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Abstract. Static state is common in object-oriented programs. How-
ever, automatic test case generators do not take into account the po-
tential interference of static state with a unit under test and may, thus,
miss subtle errors. In particular, existing test case generators do not treat
static fields as input to the unit under test and do not control the execu-
tion of static initializers. We address these issues by presenting a novel
technique in automatic test case generation based on static analysis and
dynamic symbolic execution. We have applied this technique on a suite
of open-source applications and found errors that go undetected by ex-
isting test case generators. Our experiments show that this problem is
relevant in real code, indicate which kinds of errors existing techniques
miss, and demonstrate the effectiveness of our technique.

1 Introduction

In object-oriented programming, data stored in static fields is common and po-
tentially shared across the entire program. In case developers choose to initialize
a static field to a value different from the default value of its declared type, they
typically write initialization code. The initialization code is executed by the run-
time environment at some time prior to the first use of the static field. The time
at which the initialization code is executed depends on the programming lan-
guage and may be chosen non-deterministically, which makes the semantics of
the initialization code non-trivial, even to experienced developers.

class C {
// inline
static int f0 = 19;
static int f1;

// explicit
static C() {

f1 = 23;
}

}

In C#, initialization code has the form of a static
initializer, which may be inline or explicit. The C#
code on the right shows the difference: field f0 is ini-
tialized with an inline static initializer, and field f1
with an explicit static initializer. If any static ini-
tializer exists, inline or explicit, the C# compiler al-
ways generates an explicit initializer. This compiler-
generated explicit initializer first initializes the static
fields of the class that are assigned their initial value
with inline initializers and then incorporates the code
of the original explicit initializer (if any) written by
the developer, as shown below for class C.
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// compiler -generated
static C() {

f0 = 19;
f1 = 23;

}

However, the semantics of the compiler-generated
static initializer depends on whether the developer has
indeed written an explicit initializer. If this is the case,
the compiler-generated initializer has precise seman-
tics: the body of the initializer is executed (triggered)
exactly on the first access to any (non-inherited) mem-
ber of the class (that is, static field, static method, or instance constructor).
Otherwise, the compiler-generated initializer has before-field-init semantics: the
body of the initializer is executed no later than the first access to any (non-
inherited) static field of the class [3]. This means that the initializer could be
triggered by the runtime environment at any point prior to the first static-field
access.

In Java, static (initialization) blocks are the equivalent of explicit static ini-
tializers with precise semantics in C# [8]. In C++, static initialization occurs
before the program entry point in the order in which the static fields are defined
in a single translation unit. However, when linking multiple translation units,
the order of initialization between the translation units is undefined [2].

Even though static state is common in object-oriented programs and the se-
mantics of static initializers is non-trivial, automatic test case generators do not
take into account the potential interference of static state with a unit under test.
They may, thus, miss subtle errors. In particular, existing test case generators
do not solve the following issues:

1. Static fields as input: When a class is initialized before the execution of the
unit under test, the values of its static fields are part of the state and should,
thus, be treated as inputs to the unit under test. Existing tools fail to do that
and may miss bugs when the unit under test depends on the values stored in
static fields (for instance, to determine control flow or evaluate assertions).

2. Initialization and uninitialization: Existing tools do not control whether
static initializers are executed before or during the execution of the unit
under test. The point at which the initializer is executed may affect the test
outcome since it may affect the values of static fields and any other variables
assigned to by the static initializer. Ignoring this issue may cause bugs to
be missed. A related issue is that existing tools do not undo the effect of
a static initializer between different executions of the unit under test such
that the order of executing tests may affect their outcomes.

3. Eager initialization: For static initializers with before-field-init semantics, a
testing tool should not only control whether the initializer is run before or
during test execution; in the latter case, it also needs to explore all possible
program points at which initialization of a class may be triggered (non-
deterministically).

4. Initialization dependencies: The previous issues are further complicated by
the fact that the order of executing static initializers may affect the resulting
state due to their side effects. Therefore, a testing tool needs to consider all
relevant execution orders in order not to miss bugs.
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We address these issues by designing and implementing a novel technique in
automatic test case generation based on dynamic symbolic execution [7] (concolic
testing [13]) and static analysis. Our technique treats static fields as input to the
unit under test and systematically controls the execution of static initializers.
The dynamic symbolic execution collects constraints describing the static-field
inputs that will cause the unit under test to take a particular branch in the
execution or violate an assertion. It also explores the different program points at
which a static initializer might be triggered. The static analysis improves perfor-
mance by pruning program points at which the execution of a static initializer
does not lead to any new behaviors of the unit under test.

We have implemented our technique as an extension to the testing tool Pex [14]
for .NET. We have applied it on a suite of open-source applications and found
errors that go undetected by existing test case generators. Our results show
that this problem is relevant in real code, indicate which kinds of errors existing
techniques miss, and demonstrate the effectiveness of our technique.

Related Work. Most existing automatic test case generation tools ignore the
potential interactions of a unit under test with static state. These tools range
from random testing (like JCrasher [1] for Java), over feedback-directed ran-
dom testing (like Randoop [10] for Java), to symbolic execution (like Symbolic
Java PathFinder [11]) and dynamic symbolic execution (like Pex for .NET or
jCUTE [12] for Java).

To the best of our knowledge, existing testing tools such as the above do not
take into account the interference of static state with a unit under test, with the
exception of JCrasher. JCrasher ensures that each test runs on a “clean slate”;
it resets all static state initialized by any previous test runs either by using a
different class loader to load each test, or by rewriting the program under test
at load time to allow re-initialization of static state. Nevertheless, JCrasher does
not address the four issues described above.

Unit testing frameworks, like NUnit for .NET and JUnit for Java, require
the tester to manage static state manually in set-up methods in order to ensure
the clean execution of the unit tests. Therefore, the tester must be aware of all
interactions of the unit under test with static state. As a result, these frameworks
become significantly less automatic for unit tests that interact with static state.

Static analysis tools for object-oriented languages, such as Clousot [5] for
.NET and ESC/Java [6] for Java, do not reason about static initialization. An
extension of Spec# [9] supports static verification in the presence of static ini-
tializers, but requires significant annotation overhead.

We are, therefore, not aware of any tool that automatically takes static state
into account and detects the kinds of errors described in this paper.

Outline. Sect. 2 explains how we explore static input state where all relevant
classes are initialized. Sects. 3 and 4 show we handle static initializers with
precise and before-field-init semantics, respectively. Sect. 5 demonstrates the ef-
fectiveness of this technique by applying it on a suite of open-source applications.
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2 Static Fields as Input

In this section, we address the issue of treating static fields of initialized classes
as input to the unit under test. The case that a class is not yet initialized is
discussed in the next two sections.

1 public class C {
2 public static int F;
3

4 static C() {
5 F = 0;
6 }
7

8 public static void M() {
9 F++;

10 if (F == 2) abort;
11 }
12 }

Fig. 1. A C# method accessing static state. To cover all branches, dynamic symbolic
execution must treat static field F as an input to method M and collect constraints on
its value.

The example in Fig. 1 illustrates the issue. Existing automatic test case gen-
erators do not treat static field F of class C as input to method M. In particular,
testing tools based on dynamic symbolic execution generate only one unit test
for method M since there are no branches on a method parameter of M. Since the
body of method M contains a branch on static field F (line 10), they achieve low
code coverage of M and potentially miss bugs.

Dynamic Symbolic Execution. To address this issue, we treat static fields
as inputs to the method under test and assign to them symbolic variables. This
causes the dynamic symbolic execution to collect constraints on the static fields
and use them to generate inputs that force the execution to explore all branches
in the code. As usual with the automatic generation of unit tests, these generated
inputs might not occur in any actual execution of the program; to avoid false
positives, developers may write specifications (preconditions or invariants) that
further constrain the possible values of these inputs.

Treating all static fields of a program as inputs is not practical. It is also
not modular and defeats the purpose of unit testing. Therefore, we determine at
runtime which static fields are read during the execution of a unit test and treat
only those as inputs to the unit under test.

We implement this approach in a procedure DSE(UUT , IC), which performs
dynamic symbolic execution of the unit under test UUT . IC is the set of classes
that have been initialized before the execution of the unit under test. For all other
classes, initialization may be triggered during the execution of the generated unit
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tests. The DSE procedure treats the static fields of all classes in the IC set as
symbolic inputs. It returns the set T C of classes whose initialization is triggered
during the execution of the generated unit tests. The static fields of the classes
in IC ∪ T C include all static fields that are read by the unit tests. We call
the DSE procedure repeatedly to ensure that the static fields of all of these
classes are treated as inputs to the unit under test. The precise algorithm for
this exploration as well as more details of the DSE procedure are described in
the next section.

Consider the dynamic symbolic execution DSE(M, {}) of method M from
Fig. 1. This dynamic symbolic execution generates one unit test that calls
method M. The execution of this unit test triggers the initialization of class
C due to the access to static field F (line 9). Therefore, procedure DSE returns
the singleton set {C}. As a result, our exploration algorithm will call DSE(M,
{C}). This second dynamic symbolic execution treats static field F as a symbolic
input to method M and collects constraints on its value. For instance, assuming
that the first unit test of the second dynamic symbolic execution executes M
in a state where F is zero, the conditional statement introduces the symbolic
constraint ¬(F + 1 = 2). The dynamic symbolic execution subsequently negates
and solves the symbolic constraints on M’s inputs. Consequently, a second unit
test is generated that first assigns the value 1 to field F and then calls M. The
second unit test now reaches the abort statement and reveals the bug. We will
see in the next section that, even though the second call to DSE is the one that
explores the unit under test for different values of static field F, the first call to
DSE is also important; besides determining which static fields should be treated
symbolically, it is also crucial to handle uninitialized classes.

3 Initialization with Precise Semantics

In the previous section, we addressed the issue of treating static fields of initial-
ized classes as input to the unit under test. In this section, we explain how our
technique (1) controls the execution of static initializers and (2) explores exe-
cutions that trigger static initializers. Here, we consider only static initializers
with precise semantics; initializers with before-field-init semantics are discussed
in the next section.

3.1 Controlling Initialization

In order to explore the interaction between a unit under test and static initial-
izers, we must be able to control for each execution of a unit test which classes
are initialized before the execution of the unit test and which ones are not. This
could be achieved by restarting the runtime environment (virtual machine) be-
fore each execution of a unit test and then triggering the initialization of certain
classes. To avoid the high performance overhead of this naïve approach, we in-
strument the unit under test such that the execution simulates the effects of
triggering an initializer and restarting the runtime environment.
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Initialization. We insert calls to the dynamic symbolic execution engine at
all points in the entire program where a static initializer could be triggered
according to its semantics. For static initializers with precise semantics, we in-
sert instrumentation calls to the dynamic symbolic execution engine on the first
access to any (non-inherited) member of their class. Where to insert these instru-
mentation calls is determined using the inter-procedural control-flow graph of
the unit under test. This means that we might insert an instrumentation call at
a point in the code where, along certain execution paths, the corresponding class
has already been initialized. Note that each .NET bytecode instruction triggers
at most one static initializer; therefore, there is at most one instrumentation call
at each program point.

For an exploration DSE(UUT , IC), the instrumentation calls in UUT have
the following effect. If the instrumentation call is made for a class C that is in the
IC set, then C has already been initialized before executing UUT and, thus, the
instrumentation call has no effect. Otherwise, if this is the first instrumentation
call for C in the execution of this unit test, then we use reflection to explicitly
invoke C’s static initializer. That is, we execute the static initializer no matter
if the runtime environment has initialized C during the execution of a previous
unit test or not. Moreover, we add class C to the T C set of classes returned
by procedure DSE. If the same unit test has already initialized C during its
execution, the instrumentation call has no effect.

In method M from Fig. 1, we add instrumentation calls for class C before
the two accesses to static field F, that is, between lines 8 and 9 and between
lines 9 and 10. (Our implementation omits the second instrumentation call in
this example, but this is not always possible for methods with more interesting
control flow.) Consider again the exploration DSE(M, {}). During the execution
of the generated unit test, the instrumentation call at the first access to static
field F calls C’s static initializer such that the unit test continues with F = 0.
The instrumentation call for the second access to F has no effect since this unit
test already initialized class C. DSE returns the set {C} as described above.

static C() {
if (/* this is the first call */)

return ;
// body of original
// static initializer

}

Note that an explicit call to a static
initializer is itself an access to a class
member and, thus, causes the runtime
environment to trigger another call to
the same initializer. To prevent the
initializer from executing twice (and
thereby duplicating its side effects), we
instrument each static initializer such
that its body is skipped on the first call, as shown on the right.

This instrumentation decouples the execution of a unit test from the ini-
tialization behavior of the runtime environment. Static initializers triggered by
the runtime environment have no effect and, thus, do not actually initialize the
classes, whereas our explicit calls to static initializers initialize the classes even
in cases where the runtime environment considers them to be initialized already.
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Uninitialization. To avoid the overhead of restarting the runtime environment
after each unit test, we simulate the effect of a restart through code instrumen-
tation. Since our technique does not depend on the behavior of the runtime
environment to control class initialization, we do not have to actually uninitial-
ize classes. It is sufficient to reset the static fields of all classes initialized by the
unit under test to the default values of their declared types after each execution
of a unit test. Therefore, the next execution of the static initializer during the
execution of the next unit test behaves as if it ran on an uninitialized class.

Existing automatic test case generators (with the exception of JCrasher) do
not reset static fields to their initial values between test runs. For code like
in Fig. 1, Pex emits a warning that the unit under test might not leave the
dynamic symbolic execution engine in a clean state. Therefore, the determinis-
tic re-execution of the generated unit tests is not guaranteed. In fact, the Pex
documentation suggests that the tester should mock all interactions of the unit
under test with static state. However, this requires the tester to be aware of
these interactions and renders Pex significantly less automatic.

3.2 Dynamic Symbolic Execution

The core idea of our exploration is as follows. Assume that we knew the set
classes of all classes whose initialization may be triggered by executing the unit
under test UUT . For each subset IC ⊆ classes, we perform dynamic symbolic
execution of UUT such that the classes in IC are initialized before executing
UUT and their static fields are symbolic inputs. The classes in classes \ IC are
not initialized (that is, their initializers may be triggered when executing a unit
test). We can then explore all possible initialization behaviors of UUT by testing
it for each possible partition of classes into initialized and uninitialized classes.

Algorithm. Alg. 1 is a dynamic-symbolic-execution algorithm that implements
this core idea, but also needs to handle the fact that the set of relevant classes is
not known upfront, but determined during the execution. Procedure Explore
takes as argument a unit under test UUT , which has been instrumented as de-
scribed above. Local variable classes is the set of relevant classes determined

Alg. 1 Dynamic symbolic execution for exploring the interac-
tions of a unit under test with static state.

1 procedure Explore(UUT )
2 classes ← {}
3 explored ← {}
4 while ∃IC ⊆ classes · IC �∈ explored do
5 IC ← choose({IC | IC ⊆ classes ∧ IC �∈ explored})
6 T C ← DSE(UUT , IC)
7 classes ← classes ∪ T C
8 explored ← explored ∪ {IC}
9 end while

10 end procedure
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so far, while local variable explored is the set of sets of classes that have been
treated as initialized in the exploration so far; that is, explored keeps track of
the partitions that have been explored. As long as there is a partition that has
not been explored (that is, a subset IC of classes that is not in explored), the
algorithm picks any such subset and calls the dynamic symbolic execution pro-
cedure DSE, where classes in IC are initialized and their static fields are treated
symbolically. If this procedure detects any classes that are initialized during the
dynamic symbolic execution, they are added to classes. The Explore procedure
terminates when all possible subsets of the relevant classes have been explored.

Initialization Dependencies. Alg. 1 enumerates all combinations of initial-
ized and uninitialized classes in the input state of the method under test, that
is, all possible partitions of classes into IC and classes\ IC. This includes com-
binations that cannot occur in any actual execution. If the static initializer of a
class E triggers the static initializer of a class D, then there is no input state in
which E is initialized, but D is not. To avoid such situations and, thus, false pos-
itives during testing, we trigger the static initializers of all classes in IC before
invoking the method under test. In the above example, this ensures that both
E and D will be initialized in the input state of the method under test, and D’s
initializer will not be triggered during the execution of the method. Since the
outcome of running several static initializers may depend on the order in which
they are triggered, we explore all orders among dependent static initializers.

The triggering of the static initializers of the classes in IC happens at the
beginning of the set-up code that precedes the invocation of the method under
test in every generated unit test. This set-up code is also responsible for creating
the inputs for the method under test, for instance, for allocating objects that will
be passed as method arguments. Therefore, the set-up code may itself trigger
static initializers, for instance, when a constructor reads a static field. To handle
the dependencies between set-up code and initialization, we treat set-up code
as a regular part of the unit test (like the method under test itself), that is,
apply the same instrumentation and explore all possible execution paths during
dynamic symbolic execution.

Handling dependencies between static initializers is particularly useful in
C++, where static initialization happens before the program entry point. When
linking multiple translation units, the order of initialization between the transla-
tion units is undefined. By exploring all orders of execution of dependent initial-
izers, developers can determine dependencies that may crash a program before
its entry point is reached.

Example. The example in Fig. 2 illustrates our approach. The assertion on
line 13 fails only if N is executed in a state in which class D is initialized (such
that the if-statement may be executed), the static field G is negative (such that
the if-statement will be executed and E’s initialization will be triggered), and
class E is not initialized (such that its static initializer will affect the value of G).

We will now explain how Alg. 1 reveals such subtle bugs. In the first iteration,
IC is the empty set, that is, no class is considered to be initialized. Therefore,
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1 public class D {
2 public static int G;
3

4 static D() {
5 G = 0;
6 }
7

8 public static void N() {
9 if (G < 0) {

10 E.H++;
11 G = -G;
12 }
13 assert 0 <= G;
14 }
15 }

16 public class E {
17 public static int H;
18

19 static E() {
20 H = 0;
21 D.G = 1;
22 }
23 }

Fig. 2. An example illustrating the treatment of static initializers with precise seman-
tics. We use the special assert keyword to denote Code Contracts [4] assertions. The
assertion on line 13 fails only if N is called in a state where class D is initialized, but E
is not.

when the DSE procedure executes method N, class D is initialized right before
line 9. Consequently, static field G is zero, the if-statement is skipped, and the
assertion holds. DSE returns the set {D}.

In the second iteration, IC will be {D}, that is, the static initializer of class D
is triggered by the set-up code, and static field G is treated symbolically. Since
there are no constraints on the value of G yet, the dynamic symbolic execution
executes method N with an arbitrary value for G, say, zero. This unit test passes
and produces the constraint G < 0 for the next unit test. For any such value
of G, the unit test will now enter the if-statement and initialize class E before
the access to E’s static field H. This initialization assigns 1 to G, such that the
subsequent negation makes the assertion fail, and we have detected the bug. The
call to the DSE procedure in the second iteration returns {D, E}.

The two remaining iterations of Alg. 1 cover the cases that IC is {E} or {D, E}.
The former case illustrates how we handle initialization dependencies. The static
initializer of class E accesses static field G of class D. Therefore, when E’s initializer
is called by the set-up code of the generated unit test, D’s initializer is also
triggered (recall that the set-up code and all static initializers are instrumented
like the method under test). This avoids executing N in the impossible situation
where E is initialized, but D is not. The rest of this iteration is analogous to
the first iteration, that is, class D gets initialized (this time while executing the
set-up code), the if-statement is skipped, and the assertion holds.

Finally, for IC = {D, E}, all relevant classes are initialized. The dynamic sym-
bolic execution will choose negative and non-negative values for G. The assertion
holds in either case.
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Discussion. Alg. 1 can be implemented in any testing tool based on dynamic
symbolic execution. We have implemented it in Pex, whose existing dynamic
symbolic execution engine is invoked by our DSE procedure. Alg. 1 could also
be implemented in jCUTE for testing how static fields and static blocks in Java
interact with a unit under test. Moreover, this algorithm can be adjusted to
perform all dynamic tasks statically for testing tools based on static symbolic
execution. For instance, Symbolic Java PathFinder could then be extended to
take static state into account.

By treating static fields symbolically, our technique gives meaning to specifi-
cations that refer to static fields, like assertions or preconditions. For example,
an assertion about the value of a static field is now treated as a branch by the
symbolic execution. One could also support preconditions that express which
classes are required to be initialized before the execution of a method.

As part of the integration with unit testing frameworks, many automatic test
case generators support defining set-up methods for a unit under test. Such
methods allow testers to initialize and reset static fields manually. Since set-up
methods might express preconditions on static fields (in the form of code), we
extended our technique not to override the functionality of these methods. That
is, when a set-up method assigns to a static field of a class C, we do not trigger
the initialization of class C and do not treat its static fields symbolically. We
do, however, reset the values of all static fields in class C after each execution
of a unit test such that the next execution of the set-up method starts in a
fresh state.

This technique could also be used in existing frameworks for detecting whether
a set-up method allows for any static fields to retain their values between runs of
the unit under test. This is achieved by detecting which static fields are modified
in the unit under test, but have not been manually set up. If such fields exist,
an appropriate warning could be emitted by the unit testing framework.

4 Initialization with Before-Field-Init Semantics

The technique presented in the previous section handles static initializers with
precise semantics. Static initializers with before-field-init semantics, which may
be triggered at any point before the first access to a static field of the class,
impose two additional challenges. First, they introduce non-determinism because
the static initializer of any given class may be triggered at various points in the
unit under test. Second, in addition to the classes that have to be initialized in
order to execute the unit under test, the runtime environment could in principle
choose to trigger any other static initializer with before-field-init semantics, even
initializers of classes that are completely unrelated. In this section, we describe
how we solve these challenges. Our solution uses a static program analysis to
determine the program points at which the execution of a static initializer with
before-field-init semantics may affect the behavior of the unit under test. Then,
we use a modified dynamic symbolic execution procedure to explore each of these
possibilities.
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As the running example of this section, consider method P in Fig. 3. The static
initializer of class D has before-field-init semantics and must be executed before
the access to field D.Fd on line 10. If the initializer runs on line 5 or 9, then
the assertion on line 8 succeeds. If, however, the initializer runs on line 7, the
assertion fails because the value of field C.Fc has been incremented (line 15) and
is no longer equal to 2. This bug indicates that the unit under test is affected
by the non-deterministic behavior of a static initializer with before-field-init
semantics. Such errors are particularly difficult to detect with standard unit
testing since they might not manifest themselves reproducibly.

1 public static class C {
2 static int Fc = 0;
3

4 public static void P() {
5 // static initializer of 'D'
6 Fc = 2;
7 // static initializer of 'D'
8 assert Fc == 2;
9 // static initializer of 'D'

10 if (D.Fd == 3)
11 Fc = E.Fe;
12 }
13

14 static class D {
15 public static int Fd = C.Fc ++;
16 }
17

18 static class E {
19 public static int Fe = 11;
20 }
21 }

Fig. 3. A C# example illustrating the non-determinism introduced by static initializers
with before-field-init semantics. The assertion on line 8 fails if D’s static initializer is
triggered on line 7.

Critical Points. A static initializer with before-field-init semantics may be
triggered at any point before the first access to a static field of its class. To
reduce the non-determinism that needs to be explored during testing, we use
a static analysis to determine the critical points in a unit under test, that is,
those program points where triggering a static initializer might actually affect
the execution of the unit under test. All other program points can be ignored
during testing because no new behavior of the unit under test will be exercised.

A critical point is a pair consisting of a program point i and a class C. It
indicates that there is an instance or static field f that is accessed both by the
instruction at program point i and the static initializer of class C such that the
instruction or the static initializer or both modify the field. In other words, a
critical point indicates that the overall effect of executing the static initializer
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of C and the instruction at i depends on the order in which the execution takes
place. Moreover, a pair (i, C) is a critical point only if program point i is not
dominated in the control-flow graph by an access to a static field of C, that is,
if it is possible to reach program point i without initializing C first.

In the example of Fig. 3, there are five critical points: (6, C), (6, D), (8, D),
(10, D), and (11, E), where we denote program points by line numbers. Note that
even though the static initializer of class E could be triggered anywhere before
line 11, there is only one critical point for E because the behavior of method P
is the same for all these possibilities.

We determine the critical points in a method under test in two steps. First,
we use a simple static analysis to compute, for each program point i, the set
of classes with before-field-init initializers that might get triggered at program
point i. This set is denoted by prospectiveClasses(i). In principle, it includes
all classes with before-field-init initializers in the entire program, except those
that are definitely triggered earlier. Since it is not feasible to consider all of
them during testing, we focus on those classes whose static fields are accessed
by the method under test. This is not a restriction in practice: even though
the Common Language Infrastructure standard [3] allows more initializers to be
triggered, the Common Language Runtime implementation, version 4.0, triggers
the initialization of exactly the classes whose static fields are accessed by the
method. Therefore, in Fig. 3, prospectiveClasses(8) is the set {D, E}.

Second, we use a static analysis to determine for each program point i and class
C in prospectiveClasses(i) whether (i, C) is a critical point. For this purpose, the
static analysis approximates the read and write effects of the instruction at pro-
gram point i and of the static initializers of all classes in prospectiveClasses(i).
The read effect of a statement is the set of fields read by the statement or by any
method the statement calls directly or transitively. Analogously, the write effect
of a statement is the set of fields written by the statement or by any method
the statement calls directly or transitively. The pair (i, C) is a critical point if
(1) i’s read effect contains a (static or instance) field f that is included in the
write effect of C’s static initializer, or (2) i’s write effect contains a (static or
instance) field f that is included in the read or write effect of C’s static initial-
izer. For instance, for line 8 of our example, (8, D) is a critical point because
the statement on line 8 reads field Fc, which is written by the static initializer
of class D, and D is in prospectiveClasses(8). However, even though class E is
in prospectiveClasses(8), (8, E) is not a critical point because the effects of the
statement on line 8 and of E’s static initializer are disjoint.

Read and write effects are sets of fully-qualified field names, which allows us to
approximate them without requiring alias information. Our static effect analysis
is inter-procedural. It explores the portion of the whole program it can access
(in particular, the entire assembly of the method under test) to compute a call
graph that includes information about dynamically-bound calls. Therefore, our
analysis may miss critical points (for instance, when it fails to consider a method
override in an assembly that is not accessible to the analysis) and, thus, testing
might not explore all possible behaviors. It may also yield irrelevant critical
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points (for instance, when the instruction and the static initializer both have
an instance field f in their effects, but at runtime, access f of different objects)
and, thus, produce redundant unit tests.

A critical point (i, C) indicates that the dynamic symbolic execution should
trigger the initialization of class C right before program point i. However, C’s
static initializer might lead to more critical points, because its effects may overlap
with the effects of other static initializers and because it may trigger the initial-
ization of additional classes, which, thus, must be added to prospectiveClasses.
To handle this interaction, we iterate over all options for critical points and, for
each choice, inline the static initializer and recursively invoke our static analysis.

Dynamic Symbolic Execution. We instrument the unit under test to include
a marker for each critical point (i, C). We enhance the DSE procedure called
from Alg. 1 to trigger the initialization of class C when the execution hits such
a marker. If there are several markers for one class, the DSE procedure explores
all paths of the unit under test for each possible point. Conceptually, one can
think of adding an integer argument nC to the unit under test and interpreting
the n-th marker for class C as a conditional statement if (nC == n) { initC },
where initC calls the static initializer of class C if it has not been called earlier
during the execution of the unit test. Dynamic symbolic execution will then
explore all options for the initialization of a class C by choosing different values
for the input nC .

Since (8, D) is a critical point in our example, DSE will trigger the initializa-
tion of class D right before line 8 during the symbolic execution of method P. As
a result, the assertion violation is detected.

5 Experimental Evaluation

We have evaluated the effectiveness of our technique on 30 open-source applica-
tions written in C#. These applications were arbitrarily selected from applica-
tions on Bitbucket, CodePlex, and GitHub. Our suite of applications contains a
total of 423,166 methods, 47,515 (11%) of which directly access static fields. All
classes of these applications define a total of 155,632 fields (instance and static),
28,470 (18%) of which are static fields; 14,705 of the static fields (that is, 9%
of all fields) are static read-only fields. There is a total of 1,992 static initializ-
ers, 1,725 (87%) of which have precise semantics, and 267 (13%) of which have
before-field-init semantics.

To determine which of the 47,515 methods that directly access static fields are
most likely to have bugs, we implemented a lightweight scoring mechanism. This
mechanism statically computes a score for each method and ranks all methods by
their score. The score for each method is based on vulnerability and accessibility
scores. The vulnerability score of a method indicates whether the method directly
accesses static fields and how likely it is to fail at runtime because of a static field,
for instance, due to failing assertions, or division-by-zero and arithmetic-overflow
exceptions involving static fields. This score is computed based on nesting levels
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Tab. 1. Summary of our experiments. The first column shows the name of each ap-
plication. The second column shows the total number of tested methods from each
application. The two rightmost columns show the number of errors detected without
and with treating static fields as inputs to the unit under test, respectively.

Application Methods Number of errors
init init&input

Boggle 60 - 24
Boogie 21 - 6
Ncqrs 38 1 1
NRefactory 37 - 9
Scrabble 64 - 2
Total 220 1 42

of expressions and how close a static field is to an operation that might throw
an exception. The accessibility score of a method indicates how accessible the
method and the accessed static fields are from potential clients of the applica-
tion. In particular, this score indicates the level of accessibility from the public
interface of the application, and suggests whether a potential bug in the method
is likely to be reproducible by clients of the application. The final score for each
method is the product of its vulnerability and accessibility scores.

To compare the number of errors detected with and without our technique,
we ran Pex with and without our implementation on all methods with a non-
zero score. There were 454 methods with a non-zero score in the 30 applications.
Tab. 1 summarizes the results of our experiments on the applications in which
bugs were detected. The first column of the table shows the name of each appli-
cation1. The second column shows the total number of methods with a non-zero
score for each application. The two rightmost columns of the table show the
number of errors that our technique detected in these methods. These errors do
not include errors already detected by Pex without our technique; they are all
caused by interactions of the methods under test with static state.

More specifically, column “init” shows the number of errors detected by simply
triggering static initializers at different points in the code. These errors are, thus,
caused by calling static initializers (with both semantics) during the execution of
the unit tests without treating static fields as inputs. Column “init&input” shows
the number of errors detected by our technique, that is, by treating static fields
symbolically and systematically controlling the execution of static initializers.

As shown in the last column of the table, our technique detected 42 bugs that
are not found by Pex. Related work suggests that existing test case generators
would not find these bugs either. A failed unit test does not necessarily mean
that the application actually contains code that exhibits the detected bug; this
1 The applications can be found at:

http://boggle.codeplex.com, rev: 20226
http://boogie.codeplex.com, rev: e80b2b9ac4aa
http://github.com/ncqrs/ncqrs, rev: 0102a001c2112a74cab906a4bc924838d7a2a965
http://github.com/icsharpcode/NRefactory, rev: ae42ed27e0343391f7f30c1ab250d729fda9f431
http://wpfscrabble.codeplex.com, rev: 20226

http://boggle.codeplex.com
http://boogie.codeplex.com
http://github.com/ncqrs/ncqrs
http://github.com/icsharpcode/NRefactory
http://wpfscrabble.codeplex.com
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uncertainty is inherent to unit testing since methods are tested in isolation rather
than in the context of the entire application. However, all of the detected bugs
may surface during maintenance or code reuse. In particular, for 25 of the 42
detected bugs, both the buggy method and the accessed static fields are public.
Therefore, when the applications are used as libraries, client code can easily
exhibit these bugs.

We have also manually inspected static initializers from all 30 applications and
distilled their three most frequent usage patterns. Static initializers are typically
used for:

1. Initializing static fields of the same class to constants or simple computa-
tions; these initializers are often inline initializers, that is, have before-field-
init semantics. However, since they neither read static fields of other classes
nor have side effects besides assigning to the static fields of their class, the
non-determinism of the before-field-init semantics does not affect program
execution.

2. Implementing the singleton pattern in a lazy way; these initializers typically
have precise semantics.

3. Initializing public static fields that are mutable; these fields are often meant
to satisfy invariants such as non-nullness. However, since they are public,
these invariants can easily be violated by client code or during maintenance.
This pattern is especially susceptible to static-field updates after the initial-
ization, a scenario that we cover by treating static fields as inputs of the unit
under test.

In none of these common usage patterns do initializers typically have side effects
besides assigning to static fields of their class. This might explain why we did
not find more bugs that are caused by static initialization alone (column “init”
in Tab. 1); it is largely irrelevant when such initializers are triggered.

An interesting example of the third pattern was found in application Bog-
gle, which uses the Caliburn.Micro library. This library includes a public static
field LogManager.GetLog, which is initialized by LogManager’s static initial-
izer to a non-null value. GetLog is read by several other static initializers, for
instance, the static initializer of class Coroutine, which assigns the value of
GetLog to a static field Log. If client code of the Caliburn.Micro library as-
signed null to the public GetLog field before the initialization of class Coroutine
is triggered, the application might crash; Coroutine will then initialize Log
with the null value, which causes a null-pointer exception when Coroutine’s
BeginExecute method dereferences Log. Our technique reveals this issue when
testing BeginExecute; it explores the possibility that LogManager is initialized
before BeginExecute is called whereas Coroutine is not, and it treats GetLog as
an input to BeginExecute such that the dynamic symbolic execution will choose
null as a possible value. Note that this issue is indeed an initialization problem.
Since Coroutine.Log is not public, a client could not cause this behavior by
assigning null directly to Log.
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6 Conclusion

To automatically check the potential interactions of static state with a unit under
test, we have proposed a novel technique in automatic test case generation based
on static analysis and dynamic symbolic execution. Our technique treats static
fields as input to the unit under test and systematically controls the execution
of static initializers. We have implemented this technique as an extension to Pex
and used it to detect errors in open-source applications. As future work, one
could prune redundant explorations more aggressively; this is promising since
our evaluation suggests that many static initializers have very small read and
write effects and, thus, very limited interactions with the unit under test.
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