are two fundamental research areas of com-
puter science, aiming to ensure software correctness and identify issues like
the aforementioned overflow as early as possible.

Verification has been studied for approximately five decades and is in-
creasingly applied in industrial software development to detect errors. Verifi-
cation techniques allow developers to optionally define a set of desired prop-
erties that a program is meant to satisfy, and then prove that the program
is actually correct, while complying with these properties. So far, verifica-
tion tools have been so effective in detecting errors in real-world programs
that they are increasingly and routinely used in many software development
organizations. In fact, there is a wide variety of such tools, targeting main-
stream programming languages and ranging from relatively simple heuristic
tools, over abstract interpreters and software model checkers, to verifiers
based on automatic theorem proving.

Over the last ten years, there has been revived interest in systematic
testing, and in particular, in testing techniques that rely on symbolic exe-
cution [87], introduced more than three decades ago [24, 23, 68, 22]. Recent
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2 Chapter 1. Introduction

significant advances in constraint satisfiability and the scalability of simul-
taneous concrete and symbolic executions have brought systematic dynamic
test generation to the spotlight, especially due to its ability to achieve high
code coverage and detect errors deep in large and complex programs. As a
result, dynamic test generation is having a major impact on many research
areas of computer science, for instance, on software engineering, security,
computer systems, debugging and repair, networks, education, and others.

In light of the above background and observations, this dissertation fo-
cuses on narrowing the existing gap between verification and systematic
testing, in two directions. In the first direction, we complement verifica-
tion with systematic testing, to maximize software quality while reducing
the test effort. In particular, we precisely define the correctness guarantees
that verifiers provide, such that they can be effectively compensated for by
dynamic test generation. At the same time, we enhance systematic test-
ing techniques with better oracles, and enable these techniques to consider
factors that affect the outcome of such oracles but were previously ignored.
This research direction enables the detection of more software errors, earlier
in the development process, and with fewer resources. In the second direc-
tion, we explore how far systematic testing can be pushed toward reaching
verification of real applications. Specifically, we assess to what extent the
idea of reaching verification with systematic testing is realistic, in the scope
of a particular application domain. This research direction sheds light to
the potential of dynamic test generation in ensuring software correctness.

Outline. This chapter is organized as follows. In Sect. 1.1, we give
an overview of the basic principles of systematic dynamic test generation.
Sects. 1.2 and 1.3 introduce and motivate the two research directions of this
dissertation, namely, complementing verification with systematic testing,
and pushing systematic testing toward verification.

1.1 Systematic dynamic test generation

We consider a sequential deterministic program P, which is composed of
a set of functions (or methods) and takes as input an input vector, that
is, multiple input values. The determinism of the program guarantees that
running P with the same input vector leads to the same program execution.

We can systematically explore the state space of program P using sys-
tematic dynamic test generation [70, 20], also called concolic testing [128].
Systematic dynamic test generation performs dynamic symbolic execution,
which consists of repeatedly running a program both concretely and symbol-
ically. The goal is to collect symbolic constraints on inputs, from predicates
in branch statements along the execution, and then to infer variants of the
previous inputs, using a constraint solver, in order to steer the next execution
of the program toward an alternative program path. In this dissertation, we



1.1. Systematic dynamic test generation 3

Algorithm 1.1: Systematic dynamic test generation.
1 function Explore(seq<Constraint> prefix)
2 inputs ← Solve(prefix)
3 if solution is available then
4 path ← ExecuteConcrete(inputs)
5 pathConstraint ← ExecuteSymbolic(path)
6 extension ← pathConstraint[|prefix|...]
7 foreach non-empty prefix p of extension in
8 if p = p′◦ [Branch(c)] for some p′, c then
9 Explore(prefix ◦ p′◦ [Branch(¬c)])

use the terms “dynamic test generation” and “dynamic symbolic execution”
interchangeably.

Symbolic execution means executing a program with symbolic rather
than concrete values. A symbolic variable is, therefore, associated with each
value in the input vector, and every constraint is on such symbolic variables.
Assignment statements are represented as functions of their (symbolic) argu-
ments, while conditional statements are expressed as constraints on symbolic
values. Side-by-side concrete and symbolic executions are performed using a
concrete store M and a symbolic store S , which are mappings from memory
addresses (where program variables are stored) to concrete and symbolic
values, respectively. For a program path w, a path constraint (or path condi-
tion) φw is a logic formula that characterizes the input values for which the
program executes along w. Each symbolic variable appearing in φw is, thus,
a program input. Each constraint is expressed in some theory1 T decided
by a constraint solver, i.e., an automated theorem prover that can return
a satisfying assignment for all variables appearing in constraints it proves
satisfiable. This assignment drives execution along the desired path w.

Alg. 1.1 [115] is a general algorithm for systematic dynamic test genera-
tion. Function Explore explores all program paths whose path constraints
start with a given sequence of constraints, which we call prefix. Conse-
quently, testing of a program starts by a call to Explore([]). On line 2,
we obtain concrete values for the program inputs by solving the constraints
in the prefix. For an empty prefix, the inputs are generated randomly. On
lines 4 and 5, we run the program with these inputs both concretely and
symbolically to generate the path constraint for this execution. On line 6,
we obtain the extension of the generated path constraint, that is, the path
constraint without the given prefix. For each constraint in the extension
that indicates a branching condition Branch(c), as opposed to an assumed
condition (explained below), we call function Explore recursively to exer-

1A theory is a set of logic formulas.
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cise the alternative program path for this branch (lines 7–9). The order in
which we negate the branching conditions of the extension is imposed by
the exploration strategy, for instance, by a depth- or breadth-first strategy.

When assumed conditions, of the form Assume(c), appear in a path con-
straint, they denote invariants of the corresponding execution, for instance,
due to a program precondition. If an execution reaches a program point that
normally contributes such an assumed condition to the path constraint but
¬c holds at that point, the execution is aborted and Assume(c) is added to
the path constraint for subsequent explorations. This condition c is never
negated.

Note that, on line 2 of Alg. 1.1, the constraint solver might return “un-
known”, which is a potential outcome for solvers. In this case, we simplify
the prefix by replacing a symbolic variable with its concrete value from the
parent run of function Explore, and call the solver again. This simplifica-
tion can be encoded with an assumed condition stating that the symbolic
variable is equal to the corresponding concrete value, but might result in
missing certain program paths.

Whitebox fuzzing is an application of systematic dynamic test generation
for detecting security vulnerabilities. In particular, whitebox file fuzzing
explores programs that take as input a file, all bytes of which constitute the
input vector of the program. SAGE [73] is the first whitebox file fuzzing tool
for security testing, which implements systematic dynamic test generation
and performs dynamic symbolic execution at the x86 binary level. It is
optimized to scale to very large execution traces (billions of x86 instructions)
and programs (like Excel) [16]. Note that, throughout this dissertation,
we always use the term “dynamic test generation” or “dynamic symbolic
execution” to denote the exploration of Alg. 1.1 and its applications.

All program paths in program P can be enumerated by a search al-
gorithm, like Alg. 1.1, that explores all possible branches at conditional
statements. The paths w for which φw is satisfiable are feasible, and are the
only ones that can be executed by the actual program provided the solu-
tions to φw characterize exactly the inputs that drive the program through
w. Assuming that the constraint solver used to check the satisfiability of
all formulas φw is sound and complete, this use of symbolic execution for
programs with finitely many paths amounts to program verification. Note
that, in this dissertation, we use the terms “soundness” and “completeness”
to refer to the absence of false negatives and false positives, respectively.

Obviously, testing and symbolically executing all feasible program paths
is not possible for large programs. Indeed, the number of feasible paths
can be exponential in the program size, or even infinite in the presence
of loops with an unbounded number of iterations. In practice, this path
explosion is alleviated using heuristics to maximize code coverage as quickly
as possible and find bugs faster in a partial search. For instance, SAGE uses
a generational-search strategy [73], where all constraints in a path constraint
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Figure 1.1: Sound verification over-approximates the set of all
possible program executions, whereas systematic testing typically
under-approximates this set.

are negated one by one (by the Z3 theorem prover [47]) to maximize the
number of new tests generated per symbolic execution. This strategy is
combined with simple heuristics that guide the exploration toward least
covered parts of the search space and prune the search space using flip
count limits and constraint subsumption. Other related industrial-strength
tools like Pex [135] use similar techniques.

1.2 Combining verification and systematic testing

It is established that sound verification over-approximates the set of possible
program executions, as shown in Fig. 1.1, in order to prove the absence of
errors in a program. On the other hand, systematic testing typically under-
approximates the set of possible program executions with the purpose of
proving the existence of errors in the program [75].

In practice, modern software projects use a variety of techniques to de-
tect program errors, such as testing, code reviews, and static program anal-
ysis [82], none of which check all possible executions of a program. They
often leave entire paths unverified (for instance, when a test suite does not
achieve full path coverage), fail to verify certain properties (such as complex
assertions), or verify some paths under assumptions (such as the absence
of arithmetic overflow) that might not hold on all executions of the path.
Making such assumptions is necessary in code reviews to reduce the com-
plexity of the task; it is also customary in static program analysis to improve
the precision, performance, and modularity of the analysis [32], and because
some program features elude static checking [106]. That is, most static
analyses sacrifice soundness in favor of other important qualities.

Although static analyzers effectively detect software errors, they can-
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Figure 1.2: In existing work, systematic testing targets only those
program executions for which a static verification error has been
emitted (shaded area), thus ignoring the executions that unsound
verification has missed.

not replace or significantly reduce the test effort. Many practical analyzers
for mainstream programming languages make a number of compromises to
increase automation, reduce the annotation overhead for the programmer,
reduce the number of false positives, and speed up the analysis. These com-
promises include not checking certain properties (e.g., termination), making
implicit assumptions (e.g., arithmetic operations never overflow), and un-
soundness (e.g., only considering a fixed number of loop iterations).

Despite these limitations, static analyzers find real errors in real code.
However, as a result of these limitations, it is not clear what guarantees a
static analysis actually provides about program correctness. It is also not
clear how to use systematic testing to check exactly those properties that are
not soundly verified by a static analysis. Consequently, software engineers
need to test their programs as if no static analysis were applied, which is
inefficient, for one, because it requires large test suites.

Until now, various approaches have combined verification and testing [43,
44, 65], but mainly to determine whether a static verification error is spurious
(i.e., whether a warning emitted by a verification tool is a false positive).
However, these approaches do not take into account that unsound static
analyses might generate false negatives and do not address the limitations
of verifiers described above. In other words, testing aims to target only those
program executions for which a static verification error has been emitted,
thus ignoring executions that have not been checked by a static analyzer
due to its unsoundness, as shown in Fig. 1.2.

To address this problem, we have developed a technique for combining
verification and systematic testing, which guides the latter not only toward
those program executions for which a verification error has been emitted,
but also toward those executions that unsound verification has missed. The
program executions that systematic testing aims to cover with our technique
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Figure 1.3: In our work, systematic testing targets those program
executions for which a verification error has been emitted as well
as those that unsound verification has missed (shaded areas).

are depicted by the shaded areas in Fig. 1.3.
In particular, we have proposed a tool architecture that (1) combines

multiple, complementary static analyzers that check different properties and
make different assumptions, and (2) complements static analysis with sys-
tematic dynamic test generation to cover those properties that have not
been checked statically [30]. A key originality of this architecture is that
it makes explicit which properties have been checked statically and under
which assumptions. Therefore, the correctness guarantees provided by static
analyzers are documented precisely, and can guide test generation toward
those properties that are not verified yet, leading to smaller and more effec-
tive test suites.

The three contributions made by our tool architecture are:

1. It makes deliberate compromises of static analyzers explicit, by mark-
ing every program assertion as either fully verified, verified under cer-
tain assumptions, or not verified at all.

2. It automatically generates test cases from the results of static analyz-
ers, providing the user with a choice on how much effort to devote to
static analysis and how much to testing. For example, a user might
run an automatic verifier without devoting any effort to making the
verification succeed (for instance, without providing auxiliary specifi-
cations, such as loop invariants). The verifier may prove some prop-
erties correct, and our architecture enables the effective testing of all
others. Alternatively, a user might try to verify properties about criti-
cal components of a program and leave any remaining properties (e.g.,
about library components) for testing. Consequently, the degree of
static analysis is configurable and may range from zero to complete.

3. It directs the static analysis and test case generation to the properties
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Figure 1.4: Tool architecture for complementing static verification
with systematic testing. Tools are depicted by boxes and programs
by document symbols.

that have not been (soundly) checked. This leads to more targeted
static analysis and testing, in particular, smaller and more effective
test suites.

Our tool architecture, which is presented in Fig. 1.4, takes a program
containing code, specifications, and all properties that need to be checked for
the program, such as division-by-zero errors and null dereferences. For each
check in the given program, our architecture records whether it has been
soundly verified and under which assumptions. Fig. 1.4 shows that this tool
architecture consists of two stages, where stage 1 is static verification and
stage 2 is systematic testing.

The static analysis (or verification) stage allows the user to run an ar-
bitrary number (possibly zero) of static analyzers. Each analyzer reads the
program, which might also contain results of prior static analysis attempts,
and tries to verify any properties that have not already been proven by up-
stream tools. As previously described, each assertion is marked to be either
fully (that is, soundly) verified, verified under certain assumptions, or not
verified (that is, not attempted or failed to verify). An analyzer then at-
tempts to prove the assertions that have not been fully verified by upstream
tools. Each analyzer records its results in the program, which serves as input
to the next downstream tool.

When the static analysis stage is completed, the output program is ei-
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ther entirely (and soundly) verified or there still exist unproven checks. The
intermediate versions of the program precisely track which properties have
been fully verified and which remain to be validated. This allows develop-
ers to stop the static verification cycle at any time, which is important in
practice, where the effort that a developer can devote to static analysis is
limited. Any remaining assertions may then be covered by the subsequent
testing stage.

In this second stage, we apply dynamic symbolic execution to automat-
ically generate test cases from the program code, specifications, and the
results of static analysis. In particular, the properties that remain to be
checked as well as the assumptions made by static analyzers occur, in the
form of runtime checks, in an instrumented version of the program. The re-
sulting instrumented program can then be fed to one or more test generation
tools. Our instrumentation causes the symbolic execution of these tools to
generate the constraints and test data that exercise exactly the properties
that have not been statically verified (in a sound way), thus reducing the
size of the generated test suites. However, not all specifications can be ef-
ficiently checked at runtime (for example, object invariants), and programs
may interact with their environment in various ways (for example, through
static state). Therefore, in this stage of the architecture, we also enforce
strategies for significantly improving the results of systematic testing, in
terms of effectively exercising more properties and detecting more errors.

By developing this architecture, we have investigated the following sci-
entific topics.

How to design an annotation language that supports verification
and systematic testing

Several annotation languages have been developed since design by con-
tract [109] was first proposed. To name a few, Eiffel [108], the Java Modeling
Language (JML) [93], Spec# [12], and Code Contracts [58] for .NET have
been designed to enable both static analysis and runtime checking of their
annotations. However, these languages cannot support the tool integra-
tion of Fig. 1.4. For instance, Eiffel and Code Contracts are not expressive
enough for verification purposes, whereas JML and Spec# are tied to a par-
ticular verification methodology. Moreover, annotation languages based on
separation logic [85, 126] have restricted support for runtime checking [119].

For our purposes, we have designed an annotation language for making
deliberate compromises of static analyzers explicit [30] (see Ch. 2). The
main virtues of our annotations are that they are (1) simple and easy to
support by a wide range of static and dynamic tools [33], (2) expressive,
as we have demonstrated by encoding the typical compromises made by
deductive verifiers [30] and the .NET abstract interpreter Clousot [59, 32],
and (3) well suited for test case generation [30, 33].
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What the limitations of mainstream verifiers are and how to make
these limitations explicit

Many mainstream static analyzers make compromises in order to increase
automation, improve performance, or reduce both the number of false posi-
tives and the annotation overhead. For example, HAVOC [5] uses write effect
specifications without checking them, Spec# [12] ignores arithmetic overflow
and does not consider exceptional control flow, ESC/Java [62] unrolls loops
a fixed number of times, the .NET abstract interpreter Clousot [59] uses an
unsound heap abstraction, KeY [13] does not have sound support for multi-
object invariants, Krakatoa [61] does not handle class invariants and class
initialization soundly, and Frama-C [39] uses plug-ins for various analyses
with possibly conflicting assumptions, to mention a few.

As long as the compromises of such tools are made explicit, their users
should immediately benefit from our tool architecture, which allows these
tools to collaborate and be effectively complemented by automatic test case
generation.

We have used our annotations to encode typical compromises made by
deductive verifiers [30]. We have also encoded most soundness compromises
in Clousot, a widely-used, commercial static analyzer. We measured the im-
pact of the unsound assumptions in Clousot on several open-source projects,
which constituted the first systematic effort to document and evaluate the
sources of unsoundness in an analyzer [32].

How to combine verification and systematic testing to maximize
code quality and minimize the test effort

As mentioned above, various existing approaches combine unsound veri-
fication and testing [43, 44, 65], primarily to determine whether a static
verification error is spurious. Confirming whether a failing verification at-
tempt refers to a real error is also possible in our tool architecture, as shown
in Fig. 1.3. The runtime-check instrumentation phase of the architecture
introduces assertions for each property that has not been statically veri-
fied (which includes the case of a failing verification attempt). The testing
stage then uses these assertions to direct test case generation toward the
unproven properties. Eventually, the testing tools might generate either a
series of successful test cases that will boost the users’ confidence about the
correctness of their programs or concrete counterexamples that reproduce
an error.

To explore how to most effectively combine unsound static analysis and
systematic testing with our annotations, we built our tool chain for .NET
using the static analyzer Clousot and the dynamic symbolic execution tool
Pex. In this setting, we investigated how to best exploit these annotations
for guiding test generation toward properties that have not been previously
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checked soundly by a static analysis.
In the next chapter, we present a technique for reducing redundancies

with static analysis when complementing partial verification results (ex-
pressed using our annotations) by automatic test case generation [33]. Our
main contribution is a code instrumentation that causes dynamic symbolic
execution to abort tests that lead to verified executions, to prune parts of the
search space, and to prioritize tests that lead to unverified executions. This
instrumentation is based on an efficient static inference, which propagates
information that characterizes unverified executions higher up in the control
flow, where it may prune the search space more effectively. Compared to
directly running Pex on the annotated programs without our instrumenta-
tion, our technique produces smaller test suites (by up to 19.2%), covers
more unverified executions (by up to 7.1%), and reduces testing time (by up
to 52.4%).

We also find it beneficial to complement sound, interactive verification
with systematic testing for the properties that have not been verified yet. In
Ch. 5, we present Delfy, a dynamic test generation tool for complementing
Dafny, a sound and interactive verifier. In that chapter, we explore how to
test interesting language and specification constructs of the Dafny program-
ming language, and discuss how testing can save the effort of attempting
to verify an incorrect program, debugging spurious verification errors, and
writing redundant specifications.

How to generate tests for program properties that are difficult to
verify and lie beyond the capabilities of systematic testing

In the second stage of our tool architecture, we attempt to test those proper-
ties that have not been soundly verified by upstream static analyzers. Since
our ultimate goal is to automatically provide evidence on whether a program
is correct, this stage of the architecture must be able to efficiently generate
test oracles (in the form of runtime checks) for any unverified, rich proper-
ties, and test inputs for thoroughly evaluating these oracles. We investigate
how to achieve an attractive trade-off between performance and coverage of
test oracles, by using simple static analyses to reduce both the number of
oracles that need to be checked as well as the number of test inputs that
affect these oracles.

In Ch. 3, we describe and address a limitation of existing testing tools in
generating strong enough oracles for a certain rich specification. In partic-
ular, automatic test case generation techniques rely on a description of the
input data that the unit under test is intended to handle. For heap data
structures, such a description is typically expressed as some form of object
invariant [109, 101]. If a program may create structures that violate the
invariant, the test data generated using the invariant systematically ignores
possible inputs and, thus, potentially misses bugs. We address this limita-
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tion with a technique that detects violations of object invariants [31]. We
describe three scenarios in which traditional invariant checking (as imple-
mented in existing test generation tools) may miss such violations. Based
on a set of predefined templates that capture these scenarios, we synthesize
parameterized unit tests [136] that are likely to violate invariants, and use
dynamic symbolic execution to generate inputs to the synthesized tests. We
have implemented our technique as an extension to the dynamic symbolic
execution tool Pex [135] and applied it on open-source applications, both for
invariants manually written by programmers and invariants automatically
inferred by Daikon [57]. In both cases, we detected a significant number of
invariant violations.

In Ch. 4, we focus on a second limitation of existing testing tools in
generating suitable inputs to a unit under test. Although static state is
common in object-oriented programs, automatic test case generators do not
take into account the potential interference of static state with a unit under
test and may, thus, miss subtle errors. In particular, existing test case
generators do not treat static fields as input to the unit under test, and do
not control the execution of static initializers. We address these issues by
proposing a novel technique in automatic test case generation [27], based
on static analysis and dynamic symbolic execution. We have applied this
technique on a suite of open-source applications and found errors that go
undetected by existing test case generators. Our experiments show that this
problem is relevant in real code, indicate which kinds of errors existing tools
miss, and demonstrate the effectiveness of our technique.

1.3 Pushing systematic testing toward verification

Systematic dynamic test generation has been implemented in many popu-
lar tools over the last decade, such as EXE [21], jCUTE [127], Pex [135],
KLEE [19], BitBlaze [130], and Apollo [3], to name a few. Although effec-
tive in detecting bugs, these testing tools have never been pushed toward
program verification of a large and complex application, i.e., toward prov-
ing that the application is free of certain classes of errors. In this second
part of the dissertation, we assess to what extent reaching verification with
systematic testing is feasible in practice, in the scope of a particular appli-
cation domain, namely, that of binary image parsers. Specifically, in the
scope of this application domain, we assess whether Fig. 1.5 is realistic, that
is, whether it is realistic to push systematic testing to cover all possible
program executions.

In Ch. 6, we report how we extended systematic dynamic test genera-
tion toward program verification of the ANI Windows image parser, written
in low-level C [29]. To achieve this, we applied only three core techniques,
namely (1) symbolic execution at the x86 binary level, (2) exhaustive pro-
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Figure 1.5: Assessing whether it is realistic to push systematic
testing to cover all possible program executions.

gram path enumeration and testing, and (3) user-guided program decompo-
sition and summarization. We used SAGE and a very recent tool, named
MicroX [67], for executing code fragments in isolation with a custom virtual
machine designed for testing purposes. As a result of this work, we are able
to prove, for the first time, that a complex Windows image parser is mem-
ory safe, i.e., free of any buffer-overflow security vulnerabilities, modulo the
soundness of our tools and several additional assumptions, regarding bound-
ing input-dependent loops, fixing a few buffer-overflow bugs, and excluding
some code parts that are not memory safe by design. In the process, we also
discovered and fixed several limitations in our tools.

In Ch. 6, we limit path explosion in the parser with user-guided pro-
gram decomposition and summarization. In particular, we decompose the
program at only a few function interfaces, which are very simple so that the
logic encoding of the summaries remains tractable. Based on these insights,
in Ch. 7, we define IC-Cut, short for “Interface-Complexity-based Cut”, a
compositional search strategy for systematically testing large programs [28].
IC-Cut dynamically detects function interfaces that are simple enough to
be cost-effective for summarization. IC-Cut then hierarchically decomposes
the program into units defined by such functions and their sub-functions
in the call graph. These units are tested independently, their test results
are recorded as low-complexity function summaries, and the summaries are
reused when testing higher-level functions in the call graph, thus limiting
overall path explosion. When the decomposed units are tested exhaustively,
they constitute verified components of the program. IC-Cut is run dynam-
ically and on-the-fly during the search, typically refining cuts as the search
advances. We have implemented this algorithm as a new search strategy in
SAGE, and present detailed experimental results obtained when testing the
ANI Windows image parser. Our results show that IC-Cut alleviates path
explosion while preserving or even increasing code coverage and bug finding,
compared to the current generational-search strategy used in SAGE.
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Chapter 2

Guiding dynamic symbolic execution
toward unverified program executions

In this chapter, we explore how to effectively combine verification with sys-
tematic testing to maximize code quality while minimizing the test effort.
Dynamic symbolic execution (DSE) [70, 20] systematically explores a large
number of program executions and, thus, effectively detects errors missed
by other techniques, such as code reviews and unsound static program anal-
ysis. However, simply applying DSE in addition to other techniques leads
to redundancy, when executions covered by DSE have already been verified
using other techniques. In this case, the available testing time is wasted on
executions that are known to be correct rather than on exploring previously-
unverified executions. This redundancy is especially problematic when DSE
is used to complement static analyzers, because static techniques can check
a large fraction of all possible program executions and, thus, many or even
most of the executions covered by DSE are already verified.

Method Deposit in Fig. 2.1 illustrates this problem. A reviewer or
static analyzer that checks the implementation under the assumption that
the addition on line 5 does not overflow might miss violations of the assertion
on line 10. Applying DSE to the method tries to explore six different paths
through the method (there are three paths through the conditionals, each
combined with two possible outcomes for the assertion), in addition to all the
paths through the called methods ReviewDeposit and SuggestInvestment.
Assuming that these two methods are correct, only one of all these paths
reveals an error, namely, the path that is taken when amount is between
zero and 50,000, and balance is large enough for the addition on line 5 to
overflow. All other generated test cases are redundant because they lead
to executions that have already been verified. In particular, if the called
methods have complex control flow, DSE might not detect the error because
it reaches a timeout before generating the only relevant test case.

To reduce this redundancy, existing work [43, 65, 26] integrates static
analyses and DSE; it uses the verification results of a static analysis to
prune verified executions from testing. However, existing combinations of

17
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1 void Deposit(int amount) {
2 if (amount <= 0 || amount > 50000) {
3 ReviewDeposit(amount );
4 } else {
5 balance = balance + amount;
6 if (balance > 10000) {
7 SuggestInvestment ();
8 }
9 }

10 assert balance >= old(balance );
11 }

Figure 2.1: A C# example illustrating partial verification results.
Techniques that assume that the addition on line 5 does not over-
flow might miss violations of the assertion on line 10. We use the
assertion to make the intended behavior explicit; the old-keyword
indicates that an expression is evaluated in the pre-state of the
method. balance is an integer field declared in the enclosing class.
We assume methods ReviewDeposit and SuggestInvestment to be
correct.

static analysis and test case generation do not support analyses that make
unsound assumptions. They either require the static analysis to be sound
and are, thus, of limited use for most practical analyses, or they ignore
the unsoundness of the static analysis and may, therefore, prune executions
during DSE that contain errors. In particular, they would miss the error in
the example from Fig. 2.1 because the unsound static analysis reports no
errors.

In this chapter, we present a novel technique to complement partial
verification by automatic test case generation. In contrast to existing work,
our technique supports the important case that the verification results are
obtained by an unsound (manual or automatic) static code analysis. We use
program annotations to make explicit which assertions in a program have
already been verified, and under which assumptions. These annotations can
be generated automatically by a static analysis [32] or inserted manually,
for instance, during a code review. The main technical contribution of this
chapter is a code instrumentation of the unit under test that:

− detects redundant test cases early during their execution and aborts
them,

− reduces the search space for DSE by pruning paths that have been
previously verified, and

− prioritizes test cases that cover unverified executions.
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This instrumentation is based on an efficient static inference, which propa-
gates information that characterizes unverified executions higher up in the
control flow, where it may prune the search space more effectively. It does
not require a specific DSE algorithm and, thus, can be used with a wide
range of existing tools.

Our technique works for modular and whole-program verification, and
can be used to generate unit or system tests. For concreteness, we present
it for modular verification and unit testing. In particular, we have imple-
mented our approach for Microsoft’s .NET static checker Clousot [59], a
modular static analysis, and the DSE tool Pex [135], a test case generator
for unit tests. Our experiments demonstrate that, compared to classical
DSE, our approach produces smaller test suites, explores more unverified
executions, and reduces testing time.

Outline. This chapter is organized as follows. We give an overview
of our approach in Sect. 2.1. Sect. 2.2 explains how we infer the code in-
strumentation from partial verification results. Our experimental results are
presented in Sect. 2.3. We discuss related work in Sect. 2.4.

2.1 Approach

In this section, we present an annotation language for expressing partial
verification results, and then illustrate how we use these annotations to
guide DSE toward unverified executions. The details of the approach are
explained in the next section.

2.1.1 Verification annotations

In order to encode partial verification results, we introduce two kinds of
annotations: An assumed-statement of the form assumed P as a ex-
presses that an analysis assumed property P to hold at this point in the
code without checking it. The assumption identifier a uniquely identifies
this statement. In order to record verification results, we use assertions of
the form assert P verified A, which express that property P has
been verified under condition A. The premise A is a boolean condition over
assumption identifiers, each of which is introduced in an assumed-statement.
Specifically, it is the conjunction of the identifiers for the assumptions used
to verify P, or false if P was not verified. When several verification results
are combined (for instance, from a static analysis and a code review), A is
the disjunction of the assumptions made during each individual verification.
We record verification results for all assertions in the code, including im-
plicit assertions such as a receiver being non-null or an index being within
the bounds of an array.

We assume here that a static analyzer records the assumptions it made
during the analysis, which assertions it verified, and under which assump-
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1 void Deposit(int amount) {
2 var a = true;
3 if (amount <= 0 || 50000 < amount) {
4 assume !a;
5 ReviewDeposit(amount );
6 } else {
7 assumed noOverflowAdd(balance, amount) as a;

8 a = a && noOverflowAdd(balance, amount);
9 assume !a;

10 balance = balance + amount;
11 if (10000 < balance) {
12 SuggestInvestment ();
13 }
14 }
15 assume !a || balance >= old(balance);
16 assert balance >= old(balance) verified a;
17 }

Figure 2.2: The instrumented version of method Deposit from
Fig. 2.1. The dark boxes show the annotations generated by the
static analyzer. The assumed-statement makes explicit that the
analyzer assumed that the addition on line 10 does not overflow.
The verified-annotation on the assertion on line 16 expresses that
the assertion was verified under this (unsound) assumption. The
two annotations are connected via the assumption identifier a,
which uniquely identifies the assumed-statement. The light boxes
show the instrumentation that we infer from the annotations and
that prunes redundant tests.

tions. We equipped Microsoft’s .NET static analyzer Clousot [59] with
this functionality [32]. Among other unsound assumptions, Clousot ignores
arithmetic overflow and, thus, misses the potential violation of the assertion
on line 10 of Fig. 2.11. This partial verification result is expressed by the
annotations in the dark boxes of Fig. 2.2 (the light boxes are discussed be-
low). The assumed-statement makes explicit that the addition on line 10
was assumed not to overflow (the predicate noOverflowAdd can be encoded
as equality of an integer and a long-integer addition); the verified-annotation
on the assertion on line 16 expresses that the assertion was verified under
this (unsound) assumption.

The meaning of verification annotations can be defined in terms of assign-
1Clousot is modular, that is, reasons about a method call using the method’s pre-

and postcondition; we assume here that the postconditions of ReviewDeposit and
SuggestInvestment state that balance is not decreased.
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ments and assume-statements, which makes the annotations easy to support
by a wide range of static and dynamic tools. For each assumption identi-
fier, we declare a boolean variable, which is initialized to true. For modular
analyses, assumption identifiers are local variables initialized at the begin-
ning of the enclosing method (line 2 in Fig. 2.2), whereas for whole-program
analyses, assumption identifiers are global variables, for instance, initialized
at the beginning of a main method. A statement assumed P as a is
encoded as

a = a && P;

as illustrated on line 8. That is, variable a accumulates the assumed prop-
erties for each execution of the assumed-statement. Since assumptions typ-
ically depend on the current execution state, this encoding ensures that an
assumption is evaluated in the state in which it is made rather than the
state in which it is used.

An assertion assert P verified A is encoded as

assume A⇒ P;

assert P;

as illustrated on line 15. The assume-statement expresses that, if condition
A holds, then the asserted property P holds as well, which reflects that P
was verified under the premise A. Consequently, an assertion is unverified
if A is false, the assertion is fully verified if A is true, and otherwise, the
assertion is partially verified.

2.1.2 Guiding dynamic symbolic execution

To reduce redundancies with prior analyses of the unit under test, DSE
should generate tests that check each assertion assert P verified A
for the case that the premise A does not hold, because P has been veri-
fied to hold otherwise. DSE can be guided by adding constraints to path
conditions, which will then be satisfied by the generated test inputs. The
assume-statement in the encoding of an assertion contributes such a con-
straint, reflecting that only inputs that violate the premise A may reveal a
violation of the asserted property P. However, these assume-statements do
not effectively guide DSE, as we explain next.

Assume-statements affect DSE in two ways. First, when the execution
of a test case encounters an assume-statement whose condition is false, the
execution is aborted. Second, when an execution encounters an assume-
statement, its condition is added to the symbolic path condition, ensuring
that subsequent test cases that share the prefix of the execution path up to
the assume-statement, will satisfy the condition. (In other words, assume-
statements contribute to the path constraint the assumed conditions, of the
form Assume(c), that we discussed in Sect. 1.1.) Therefore, the effect of an
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assume-statement is larger the earlier it occurs in the control flow, because
early assumptions may abort test cases earlier and share the prefix with
more executions.

However, the assume-statements we introduce for assertions do not ef-
fectively guide DSE toward unverified executions. Our example (Fig. 2.2)
illustrates this problem. First, the conditions of these assume-statements
always hold because they soundly express prior partial verification results.
That is, they cannot be used to abort test cases—their condition is al-
ways true. Nonetheless, since these assume-statements express under which
assumptions a subsequent assertion has been verified, they encode which
executions are unverified in the context of the entire unit under test. For
example, in Fig. 2.2, the assume-statement on line 15 encodes that execu-
tions of method Deposit for which !a holds are unverified. Even if we used
this information to abort all test cases that reach line 15 and cover verified
executions, we would save almost no execution time.

Second, even if we added this information to the path constraint when
line 15 is executed, it would only influence the test cases that share the
prefix up to that point, therefore, not including the majority of tests that
share only a part of this prefix and target the branches of the conditional
statements and called methods. Consequently, in the majority of times when
DSE determines the next test case, it will most likely choose inputs that do
not overflow, that is, test an execution that has already been verified, since
the information about unverified executions is not yet in the path constraint.
For these reasons, running DSE on the example from Fig. 2.2 (without lines 4
and 9, which we discuss below) generates the same test cases as if there were
no prior verification results.

To address this problem, we propagate constraints that characterize un-
verified executions higher up in the control flow, where they can be used to
effectively prune redundant test cases and to prioritize non-redundant test
cases, that is, tests that cover unverified executions.

A test is redundant if the premise of each assertion in its execution holds;
in this case, all assertions have been verified. In order to detect redundant
tests early, we compute, for each program point, a sufficient condition for
every execution from this program point onward to be verified. If this con-
dition holds, we can abort the execution. We achieve this behavior by in-
strumenting the unit under test with assume-statements for the negation of
the condition, that is, we assume a necessary condition for the existence of
at least one unverified execution from the assume-statement onward. When
the assumption evaluates to false during the execution of a test, it aborts
the test and introduces a constraint, which implies that at least one premise
must be violated, for all other test cases with the same prefix.

The example in Fig. 2.2 has an assertion with premise a at the very
end. Consider the program points on lines 4 and 9. At both points, a is a
sufficient condition for the rest of the execution of Deposit to be verified.
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Since we are interested in test cases that lead to unverified executions, we
instrument both program points by assuming the negation, that is, !a. With
this instrumentation, any test case that enters the outer then-branch is
aborted since a is always true at this point, which, in particular, prunes the
entire exploration of method ReviewDeposit. Similarly, any test case that
does not lead to an overflow on line 10 is aborted on line 9, which prunes
the entire exploration of method SuggestInvestment. So, out of all the
test cases generated by DSE for the un-instrumented Deposit method, only
the one that reveals the error remains; all others are either aborted early or
pruned.

Since the goal of the instrumentation described so far is to abort or prune
redundant test cases, it has to be conservative. Any execution that may be
unverified cannot be eliminated without potentially missing bugs; hence, we
call this instrumentation may-unverified instrumentation. If an execution
path contains several assertions, which is common because of the implicit
assertions for dereferencing, array access, etc., this instrumentation retains
any execution in which the premise of at least one of these assertions does
not hold.

Intuitively, test cases that violate the premise of more than one asser-
tion have a higher chance to detect an assertion violation. To prioritize such
test cases, we devise a second instrumentation, called must-unverified in-
strumentation: We compute, for each program point, a sufficient condition
for every execution from this program point onward to be definitely unver-
ified. If the condition holds, then every execution from the program point
onward contains at least one assertion, and the premises of all assertions in
the execution are false.

When the must-unverified condition is violated, it does not necessarily
mean that the subsequent execution is verified and, thus, we cannot abort
the test case. Therefore, we instrument the program not by assuming the
must-unverified condition, but instead, with a dedicated tryfirst-statement.
This statement interrupts the execution of the test case and instructs DSE
to generate new inputs that satisfy the must-unverified condition, that is,
inputs that have a higher chance to detect an assertion violation. The
interrupted test case is re-generated later, after the executions that satisfy
the must-unverified condition have been explored. This exploration strategy
prioritizes test cases that violate all premises over those that violate only
some.

Suppose that the Deposit method in Fig. 2.2 contained another asser-
tion at the very end that has not been verified, that is, whose premise
is false. In this case, the may-unverified instrumentation yields true for
all prior program points, since every execution is unverified. In this case,
this instrumentation neither aborts nor prunes any test cases. In contrast,
the must-unverified instrumentation infers !a on line 9. The corresponding
tryfirst-statement (not shown in Fig. 2.2) gives priority to executions that
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lead to an overflow on line 10. However, it does not prune the others, since
they might detect a violation of the unverified second assertion at the end
of the method.

The may-unverified and must-unverified instrumentations have comple-
mentary strengths. While the former effectively aborts or prunes redundant
tests, the latter prioritizes those tests among the non-redundant ones that
are more likely to detect an assertion violation. Therefore, our experiments
show the best results for the combination of both.

2.2 Condition inference

Our may- and must-unverified conditions reflect whether the premises of as-
sertions further down in the control flow hold. In that sense, they resemble
weakest preconditions [49]: a may-unverified condition is the negation of the
weakest condition that implies that all premises further down hold; a must-
unverified condition is the weakest condition that implies that all premises
do not hold. However, existing techniques for precisely computing weakest
preconditions have shortcomings that make them unsuitable in our context.
For instance, weakest precondition calculi [95] require loop invariants, ab-
stract interpretation [40] may require expensive fixed-point computations
in sophisticated abstract domains, predicate abstraction [77, 6] may require
numerous invocations of a theorem prover for deriving boolean programs [7]
from the original program, and symbolic execution [87] struggles with path
explosion, for instance, in the presence of input-dependent loops.

In this section, we present two efficient instrumentations that over-
approximate may-unverified and must-unverified conditions of a unit under
test. For this purpose, we syntactically compute a non-deterministic ab-
straction of the unit under test. This abstraction is sound, that is, each
execution of the concrete program is included in the set of executions of the
abstract program. Therefore, a condition that guarantees that all premises
hold (or are violated) in the abstract program provides the same guarantee
for the concrete program. The may-unverified and must-unverified condi-
tions for the abstract program can be computed efficiently using abstract
interpretation, and can then be used to instrument the concrete program.

2.2.1 Abstraction

We abstract a concrete to a boolean program [7], where all boolean variables
are assumption identifiers. In the abstract program, all expressions that
do not include assumption identifiers are replaced by non-deterministically
chosen values, which, in particular, replaces conditional control flow by non-
determinism. Moreover, the abstraction removes assertions that have been
fully verified, that is, where the premise is the literal true or includes true
as a disjunct.



2.2. Condition inference 25

We present the abstraction for a simple concrete programming language
with the following statements: assumed-statements, assertions, method calls,
conditionals, loops, and assignments. Besides conditional statements and
loops with non-deterministic guards, the abstract language provides the fol-
lowing statements:

− initialization of assumption identifiers: var a := true ,

− updates to assumption identifiers: a := a && *, where the * de-
notes a non-deterministic (boolean) value,

− assertions: assert * verified A, where A 6≡ true , and

− method calls: call Mf , where Mf is a fully-qualified method name
and the receiver and arguments have been abstracted away.

Note that we desugar assumed-statements into initializations and updates
of assumption identifiers, which allows us to treat modular and whole-
program analyses uniformly, even though they require a different encoding
of assumed-statements (Sect. 2.1.1).

To abstract a program, we recursively apply the following transforma-
tions to its statements. These transformations can be considered as an ap-
plication of predicate abstraction [77], which uses the assumption identifiers
as predicates and does not rely on a theorem prover to derive the boolean
program:

− an assumption assumed P as a is rewritten to the assumption
identifier initialization var a := true (at the appropriate program
point, as discussed above) and an update a := a && *,

− an assertion assert P verified A is rewritten to the assertion
assert * verified A, if A is not trivially true , and omitted
otherwise,

− a conditional statement if (b) S0 else S1 is transformed into
if (*) S ′0 else S ′1, where S ′0 and S ′1 are the results of recursively
rewriting the statements S0 and S1, respectively,

− a loop while (b) S is transformed into while (*) S ′, where S ′
is the result of recursively rewriting statement S ,

− a method call r .M(...) is rewritten to call Mf , where Mf is the
fully-qualified name of M , and

− assignments are omitted.

Fig. 2.3 shows the abstraction of method Deposit from Fig. 2.2. The
gray boxes (light and dark) show the inferred may-unverified conditions, as
we explain in the next subsection.



26 Chapter 2. Guiding test generation to unverified program executions

1 method Deposit () {

2 {true}
3 var a := true;
4 {true}
5 if (*) {

6 {!a}
7 call Account.ReviewDeposit;

8 {!a}
9 } else {

10 {true}
11 a := a && *;

12 {!a}
13 if (*) {

14 {!a}
15 call Account.SuggestInvestment;

16 {!a}
17 }

18 {!a}
19 }

20 {!a}
21 assert * verified a;

22 {false}
23 }

Figure 2.3: The abstraction of method Deposit from Fig. 2.2. The
gray boxes (light and dark) show the inferred may-unverified con-
ditions. The conditions that are used for the may-unverified in-
strumentation are shown in dark gray boxes.

Soundness

The abstraction described above is sound, that is, each execution of the
concrete program is included in the set of executions of the corresponding
abstract program. The abstraction preserves the control structure of each
method, but makes the control flow non-deterministic, which enlarges the
set of possible executions. All other occurrences of expressions (in assumed-
statements, assertions, and calls) are replaced by non-deterministic values
of the appropriate type, which also enlarges the set of possible executions.
Once all occurrences of variables have been replaced by non-deterministic
values, assignments do not affect program execution and can, thus, be omit-
ted.
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2.2.2 May-unverified conditions

A may-unverified condition expresses that some execution from the current
program point onward may be unverified. We compute this condition for
each program point in two steps. First, we compute the weakest condition
at the corresponding program point in the abstract program that implies
that all executions are verified. Since the set of executions of the abstract
program subsumes the set of concrete executions, this condition also implies
that all concrete executions are verified (although for the concrete execu-
tion, the computed condition is not necessarily the weakest such condition).
Second, we negate the computed condition to obtain a may-unverified con-
dition.

Inference

To compute the weakest condition that implies that all executions from a
program point onward are verified, we define a predicate transformer WP
on abstract programs. If WP(S ,R) holds in a state, then the premise of
each assertion in each execution of statement S from that state holds and, if
the execution terminates, R holds in the final state. For a modular analysis
such as Clousot, calls are encoded via their pre- and postcondition [96] and,
thus, do not occur in the abstract program. Defining an inter-procedural
WP is, of course, also possible. Thus, we define WP as:

− WP(assert * verified A,R) ≡ A ∧ R,

− WP(a := true,R) ≡ R[a := true], denoting the substitution of a by
true in R, and

− WP(a := a && *,R) ≡ R ∧R[a := false].

The semantics of sequential composition, conditionals, and loops is stan-
dard [49]. In our implementation, we use backward abstract interpretation
to compute the weakest precondition for each program point in terms of a set
of cubes (that is, conjunctions of assumption identifiers or their negations).
In the presence of loops or recursion, we use a fixed-point computation.

For every program point of the abstract program, the may-unverified
condition is the negation of the weakest precondition at that program point

May(S) ≡ ¬WP(S , true)

where S denotes the code fragment after the program point.
The gray boxes in Fig. 2.3 show the may-unverified conditions at each

program point (assuming ReviewDeposit and SuggestInvestment have
no preconditions). In the example, the may-unverified inference propa-
gates meaningful information only up until the non-deterministic update
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is reached, which corresponds to the assumed-statement. Specifically, on
line 10, we infer true because the abstraction loses the information that
would be needed to compute a stronger may-unverified condition. So, in
return for an efficient condition inference, we miss some opportunities for
aborting and pruning redundant tests.

Instrumentation

Since each execution of the concrete program corresponds to an execution of
the abstract program, we can instrument the concrete program by adding an
assume C statement at each program point, where C is the may-unverified
condition at the corresponding program point in the abstract program. As
we explained in Sect. 2.1.2, these statements abort redundant test cases,
and contribute constraints that guide DSE toward unverified executions.

To avoid redundant constraints that would slow down DSE, we omit
assume-statements when the may-unverified condition is trivially true or
not different from the condition at the previous program point, as well as
the assume false statement at the end of the unit under test. Therefore,
out of all the conditions inferred for the example in Fig. 2.3, we use only
the ones on lines 6 and 12 to instrument the program, which leads to the
assumptions on lines 4 and 9 of Fig. 2.2 and guides DSE as described in
Sect. 2.1.2.

2.2.3 Must-unverified conditions

A must-unverified condition expresses that (1) each execution from the pro-
gram point onward contains at least one assertion, and (2) on each execution,
the premise of each assertion evaluates to false.

Inference

We infer the two properties that are entailed by a must-unverified condi-
tion separately, via two predicate transformers Mustassert and Mustall . If
Mustassert(S ,R) holds in a state, then each execution of statement S from
that state encounters at least one assertion, or terminates in a state in which
R holds. If Mustall(S ,R) holds in a state, then the premise of each asser-
tion in each execution of statement S from that state does not hold and, if
S terminates, R holds. Both transformers yield the weakest condition that
has these properties. Consequently, we obtain the weakest must-unverified
condition for an abstract statement S as follows:

Must(S) ≡Mustassert(S , false) ∧Mustall(S , true)

Mustassert and Mustall are defined analogously to WP (see Sect. 2.2.2),
except for the treatment of assertions:

Mustassert(assert * verified A,R) ≡ true
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Mustall(assert * verified A,R) ≡ ¬A ∧ R
The definition for Mustassert expresses that, at a program point before
an assertion, property (1) holds, that is, the remaining execution (from
that point on) contains at least one assertion. The definition for Mustall
expresses that the premise A must evaluate to false, and that R must hold
to ensure that the premises of subsequent assertions do not hold either.

Fig. 2.4 shows the abstraction of a variant of Deposit from Fig. 2.2 that
contains an additional unverified assertion at the end of the method (see
Sect. 2.1.2). The gray boxes show the inferred must-unverified conditions,
as we explain next. Compared to the may-unverified conditions, the must-
unverified conditions are stronger, that is, information is usually propagated
further up in the control flow. Whereas the unverified assertion at the end
of this example causes the may-unverified conditions to be trivially true, the
must-unverified inference obtains conditions that can be used to prioritize
test cases.

Instrumentation

To prioritize tests that satisfy their must-unverified conditions, we instru-
ment the concrete program with tryfirst C statements, where C is
the must-unverified condition at the corresponding program point in the
abstract program. This statement causes DSE to prefer test inputs that
satisfy condition C . More specifically, when a tryfirst C statement is
executed for the first time, it adds C to the path condition to force DSE
to generate inputs that satisfy condition C . Note, however, that unlike the
constraints added by assume-statements, this constraint may be dropped by
the DSE to also explore executions where the condition is violated. If during
this first execution of the statement condition C is violated, then the test
case is interrupted and will be re-generated later, when condition C can no
longer be satisfied. So, the tryfirst-statement influences the order in which
test cases are generated, but never aborts or prunes tests. Nevertheless, the
order is important, because DSE is typically applied until certain limits (for
instance, on the overall testing time or the number of test cases) are reached.
Therefore, exploring non-redundant test cases early increases effectiveness.

Pex supports primitives for expressing tryfirst C statements easily,
as instrumentation. Alternatively, other tools may encode them by placing
additional branches into the code and customizing the search strategy to
prefer the branch where C holds.

To avoid wasting time on interrupting tests that will be re-generated
later, our implementation enforces an upper bound on the number of in-
terrupts that are allowed per unit under test. When this upper bound is
exceeded, all remaining tryfirst-statements have no effect.

As illustrated by lines 4, 6, 8, and 10 in Fig. 2.4, the must-unverified con-
dition at some program points evaluates to false for all executions. Instru-
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1 method Deposit () {

2 {false}
3 var a := true;
4 {!a}
5 if (*) {

6 {!a}
7 call Account.ReviewDeposit;

8 {!a}
9 } else {

10 {!a}
11 a := a && *;

12 {!a}
13 if (*) {

14 {!a}
15 call Account.SuggestInvestment;

16 {!a}
17 }

18 {!a}
19 }

20 {!a}
21 assert * verified a;

22 {true}
23 assert * verified false;
24 {false}
25 }

Figure 2.4: The abstraction of a variant of method Deposit from
Fig. 2.2 that contains an additional unverified assertion at the end
of the method (see Sect. 2.1.2). The gray boxes show the inferred
must-unverified conditions. The conditions that are used for the
must-unverified instrumentation are shown in dark gray boxes.

menting these points would lead to useless interruption and re-generation
of tests. To detect such cases, we apply constant propagation, and do not
instrument program points for which the must-unverified conditions are triv-
ially true or false. Moreover, we omit the instrumentation for conditions that
are not different from the condition at the previous program point. There-
fore, out of all the conditions inferred for the example in Fig. 2.4, we use only
the ones on lines 12 and 20 to instrument the program, which prioritize tests
that lead to an arithmetic overflow on line 10, as discussed in Sect. 2.1.2.
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2.2.4 Combined instrumentation

As we explained in Sect. 2.1.2, the may-unverified instrumentation aborts
and prunes redundant tests, while the must-unverified instrumentation pri-
oritizes tests that are more likely to detect an assertion violation. One can,
therefore, combine both instrumentations such that DSE (1) attempts to
first explore program executions that must be unverified, and (2) falls back
on executions that may be unverified when the former is no longer feasible.

The combined instrumentation includes the assume-statements from the
may-unverified instrumentation as well as the tryfirst-statements from the
must-unverified instrumentation. The tryfirst-statement comes first. When-
ever we can determine that the must-unverified and may-unverified condi-
tions at a particular program point are equivalent, we omit the tryfirst-
statement, because any interrupted and re-generated test case would be
aborted by the subsequent assume-statement anyway.

2.3 Experimental evaluation

In this section, we give an overview of our implementation and present our
experimental results. In particular, we show that, compared to dynamic
symbolic execution alone, our technique produces smaller test suites, cov-
ers more unverified executions, and reduces testing time. We also show
which of our instrumentations—may-unverified, must-unverified, or their
combination—is the most effective.

2.3.1 Implementation

We have implemented our technique for the .NET static analyzer Clousot [59]
and the dynamic symbolic execution tool Pex [135]. Our tool chain consists
of four subsequent stages:

1. static analysis and verification-annotation instrumentation,

2. may-unverified and must-unverified instrumentation,

3. runtime checking, and

4. dynamic symbolic execution.

The first stage runs Clousot on a given .NET program, which contains
code and optionally specifications expressed in Code Contracts [58], and in-
struments the sources of unsoundness and verification results of the analyzer,
using our verification annotations. For this purpose, we have implemented
a wrapper around Clousot, which we call Inspector-Clousot, that uses the
debug output emitted during the static analysis to instrument the program
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(at the binary level). Note that Clousot performs a modular analysis and,
thus, the verification annotations are local to the containing methods.

We have elicited a complete list of Clousot’s unsound assumptions [32]
during two years of work, by studying publications, extensively testing the
tool, and having numerous discussions with its designers. We have demon-
strated how most of these assumptions can be expressed with our verification
annotations. In fact, we have shown that our verification annotations can
describe unsound assumptions about sequential programs, expressible by
contract languages [58, 93], and typically made by abstract interpreters and
deductive verifiers [32, 30]. (An extension to concurrent programs, more
advanced properties such as temporal properties, and the unsound assump-
tions made by model checkers such as bounding the number of heap objects
are future work.)

The second stage of the tool chain adds the may-, must-unverified in-
strumentation, or their combination to the annotated program.

In the third stage, we run the existing Code Contracts binary rewriter to
transform any Code Contracts specifications into runtime checks. We then
run a second rewriter, which we call Runtime-Checking-Rewriter, that trans-
forms all the assumed-statements and assertions of the annotated program
into assignments and assumptions, as described in Sect. 2.1.1.

In the final stage, we run Pex on the instrumented code.

2.3.2 Experiments

In the rest of this section, we describe the setup for the evaluation of our
technique, and present experiments that evaluate its benefits.

Setup

For our experiments, we used 101 methods (written in C#) from nine open-
source projects and from solutions to 13 programming tasks on the Rosetta
Code repository. A complete list of the methods used in our evaluation
can be found in Appx. A. We selected only methods for which Pex can
automatically produce more than one test case (that is, Pex does not require
user-provided factories) and at least one successful test case (that is, Pex
generates inputs that pass any input validation performed by the method).

In Clousot, we enabled all checks, set the warning level to the maximum,
and disabled all inference options. In Pex, we set the maximum number of
branches, conditions, and execution tree nodes to 100,000, and the maximum
number of concrete runs to 30.

In our experiments, we allowed up to four test interrupts per method
under test when these are caused by tryfirst-statements (see Sect. 2.2.3).
We experimented with different such bounds (one, two, four, and eight) on
25 methods from the suite of 101 methods. We found that, for an upper
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bound of four for the number of allowed interrupts per method, dynamic
symbolic execution strikes a good balance between testing time and the
number of detected bugs.

We used a machine with a quad-core CPU (Intel Core i7-4770, 3.4 GHz)
and 16 GB of RAM for these experiments.

Performance of static analysis and instrumentation

On average, Clousot analyzes each method from our suite in 1.9 seconds.
The may-unverified and must-unverified instrumentations are very efficient.
On average, they need 22 milliseconds per method, when combined.

Configurations

To evaluate our technique, we use the following configurations:

− UV : unverified code.
Stages 1 and 2 of the tool chain are not run.

− PV : partially-verified code.
Stage 2 of the tool chain is not run.

− MAY : partially-verified code, instrumented with may-unverified con-
ditions.
All stages of the tool chain are run. Stage 2 adds only the may-
unverified instrumentation.

− MUST : partially-verified code, instrumented with must-unverified con-
ditions.
All stages of the tool chain are run. Stage 2 adds only the must-
unverified instrumentation.

− MAY ×MUST : partially-verified code, instrumented both with may-
unverified and must-unverified conditions.
All stages of the tool chain are run. Stage 2 adds the combined may-
unverified and must-unverified instrumentation.

Fig. 2.5 shows the tests that each configuration generated for the 101
methods, categorized as non-redundant and failing, or non-redundant and
successful, or redundant tests. A failing test terminates abnormally, whereas
a successful one terminates normally. However, tests that terminate on ex-
ceptions that are explicitly thrown by the method under test, for instance,
for parameter validation, are not considered failing. To determine the re-
dundant tests generated by configurations UV , PV , and MUST , we ran all
tests generated by these configurations against the 101 methods, after hav-
ing instrumented the methods with the may-unverified conditions. We then
counted how many of these tests were aborted. Note that the figure does not
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Figure 2.5: The tests generated by each configuration, categorized
as non-redundant and failing, or non-redundant and successful, or
redundant tests. MAY ×MUST generates 16.1% fewer tests, but
7.1% more non-redundant tests than PV , including five additional
failing tests.

include tests that are interrupted because a condition in a tryfirst-statement
is violated (since these tests are re-generated—and counted—later).

The results of dynamic symbolic execution alone, of UV , do not signifi-
cantly differ from those of PV in terms of the total number of tests and the
number of non-redundant tests generated for the 101 methods. This confirms
that the instrumentation from stage 1 alone, without the may-unverified and
must-unverified instrumentation, does not reduce the test effort significantly
for partially-verified methods, as we explained in Sect. 2.1.2. For the follow-
ing experiments, we use configuration PV as the baseline to highlight the
benefits of the may-unverified and must-unverified inference.

Smaller test suites

The may-unverified instrumentation causes DSE to abort tests leading to
verified executions. By aborting these tests, our technique prunes the veri-
fied parts of the search space that would be explored only if these tests were
not aborted. As a result, DSE generates smaller test suites.

Fig. 2.5 shows that, in total, MAY generates 19.2% fewer tests and
MAY ×MUST generates 16.1% fewer tests than PV . The differences in the
total number of tests for configurations without the may-unverified instru-
mentation are minor.

Fig. 2.6 compares the total number of generated tests (including aborted
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Figure 2.6: Change in total number of tests generated for each of
the 101 methods by configuration MAY in comparison to PV (in
percentage). Negative values indicate that MAY produces fewer
tests.

tests) by PV and MAY per method. For many methods, MAY produces
fewer tests, as shown by the negative values. However, for some methods,
MAY generates more tests than PV . This happens when pruning verified
parts of the search space guides DSE toward executions that are easier to
cover within the exploration bounds of Pex (for instance, maximum number
of branches or constraint solver timeouts).

More unverified executions

Even though configurations MAY and MAY ×MUST generate smaller test
suites in comparison to PV , they do not generate fewer non-redundant tests,
as shown in Fig. 2.5. In other words, they generate at least as many non-
redundant tests as PV , thus covering at least as many unverified executions.

The must-unverified instrumentation causes DSE to prioritize inputs
that lead to unverified executions. In comparison to the may-unverified
conditions, the must-unverified conditions are stronger, and their instrumen-
tation is usually added further up in the control flow. As a result, MUST
and MAY ×MUST can guide dynamic symbolic execution to cover unver-
ified executions earlier, and may allow it to generate more non-redundant
tests within the exploration bounds. As shown in Fig. 2.5, configuration
MUST generates 6.3% more non-redundant tests than PV and 5.6% more
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Figure 2.7: Testing time for each configuration. We only con-
sidered methods for which all configurations generated the same
number of non-redundant tests. MAY ×MUST is 52.4% faster than
PV .

than MAY (MAY ×MUST produces 7.1% resp. 6.5% more non-redundant
tests). By generating more such tests, we increase the chances of producing
more failing tests. In fact, MUST generates 4.8% more failing tests than
PV and 4.1% more than MAY (MAY ×MUST produces 3.4% resp. 2.7%
more failing tests).

MUST typically generates more non-redundant tests for methods in
which Clousot detects errors, that is, for methods with unverified asser-
tions. In such methods, the may-unverified instrumentation is added only
after the unverified assertions in the control flow (if the conditions are non-
trivial), thus failing to guide dynamic symbolic execution toward unverified
executions early on, as discussed in Sect. 2.1.2.

Shorter testing time

We now compare the testing time of the different configurations. For this
experiment, we considered only methods for which all configurations gen-
erated the same number of non-redundant tests. This is to ensure a fair
comparison; for these methods, all configurations achieved the same cover-
age of unverified executions. This experiment involved 72 out of the 101
methods, and the time it took for each configuration to test these meth-
ods is shown in Fig. 2.7. As expected, pruning verified parts of the search
space with the may-unverified instrumentation is very effective. In particu-
lar, configuration MAY is 51.7% faster and configuration MAY ×MUST is
52.4% faster than PV . Note that Fig. 2.7 does not include the time of the
static analysis for two reasons. First, Clousot is just one way of obtaining
verification results. Second, the goal of our work is to efficiently complement
existing verification results with test case generation; we assume that the
static analysis is run anyway to achieve a more thorough scrutiny of the
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code. Recall that the overhead of the instrumentation is negligible. The dif-
ferences in performance between configurations without the may-unverified
instrumentation are less pronounced.

Even though MAY is overall much faster than PV , there were methods
for which the testing time for MAY was longer in comparison to PV . This is
the case when constraint solving becomes more difficult due to the inferred
conditions. In particular, it might take longer for the constraint solver to
prove that an inferred condition at a certain program point is infeasible.

Fewer exploration bounds reached

During its exploration, dynamic symbolic execution may reach bounds that
prevent it from covering certain, possibly failing, execution paths. There
are four kinds of bounds that were reached during our experiments:

− max-branches: maximum number of branches that may be taken along
a single execution path;

− max-stack: maximum size of the stack, in number of active call frames,
at any time during a single execution path;

− max-runs: maximum number of runs that will be tried during an
exploration (each run uses different inputs, but some runs are not
added to the test suite if they do not increase coverage);

− max-solver-time: maximum number of seconds that the constraint
solver has to find inputs that will cause an execution path to be taken.

Fig. 2.8 shows the exploration bounds in Pex that were reached by each
configuration when testing all 101 methods. MAY , MUST , and MAY ×
MUST reach the max-solver-time bound more often than PV . This is be-
cause our instrumentation introduces additional conjuncts in the path con-
ditions, occasionally making constraint solving harder. Nevertheless, config-
urations MAY and MAY ×MUST overall reach significantly fewer bounds
than PV (for instance, the max-stack bound is never reached) by pruning
verified parts of the search space. This helps in alleviating an inherent limi-
tation of dynamic symbolic execution by building on results from tools that
do not suffer from the same limitation.

Winner configuration

As shown in Fig. 2.5, configuration MAY × MUST generates the second
smallest test suite, containing the largest number of non-redundant tests
and the smallest number of redundant tests. This is achieved in the shortest
amount of testing time for methods with the same coverage of unverified
executions across all configurations (Fig. 2.7), and by reaching the smallest
number of exploration bounds (Fig. 2.8).
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Figure 2.8: The exploration bounds reached by each configura-
tion, grouped into max-branches, max-stack, max-runs, and max-
solver-time. MAY and MAY × MUST overall reach fewer bounds
than PV .

Therefore, configuration MAY ×MUST effectively combines the benefits
of both the may-unverified and must-unverified instrumentation, to prune
parts of the search space that lead only to verified executions as well as to
identify and prefer test inputs that lead to unverified executions as soon as
possible.

Note that, in practice, these benefits should be independent of the explo-
ration strategy in the underlying dynamic symbolic execution. For methods
whose exploration does not reach any bounds, the order in which the tests
are generated is obviously not relevant. For the remaining methods, we
do not expect an exploration strategy to significantly affect how often our
instrumentation is hit because Clousot makes unsound assumptions for var-
ious expressions and statements and, thus, assumed-statements are spread
across the method body. We have confirmed this expectation by running
the MAY ×MUST configuration with different exploration strategies on 20
out of the 101 methods for which exploration bounds were reached. The
differences between all strategies (breadth-first, random search, and Pex’s
default search strategy) were negligible.

Soundness bugs in Clousot

During our experiments, we realized that our verification annotations can
also be used to systematically test for soundness issues in static analyz-
ers [45]. This is achieved as follows. Given a piece of code, imagine that
configuration UV generates a number of failing tests. Now, we instrument
the code with the known unsound assumptions made by a static analyzer
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and its verification results (stage 1 of the tool chain). We detect a sound-
ness issue if, when running the failing tests against the instrumented code, at
least one failing test runs through an assertion assert P verified A,
where A 6⇒ P. A soundness issue could either be caused by accidental un-
soundness (that is, bugs in the implementation of the analyzer) or by bugs in
Inspector-Clousot (for instance, missing a source of deliberate unsoundness).

In this way, we found the following three bugs in the implementation
of Clousot: (1) unsigned integral types are not always treated correctly,
(2) the size of each dimension in a multi-dimensional array is not checked to
be non-negative upon construction of the array, and (3) arithmetic overflow
is ignored in modulo operations (for instance, MinValue % -1). We reported
these three bugs to the main developer of Clousot, Francesco Logozzo, who
confirmed all of them. The latter two bugs have already been fixed in the
latest version of the tool2.

Threats to validity

We identified the following threats to the validity of our experiments:

− Sample size: For our experiments, we used 101 methods from nine C#
projects and from solutions to 13 programming tasks.

− Static analyzer : For our experiments, we used a modular (as opposed
to whole-program) static analyzer, namely, Clousot. Moreover, our
experimental results depend on the deliberate sources of unsoundness
and verification results of this particular analyzer. Note that there are
a few sources of unsoundness in Clousot that our tool chain does not
capture [32], for instance, about reflection or unmanaged code.

− Soundly-analyzed methods: 23 of the 101 methods contain no assumed-
statements. In case Clousot reports no warning, these methods are
fully verified and, thus, our may-unverified instrumentation prunes the
entire search space. Other code bases could have a smaller fraction of
fully-verified methods, leading to less effective pruning.

− Failing tests: The failing tests generated by each configuration do not
necessarily reveal bugs in the containing methods. This is inherent to
unit testing, since methods are tested in isolation rather than in the
context of the entire program. However, 50 out of the 101 methods
validate their parameters (and for ten methods no parameter valida-
tion was necessary), which suggests that programmers did intend to
prevent failures in these methods.

2https://github.com/Microsoft/CodeContracts
(revs: 803e34e72061b305c1cde37a886c682129f1ddeb
and 1a3c0fce9f8c761c3c9bb8346291969ed4285cf6)

https://github.com/Microsoft/CodeContracts
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2.4 Related work

Many static analyzers that target mainstream programming languages de-
liberately make unsound assumptions in order to increase automation, im-
prove performance, and reduce the number of false positives and the anno-
tation overhead for the programmer [106]. Examples of such analyzers are
HAVOC [5], Spec# [12], and ESC/Java [62]. Our technique can effectively
complement these analyzers by dynamic symbolic execution.

Integration of static analysis and test case generation

Various approaches combine static analysis and automatic test case genera-
tion, to determine whether an error reported by the static analysis is spuri-
ous and to reduce the search space for the test case generator. For example,
Check ’n’ Crash [43] is an automated defect detection tool that integrates
the unsound ESC/Java static checker with the JCrasher [42] testing tool.
Check ’n’ Crash was later integrated with Daikon [57] in the DSD-Crasher
tool [44]. Similarly, DyTa [65] integrates Clousot with Pex. Like our work,
all of these approaches use results from the static analysis to guide test case
generation toward the errors reported by the static analysis and to prune
parts of the search space during testing. However, in contrast to our work,
they ignore the unsoundness of the static analysis: each assertion for which
the static analysis does not report an error is considered soundly verified,
even if the analysis makes unsound assumptions. Consequently, these ap-
proaches may prune unverified executions, whereas our technique retains all
executions that are not fully verified and, therefore, may reveal errors missed
by the unsound static analysis.

The SANTE tool [26] uses a sound value analysis (in combination with
program slicing) to prune those execution paths that do not lead to unver-
ified assertions. In contrast, our work supports the common case that a
static analysis is unsound.

Several analyses combine over- and under-approximations of the set of
program executions. Counterexample-guided abstraction refinement (CE-
GAR) [34] exploits the abstract counterexample trace of a failing proof at-
tempt to suggest a concrete trace that might reveal a real error. If, however,
the abstract trace refers to a spurious error, the abstraction is refined in such
a way that subsequent verification attempts will not reproduce the infeasible
abstract trace. YOGI [75, 121] switches between static analysis and DSE
both to prove properties and find bugs, without reporting false positives.
Specifically, YOGI uses two different abstract domains, one (not-)may ab-
straction for proving a property and one must abstraction for disproving a
property. The two abstractions are used simultaneously, communicate with
each other, and refine each other for either finding a proof or a bug.

To obtain an over-approximation of the set of program executions, these
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approaches rely on a sound analysis. In contrast, our work supports the com-
mon case that a static analysis is unsound, that is, neither over- nor under-
approximates the set of program executions (in other words, the analysis
may have both false positives and false negatives). Soundly-verified exe-
cutions and executions for which the analysis reports an error are handled
similarly to work based on over-approximations: we prune soundly-verified
executions during test case generation, and use an under-approximation
(testing) to find bugs and identify spurious errors among the executions for
which the analysis reports an error. The novelty of our work is that we
also handle executions that are verified unsoundly, that is, under unsound
assumptions. Our annotations make these assumptions explicit (in other
words, they express which executions one would have to add to the set of
analyzed executions for it to become a sound over-approximation). These
executions are then targeted by an under-approximation.

A recent approach [46] starts by running a conditional model checker [14]
on a program, and then tests those parts of the state space that were not cov-
ered by the model checker (for instance, due to timeouts). More specifically,
the model checker produces an output condition, which captures the safe
states and is used to produce a residual program that can be subsequently
tested. Unlike an instrumented program in our technique, the residual pro-
gram can be structurally very different from the original program. As a
result, its construction can take a significant amount of time, as the authors
point out. Furthermore, this approach can characterize assertions only as
either fully verified or unverified on a given execution path. It is not clear
how to apply this approach in a setting with static analysis tools that are
not fully sound [106, 32] without reducing its effectiveness.

Dynamic symbolic execution

Testing and symbolically executing all feasible program paths is not possible
in practice. The number of feasible paths can be exponential in the program
size, or even infinite in the presence of input-dependent loops.

Existing testing tools based on dynamic symbolic execution alleviate
path explosion using search strategies and heuristics, which guide the search
toward interesting parts of the program while pruning the search space.
These strategies typically optimize properties such as “deeper paths” (in
depth-first search), “less-traveled paths” [105], “number of new instruc-
tions covered” (in breadth-first search), or “paths specified by the program-
mer” [129]. For instance, SAGE [73] uses a generational-search strategy
with simple heuristics, such as flip count limits and constraint subsumption.
Other industrial-strength tools, like Pex, also use similar techniques. As we
explained in Sect. 2.3.2, the benefits of our approach are independent of the
exploration strategy in the underlying dynamic symbolic execution. Our
technique resembles a search strategy in that it optimizes unverified execu-
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tions, prunes verified executions, and is guided by verification annotations,
instead of properties like the above.

Compositional symbolic execution [66, 2] has been shown to alleviate
path explosion. Dynamic state merging [89] and veritesting [4] alleviate
path explosion by merging sub-program searches, while RWset [15] prunes
searches by dynamically computing variable liveness. By guiding dynamic
symbolic execution toward unverified program executions, our technique also
alleviates path explosion. In particular, the may-unverified instrumentation
causes dynamic symbolic execution to abort tests that lead to verified exe-
cutions. When aborting these tests, our technique prunes the parts of the
search space that would be discovered only if these tests were not aborted.
Moreover, since our technique does not require a particular DSE algorithm,
it can be combined with any of the above approaches by running them on a
program that contains our instrumentation.

2.5 Summary and remarks

We have presented a technique for complementing partial verification results
by automatic test case generation. Our technique causes dynamic symbolic
execution to abort tests that lead to verified executions, consequently prun-
ing parts of the search space, and to prioritize tests that lead to unverified
executions. It is applicable to any program with verification annotations,
either generated automatically by a (possibly unsound) static analysis or
inserted manually, for instance, during a code review. Our work suggests
a novel way to combine static analysis and testing in order to maximize
software quality, and investigates to what extent unsound static analysis
reduces the test effort.



Chapter 3

Synthesizing parameterized unit tests
to detect object invariant violations

In Ch. 2, we showed how to guide automatic test case generation toward
unverified program executions. By focusing the test effort on unverified
parts of the search space, we realized that, similarly to many static analyzers,
existing techniques for systematic testing are also unsound, that is, they also
produce false negatives. This is the case not only when these techniques fail
to exercise certain program executions, but also when the correctness of the
exercised executions is evaluated against weak test oracles. In other words,
even when a testing tool achieves full code coverage and generates no failing
tests, errors might still be missed. In this chapter, we address the problem
of weak test oracles with respect to object invariants, as we explain next.

Automatic testing techniques, such as random testing or symbolic execu-
tion, rely on a description of the input data that the unit under test (UUT)
is intended to handle. Such a description acts as a filter for undesirable
input data. It is usually expressed as code in the test driver or as a method
precondition that specifies the valid arguments for the method under test.
For instance, when testing a method for sorting an array, a test data gen-
erator might populate input arrays randomly, and the filter might suppress
arrays containing null.

Filtering input data with code in test drivers or with preconditions poses
two difficulties when the inputs are heap data structures. First, the same
filters must typically be duplicated across many test cases, because many
operations on such data structures rely on the same properties of the data
structure, for instance, on a field being non-null or on a list being sorted.
Second, filters for recursive heap data structures, such as the sortedness of a
list, must be expressed with loops or recursion, which are difficult to handle
in constraint-based testing approaches such as symbolic execution [74].

To address these difficulties, some test data generators use predicates
that express which instances of a data structure are considered valid and
should, thus, be used for unit testing. In an object-oriented setting, these
predicates are often called class or object invariants [109, 101]. For example,

43
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in the case of a sorted linked list, the invariant simply states that for each
list node, the value of the next node is greater than or equal to its own.
Object invariants avoid the shortcomings of other filtering techniques: they
are stated only once for each class rather than in each test case or method
precondition, and by constraining each instance of the class, they can express
properties of recursive structures without introducing loops or recursion.

Invariants may be provided by the programmer in the form of contracts,
like in the random testing tool AutoTest [110] for Eiffel and in the dynamic
symbolic execution tool Pex [135] for .NET, or by the tester, like in the Ko-
rat [17] tool for Java, which exhaustively enumerates data structures that
satisfy a given predicate up to a bound. Invariants may also be inferred
by tools like the Daikon invariant detector [57], which is used by the sym-
bolic execution tool Symbolic Java PathFinder [125] for obtaining input
constraints on a UUT.

Using object invariants to generate test data requires the invariants to
accurately describe the data structures a program may create. When an
invariant is too weak, i.e., admits more data structures than the program
may create, the test case generator may produce undesirable inputs, which
are however easily detected when inspecting failing tests. A more severe
problem occurs when an invariant is too strong, i.e., admits only a subset
of the data structures the program might actually create. The test case
generator may then not produce desirable inputs since they are filtered out
due to the overly strong invariant. Consequently, the UUT is executed with
a restricted set of inputs, which potentially fail to exercise certain execution
paths and may miss bugs.

Too strong invariants occur, for instance, when programmers specify in-
variants they intend to maintain but fail to do so due to a bug, when they
fail to capture all intended program behaviors in the invariant, or when
invariants are inferred from program runs that do not exercise all relevant
behaviors. Therefore, it is essential that invariants are not only used to fil-
ter test inputs, but are also checked as part of test oracles, just like method
preconditions are checked at call sites. However, in contrast to method pre-
conditions or other filters that are implemented in test drivers, checking
object invariants is very difficult, as shown by work on program verifica-
tion [51, 114, 116, 9, 10]. In particular, it is generally not sufficient to check
at the end of each method that the invariant of its receiver is maintained.
This traditional approach [109], which is for instance implemented in Pex
and AutoTest, may miss invariant violations when programs use common
idioms such as direct field updates, inheritance, or aggregate structures (see
Sect. 3.1).

We address this issue with a technique for detecting previously missed
invariant violations by synthesizing parameterized unit tests (PUTs) [136]
that are likely to create broken objects, i.e., class instances that do not
satisfy their invariants. The synthesis is based on templates that capture
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all situations in which traditional invariant checking is insufficient. We use
dynamic symbolic execution [70, 20] to find inputs to the synthesized PUTs
that actually violate an invariant.

Whenever our approach detects an invariant violation, the programmer
has to inspect the situation to decide which of the following three cases ap-
plies: (1) The object invariant is stronger than intended. In this case, one
should weaken the invariant. (2) The invariant expresses the intended prop-
erties, but the program does not maintain it. This case constitutes a bug
that should be fixed. (3) The invariant expresses the intended properties
and can, in principle, be violated by clients of the class, but the entire pro-
gram does not exhibit such violations. For instance, the class might provide
a setter that violates an invariant when called with a negative argument,
but the program does not contain such a call. In such cases, one should
nevertheless adapt the implementation of the class to make the invariant
robust against violations, for future program changes during maintenance
and for other clients of the class during code reuse.

The contributions of this chapter are as follows:

− It identifies an important limitation of current test case generation
approaches in the treatment of object invariants. In particular, ex-
isting approaches that use invariants as filters on input data do not
sufficiently check them, if at all.

− It presents a technique that detects invariant violations by synthesizing
PUTs based on templates and exploring them via DSE.

− It demonstrates the effectiveness of this technique by implementing it
as an extension to Pex and using it on a suite of open-source C# ap-
plications that contain invariants provided manually by programmers.

− It investigates how to fix detected invariant violations, that is, by
evaluating whether these violations are caused by errors in the code,
errors in the invariants, or insufficient robustness of the invariants.

− It applies our technique to invariants that were automatically inferred
by Daikon. Our experiments show that the vast majority of these in-
variants can be violated by our technique and, thus, should be checked
before using them to filter test inputs.

− It shows how to use our technique to construct test inputs for auxiliary
methods that are intended to be called when the invariant does not
hold.

Outline. This chapter is organized as follows. Sect. 3.1 illustrates the
situations in which the traditional checks for object invariants are insuffi-
cient. Sect. 3.2 gives an overview of our approach. Sect. 3.3 explains how we
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select the operations to be applied in a synthesized test, and Sect. 3.4 de-
scribes the templates used for the synthesis. We discuss our implementation
in Sect. 3.5, present the experimental evaluation in Sect. 3.6, and describe
how to use our approach to test auxiliary methods in Sect. 3.7. We review
related work in Sect. 3.8.

3.1 Violating object invariants

We present three scenarios in which the traditional approach of checking at
the end of each method whether it maintains the invariant of its receiver is
insufficient. These scenarios have been identified by work on formal verifica-
tion and together with a fourth scenario—call-backs, which are not relevant
here, as explained in Sect. 3.7—have been shown to cover all cases in which
traditional invariant checking does not suffice [51]. We assume that invari-
ants are specified explicitly in the code as contracts. However, our technique
applies equally to predicates that are provided as separate input to the test
case generator, or invariants that have been inferred from program runs (see
Sect. 3.6.3).

We illustrate the scenarios using the C# example in Fig. 3.1. A Person
holds an Account and has a salary. An Account has a balance. Person’s
invariant (lines 5–6) requires that account is non-null and the sum of the
account’s balance and the person’s salary is positive. A SavingsAccount
is a special Account whose balance is non-negative (line 26). In each of the
following scenarios, we consider an object p of class Person that holds an
Account a.

Direct field updates

In most object-oriented languages, such as C++, C#, and Java, a method
may update not only fields of its receiver, but of any object as long as the
fields are accessible. For instance, method Spend2 (which is an alternative
implementation of Spend1) subtracts amount from the account’s balance
through a direct field update, instead of calling method Withdraw. Such
direct field updates are common among objects of the same class, say, nodes
of a list, or of closely connected classes, say, a collection and its iterator. If a
is a SavingsAccount, method Spend2 might violate a’s invariant by setting
balance to a negative value. A check of the receiver’s invariant at the end
of method Spend2 (here, Person object p) does not reveal this violation.

In order to detect violations through direct field updates, one would have
to check the invariants of all objects whose fields are assigned to directly.
However, these objects are not statically known (for instance, when the
direct field update occurs within a loop), which makes it difficult to impose
such checks.



3.1. Violating object invariants 47

1 public class Person {
2 Account account;
3 public int salary;
4

5 invariant account != null;
6 invariant 0 < account.balance + salary;
7

8 public void Spend1(int amount) {
9 account.Withdraw(amount );

10 }
11

12 public void Spend2(int amount) {
13 account.balance = account.balance - amount;
14 }
15 }
16

17 public class Account {
18 public int balance;
19

20 public void Withdraw(int amount) {
21 balance = balance - amount;
22 }
23 }
24

25 public class SavingsAccount : Account {
26 invariant 0 <= balance;
27 }

Figure 3.1: A C# example on invariant violations. We declare
invariants using a special invariant-keyword.

Subclassing

Subclasses may restrict the possible values of a field inherited from a super-
class, i.e., they may strengthen the invariant for this field, as shown by class
SavingsAccount. Methods declared in the superclass are typically tested
with instances of the superclass as their receiver; in such cases, only the
weaker superclass invariant is being checked. When such methods are in-
herited by the subclass and called on subclass instances, they may violate the
stronger subclass invariant. In our example, in case a is a SavingsAccount,
calling the inherited method Withdraw on a might set balance to a negative
value and violate the invariant of the subclass.

To detect such violations, one would have to re-test every inherited
method whenever a new subclass is declared. Moreover, subclassing makes
the invariant checks for direct field updates even more difficult because one
would have to consider all subclasses for the objects whose fields are up-
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dated. For instance, when introducing SavingsAccount, testing Withdraw
on a subclass instance is not sufficient; one has to also re-test method Spend2
to detect the invariant violation described in the previous scenario.

Multi-object invariants

Most data structures are implemented as aggregations of several objects. For
such aggregate structures, it is common that an object invariant constrains
and relates the states of several objects. In our example, the invariant of
class Person relates the state of a Person object to the state of its Account.
For such multi-object invariants, modifying the state of one object might
break the invariant of another. For instance, when Account a executes
method Withdraw, it might reduce the balance by an amount such that it
violates the invariant of Person p.

To detect such violations, one would have to check the invariants of all
objects that potentially reference a, e.g., the invariants of Person objects
sharing the account, of collections storing the account, etc. These objects
are not statically known and cannot even be approximated without inspect-
ing the entire program, which defeats the purpose of unit testing.

These scenarios demonstrate that the traditional way of checking object
invariants may miss violations in common situations, and that the checks
cannot be strengthened in any practical way. Therefore, simply including all
necessary invariant checks in the test oracle is not feasible; other techniques
are required to detect invariant violations.

3.2 Approach

For a given UUT, we synthesize client code in the form of PUTs to detect
invariant violations. The synthesis is based on a set of four fixed templates
that capture all three scenarios of Sect. 3.1. Each template consists of a
sequence of candidate operations, i.e., updates of public fields and calls to
public methods. These operations are applied to the object whose invariant
is under test or, in the case of aggregate structures, its sub-objects. (Since
our approach synthesizes client code, it uses public candidate operations. To
also synthesize code of possible subclasses, one would analogously include
protected fields and methods.) The candidate operations are selected from
the UUT based on whether they potentially lead to a violation of the object
invariant. Depending on the template, additional restrictions are imposed
on the candidate operations, e.g., that they are inherited from a superclass.
By instantiating the templates with candidate operations, the synthesized
PUTs become snippets of client code that potentially violate the invariant.

Alg. 3.1 shows the general strategy for the PUT synthesis. Function
Synthesize takes the class of the object to which candidate operations
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Algorithm 3.1: Synthesis of parameterized unit tests.
1 function Synthesize(class, inv, len)
2 candOps ← ComputeCandOps(class, inv)
3 puts ← GenFieldCombs(candOps, len)
4 puts ← puts + GenMultiCombs(candOps, len, inv)
5 puts ← puts + GenSubCombs(candOps, len)
6 puts ← puts + GenAllCombs(candOps, len)
7 return AddSpecs(puts)

should be applied (class), the object invariant under test (inv), and the
desired length of the PUTs to be synthesized (len). The last argument pre-
vents a combinatorial explosion by bounding the number of operations in
each synthesized PUT. Synthesize returns a list of PUTs. Each PUT
consists of a sequence of candidate operations and additional specifications,
such as invariant checks, which are inserted by AddSpecs and explained
in Sect. 3.3. The algorithm first determines the set of candidate operations
(candOps) of class that could potentially violate the object invariant inv.
It then synthesizes the PUTs for each of the three scenarios using the cor-
responding templates. We discuss the selection of candidate operations as
well as these templates in detail in the next sections.

We complement the templates, which cover specific scenarios for violat-
ing invariants, by an exhaustive enumeration of combinations (of length len)
of candidate operations. In the algorithm, these combinations are computed
by function GenAllCombs. As we will see in Sect. 3.4, this exhaustive ex-
ploration is useful for multi-object invariants, where the actual violation
may happen by calling a method on a sub-object of an aggregate structure.

For a given UUT, we apply function Synthesize for each class in the
unit and the invariant it declares or inherits. We perform this application
repeatedly for increasing values of len. All operations in the resulting PUTs
have arguments that are either parameters of the enclosing PUT or results
of preceding operations; all such combinations are tried exhaustively, which,
in particular, includes aliasing among the arguments. This makes the PUTs
sufficiently general to capture the scenarios of the previous section, i.e., to
detect invariant violations caused by these scenarios. We employ dynamic
symbolic execution (DSE) [70, 20] to supply the arguments to the PUTs.

3.3 Candidate operations

To synthesize client code that violates object invariants, we select candidate
operations from the public fields and methods of the UUT. To reduce the
number of synthesized PUTs, we restrict the operations to those that might
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public class C {
public int x;
int y;

invariant x == 42;

public void SetX() {
x = y;

}

public void SetY(int v) {
y = v;

}
}

Figure 3.2: A C# example on selecting candidate operations.

violate a given invariant. Such operations are determined by intersecting the
read effect of the invariant with the write effect of the operation. The read
effect of an invariant is the set of fields read in the invariant. If the invariant
contains calls to side-effect free methods, the fields (transitively) read by
these methods are also in its read effect. The write effect of a method is the
set of fields updated during an execution of the method, including updates
performed through method calls. The write effect of a field update is the
field itself. Note that the effects are sets of (fully-qualified) field names, not
concrete instance fields of objects. This allows us to use a simple, whole-
program static analysis that conservatively approximates read and write
effects without requiring alias information (see Sect. 3.5).

To illustrate these concepts, consider the example in Fig. 3.2. The read
effect of the invariant is {C.x}, indicating that only the value of C’s field x
determines whether the invariant holds. The write effect of an update to the
public field x and of method SetX is {C.x}, while method SetY has write
effect {C.y}. By intersecting these read and write effects, we determine that
updates of x and calls to SetX must be included in the candidate operations.

With these operations, the exhaustive enumeration of sequences of length
one (function GenAllCombs in Alg. 3.1) produces the two PUTs in Fig. 3.3.
As shown in the figure, each synthesized test expects as argument a non-null
object o whose invariant holds, applies the synthesized sequence of candi-
date operations to o, and then asserts that o’s invariant still holds. We
encode the invariant via a side-effect free, boolean method Invariant, and
use assume-statements to introduce constraints for the symbolic execution.
The assume- and assert-statements are inserted into the PUTs by function
AddSpecs of Alg. 3.1. The input object o is constructed using operations
from the UUT, for instance, a suitable constructor. As explained above, the
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void PUT_0(C o, int v) {
assume o != null && o.Invariant ();
o.x = v;
assert o.Invariant ();

}

void PUT_1(C o) {
assume o != null && o.Invariant ();
o.SetX ();
assert o.Invariant ();

}

Figure 3.3: Parameterized unit tests of length one generated when
exhaustively enumerating sequences of candidate operations for
the example in Fig. 3.2.

arguments of candidate operations (like the value v for the assignment to
o.x in the first test PUT 0 of Fig. 3.3) are either parameters of the PUT and
supplied later via DSE, or results of preceding operations.

Whether a method call violates an invariant may not only depend on
its arguments, but also on the state in which it is called. For instance, a
call to SetX violates the invariant only if y has a value different from 42.
Therefore, tests that apply more than one candidate operation must take
into account the possible interactions between operations. Consequently,
for each candidate operation opd that might directly violate a given object
invariant, we compute its read effect and include in the set of candidate
operations each operation opi whose write effect overlaps with this read
effect and might, therefore, indirectly violate the invariant. To prune the
search space, we record that opi should be executed before opd . This process
iterates until a fixed point is reached.

In our example, method SetX has read effect {C.y}. As a result, SetY is
used in the PUTs as a candidate operation that should be called before SetX.
Therefore, the exhaustive enumeration of sequences of length two includes
PUT 2 of Fig. 3.4. Note that, by assuming o’s invariant before the call to
SetX, we suppress execution paths that have already been tested in a shorter
PUT, i.e., paths that violate o’s invariant before reaching the final operation.

3.4 Synthesis templates

We now present the templates that capture the three scenarios of Sect. 3.1.
Besides other arguments, each template expects an object r to which candi-
date operations are applied, and an object o whose invariant is under test.
When the templates are used to synthesize an entire test, these two objects
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void PUT_2(C o, int v) {
assume o != null && o.Invariant ();
o.SetY(v);
assume o.Invariant ();
o.SetX ();
assert o.Invariant ();

}

Figure 3.4: Parameterized unit test of length two generated when
exhaustively enumerating sequences of candidate operations for
the example in Fig. 3.2.

coincide and we include only one of them in the PUT. The templates are
also used to synthesize portions of larger PUTs, and then r and o may refer
to different objects.

3.4.1 Direct field updates

The direct-field-update template tries to violate the invariant of an object o
by assigning to a field of r (or to an element of r when r is an array). The
template has the form shown in Fig. 3.5. It applies a sequence of operations
(Op 0 to Op M) to r to create a state in which the subsequent update of r.f
may violate o’s invariant. For instance, if the invariant relates f to private
fields of the same object, these operations may be method calls that update
these private fields. The operations Op 0 to Op M are selected from the set of
candidate operations, and may include a method call or field update more
than once. Their arguments as well as the right-hand side v of the last
field update are either parameters of the template (a0 to aN) or results of
preceding operations; all such combinations are tried exhaustively.

The synthesis of PUTs from this template is performed by function Gen-
FieldCombs in Alg. 3.2, which is invoked from Alg. 3.1. Line 3 generates

void DFU(r, o, a0..aN) {
assume r != null;
assume o != null && o.Invariant ();
Op_0(r, ...);
...
Op_M(r, ...);
assume o.Invariant ();
r.f = v;
assert o.Invariant ();

}

Figure 3.5: The direct-field-update template.
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Algorithm 3.2: Synthesis of parameterized unit tests from
the direct-field-update template.

1 function GenFieldCombs(candOps, len)
2 puts ← []
3 combs ← GenAllCombs(candOps, len − 1)
4 fieldOps ← FieldOps(candOps)
5 foreach comb in combs
6 foreach fieldOp in fieldOps
7 puts ← puts + [comb + [fieldOp]]
8 return puts

all possible sequences of length len−1 from the set of candidate operations.
Line 4 selects the set fieldOps of all field updates from the set of candidate
operations, candOps. Lines 5–7 append each field update fieldOp to each of
the sequences of operations computed earlier.

Consider an invocation of the synthesis with this template, where the
object to which operations are applied and the object whose invariant is
being tested are the same instance of Person from Fig. 3.1. The synthesized
PUTs of length two include PUT DFU in Fig. 3.6. Symbolically executing this
PUT produces input data that causes the assertion of the invariant to fail; for
instance, a Person object with salary 100 and whose Account has balance
100 for o, the value 150 for a, and any value less than or equal to 50 for s.

3.4.2 Subclassing

The template for the subclassing scenario (shown in Fig. 3.7) aims at break-
ing the invariant of an object by invoking inherited operations. It exhaus-
tively applies a number of operations to an object of the subclass, including
any operations inherited from a superclass, and requires that the last oper-
ation is an inherited one (i.e., an update of an inherited field or a call to an

void PUT_DFU(Person o, int a, int s) {
assume o != null && o.Invariant ();
o.Spend1(a);
assume o.Invariant ();
o.salary = s;
assert o.Invariant ();

}

Figure 3.6: Parameterized unit test synthesized with the direct-
field-update template.
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void S(r, o, a0..aN) {
assume r != null;
assume o != null && o.Invariant ();
Op_0(r, ...);
...
Op_M(r, ...);
assume o.Invariant ();
Op_super(r, ...);
assert o.Invariant ();

}

Figure 3.7: The subclassing template.

inherited method) to reflect the subclassing scenario described in Sect. 3.1.
Like in the template for direct field updates, the first M+1 operations (Op 0
to Op M) construct a state in which the final inherited operation may violate
o’s invariant, since this final operation was designed to maintain the weaker
invariant of a superclass.

This template is useful only when a subclass strengthens the invariant of
a superclass with respect to any inherited fields. We identify such subclasses
using a simple syntactic check: if the read effect of the invariant declared
in the subclass includes inherited fields, we conservatively assume that the
invariant is strengthened with respect to those.

The synthesis of PUTs based on this template is performed by function
GenSubCombs, which is invoked from Alg. 3.1. GenSubCombs (shown in
Alg. 3.3) is analogous to GenFieldCombs (Alg. 3.2) except that, on line 4,
it selects the candidate operations that are inherited from a superclass.

Consider the synthesis with this template, where objects r and o are the
same instance of SavingsAccount (Fig. 3.1). This class strengthens the in-
variant of its superclass Account for the inherited field balance. The synthe-
sized PUTs of length one include PUT S in Fig. 3.8. The symbolic execution

Algorithm 3.3: Synthesis of parameterized unit tests from
the subclassing template.

1 function GenSubCombs(candOps, len)
2 puts ← []
3 combs ← GenAllCombs(candOps, len − 1)
4 inheritedOps ← InheritedOps(candOps)
5 foreach comb in combs
6 foreach inheritedOp in inheritedOps
7 puts ← puts + [comb + [inheritedOp]]
8 return puts
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void PUT_S(SavingsAccount o, int a) {
assume o != null && o.Invariant ();
o.Withdraw(a);
assert o.Invariant ();

}

Figure 3.8: Parameterized unit test synthesized with the subclass-
ing template.

of PUT S reveals an invariant violation; for instance, for a SavingsAccount
object with a balance of zero for o and any positive value for a.

3.4.3 Multi-object invariants

Multi-object invariants describe properties of aggregate structures. The in-
variant of such a structure may be violated by modifying its sub-objects. For
instance, one might be able to violate a Person’s invariant by reducing the
balance of its account. Such violations are possible when sub-objects of the
aggregate structure are not properly encapsulated [116] so that clients are
able to obtain references to them: when a client obtains a direct reference
to the Account sub-object, it can by-pass the Person object and modify the
account in ways that violate the Person’s invariant.

To reflect this observation, we define two templates that allow clients
to obtain references to sub-objects of aggregate structures. One template
uses leaking, i.e., it passes a sub-object from the aggregate structure to its
client. The other one uses capturing, i.e., it passes an object from the client
to the aggregate structure and stores it there as a sub-object. Leaking and
capturing are the only ways in which clients may obtain a reference to a
sub-object of an aggregate structure.

Leaking

An operation is said to leak an object l if the following three conditions
hold: (1) the operation takes as an argument (or receiver) an object o that
(directly or transitively) references l, (2) the operation returns the reference
to l or assigns it to shared state, and (3) a field of l is dereferenced in o’s
invariant. We use a static analysis to approximate the operations that might
leak a sub-object (see Sect. 3.5). These operations include reading public
fields with reference types.

For example, assume that class Person from Fig. 3.1 provides a public
getter GetAccount for field account:

public Account GetAccount () {
return account;

}
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void L(r, o, a0..aN) {
assume r != null;
assume o != null && o.Invariant ();
Op_0(r, ...);
...
Op_M(r, ...);
var l = Op_leaking(r, ...);
... // operations on leaked object
assert o.Invariant ();

}

Figure 3.9: The leaking template.

This method leaks the account sub-object of its receiver since (1) its receiver
directly references the account, (2) it returns the account, and (3) account
is dereferenced in the invariant of Person. Consequently, this getter enables
clients to obtain a reference to the account sub-object and violate Person’s
invariant, for instance, by invoking method Withdraw on the account.

In the template for leaking (Fig. 3.9), we first apply a number of op-
erations to create a state in which a sub-object l may be leaked via the
Op leaking operation. Once the object has been leaked, we try to violate
o’s invariant by applying operations to the leaked object l (indicated by the
ellipsis with the comment in Fig. 3.9). To obtain a sequence of operations
on l, we apply function Synthesize (Alg. 3.1) recursively with the class of
l and the invariant of o. This recursive call selects candidate operations on
l that may break o’s invariant, e.g., by updating a public field of l, or via
complex combinations of scenarios, such as repeated leaking. Note that this
template attempts to violate o’s invariant; whether l’s invariant holds is an
orthogonal issue that is addressed separately when testing that invariant.

Based on this template, we obtain the PUT in Fig. 3.10 for objects
of class Person from Fig. 3.1. In this test, method GetAccount leaks the

void PUT_L(Person o, int a) {
assume o != null && o.Invariant ();
var l = o.GetAccount ();
// exhaustive enumeration
assume l != null && o.Invariant ();
l.Withdraw(a);
assert o.Invariant ();

}

Figure 3.10: Parameterized unit test synthesized with the leaking
template.
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Person’s account object. The recursive application of function Synthesize
determines method Withdraw as a candidate operation because its write ef-
fect includes balance, which is also in the read effect of Person’s invariant.
Withdraw is selected by the exhaustive enumeration (function GenAll-
Combs of Alg. 3.1) and would not be selected by any of the other templates.
Symbolically executing this PUT produces input data that causes the asser-
tion of the invariant to fail; for instance, a Person object with salary 100
and whose Account has balance 100 for o, and a value of at least 200 for a.

Capturing

An operation is said to capture an object c if: (1) the operation takes as
arguments two objects o and c (o or c could also be the receiver), (2) the
operation stores a reference to c in a location reachable from o, and (3) the
field in which c is stored is dereferenced in o’s invariant. Updating a field f of
a reference type is considered capturing if f is dereferenced in o’s invariant.

The template for capturing (shown in Fig. 3.11) is analogous to leaking.
In particular, it also uses a recursive application of function Synthesize
to determine the operations to be applied to the captured object. In the
common case that the capturing operation is a constructor of object o,
the template is adjusted as shown in the figure (Cctor). This adjustment
ensures that o is actually created with a constructor that captures c, instead

void C(r, o, c, a0..aN) {
assume r != null;
assume o != null && o.Invariant ();
Op_0(r, ...);
...
Op_M(r, ...);
Op_capturing(r, c, ...);
... // operations on captured ‘c’
assert o.Invariant ();

}

void Cctor(c, a0..aN) {
assume c != null;
Op_0(c, ...);
...
Op_M(c, ...);
var o = new ctor(c, ...);
... // operations on captured ‘c’
assert o.Invariant ();

}

Figure 3.11: The capturing templates.
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void PUT_Cctor(Account c, int b) {
assume c != null;
var o = new Person(c);
// direct field update
assume c != null && o.Invariant ();
c.balance = b;
assert o.Invariant ();

}

Figure 3.12: Parameterized unit test synthesized with the captur-
ing template.

of a constructor selected by the symbolic execution. Note that before the
capturing operation, our implementation also allows a number of operations
on c with the goal of bringing it to a state such that, for instance, the
precondition of Op capturing is satisfied or the capturing execution path is
taken. We omit such operations here to simplify the presentation.

As an example, assume that class Person of Fig. 3.1 declares a construc-
tor that captures an already existing account a:

public Person(Account a) {
account = a;

}

Then, the Cctor template produces the PUT shown in Fig. 3.12. The sym-
bolic execution of PUT Cctor reveals an invariant violation; for instance, for
an Account object with balance 100 for c and any non-positive value for b.

Recursively applying our technique on leaked or captured objects allows
for covering even more complex cases. For example, assume that there
is a class CreditCardAccount that inherits from Account, and that class
Account has a field of type CreditCardAccount and a public setter for this
field. In addition, assume that the invariant of class Person requires that
the account for the credit card always has a non-negative balance. In this
case, our technique synthesizes tests such as the one in Fig. 3.13, in which
a getter leaks o’s account l, account l is updated to capture a credit card
account a, and the balance of the credit card account is directly set to an
amount b. If b has a negative value, o’s invariant breaks.

Synthesis

The synthesis of PUTs based on the leaking and capturing templates is per-
formed by the GenMultiCombs function in Alg. 3.4. On line 3, a new set
of candidate operations, multiOps, is created by selecting from candOps the
operations that leak or capture objects according to the above criteria. Since
the synthesis for these templates includes a recursive application of Syn-
thesize, we must split the overall length of the PUT between the operations
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void PUT(Person o, Account a, int b) {
// leaking
assume o != null && o.Invariant ();
var l = o.GetAccount ();
// capturing
assume l != null && o.Invariant ();
l.SetCreditCardAccount(a);
// direct field update
assume a != null && o.Invariant ();
a.balance = b;
assert o.Invariant ();

}

Figure 3.13: Complex parameterized unit test synthesized by re-
cursively applying our technique.

occurring before the leaking or capturing operation and the operations on
the leaked or captured object occurring after. To explore all possible splits,
we generate all combinations of candidate operations of length up to len−2
to be applied before the leaking or capturing operation (lines 4–5). These
operations create a state in which the next operation can leak or capture
an object. After invoking any such leaking or capturing operation, we re-
cursively apply function Synthesize of Alg. 3.1 by taking into account the
class of the leaked or captured object, class, and the original object invari-
ant under test, inv (lines 6–8). Therefore, suffixes is a list of sequences of
operations to be applied to the leaked or captured object. On lines 9–12,
we combine the synthesized sub-sequences of lengths i, 1, and len − 1− i.

Algorithm 3.4: Synthesis of parameterized unit tests from
the leaking and capturing templates.

1 function GenMultiCombs(candOps, len, inv)
2 puts ← []
3 multiOps ← MultiOps(candOps)
4 for i = 0 to len − 2 do
5 prefixes ← GenAllCombs(candOps, i)
6 foreach multiOp in multiOps
7 class ← GetClass(multiOp)
8 suffixes ← Synthesize(class, inv, len − 1− i)
9 foreach prefix in prefixes

10 foreach suffix in suffixes
11 put ← prefix + [multiOp] + suffix
12 puts ← puts + [put]
13 return puts
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3.5 Implementation

We have implemented our technique as an extension to Pex [135].

3.5.1 Runtime checks

Pex understands specifications, such as object invariants, written in Code
Contracts [58], as long as these specifications are transformed into runtime
checks by the Code Contracts binary rewriter. For our purposes, we imple-
mented an additional rewriter, which adds a public method Invariant to
each class that declares or inherits an invariant. This method takes no argu-
ments, and returns whether its receiver satisfies the invariant declared in the
enclosing class as well as the invariants in its superclasses. The Invariant
methods are called when our technique asserts or assumes the invariant un-
der test in the synthesized PUTs (see Sect. 3.3). Since the synthesized PUTs
include all necessary invariant checks, our rewriter turns off any runtime
checks for object invariants inserted by the Code Contracts rewriter.

The runtime checks generated for Code Contracts may abort the exe-
cution of a synthesized PUT, for instance, when the precondition of one of
the operations does not hold. Our implementation permits such cases, but
does not report them to the user. As an optimization, one could insert an
assumption before each call, that the precondition holds, in order to steer
the symbolic execution toward inputs that do not abort the test. We do add
such assumptions to express that the receiver of the operation is non-null
and array accesses are within the bounds.

3.5.2 Static analysis

Our implementation builds a static call graph for the entire UUT, which
includes information about dynamically-bound calls. The call graph is used
to compute the read and write effects of all methods in the UUT with a
conservative, inter-procedural, control-flow insensitive static analysis on the
.NET bytecode. Our effect analysis treats the entire array content as one
field and does not distinguish different array elements. The effects deter-
mine the candidate operations that might, directly or indirectly, lead to an
invariant violation (see Sect. 3.3).

Our effect analysis is extended to also approximate the sets of leaking
and capturing operations. When trying to violate the invariant of an object
o with the leaking template, our analysis considers each candidate operation
in the UUT and each potential sub-object l of o, and checks whether the
operation leaks l according to the conditions for leaking from Sect. 3.4.3.
For efficiency, we coarsely approximate these conditions by working on the
level of types rather than objects.

This allows us to use our effect analysis to determine the types of the
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potential sub-objects of o, that is, of the objects l that may satisfy condi-
tion 3 from Sect. 3.4.3. If the read effect of o’s object invariant contains
a field C.f, we consider each instance of class C as a potential sub-object
of o. For instance, the read effect of Person’s invariant (from Fig. 3.1) is
{Person.account, Account.balance, Person.salary} and, therefore, each
Person or Account object is considered to be a potential sub-object.

According to condition 1, a leaking operation takes o as an argument or
receiver. Again, we identify these operations based on types, that is, based
on the signatures of the operations and o’s type. For instance, if o is of type
Person, all methods of this class, such as Spend1, Spend2, and GetAccount,
are potentially leaking operations.

It remains to check which of these operations satisfy condition 2, that is,
return l or assign it to shared state. In the former case, we conservatively
assume that the method may return any object that is compatible with the
method’s return type and with the type of at least one field in the method’s
read effect. For instance, method GetAccount has return type Account and
read effect {Person.account} and, thus, may return any Account object.
If the type of potentially returned objects is compatible with the types of
o’s sub-objects, the method is considered to be leaking. In our example, the
types of sub-objects are Person or Account and, thus, we treat GetAccount
as a leaking operation.

The latter case is analogous, but, instead of the return type, uses the
types of those public fields of the operation’s receiver that are in the write
effect of the operation. This approximation may miss certain cases of leak-
ing, for instance, when the leaked object is stored in fields of objects other
than the receiver, but it ensures that clients of the operation can access the
leaked object because they have a reference to the receiver and may, thus,
read its public fields.

Once the leaking operations and the way in which they leak a sub-object
are identified, our synthesis generates a PUT for each possible way of ac-
cessing the leaked object. For instance, it uses GetAccount’s return value
to access the leaked object, and applies operations to it with the purpose of
breaking Person’s invariant (see Fig. 3.10).

We identify capturing operations similarly to leaking operations, but
use the write effects of operations, instead of the read effects. The captured
object is then accessed via the operation’s parameters.

Impact of approximations

The design of our static analysis favors efficiency over precision. In particu-
lar, we avoid a precise but costly heap analysis, and instead, obtain rather
coarse effect information. As a consequence, our technique might generate
irrelevant PUTs and miss invariant violations, as we discuss next.

Our technique may select irrelevant candidate operations due to impre-
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cision in our effect analysis. For instance, it cannot distinguish whether a
method modifies an existing or initializes a newly-allocated object. There-
fore, we might generate PUTs that try to violate an invariant using a method
that is effectively side-effect free. Another source of imprecision is the syn-
tactic check that determines whether a subclass strengthens the invariant of
a superclass with respect to any inherited fields (Sect. 3.4.2). In both cases,
our technique could generate irrelevant PUTs, which may have a negative
effect on its performance but does not cause it to miss invariant violations.

On the other hand, invariant violations may be missed when, for in-
stance, our static analysis fails to consider leaking operations that transi-
tively reference the leaked object. Our technique may also miss invariant
violations when it fails to consider a method override in an assembly that is
not accessible to the static analysis. As a result, the generated PUTs might
not explore all possible sequences of operations.

3.5.3 Heuristics and optimizations

To detect invariant violations more efficiently, we carefully chose the order
in which the synthesis (Alg. 3.1) applies the templates of Sect. 3.4 and
exhaustive enumeration. The templates for direct field updates and multi-
object invariants have proven to most effectively detect invariant violations
and are, thus, explored first. The exhaustive enumeration comes last as it
produces the largest number of PUTs and requires the most effort in DSE.

On a more technical level, a leaking operation applied to an object o
might declare as its return type a superclass of the leaked reference l. In
such cases, our implementation automatically down-casts l to the subclass
declared in o’s implementation, before applying any operations to l.

Moreover, special care had to be taken for the handling of arrays and
generics. For arrays, we defined a set of valid operations, such as retrieving
their length and storing a value at an index within their bounds, which
could then be used in the synthesized code. In order to handle generic types
and methods, our implementation attempts to instantiate them by choosing
suitable types from the UUT, if any.

To reduce the number of functionally-equivalent PUTs, we implemented
a conservative pruning technique based on operation commutativity. We
consider two operations commutative, i.e., independent of their order of ex-
ecution, if and only if each operation’s write effect is disjoint from the other
operation’s read and write effects. Given a PUT, any other PUTs are pruned
that differ from the former only in the order of commutative operations.

3.5.4 Object construction

Each synthesized PUT takes as input an object whose invariant holds and
that the PUT tries to violate. When generating inputs for the PUT, this
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object must satisfy additional constraints in order to execute certain paths.
Constructing such objects may require several steps, for instance, creating
an empty list and then invoking a method three times to insert three el-
ements. Such constructions lie beyond the automatic capabilities of Pex.
Our templates effectively alleviate this issue. If Pex can create any instance
whose invariant holds (for instance, an empty list via a suitable construc-
tor), then the sequence of operations in the PUT can be used to bring this
instance into a state satisfying all necessary constraints, before applying the
final operation to violate its invariant.

3.6 Experimental evaluation

We evaluated our technique for testing object invariants in three ways. First,
we applied our technique to several open-source projects that contain ob-
ject invariants provided manually by programmers, to evaluate whether it
detects invariant violations in practice. Second, for one of these projects,
we manually fixed all detected invariant violations, to evaluate the causes
of these violations. Third, we applied our technique to invariants inferred
automatically by Daikon, to evaluate the correctness and robustness of these
invariants.

3.6.1 Testing programmer-provided object invariants

We have evaluated the effectiveness of our technique using ten C# applica-
tions, which were selected from applications on Bitbucket, CodePlex, and
GitHub containing invariants specified with Code Contracts. This section
focuses on our experiments with the nine applications for which invariant
violations were detected. A brief description of these applications is shown
in Tab. 3.1.

Tab. 3.2 summarizes the results of our experiments. The second and
third columns show the total number of classes and the number of classes
with invariants for each application, respectively. We have tested the ro-
bustness of all invariants in these applications. Note that the total number
of classes refers only to the classes that were included in the evaluation and
not to all classes of each application. We have left out only classes that were
defined in dynamic-link libraries (DLLs) containing no object invariants.
The two rightmost columns of Tab. 3.2 show the unique and total numbers
of invariant violations detected with our technique. The unique number of
violations refers to the number of invariants that were violated at least once.
The total number of violations refers to the number of distinct PUTs that
led to invariant violations, and may include violations of the same object
invariant multiple times.
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Application Description
Boogie Intermediate verification engine1

ClueBuddy GUI application for a board game2

Dafny Programming language and verifier3

Draugen Web application for fishermen4

GoalsTracker Various web applications5

Griffin .NET and jQuery libraries6

LoveStudio IDE for the LÖVE framework7

Encore ‘World of Warcraft’ emulator8

YAML YAML library9

Table 3.1: Brief description of the applications in which our tech-
nique detected invariant violations.

When running Pex with our technique, we imposed an upper bound
of three on the number of operations per PUT, and an upper bound of
300 on the number of synthesized PUTs per object invariant. All unique
invariant violations were already detected with two operations per PUT;
increasing this bound to four for a number of projects did not uncover any
previously undetected invariant violations. On average, 14.7 PUTs were
synthesized per second. We then applied Pex to generate input data for the
synthesized PUTs, forcing Pex to use only public operations of the UUT
(to guarantee that all inputs are constructible in practice). We counted
the number of unique invariant violations and of distinct PUTs that led to
invariant violations. We imposed a timeout of three minutes for the DSE in
Pex to generate inputs for and run the synthesized PUTs. Here, we report
the number of invariant violations that were detected within this time limit.
Within this time limit, the first invariant violation was detected within 4–
47 seconds (and 12.8 seconds on average) for all object invariants in all
applications.

The total violations found by our technique may be classified into the
following categories, based on the template that was instantiated: 60 due
to direct field updates, 41 due to leaking, and 25 due to capturing. The
remaining six violations were detected by the exhaustive enumeration. Out
of these six invariant violations, five are also detected by Pex without our

1http://boogie.codeplex.com, rev: f2ffe18efee7
2https://github.com/AArnott/ClueBuddy, rev: c1b64ae97c01fec249b2212018f589c2d8119b59
3http://dafny.codeplex.com, rev: f2ffe18efee7
4https://github.com/eriksen/Draugen, rev: dfc84bd4dcf232d3cfa6550d737e8382ce7641cb
5https://code.google.com/p/goalstracker, rev: 556
6https://github.com/jgauffin/griffin, rev: 54ab75d200b516b2a8bd0a1b7cfe1b66f45da6ea
7https://bitbucket.org/kevinclancy/love-studio, rev: 7da77fa
8https://github.com/Trinity-Encore/Encore, rev: 0538bd611dc1bc81da15c4b10a65ac9d608dafc2
9http://yaml.codeplex.com, rev: 96133

http://boogie.codeplex.com
https://github.com/AArnott/ClueBuddy
http://dafny.codeplex.com
https://github.com/eriksen/Draugen
https://code.google.com/p/goalstracker
https://github.com/jgauffin/griffin
https://bitbucket.org/kevinclancy/love-studio
https://github.com/Trinity-Encore/Encore
http://yaml.codeplex.com
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Application Classes Classes Invariant
with invariants violations

unique total
Boogie 355 144 21 64
ClueBuddy 44 4 1 2
Dafny 310 113 15 53
Draugen 36 5 3 3
GoalsTracker 63 5 1 1
Griffin 31 3 1 1
LoveStudio 66 7 2 2
Encore 186 30 1 4
YAML 76 6 1 2
Total 1167 317 46 132

Table 3.2: Summary of results for testing programmer-provided
object invariants. The second and third columns show the total
number of classes and the number of classes with invariants for
each application. The two rightmost columns show the unique and
total numbers of invariant violations detected with our technique.

technique, i.e., with the traditional approach of checking the invariant of the
receiver at the end of a method. The last violation requires a sequence of two
method calls and was detected only by our technique. This is because Pex
could not generate appropriate input data to the second method such that
the invariant check at the end of the method failed. This violation illustrates
that the exhaustive enumeration indeed alleviates a known limitation of
automatic object creation in Pex [139], as pointed out in the previous section.
The object invariants that were violated at least once can be classified into
the following categories: 27 invariants were violated at least once due to
direct field updates, 24 due to leaking, 17 due to capturing, and five due to
the exhaustive enumeration. Note that in these applications we found no
subclasses that strengthen the invariant of a superclass with respect to any
inherited fields. This is why no invariant violations were detected with the
subclassing template.

An example of an invariant violation detected by our technique in LoveS-
tudio is shown in Fig. 3.14. A StackPanel object has a LuaStackFrame
array, and its invariant holds if all array elements are non-null. In the PUT,
method SetFrames captures a0 depending on the value of a1. The last op-
eration of the test assigns a LuaStackFrame object to the array at a valid
index a2. In case a3 is null, o’s invariant is violated.

The invariant violations detected by our technique indicate overly strong
invariants in the sense that they may be violated by possible clients of a
UUT. These clients are not necessarily present in the given program and,
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void PUT(StackPanel o, LuaStackFrame [] a0,
bool a1, int a2, LuaStackFrame a3) {

assume o != null && o.Invariant ();
o.SetFrames(a0, a1);
assume a0 != null && o.Invariant ();
assume 0 <= a2 && a2 < a0.Length;
a0[a2] = a3;
assert o.Invariant ();

}

Figure 3.14: Synthesized parameterized unit test that reveals an
invariant violation in LoveStudio.

thus, the violations do not necessarily reveal bugs. This behavior is to be
expected for unit testing, where each unit is tested independently of the rest
of the program. Nevertheless, the detected violations do indicate robustness
issues that might lead to bugs during maintenance or when classes are reused
as libraries.

We have manually inspected all detected invariant violations. Violations
detected with the direct-field-update template reveal design flaws; in the
inspected code, these violations could be fixed by making fields private and
providing setters that maintain the invariants. Violations due to leaking or
capturing could be fixed either by cloning the leaked or captured objects, or
by using immutable types in the interfaces of the classes whose invariants
are under test. The largest number of invariant violations found with the
leaking and capturing templates was detected in the Boogie and Dafny ap-
plications, which declare several multi-object invariants in their code. Both
Boogie and Dafny were originally written in Spec# [12], whose verification
methodology restricts modifications of leaked or captured objects using ob-
ject ownership [99]. Note, however, that only a small fraction of Boogie
was actually verified with Spec#, and both Boogie and Dafny have changed
substantially since ported to C#. We discussed the detected invariant vio-
lations in Boogie and Dafny with the lead developer, Rustan Leino. All of
them indicate robustness issues that should be addressed by either weaken-
ing the invariants or changing the design of the code, as we discuss in the
next subsection.

We have also examined the object invariants that were not violated. In
most cases, these invariants expressed very simple properties, such as non-
nullness or ranges of integer values, which were also specified as constructor
preconditions or referred to read-only fields that were properly initialized in
the constructors. Another common case involved automatically-generated
setters for C# properties to which Code Contracts add appropriate precon-
ditions that ensure the object invariant is not violated by the setters.
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3.6.2 Fixing violated object invariants

As we have discussed at the beginning of this chapter, a test that violates
an invariant could indicate an error in the code, an overly strong invariant,
or an invariant that is not robust against future program changes and other
clients.

To gain more insight into how a developer would use feedback from our
tool, we inspected and fixed all violated invariants for one of the applications
in Tab. 3.1. We chose Boogie (revision 31e2170a4d1b, which is a more recent
revision than the one used in Sect. 3.6.1) because: (1) it contains a large
number of classes with invariants and has been actively developed for many
years, (2) our tool was able to violate a significant number of these invariants,
and (3) there are several widely-used client applications that use Boogie as
a library (e.g., the Chalice [102], Dafny [98], Spec# [12], and Viper [86]
verifiers), which makes it especially important that Boogie’s invariants are
robust against these clients.

We asked a student to propose changes to Boogie based on concrete test
cases that led to violated invariants and were produced by running Pex on
PUTs generated by our tool. The student had not used our tool before and,
more importantly, was not familiar with the Boogie code base. All proposed
changes were reviewed by independent Boogie developers, to confirm that
they were sensible and correctly reflected the intended software design (e.g.,
by not restricting the API in undesirable ways). The changes were accepted
and then merged into the Boogie repository.

We classified the proposed changes into three different categories:

1. Invariants: ones that weakened or removed overly strong invariants;

2. Encapsulation: ones that mainly affected the visibility (incl. qualifiers
such as readonly) of a class or class member to encapsulate the state
an invariant depends on, for instance, by making a public field pri-
vate and possibly introducing corresponding getters and setters that
preserve the invariant;

3. Code: ones that changed the code in more involved ways, for instance,
by copying a returned object to avoid leaking.

The above categories are ordered roughly according to how much work seems
to be typically involved in implementing such changes and how much they
may affect clients. For instance, invariant changes are usually relatively
straightforward and do not affect clients, while code changes can be complex
and may require changes to the API.

The student provided changes for 32 classes involving 57 invariant clauses
(that is, conjuncts) that our tool was able to violate. Many of those invari-
ant clauses expressed relatively simple properties, such as non-nullness of
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reference fields or numeric ranges for integer fields. Since many of the in-
volved fields were public, the direct-field-update template turned out to be
very effective in breaking them, and 34 of those invariant clauses were made
robust by strengthening encapsulation. Somewhat surprisingly, all other 23
changes were code changes. That is, none of the violated clauses was con-
sidered to be overly strong, likely because Boogie is a mature application
that has used such invariants from the start to document its design. Many
of the code changes involved invariant clauses that expressed non-nullness
of elements in a collection (e.g., arrays, lists, or dictionaries), and were de-
tected using the leaking and capturing templates. The changes made use of
different, well-known techniques for preserving such invariants (e.g., copying
an object to avoid leaking, or exposing it as an immutable object). There
was one invariant that was violated using the subclassing template; in this
case, the invariant clause was moved to the superclass that declared the
constrained field, because it also applied to instances of the superclass.

Our experiment is encouraging because it suggests that the detected
invariant violations can be fixed with a rather low effort, and we were pleased
that the Boogie developers considered these fixes to improve the design of
the tool, by making it more robust against future changes and additional
clients.

3.6.3 Testing inferred object invariants

Some tools, such as Symbolic Java PathFinder [125], use dynamic invariant
inference to obtain input constraints on a UUT. To evaluate the suitability
of our technique for testing the robustness of such invariants, we used the
Daikon invariant detector [57] and its .NET front end Celeriac10 to infer
object invariants for one of the applications from Tab. 3.1. Given an execu-
tion trace, Daikon infers invariants by observing the values that the program
computed during its execution. Daikon then reports properties that are true
over the observed executions and expressible in the built-in set of invariant
templates of the tool. Celeriac dynamically instruments .NET programs to
produce a Daikon-compatible execution trace. For this experiment, we chose
ClueBuddy11, a GUI application for the ‘Clue’ board game, because it has a
comprehensive test suite that produces traces of a suitable size.

To produce the execution trace that we then passed to Daikon, we ran the
existing test suite of ClueBuddy, which contains both unit and system tests.
Based on this execution trace, Daikon inferred 288 potential object-invariant
clauses (conjuncts) for 13 of the 44 classes. Only two of these invariant
clauses corresponded to ones that were also provided by the developers. We
subsequently removed the following clauses:

10https://code.google.com/p/daikon-dot-net-front-end
11https://github.com/AArnott/ClueBuddy, rev: c1b64ae97c01fec249b2212018f589c2d8119b59

https://code.google.com/p/daikon-dot-net-front-end
https://github.com/AArnott/ClueBuddy
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− clauses about the runtime types of objects, such as
this.GetType () == typeof(ClueBuddy.Weapon)

which are better expressed through the type system;

− clauses (directly or indirectly) relating a private field with the return
value of a getter for this field, e.g.,

this.place.Name == this.Place.Name

because such constraints should rather be expressed as postconditions
of getters;

− equivalent occurrences of a clause, such as the property
this.player.Name != null

of the field player and the property
this.Player.Name != null

of the getter Player;

− clauses reported as either semantically incorrect or always true by the
C# compiler, e.g.,

this.Rules != null

where this.Rules is a struct.

After this manual filtering, there were 105 object-invariant clauses for 13
classes.

We tested these invariant clauses with our technique. We imposed an
upper bound of three on the number of operations per PUT, and an upper
bound of 1,000 on the number of synthesized PUTs per object invariant.
When applying Pex to generate input data for the synthesized PUTs, we
imposed a timeout of 10,000 seconds and an upper bound of 100,000 symbolic
branches for the DSE.

Tab. 3.3 summarizes the results. The second column shows the number of
object-invariant clauses (per class) that were inferred by Daikon and not fil-
tered by us. Unlike for the programmer-provided invariants from Sect. 3.6.1,
we found that a significant number of invariants threw exceptions during
their evaluation (e.g., a null-dereference in a clause 0 <= a.Length). We,
therefore, decided to distinguish between invariant clauses that were vio-
lated and ones that were ill formed, i.e., for which we found cases where
their evaluation would throw an exception. The third and fourth columns
of the table show the number of clauses that were found to be violated or
ill formed with our technique. Note that the sets of violated and ill-formed
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Class Inferred Violated Ill-formed Rejected
clauses clauses clauses clauses

CannotDisprove 9 4 7 9 (100%)
Card 3 2 1 3 (100%)
Clue 4 3 3 4 (100%)
Disproved 10 5 8 10 (100%)
Game 25 19 1 20 (80%)
GameVariety 17 14 11 17 (100%)
Node 6 4 0 4 (67%)
Place 5 4 2 5 (100%)
Player 6 4 1 5 (83%)
SpyCard 6 5 4 6 (100%)
Suspect 3 2 1 3 (100%)
Suspicion 7 3 0 3 (43%)
Weapon 4 3 2 4 (100%)
Total 105 72 41 93 (89%)

Table 3.3: Summary of results for testing inferred object invari-
ants. The second column shows the number of inferred invariant
clauses per class. The third and fourth columns show the num-
ber of clauses that were found to be violated or ill formed with
our technique. The last column shows the total number of clauses
that were found not to be robust (because they were violated or
ill formed).

clauses are not necessarily disjoint for a given class. For instance, the in-
variant clause 0 <= a.Length about an array a might be classified both as
ill formed, when not preceded by the clause a != null , and as violated
when it evaluates to false without throwing an exception. The last column of
Tab. 3.3 shows the total number of clauses that were found not to be robust
(because they were violated or ill formed). In total, we rejected 93/105 (or
89%) of the inferred invariant clauses. This high percentage indicates the
effectiveness of our technique in refuting invariants inferred from program
runs that possibly do not exercise all relevant paths.

To provide an overview of the kinds of invariant clauses that were in-
ferred, Tab. 3.4 further categorizes the inferred and rejected clauses based
on the properties they specify, i.e., nullness of an expression (third column),
comparison of boolean expressions (fourth column), comparison of numer-
ical expressions (fifth column), and all others (sixth column), e.g., clauses
involving calls to side-effect free methods. The four rightmost columns of the
table show, for each category of clauses, the number of rejected clauses over
the number of inferred clauses. Note that most inferred invariant clauses
(44/105 or 42%) express comparisons with null and are relatively more ro-
bust than all other kinds of clauses. As shown in the table, Daikon inferred
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Class Inferred Null Boolean Numeric Other
clauses comparisons comparisons comparisons

CannotDisprove 9 8/8 0/0 1/1 0/0
Card 3 0/0 3/3 0/0 0/0
Clue 4 3/3 0/0 1/1 0/0
Disproved 10 9/9 0/0 1/1 0/0
Game 25 2/3 8/10 6/8 4/4
GameVariety 17 3/3 3/3 6/6 5/5
Node 6 2/4 1/1 1/1 0/0
Place 5 0/0 3/3 0/0 2/2
Player 6 1/2 3/3 1/1 0/0
SpyCard 6 5/5 0/0 1/1 0/0
Suspect 3 0/0 3/3 0/0 0/0
Suspicion 7 3/7 0/0 0/0 0/0
Weapon 4 0/0 3/3 0/0 1/1
Total 105 36/44 27/29 18/20 12/12

Table 3.4: Categorization of inferred and rejected invariant clauses
based on the properties they specify. The four rightmost columns
of the table show, for each category of clauses, the number of
rejected clauses over the number of inferred clauses.

a significant number of invariant clauses of each category, and our technique
is effective in refuting clauses of all categories.

Since there were no public fields, the direct-field-update template was not
used in detecting any of the 72 violated invariant clauses. However, all other
templates turned out to be used. This demonstrates that our approach is
more effective in detecting invariant violations than the traditional approach,
which would only find a subset of the violations detected by the exhaustive
enumeration. Leaking was used 26 times, capturing 19 times, subclassing
five times, and the exhaustive enumeration was used 51 times, five out of
which required a sequence length of two. Note that several clauses were
violated using multiple templates. Out of the ones that were detected by
a single template, leaking was used eight times, capturing once, and the
exhaustive enumeration 42 times. All but one of the invariant clauses that
were violated using the capturing template were also violated using the
leaking template. Manual inspection showed that many of the captured
objects are assigned to public properties, which may also leak said objects.

Our experiment suggests that many dynamically-inferred invariants are
not robust. It is beneficial to apply our technique to reject such invariants
or to flag them for manual inspection before using them to filter test inputs.

3.7 Testing auxiliary methods

Auxiliary methods are methods that are intended to operate correctly even
if they are called on an object whose invariant does not hold. For instance,
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a balanced-tree data structure might call a rebalance method in a state in
which the tree is not balanced in order to re-establish the invariant.

Even if auxiliary methods do not require invariants to hold, they are typ-
ically not intended to operate on arbitrary inputs. For instance, rebalance
would be designed to operate on an unbalanced tree, but not on an arbi-
trary graph. Therefore, the test inputs to auxiliary methods should neither
be constrained by the object invariant (which would miss relevant execu-
tions) nor be arbitrary (which would include inputs the method has not
been designed for). Instead, the inputs should include objects that could
actually be created by operations of the data structure.

When attempting to violate object invariants, our technique creates ex-
actly such objects. So in addition to reporting the invariant violations to
the user, one can use the generated objects as inputs for testing auxiliary
methods. That is, our technique can complement any existing approach
for generating complex input objects, to achieve higher coverage and detect
more bugs in auxiliary methods.

This is useful when it is possible to synthesize client code that violates
invariants. However, many auxiliary methods (such as rebalance above) are
invoked in intermediate states, in which invariants are temporarily broken.
That is, rebalance is supposed to work on unbalanced trees even if there is
no way for a client to construct such a tree. This scenario is a special case of
a call-back (or re-entrant call): a method breaks the invariant of its receiver
and then calls another method that, either directly or indirectly, calls back
into the receiver when its invariant does not hold.

The example in Fig. 3.15 illustrates this scenario. Method L breaks
the invariant of its receiver and then, via a call to M, calls the auxiliary
method N. To generate test inputs for auxiliary method N, we have specified
a designated call-back template, which is shown in Fig. 3.16.

The call-back template applies a number of operations to object r, re-
stricting the last of these operations to be a call to a method Op callback,
which breaks o’s invariant and then starts a call chain as described above.
For the above example, our technique would instantiate the call-back tem-
plate such that method L is called last in a synthesized PUT. As a result,
N will be tested with a receiver whose invariant does not hold (because b is
true), but not with arbitrary inputs (because i is non-negative).

The algorithm for synthesizing PUTs from the call-back template is
analogous to GenFieldCombs (Alg. 3.2) and GenSubCombs (Alg. 3.3)
except that, on line 4, it selects Op callback methods. These can be over-
approximated by simply inspecting the static call graph of the UUT, which
is built by our implementation and includes information about dynamically-
bound calls.

An interesting side effect of the call-back template is that it improves
error reporting for call-back scenarios. Assume that method L in Fig. 3.15
did not re-establish the invariant by setting b to false. Traditional invariant
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class C {
private int i;
private bool b;

invariant 0 <= i && !b;

public void L(D d) {
b = true;
d.M(this);
b = false;

}

public void N() {
...

}
}

class D {
public void M(C c) {

...
c.N();
...

}
}

Figure 3.15: An example of the call-back scenario.

checking, as implemented in Pex, is sufficient to detect such problems while
testing L. It attempts to generate inputs for method L that violate the asser-
tions in L and all methods it calls, in particular, the check of the receiver’s
invariant at the end of N. A drawback of this approach is that traditional
invariant checking blames method N for the invariant violation although,
arguably, L should not have started the call chain while its receiver’s invari-

void CB(r, o, a0..aN) {
assume r != null;
assume o != null && o.Invariant ();
Op_0(r, ...);
...
Op_M(r, ...);
assume o.Invariant ();
Op_callback(r, ...);
assert o.Invariant ();

}

Figure 3.16: The call-back template.
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ant was violated. Our call-back template blames L for any failure of the
assertion of the invariant at the end of the PUT.

3.8 Related work

Our approach to testing object invariants is inspired by static verification
techniques [51]. Poetzsch-Heffter [123] pointed out that the traditional way
of checking the invariant of the receiver at the end of each method is insuf-
ficient. The checks he proposed are sufficient for sound verification, but not
suitable as unit test oracles since they make heavy use of universal quantifi-
cation. Some modular verification techniques for object invariants [99, 116]
handle the challenges mentioned in Sect. 3.1, but require annotation over-
head that does not seem acceptable for testing.

There are several test case generators for object-oriented programs that
rely on invariants but miss the violations presented here. AutoTest [110], a
random testing tool for Eiffel, follows the traditional approach of checking
the invariant of the receiver at the end of each method. Pex [135] follows
the same approach, but asserts the invariant of the receiver only at the
end of public methods. Korat [17] and Symbolic Java PathFinder [125] do
not check object invariants of the UUT at all; they use invariants only to
filter test inputs. Given an invariant, Korat generates all non-isomorphic
object structures, up to a small bound, for which the invariant holds. These
structures are subsequently passed as input to the UUT. Symbolic Java
PathFinder, built on top of the Java PathFinder model checking tool [138],
obtains input constraints through user-provided or inferred specifications.
All such tools may miss bugs when object invariants are violated and would,
thus, benefit from our technique.

Besides testing tools, there are also static techniques to check invariants.
Clousot [59] follows the traditional approach of checking the invariant of the
receiver at the end of each method [32] and, thus, misses violations due to the
scenarios presented here. Spec# [99] is a program verifier that handles all of
these scenarios by using an elaborate methodology for enforcing invariants.
However, this methodology requires a significant number of user-provided
annotations, and cannot handle certain correct programs since they do not
conform to the methodology of the tool.

Invariants can also be validated manually by asking programmers to
review user-provided or inferred invariants. For instance, Polikarpova et
al. [124] compared contracts (including invariants) that were provided by
programmers with ones that were inferred using Daikon. Their results show
that roughly a third of the inferred contracts were considered to be incor-
rect or irrelevant, while our approach rejected 89% of the inferred invariant
clauses for the application in Sect. 3.6.3. This might suggest that an auto-
matic technique is more thorough in detecting invariants that are not robust,
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although the difference could also be attributed to including different bench-
marks in the evaluation.

Work on synthesizing method call sequences to generate complex input
data is complementary to ours. In fact, such approaches could be applied in
place of the object construction mechanism in Pex to generate input objects
for our PUTs. In certain cases, this might reduce the length of the synthe-
sized tests since fewer candidate operations may be required to generate the
same objects. These approaches include a combination of bounded exhaus-
tive search and symbolic execution [140], feedback-directed random test-
ing [122], a combination of feedback-directed random testing with concolic
testing [64, 50], evolutionary testing [137], an integration of evolutionary and
concolic testing [84], and source code mining [133]. Moreover, Palus [143]
combines dynamic inference, static analysis, and guided random test gen-
eration to automatically create legal and behaviorally-diverse method call
sequences. In contrast to existing work, our technique synthesizes code that
specifically targets violations of object invariants. This allows for a signif-
icantly smaller search space restricted to three known scenarios in which
invariant violations may occur.

The work on method call synthesis that is most closely related to ours is
Seeker [134], an extension to Pex that combines static and dynamic analyses
to construct input objects for a UUT. More specifically, Seeker attempts to
cover branches that are missed by Pex. For this purpose, it statically iden-
tifies which branches, called pre-targets, should be covered first so that a
missed branch is also covered. Seeker then explores the pre-targets dynam-
ically, and eliminates those that do not actually lead to the missed branch.
As a result, a feedback loop is created between the static and dynamic anal-
yses. Even though this approach does not rely on object invariants, the
negation of an invariant could be regarded as a branch to be covered. How-
ever, some of the scenarios of Sect. 3.1 are not captured by Seeker’s static
analysis. For example, a multi-object invariant violation involves leaking
or capturing parts of an object’s representation, and might not necessarily
involve a sequence of missed branches. The same holds for subclassing. In
addition, Seeker cannot generate input objects by calling certain methods
multiple times, which may be crucial in detecting invariant violations.

3.9 Summary and remarks

We have presented a technique for detecting object invariant violations by
synthesizing PUTs. Given one or more classes under test, our technique uses
a set of templates to synthesize snippets of client code. We then symbolically
execute the synthesized code to generate inputs that might lead to invariant
violations. As a result, our technique can reveal critical defects in the UUT,
which go undetected by existing testing tools. We have demonstrated the
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effectiveness of our implementation by testing both programmer-provided
and inferred invariants. Our experiments found a large number of invariants
that can be violated.

The PUTs synthesized by our technique represent possible clients of the
UUT, although not necessarily clients that are present in a given program.
Therefore, the detected invariant violations might not actually manifest
themselves in the program, which is to be expected for unit testing. Never-
theless, invariant violations indicate that the public interface of the UUT is
not sufficiently robust. We evaluated the causes of invariant violations and
fixed them for the Boogie project.

The main motivation for our work is the use of invariants to generate
test inputs. By developing this technique for sufficiently testing object in-
variants as part of the oracle, we bring systematic testing one step closer to
verification. When invariants are not soundly checked by a static analysis,
our technique provides a principled alternative for subsequently evaluating
their correctness. However, our technique also has other applications. For
instance, one might test invariants before attempting to verify them stati-
cally.

Possible directions for future work are to improve the precision of the
static effect analysis in order to reduce the number of generated PUTs. It
would also be interesting to generalize our technique to handle static class
invariants [100], which constrain static fields.



Chapter 4

Dynamic test generation
with static fields and initializers

In Ch. 3, we showed how to generate test oracles for checking a certain class
of rich specifications, namely, object invariants, which might have not been
previously verified by a static analysis. In this chapter, we investigate how
to thoroughly check existing oracles in a program under test by efficiently
generating appropriate input data to the program. We specifically focus
on program inputs that have so far not been taken into account by exist-
ing testing tools, namely, static fields and the potentially non-deterministic
execution of static initializers.

In object-oriented programming, data stored in static fields is common
and potentially shared across the entire program. In case developers choose
to initialize a static field to a value different from the default value of its
declared type, they typically write initialization code. The initialization
code is executed by the runtime environment at some time prior to the
first use of the static field. The time at which the initialization code is
executed depends on the programming language and may be chosen non-
deterministically, which makes the semantics of the initialization code non-
trivial, even to experienced developers.

In C#, initialization code has the form of a static initializer, which may
be inline or explicit. The C# code below shows the difference: field f0 is
initialized with an inline static initializer, and field f1 with an explicit static
initializer.

class C {
// inline
static int f0 = 19;
static int f1;

// explicit
static C() {

f1 = 23;
}

}

77
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If any static initializer exists, inline or explicit, the C# compiler always
generates an explicit initializer. This compiler-generated explicit initializer
first initializes the static fields of the class that are assigned their initial
value with inline initializers, and then incorporates the code of the original
explicit initializer (if any) written by the developer, as shown below for class
C.

// compiler - generated
static C() {

f0 = 19;
f1 = 23;

}

However, the semantics of the compiler-generated static initializer depends
on whether the developer has indeed written an explicit initializer. If this is
the case, the compiler-generated initializer has precise semantics: the body
of the initializer is executed (triggered) exactly on the first access to any
(non-inherited) member of the class (that is, static field, static method,
or instance constructor). Otherwise, the compiler-generated initializer has
before-field-init semantics: the body of the initializer is executed no later
than the first access to any (non-inherited) static field of the class [53]. This
means that the initializer could be triggered by the runtime environment at
any point prior to the first static-field access.

In Java, static (initialization) blocks are the equivalent of explicit static
initializers with precise semantics in C# [76]. In C++, static initialization
occurs before the program entry point in the order in which the static fields
are defined in a single translation unit. However, when linking multiple
translation units, the order of initialization between the translation units is
undefined [52].

Even though static state is common in object-oriented programs and the
semantics of static initializers is non-trivial, automatic test case generators
do not take into account the potential interference of static state with a unit
under test. They may, thus, miss subtle errors. In particular, existing test
case generators do not solve the following issues:

1. Static fields as input: When a class is initialized before the execution
of the unit under test, the values of its static fields are part of the state
and should, thus, be treated as inputs to the unit under test. Existing
tools fail to do that and may miss bugs when the unit under test
depends on the values stored in static fields (for instance, to determine
control flow or evaluate assertions).

2. Initialization and uninitialization: Existing testing tools do not control
whether static initializers are executed before or during the execution
of the unit under test. The point at which the initializer is executed
may affect the test outcome since it may affect the values of static fields
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and any other variables assigned to by the static initializer. Ignoring
this issue may cause bugs to be missed. A related issue is that existing
tools do not undo the effect of a static initializer between different
executions of the unit under test such that the order of executing tests
may affect their outcomes [142].

3. Eager initialization: For static initializers with before-field-init seman-
tics, a testing tool should not only control whether the initializer is
run before or during test execution; in the latter case, it also needs
to explore all possible program points at which initialization of a class
may be triggered (non-deterministically).

4. Initialization dependencies: The previous issues are further compli-
cated by the fact that the order of executing static initializers may
affect the resulting state due to their side effects. Therefore, a testing
tool needs to consider all relevant execution orders so as not to miss
bugs.

We address these issues by designing and implementing a novel technique
in automatic test case generation based on dynamic symbolic execution [70,
20] and static analysis. Our technique treats static fields as input to the unit
under test and systematically controls the execution of static initializers.
The dynamic symbolic execution collects constraints describing the static-
field inputs that will cause the unit under test to take a particular branch in
the execution or violate an assertion. It also explores the different program
points at which a static initializer might be triggered. The static analysis
improves performance by pruning program points at which the execution of
a static initializer does not lead to any new behaviors of the unit under test.

We have implemented [55] our technique as an extension to the testing
tool Pex [135] for .NET. We have applied it on a suite of open-source appli-
cations and found errors that go undetected by existing test case generators.
Our results show that this problem is relevant in real code, indicate which
kinds of errors existing techniques miss, and demonstrate the effectiveness
of our technique.

Outline. This chapter is organized as follows. Sect. 4.1 explains how we
explore static input state where all relevant classes are initialized. Sects. 4.2
and 4.3 show how we handle static initializers with precise and before-field-
init semantics, respectively. Sect. 4.4 demonstrates the effectiveness of our
technique by applying it on a suite of open-source applications, and Sect. 4.5
reviews related work.

4.1 Static fields as input

In this section, we address the issue of treating static fields of initialized
classes as input to the unit under test. The case that a class is not yet
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1 public class C {
2 public static int F;
3

4 static C() {
5 F = 0;
6 }
7

8 public static void M() {
9 F++;

10 if (F == 2) abort;
11 }
12 }

Figure 4.1: A C# method accessing static state. For all branches
to be covered, dynamic symbolic execution must treat static field
F as an input to method M and collect constraints on its value.

initialized is discussed in the next two sections.
The example in Fig. 4.1 illustrates the issue. Existing automatic test

case generators do not treat static field F of class C as input to method M.
In particular, testing tools based on dynamic symbolic execution generate
only one unit test for method M since there are no branches on a method
parameter or receiver of M. Given that the body of method M contains a
branch on static field F (line 10), these tools achieve low code coverage of M
and potentially miss bugs, like the abort-statement in this example.

Dynamic symbolic execution

To address this issue, we treat static fields as inputs to the method under test
and assign to them symbolic variables. This causes the dynamic symbolic
execution to collect constraints on the static fields, and use these constraints
to generate inputs that force the execution to explore all branches in the
code.

Treating all static fields of a program as inputs is not practical. It is
also not modular and defeats the purpose of unit testing. Therefore, we
determine at runtime which static fields are read during the execution of a
unit test and treat only those as inputs to the unit under test.

We implement this approach in a function DSE(UUT , IC), which per-
forms dynamic symbolic execution of the unit under test UUT . IC is the
set of classes that have been initialized before the execution of the unit un-
der test. For all other classes, initialization may be triggered during the
execution of the generated unit tests. The DSE function treats the static
fields of all classes in the IC set as symbolic inputs. It returns the set TC
of classes whose initialization is triggered before or during the execution of
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the generated unit tests, that is, TC is a superset of IC . The static fields
of the classes in TC include all static fields that are read by the unit tests.
We call the DSE function repeatedly to ensure that the static fields of all
of these classes are treated as inputs to the unit under test. The precise
algorithm for this exploration as well as more details of the DSE function
are described in the next section.

Consider the dynamic symbolic execution DSE(M, {}) of method M from
Fig. 4.1. This dynamic symbolic execution generates one unit test that calls
method M. The execution of this unit test triggers the initialization of class C
due to the access to static field F (line 9). Therefore, function DSE returns
the singleton set {C}. As a result, our exploration algorithm will call DSE(M,
{C}). This second dynamic symbolic execution treats static field F as a sym-
bolic input to method M and collects constraints on its value. For instance,
assuming that the first unit test of the second dynamic symbolic execution
executes M in a state where F is zero, the conditional statement on line 10
introduces the symbolic constraint ¬(F + 1 = 2), where F is the symbolic
variable associated with F. The dynamic symbolic execution subsequently
negates and solves the symbolic constraints on M’s inputs. Consequently, a
second unit test is generated that first assigns the value one to field F and
then calls M. The second unit test now reaches the abort-statement and re-
veals the bug. We will see in the next section that, even though the second
call to DSE is the one that explores the unit under test for different values
of static field F, the first call to DSE is also important; besides determin-
ing which static fields should be treated symbolically, it is also crucial in
handling uninitialized classes.

Discussion of correctness guarantees

As usual with the automatic generation of unit tests, the generated static-
field inputs might not occur in any actual execution of the entire program;
to avoid false positives, developers may write specifications (preconditions
or invariants) that further constrain the possible values of these inputs.

Determining at runtime which static fields to treat as inputs depends on
the soundness of the underlying dynamic symbolic execution engine of the
DSE function. For example, when the dynamic symbolic execution engine
cannot generate inputs that satisfy a particular constraint, or when all paths
in a unit under test cannot be explored in a reasonable amount of time, we
might fail to consider as inputs all static fields read by the unit under test.

4.2 Initialization with precise semantics

In the previous section, we addressed the issue of treating static fields of
initialized classes as input to the unit under test. In this section, we ex-
plain how our technique (1) controls the execution of static initializers and
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(2) explores executions that trigger static initializers. Here, we consider only
static initializers with precise semantics; initializers with before-field-init se-
mantics are discussed in the next section.

4.2.1 Controlling initialization

In order to explore the interaction between a unit under test and static ini-
tializers, we must be able to control for each unit test which classes are ini-
tialized before its execution and which ones are not. This could be achieved
by restarting the runtime environment (virtual machine) before each execu-
tion of a unit test and then triggering the initialization of certain classes. To
avoid the high performance overhead of this näıve approach, we instrument
the unit under test such that the execution simulates the effects of triggering
an initializer and restarting the runtime environment.

Initialization

We insert calls to the dynamic symbolic execution engine at all points in
the entire program where a static initializer could be triggered according
to its semantics. For static initializers with precise semantics, we insert in-
strumentation calls to the dynamic symbolic execution engine on the first
access to any (non-inherited) member of their class. Where to insert these
instrumentation calls is determined using the inter-procedural control-flow
graph of the unit under test. This means that we might insert an instru-
mentation call at a point in the code where, along certain execution paths,
the corresponding class has already been initialized. Note that each .NET
bytecode instruction triggers at most one static initializer; therefore, there
is at most one instrumentation call at each program point.

For an exploration DSE(UUT , IC), the instrumentation calls in UUT
have the following effect. If the instrumentation call is made for a class C
that is in the IC set, then C has already been initialized before executing
UUT and, thus, the instrumentation call has no effect. Otherwise, if this is
the first instrumentation call for C in the execution of this unit test, then we
use reflection to explicitly invoke C ’s static initializer. That is, we execute
the static initializer no matter if the runtime environment has initialized C
during the execution of a previous unit test or not. Moreover, we add class
C to the TC set of classes returned by function DSE. If the same unit test
has already initialized C during its execution, the instrumentation call has
no effect.

In method M from Fig. 4.1, we add instrumentation calls for class C be-
fore the two accesses to static field F, that is, between lines 8 and 9 and
between lines 9 and 10. (Our implementation omits the second instrumen-
tation call in this example, but this is not always possible for methods with
more interesting control flow.) Consider again the exploration DSE(M, {}).
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During the execution of the generated unit test, the instrumentation call at
the first access to static field F calls C’s static initializer such that the unit
test continues with F = 0. The instrumentation call for the second access
to F has no effect since this unit test has already initialized class C. DSE
returns the set {C}, as described above.

Note that an explicit call to a static initializer is itself an access to a class
member and, thus, causes the runtime environment to trigger another call
to the same initializer. To prevent the initializer from executing twice (and
thereby duplicating its side effects), we instrument each static initializer
such that its body is skipped on the first call, as shown below.

static C() {
if (/* this is the first call */)

return;
// body of original static initializer

}

This instrumentation decouples the execution of a unit test from the
initialization behavior of the runtime environment. Static initializers trig-
gered by the runtime environment have no effect and, thus, do not actually
initialize the classes, whereas our explicit calls to static initializers initialize
the classes even in cases where the runtime environment considers them to
already be initialized.

Uninitialization

To avoid the overhead of restarting the runtime environment after each
execution of a unit test, we simulate the effect of a restart through code
instrumentation. Since our technique does not depend on the behavior of
the runtime environment to control class initialization, we do not have to
actually uninitialize classes. It is sufficient to reset the static fields of all
classes initialized by the unit under test to the default values of their declared
types after each execution of a unit test. Therefore, the next execution of
the static initializer during the execution of the next unit test behaves as if
it ran on an uninitialized class.

Existing automatic test case generators (with the exception of the ran-
dom testing tool JCrasher [42] for Java) do not reset static fields to their
initial values between test runs. For code like in Fig. 4.1, Pex emits a warn-
ing that the unit under test might not leave the dynamic symbolic execution
engine in a clean state. Therefore, the deterministic re-execution of the gen-
erated unit tests is not guaranteed. In fact, the Pex documentation suggests
that the tester should mock all interactions of the unit under test with static
state. However, this requires the tester to be aware of these interactions and
renders Pex significantly less automatic.
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4.2.2 Dynamic symbolic execution

The core idea of our exploration is as follows. Assume that we knew the set
classes of all classes whose initialization may be triggered by executing the
unit under test UUT . For each subset IC ⊆ classes, we perform dynamic
symbolic execution of UUT such that the classes in IC are initialized before
executing UUT and their static fields are symbolic inputs. The classes in
classes \ IC are not initialized (that is, their initializers may be triggered
when executing a unit test). We can then explore all possible initialization
behaviors of UUT by testing it for each possible partition of classes into
initialized and uninitialized classes.

Algorithm

Alg. 4.1 is a dynamic symbolic execution algorithm that implements this core
idea, but also needs to handle the fact that the set of relevant classes is not
known upfront, but determined during the execution. Function Explore
takes as argument a unit under test UUT , which has been instrumented as
described above. Local variable classes is the set of relevant classes deter-
mined so far, while local variable explored is the set of sets of classes that
have been treated as initialized in the exploration so far; that is, explored
keeps track of the partitions that have been explored. As long as there
is a partition that has not been explored (that is, a subset IC of classes
that is not in explored), the algorithm picks any such subset and calls the
dynamic symbolic execution function DSE, where classes in IC are initial-
ized and their static fields are treated symbolically. If this function detects
any classes that are initialized during the dynamic symbolic execution, they
are added to classes. The Explore function terminates when all possible
subsets of the relevant classes have been explored.

Algorithm 4.1: Dynamic symbolic execution for exploring
the interactions of a unit under test with static state.

1 function Explore(UUT )
2 classes ← {}
3 explored ← {}
4 while ∃IC ⊆ classes · IC 6∈ explored do
5 IC ← choose({IC | IC ⊆ classes ∧ IC 6∈ explored})
6 TC ← DSE(UUT , IC )
7 classes ← classes ∪ TC
8 explored ← explored ∪ {IC}
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Initialization dependencies

Alg. 4.1 enumerates all combinations of initialized and uninitialized classes
in the input state of the method under test, that is, all possible partitions
of classes into IC and classes \ IC . This includes combinations that cannot
occur in any actual execution. If the static initializer of a class E triggers
the static initializer of a class D, then there is no input state in which E is
initialized, but D is not. To avoid such situations and, thus, false positives
during testing, we trigger the static initializers of all classes in IC before
invoking the method under test. In the above example, this ensures that
both E and D are initialized in the input state of the method under test,
and D’s initializer is not triggered during the execution of the method. Since
the outcome of running several static initializers may depend on the order
in which they are triggered, we explore all orders among dependent static
initializers. We determine dependent initializers with a static analysis that
approximates their read and write effects. This analysis is described in more
detail in the following section.

Triggering the static initializers of the classes in IC happens at the be-
ginning of the set-up code that precedes the invocation of the method under
test in every generated unit test. This set-up code is also responsible for
creating the inputs for the method under test, for instance, for allocating
objects that will be passed as method arguments. Therefore, the set-up
code may itself trigger static initializers, for instance, when a constructor
reads a static field. To handle the dependencies between set-up code and
initialization, we treat set-up code as a regular part of the unit test (like
the method under test itself), that is, apply the same instrumentation and
explore all possible execution paths during dynamic symbolic execution.

Handling dependencies between static initializers is particularly useful
in C++, where static initialization happens before the program entry point.
When linking multiple translation units, the order of initialization between
the translation units is undefined. By exploring all orders of execution of de-
pendent initializers, developers can determine dependencies that may crash
a program before its entry point is even reached.

Example

The example in Fig. 4.2 illustrates our approach. The assertion on line 13
fails only if N is executed in a state in which class D is initialized (such that
the if-statement may be executed), the static field G is negative (such that
the if-statement will be executed and E’s initialization will be triggered),
and class E is not initialized (such that its static initializer will affect the
value of G).

We will now explain how Alg. 4.1 reveals such subtle bugs. In the first
iteration, IC is the empty set, that is, no class is considered to be initialized.
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1 public class D {
2 public static int G;
3

4 static D() {
5 G = 0;
6 }
7

8 public static void N() {
9 if (G < 0) {

10 E.H++;
11 G = -G;
12 }
13 assert 0 <= G;
14 }
15 }
16

17 public class E {
18 public static int H;
19

20 static E() {
21 H = 0;
22 D.G = 1;
23 }
24 }

Figure 4.2: A C# example illustrating the treatment of static ini-
tializers with precise semantics. We use the assert-keyword to
denote Code Contracts [58] assertions. The assertion on line 13
fails only if N is called in a state where D is initialized, but E is not.

Therefore, when the DSE function executes method N, class D is initialized
right before line 9. Consequently, static field G is zero, the if-statement is
skipped, and the assertion holds. DSE returns the set {D}.

In the second iteration, IC will be {D}, that is, the static initializer of
class D is triggered by the set-up code, and static field G is treated symbol-
ically. Since there are no constraints on the value of G yet, the dynamic
symbolic execution executes method N with an arbitrary value for G, say,
zero. (Note that when there are no constraints on a static-field input, our
implementation does not assign an arbitrary value to the static field, but
retains the value assigned to the field by the static initializer of its class.)
This unit test passes and produces the constraint G < 0 for the next unit
test, where G is the symbolic variable associated with G. For any such value
of G, the unit test will now enter the if-statement and initialize class E before
the access to E’s static field H. This initialization assigns one to G such that
the subsequent negation makes the assertion fail, and the bug is detected.
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The call to the DSE function in the second iteration returns {D, E}.
The two remaining iterations of Alg. 4.1 cover the cases in which IC

is {E} or {D, E}. The former case illustrates how we handle initialization
dependencies. The static initializer of class E accesses static field G of class
D. Therefore, when E’s initializer is called by the set-up code of the generated
unit test, D’s initializer is also triggered. (Recall that the set-up code and all
static initializers are instrumented like the method under test). This avoids
executing N in the impossible situation where E is initialized, but D is not.
The rest of this iteration is analogous to the first iteration, that is, class D
gets initialized (this time while executing the set-up code), the if-statement
is skipped, and the assertion holds.

Finally, for IC = {D, E}, all relevant classes are initialized. The dynamic
symbolic execution will choose negative and non-negative values for G. The
assertion holds in either case.

Discussion of correctness guarantees

Similarly to the previous section, our approach might generate unit tests
for executions that do not occur in the entire program. For instance, in the
context of the entire program, the static initialization of a particular class
could always be triggered before the execution of a unit under test, and
never during its execution. To avoid false positives, developers could write
a new kind of specifications (e.g., in the form of preconditions) that express
which classes are required to be initialized before the execution of a unit
under test.

Determining at runtime the set of all classes whose initialization may
be triggered by executing the unit under test depends on the soundness of
the underlying dynamic symbolic execution engine of the DSE function, as
discussed in the previous section for treating static fields as inputs.

Applications

Alg. 4.1 can be implemented in any testing tool based on dynamic symbolic
execution. We have implemented it in Pex, whose existing dynamic symbolic
execution engine is invoked by our DSE function. Alg. 4.1 could also be
implemented in jCUTE [127] for testing how static fields and static blocks
in Java interact with a unit under test. Moreover, this algorithm can be
adjusted to perform all dynamic tasks statically for testing tools based on
static symbolic execution. For instance, Symbolic Java PathFinder [125]
could then be extended to take static state into account.

By treating static fields symbolically, our technique gives meaning to
specifications that refer to static fields, like assertions or preconditions. For
example, an assertion about the value of a static field is now treated as a
branch by the symbolic execution. One could also support preconditions
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that express which classes are required to be initialized before the execution
of a method.

As part of the integration with unit testing frameworks, like NUnit for
.NET and JUnit for Java, many automatic test case generators support
defining set-up methods for a unit under test. Such methods allow testers
to initialize and reset static fields manually. Since set-up methods might
express preconditions on static fields (in the form of code), we extended our
technique not to override the functionality of these methods. That is, when
a set-up method assigns to a static field of a class C , we do not trigger the
initialization of class C and do not treat its static fields symbolically. We do,
however, reset the values of all static fields in class C after each execution
of a unit test such that the next execution of the set-up method starts in a
fresh state.

This technique could also be used in existing unit testing frameworks
for detecting whether a set-up method allows for any static fields to retain
their values between runs of the unit under test. This is achieved by de-
tecting which static fields are modified in the unit under test but have not
been manually set up. If such fields exist, an appropriate warning could be
emitted by the framework.

4.3 Initialization with before-field-init semantics

The technique presented in the previous section handles static initializers
with precise semantics. Static initializers with before-field-init semantics,
which may be triggered at any point before the first access to a static field
of the class, impose two additional challenges. First, they introduce non-
determinism because the static initializer of any given class may be trig-
gered at various points in the unit under test. Second, in addition to the
classes that have to be initialized in order to execute the unit under test,
the runtime environment could in principle choose to trigger any other static
initializer with before-field-init semantics, even initializers of classes that are
completely unrelated with the unit under test. In this section, we describe
how we solve these challenges. Our solution uses a static analysis to deter-
mine the program points at which the execution of a static initializer with
before-field-init semantics may affect the behavior of the unit under test.
Then, we use a modified dynamic symbolic execution function to explore
each of these possibilities.

As the running example of this section, consider method P in Fig. 4.3.
The static initializer of class D has before-field-init semantics and must be
executed before the access to field D.Fd on line 10. If the initializer runs on
line 5 or 9, then the assertion on line 8 succeeds. If, however, the initializer
runs on line 7, the assertion fails because the value of field C.Fc has been
incremented (line 15) and is no longer equal to two. This bug indicates
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1 public static class C {
2 static int Fc = 0;
3

4 public static void P() {
5 // static initializer of ‘D’
6 Fc = 2;
7 // static initializer of ‘D’
8 assert Fc == 2;
9 // static initializer of ‘D’

10 if (D.Fd == 3)
11 Fc = E.Fe;
12 }
13

14 static class D {
15 public static int Fd = C.Fc++;
16 }
17

18 static class E {
19 public static int Fe = 11;
20 }
21 }

Figure 4.3: A C# example illustrating the non-determinism intro-
duced by static initializers with before-field-init semantics. The
assertion on line 8 fails if D’s static initializer is triggered on line 7.

that the unit under test is affected by the non-deterministic behavior of a
static initializer with before-field-init semantics. Such errors are particularly
difficult to detect with standard unit testing since they might not manifest
themselves reproducibly.

Critical points

A static initializer with before-field-init semantics may be triggered at any
point before the first access to a static field of its class. To reduce the non-
determinism that needs to be explored during testing, we use a static analysis
to determine the critical points in a unit under test, that is, those program
points where triggering a static initializer might actually affect the execution
of the unit under test. All other program points can be ignored during
testing because no new behavior of the unit under test will be exercised.

A critical point is a pair consisting of a program point i and a class C .
It indicates that there is an instance or static field f that is accessed both
by the instruction at program point i and the static initializer of class C
such that the instruction, or the static initializer, or both modify the field.
In other words, a critical point indicates that the overall effect of executing
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the static initializer of C and the instruction at i depends on the order in
which the execution takes place. Moreover, a pair (i,C ) is a critical point
only if program point i is not dominated in the control-flow graph by an
access to a static field of C , that is, if it is possible to reach program point
i without first initializing C .

In the example of Fig. 4.3, there are five critical points: (6, C), (6, D),
(8, D), (10, D), and (11, E), where we denote program points by line numbers.
Note that even though the static initializer of class E could be triggered
anywhere before line 11, there is only one critical point for E because the
behavior of method P is the same for all these possibilities.

We determine the critical points in a method under test in two steps.
First, we use a simple static analysis to compute, for each program point i,
the set of classes with before-field-init initializers that might get triggered
at point i. This set is denoted by prospectiveClasses(i). In principle, it
includes all classes with before-field-init initializers in the entire program,
except those that are definitely triggered earlier, that is, before i. Since it is
not feasible to consider all of them during testing, we focus on those classes
whose static fields are accessed by the method under test. This is not a
restriction in practice: even though the Common Language Infrastructure
standard [53] allows more initializers to be triggered, the Common Language
Runtime implementation, version 4.0, triggers the initialization of exactly
the classes whose static fields are accessed by the method. Therefore, in
Fig. 4.3, prospectiveClasses(8) is the set {D, E}.

Second, we use a static analysis to determine for each program point i
and class C in prospectiveClasses(i) whether (i,C ) is a critical point. For
this purpose, the static analysis approximates the read and write effects of
the instruction at program point i and of the static initializers of all classes in
prospectiveClasses(i). Recall from the previous chapter that the read effect
of a statement is the set of fields read by the statement or by any method
the statement calls directly or transitively. Analogously, the write effect of
a statement is the set of fields written by the statement or by any method
the statement calls directly or transitively. The pair (i,C ) is a critical point
if (1) i’s read effect contains a (static or instance) field f that is included
in the write effect of C ’s static initializer, or (2) i’s write effect contains a
(static or instance) field f that is included in the read or write effect of C ’s
static initializer. For instance, for line 8 of our example, (8, D) is a critical
point because the statement on line 8 reads field Fc, which is written by
the static initializer of class D, and D is in prospectiveClasses(8). However,
even though class E is in prospectiveClasses(8), (8, E) is not a critical point
because the effects of the statement on line 8 and of E’s static initializer are
disjoint.

As in the previous chapter, read and write effects are sets of fully-
qualified field names, which allows us to approximate them without requiring
alias information. Our static effect analysis is inter-procedural. It explores



4.3. Initialization with before-field-init semantics 91

the portion of the whole program it can access (in particular, the entire
assembly of the method under test) to compute a call graph that includes
information about dynamically-bound calls.

A critical point (i,C ) indicates that the dynamic symbolic execution
should trigger the initialization of class C right before program point i.
However, C ’s static initializer might lead to more critical points, because its
effects may overlap with the effects of other static initializers and because
it may trigger the initialization of additional classes, which, thus, must be
added to prospectiveClasses. To handle this interaction, we iterate over all
options for critical points and, for each choice, inline the static initializer
and recursively invoke our static analysis.

Dynamic symbolic execution

We instrument the unit under test to include a marker for each critical
point (i,C ). We enhance the DSE function called from Alg. 4.1 to trigger
the initialization of class C when the execution hits such a marker. If there
are several markers for one class, the DSE function explores all paths of
the unit under test for each possible option. Conceptually, one can think of
adding an integer parameter nC to the unit under test and interpreting the
n-th marker for class C as a conditional statement if (nC == n) { initC },
where initC calls the static initializer of class C if it has not been called
earlier during the execution of the unit test. Dynamic symbolic execution
will then explore all options for the initialization of a class C by choosing
different values for the input nC .

Since (8, D) is a critical point in our example, DSE will trigger the ini-
tialization of class D right before line 8 during the symbolic execution of
method P. As a result, the assertion violation is detected.

Discussion of correctness guarantees

Our technique for handling static initializers with before-field-init semantics
may yield irrelevant critical points (for instance, when an instruction and a
static initializer both have an instance field f in their effects, but at runtime,
access f of different objects) and, thus, produce redundant unit tests.

Our technique may also miss critical points (for instance, when it fails to
consider a method override in an assembly that is not accessible to the static
analysis) and, thus, the generated unit tests might not explore all possible
behaviors.

As a final remark, note that, even though errors detected with this tech-
nique are possible according to the Common Language Infrastructure stan-
dard, they may manifest themselves very rarely in practice. This might also
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be the case for certain classes of concurrency errors, but does not degrade
the value of techniques for their detection.

4.4 Experimental evaluation

We have evaluated the effectiveness of our technique on 30 open-source ap-
plications written in C#. These applications were arbitrarily selected from
applications on Bitbucket, CodePlex, and GitHub. Our suite of applications
contains a total of 423,166 methods, 47,515 (11%) of which directly access
static fields. All classes of these applications define a total of 155,632 fields
(instance and static), 28,470 (18%) of which are static fields; 14,705 of the
static fields (that is, 9% of all fields) are static read-only fields. There is a
total of 1,992 static initializers, 1,725 (87%) of which have precise semantics,
and 267 (13%) of which have before-field-init semantics.

To determine which of the 47,515 methods that directly access static
fields are most likely to have bugs, we implemented a lightweight scoring
mechanism. This mechanism statically computes a score for each method
and ranks all methods by their score. The score for each method is based on
vulnerability and accessibility scores. The vulnerability score of a method
indicates whether the method directly accesses static fields and how likely
it is to fail at runtime because of a static field, for instance, due to failing
assertions, or division-by-zero and arithmetic-overflow exceptions involving
static fields. This score is computed based on nesting levels of expressions
and how close a static field is to an operation that might throw an exception.
The accessibility score of a method indicates how accessible the method
and the accessed static fields are from potential clients of the application.
In particular, this score indicates the level of accessibility from the public
interface of the application, and suggests whether a potential bug in the
method is likely to be reproducible by clients of the application. The final
score for each method is the product of its vulnerability and accessibility
scores.

To compare the number of errors detected with and without our tech-
nique, we ran Pex with and without our implementation on all methods
with a non-zero score. There were 454 methods with a non-zero score in
the 30 applications. Tab. 4.1 summarizes the results of our experiments on
the applications in which bugs were detected. The first column of the table
shows the name of each application. The second column shows the total
number of methods with a non-zero score for each application. The two
rightmost columns of the table show the number of errors that our tech-
nique detected in these methods. These errors do not include errors already
detected by Pex without our technique; they are all caused by interactions
of the methods under test with static state.

More specifically, column “init” shows the number of errors detected by
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Application Number Number of errors
of methods init init&inputs

Boggle1 60 - 24
Boogie2 21 - 6
Ncqrs3 38 1 1
NRefactory4 37 - 9
Scrabble5 64 - 2
Total 220 1 42

Table 4.1: Summary of our experiments. The first column shows
the name of each application. The second column shows the to-
tal number of tested methods from each application. The two
rightmost columns show the number of errors detected without
and with treating static fields as inputs to the unit under test,
respectively.

simply triggering static initializers at different points in the code. These
errors are, thus, caused by calling static initializers (with both semantics)
before or during the execution of the unit tests without treating static fields
as inputs. Column “init&inputs” shows the number of errors detected by our
technique, that is, by treating static fields symbolically and systematically
controlling the execution of static initializers.

As shown in the last column of the table, our technique detected 42
bugs that are not found by Pex. Related work suggests that existing test
case generators would not find these bugs either (see Sect. 4.5). A failed
unit test does not necessarily mean that the application actually contains
code that exhibits the detected bug; this uncertainty is inherent to unit
testing since methods are tested in isolation rather than in the context of
the entire application. However, all of the detected bugs may surface during
maintenance or code reuse. In particular, for 25 of the 42 detected bugs,
both the buggy method and the accessed static fields are public. Therefore,
when the applications are used as libraries, client code can easily exhibit
these bugs.

We have also manually inspected static initializers from all 30 applica-
tions and distilled their three most frequent usage patterns. Static initializ-
ers are typically used for:

1. Initializing static fields of the same class to constants or simple com-
putations; these initializers are often inline initializers, that is, have

1
http://boggle.codeplex.com, rev: 20226

2
http://boogie.codeplex.com, rev: e80b2b9ac4aa

3
http://github.com/ncqrs/ncqrs, rev: 0102a001c2112a74cab906a4bc924838d7a2a965

4
http://github.com/icsharpcode/NRefactory, rev: ae42ed27e0343391f7f30c1ab250d729fda9f431

5
http://wpfscrabble.codeplex.com, rev: 20226

http://boggle.codeplex.com
http://boogie.codeplex.com
http://github.com/ncqrs/ncqrs
http://github.com/icsharpcode/NRefactory
http://wpfscrabble.codeplex.com
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before-field-init semantics. However, since they neither read static
fields of other classes nor have side effects besides assigning to the
static fields of their class, the non-determinism of the before-field-init
semantics does not affect program execution.

2. Implementing the singleton pattern in a lazy way; these initializers
typically have precise semantics.

3. Initializing public static fields that are mutable; these fields are of-
ten meant to satisfy invariants such as non-nullness. However, since
the fields are public, these invariants can easily be violated by client
code or during maintenance. This pattern is especially susceptible to
static-field updates after the initialization, a scenario that we cover by
treating static fields as inputs of the unit under test.

In none of these common usage patterns do initializers typically have side
effects besides assigning to static fields of their class. This might explain
why we did not find more bugs that are caused by static initialization alone
(column “init” in Tab. 4.1); it is largely irrelevant when such initializers are
triggered.

An interesting example of the third pattern was found in application
Boggle, which uses the Caliburn.Micro library. This library includes a public
static field LogManager.GetLog, which is initialized by LogManager’s static
initializer to a non-null value. GetLog is read by several other static initial-
izers, for instance, the static initializer of class Coroutine, which assigns
the value of GetLog to a static field Log. If client code of the Caliburn.Micro
library assigned null to the public GetLog field before the initialization of
class Coroutine is triggered, the application might crash; Coroutine will
then initialize Log with the null value, which causes a null-pointer exception
when Coroutine’s BeginExecute method dereferences Log. Our technique
reveals this issue when testing BeginExecute; it explores the possibility that
LogManager is initialized before BeginExecute is called whereas Coroutine
is not, and it treats GetLog as an input to BeginExecute such that the
dynamic symbolic execution will choose null as a possible value. Note that
this issue is indeed an initialization problem. Since Coroutine.Log is not
public, a client could not cause this behavior by assigning null directly to
Log.

4.5 Related work

Most existing automatic test case generation tools ignore the potential in-
teractions of a unit under test with static state. These tools range from
random testing (like JCrasher [42] for Java), over feedback-directed random
testing (like Randoop [122] for Java), to symbolic execution (like Symbolic
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Java PathFinder [125]) and dynamic symbolic execution (like Pex for .NET
or jCUTE [127] for Java).

To the best of our knowledge, existing testing tools such as the above
do not take into account the interference of static state with a unit under
test, with the exception of JCrasher. JCrasher ensures that each test runs
on a “clean slate”; it resets all static state initialized by any previous test
runs either by using a different class loader to load each test, or by rewriting
the program under test at load time to allow re-initialization of static state.
Nevertheless, JCrasher does not address the four issues described at the
beginning of this chapter.

Unit testing frameworks, like NUnit for .NET and JUnit for Java, require
the tester to manage static state manually in set-up methods in order to
ensure the clean execution of the unit tests. Therefore, the tester must
be aware of all interactions of the unit under test with static state. As a
result, these frameworks become significantly less automatic for unit tests
that interact with static state.

Static analyzers for object-oriented languages, such as Clousot [59] for
.NET and ESC/Java [62] for Java, do not reason about static initialization.
An extension of Spec# [100] supports static verification in the presence of
static initializers, but requires significant annotation overhead.

We are, therefore, not aware of any tool that automatically takes static
state into account and detects the kinds of errors described in this chapter.

4.6 Summary and remarks

To automatically check the potential interactions of static state with a unit
under test and thoroughly evaluate its oracles, we have proposed a novel
technique in automatic test case generation based on static analysis and
dynamic symbolic execution. Our technique treats static fields as input
to the unit under test and systematically controls the execution of static
initializers. We have implemented this technique as an extension to Pex
and used it to detect errors in open-source applications. Our results shed
light on which kinds of errors are currently missed by existing automatic test
case generators, demonstrate the effectiveness of our technique, and bring
us a step closer to our goal of automatically providing evidence on whether
a program is correct.

As future work, one could prune redundant explorations more aggres-
sively; this is promising since our evaluation suggests that many static
initializers have very small read and write effects and, thus, very limited
interactions with the unit under test.
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Chapter 5

Delfy: Dynamic test generation for Dafny

In Ch. 2, we presented the benefits of effectively combining an unsound
static analysis with systematic testing. Here, we discuss how beneficial it
is to integrate a dynamic test generation tool into a sound and interactive
verifier. More specifically, we present Delfy, a dynamic test generation tool
for the Dafny programming language. In addition to handling advanced
constructs of the language, Delfy is designed both to complement and be
complemented by the Dafny verifier.

When complementing the verifier, Delfy can reduce the effort of debug-
ging spurious verification errors. In particular, take an assertion that Dafny
fails to verify. If the assertion is indeed failing and Delfy terminates in a
sound search, then a concrete counterexample is generated. If, however,
Delfy’s exploration is sound and no counterexample is generated, then the
verification error for that assertion is definitely spurious.

When being complemented by the verifier, Delfy can reduce the effort
of trying to verify an incorrect program. Users of verifiers typically start
by writing the most general specifications first, for instance, a method post-
condition. They subsequently attempt to verify these general specifications
by providing more information, such as loop invariants or assertions in the
method body, which serve as auxiliary specifications for making a proof go
through. In such common situations, Delfy can provide early feedback as
to whether the original, general specifications hold in the first place. More-
over, in case Delfy terminates in a sound search without violating these
specifications, they have been proven correct. Consequently, all auxiliary
specifications are no longer necessary in order to prove, say, a method post-
condition, thus reducing the annotation overhead for the user. Not only
does this increase user productivity, but also speeds up the verification time
by reducing the number of proof obligations for the verifier.

Outline. This chapter is organized as follows. In Sect. 5.1, we briefly
present Dafny, and in Sect. 5.2, we give an overview of Delfy and explain
how it handles interesting language and specification constructs of Dafny.
Sects. 5.3 and 5.4 discuss the benefits of integrating a dynamic test genera-
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tion tool into a verifier, and Sect. 5.5 describes the usage environment of this
integration. We compare Delfy to a static verification debugger in Sect. 5.6,
and we discuss related work in Sect. 5.7.

5.1 Dafny

Dafny [98] is a programming language with built-in specification constructs
to support sound static verification. The Dafny program verifier is powered
by the Boogie verifier [11] and the Z3 constraint solver [47], and targets
functional correctness of programs.

Dafny is an imperative, sequential, class-based programming language
that builds in specification constructs, including pre- and postconditions,
frame specifications (that is, read and write sets), loop invariants, and ter-
mination metrics. To allow more expressive specifications, the language
also offers updatable ghost variables, non-deterministic statements, uninter-
preted functions, and types like sets and sequences. The Dafny compiler
produces C# code but omits all specifications and ghost state, which are
used only during verification.

The Dafny verifier is preferably run in an integrated development en-
vironment (IDE) [103, 104], which extends Microsoft Visual Studio. The
verifier runs in the background of the IDE while the programmer is edit-
ing the program. Consequently, as soon as the verifier produces errors, the
programmer may respond by changing the program accordingly to achieve
a proof of functional correctness.

5.2 Dynamic test generation for Dafny

Delfy implements [56, 132] systematic dynamic test generation as shown in
Alg. 1.1 of Sect. 1.1, with the only difference that the concrete and symbolic
executions of a unit under test happen simultaneously. In particular, we
have created a new compiler from Dafny directly to .NET bytecode, which
is much more efficient than the existing Dafny-to-C# compiler. The new
compiler inserts call-backs to Delfy in the compiled code. These call-backs
pass to Delfy the Dafny code that should be executed symbolically, that is,
the symbolic execution happens on the Dafny level. In other words, given
a Dafny unit under test, Delfy compiles the code into .NET bytecode and
runs the compiled unit under test. The symbolic execution in Delfy runs
whenever a call-back occurs in the code, and all constraints are solved with
Z3. Delfy implements various exploration strategies, namely, depth-first,
breadth-first, and generational-search strategies.

As we mentioned in Sect. 5.1, the existing Dafny compiler omits all
specifications, which are used only during verification. For this reason, we
extended the support of our new compiler to translate Dafny specifications
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into Code Contracts [58], including loop invariants, termination metrics,
pre- and postconditions, assumptions, assertions, and old-expressions. (Old-
expressions can be used in postconditions, and stand for expressions evalu-
ated on entry to a method.) The Code Contracts library methods are called
on the bytecode level.

Delfy checks frame specifications, that is, read or write sets, by deter-
mining whether every object, which is read or modified in a function1 or
method body and is not newly allocated, is in the specified read or write
set. Fresh-expressions, which are allowed in method postconditions, say
that all non-null objects specified in the expression must be allocated in the
method body. Delfy checks fresh-expressions by determining whether the
objects actually allocated in the method body include those specified in the
fresh-expression of the postcondition.

Dafny has support for non-deterministic assignments, non-deterministic
if-statements, and non-deterministic while-statements. A * in Dafny de-
notes the non-deterministic value, as in the assignment var n := *. For
each non-deterministic value, the symbolic execution in Delfy introduces a
fresh symbolic variable, that is, a new input to the unit under test. Conse-
quently, the symbolic execution collects constraints on such variables, and
the constraint solver generates inputs for them, such that execution is guided
toward all those unexplored program paths that are guarded by the non-
determinism.

To be more expressive, Dafny also supports uninterpreted functions and
assign-such-that-statements. Delfy handles uninterpreted functions again by
introducing a fresh symbolic variable for their return value, which is however
constrained by an assumed condition (see Sect. 1.1), of the form Assume(c),
saying that the return value must satisfy the function specifications. Recall
that, when an assumed condition is added to the path constraint, its condi-
tion c is never negated.

Assign-such-that-statements assign a value to a variable such that a con-
dition holds. For example, the statement var n :| 0 <= n <= 7 as-
signs a value to variable n such that 0 <= n <= 7. Delfy executes this
statement by introducing a fresh symbolic variable for the assigned variable,
and an assumed condition saying that the condition of the assign-such-that
statement must hold for its value. When the assumed condition is not
satisfiable, execution is aborted, otherwise all paths guarded (directly or
indirectly) by the assigned variable can be explored.

To express constraints on sets, Delfy uses the extended array theory in
Z3 [48], which allows us to axiomatize set theory with boolean algebra. The
only operation on sets that cannot be axiomatized with the array theory
is set cardinality. We axiomatize sequences using a pair that contains the

1Dafny functions are mathematical functions, whose body, if any, must consist of ex-
actly one expression.
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sequence length and a function mapping indexes to elements. By using uni-
versal and existential quantification, we express all operations on sequences.

5.2.1 Handling input-dependent loops

For the systematic dynamic test generation to terminate in a reasonable
amount of time, existing tools typically impose a bound on the number of
iterations of input-dependent loops. We define an input-dependent loop as
a loop whose number of iterations depends on an input of the unit under
test. Such loops can cause an explosion in the number of constraints to be
solved and in the number of program paths to be explored [74]. However,
arbitrarily bounding their number of iterations might leave certain program
paths unexplored and, thus, bugs may be missed.

As an example, consider the Dafny code in Fig. 5.1. Method Mul com-
putes the product of its inputs a, b, and contains a loop whose number of
iterations indirectly depends on a.

If we test this method with an initial input value a = 7 for a, where a
is the symbolic variable associated with a, the loop condition alone triggers
the generation of the following constraints (0 < a) ∧ (0 < a − 1) ∧ ... ∧
¬(0 < a − 7). Note that a, and not aa, appears in this (partial) path
constraint because the symbolic execution in dynamic test generation tracks
only direct data dependencies on the inputs of the unit under test. (This is
because the solution to a path constraint should immediately correspond to
an assignment to inputs of the unit under test that is likely to steer execution

method Mul(a: int , b: int)
requires 0 <= a && 0 <= b;

{
var aa := a;
var sum := 0;
while (0 < aa)

invariant 0 <= aa <= a;
invariant sum == (a - aa) * b;

{
sum := sum + b;
aa := aa - 1;

}
assert sum == a * b;

}

Figure 5.1: A Dafny example illustrating how Delfy handles input-
dependent loops. Method Mul computes the product of its inputs
a, b, and contains a loop whose number of iterations indirectly
depends on a.
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along an unexplored program path.)
Now consider that each of the above constraints is later negated to gen-

erate a new test case, and that Dafny supports mathematical (unbounded)
integers. As a result, an infinite number of test cases could be generated to
exercise the loop in method Mul. Moreover, in case an input-tainted branch
condition occurs after the loop, all loop iterations must be explored for each
of the two possible values of the condition.

Summarizing input-dependent loops

These issues can be significantly alleviated when the programmer provides
a loop invariant. In particular, an invariant of an input-dependent loop may
serve as a summary for the loop, in addition to being checked as part of
the test oracle. Note that, in this chapter, we abuse the term “summary”
to express that reasoning about many loop iterations happens in one shot,
although we do not refer to a logic formula of loop pre- and postconditions,
as is typically the case in compositional symbolic execution [66, 2].

Our approach consists in the following steps. We check the loop invariant
as part of the test oracle in all test cases for which the number of loop
iterations does not exceed a user-specified bound. In case it is feasible to
generate a test case for which the number of loop iterations exceeds the
bound, we no longer check the loop invariant as part of the test oracle.
Instead, we assume it accurately summarizes the loop body, as is typically
done in modular verification [63, 81].

For example, assume that the user-specified bound on the number of
loop iterations is set to two. To test method Mul of Fig. 5.1, Delfy generates
inputs, that is, values for parameters a and b of Mul, such that the following
cases are exercised: (1) the loop is not entered (say, for a := 0, b := 3),
(2) the loop is entered and the loop bound is not exceeded (for a := 1,
b := 3), and (3) the loop is entered but the loop bound is exceeded (for
a := 3, b := 3). In all of these cases, the loop invariant is checked (with
Code Contracts assertions) both before executing the while-statement, and
at the end of the loop body (for the first and second iterations).

When the bound on the number of loop iterations is exceeded, Delfy
stops the execution of the current test case and warns about unsound cov-
erage of the unit under test. This means that any code occurring after the
loop remains completely unexercised when the loop iterates more than the
specified number of times. When this is the case, like for method Mul, we
address the issue by running the test case that exceeded the loop bound
again (for Mul, a := 3, b := 3), but this time the loop invariant is
treated as a summary and is assumed to hold.

More specifically, the loop is executed only concretely, and not sym-
bolically, until it terminates. At that point, all loop targets (that is, all
variables that are potentially written to in the loop body) are havocked: we
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associate a fresh symbolic variable with each loop target, which, in case of an
input-tainted loop target, is equivalent to forgetting all symbolic constraints
collected for this loop target before the loop. In our example, variable aa
is a loop target, since it is modified in the loop. As a result, after the
loop terminates, we havoc aa and effectively forget that its value is non-
negative, which follows from the precondition and the first assignment in
method Mul. Note that sum is also a loop target, and that loop targets are
computed using a lightweight static analysis, as we explain below.

It is necessary to havoc all loop targets, not only the input-tainted ones.
We explain the reason through an example. Imagine that a local variable,
initialized to zero, counts the number of iterations of an input-dependent
loop. This variable is, of course, a loop target, but it is not input-tainted.
Assume that, after the loop, there is a conditional statement on a value of
this variable, both branches of which are feasible. If we have not assigned
a fresh symbolic variable to the counter after the loop, we will not exercise
the branch of the conditional statement that is not satisfied by the concrete
value of the counter for this particular execution. In fact, we will not even
consider the unexercised branch as a feasible program path for subsequent
explorations.

After havocking all loop targets, we add two assumed conditions to the
path constraint. First, we assume the negation of the loop condition. In
our example, we assume ¬(0 < aa′), where aa′ is the fresh symbolic variable
associated with variable aa. All explorations that contain this negated loop
condition in their path constraint exercise code deeper in the execution tree
(that is, after the loop).

Second, we assume the loop invariants as if they were a summary con-
straining the possible values of the loop targets. In our example, we assume
0 ≤ aa′ ≤ a ∧ sum′ = (a − aa′) ∗ b, where a, b are the symbolic variables
originally associated with parameters a, b, and sum′ is the fresh symbolic
variable associated with sum. Note that, after the loop, all symbolic con-
straints on input-tainted loop targets refer to them by their fresh symbolic
variables.

Consequently, the symbolic execution now also tracks indirect data de-
pendencies on the inputs of the unit under test, through the fresh symbolic
variables. These can be considered as additional inputs to the unit under
test that are, however, not taken into account when generating new test
cases, that is, any values assigned to the fresh symbolic variables by the
solver do not correspond to actual inputs of the unit under test. Concretely,
constraints on these variables are used to determine which program paths
are infeasible. For example, after having assumed the negated loop condition
and the loop invariants in method Mul, Delfy determines that a program
path violating the assertion is infeasible.

Note that, when the loop targets include object references, we havoc all
variables (in the concrete and symbolic stores) of the same type as these ref-
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erences, to handle aliasing conservatively (just like in verification [97]). This
is done to avoid falsely considering an alias of a loop target as unmodified
by the loop, and potentially missing bugs along paths guarded by this alias.
Dafny does not support subtyping, which makes determining these addi-
tional variables an easy task. However, as any source of over-approximation,
this can result in the generation of false positives.

Our approach for summarizing input-dependent loops enables exercising
code of the unit under test occurring after such loops regardless of their
number of iterations. This comes at the cost of potentially generating test
cases with diverging or insane path constraints, as we explain next.

If the user-provided loop invariant is too weak, that is, it does not pre-
cisely constrain all loop targets, the symbolic execution will try to explore
execution paths that are infeasible in practice. For example, if we drop the
second loop invariant in method Mul, the symbolic execution will try to
explore the execution path that makes the assertion fail, which it would
otherwise know to be infeasible due to the assumed conditions. Since sum′
is unconstrained, the solver will generate values that satisfy the negation of
the asserted condition, that is, ¬(sum′ = a ∗ b). For this new test case how-
ever, the execution will not follow the expected program path that leads to
an assertion violation (since the assertion holds). This situation in which a
new test case does not follow the program path it was generated to exercise
is called a divergence.

Now imagine that the loop invariants in method Mul are too strong,
for instance, the first loop invariant becomes 0 < aa <= a. In this case,
when assuming the negated loop condition ¬(0 < aa′) and the first loop
invariant 0 < aa′ ≤ a after the loop terminates, the path constraint for
the current execution evaluates to false. In other words, even though the
concrete execution is actually exercising a program path, the path constraint
indicates that this path is infeasible. We call such path constraints insane.

Another consequence of this approach is that the body of an input-
dependent loop might not be thoroughly exercised when the number of loop
iterations exceeds the user-specified bound. In particular, since beyond the
bound we execute the loop only concretely, and not symbolically, program
paths and bugs might be missed.

Despite these limitations, our approach prevents the exploration from
getting stuck in a loop body by targeting code occurring after the loop
instead.

Checking loop invariants

Delfy addresses the issue of unsound coverage of input-dependent loop bodies
(when the number of loop iterations exceeds the pre-defined bound), by
implementing a mode for thoroughly checking loop invariants.

To thoroughly check whether an invariant is maintained by an input-
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dependent loop, Delfy again uses a verification technique [63, 81], similar
to the one described above. Concretely, on entry to an input-dependent
loop, Delfy havocs all loop targets (and their potential aliases). Delfy then
assumes the loop condition and the loop invariant, using assumed conditions
as before. We determine whether the invariant is indeed maintained by the
loop by checking whether its assertion at the end of the loop body holds
along all execution paths within the loop. In other words, the invariant is
maintained if and only if Delfy exercises all execution paths within the loop
body in a sound search, and the invariant is never violated.

Note that this technique is also susceptible to false positives, divergence,
and insane path constraints, depending on the over-approximation of the
loop targets and the strength of the given loop invariant. However, when
Delfy proves that a loop invariant is maintained by a loop, the overhead of
auxiliary specifications that the programmer writes within a loop body in
order to prove the invariant (with the verifier) can be reduced. Moreover,
Delfy can reduce the effort of trying to verify an incorrect invariant, by
generating tests that violate the invariant.

Also note that an invariant on loop entry is correct if and only if Delfy
exercises all execution paths leading to the loop in a sound search, and the
invariant is never violated.

5.3 Complementing verification with testing

The Dafny verifier is sound. Delfy can, therefore, complement the verifier by
targeting only those properties in a unit under test that have not been veri-
fied. In other words, all verified properties have been soundly proven correct
and need not be tested. The remaining properties have not been verified,
either because there is a bug in the unit under test, or the programmer has
not provided all necessary specifications, or the verifier “runs out of steam”,
that is, the specifications are too advanced for the verifier to reach a proof
within a certain time limit.

As an example, consider the alternative implementation of method Mul,
shown in Fig. 5.2. In this implementation, we first check whether parameters
a and b are equal. If this is the case, we call method Square with a as an
argument. Otherwise, we use the previous implementation of Mul, described
in Sect. 5.2.1. Without providing a postcondition to method Square (as
shown in a comment in the code), or calling the mathematical function
Square ’ instead of Square in method Mul, the verifier cannot prove the
first assertion in the code; the programmer has not provided all necessary
specifications. Note that postconditions in functions, like in Square ’, are
typically not needed, since the function bodies give their full definition.

To avoid testing correct code and specifications, Delfy exercises only
those paths of the unit under test that reach an unverified property. (Un-
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method Mul(a: int , b: int)
requires 0 <= a && 0 <= b;

{
var sum := 0;
if (a == b)
{

sum := Square(a);
assert sum == a * b;

}
else
{

var aa := a;
while (0 < aa)

invariant 0 <= aa <= a;
invariant sum == (a - aa) * b;

{
sum := sum + b;
aa := aa - 1;

}
assert sum == a * b;

}
}

method Square(n: int) returns (sq: int)
// ensures sq == n * n;

{
sq := n * n;

}

function method Square ’(n: int): int
{

n * n
}

Figure 5.2: An alternative implementation of method Mul from
Fig. 5.1 illustrating how Delfy complements the verifier.

verified properties are marked by Dafny with the annotation language we
presented in Ch. 2.) All other paths must be correct. Consequently, Delfy
in combination with the verifier generates a smaller number of tests in com-
parison to Delfy alone, when the number of unverified program paths (that
is, paths leading to at least one unverified property) is strictly less than
the total number of paths in the unit under test, as we also showed in the
experimental evaluation of Ch. 2. For example, for the implementation of
Mul of Fig. 5.2, Delfy need only test the path along which parameters a and
b are equal, since this is the only path that reaches an unverified assertion.
All other paths are proven correct by the verifier and need not be tested.
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As in Ch. 2, along an unverified path, all verified properties are added to
the path constraint as assumptions, to avoid exploring their negation (see
Alg. 1.1 of Sect. 1.1). Given that these properties are correct, the solver
would most likely determine that the path-constraint prefix leading to an
input-tainted, verified property, in conjunction with the negation of the
property, corresponds to an infeasible program path. However, by treating
all verified properties along an unverified path as assumptions, we prevent
such redundant calls to the solver.

Verified paths, that is, paths that reach no unverified properties, need not
be tested. For this reason, we apply static symbolic execution to generate
all path-constraint prefixes leading to an unverified property. We then pass
this set of prefixes to Delfy, which explores only those program paths whose
path constraints start with a prefix from the set.

To prevent the static symbolic execution from exploring the entire unit
under test in search for paths that reach unverified properties, we apply
the following optimization. We first build the control-flow graph of the
unit under test in a top-down manner. As soon as we have reached all the
unverified (by the verifier) properties, we stop. As a result, we now have
a possibly partial control-flow graph, which contains at least all unverified
program paths and potentially a number of additional verified paths. For
the example of Fig. 5.2, we build a control-flow graph containing only the
if-branch and the first assertion in the code.

As a second step, we traverse the control-flow graph in a bottom-up
manner, starting from the nodes that correspond to the unverified properties,
for instance, the first assertion in Mul. While traversing the graph, we
precisely determine for which program paths we need the static symbolic
execution to generate a path-constraint prefix. For the example of Fig. 5.2,
we instruct the static symbolic execution to generate a prefix only for the
path along which the condition of the if-statement holds. As a result, Delfy
generates a test case exercising the successful branch of the first assertion
in method Mul. The dynamic symbolic execution in Delfy then determines
that the failing branch of the assertion is infeasible. We, therefore, fully
exercise method Mul by generating only one test case and avoiding the
input-dependent loop in the else-branch.

We intend for the static symbolic execution to be a very fast intermediate
step, which runs after the verifier and before the dynamic test generation
tool. We, consequently, avoid making the analysis very precise at the cost of
performance. In particular, when there is an input-dependent loop along an
unverified path, we do not generate a path-constraint prefix for each number
of loop iterations after which an unverified property is reached. We, instead,
generate a prefix only until the entry of the input-dependent loop. Delfy,
subsequently, explores the loop as described in Sect. 5.2.1, and dynamically
filters out any test cases that do not exercise the unverified property.

In comparison to the code instrumentation of Ch. 2 for pruning paths
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that have been statically verified, this approach, based on static symbolic
execution, is more effective for (input-dependent) loop-free code. It reduces
the search space for dynamic symbolic execution even more, as it is path
precise and does not operate on an abstraction of the unit under test, which
over-approximates the set of possible executions of the unit under test. For
code with input-dependent loops, the instrumetation of Ch. 2 could be com-
bined with this approach for even more precise results.

When a verification attempt does not go through the Dafny verifier, the
Dafny IDE indicates with a red dot the return path along which the error is
reported. By clicking on a red dot, the Dafny IDE displays more information
about the corresponding error. We have integrated Delfy with the Dafny
IDE in the following way. If a programmer selects a red dot in a unit under
test and runs Delfy, the static symbolic execution generates only those path-
constraint prefixes leading to the corresponding unverified property. Delfy
then generates test cases exercising only this property, regardless of whether
there are other unverified properties in the unit under test.

Delfy can also use the verification counterexample that corresponds to
an error emitted by the verifier, that is, to a red dot, in order to generate
a failing test case. In particular, Delfy is able to generate concrete inputs
to a unit under test from the counterexample that the verifier computes.
However, it is possible that these concrete inputs do not lead to an asser-
tion failure at runtime. This can happen when the verifier havocs variables
that affect the values of the inputs to the unit under test before the failing
assertion is reached in the control flow. As a result, the initial values of the
inputs (that is, at the beginning of the unit under test) from the verification
counterexample might actually not provide any indication on how to cause
the assertion failure. In such situations, when the test case that is generated
based on the verification counterexample does not fail, Delfy falls back to
the approach described above, which is based on static symbolic execution.

5.3.1 Assigning confidence to verification errors

As described above, Delfy generates only one successful test case for the
alternative implementation of method Mul (Fig. 5.2). However, a program-
mer cannot be certain whether Delfy achieves sound coverage of the program
paths reaching the unverified property. It is, therefore, unclear when the pro-
grammer should be confident about the correctness of the code. In practice,
the programmer would still need to verify the code with Dafny, which is
inefficient and does not reduce the verification effort.

To address this issue, we propose an assignment of confidence to each
unverified property, based on the number of program paths that reach the
particular property. More specifically, the programmer may be confident
that a property, which has not been verified by Dafny, is correct only when
Delfy exercises all program paths reaching the property, without generat-
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ing any failing test cases or reporting any sources of unsoundness in the
exploration. In other words, the confidence of correctness for an unverified
property is computed over the number of all program paths that exercise
the property, denoted as |paths|. Moreover, a generated test case exercising
one of these program paths increases the confidence by 1

|paths| , if and only if
the property does not fail during execution of the test, and no unsoundness
of Delfy is reported at any point during execution of the test.

Note that if an unsoundness is reported for a test case after the unverified
property has been executed, the confidence of correctness for the property
is not increased. This is because the unverified property could occur in the
body of an input-dependent loop, or a recursive function or method. When
this is the case, the test might not explore all executions of the property. We,
therefore, cannot claim that the property holds along this program path.

Assigning confidence to errors emitted by the verifier can significantly
reduce the time a programmer needs to spend on determining whether the
code is indeed correct, when it does not go through the verifier. In addition,
the verification experience is improved, since the programmer can focus on
proving more interesting or complex properties, and leave the remaining
mundane ones, which are assigned a high confidence score, to testing.

5.4 Complementing testing with verification

When Delfy assigns full confidence to a property, the property has been
soundly proven correct by dynamic test generation. Consequently, such a
property may now be assumed by the verifier (using the annotations of
Ch. 2), which simplifies the verification task.

Therefore, complementing Delfy with the verifier can also be beneficial,
for one, because the verification time of Dafny is likely to be reduced. More-
over, the overhead for the programmer of providing auxiliary specifications
to prove a particular property might be alleviated—systematic testing could
achieve sound coverage of the property instead. We also expect this combi-
nation to decrease the number of programmer attempts to verify an incorrect
piece of code, by providing early feedback through failing tests.

From our experience with Delfy, we have observed that it can achieve
additional verification results in comparison to the verifier alone in the fol-
lowing cases: (1) when Dafny’s modular reasoning prevents it from reaching
a proof (as in Fig. 5.2), (2) when path constraints for a unit under test are
easier for the solver to reason about than a large verification condition, and
(3) when an input-dependent loop can be exhaustively tested within the
user-specified bound on the number of loop iterations. There might also be
cases when the encoding of Delfy for sets and sequences, which is different
than the corresponding axiomatization in Dafny, is simpler for the solver,
but we have not yet come across such a situation.
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Figure 5.3: A smart tag allowing the user to invoke Delfy on a
method under test, and a verification error emitted by the verifier
(denoted by the dot in the assertion).

5.5 Incorporating Delfy into the Dafny IDE

We now present how we have incorporated Delfy into the Dafny IDE. The
IDE runs both the verifier and Delfy in the background and in alternation.
Given a program, the IDE starts by running Dafny or Delfy, in an attempt
to prove as many properties as possible. Fig. 5.3 shows the error emitted by
the verifier (denoted by the dot) for the first assertion in method Mul from
Fig. 5.2. The subsequent tool, in this case Delfy, can then use the previous
verification results to prove even more properties. Delfy is run automatically
by the IDE in alternation with Dafny, or through the smart tag, shown in
Fig. 5.3, by the user. Fig. 5.4 shows how the test cases generated by Delfy are
displayed. When the automatic alternation of tools is no longer effective in
achieving better results, any remaining, unverified properties are prioritized
to the user for their verification.

The main characteristics of this IDE integration are the following:

− Color coding of assertions. To give users a sense of where they should
focus their manual efforts, the IDE uses colors for assertions. A green
color for a particular assertion shows that the assertion has been au-
tomatically proven correct, either by Dafny or Delfy. In Fig. 5.4, the
first assertion in method Mul, which is proven by Delfy and not by
Dafny, is highlighted with a green color. It is also marked with a
verified-attribute; similarly to the notation of Ch. 2, this attribute de-
notes that the assertion has been verified under the premise true, that
is, under no unsound assumptions.
On the other hand, a red color for the assertion denotes that it does
not hold, in other words, Dafny has emitted a verification error, and
Delfy has generated a failing test case for this assertion. An orange
color indicates that the assertion requires the attention of the user for



110 Chapter 5. Delfy: Dynamic test generation for Dafny

Figure 5.4: Delfy displays the generated tests and highlights the
proven assertions in green.

its verification; Dafny has emitted a verification error, and Delfy has
not generated any failing test, but its search was unsound.

− Caching of results. The Dafny IDE already caches verification results
along with computed dependencies of what is being verified [103, 104].
Before starting a new verification task, the system first consults the
cache, to determine whether the targeted verification results exist in
the cache and have not been invalidated by a change in the program.

We have extended this functionality of the IDE to only re-launch an
exploration of a unit under test with Delfy when the code has been
modified since the last exploration. The timestamp of the last explo-
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Figure 5.5: Delfy shows coverage information for a unit under test.

ration is shown above the generated test case in Fig. 5.4.
In the future, we intend to enhance this feature with information about
which execution paths are affected by a program change, enabling
Delfy to exercise only these affected paths and not re-generate test
cases for the remaining paths. As a result, the interaction between
the user and the IDE will become much more effective and efficient,
when Delfy is run on the unit under test. This will allow for more
productive and continuous processing of programs by the user.

− Coverage information. For large units under test, we find it difficult to
determine which program path is exercised by a particular test case.
This is why we highlight the covered code of the unit under test, when
the user selects a generated test case on mouse click. The user can
also choose to see the coverage that is achieved for the unit under test
by all the generated tests, as shown in Fig. 5.5.

− Generating concrete counterexamples. As we described in Sect. 5.3,
Delfy allows the user to select a property that has not been verified by

Figure 5.6: Verification counterexamples emitted by the verifier
for a loop-invariant violation.
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Figure 5.7: Delfy generates two failing tests from the verification
counterexamples of Fig. 5.6.

Dafny, and generate test cases that cover only this selected property
(optionally by using the verification counterexample).
Fig. 5.6 shows the verification counterexamples generated by Dafny
for a very simple method with an overly weak precondition. As a
consequence of this weak precondition, the loop invariant cannot be
verified. Fig. 5.7 shows the failing tests that Delfy generates from these
verification counterexamples. Note that the user can select to inspect
all generated tests, or categorize them based on their outcome.

− Debugging of test cases. Delfy also makes it possible to debug the
generated test cases with the .NET debugger, such that users can
step through their execution and watch the values of variables of their
choice. Fig. 5.8 shows a smart tag that allows the user to debug a
verification error by running the failing test cases, generated for the
particular error, in the .NET debugger. The options in the smart tag
of Fig. 5.8 correspond to the failing tests shown in Fig. 5.7. Fig. 5.9
shows a debugging session for the second failing test of Fig. 5.7, during
the progress of which we are watching the value of variable i.

5.6 Comparing Delfy to BVD

In this section, we compare Delfy to BVD, which refers to the Boogie Veri-
fication Debugger [92] and is already deeply integrated into the Dafny IDE.

Figure 5.8: Delfy enables debugging of a verification error by run-
ning the failing tests, generated for the particular error, in the
.NET debugger.
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Figure 5.9: A debugging session of a failing test, during the
progress of which a variable is being watched.

Our goal is to determine in which cases a verification error is easier to
understand using a dynamic test generation tool over a static verification
debugger, and vice versa.

To compare Delfy to BVD, we used both tools in an effort to understand
all errors emitted by the Dafny verifier for all programs of the Dafny test
suite, with and without seeding bugs. Here are our observations:

− Heap data structures: When a unit under test manipulates heap data
structures, we found that verification errors are easier to understand
with BVD. The reason is that Delfy provides only the input to the unit
under test for which an error occurs, while BVD shows all step-by-step
modifications to the data structures. However, Delfy makes it possible
to debug the generated test cases with the .NET debugger and watch
the value of any variable (as in Figs. 5.8 and 5.9), in which case Delfy
becomes more usable.

− Function or method calls: When a unit under test contains function
or method calls, we noticed that errors are easier to understand using
Delfy. Since BVD is a modular tool, it is difficult to determine which
particular call to a function or method in the unit under test causes
an error to occur in the callee. With Delfy, this is much easier as the
path constraint and coverage information of each generated test case
indicates the executed program path.
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− Loops: When the unit under test contains input-dependent loops whose
number of iterations does not exceed the user-specified bound, we
found Delfy to be more useful than BVD in determining the cause of
an error. This is because Delfy provides the input to the unit under
test for which the error occurs. For errors occurring after the loop,
BVD shows the state only on loop entry, which in some cases does not
even correspond to the state that will cause the error after the loop
(due to havocking).

− Sets and sequences: We noticed that, when Delfy is able to generate
concrete sets or sequences, so is BVD. The reason is that both tools use
similar axiomatizations for sets and sequences and the same underlying
constraint solver.

In general, we found Delfy and BVD to be complementary. Delfy pro-
vides concrete inputs to the unit under test and shows the followed program
path for each test case; however, its exploration of the unit under test might
not be sound. BVD is a static, modular tool that shows the state of all
relevant parts of the heap at almost all program points.

5.7 Related work

We have discussed various integrations of verification with systematic testing
in Sect. 2.4 of Ch. 2.

Complementing verification with systematic testing is not a new idea. In
contrast to Check ’n’ Crash [43], DSD-Crasher [44], and DyTa [65], which
integrate unsound static checkers with dynamic test generation, our tool
integration relies on a sound verifier. Consequently, these techniques might
miss bugs by pruning execution paths that are unsoundly considered verified.

Our work is more closely related to YOGI [121] and SANTE [26]. More
specifically, given a property, YOGI searches both for a test that violates
the property and an abstraction that proves the property correct. Similarly
to CEGAR [34], YOGI uses error traces from the abstraction to guide the
test generation, but also unsatisfiable path constraints from the test gener-
ation to refine the abstraction. In comparison to YOGI, our combination of
Dafny and Delfy is less tight, as the verification methodology of Dafny is not
adjusted based on constraints from failed test generation attempts of Delfy.
In fact, Dafny can only take advantage of prior verification results achieved
by Delfy. Exactly like SANTE, our test generation also prunes execution
paths that do not lead to unverified assertions.

Complementing systematic testing with verification, however, is a new
idea. With the exception of the second part of this dissertation, we are
not aware of any test generation approach to have been pushed toward
reaching verification results about functional correctness properties, like the
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ones presented here. Since testing tools could not claim such verification
results until now, it did not seem sensible to complement them by verifiers.

Loop summarization in dynamic test generation has been studied be-
fore [74]. SAGE [73] uses simple loop-guard pattern-matching rules to, dy-
namically and on-the-fly, infer partial loop invariants for a certain class of
input-dependent loops. Summaries for these loops are then derived from the
inferred invariants, without any static analysis, theorem proving, or user-
provided specifications. In comparison, Delfy can summarize any input-
dependent loop as long as the user has written an invariant. However, the
quality of the summary depends on the strength of the invariant, whereas
dynamic loop summarization has been proven sound and complete when
certain restrictions are met.

5.8 Summary and remarks

We have presented the integration of a sound verifier with a dynamic test
generation tool and discussed its benefits. These include shorter testing
and verification times, reduced annotation overhead, facilitated debugging
of spurious verification errors, and increased programmer productivity. To
make these benefits easily accessible to the users, we have designed an inte-
grated development environment around this tool integration.

In the future, we plan on making Delfy available, through this IDE,
to undergraduate students of formal methods courses. We also plan on
making the tool available to the contributors of the Ironclad project [79],
which is currently the largest project using Dafny, developed by the systems
and security groups at Microsoft Research. Our goal is to carefully and
empirically assess the usability of the Delfy tool and the aforementioned
benefits of its combination with Dafny.
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Chapter 6

Toward proving memory safety
of the ANI Windows image parser

using compositional exhaustive testing

In dynamic test generation, a path constraint is a symbolic generalization of
a set of concrete executions, which represents an equivalence class of input
vectors that drive the program execution along a particular path. In other
words, the search space of program inputs is partitioned into equivalence
classes, each of which exercises a different program path and potentially
exhibits a new program behavior. Dynamic test generation amounts to
program verification when the following three conditions hold: (1) there are
finitely many program paths and, thus, equivalence classes, (2) all feasible
paths are exercised, and (3) the constraint solver is sound and complete, such
that path feasibility is decided correctly and an input vector is generated
for each equivalence class.

However, in the presence of loops whose number of iterations depends
on a program input, there can be an explosion of paths to be exercised.
In practice, dynamic test generation tools bound the number of iterations
of input-dependent loops, consequently ignoring some equivalence classes of
inputs and potentially missing bugs.

Although bugs may be missed, dynamic test generation has proven par-
ticularly successful in detecting security vulnerabilities in hundreds of pro-
grams processing structured files, such as image processors, media players,
file decoders, and document parsers [16]. Despite this success, systematic
testing has never been pushed toward verification of such a program. In
this chapter, we assess to what extent the idea of reaching verification with
systematic testing is realistic. Specifically, we report how we used and en-
hanced systematic dynamic test generation to get closer to proving memory
safety of the ANI Windows image parser.

The ANI parser is responsible for reading files in a structured graphics file
format and processing their contents in order to display “ANImated” cursors
and icons. Such animated icons are ubiquitous in practice (like the spinning
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ring or hourglass on Windows), and their domain of use ranges from web
pages and blogs, instant messaging and e-mails, to presentations and videos.
In addition, there are many applications for creating, editing, and converting
these icons to and from different file formats, such as GIF or CUR. The
ANI parser consists of thousands of lines of low-level C code spread across
hundreds of functions (referring to C functions, not mathematical ones).

We chose the ANI parser for this work as it is one of the smallest image
parsers embedded in Windows. The implementation of the parser is within
the scope of dynamic symbolic execution since it is neither concurrent nor
subject to real-time constraints. Despite this, there are still significant chal-
lenges in proving memory safety of the ANI parser, including reasoning
about memory dereferences and exception-handling code. Our choice was
also motivated by the fact that in 2007 a critical out-of-band security patch
was released for code in this parser (MS07-017) costing Microsoft and its
users millions of dollars. This vulnerability was similar to an earlier one
reported in 2005 (MS05-002) meaning that many details of the ANI parser
have already been made public over the years [131, 83]. This parser is in-
cluded in all distributions of Windows, i.e., it is used on more than a billion
PCs, and has been tested for years. Given the ubiquity of animated icons,
our goal was to determine whether the ANI parser is now free of security-
critical buffer overflows.

We show in this chapter how systematic dynamic test generation can be
applied and extended toward program verification in the context of the ANI
parser. To achieve this, we alleviate the two main limitations of dynamic
test generation, namely, imperfect symbolic execution and path explosion.
For the former, we extended the tool SAGE [73] to improve its symbolic
execution engine so that it could handle all the x86 instructions along all
the explored code paths of that specific ANI parser. To deal with path
explosion, we used a combination of function inlining, restricting the bounds
of input-dependent loops, and function summarization. We also used a new
tool, named MicroX [67], for executing code fragments in isolation using
a custom virtual machine designed for testing purposes. We emphasize
that the focus of our work is restricted to proving the absence of attacker-
controllable memory-safety violations (as precisely defined in Sect. 6.2).

At a high-level, the main contributions of this chapter are:

− We report on the first application of dynamic test generation to verify
as many executions as possible of a real, complex, security-critical,
entire program. Our work sheds light on the shrinking gap between
systematic testing and verification in a model-checking style.

− To our knowledge, this is the first attempt to prove that an operating-
system (Windows or other) image parser is free of security-critical
buffer overflows, modulo the soundness of our tools and several addi-
tional assumptions.
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− We are also not aware of any past attempts at program verification
without using any static program analysis. All the techniques and tools
used in this work are exclusively dynamic, thus seeking verification of
the execution of the parser, including complicated x86 code patterns
for structured exception handling and stack-guard protection, which
most static analysis tools cannot handle (see Sect. 6.7 for more details).

Outline. This chapter is organized as follows. In Sect. 6.1, we re-
call basic principles of compositional symbolic execution. In Sect. 6.2, we
precisely define memory safety, show how to verify it compositionally, and
discuss how we used and extended SAGE and MicroX for verification pur-
poses. Sect. 6.3 presents an overview of the ANI Windows image parser. In
Sect. 6.4, we present our approach and verification results in detail. During
the course of this work, we discovered several memory-safety violations in
the ANI parser code and came across a number of unexpected challenges,
which are discussed in Sects. 6.5 and 6.6, respectively. We review related
work in Sect. 6.7.

6.1 Compositional symbolic execution

Systematically testing and symbolically executing all feasible program paths
does not scale to large programs. Indeed, the number of feasible paths can be
exponential in the program size, or even infinite in the presence of loops with
an unbounded number of iterations. This path explosion can be alleviated
by performing symbolic execution compositionally [66, 2].

In compositional symbolic execution, a summary φf for a function (or any
program sub-computation) f is defined as a logic formula over constraints
expressed in theory T . Summary φf can be generated by symbolically ex-
ecuting each path of function f , then generating an input precondition and
output postcondition for each path, and bundling together all path sum-
maries in a disjunction. More precisely, φf is defined as a disjunction of
formulas φwf of the form

φwf = prewf ∧ postwf

where wf denotes an intra-procedural path in f , prewf is a conjunction of
constraints on the inputs of f , and postwf a conjunction of constraints on
the outputs of f . An input to a function f is any value that can be read
by f , while an output of f is any value written by f . Therefore, φwf can be
computed automatically when symbolically executing the intra-procedural
path wf : prewf is the path constraint along path wf but expressed in terms
of the function inputs, while postwf is a conjunction of constraints, each of
the form v′ = S(v), where v′ is a fresh symbolic variable created for each
program variable v modified during the execution of wf (including the return
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value), and where S(v) denotes the symbolic value associated with v in the
program state reached at the end of wf . At the end of the execution of
wf , the symbolic store is updated so that each such value S(v) is replaced
by v′. When symbolic execution continues after the function returns, such
symbolic values v′ are treated as inputs to the calling context. Summaries
can be re-used across different calling contexts.

For instance, given the function is positive below,
int is_positive(int x) {

if (0 < x)
return 1;

return 0;
}

a summary φf for this function can be

φf = (0 < x ∧ ret = 1) ∨ (x ≤ 0 ∧ ret = 0)

where ret denotes the value returned by the function.
Symbolic variables are associated with function inputs (like x in the

example) and function outputs (like ret in the example) in addition to whole-
program inputs. In order to generate a new test to cover a new branch
b in some function, all the previously known summaries can be used to
generate a formula φP symbolically representing all the paths discovered so
far during the search. By construction [66], symbolic variables corresponding
to function inputs and outputs are all bound in φP , and the remaining free
variables correspond exclusively to whole-program inputs (since only those
can be controlled for test generation).

For instance, for the program P below,
# define N 100

void P(int s[N]) { // N inputs
int i, cnt = 0;
for (i = 0; i < N; i++)

cnt = cnt + is_positive(s[i]);
if (cnt == 3) // (*)

abort;
}

a formula φP to generate a test covering the then-branch (*), given the
above summary φf for function is positive, can be

(ret0 + ret1 + . . .+ retN−1 = 3)∧∧
0≤i<N

((0 < s[i] ∧ reti = 1) ∨ (s[i] ≤ 0 ∧ reti = 0))

where reti denotes the return value of the i-th call to function is positive.
Even though program P has 2N feasible whole-program paths, compositional
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test generation can cover symbolically all those paths with at most four
test inputs: two tests to cover both branches in function is positive plus
two tests to cover both branches of the if-statement (*). In this example,
compositionality avoids an exponential number of tests and calls to the
constraint solver at the cost of using more complex formulas with more
disjunctions.

Note, however, that the number of execution paths in a function f could
be infinite, when f contains loops whose number of iterations depends on
an unbounded input. In practice, we limit the size of the summary of f by
enforcing a bound on the number of execution paths that are explored in f .
As shown in Ch. 5, loop invariants could also be used for generating more
general and compact function summaries, in comparison to those generated
by bundling together all path summaries in a disjunction.

In general, when, where, and how compositionality is worth using in
practice is still an open question (e.g., [66, 2, 15, 89]), which we discuss later
in this chapter.

6.2 Proving memory safety

In this chapter, we define memory safety, describe how to verify it composi-
tionally, and explain how we used and extended SAGE and MicroX to get
closer to verification.

6.2.1 Defining memory safety

To prove memory safety during systematic dynamic test generation, all
memory accesses need to be checked for possible violations. Whenever a
memory address a stored in a program variable v (i.e., a = M (v)) is ac-
cessed during execution, the concrete value a of the address is first checked
“passively” to make sure it points to a valid memory region mra, that is, it
does not point to an unallocated memory region (as done in standard tools
like Purify [78], Valgrind [118], and AppVerifier [113]); then, if this address
a was obtained by computing an expression e that depends on an input (i.e.,
e = S(v)), the symbolic expression e is also checked “actively” by injecting
a new bounds-checking constraint of the form

0 ≤ (e −mra.base) < mra.size

in the path constraint to make sure other input values cannot trigger a
buffer under- or overflow at this point of the program execution [21, 72].
How to keep track of the base address mra.base and size mra.size of each
valid memory region mra during the program execution is discussed in work
on precise symbolic pointer reasoning [54].

As an example, consider the following function:
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void buggy(int x) {
char buf [10];
buf[x] = 1;

}

If this function is run with x = 1 as input, the concrete execution is memory
safe as the memory access buf[1] is in bounds. In order to force systematic
dynamic test generation to discover that this program is not memory safe,
it is mandatory to inject the constraint 0 ≤ x < 10 in the current path
constraint when the statement buf[x] = 1 is executed. This constraint is
later negated and solved leading to other input values for x, such as -1 or
10, with which the function will be re-tested and caught violating memory
safety.

A program execution w is called attacker memory safe [69] if every mem-
ory access during w in program P, which is extended with bound checks for
all memory accesses, is either within bounds, i.e., memory safe, or input
independent, i.e., its address has no input-dependent symbolic value, and,
hence, is not controllable by an attacker through the untrusted input in-
terface. A program is called attacker memory safe if all its executions are
attacker memory safe.

Thus, the notion of attacker memory safety is weaker than traditional
memory safety: a memory-safe program execution is always attacker mem-
ory safe, while the converse does not necessarily hold. For instance, an
attacker-memory-safe program might perform a flawless and sound valida-
tion of all its untrusted inputs, but might still crash. As an example, consider
the following function:

void buggy () {
char* buf = malloc (10);
buf[0] = 1;

}

This function is attacker memory safe since it has no (untrusted) inputs,
but is memory unsafe since the trusted system call to malloc might fail,
resulting in accessing the null address.

Security testing for memory safety is primarily aimed at checking at-
tacker memory safety since buffer overflows that cannot be controlled by
the attacker are not security critical. In the rest of this chapter, we focus
on attacker memory safety, but we will often refer to it simply as memory
safety, for convenience.

6.2.2 Proving attacker memory safety compositionally

In order to prove memory safety compositionally, bounds-checking con-
straints need to be recorded inside summaries and evaluated for each calling
context.

Consider the following function bar:
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void bar(char* buf , int x) {
if ((0 <= x) && (x < 10))

buf[x] = 1;
}

If we analyze bar in isolation without knowing the size of the input buffer
buf, we cannot determine whether the buffer access buf[x] is memory safe.
When we summarize function bar, we include in the precondition of the
function that bar accesses the address buf + x when the following condi-
tion holds: (0 ≤ x) ∧ (x < 10). A summary for this function executed with,
say, x = 3 and a non-null buffer can then be:

(0 ≤ x) ∧ (x < 10) ∧ buf 6= NULL ∧ (0 ≤ x < mrbuf.size) ∧ (buf[x] = 1)

Later, when analyzing higher-level functions calling bar, these bounds-
checking constraints can be checked because the buffer bounds will then be
known. For instance, consider the following function foo that calls bar:

void foo(int x) {
char* buf = malloc (5);
bar(buf , x);

}

If, during execution, foo calls bar with its parameter x = 3, the precondi-
tion of the above path summary for bar is satisfied. The bounds-checking
constraint can be simplified with mrbuf.size = 5 in this calling context, and
negated to obtain the new path constraint,

(0 ≤ x) ∧ (x < 10) ∧ ¬(0 ≤ x < 5)

which after simplification is:

(0 ≤ x) ∧ (x < 10) ∧ ((x < 0) ∨ (5 ≤ x))

(Note that the constraint buf 6= NULL in the original summary for bar is now
trivially true and is, therefore, omitted here.) The above path constraint is
satisfiable with, say, x = 7, and running foo and bar with this new input
value will then detect a memory-safety violation in bar.

To sum up, the procedure we use for proving memory safety compo-
sitionally is as follows. We record bounds-checking constraints in the pre-
conditions of intra-procedural path-constraint summaries. Whenever a path
summary is used in a specific calling context, we check whether its precon-
dition contains any bounds-checking constraint. If so, we check whether
the size of the memory region appearing in the bounds-checking constraint
is known. If this is the case, we generate a new alternate path constraint
defined as the conjunction of the current path constraint and the negation
of the bounds-checking constraint, where the size of the memory region is
replaced by the current size. We then attempt to solve this alternate path
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constraint with the constraint solver, which generates a new test if the con-
straint is satisfiable.

For real C functions, the logic representations of their pre- and post-
conditions can quickly become very complex and large. We show later in
this chapter that, by using summarization sparingly and at well-behaved
function interfaces, these representations remain tractable.

We have implemented in SAGE the compositional procedure for proving
memory safety described in this section.

6.2.3 Verification with SAGE and MicroX

This work was carried out using extensions of two existing tools: SAGE [73]
and MicroX [67].

Recall from Sect. 1.1 that SAGE implements systematic dynamic test
generation and performs dynamic symbolic execution at the x86 binary level,
for detecting security vulnerabilities. In order to use SAGE to verify as
many executions as possible, we turned on maximum precision for symbolic
execution: all runtime checkers (for buffer over- and underflows, division by
zero, etc.) were turned on as well as precise symbolic pointer reasoning [54],
any x86 instruction unhandled by symbolic execution was reported, every
path constraint was checked to be satisfiable before negating constraints, we
checked that our constraint solver, the Z3 automated theorem prover [47],
never timed out on any constraint, and we also checked the absence of any
divergence, which occurs whenever a new test generated by SAGE does not
follow the expected program path. When all these options are turned on
and all the above checks are satisfied, symbolic execution of an individual
path has perfect precision: path constraint generation and solving is sound
and complete (see Sect. 1.1).

Moreover, we turned off all the unsound state-space pruning techniques
and heuristics implemented in SAGE to restrict path explosion, such as
bounding the number of constraints generated for each program branch, and
constraint subsumption, which eliminates constraints logically implied by
other constraints injected at the same branch (most likely due to successive
iterations of an input-dependent loop) using a cheap syntactic check [73].
How we dealt with path explosion is discussed in Sects. 6.4.2 and 6.4.3.

MicroX is a newer tool for executing code fragments in isolation, with-
out user-provided test drivers or input data, using a custom virtual machine
(VM) designed for testing purposes. Given any user-specified code location
in an x86 binary, the MicroX VM starts executing the code at that location,
intercepts all memory operations before they occur, allocates memory on-
the-fly in order to perform these read- and write-memory operations, and
provides input values according to a customizable memory policy, which de-
fines what read-memory accesses should be treated as inputs. By default, an
input is defined as any value read from an uninitialized function argument,
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or through a dereference of a previous input (recursively) that is used as an
address. This memory policy is typically adequate for testing C functions.
(Note that, under the default memory policy, values read from uninitialized
global variables are not considered inputs.) No test driver or harness is re-
quired: MicroX discovers automatically and dynamically the input/output
signature of the code being run. Input values are provided as needed along
the execution and can be generated in various ways, e.g., randomly or using
some other test generation tool, like SAGE. When used with SAGE, the very
first test inputs are generated randomly; then, SAGE symbolically executes
the code path taken by the given execution, generates a path constraint for
that (concrete) execution, and solves new alternate path constraints that,
when satisfiable, generate new input values guiding future executions along
new program paths.

As we describe in Sect. 6.4, we used MicroX in conjunction with SAGE
with the purpose of proving memory safety of individual ANI functions
in isolation. Memory safety of a function is proven for any calling context
(soundly and completely) by MicroX and SAGE if all possible function input
values are considered, symbolic execution of every function path is sound
and complete, all function paths can be enumerated and tested in a finite
(and small enough) amount of time, and all the checks defined above are
satisfied for all executions. Instead of manually writing a test driver that
explicitly identifies all input parameters (and their types) for each function,
MicroX provided this functionality automatically [67].

During this work, many functions were not verified at first for vari-
ous reasons: we discovered and fixed several x86 instructions unhandled
by SAGE’s symbolic execution engine, we also fixed several root causes of
divergence (by providing custom summaries for non-deterministic-looking
functions, like malloc and memcpy, whose execution paths depend on mem-
ory alignment), and we fixed a few imprecision bugs in SAGE’s code. These
SAGE limitations were much more easily identified when verifying small
functions in isolation with MicroX, rather than during whole-application
testing. After lifting these limitations, we were able to verify that many
individual ANI functions are memory safe (see Sect. 6.4.1). The remain-
ing functions could not be verified mostly because of path explosion due to
input-dependent loops (see Sect. 6.4.2) or due to too many paths in functions
lower in the call graph (see Sect. 6.4.3).

6.3 The ANI Windows parser

The general format of an ANI file is shown in Fig. 6.1. It is based on the
generic Resource Interchange File Format (RIFF) for storing various types
of data in tagged chunks, such as video (AVI) or digital audio (WAV). RIFF
has a hierarchical structure in which each chunk might contain data or a list
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RIFF ACON
[ LIST INFO

IART <artist >
ICOP <copyright >
INAM <name >

]
anih <anihdr >
[ seq <seqinfo > ]
[ rate <rateinfo > ]
LIST fram icon <iconfile > ...

Figure 6.1: The ANI file format (partial description).

of other chunks. Animated icons contain the following information:

− a RIFF chunk, whose header has the identifier ACON, specifies the type
of the file,

− an optional LIST chunk, whose header has the identifier INFO, contains
information about the file, such as the name of the artist,

− an anih header chunk contains information about the animation, in-
cluding the number of frames, i.e., Windows icons, and the number of
steps, i.e., the total number of times the frames are displayed,

− an optional seq chunk defines the order in which the frames are dis-
played,

− an optional rate chunk determines the display rate for each frame in
the sequence, and

− a LIST chunk, whose header has the identifier fram, contains a list of
icons.

This file format already provides an indication of the size and complexity of
the ANI parser.

The high-level call graph of the parser code is shown in Fig. 6.2. The
main component of the architecture, Reading and validating file, reads and

2. Chunk 
extraction 

1. Reading and 
validating file 

4. Bitmap 
conversion 

3. Reading 
icon guts 

5. ANI 
creation 

Figure 6.2: The high-level call graph of the ANI parser.
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validates each chunk of an ANI file. If an extracted chunk is a LIST fram,
the Reading icon guts component is invoked to read and validate the first
icon in the list. In case the icon is valid, it is converted to a physical bitmap
object by the Bitmap conversion component. Once this process has been
repeated for all the icons in the list, the animated icon is created from their
combination (ANI creation component).

The ANI parser is written mostly in C, while the remaining code is
written in x86 assembly. The implementation involves at least 350 functions
defined in five Windows DLLs. The parsing (that is, testing in branch state-
ments) of input bytes from an ANI file takes place in at least 110 functions
defined in two DLLs, namely, in user32.dll, which is responsible for 80% of
the parsing code, and in gdi32.dll, which is responsible for the remaining
20%1. user32.dll creates and manages the user interface, such as windows,
mouse events, and menus. Many functions defined in user32.dll call into
gdi32.dll, which is the graphics device interface associated with drawing
and handling two-dimensional objects as well as managing fonts. There
are 47 functions in user32.dll that implement functionality of the parser.
These functions alone compile to approximately 3,050 x86 instructions.

6.4 Approach and verification results

To try to prove memory safety of the ANI Windows image parser, we tar-
geted the 47 functions that are defined in user32.dll and are responsible
for 80% of the parsing code (see Sect. 6.3). The remaining 20% refers to at
least 63 gdi32.dll functions that are called (directly or indirectly) by the
47 user32.dll functions. In addition to these user32.dll and gdi32.dll
functions, the parser also exercises code in at least 240 other functions (for
a total of at least 350 functions). However, all these other functions do not
(directly or indirectly) parse any input bytes from an ANI file, and are by def-
inition attacker memory safe. For the purpose of this work, the gdi32.dll
and all these other functions can be viewed as inlined to the user32.dll
functions, which are the top-level functions of the parser. Verifying the 47
user32.dll functions while inlining all remaining sub-functions is, thus,
equivalent to proving attacker memory safety of the entire ANI parser. The
call graph of the 47 user32.dll functions is shown in Fig. 6.3. The func-
tions are grouped depending on the architectural component of the parser
(see Fig. 6.2) to which they belong. Note that there is no recursion in this
call graph.

In this section, we describe how we attempted to prove memory safety
of the ANI parser using compositional exhaustive testing. Our results were
obtained with 32-bit Windows 7 and are presented in three stages.

1These percentages were obtained by comparing the number of constraints on symbolic
values that were generated by SAGE for each of the two DLLs.
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Figure 6.3: The call graph of the 47 user32.dll functions imple-
menting the ANI parser core. Functions are grouped based on the
architectural component of the parser to which they belong. The
different shades and lines of the boxes denote the strategy we used
to prove memory safety of each function. The lighter shade and
dotted lines indicate functions verified with the bottom-up strat-
egy (Stage 1), the medium shade and single solid lines, functions
unsoundly verified by restricting the bounds of input-dependent
loops (Stage 2), and the darker shade and double solid lines, func-
tions (soundly or unsoundly) verified with the top-down strategy
(Stage 3). Functions are annotated with the number of their exe-
cution paths. A + indicates that a function contains too many ex-
ecution paths to be exhaustively enumerated within twelve hours
without using any techniques for controlling path explosion.
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6.4.1 Stage 1: Bottom-up strategy

For attempting to verify the ANI parser, we started with a bottom-up strat-
egy with respect to the call graph of Fig. 6.3. We wanted to know how
many functions of a real code base can be proven memory safe for any call-
ing context by simply using exhaustive path enumeration. Our setup for this
verification strategy consisted in trying to verify each user32.dll function
(one at a time) starting from the bottom of the call graph. If all execution
paths of the function were explored in a reasonable amount of time, i.e., less
than twelve hours, and no bugs or other unsoundness-check violations were
ever detected (see Sect. 6.2.3), we marked the function as memory safe. To
our surprise, 34 of the 47 functions shown in Fig. 6.3 could already be proven
memory safe this way, and are shown with the lighter shade and dotted lines
in the figure.

Inlining

Function StringCchPrintfW of the Bitmap conversion component writes
formatted data to a specified string, which is stored in a destination buffer.
It takes as input arguments the destination buffer that receives the formatted
string, the size of the destination buffer, the format string, and the argu-
ments that are inserted in the format string. Exploring all execution paths
of function StringCchPrintfW that may be passed a destination buffer of
any length and a format string with any number of format specifiers does
not complete in twelve hours, and is actually very complex.

To deal with this function, we just inlined it to each of its callers. Inlining
a function means replacing the call sites of the function with the function
body. In our context, inlining a function means that the function being
inlined is no longer treated as an isolated unit that we attempt to verify for
any (all) calling contexts. Instead, it is being included in the unit defined
by its caller function(s) and verified only for the specific calling context(s)
defined in the caller function(s). For instance, function LoadICSLibrary,
which takes no input arguments, calls function StringCchPrintfW. By in-
lining StringCchPrintfW to LoadICSLibrary, we can exercise the single
execution path in LoadICSLibrary and prove attacker memory safety of
both functions.

Verification results

With the simple bottom-up strategy of this section, we were already able
to prove attacker memory safety of 34 user32.dll functions out of 47, or
72% of the top-level functions of the ANI Windows parser. So far, we had
to inline only one function, namely, StringCchPrintfW to LoadICSLibrary
of the Bitmap conversion component. The gdi32.dll functions (not shown
in Fig. 6.3), which are called by the 47 user32.dll functions of Fig. 6.3,
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were also inlined (recursively) in those user32.dll functions. The boxes
with the lighter shade and dotted lines of Fig. 6.3 represent the 34 functions
that were verified with the bottom-up strategy. All these functions, except
for those that were inlined, were verified in isolation for any calling context.
This implies that all bounds for all loops (if any) in all these functions either
do not depend on function inputs, or are small enough to be exhaustively
explored within twelve hours. Recall that accesses to function input buffers
are not yet proven memory safe at this stage of the verification process since
input buffer sizes are still unknown (see Sect. 6.2.2).

6.4.2 Stage 2: Input-dependent loops

For the remaining 13 user32.dll functions of the ANI parser, path explo-
sion is too severe, and exhaustive path enumeration does not terminate in
twelve hours. Therefore, during the second stage of the process, we decided
to identify and restrict the bounds of input-dependent loops that might have
been preventing us from verifying functions higher in the call graph of the
parser in Stage 1. This is where we gave up soundness. In our context, an
input-dependent loop is a loop whose number of iterations depends on bytes
read from an ANI file, i.e., whole-program inputs. In contrast, when the
number of iterations of a loop inside a function depends on function inputs
that are not whole-program inputs, path explosion due to that loop can be
eliminated by inlining the function to its caller(s).

Restricting input-dependent loop bounds

In order to control path explosion due to input-dependent loops, we man-
ually fixed the bounds, i.e., the number of iterations, of those loops by as-
signing a concrete value to the program variable(s) containing the input
bound(s). We extended MicroX for the user to easily fix the value of arbi-
trary x86 registers or memory addresses. Of course, fixing an input value to
a specific concrete value is like specifying an input precondition, and the ver-
ification of memory safety becomes restricted to calling contexts satisfying
that precondition.

As an example, consider function CreateAniIcon of the ANI creation
component. Function CreateAniIcon calls functions NtUserCallOneParam
and NtUserDestroyCursor, which have one execution path each, as well
as function SetCursorIconData, which has two execution paths, as shown
in Fig. 6.3. Despite the very small number of paths in its callees, function
CreateAniIcon contains too many paths to be explored in twelve hours,
which is indicated by the + in Fig. 6.3.

This path explosion is due to two input-dependent loops inside that
function, shown in Fig. 6.4. The loop bounds frames, which refers to the
number of frames in an animated cursor, and steps, which refers to the
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for (i = 0; i < frames; i++)
frameArrT[i] = frameArr[i];

for (i = 0; i < steps; i++) {
if (rateArr == NULL)

rateArrT[i] = rate;
else

rateArrT[i] = rateArr[i];
if (stepArr == NULL)

stepArrT[i] = i;
else

stepArrT[i] = stepArr[i];
}

Figure 6.4: The input-dependent loops in function CreateAniIcon
(code fragment). Variables frames, steps, rateArr, and stepArr
are inputs to CreateAniIcon. All arrays are allocated such that
their length is greater than the corresponding loop bound, and
therefore, there are no buffer overflows in this code.

number of steps, are both inputs to CreateAniIcon, and so are the values
of variables rateArr and stepArr. Since frames and steps are of type
int (four bytes), each loop may iterate up to 232 times, which leads to the
exploration of 232 possible execution paths and is intractable in practice.
Consequently, to control path explosion and unsoundly verify this function,
we fixed the values of frames and steps. For any fixed value of frames, the
first loop of Fig. 6.4 has only one execution path, while for any fixed value of
steps, the second loop has always four execution paths due to the tests on
the other inputs rateArr and stepArr. Thus, by fixing these loop bounds
to any value from one to 232, the number of execution paths in the loops of
Fig. 6.4 is always four. Tab. 6.1 summarizes how the number of paths in the
loops of CreateAniIcon changes when fixing frames and steps to different
values. As Tab. 6.1 shows, we can soundly prove memory safety of function
CreateAniIcon for any fixed number of frames and steps in an animated
cursor.

Verification results

During this stage of the process, we unsoundly proved memory safety of
only one additional user32.dll function of the ANI parser, namely, of
CreateAniIcon. The box in Fig. 6.3 with the medium shade and single
solid line represents CreateAniIcon that was unsoundly verified in Stage 2.

Tab. 6.2 presents a complete list of the input-dependent loop bounds that
we fixed during this entire verification exercise on the parser. As described
above, to (unsoundly) verify memory safety of function CreateAniIcon of
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Input values Number of paths
frames steps

0 0 1
1 0 1

any fixed 0 1
0 1 4
0 any fixed 4

any fixed any fixed 4

Table 6.1: The number of paths in the loops of function
CreateAniIcon (shown in Fig. 6.4) changes when fixing the input-
dependent loop bounds frames and steps to different values.

the ANI creation component (component 5 of Fig. 6.3), we had to fix two
input-dependent loops using two whole-program input parameters (namely,
frames and steps). In the remainder of this work (see Sect. 6.4.3), we also
had to fix two other whole-program input parameters to control a few other
input-dependent loops. First, in the Reading icon guts component (com-
ponent 3 of Fig. 6.3), there are three other input-dependent loops, located
in functions ReadIconGuts and GetBestImage. The number of iterations
of all these loops depends on the number of images contained in each icon,
which corresponds to two bytes per frame of an ANI file. (A single icon
may consist of multiple images of different sizes and color depths.) To limit
path explosion due to these three loops, we had to fix the number of images
per icon of the animated cursor to a maximum of one. Second, in the Read-

Type of Component Maximum
loop bound loop bound

Frames 5 232
(4 bytes)

Steps 5 232
(4 bytes)

Images/frame 3 1(2 bytes/frame)
File size 1 110

Table 6.2: All the input-dependent loop bounds fixed during our
attempt to verify the ANI parser. For each loop bound, the table
shows the corresponding number of bytes in an ANI input file,
the component of the parser containing loops with this bound
(numbered as in Fig. 6.3), and the maximum value of the bound
that we could soundly verify in twelve hours.
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ing and validating file component (component 1 of Fig. 6.3), there are two
input-dependent loops, located in functions LoadCursorIconFromFileMap
and LoadAniIcon, whose number of iterations depends on the size of the
input file, which we had to restrict to a maximum of 110 bytes.

In summary, it is perhaps surprising that the number of input-dependent
loop bounds in the entire parser is limited to a handful of input parameters
read from an ANI file, for a total of around ten bytes (plus the input file
size) as shown in Tab. 6.2.

6.4.3 Stage 3: Top-down strategy

For the remaining twelve user32.dll functions still to be explored in the
higher-level part of the call graph of Fig. 6.3, path explosion was still too
severe even after using inlining and fixing input-dependent loop bounds.
Therefore, after having enforced a bound on the number of execution paths
in the parser in the previous stage, we adopted a different, top-down strategy
using sub-function summaries to get closer to proving memory safety, in a
compositional way (see Sects. 6.1 and 6.2). This strategy was now possible
as we had bounded the size of the summaries to be generated by previously
fixing the number of iterations of input-dependent loops. Consequently,
verification of functions with this strategy is only sound if their number of
paths has not been bounded by restricting the number of iterations of an
input-dependent loop lower in the call graph, otherwise it is unsound.

Summarization

As we explained earlier, summarizing sub-functions can alleviate path ex-
plosion in these sub-functions at the expense of computing re-usable logic
summaries that capture function pre- and postconditions, expressed in terms
of function inputs and outputs, respectively. For this trade-off to be at-
tractive, it is therefore best to summarize sub-functions (1) that contain
many execution paths, and (2) whose input/output interfaces with respect
to higher-level functions are not too complex, so that the logic encoding of
their summaries remains tractable. Moreover, to prove memory safety of
a sub-function with respect to its input buffers, all bounds-checking con-
straints inside that sub-function must be included in the precondition of its
summary (see Sect. 6.2.2).

Verification results

To verify as many executions of the remaining user32.dll functions, we
manually devised the following summarization strategy, based on the pre-
vious data about the numbers of paths in explored sub-functions (i.e., the
numbers of paths in the boxes of Fig. 6.3), and by examining the input/out-
put interfaces of the remaining functions. Specifically, we attempted to
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verify one by one the top-level function of each remaining component of
the parser, namely, ReadIconGuts of the Reading icon guts component,
ConvertDIBIcon of Bitmap conversion, and LoadCursorIconFromFileMap
of Reading and validating file (since the Chunk extraction and ANI creation
components had already been explored during the previous stages).

Verification of ReadIconGuts. (Reading icon guts component) We fixed
the bounds of the input-dependent loops of this component to a single loop
iteration (see Tab. 6.2), as discussed in Sect. 6.4.2, and summarized function
MatchImage. This function only returns an integer (a “score”) that does
not influence the control-flow execution of its caller GetBestImage for one
loop iteration, so its visible postcondition postf is very simple. Moreover,
MatchImage takes only one buffer as input, therefore, the precondition of
its summary includes only bounds-checking constraints for that buffer. In
its caller GetBestImage, the size of this buffer is always constant and equal
to the size of a structure, so MatchImage is attacker memory safe. Overall,
when restricting the bounds of the input-dependent loops in the Reading
icon guts component, summarizing MatchImage, and inlining all the other
functions below it in the call graph, ReadIconGuts contains 468 execution
paths that are explored by our tools in 21m 53s.

Verification of ConvertDIBIcon. (Bitmap conversion component) We
soundly verified this function after summarizing sub-function CopyDibHdr,
whose summarization is also tractable in practice. After summarization,
ConvertDIBIcon contains 28 execution paths exercised in 1m 58s. Note
that, in the Bitmap conversion component, there are no input-dependent
loops and, consequently, this verification is sound; although sub-function
ConvertPNGToDIBIcon has loops whose numbers of iterations depend on this
function’s inputs and therefore could not be verified in isolation, inlining it
to its caller ConvertDIBIcon eliminated this source of path explosion, and
it was then proven to be attacker memory safe.

Verification of LoadCursorIconFromFileMap. (Reading and validating
file component) This is the very top-level function of the parser and the
final piece of the puzzle. Since this final step targets the verification of the
entire parser, it clearly requires the use of summarization to alleviate path
explosion.

Fortunately, and perhaps surprisingly, after closely examining the imple-
mentation of the ANI parser’s components (see Fig. 6.2), we realized that
it is common for their output to be a single “success” or “failure” value. In
case “failure” is returned, the higher-level component typically terminates.
In case “success” is returned, the parsing proceeds but without reading any
other sub-component outputs and with reading other higher-level inputs
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(such as other bytes that follow in the input file), i.e., completely indepen-
dently of the specific path taken in the sub-component being summarized.
Therefore, the visible postcondition of function summaries with such inter-
faces is very simple: a “success” or “failure” value. This is the case for the
top-level functions of the lower-level components Reading icon guts, Bitmap
conversion, and ANI creation. This was not the case for the Chunk extrac-
tion component, which mainly consists of auxiliary functions, but does not
significantly contribute to path explosion and was not summarized.

More specifically, for the exploration of LoadCursorIconFromFileMap,
we used three summaries for the following top-level functions of architectural
components of the parser:

− ReadIconGuts, which returns a pointer to a structure that is checked
for nullness in its callers. Then, caller LoadCursorIconFromFileMap
returns null when this pointer is null. In caller ReadIconFromFileMap,
in case the pointer is non-null, it is passed as argument to function
ConvertDIBIcon, which has already been verified for any calling con-
text, as described above.

− ConvertDIBIcon, which also returns a pointer to a structure that is
checked for nullness in the callers of the function. This pointer is
returned by function ReadIconFromFileMap, and in case it is non-null,
LoadAniIcon stores the pointer in an array that is subsequently passed
as argument to CreateAniIcon, which has already been verified for a
restricted calling context (due to the input-dependent loops) during
the second stage of the process.

− CreateAniIcon, which also returns a pointer to a structure. If this
pointer is null, the parser fails and caller LoadAniIcon emits an error:

if (frames != 0)
ani = CreateAniIcon (...);

if (ani == NULL)
EMIT_ERROR("Invalid␣icon");

Otherwise, the pointer is returned by LoadAniIcon and subsequently
by the top-level function of the parser.

Function LoadCursorIconFromFileMap also has an input-dependent loop
whose number of iterations depends on the size of the input file being read
and containing the ANI file to be parsed. By summarizing the top-level
function of each of the above three lower-level components and fixing the
file size, we were able to unsoundly prove memory safety of the parser up to
a file size of 110 bytes in less than twelve hours. Fig. 6.5 shows the number
of execution paths in the parser as well as the time it takes to explore these
paths when summarizing components Reading icon guts, Bitmap conversion,
and ANI creation and controlling the file size.
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Figure 6.5: The number of execution paths in the top-level func-
tion LoadCursorIconFromFileMap of the ANI parser and the time
(in seconds) it takes to exercise these paths versus the number
of input bytes, when summarizing components Reading icon guts,
Bitmap conversion, and ANI creation.

With this top-down strategy and the careful use of function summariza-
tion, we were able to (soundly or unsoundly) prove memory safety of the
remaining twelve user32.dll functions of the parser. Note that by inlin-
ing functions that were previously verified in isolation, we also proved that
accesses to input buffers of these functions are memory safe. The boxes in
Fig. 6.3 with the darker shade and double solid lines represent the remaining
user32.dll functions that were explored during this stage of the process.

6.5 Memory-safety bugs

In reality, the verification attempt of the ANI Windows parser was slightly
more complicated than presented in the previous section because the ANI
parser is actually not memory safe! Specifically, we found three types of
memory-safety violations during the course of this work:

− real bugs (fixed in the latest version of Windows),

− harmless bugs (off-by-one non-exploitable buffer overflows),

− code parts not memory safe by design.

We discuss each of these memory-safety violations in this section. Details
are omitted for proprietary reasons. The results presented in Sect. 6.4 were
actually obtained after fixing or ignoring these bugs, as explained below.
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Real bugs

We found several buffer overflows all related to the same root cause. Func-
tion ReadIconGuts of the Reading icon guts component allocates memory
for storing a single icon extracted from the input file and returns a pointer
to this memory. The allocated memory is then cast to a structure, whose
fields are read for accessing sub-parts of the icon, such as its header. How-
ever, the size of an icon, and therefore the size of the allocated memory,
depends on the (untrusted) declared size of the images that make up the
icon. These sizes are declared in the ANI file and might not correspond to
the actual image sizes. Consequently, if the declared size of the images is
too small, then the size of the allocated memory is too small, and there are
buffer overflows when accessing the fields of the structure located beyond
the allocated memory for the icon. These buffer overflows have been fixed
in the latest version of Windows, but are believed to be hard to exploit and,
hence, not security critical.

Harmless bugs

We also found several harmless buffer overflows related to the bugs de-
scribed above. For instance, function ConvertPNGToDIBIcon of the Bitmap
conversion component converts an icon in PNG format to DIB (Device In-
dependent Bitmap), and also takes as argument a pointer to the above
structure for the icon. To determine whether an icon is in PNG format,
ConvertPNGToDIBIcon checks whether the icon contains the eight-byte PNG
signature. However, the allocated memory for the icon may be smaller than
eight bytes, in which case there can be a buffer overflow. Still, on Windows,
every memory allocation (call to malloc) always results in the allocation of a
reserved memory block of at least eight bytes. So, technically, accessing any
buffer buf of size less than eight up to buf + 7 bytes is not a buffer overflow
according to the Windows runtime environment—such buffer overflows are
harmless to both reliability and security.

Code parts not memory safe by design

Finally, we found memory-safety violations that were expected and caught as
runtime exceptions using try-except-statements. For instance, CopyDibHdr
of the Bitmap conversion component copies and converts an icon header
to a common header format. The size of the memory that is allocated
in CopyDibHdr for copying the icon header depends on color information
defined in the header itself. This color information is read from the input
file, and is therefore untrusted. Specifically, it can make the parser allocate a
huge amount of memory, which is often referred to as a memory spike. Later,
the actual header content is copied into this memory. To check whether the
declared size matches the actual size, CopyDibHdr uses a try-statement to
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probe the icon header in chunks of 4K bytes, i.e., the minimum page size,
and ensure that the memory is readable and properly initialized, as shown
below:

try {
DWORD offset;
for (offset = 0; offset < alloc; offset += 0x1000)

*( volatile BYTE*) (( LPBYTE)hdr + offset );
*( volatile BYTE*) (( LPBYTE)hdr + alloc - 1);

} except (W32ExceptionHandler(FALSE , RIP_WARNING )) {
return NULL;

}

In the code above, variable alloc is the untrusted declared size, while vari-
able hdr is a pointer to a buffer whose size is the real header size. While
probing the icon header inside the try-statement, the parser may access unal-
located memory beyond the bounds of the header, which is a memory-safety
violation. However, this violation is expected to be caught in the except-
statement, which returns null and aborts parsing in higher-level functions.

False alarms

Since some of the above buffer overflows were detected when testing func-
tions in isolation, for any calling context, we then determined whether these
buffer overflows are real bugs, that is, whether they also manifest themselves
in the context of the entire parser.

To achieve this, we identified the position of the (untrusted) input bytes,
which were to blame for the bugs, in a well-formed input file. We then
changed the values of these bytes in the well-formed input file to the “buggy”
values we had previously found, and ran the entire ANI parser on the mod-
ified file. We could then witness that these buffer overflows were still trig-
gered, hence proving that there was no input validation on the modified
input bytes anywhere else in the ANI parser, and that these buffer overflows
were reproducible and not false alarms. Note that we found no false posi-
tives during this work: all the buffer overflows we detected were indeed due
to accesses to unallocated memory. In a similar way, we were able to demon-
strate that code surrounding the try-except-statement shown above could
be tricked in two different ways into allocating 1MB and 1.5GB of memory,
respectively, in function ReadIconGuts; in both cases though, the memory
is freed before the function returns, so memory spikes are not observable.

The above buffer overflows manifested themselves as cases of divergence
from the program paths expected by SAGE and MicroX. In these cases, the
cause of the divergence was either a bug in our tools (that we immediately
fixed) or in the ANI parser. Moreover, exceptions thrown by the code of
the parser were detected when the exception handling mechanism of the
operating system was triggered. If a function under test throws an unhan-
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dled exception, a potential bug has been detected depending on whether the
exception is handled higher in the call graph of the parser. In such situa-
tions, we simply checked whether all calls to this function were wrapped in
appropriate try-except-statements, which was always the case.

Validity of verification results

The results of Sect. 6.4 were obtained after fixing or ignoring the memory-
safety bugs discussed in this section. Those results are therefore sound
only with respect to these additional assumptions. For example, in the
try-except-statement above, variable alloc is input dependent and the for-
loop is an input-dependent loop (as defined in Sect. 6.4.2) causing severe
path explosion. To avoid path explosion due to such memory-unsafe code
patterns, we restricted the values that variables like alloc can take.

6.6 Challenges

To obtain the results described in Sect. 6.4, we came across a number of
unexpected challenges.

For instance, exception handling can vary even between different versions
of the same operating system, and our results for code that throws exceptions
were interpreted differently on 32- and 64-bit Windows 7.

Another example involves cases of path divergence caused by the Fault
Tolerant Heap (FTH) sub-system of Windows 7. FTH is responsible for
monitoring application crashes, and may autonomously apply mitigations
to prevent future crashes. This caused divergence when FTH unexpectedly
interfered with certain test runs but not with others. We solved this problem
by entirely disabling FTH on the system.

Win32 structured exception handling created further complications as
it requires the execution of function prologue code that modifies the stack.
These modifications can confuse MicroX when determining the inputs of a
function that are passed through the stack, and special care had to be taken.

6.7 Related work

Traditional interactive program verification, using static program analysis,
verification-condition generation, and theorem proving, provides a broader
framework for proving more complex properties of a larger class of programs,
but at the expense of more work from the user. For instance, the VCC [36]
project verified the functional correctness, including memory safety and race
freedom, of the Microsoft Hyper-V hypervisor [94], a piece of concurrent soft-
ware (100K lines of C, 5K lines of assembly) that runs between x64 hardware
and guest operating systems, and provides isolated execution environments,
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called partitions. This verification effort required more than 13.5K lines of
source-code annotations for specifying contracts, loop invariants, and ghost
state in about 350 functions, by more than ten people and over several years.

As another impressive example, the seL4 project [88] designed and ver-
ified the C code of a microkernel, using the interactive theorem prover Is-
abelle/HOL [120], and requiring about 200K lines of Isabelle scripts and 20
years of research in developing and automating the proofs.

Moreover, Typed Assembly Language [112] (TAL) and the Boogie pro-
gram verifier [11] were used to prove type and memory safety of the Verve
operating system [141], which consists of a low-level “Nucleus”, written in
x86 assembly, and a higher-level kernel, written in safe C#. The exported
functions of the Nucleus code (a total of 20 functions implemented in approx-
imately 1.5K lines of x86 assembly) were verified and manually annotated
with pre- and postconditions, loop invariants, and external function stubs
for a total of 1,185 lines of annotations in about nine months of work.

In contrast, our verification attempt required only three months of work,
no program annotations, no static program analysis, and no external func-
tion stubs, although our scope was more focused (attacker memory safety
only), our application domain was different (sequential image parser versus
concurrent or reactive operating-system code), and we required key manual
steps, like user-guided program decomposition and summarization. Further-
more, contrary to the above verification projects, we gave up soundness by
fixing a few input-dependent loop bounds, as discussed in Sect. 6.4. Note
that our purely dynamic techniques and x86-based tools can handle com-
plicated ANI x86 code patterns, such as stack-modifying, compiler-injected
code for structured exception handling (SEH prologue and epilogue code for
try-except-statements), and stack-guard protection, which most static anal-
ysis tools cannot handle. For example, the abstract interpreter ASTRÉE [41]
does not support dynamic memory allocation.

Despite this limitation, statically proving memory safety of a program
is possible. However, proving attacker memory safety, even more so com-
positionally, is novel: we prove that an attacker cannot trigger buffer over-
flows, but ignore other buffer overflows (for instance, due to the failure of
trusted system calls). This requires a whole-program taint analysis to focus
on what the attacker can control, performed using symbolic execution and
the top-down strategy of Sect. 6.4.3. In contrast, other approaches, like
verification-condition generation, bounded model checking, abstract inter-
pretation, or traditional static analysis, lack this global taint view and treat
all program statements alike, without prioritizing the analysis toward parts
on the attack surface, which hampers scalability and relevance to security.

Moreover, static analysis involves reading the (source or binary) code of
a program and analyzing it, e.g., by generating a logic formula representing
the program or its transition relation, which is then unfolded. In contrast,
dynamic symbolic execution does not know what the entire program is.
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Static-analysis-based software model checkers, for instance, SLAM [8],
BLAST [80], and YOGI [121], can automatically prove control-oriented API
properties of specific classes of programs (specifically, device drivers). These
tools rely on (predicate) abstraction in order to scale, and are not engineered
to reason precisely about pointers, memory alignment, and aliasing. They
were not designed and cannot be used as-is for proving (attacker) memory
safety of an application as large and complex as the ANI Windows parser.
In addition, some model checkers of this category, such as SLAM, are un-
sound [90].

SAT- and SMT-based bounded model checkers, like CBMC [35] and
Corral [91], are another class of static analysis tools for automatic program
verification. The program’s logic representation generated by such model
checkers is similar to verification-condition generation, and captures both
data and control dependencies on all program variables, which is compa-
rable to eagerly summarizing (as in Sect. 6.1) every program block and
function. Even excluding all loops, such a monolithic whole-program logic
encoding would quickly become too large and complex, and consequently
not scale to the entire ANI parser. Corral, however, would perform better
than other tools in this category by using stratified inlining, that is, by over-
approximating the summaries it computes and then refining them based on
counterexample-guided abstraction refinement (CEGAR) [34]. Similarly to
our approach, bounded model checking is typically unsound.

As shown in Sect. 6.4, systematic dynamic test generation also does
not scale to the entire ANI parser without the selective use of function
summarization and compromising soundness by fixing a few input-dependent
loop bounds. These crucial steps were performed manually in our work.
Algorithms and heuristics for automatic program summarization have been
proposed before [66, 2, 89] as well as other closely related techniques [15,
107] and heuristics [73], which can be viewed as approximations of sub-
program summarization. However, none of this prior work on automatic
summarization has ever been applied toward verifying an application as
large and complex as the parser considered here.

We do not know which parts of the ANI code are in the subset of C
for which tools like CCured [117] or Prefix [18] are sound, or how many
memory-safety checks could be removed in those parts with such a sound
static analysis. However, we do know that Prefix was run on this code for
years, yet bugs remained, which is precisely why dynamic symbolic execution
is performed later [16].

In a different context, dynamic test generation has been applied to check
and potentially prove equivalence of floating-point and Single Instruction
Multiple Data (SIMD) code [37], up to a certain input size and with the
use of phi node folding to statically merge paths. A similar approach was
later designed to crosscheck OpenCL and C/C++ programs, up to a certain
input size and number of threads [38].
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6.8 Summary and remarks

For the first time, we attempted to prove attacker memory safety of an entire
operating-system image parser, in only three months of work, using compo-
sitional exhaustive testing, i.e., no static analysis whatsoever. These results
required a high-level of automation in our tools and verification process, al-
though key steps were performed manually, like fixing input-dependent loop
bounds, guiding the summarization strategy, and avoiding memory-safety
violations. Also, the scope of our work was only to prove attacker memory
safety, not general memory safety or functional correctness, and the ANI
parser is a purely sequential program. Finally, the verification guarantees
provided by our work are valid only with respect to some important as-
sumptions we had to make, mostly regarding input-dependent loop bounds.
Overall, after this work, we are now confident that the presence of any re-
maining security-critical (i.e., attacker-controllable) buffer overflows in the
ANI Windows parser is unlikely, but this conclusion is subject to the as-
sumptions we made.

Here are some interesting findings that we did not expect at the begin-
ning of this project:

− Many ANI functions are loop free and were easy to verify (Sect. 6.4.1).

− All the input-dependent loops in the entire ANI parser are controlled
by the values of about ten bytes only in any ANI file plus the file size
(Sect. 6.4.2).

− The remaining path explosion can be controlled by using only five
function summaries with very simple interfaces (Sect. 6.4.3).

We expect that these findings are also representative of other image parsers,
given that the ANI parser is organized in very common architectural compo-
nents for this application domain, such as the Chunk extraction and Bitmap
conversion components. Moreover, since the general format of an ANI file
is based on RIFF, used for storing various types of data such as video or
digital audio, we anticipate that our findings also generalize to certain media
players.

In hindsight, there are several things we would now do differently. Mostly,
the verification results obtained for the lower-level functions with the bottom-
up strategy were often stronger than necessary for verifying the higher-level
functions. Some of that work could have been avoided, although this stage
was useful to familiarize ourselves with the code base, input-dependent loops,
etc., and provided early, encouraging verification results.

Our work suggests future directions for automating the steps that were
done manually, in particular, decomposing the program at cost-effective in-
terfaces, and dealing with few, but critical, input-dependent loops. In the
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next chapter, we investigate how to automatically perform program decom-
position and summarization at simple interfaces, without any user input.

The path explosion caused by input-dependent loops could be addressed
by providing loop invariants, which can be used to generate summaries for
such loops. These invariants may be provided manually, like in Ch. 5, or
automatically, for instance, with an abstract interpretation tool. In fact,
an abstract interpreter could be applied to prove any remaining properties
that have not been soundly verified by the dynamic test generation, such
as those that have been verified under the assumption of a fixed number
of iterations of an input-dependent loop. This is the opposite direction to
combining verification and systematic testing than we explored in Ch. 2. In
Ch. 8, we outline what we have learned from each of the two parts in this
dissertation, and discuss what we now expect to happen in practice.
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Chapter 7

IC-Cut: A compositional search strategy
for dynamic test generation

In Ch. 6, we use SAGE [73] to evaluate to what extent systematic dy-
namic test generation can be pushed toward program verification of the
ANI Windows image parser [29]. In this previous chapter, we limit path
explosion in the parser with user-guided program decomposition and sum-
marization [66, 2]. In particular, we manually identify functions for summa-
rization whose input/output interfaces with respect to higher-level functions
in the call graph are not too complex, so that the logic encoding of their
summaries remains simple. Indeed, we find that it is common for functions
to return a single “success” or “failure” value. If “failure” is returned, the
higher-level function typically terminates. If “success” is returned, parsing
proceeds with new chunks of the input, that is, completely independently
of the specific path taken in the function being summarized. We, there-
fore, decompose the program at very few interfaces, of functions that parse
independent chunks of the input and return a single “success” or “failure”
value.

Based on these previous insights, we now define a new compositional
search strategy for automatically and dynamically discovering simple func-
tion interfaces, where large programs can be effectively decomposed. IC-Cut,
short for “Interface-Complexity-based Cut”, tests the decomposed program
units independently, records their test results as low-complexity function
summaries (that is, summaries with simple logic encoding), and reuses these
summaries when testing higher-level functions in the call graph, thus lim-
iting overall path explosion. IC-Cut runs on-the-fly during the search to
incrementally refine interface cuts as the search advances and increase its
precision. In short, IC-Cut is inspired by compositional reasoning, but is
only a search strategy, based on heuristics, for decomposing the program into
independent units that process different chunks of the input. We, therefore,
do not perform compositional verification in this work, except when certain
particular restrictions are met (see Sects. 7.1.4 and 7.2).

The main contributions of this chapter are:

147
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− We present a principled alternative to ad-hoc state-of-the-art search
heuristics for alleviating path explosion.

− As our experiments show, IC-Cut preserves or even increases code
coverage and bug finding in significantly less time, compared to the
current generational-search strategy of SAGE.

− IC-Cut can identify which decomposed program units are exhaustively
tested and, thus, dynamically verified.

Outline. This chapter is organized as follows. Sect. 7.1 explains the
IC-Cut search strategy in detail. In Sect. 7.2, we present our experimental
results obtained when testing the ANI Windows image parser. We review
related work in Sect. 7.3.

7.1 The IC-Cut search strategy

In this section, we present the IC-Cut search algorithm, precisely define the
low-complexity function summaries of IC-Cut, and discuss its correctness
guarantees and limitations.

7.1.1 Algorithm

Alg. 7.1 presents the IC-Cut search strategy. IC-Cut consists of three phases,
which are overlapping: learning, decomposition, and matching.

Learning

The learning phase of IC-Cut runs the program under test on a set of seed
inputs. The goal is to discover as much of the call graph of the program. As
a result, the larger the set of seed inputs, the more detailed is the global view
that IC-Cut has of the program, and the fewer new functions are discovered
in the next phase. Note that by the term “learning”, we simply refer to
discovering the call graph of the program, that is, we do not extrapolate
based on a given training set as in classical machine-learning techniques.

On line 2 of Alg. 7.1, function CreateCallgraph returns the call graph
of the program that is learned, dynamically and incrementally, by running
the program on the seed inputs. Each node in the call graph represents a
function of the program, and contains the function name and one seed input
that steers execution of the program through this function. Each edge (f , g)
in the call graph denotes that function f calls function g. Note that we
assume no recursion.

Handling recursion is conceptually possible [66]. In practice, it is not
required for the application domain of binary image parsers. Recursion
in such parsers is very rare due to obvious performance, scalability, and
reliability reasons, which is why we do not address it in this work.
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Algorithm 7.1: The IC-Cut search algorithm.
1 function IC-Cut(p, seeds)
2 cg ← CreateCallgraph(p, seeds)
3 summaries ← {}
4 Explore(cg, p, summaries)
5

6 function Explore(cg, p, summaries)
7 workQueue ← GetLeaves(cg)
8 while IsNotEmpty(workQueue) do
9 f ← Peek(workQueue)

10 cg′, summaries ← Process(f , p, summaries)
11 if cg′ == cg then
12 workQueue ← Dequeue(workQueue)
13 predecessors ← GetPredecessors(f , cg)
14 workQueue ← Enqueue(predecessors, workQueue)
15 else
16 newFunctions ← GetNewFunctions(cg, cg′)
17 workQueue ← AddFirst(newFunctions, workQueue)
18 cg ← cg′

19

20 function Process(f , p, summaries)
21 seed ← GetSeed(f )
22 interface, cg′ ← DSE(f , p, seed, summaries)
23 if IsSummarizable(interface) then
24 summary ← GenerateSummary(interface)
25 summaries ← PutSummary(f , summary, summaries)
26 return cg′, summaries

Decomposition

During the decomposition phase, IC-Cut tests one function at a time, that is,
it explores each function using dynamic symbolic execution. IC-Cut starts
testing functions at the bottom of the learned call graph, and potentially
records the function test results as a low-complexity summary (that is, a
summary with a simple logic encoding, as defined in Sect. 7.1.2). This is
done in function Explore of Alg. 7.1, which is called on line 4 and takes as
arguments the call graph cg, the program under test p, and an empty map
from call-graph nodes to function summaries summaries.

In particular, IC-Cut selects a function from the bottom of the call graph
that has not been previously tested. This is shown on line 7 of Alg. 7.1, in
function Explore, where we create a workQueue of the call graph leaf-
nodes, and on line 9, where a function f is selected from the front of the
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workQueue. The selected function is then tested independently (in function
Process) to determine whether its interface is simple enough to be cost-
effective for summarization. To test the selected function, IC-Cut chooses
an appropriate seed input, which in the previous phase has been found to
steer execution of the program through this function (line 21 of Alg. 7.1).
Subsequently, on line 22, IC-Cut tests the program starting with this seed
input, using dynamic symbolic execution.

However, while testing the program, not all symbolic constraints that IC-
Cut collects may be negated; we call the constraints that may be negated
open, and all others closed. (In other words, an open constraint is added to
the path constraint as a branching condition Branch(c), whereas a closed
constraint as an assumed condition Assume(c), as these conditions are de-
fined in Sect. 1.1.) Specifically, the constraints that are collected until ex-
ecution encounters the first call to the selected function are closed. Once
the function is called, the constraints that are collected until the function
returns are open. As soon as the function returns, symbolic execution ter-
minates. This means that IC-Cut tests only the selected function and for a
single calling context of the program. Note that the function is tested using
a generational search.

While testing the selected function, IC-Cut dynamically determines the
complexity of its interface, as defined in Sect. 7.1.2. If the function interface
is simple enough to be cost-effective for summarization (line 23 of Alg. 7.1),
the test results of the function are recorded as a summary. On line 24, we
generate the function summary, and on line 25, we add it to the summaries
map. Note that function Process describes our algorithm in a simplified
way. If a function interface is found to be suitable for summarization, IC-Cut
actually records the summary while testing the function. If this is not the
case, IC-Cut aborts testing of this function. How summaries are generated
is precisely documented in Sect. 7.1.2.

It is possible that new functions are discovered during testing of the
selected function, i.e., functions that do not appear in the call graph of
the learning phase. When this happens, IC-Cut updates the call graph.
Of course, these new functions are placed lower in the call graph than the
currently-tested function, which is their (direct or indirect) caller. IC-Cut
then selects a function to test from the bottom of the updated call graph.

This is shown on lines 11–18 of Alg. 7.1. If no new functions are discov-
ered during testing of the selected function (line 11), we remove this function
from the workQueue, and add its predecessors in the call graph at the end
of the workQueue (lines 12–14). When IC-Cut explores these predecessors,
their callees will have already been tested. If, however, new functions are dis-
covered (lines 15–16), we add these functions at the front of the workQueue
(line 17), and update the call graph (line 18). Note that when new functions
are discovered, IC-Cut aborts exploration of the currently-tested function;
this is why this function is not removed from the workQueue on line 17.
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The above process highlights the importance of the set of seed inputs in
the learning phase: the better the set of seed inputs is in call-graph coverage,
the less time is spent on switches between the decomposition and learning
phases of IC-Cut.

Matching

In general, summaries can be reused by callers to skip symbolic execution of
a summarized callee and, hence, alleviate path explosion caused by inlining
the callee, i.e., by re-exploring all callee paths.

The matching phase decides whether a recorded summary may be reused
when testing higher-level functions in the call graph. This is why function
DSE of Alg. 7.1 (line 22) takes the summaries map as argument. On the
whole, DSE explores (using dynamic symbolic execution) one function at a
time, records its interface, and reuses previously-computed summaries.

In our context, while testing a higher-level function in the decomposition
phase, the exploration might come across a call to a function for which a
summary has already been computed. Note, however, that this summary
has been computed for a particular calling context. Therefore, the matching
phase determines whether the encountered calling context of the function
matches (precisely defined in Sect. 7.1.2) the old calling context for which
the summary has been computed. If this is the case, it is guaranteed that
all execution paths of the function for the encountered calling context are
described by the recorded summary. Consequently, the summary may be
reused, since no execution paths of the function will be missed. If, on the
other hard, the calling contexts do not match, the called function is tested
as part of the higher-level function (that is, it is inlined to the higher-level
function) as if no summary had been recorded, to avoid missing execution
paths or generating false alarms. In other words, IC-Cut allows, arbitrarily
and for simplicity, that a function is summarized only for a single calling
context, and thus, summary reuse must be calling-context specific.

7.1.2 Function summaries

Before describing which constraints on interface complexity a function must
satisfy to be summarized, we first precisely define function inputs and out-
puts. (These definitions differ from the ones presented in Ch. 6.)

Function inputs and outputs

− An input if of function f is any value that is read and tested by f . In
other words, the value of if is not only read in f , but also affects which
execution path of the function is taken at runtime.
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− An input if of f is symbolic if it is a function of any whole-program
inputs; otherwise, if is concrete.

− A candidate output cof of function f is any value that is written by f .

− An output of of function f is any candidate output of f that is tested
later in the program.

Consider program P below, which expects two non-negative inputs a and
b:

int is_less(int x, int y) {
if (x < y)

return 1;
return 0;

}

void P(int a, int b) {
if (is_less(a, 0) || is_less(b, 0))

abort;
...

}

For both calling contexts of function is less in program P, is less has
one symbolic input (that is, a or b), one concrete input (that is, 0), and one
output (which is 0 or 1 and tested by the if-statement in P).

Generating summaries

Recall from the previous chapter that, in compositional symbolic execu-
tion [66, 2], a summary φf for a function f may be computed by symbolically
executing all paths of function f , generating an input precondition and out-
put postcondition for each path, and gathering all of these path summaries
in a disjunction.

Precisely, φf is defined as a disjunction of formulas φwf of the form

φwf = prewf ∧ postwf

where wf denotes an intra-procedural path in f , prewf is a conjunction of
constraints on values read by f , and postwf a conjunction of constraints on
values written by f . For instance, a summary φf for function is less is

φf = (x < y ∧ ret = 1) ∨ (x ≥ y ∧ ret = 0)

where ret denotes the value returned by the function. This summary may
be reused across different calling contexts of is less. In practice, however,
these disjunctions of conjunctions of constraints can become very large and
complex, thus making summaries expensive to compute. For this reason,



7.1. The IC-Cut search strategy 153

IC-Cut generates only low-complexity function summaries for specific calling
contexts.

For a given calling context, a function f is summarized by IC-Cut only
if the following two conditions are satisfied:

− All symbolic inputs of f are unconstrained, that is, they are completely
independent of the execution path taken in the program until function
f is called. In particular, the symbolic inputs of f do not appear in
any of the closed constraints collected before the call to f . Therefore,
the input precondition of f must be true.

− Function f has at most one output of .

Note that the latter condition is based on our insights from Ch. 6, also
described at the beginning of this chapter. In principle, any number of
outputs of f could be allowed for summarization. However, as we discuss
in Sect. 7.1.4, the summaries computed by IC-Cut can be unsound under
certain circumstances, and the larger the number of outputs the more execu-
tion paths might be missed by IC-Cut (see Thm. 2). If the above conditions
are not satisfied, function f is inlined to its calling contexts (that is, not
summarized). As an example, consider again program P. For the first call-
ing context of function is less in P (that is, is less(a, 0)), the symbolic
input of is less is unconstrained, and the function has exactly one output.
As a result, is less is summarized by IC-Cut for this first calling context,
as described in Sect. 7.1.1.

As a consequence of these conditions, the summaries considered in this
work have a single precondition on all symbolic inputs, which is true, and a
single precondition on all concrete inputs, which is of the form∧

0≤j<N
ij = cj

where ij is a concrete input, cj a constant representing its concrete value,
and N the number of concrete inputs. Moreover, the summaries in this
work have no output postconditions, as explained later in this section. As a
result, when IC-Cut generates a summary for a function f , it actually records
a precondition of the above form on all concrete inputs of f ; this precondition
also represents the current calling context of f . In this chapter, we abuse
terminology and call such preconditions “summaries”, although we do not
record any disjunctions or postconditions. For example, in the program P
above, IC-Cut generates the following summary for the first calling context
of function is less

y = 0

which denotes that all inputs of is less except for y are symbolic and
unconstrained, and that y is a concrete input whose value is zero in the
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particular calling context. This summary indicates that function is less
has been tested for a calling context in which x may take any value, while
y must have the value zero.

Reusing summaries

While testing a higher-level function in the decomposition phase of IC-Cut,
the exploration might come across a call to a function for which a summary
has already been generated. Then, the matching phase determines if this
summary may be reused by checking whether the new calling context of
the function matches, i.e., is equally or more specific than, the old calling
context for which the summary has been recorded (see Sect. 7.1.1).

− The new calling context is as specific as the old calling context only if
(1) the function inputs that are symbolic and unconstrained in the old
calling context are also symbolic and unconstrained in the new calling
context, and (2) all other function inputs are concrete and have the
same values across both calling contexts, except in the case of non-
null pointers whose concrete values may differ since dynamic memory
allocation is non-deterministic (see Sect. 7.1.4 for more details).

− The new calling context is more specific than the old calling context
only if (1) the function inputs that are concrete in the old calling
context are also concrete in the new calling context and have the same
values (except in the case of non-null pointers), and (2) one or more
function inputs that are symbolic and unconstrained in the old calling
context are either symbolic and constrained in the new calling context
or they are concrete.

Recall that, in our previous example about program P, IC-Cut records a
summary for the first calling context of function is less in P. This sum-
mary is also reused in the second calling context of is less in P (that is,
is less(b, 0)), which is as specific as the first.

After having described when a recorded summary may be reused, we now
explain how this is done. When the matching phase of IC-Cut determines
that a function summary matches a calling context of the function, the
following two steps are performed:

1. The function is executed only concretely, and not symbolically, until
it returns.

2. The function candidate outputs are associated with fresh symbolic
variables.

Step (1) is performed because all execution paths of the function have al-
ready been explored when testing this function independently for an equally
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or more general calling context. Step (2) is used to determine whether the
function has at most one output, as follows.

When testing a function f for a given calling context, we can determine
all values that are written by f , which we call candidate outputs. Yet, we do
not know whether these candidate outputs are tested later in the program,
which would make them outputs of f . Therefore, when reusing a summary of
f , we associate fresh symbolic variables with all of its candidate outputs. We
expect that at most one of these candidate outputs is ever tested later in the
program. If this condition is not satisfied, the summary of f is invalidated.
In this case, the higher-level function that reused the summary of f is tested
again, but this time, f is inlined to its calling contexts instead of summarized.

When reusing the summary of function is less in program P, we as-
sociate a symbolic variable with the function’s only candidate output, its
return value. This symbolic variable is tested by function P, in the condi-
tion of the if-statement, thus characterizing the return value of is less as
a function output. Given that the summary of is less is computed to be
very simple and, when reusing it, the function is executed only concretely,
IC-Cut misses some of those execution paths in P that are guarded by the
value of the function output (that is, either the then- or the else-branch
of the if-statement in P). Overall, IC-Cut explores both paths in is less
when computing its summary, and a single path in P (instead of four) when
reusing the summary. This is because function is less is executed only
concretely for both calling contexts.

Note that when the outputs of the summarized functions do not affect
which path is taken later in the program, IC-Cut does not miss any execution
paths. For instance, consider the following program Q:

int* Q(int a, int b) {
int buf [2];
buf [0] = is_less(a, 0);
buf [1] = is_less(b, 0);
return buf;

}

In this case, IC-Cut again explores two paths in is less when computing its
summary, and a single path in Q (instead of four) when reusing the summary,
but no paths or bugs are missed.

7.1.3 Input-dependent loops

We use constraint subsumption [73] to automatically detect and control
input-dependent loops. Subsumption keeps track of the constraints gener-
ated from a given branch instruction. When a new constraint c is generated,
SAGE uses a fast syntactic check to determine whether c implies or is im-
plied by a previous constraint, generated from the same instruction during
execution, most likely due to successive iterations of an input-dependent
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loop. If this is the case, the weaker (implied) constraint is removed from the
path constraint.

In combination with subsumption, which eliminates the weaker con-
straints generated from the same branch, we can also use constraint skip-
ping, which never negates the remaining stronger constraints injected at this
branch. When constraint subsumption and skipping are both turned on, an
input-dependent loop is concretized, that is, it is explored only for a fixed
number of iterations.

7.1.4 Correctness

We now discuss the correctness guarantees of the IC-Cut search strategy.
The following theorems hold assuming symbolic execution has perfect pre-
cision, i.e., that constraint generation and solving are sound and complete
for all program instructions.

We define an abort-statement in a program as any statement that triggers
a program error.

Theorem 1. (Completeness) Consider a program P. If IC-Cut reaches an
abort, then there is some input to P that leads to an abort.

Proof sketch. The proof is immediate by the completeness of dynamic sym-
bolic execution [70, 66]. In particular, it is required that the summaries of
IC-Cut are not over-approximated, but since these summaries are computed
using dynamic symbolic execution, this is guaranteed.

Theorem 2. (Soundness) Consider a program P. If IC-Cut terminates
without reaching an abort, no constraints are subsumed or skipped, and the
functions whose summaries are reused have no outputs and no concrete,
non-null pointers as inputs, then there is no input to P that leads to an
abort.

Proof sketch. The proof rests on the assumption that any potential source
of unsoundness in the IC-Cut summarization strategy is conservatively de-
tected. There are exactly two sources of unsoundness: (1) constraint sub-
sumption and skipping for automatically detecting and controlling input-
dependent loops, and (2) reusing summaries of functions that have a single
output and concrete, non-null pointers as inputs.

Constraint subsumption and skipping remove or ignore non-redundant
constraints from the path constraint to detect and control successive itera-
tions of input-dependent loops. By removing or ignoring such constraints,
these techniques omit paths of the program and are, thus, unsound.

When reusing the summary of a function with a single output, certain
execution paths of the program might become infeasible due to the value of
its output. As a result, IC-Cut might explore fewer execution paths than
are feasible in practice. On the other hand, summaries of functions with
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no outputs are completely independent of the execution paths taken in the
program. Therefore, when such summaries are reused, no paths are missed.
Note that by restricting the function outputs to at most one, we set an
upper bound to the number of execution paths that can be missed, that is,
in comparison to reusing summaries of functions with more than one output.

When reusing the summary of a function that has concrete, non-null
pointers as inputs, execution paths that are guarded by tests on the values
of these pointers might be missed, for instance, when two such pointers are
compared for aliasing. This is because we ignore whether the values of such
inputs actually match the calling context where the summary is reused, to
deal with the non-determinism of dynamic memory allocation.

The program units for which the exploration of IC-Cut is sound and does
not lead to an abort are dynamically verified.

7.1.5 Limitation: Search redundancies

It is worth emphasizing that IC-Cut may perform redundant sub-searches in
two cases: (1) partial call graph, and (2) late summary mismatch, as detailed
below. However, as our evaluation shows (Sect. 7.2), these limitations seem
outweighed by the benefits of IC-Cut in practice.

Partial call graph

This refers to discovering functions during the decomposition phase of IC-
Cut that do not appear in the call graph built in the learning phase. When-
ever new functions are discovered, testing is aborted in order to update the
call graph, and all test results of the function being tested are lost.

Late summary mismatch

Consider a scenario in which function foo calls function bar. At time t,
bar is summarized because it is call-stack deeper than foo and the interface
constraint on bar’s inputs is satisfied. At time t + i, foo is explored while
reusing the summary for bar, and bar’s candidate outputs are associated
with symbolic variables. At time t + i + j, while still exploring foo, the
interface constraint on bar’s outputs is violated, and thus, the summary of
bar is invalidated. Consequently, testing of foo is aborted and restarted,
this time by inlining bar to its calling context in foo.

7.2 Experimental evaluation

In this section, we present detailed experimental results obtained when test-
ing the ANI Windows image parser, which is available on every version of
Windows.
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As described in the previous chapter, this parser processes structured
graphics files to display “ANImated” cursors and icons, like the spinning
ring or hourglass on Windows. The ANI parser is written mostly in C,
while the remaining code is written in x86 assembly. It is a large benchmark
consisting of thousands of lines of code spread across hundreds of functions.
The implementation involves at least 350 functions defined in five Windows
DLLs. The parsing of input bytes from an ANI file takes place in at least 110
functions defined in two DLLs, namely, in user32.dll, which is responsible
for 80% of the parsing code, and in gdi32.dll, which is responsible for the
remaining 20% [29] (see Ch. 6).

Our results show that IC-Cut alleviates path explosion in this parser
while preserving or even increasing code coverage and bug finding, compared
to the current generational-search strategy used in SAGE. Note that by
“generational-search strategy used in SAGE”, we mean a monolithic search
in the state space of the entire program.

For our experiments, we used five different configurations of IC-Cut,
which we compared to the generational-search strategy that is implemented
in SAGE. All configurations are shown in Tab. 7.1. For each configuration,
the first column of the table shows its identifier and whether it uses IC-Cut.
Note that configurations A–E use IC-Cut, while F uses the generational-
search strategy of SAGE. The second column shows the maximum runtime
for each configuration: configurations A–E allow for a maximum of three
hours to explore each function of the parser (since the exploration is per
function), while F allows for a total of 48 hours to explore the entire parser
(since the exploration is whole program). The four rightmost columns of
the table indicate whether the following options are turned on:

− Summarization at maximum runtime: Records a summary for the
currently-tested function when the maximum runtime is exceeded if no
conditions on the function’s interface complexity have been violated;

− Constraint subsumption: Eliminates weaker constraints implied by
stronger constraints generated from the same branch instruction (us-
ing a fast syntactic check), most likely due to successive iterations of
an input-dependent loop (see Sect. 7.1.3);

− Constraint skipping: Does not negate stronger constraints that imply
weaker constraints generated from the same branch instruction (see
Sect. 7.1.3);

− Flip count limit: Establishes the maximum number of times that a
constraint generated from a particular program instruction may be
negated [73].

Note that F is the configuration of SAGE that is currently used in produc-
tion.
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Configuration Maximum Summarization Constraint Constraint Flip
runtime at maximum subsumption skipping count

ID IC-Cut runtime limit
A X 3h/function X X
B X 3h/function X X X
C X 3h/function X X X
D X 3h/function X
E X 3h/function X X
F 48h X X

Table 7.1: All configurations used in our experiments; we used five
different configurations of IC-Cut (A–E), which we compared to
the generational-search strategy of SAGE (F).

Fig. 7.1 shows the instructions of the ANI parser that are covered by
each configuration. We partition the covered instructions in those that
are found in user32.dll and gdi32.dll (projected coverage), and those
that are found in the other three DLLs (remaining coverage). Note that
the instructions in user32.dll and gdi32.dll are responsible for parsing
untrusted bytes and are, therefore, critical for bug finding. As shown in
Fig. 7.1, configuration E, for which options “summarization at maximum
runtime” and “constraint subsumption” are turned on, achieves the highest
projected coverage. Configuration D, for which only “constraint subsump-
tion” is turned on, achieves a slightly lower coverage. This suggests that
summarizing when the maximum runtime is exceeded helps in guiding the
search toward new program instructions; in particular, it avoids repeatedly
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Figure 7.1: The instructions of the ANI parser that are covered by
each configuration. The projected instruction coverage is critical
for bug finding.
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Figure 7.2: The time it takes for each configuration to stop explor-
ing the ANI parser.

exploring the code of the summarized functions. In contrast, configurations
A–C, for which “constraint skipping” is turned on, achieve the lowest pro-
jected coverage. This indicates that testing input-dependent loops for more
than just a single number of iterations is critical in achieving higher code
coverage.

Fig. 7.2 shows the time (in minutes) it takes for each configuration to stop
exploring the ANI parser. Note that configuration B stops in the smallest
amount of time (approximately 15 hours); this is because too many con-
straints are pruned due to options “constraint subsumption”, “constraint
skipping”, and “flip count limit”, which are turned on. Configuration D
achieves almost the same projected coverage as F (Fig. 7.1) in much less
time, indicating that ad-hoc heuristics such as flip count limits are no longer
necessary with IC-Cut. Configuration E, which achieves the highest pro-
jected coverage, stops exploring the parser in the second smallest amount
of time, that is, in approximately 21.5 hours—roughly 55% faster than the
generational-search strategy used in production (configuration F).

In this amount of time, configuration E also detects the largest number of
unique first-chance exceptions in the ANI parser. This is shown in Fig. 7.3,
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Figure 7.3: The number of unique exceptions that are detected by
each configuration.
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Maximum Coverage Total time First-chance exceptions
runtime projected remaining (in minutes) unique duplicate

1 minute 5,421 36,250 23 0 0
90 minutes 7,896 37,183 683 8 7
3 hours 7,894 37,146 1292 9 10

Table 7.2: Performance of the winner-configuration E when the
maximum runtime per function of the parser is one minute, 90
minutes, and three hours, respectively. Performance is measured
in terms of covered instructions, total exploration time of the
parser, and detected first-chance exceptions.

which presents how many unique exceptions are detected by each config-
uration. A first-chance exception is an exception (similar to an assertion
violation) thrown at runtime (by the operating system) during program ex-
ecution, but caught by the program using a C/C++ try/catch-mechanism
(see [29]). Note that the nine exceptions found by configuration E are a
superset of all other exceptions detected by the remaining configurations.

In summary, configuration E detects more unique exceptions than all
other configurations combined. Compared to configuration F (generational
search), E finds more exceptions (Fig. 7.3) and achieves the same projected
instruction coverage (Fig. 7.1) in less than half the time (Fig. 7.2). E is the
most effective configuration against path explosion.

Tab. 7.2 shows how the winner-configuration E performs when the max-
imum runtime per function of the parser is one minute, 90 minutes, and
three hours, respectively. Performance is measured in terms of covered in-
structions, total exploration time of the parser, and detected first-chance
exceptions. As shown in the table, IC-Cut performs better than configura-
tion F even for a maximum runtime of 90 minutes per function: there is a
noticeable improvement in projected code coverage and bug finding, which is
achieved in approximately eleven hours (roughly 76% faster than configura-
tion F). This is a strong indication of how much the summarization strategy
of IC-Cut can alleviate path explosion.

Fig. 7.4 shows the number of functions that are explored by the winner-
configuration E when the maximum runtime per function of the parser is
one minute, 90 minutes, and three hours, respectively. This figure shows
only functions for which SAGE generated symbolic constraints. The func-
tions are grouped as follows: exhaustively tested and summarized, sum-
marized despite constraint subsumption or an exceeded runtime, not sum-
marized because of multiple outputs or constrained symbolic inputs. The
functions in the first group constitute verified program components (accord-
ing to Thm. 2), highlighting a key originality of IC-Cut, namely, that it can
dynamically verify sub-parts of a program during testing. As expected, the
larger the maximum runtime, the more functions are discovered, the fewer
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Figure 7.4: How many functions are explored by the winner-
configuration E when the maximum runtime per function of the
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Only functions for which SAGE generated symbolic constraints
are shown.

functions are summarized at maximum runtime, and the more functions are
verified. Interestingly, the functions that are not summarizable because of
multiple outputs or constrained symbolic inputs are identified immediately,
even for a maximum runtime of one minute per function.

We also used IC-Cut to test other image parsers, namely, GIF and JPEG.
Unfortunately, our prototype implementation could not handle the size of
these larger parsers. However, preliminary experiments showed that our
restrictions for summarization on function interfaces apply to both GIF
and JPEG. For instance, when running on GIF with a timeout of three
hours per function, 16 out of 140 functions (with symbolic constraints) were
summarized. When running on JPEG with the same timeout, 27 out of 204
functions (with symbolic constraints) were summarized.

7.3 Related work

Automatic program decomposition for effective systematic dynamic test gen-
eration [25] is not a new idea. Moreover, compositional symbolic execu-
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tion [66, 2] has already been shown to alleviate path explosion. However,
when, where, and how compositionality is most effective in practice is still
an open problem.

Algorithms for automatic program summarization have been proposed
before [66, 2, 75]. SMART [66] tests all program functions in isolation, en-
codes their test results as summaries expressed using input preconditions
and output postconditions, and then reuses these summaries when testing
higher-level functions. Demand-driven compositional symbolic execution [2]
generates partial summaries that describe only a subset of all paths in a func-
tion and can be expanded lazily. SMASH [75] computes both may and must
information compositionally using both may and must summaries. IC-Cut
is inspired by this compositional reasoning and summarization although it
does not generate full-fledged function summaries. Instead, IC-Cut records
a single precondition on all concrete function inputs without disjunctions or
postconditions. In contrast to SMART, IC-Cut generates summaries only
for functions with low interface complexity. Similarly to demand-driven
compositional symbolic execution, our summaries are partial in that they
describe a single calling context. Furthermore, when testing a function in
isolation, the closed symbolic constraints that IC-Cut collects before the
first call to the function are similar to the lazily-expanded dangling nodes
in the demand-driven approach.

Other closely related techniques [89, 4, 15, 107] can be considered as
approximations of sub-program summarization. Dynamic state merging
and veritesting [89, 4] merge sub-program searches, and RWset [15] prunes
searches by dynamically computing variable liveness. Information parti-
tions [107] are used to identify “non-interfering” input chunks such that
symbolically solving for each chunk while keeping all other chunks fixed to
concrete values finds the same bugs as symbolically solving for the entire in-
put. Similarly to these techniques, our work also approximates sub-program
summarization. Moreover, IC-Cut is closely related to reducing test inputs
using information partitions. Both techniques exploit independence between
different parts of the program input. However, IC-Cut does not require that
the input is initially partitioned, and avoids the overhead of dynamically
computing data and control dependencies between input chunks.

Overall, our algorithm does not require any static analysis and uses very
simple summaries, which are nevertheless sufficient to significantly allevi-
ate path explosion. As a result, it is easy to implement on top of existing
dynamic test generation tools. Our purely dynamic technique can also han-
dle complicated ANI code patterns (see Ch. 6), such as stack-modifying,
compiler-injected code for structured exception handling, and stack-guard
protection, which most static analyses cannot handle. Furthermore, a static
over-approximation of the call graph might result in testing more functions
than necessary and for more calling contexts. With an over-approximation
of function interfaces, we would summarize fewer functions, given the restric-
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tions we impose on function inputs and outputs, thus fighting path explosion
less effectively.

In addition to our low-complexity function summaries, SAGE imple-
ments other specialized forms of summaries, which deal with floating-point
computations [69], handle input-dependent loops [74], and can be statically
validated against code changes [71].

7.4 Summary and remarks

We have presented a new search strategy inspired by compositional reasoning
at simple function interfaces. However, we do not perform compositional
verification in this work, except when certain particular restrictions are met,
as detailed in Thm. 2 (see also Sect. 7.2).

IC-Cut uses heuristics about interface complexity to discover, dynam-
ically and incrementally, independent program units that process different
chunks of the input vector. Our search strategy is complete for bug finding,
while limiting path explosion in a more principled and effective manner than
in the current implementation of SAGE, with its simple, yet clever, search
heuristics. Indeed, compared to the generational-search strategy of SAGE,
our experiments show that IC-Cut preserves code coverage and increases
bug finding in significantly less exploration time.

IC-Cut generates low-complexity summaries for a single calling context
of functions with unconstrained symbolic inputs and at most one output.
The previous chapter on proving memory safety of the ANI Windows image
parser [29] shows that such simple interfaces exist in real, complex parsers,
which is why we chose the above definition. However, our definition could
be relaxed to allow for more than one calling context or function output,
although our experiments show that this definition is already sufficient for
large improvements. We leave this for future work. We also leave for future
work determining how suitable such a definition is for application domains
other than that of binary image parsers.



Chapter 8

Conclusion and future work

In this dissertation, we have explored different ways of narrowing the gap
between static verification and systematic testing. In particular, we have
presented how to complement static analyzers or verifiers with systematic
testing, and how far we can push systematic testing toward reaching verifi-
cation.

Summary

To minimize the test effort while maximizing code quality, we explore how
to reduce redundancies of systematic testing with prior verification. We
achieve this by exploiting the partial verification results both of an unsound
static analyzer and a sound verifier, to guide dynamic test generation to-
ward program properties and executions that have not already been checked
statically. This approach yields several benefits, including smaller and more
targeted test suites, higher overall code coverage, shorter testing time, and
higher programmer productivity.

By complementing verification with systematic testing, we identify pro-
gram properties that are both difficult to check statically and lie beyond
the capabilities of existing test generation tools. These properties involve
not sufficiently checking object invariants as part of the oracle, although
invariants are used to filter valid input data, and not taking into account
the potential interference of static state with a program. We have addressed
these issues by developing two novel techniques in dynamic test generation
that check such properties. We, therefore, enhance systematic testing with
better means of checking program correctness and, thus, of supporting ver-
ification tools.

To assess how far we can push systematic testing toward verification
without using any static analysis whatsoever, we try to address the main
limitation of dynamic test generation, namely, path explosion. In the context
of proving memory safety of a complex binary image parser, we discover that
many functions are easy to verify, using inlining, manual program decompo-
sition, and summarization at very few, yet simple, function interfaces. To
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control the remaining path explosion, however, we sacrifice soundness of our
approach by bounding the number of iterations of input-dependent loops.

Nonetheless, the insights from this verification exercise have proven sig-
nificant in defining a new compositional search strategy in dynamic test
generation, for automatically and dynamically decomposing large programs
to fight path explosion. Indeed, this strategy outperforms the state-of-the-
art generational search and its heuristics.

Significance of results

In the first part of this dissertation, the starting point is a static analysis.
We identify and encode any verification gaps in this analysis (due to its
deliberate unsoundness), generate runtime checks for these gaps, and apply
automatic test generation to compensate for the gaps. In contrast, in the
second part of the dissertation, we push systematic testing toward verifica-
tion, but without any static analysis. Specifically, we identify the verifica-
tion gaps of dynamic test generation in the application domain of binary
image parsers. Therefore, this dissertation brings forward the strengths and
weaknesses of both static analysis and dynamic test generation in achiev-
ing sound verification. For instance, the static analyzer Clousot does not
reason soundly about arithmetic overflow, object invariants, or static ini-
tialization, which can be compensated for by dynamic test generation, as
shown in Chs. 2, 3, and 4. On the other hand, dynamic test generation
struggles with path explosion caused by input-dependent loops. This limi-
tation could be addressed by providing loop invariants, either manually as
in Ch. 5 through the Dafny verifier, or automatically as in Ch. 2 through
the abstract interpreter Clousot.

Based on our techniques and findings, we anticipate a tighter integration
of verification and systematic testing in practice. In particular, we expect
the development of wizards that identify on which parts of a program a
static analyzer can yield better or worse verification results in comparison
to a test generation tool, apply the tools accordingly, and precisely combine
their correctness guarantees. As a result, tool designers and users will know
exactly which program properties remain to be validated and, therefore, the
direction toward which they should focus their manual efforts. This will
facilitate progress in tool development, such as the rise of novel verification
techniques or search strategies for test generation, to address advanced tool
limitations and smoothen the integration of existing tools, for instance, in
terms of efficiency or precision.

We also expect software engineers and project managers to develop pro-
gramming guidelines on how much effort should be spent on verification,
depending on software quality, criticality, and budget constraints. Such
guidelines will facilitate a more effective integration and use of static ana-
lyzers in industrial projects.
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Our approach for complementing verification with systematic testing
generalizes to a large class of assumptions made by static analyzers [30, 32].
It can, therefore, guide users of unsound analyzers in using them fruitfully,
for instance, in deciding how to combine them with other analyzers or dy-
namic test generation tools. Moreover, it can assist designers of such an-
alyzers in finding good trade-offs that are motivated empirically. In other
words, we expect designers to perform experiments that measure the impact
of their design compromises, in terms of whether these compromises can be
compensated for by systematic testing. Such experiments could also derive
language designs that mitigate the unsoundness of a static analyzer.

By pushing dynamic symbolic execution toward proving the absence of
a certain class of errors in a particular application domain, we make the
first step in concretely identifying and assessing the current limitations of
systematic testing in reaching verification. We anticipate the development of
static techniques that will address these limitations and automate further the
verification process. We also expect dynamic test generation to be applied
in even more challenging application domains and for proving the absence
of more classes of errors. This will most likely reveal an increase in the gap
between verification and systematic testing as presented in the second part
of this dissertation, and unravel many more research problems.

Future work

As future work, we plan to improve the effectiveness of collaborative veri-
fication and systematic testing. In particular, we could precisely determine
which compromises made by a static analyzer actually affect the verification
of a certain assertion in the program. We currently assume that any assump-
tion the analyzer makes before the assertion in the control flow, is necessary
for its verification. However, by computing the smallest set of assumptions
that indeed “pollute” the sound verification of the assertion, we also reduce
the number of unverified executions, through the assertion, that need to be
tested. As a result, test generation would become even more targeted—test
suites would become smaller, testing times shorter, and redundancies with
prior static analysis would be brought down to a minimum.

Moreover, we could infer compromises made by static analyzers using
dynamic test generation. As an example, imagine that an assertion in the
program is proven correct by an unsound static analyzer. When checking
this assertion during testing, a failing test case is generated. Of course,
the failing test demonstrates that the analyzer is unsound. At this point,
the path constraint for the test case could contain, or at least indicate, an
unsound assumption made by the analyzer. If, under this assumption, the
assertion failure is no longer feasible, then all sources of unsoundness in
the analyzer have been determined, with respect to the verification of this
particular assertion.
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We believe that collaborative verification and testing would also be ben-
eficial beyond sequential programs, properties that can be expressed by con-
tract languages, and the typical compromises made by abstract interpreters
and deductive verifiers. For instance, we could exploit the datarace-free
guarantee [1] for concurrent programs, which states that any execution of
a datarace-free program under a relaxed memory model is equivalent to
some sequentially consistent execution of that program. More specifically,
we could, for instance, verify concurrent C programs using the VCC veri-
fier [36], which assumes a sequentially consistent memory model. Datarace
freedom could subsequently be checked with systematic testing, to show
program correctness for weak memory models. In the same spirit, our ap-
proach could be applied to unsound type systems, as in the TypeScript [111]
programming language.

Furthermore, the static and dynamic information computed during col-
laborative verification and testing could be used to determine a global level
of correctness achieved for a given program, or to perform program repairs
in code or specifications.

Having verification in mind, we also plan to address the current imper-
fections of dynamic symbolic execution, including the generation of complex
input data and the handling of floating-point numbers. The more such lim-
itations we alleviate, the further is dynamic test generation pushed toward
more advanced verification.
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execution toward unverified program executions. Technical report,
ETH Zurich, 2015.

[34] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. In CAV, volume 1855
of LNCS, pages 154–169. Springer, 2000.



172 References

[35] E. M. Clarke, D. Kroening, and K. Yorav. Behavioral consistency of C
and Verilog programs using bounded model checking. In DAC, pages
368–371. ACM, 2003.

[36] E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal,
T. Santen, W. Schulte, and S. Tobies. VCC: A practical system for
verifying concurrent C. In TPHOLs, volume 5674 of LNCS, pages
23–42. Springer, 2009.

[37] P. Collingbourne, C. Cadar, and P. H. J. Kelly. Symbolic crosschecking
of floating-point and SIMD code. In EuroSys, pages 315–328. ACM,
2011.

[38] P. Collingbourne, C. Cadar, and P. H. J. Kelly. Symbolic testing
of OpenCL code. In HVC, volume 7261 of LNCS, pages 203–218.
Springer, 2011.

[39] L. Correnson, P. Cuoq, F. Kirchner, V. Prevosto, A. Puccetti, J. Sig-
noles, and B. Yakobowski. Frama-C User Manual, 2011. http:
//frama-c.com//support.html.

[40] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation
of fixpoints. In POPL, pages 238–252. ACM, 1977.

[41] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
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Appendix A

Methods under test

For the experiments of Ch. 2, we used 101 methods (written in C#) from
solutions to 13 programming tasks on the Rosetta Code repository and from
nine open-source projects. A complete list of the methods used in that
evaluation can be found here:

− Rosetta Code repository
(tasks downloaded at 10:00 on October 23, 2014)

1. http://rosettacode.org/wiki/Ackermann_function#C.23

– Program.Ackermann

2. http://rosettacode.org/wiki/Binary_search#C.23
(recursive version)

– Program.binarySearch

3. http://rosettacode.org/wiki/Bulls_and_cows#C.23

– Program.KnuthShuffle
– Program.game

4. http://rosettacode.org/wiki/Ethiopian_multiplication#C.23

– EthiopianMultiplication Task.EM Linq
– EthiopianMultiplication Task.EM Loop
– EthiopianMultiplication Task.EM Recursion

5. http://rosettacode.org/wiki/Fibonacci_n-step_number_sequences#C.23

– Program.GetFibLikeSequence
– Program.GetLucasNumbers
– Program.GetNacciSeed
– Program.GetNnacciNumbers

6. http://rosettacode.org/wiki/Forest_fire#C.23

– Program.InitializeForestFire
– Program.IsNeighbor
– Program.StepForestFire

7. http://rosettacode.org/wiki/Greatest_common_divisor#C.23

– Program.gcd

8. http://rosettacode.org/wiki/N-queens_problem#C.23

– Program.Allowed

9. http://rosettacode.org/wiki/Number_reversal_game#C.23
(version for C# 1.0)
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– NumberReversalGame.RandomPermutation
– NumberReversalGame.check

10. http://rosettacode.org/wiki/Primality_by_trial_division#C.23

– Program.isPrime

11. http://rosettacode.org/wiki/Pythagorean_triples#C.23

– Program.Count New Triangle

12. http://rosettacode.org/wiki/Reduced_row_echelon_form#C.23

– Program.rref

13. http://rosettacode.org/wiki/Rock-paper-scissors

– RPSGame.GetWinner

− Open-source projects

1. Autodiff
(http://autodiff.codeplex.com, rev: d8799882919c)

– TermBuilder.Constant
– TermBuilder.Exp
– TermBuilder.Log
– TermBuilder.Power

2. Battleships
(http://github.com/guylr/Console-Battleships-CSHARP, rev: 9986775f36)

– Sea.ChangeDirection
– Sea.PlaceShipInSea
– Sea.SelectBlocks
– Sea.UnSelectBlocks

3. BBCode
(http://bbcode.codeplex.com, rev: 80132)

– BBCode.EscapeText
– BBCode.ToHtml
– BBCode.UnescapeText
– BBCodeParser.ParseAttributeValue
– BBCodeParser.ParseChar
– BBCodeParser.ParseName
– BBCodeParser.ParseWhitespace
– SequenceNode.AcceptVisitor
– SequenceNode.SetSubNodes
– SyntaxTreeNodeCollection.InsertItem
– SyntaxTreeVisitor.GetModifiedSubNodes
– SyntaxTreeVisitor.Visit(SequenceNode)
– SyntaxTreeVisitor.Visit(SyntaxTreeNode)
– SyntaxTreeVisitor.Visit(TagNode)
– TagNode.ReplaceAttribute

4. BCrypt
(http://bcrypt.codeplex.com, rev: d05159e21ce0)

– BCrypt.Char64
– BCrypt.DecodeBase64
– BCrypt.EncodeBase64
– BCrypt.GenerateSalt
– Bcrypt.StreamToWord

5. Boggle
(http://boggle.codeplex.com, rev: 20226)
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– BasicWordList.ContainsWord
– BasicWordList.ContainsWordStartingWith
– BasicWordList.IsWordWithinBounds
– BasicWordList.Load
– Extensions.AsString
– Extensions.LettersAt
– Extensions.Validate
– Game.ScoreLetterCount
– Tray.FilledWith
– Trie.Add
– Trie.Contains
– Trie.ContainsPrefix
– Trie.LastNodeOf

6. Bowling
(http://github.com/ardwalker/bowling-for-csharp, rev: eb706e4fc8)

– BowlingGame.Roll
– Strike.AddBonus

7. DSA
(http://dsa.codeplex.com, rev: 96133)

– Numbers.Factorial
– Numbers.Fibonacci
– Numbers.GetHexSymbol
– Numbers.GreatestCommonDenominator
– Numbers.IsPrime
– Numbers.MaxValue
– Numbers.Power
– Numbers.ToBinary
– Numbers.ToHex
– Numbers.ToOctal
– Searching.ProbabilitySearch
– Searching.SequentialSearch
– Sets.Permutations
– Sorting.BubbleSort
– Sorting.Exchange
– Sorting.MedianLeft
– Sorting.MergeSort
– Sorting.QuickSort
– Sorting.ShellSort
– Strings.Any
– Strings.IsPalindrome
– Strings.RepeatedWordCount
– Strings.ReverseWords
– Strings.Strip
– Strings.WordCount

8. Scrabble
(http://wpfscrabble.codeplex.com, rev: 20226)

– Board.TileAt
– Board.TileExistsAt
– BoardLocation.IsLocationWithinBounds
– Extensions.AvailableLocationsIn
– Extensions.Shuffle
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9. Sudoku
(http://github.com/sakowiczm/Sudoku-Solver-CSharp, rev: 3966be25f9)

– Cell.CompareTo
– Extensions.CellsToString
– SudokuSolver.CheckVertically
– SudokuSolver.GetBlock
– SudokuSolver.GetValues
– SudokuSolver.IsPossible

http://github.com/sakowiczm/Sudoku-Solver-CSharp
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