
Integrated Environment

for Diagnosing Veri�cation Errors

Maria Christakis1, K. Rustan M. Leino1,
Peter Müller2, and Valentin Wüstholz3

1 Microsoft Research, Redmond, USA
{mchri,leino}@microsoft.com

2 Department of Computer Science, ETH Zurich, Switzerland
peter.mueller@inf.ethz.ch

3 The University of Texas at Austin, USA
valentin@cs.utexas.edu

Abstract. A failed attempt to verify a program's correctness can re-
sult in reports of genuine errors, spurious warnings, and timeouts. The
main challenge in debugging a veri�cation failure is to determine whether
the complaint is genuine or spurious, and to obtain enough information
about the failed veri�cation attempt to debug the error. To help a user
with this task, this paper presents an extension of the Dafny IDE that
seamlessly integrates the Dafny veri�er, a dynamic symbolic execution
engine, a veri�cation debugger, and a technique for diagnosing timeouts.
The paper also reports on experiments that measure the utility of the
combined use of these complementary tools.

1 Introduction

Software developers today get more assistance than ever before from analy-
ses running in their integrated development environment (IDE). These analyses
scrutinize the code in shallow or deep ways and then display information, issue
warnings, make suggestions, or rewrite the code. Examples include code format-
ting, intelligent code completion, semantic variable renaming, cyclomatic code
complexity analysis, unit test generation, bounds checking, race detection, worst-
case execution time analysis, termination checking, and functional-correctness
veri�cation. As the level of sophistication of an analysis goes up, so does the
level of understanding required for a programmer to diagnose the output of the
analysis and determine how to take corrective action.

In this paper, we consider the problem of diagnosing the output of a program
veri�er of the kind where the underlying reasoning engine, typically an SMT
solver, runs without user interaction. Examples of such veri�ers are Spec# [3],
Frama-C [15], SPARK 2014 (for Ada) [20], AutoProof (for Ei�el) [40], and Dafny
[29]. In particular, we consider three kinds of output:

1) Timeouts: While SMT solvers are generally both useful and fast in prac-
tice, they occasionally time out. When they do, the information available

2 Maria Christakis, K. Rustan M. Leino, Peter Müller, and Valentin Wüstholz

may not be the same as in cases where they output counterexamples. More-
over, a timeout can mask other error messages because it abruptly ends the
counterexample search.

2) Spurious warnings: The logical conditions that a program veri�er needs
to resolve are in general undecidable, so it would be too much to expect that
every error message produced by a veri�er indicates a real error. However,
in practice, most warnings that are not indicative of errors in the executable
code are not caused by undecidability but by the lack of strong enough
auxiliary speci�cations (such as loop invariants) in the program.

3) Genuine errors: Sometimes when the program veri�er reports a real error,
the programmer's response can be one of disbelief. Erroneously�perhaps
by habit�assuming the error is caused by an infelicity in the veri�er, the
programmer spends time trying to coax the veri�er into giving a di�erent
output, only to miss the blatant error that the veri�er detected. Such an error
can occur in either the executable code or in the program's speci�cations.

The main challenge in debugging veri�cation errors is to determine which of
these cases applies and to obtain enough information about the failed veri�cation
attempt to debug the error. A single tool may not support the best kind of
diagnosing for each output.

In this paper, we contribute comprehensive tool support in a single veri�ca-
tion environment. The combination of our tools covers all steps of the typical
diagnosis procedures for veri�cation.

We use as our setting the Dafny programming language, veri�er, and IDE.
In addition to standard (sequential) imperative and functional constructs, the
language includes constructs for speci�cations (aka contracts), auxiliary speci-
�cations, and proof authoring. The veri�er uses these speci�cations to perform
modular veri�cation. For example, it reasons about a method call solely in terms
of the callee method's speci�cation and about a loop solely in terms of the loop
invariant.

Dafny has always had a program veri�er. In this paper, we extend the Dafny
IDE with a novel dynamic test generator (Delfy), the Boogie Veri�cation Debug-
ger (BVD) [28], and a new mode for diagnosing timeouts4. Using step-by-step
recipes, we show how our seamless integration of these tools helps diagnose ver-
i�cation problems. Our paper also gives an experimental evaluation of our tool
integration and its e�ect on diagnosing veri�cation errors. Both Dafny and the
IDE extension are available at http://dafny.codeplex.com (Delfy is currently
not included).

In Sect. 2, we illustrate the use of the combination of our tools on small
representative examples. We then describe in more detail the facilities that our
integrated diagnosis environment o�ers: hover text in Sect. 3, Delfy in Sect. 4,
BVD integration in Sect. 5, and timeout diagnosis in Sect. 6. We give our ex-

4 A preliminary integration of the veri�er and BVD into the Dafny IDE has previously
been described in an informal workshop paper [31]. The full integration of the tools
is new here, as are the test generator and the timeout-diagnosis tool.

Integrated Environment for Diagnosing Veri�cation Errors 3

perimental evaluation in Sect. 7. The �nal sections of the paper discuss related
work and conclude.

2 Systematic Diagnosis of Veri�cation Failures

In this section, we present systematic approaches to diagnosing the two forms of
veri�cation failures: (1) veri�cation errors, which may be spurious warnings and
genuine errors, as well as (2) timeouts. For each approach, we describe the tool
support we provide and illustrate the approach on a small example program.
Details are described in the subsequent sections.

2.1 Diagnosis of Veri�cation Errors

The main challenge in debugging a veri�cation error is to determine if the com-
plaint is spurious or genuine, and to obtain enough information about the failed
veri�cation attempt to debug the error. For genuine errors, this includes deter-
mining whether to �x the program or the speci�cation. For spurious errors, it
includes determining if more auxiliary speci�cations are required or if the error
is caused by an incompleteness of the veri�er (which happens in particular when
the SMT solver cannot discharge a veri�cation condition even though it holds).

Using the example in Fig. 1, we illustrate how we support this debugging
process. The condition stated by the assert-statement in this program does not
hold along all executions of the program, because Max erroneously computes the
minimum of its arguments. But even if Max had been implemented correctly, the
veri�er would report a (spurious) error because the postcondition of Max is too
weak to (modularly) prove the assertion.

Diagnosing veri�cation errors typically proceeds in the following three steps.

Step 1: Fixing simple errors. For certain simple veri�cation errors (such
as omitting a precondition of the method being veri�ed), the error message of

method Main(a: int) {

var aSq := a * a;

var r := Max(a, aSq);

assert r = aSq; // verification fails

}

method Max(a: int, b: int) returns (max: int)
ensures max = a ∨ max = b

{

if a ≤ b { max := a; }

else { max := b; }

}

Fig. 1: A Dafny example that asserts that an integer is never bigger than
its square. The assertion does not hold because method Max returns the
minimum of its arguments; it fails to verify because the postcondition of
Max is too weak to prove it. Note that integers in Dafny are unbounded and
that calls are veri�ed modularly, based solely on the callee's speci�cation.

4 Maria Christakis, K. Rustan M. Leino, Peter Müller, and Valentin Wüstholz

the veri�er provides enough information to diagnose and debug the error. To
provide easy, demand-driven access to error messages, the Dafny IDE presents
them in tool tags when hovering over the error location, which is indicated
by red squiggly lines. The hover text also shows inferred speci�cations (such
as termination metrics) and parts of the counterexample provided by the SMT
solver (as we shall see later in Fig. 5). In our example, the error message is simply
�assertion violation�, which does not point us to the source of the problem.

Step 2: Determining whether errors are spurious. Debugging genuine
veri�cation errors is fundamentally di�erent from debugging spurious errors. For
the former, one needs to determine which aspects of the program or speci�cation
are incorrect and �x them. For the latter, one needs to determine how to convince
the veri�er that the program is actually correct.

A common approach to determine if an error is spurious is to create an exe-
cutable test from the counterexample given by the SMT solver [4, 16]. However,
this approach has two major limitations. First, the counterexample re�ects the
(modular) veri�cation semantics of a method, where calls are encoded via the
callee's speci�cation, loops are encoded via loop invariants, etc. By the soundness
of veri�cation, any error in the execution semantics is also an error in the ver-
i�cation semantics, but not necessarily vice versa. Therefore, it is possible that
a test case derived from the SMT solver's counterexample does not reveal an
error even though the program fails for other inputs. A programmer might then
conclude incorrectly that the veri�cation error is spurious. Second, SMT solvers
sometimes produce invalid counterexamples, that is, valuations that do not ac-
tually falsify the veri�cation condition. This may be due to an incompleteness
in the SMT solver (e.g., when reasoning about non-linear arithmetic) [33]. Ex-
ecuting such counterexamples does not lead to meaningful conclusions. In fact,
it may not even be possible to generate a test case from such a counterexample.

To avoid these problems, we do not execute counterexamples and instead ap-
ply dynamic symbolic execution (DSE) [8, 24] (also called concolic testing [35])
to generate test cases for the method that contains the veri�cation error. We
have equipped the Dafny IDE with Delfy, a DSE tool that instruments the exe-
cutable code with runtime checks for assertions and then uses dynamic symbolic
execution to systematically explore all paths through a Dafny method up to
a given bound. DSE mitigates the limitations of counterexample execution as
follows. First, it is based on the (non-modular) execution semantics, not on the
veri�cation semantics and, thus, attempts to �nd inputs for which the execution

of a method leads to an assertion violation. Second, when some constraints in
a proof obligation cause the SMT solver to produce an invalid counterexample
during veri�cation, the same problem may occur during DSE. However, DSE has
the option of replacing symbolic inputs by concrete values, thereby simplifying
the formula, which increases the chance of obtaining a valid counterexample.

Running DSE can have three di�erent outcomes: (1) It produces a test
case that leads to an assertion violation. In this case, we can conclude that the
error is de�nitely not spurious. One can now use a conventional debugger to
explore the execution of the test case and determine how to �x the error. (2) It

Integrated Environment for Diagnosing Veri�cation Errors 5

is able to verify the method. This is possible when the method can be tested
without exceeding the bounds of DSE (for instance, the method contains no
input-dependent loops) and when the SMT solver is able to produce concrete
inputs for each constraint [11]. In this case, the error is de�nitely spurious. It
is now possible to communicate this veri�cation result to the veri�er. (3) If
DSE neither veri�es nor falsi�es the method, our best guess is that the error is
spurious, and we proceed to step 3 below.

Running Delfy on method Main from our example reproduces the error by
generating a test case where a ≤ a*a (necessarily, since this is a mathematical
fact, and thus the then-branch of the conditional in method Max is executed)
and a 6= a*a (such that the assertion is violated), for instance, a = 2. Stepping
through this test case in the debugger immediately reveals that method Max
is incorrect. After �xing the error, veri�cation still fails. Running Delfy again
veri�es method Main. We could now communicate this result to the veri�er or�
as we describe next�we could try to determine what additional facts are needed
by the veri�er to prove the method.

Step 3: Finding the cause of spurious errors. When Delfy cannot re-
produce a veri�cation error, it is necessary to explore the veri�cation semantics,
which is re�ected in the counterexample provided by the SMT solver. To do so
in the Dafny IDE, a user can select a veri�cation error by clicking on the red
button next to the assertion (see Fig. 5). The IDE now highlights the program
points along the trace leading to the error using blue buttons. By clicking on one
of them, a user can bring up BVD and inspect the state at this program point
as provided by the counterexample.

In our example, once method Max is �xed, the veri�cation debugger shows
for the program point after the call to Max that a is 2, aSq is 4, and r is 2.
Since running Delfy did not reveal any error, we hypothesize that Max correctly
computes the maximum of its arguments, and conclude that the counterexample
values indicate that the veri�er has insu�cient information about the result of
Max. We can �x this by strengthening its postcondition, and veri�cation succeeds.

2.2 Diagnosis of Timeouts

The use of undecidable theories, especially quanti�ers, in veri�cation conditions
can lead to a very large or even in�nite search space for the SMT solver, for
instance, when the veri�cation conditions contain matching loops [19]. Therefore,
Dafny and other automatic veri�ers bound the time spent by the SMT solver,
and report a veri�cation failure when a timeout occurs [22]. However, if this
happens, it is often unclear which fragments of a large veri�cation condition
cause the SMT solver to wander o�. Moreover, because of the heuristics used
in the SMT solver to instantiate quanti�ers, timeouts are often caused by the
interaction of di�erent, often seemingly unrelated, terms in the program or its
speci�cation.

Veri�cation of the example in Fig. 2 fails with a timeout. While trying to
prove the last assertion in method Test, the SMT solver instantiates the universal
quanti�er in the postcondition of FacUpTo (and in the axiomatization of the
sequence data type) inde�nitely. For the veri�cation to succeed, one needs to

6 Maria Christakis, K. Rustan M. Leino, Peter Müller, and Valentin Wüstholz

method FacUpTo(n: int) returns (f: seq〈int〉)
requires 1 ≤ n

ensures |f| = n ∧ f[0] = 1

ensures ∀ i • 1 ≤ i < |f| =⇒ f[i] = f[i - 1] * i

�{. . .}

method Test(n: int)
requires 1 ≤ n

{

var f4 := FacUpTo(4); assert f4[3] = 6;

var f15 := FacUpTo(15); assert f15[14] 6= 0;

var fn := FacUpTo(n);

assert fn[n - 1] 6= 0; // verification times out

}

Fig. 2: A Dafny example that computes the factorial of the �rst n natural
numbers and asserts that they are positive. The proof requires generaliza-
tion and induction, which Dafny does not perform automatically. Instead,
the SMT solver keeps instantiating the universal quanti�er in the post-
condition of the call FacUpTo(n), and veri�cation times out even though, in
principle, many other assertions could be proved.

instruct Dafny to prove by induction that all elements of sequence fn are non-
zero, for instance, by adding the following assertion after the �nal call in Fig. 2:

assert ∀ i {: induction} • 0 ≤ i < |fn| =⇒ fn[i] 6= 0;

Diagnosing such timeouts typically proceeds in the following two steps.

Step 1: Determining whether the program satis�es its speci�ca-
tion. Like for veri�cation errors, it is useful to run the test case generator Delfy
on the method whose veri�cation times out. Note that the common approach
of generating test cases from counterexamples is not applicable here since SMT
solvers usually generate an incomplete counterexample or none at all in case of a
timeout. In contrast, since Delfy relies only on the program and its speci�cation,
it can be used to diagnose timeouts. If Delfy generates a failing test, the pro-
gram or its speci�cation should be �xed before diagnosing the timeout. If Delfy
manages to verify the method, Dafny can be noti�ed such that it is no longer
essential to debug the timeout. Delfy might succeed on examples that time out
in the veri�er because it uses a di�erent axiomatization of data types such as
sets and sequences. Moreover, Delfy's SMT queries are constraints that describe
a single path through a method, whereas Dafny's veri�cation conditions re�ect
all paths. Therefore, Delfy's queries might provide fewer terms that are used by
the SMT solver to instantiate quanti�ers.

In the example from Fig. 2, Delfy neither generates a failing test nor manages
to verify method Test; this is due to the input-dependent loop in the body (not
shown) of method FacUpTo, which is called. Thus, we proceed to the second step.

Integrated Environment for Diagnosing Veri�cation Errors 7

Step 2: Narrowing down the cause of the timeout. We have devel-
oped a dedicated diagnostic mode for Dafny, which splits up the veri�cation
condition into smaller fragments and invokes the SMT solver multiple times to
narrow down which assertions may cause the timeout. For each invocation, this
algorithm tries to prove some of the fragments, and ignores the rest. If the SMT
solver fails, an error is reported. If it succeeds, the algorithm recurs and attempts
to verify the fragments previously ignored. If no such fragments exist, veri�ca-
tion succeeds. Finally, if the SMT solver still times out, the algorithm recurs on
fewer fragments or, if there is just a single fragment, �blames� that fragment for
the timeout.

In our example, the timeout diagnosis determines that out of the nine as-
sertions in method Test (three for precondition checks, three for bounds checks,
and three for assert-statements), eight verify and only the last one times out.
This clearly indicates that the user should provide more hints to help the veri�er
in proving this assertion.

The above recipes allow a programmer to systematically diagnose and de-
bug all three kinds of veri�cation failures. Our recipes are supported by a novel
integration of the following components into the Dafny IDE: (1) an advanced
hover text mechanism, (2) the Delfy test case generator, (3) the Boogie Veri�ca-
tion Debugger, and (4) a technique for diagnosing timeouts. We describe these
components in detail in the following sections.

3 Hover Text

Veri�ers typically accumulate a lot of information, including error messages,
inferred speci�cations (such as termination metrics), or veri�cation counterex-
amples. However, most often, the user is interested only in a small fraction of this
information, and speci�cally, in whatever helps to diagnose veri�cation errors.

The hover text mechanism that we have integrated in the Dafny IDE ad-
dresses this need without overwhelming the user with too much information.
Our mechanism uses the parser, type checker, and veri�er to collect warnings,
inferred speci�cations, and other information, which it attaches to the relevant
parts of the Dafny abstract syntax tree. As a result, the IDE displays only the
most critical information at all times (that is, squiggly lines for veri�cation er-
rors), and the user may access all other information on demand, by hovering
over the relevant parts of the program text. For instance, a warning emitted by
the veri�er is shown when hovering over the corresponding squiggly line, and the
values of the variables in a veri�cation counterexample are shown when hovering
over the variable usages (see Fig. 5).

4 Delfy, the Test Case Generator

In this section, we present Delfy, a dynamic test generation tool for Dafny. In
addition to handling advanced constructs of the language, Delfy is designed to
exchange information with Dafny about the veri�cation status of all assertions
via annotations in the code [12]. Consequently, Dafny does not need to check
assertions that have already been proven correct by Delfy and vice versa.

8 Maria Christakis, K. Rustan M. Leino, Peter Müller, and Valentin Wüstholz

4.1 Dynamic Symbolic Execution for Dafny

Delfy implements dynamic symbolic execution, in which the concrete and sym-
bolic executions of a method under test happen simultaneously. Given a Dafny
method under test, Delfy compiles the code into .NET bytecode and runs the
compiled method. The compiled code includes call-backs that trigger the sym-
bolic execution. All constraints are solved with Z3 [18].

Delfy introduces runtime checks for Dafny speci�cations, including loop in-
variants, termination metrics, pre- and postconditions, assumptions, assertions,
and frame speci�cations, which serve as test oracles.

Delfy has support for features of Dafny that are typically not found in main-
stream programming languages, for instance, non-deterministic assignments, non-
deterministic if-statements, and non-deterministic while-statements. For each
non-deterministic value, the symbolic execution in Delfy introduces a fresh sym-
bolic variable, as if they were inputs to the method under test. Consequently, the
symbolic execution collects constraints on such variables and generates inputs
for them, which guide execution toward all those unexplored paths.

Dafny also supports uninterpreted functions and assign-such-that-statements,
which assign a value to a variable such that a condition holds. Delfy handles these
by introducing a fresh symbolic variable for the return value of an uninterpreted
function or the assigned variable of an assign-such-that-statement. This sym-
bolic variable is constrained by a condition of the form Assume(c), saying that
the variable must satisfy the function speci�cations or the such-that-condition
in each test case.

When the programmer provides a loop invariant for an input-dependent loop,
Delfy can either impose a bound on the number of explored loop iterations
or treat the invariant as a summary for the loop [10]. In the latter case, the
symbolic execution of the loop body is turned o�, and instead, the provided
loop invariant serves as a symbolic description of the loop body. (Note that we
abuse the term �summary� to express that reasoning about many loop iterations
happens in one shot, although we do not refer to a logic formula of loop pre- and
postconditions, as is typically the case in compositional symbolic execution [23,
1].) Summarization of an input-dependent loop might lead to spurious warnings
when the loop invariant is too weak, in which case Delfy resembles the veri�er.
However, when the loop invariant is precise, this technique can be very useful in
diagnosing veri�cation errors and timeouts as it helps the exploration in covering
the code after the loop.

A consequence of this approach for summarizing input-dependent loops is
that the body of such a loop might not be thoroughly exercised since it is only
executed concretely, and not symbolically; therefore, paths and bugs might be
missed. To address this, Delfy supports a mode for thoroughly checking if an
invariant is maintained by all iterations of an input-dependent loop [10].

4.2 Delfy in the Dafny IDE

We now present how we have integrated Delfy in the Dafny IDE. Fig. 3 shows
the error emitted by the veri�er (denoted by the red button) for the assertion

Integrated Environment for Diagnosing Veri�cation Errors 9

Fig. 3: A smart tag allowing the user to invoke Delfy on a method under
test, and a veri�cation error emitted by the veri�er (denoted by the red
button in the assertion).

in method Main from Fig. 1. Delfy is run through a smart tag, shown in Fig. 3.
Fig. 4 shows how the test cases generated by Delfy are displayed for method
Main from Fig. 1.

The main characteristics of this IDE integration are as follows.

Color coding of assertions. To give users a sense of where they should
focus their manual diagnosis, the IDE uses colors for assertions. A green color
shows that the assertion has been proven, either by Dafny or Delfy. A red color
denotes that an assertion de�nitely does not hold, that is, Dafny has emitted
a veri�cation error, and Delfy has generated a test case that fails due to this
assertion. An orange color indicates that the assertion requires the attention of
the user because Dafny has emitted a veri�cation error, and Delfy has neither
veri�ed nor falsi�ed it. One could further re�ne this color scheme by re�ecting
how thoroughly Delfy covered an orange assertion [10].

Selective test generation. Delfy allows the user to select an assertion that
has not been veri�ed by Dafny, and explore only those paths that reach this
assertion. If a programmer selects a red button in a method under test and runs
Delfy, then only those test cases that exercise the corresponding unveri�ed as-
sertion are generated, regardless of whether there are other unveri�ed assertions
in the method under test. We determine which test cases to generate using a
technique based on static symbolic execution [10].

Debugging failing tests. Delfy also makes it possible to debug the gener-
ated test cases. A smart tag allows users to run a failing test case in the .NET
debugger, such that they can step through the execution and observe the values
of variables.

Fig. 4: Delfy displays the generated tests. The user can choose to inspect
all generated tests, or categorize them based on their outcome.

10 Maria Christakis, K. Rustan M. Leino, Peter Müller, and Valentin Wüstholz

Fig. 5: Inspecting values from the counterexample for the error in method
Main of Fig. 1. The hover text shows the value of variable r and the BVD
window on the right shows the values of all variables.

5 Integration of the Veri�cation Debugger

Counterexamples, which are provided by the veri�er and the underlying solver,
often include valuable information for diagnosing veri�cation errors. Since these
counterexamples re�ect the veri�cation semantics (for instance, by reasoning
about method calls modularly), this holds in particular for intricate veri�cation
errors that cannot be reproduced by Delfy. (Recall that Delfy is based on the
non-modular execution semantics.) BVD makes the veri�cation counterexamples
accessible through the Dafny IDE, which allows users to inspect the values of
variables (including heap locations), much like in a conventional debugger. How-
ever, unlike in most runtime debuggers, a user can inspect the counterexample
at any relevant point during the execution.

BVD is invoked by clicking on the red button that is associated with each
veri�cation error. Now, several blue buttons appear along the trace that leads to
the error (see Fig. 5). Clicking on any of them shows the counterexample state
at that program point. For instance, a user may diagnose a veri�cation error by
starting at the failing assertion and gradually moving backward in the program
to understand how the failing state was reached.

6 Timeout Diagnosis

As discussed in Sect. 2.2, users occasionally encounter timeouts when verifying
non-trivial programs. Timeouts often indicate that the veri�er is unable to derive
a certain fact on its own, and requires hints from the user. To detect timeouts
quickly and to ensure a responsive user interaction, the Dafny IDE defaults to
a time limit of ten seconds per method or function.

If this time is not enough, the user can increase the limit or use our technique
for diagnosing timeouts. In the latter case, we instruct the veri�er to produce
slightly di�erent veri�cation conditions, which can be decomposed more easily
and on demand. This makes it possible to split up the veri�cation conditions
and, thereby, identify those assertions that are responsible for the timeout.

Conceptually, our alternative veri�cation conditions insert an assumption
Fk =⇒ Ak before every assertion Ak, where a Fk is an unde�ned boolean func-
tion. Initially nothing is known about these functions. That is, the solver needs

Integrated Environment for Diagnosing Veri�cation Errors 11

procedure d i agno s e (VC, U, D, T) {
i f (|U | = 0) {

i f (0 < |T |) {
report the timed-out assertions in T;
r e t u r n TimeOut ;

}
r e t u r n V e r i f i e d ;

}
choose S, such that S ⊆ U ∧ |S| = max(|U| / D, 1);
va r R := check_some (VC, S , TL) ;
i f (R = E r r o r) {

r e t u r n R;
} e l s e i f (R = V e r i f i e d) {

r e t u r n d i agno s e (VC, U \ S , 1 , T) ;
} e l s e {

i f (2 ≤ (|U| / D)) {
r e t u r n d i agno s e (VC, U, 2 ∗ D, T) ;

} e l s e {
r e t u r n d i agno s e (VC, U \ S , 1 , T ∪ S) ;

}
}

}

Fig. 6: Algorithm for diagnosing timeouts.

to consider the case that all Fk functions yield false and, thus, this instrumen-
tation does not a�ect veri�ability of the veri�cation condition. However, once
a timeout occurs, we can de�ne some of the Fk functions to yield true, thus,
temporarily disabling assertions and simplifying the veri�cation task.

Fig. 6 shows our algorithm for decomposing the veri�cation task once there
has been a timeout. Procedure diagnose takes four arguments: (1) the current
veri�cation condition VC, (2) the set of unveri�ed assertions U (initially contains
all assertions in the veri�cation condition), (3) the integer D (for denominator)
to determine what fraction of these assertions to check next (initially set to 2),
and (4) the set of timed-out assertions T (initially empty).

If set U is empty, we are done. We return Veri�ed if set T of timed-out
assertions is empty, and TimeOut otherwise. If set U is non-empty, we choose a
subset S of the unveri�ed assertions and check only these assertions for a �xed
time limit TL (set by default to 10% of the time limit for the entire method
or function). If we �nd a failing assertion, we terminate immediately. If the
check successfully veri�es the assertions in S, we recursively diagnose the timeout
among the remaining assertions. Otherwise, we try to check a smaller set of
assertions by invoking procedure diagnose with 2 * D. If doubling D is not possible
without exceeding the cardinality of U, we have found assertions to blame for the
timeout, collect them in T, and proceed to also check the remaining assertions.
If the algorithm reports any blamed assertions, it is reported that each of them
timed out individually, given time limit TL. This shows exactly which assertions
the user should focus on in order to prevent the timeout.

The procedure check_some checks the veri�cation condition after temporar-
ily disabling some assertions. To do so e�ciently, it makes use of scopes in the
solver that push and later pop constraints about the Fk functions for assertions
that are not in set S.

12 Maria Christakis, K. Rustan M. Leino, Peter Müller, and Valentin Wüstholz

Challenge Error ID Spurious? Extension
Hover text Hover text Delfy BVD
(w/o CEX) (only CEX)

SumMax 1 no 3 3 � 3

2 no 3 3 3 3

3 yes 3 3 3 3

4 yes 7 3 3 3

MaxArray 5 no 3 3 � 3

6 no 3 3 3 3

7 yes 3 3 3 3

8 yes 3 3 3 3

9 yes 3 7 3 3

10 yes 3 3 3 3

11 yes 7 7 3 3

BinarySearch 12 no 3 3 � 3

13 no 3 3 3 3

14 yes 3 3 3 3

15 no 3 3 3 3

16 no 3 3 � 3

17 no 3 3 3 3

18 no 3 7 3 3

19 no 3 3 � 3

20 yes 7 7 3 3

Tab. 1: Errors diagnosed while solving three veri�cation challenges.

7 Experimental Evaluation

In this section, we evaluate our extensions of the Dafny IDE on diagnosing both
veri�cation errors and timeouts.

7.1 Veri�cation Errors

To demonstrate that even simple programming tasks exhibit di�erent forms of
veri�cation errors, we have evaluated our extensions on Dafny solutions we devel-
oped to three challenges posed in veri�cation competitions and benchmarks. We
used the Dafny IDE to diagnose each veri�cation error we encountered during
the three veri�cation sessions, and report the results in Tab. 1.

Challenge SumMax is taken from veri�cation competition VSComp-2010 [27].
It consists in computing the sum and max of the elements in an array and prov-
ing that sum ≤ N ∗max, where N is the length of the array. ChallengeMaxAr-

ray is taken from veri�cation competition COST-2011 [6]. Given a non-empty
integer array, MaxArray requires that we verify that the index returned by
a given method points to an element maximal in the array. Challenge Bina-
rySearch is taken from a set of veri�cation benchmarks [41], and consists in
verifying an implementation of binary search over an array. All versions of our so-
lutions to these challenges are numbered by a veri�cation-error identi�er, which
is shown in the second column of the table, and can be provided upon request.
The third column indicates that roughly half of the veri�cation errors are spu-
rious, which is not uncommon.

To diagnose the errors, we used hover text information about error messages
and inferred speci�cations (fourth column), hover text information about veri-
�cation counterexamples (�fth column), Delfy (sixth), and BVD (seventh). As

Integrated Environment for Diagnosing Veri�cation Errors 13

described earlier, each of these extensions may provide complementary insights
to the user about the cause of veri�cation errors. In the table, we indicate helpful
insights (3) as well as information that did not help in the diagnosis of a veri-
�cation error (7). However, note that such insights are not necessarily su�cient
for diagnosing the error�multiple steps may be needed and the use of more
than one of our extensions; also, di�erent users may �nd some feedback more
insightful than others. For instance, the counterexample information (through
the hover text or the veri�cation debugger) is perhaps more suitable for experi-
enced users. Consequently, in particular for spurious errors, there is usually no
de�nite answer about which extension pinpointed the source of an error.

Note that we have created a separate column for the counterexample infor-
mation that is available in the hover text to highlight the di�erence with BVD.
As shown in the table, the hover text is su�cient to diagnose most veri�cation er-
rors. BVD only becomes essential when inspecting values within data structures,
such as arrays, which are not shown in the hover text. Fixing spurious errors
without counterexample information would require signi�cant mental e�ort and
time from users since they would often need to resort to trial-and-error to identify
which information the veri�er is missing. In principle, Delfy could provide help
with such cases. However, since all of our programs contained input-dependent
loops, Delfy was not able to show that an error is de�nitely spurious.

In a few cases (indicated by a `�' in the table), Delfy was not applicable.
This was the case when the cause of a veri�cation error was a speci�cation that
Dafny guessed heuristically, such as a termination metric. Even though, at the
moment, Delfy does not support runtime checks for such guessed speci�cations,
it automatically and reliably detected all other genuine errors. Without Delfy,
this would have required manual e�ort from the user, for instance, to inspect
counterexamples. In other words, no extension of the Dafny IDE is absolutely
indispensable, but each extension can signi�cantly reduce the user e�ort for
diagnosing errors.

We also found situations where the hover text about error messages and in-
ferred speci�cations (fourth column of the table) provided limited support. In
particular, there is no indication of how much progress a user makes in �xing
a veri�cation error. For instance, they might add one of two loop invariants
that are necessary for proving a failing assertion, but the error message remains
unchanged. They are, therefore, not con�dent that the change is a step in the
right direction by only reading the hover text. In contrast, our other extensions
provide better support in such cases; for instance, in this example, the coun-
terexample state after the loop would now be di�erent due to the additional
invariant.

7.2 Timeouts

We have evaluated our technique for diagnosing timeouts by running it on 39 pro-
grams taken from real veri�cation sessions, which were recorded with the Dafny
IDE [32] and can be provided upon request. We compare two con�gurations that
only di�er by parameter TL from Fig. 6: (1) Low (10% of the time limit per
method/function), and (2) High (20% of the time limit per method/function).

14 Maria Christakis, K. Rustan M. Leino, Peter Müller, and Valentin Wüstholz

Time limit
Low High

TimeOut (in %) 57.89 50.00
Error (in %) 17.11 20.69
Veri�ed (in %) 25.00 29.31

Average number of solver queries 65.67 51.00

Average time (relative to time limit per method/function) 6.24 9.25

Average number of assertions to blame 2.67 (0.15%) 1.84 (0.11%)

Tab. 2: Comparison between two con�gurations for diagnosing timeouts.

Tab. 2 demonstrates the di�erent trade-o�s. While con�guration Low is sig-
ni�cantly faster by using a larger number of short solver queries, it results in
timeouts more often and is able to narrow down the set of timed-out assertions
less e�ectively. For veri�cation conditions that still result in a timeout, con�gu-
ration Low reports on average 0.15% (at most 10 assertions) of all assertions in
that method/function as responsible. For con�guration High, these numbers are
signi�cantly lower (0.11% on average, at most 4 assertions).

Independently, both con�gurations are able to prevent a large number of
timeouts by decomposing the veri�cation tasks (as shown by the �rst three rows
in Tab. 2). For instance, with con�guration High, the algorithm from Fig. 6 re-
turns the result Veri�ed or Error for 50% of the timed-out veri�cation conditions.
Therefore, for these veri�cation conditions, none of the assertions required more
time than the limit. This suggests that the user might be able to prevent the
timeout by increasing the time limit for the corresponding method or function.

8 Related Work

Veri�cation IDEs. Several veri�cation tools are integrated into development
environments and show veri�cation errors either continuously or at the touch of
a button, e.g., [3, 15, 13, 20, 26, 14]. Our work goes beyond the integration of a
single tool, instead providing in one package a collection of tools with comple-
mentary strengths.

The Isabelle environment for mathematical formulas integrates both interac-
tive proof assistance and automatic counterexample search [42, 5].

The Ei�el Veri�cation Environment analyzes programs in two independent
ways [39]. Essentially, one way strives to fully verify the program, whereas the
other cuts corners in order to provide quick turnaround with understandable
error messages. This two-step veri�cation resembles the combination of two of
our tools, the Dafny veri�er and Delfy.

Dynamic symbolic execution. Dynamic symbolic execution has been im-
plemented in many popular tools over the last decade, e.g., SAGE [25], EXE [9],
jCUTE [34], Pex [38], KLEE [7], BitBlaze [37], and Apollo [2]. In contrast to
these tools, Delfy targets a veri�cation language for proving functional correct-
ness of programs and, therefore, supports speci�cation constructs and operations
that are not found in mainstream programming languages.

Delfy implements dynamic, rather than static, symbolic execution for two
important reasons. First, DSE can alleviate the limitations of an underlying
SMT solver by replacing complex symbolic conditions in SMT queries with their

Integrated Environment for Diagnosing Veri�cation Errors 15

concrete values [24]. Second, the dynamic aspect has applications beyond the
scope of this paper, in particular for learning speci�cations [21, 17, 36].

Exploring counterexamples. BVD [28] lets one inspect counterexamples
to veri�cation conditions generated by Boogie, VCC [13], and Dafny. Besides
integrating BVD into the Dafny IDE, we provide easy access to excerpts from
the counterexample through hover text. OpenJML [14] also provides such hover
text, but not the full BVD experience.

An alternative to a dedicated counterexample debugger is to generate an
executable program that encodes the veri�cation semantics and the counterex-
ample, for instance, by extracting a value for a non-deterministic choice from the
counterexample [33]. This approach allows one to use a conventional debugger
to explore the counterexamples.

Several tools generate executable tests from counterexamples [4, 16]. In con-
trast, Delfy lets one explore the program independently of the veri�cation se-
mantics that is re�ected in the counterexample.

Timeouts. Unlike Boogie's existing veri�cation-condition splitting [30], our
technique for diagnosing timeouts is not concerned with parallelizing veri�cation
tasks. Instead of iteratively creating smaller and smaller program fragments that
are fed to the veri�er, our technique generates a single veri�cation condition once
and uses the SMT solver to decompose it in case of a timeout. Besides this, our
technique is able to identify all assertions that time out individually after a given
time limit.

9 Concluding Remarks

In this paper, we have enhanced the IDE of the veri�cation-aware language
Dafny with a comprehensive set of problem-diagnosing tools, including a new
timeout-diagnosis tool and the novel Delfy dynamic test generator. The seamless
integration of these tools, alongside the on-demand information that the IDE
now provides via hover text, lets a user obtain useful feedback when trying to
understand and remedy veri�cation failures. While in this work we have made
the sophisticated diagnostic information easily accessible to users, we hope in
future work to also see automatic suggestions of remedies.

Acknowledgments. We are grateful to Patrick Emmisberger and Patrick Spet-
tel for their contributions to Delfy.

References

1. S. Anand, P. Godefroid, and N. Tillmann. Demand-driven compositional symbolic
execution. In TACAS, volume 4963 of LNCS, pages 367�381. Springer, 2008.

2. S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. M. Paradkar, and M. D. Ernst.
Finding bugs in web applications using dynamic test generation and explicit-state
model checking. TSE, 36:474�494, 2010.

3. M. Barnett, M. Fähndrich, K. R. M. Leino, P. Müller, W. Schulte, and H. Venter.
Speci�cation and veri�cation: The Spec# experience. CACM, 54:81�91, 2011.

4. D. Beyer, A. J. Chlipala, and R. Majumdar. Generating tests from counterexam-
ples. In ICSE, pages 326�335. IEEE Computer Society, 2004.

16 Maria Christakis, K. Rustan M. Leino, Peter Müller, and Valentin Wüstholz

5. J. C. Blanchette and T. Nipkow. Nitpick: A counterexample generator for higher-
order logic based on a relational model �nder. In ITP, volume 6172 of LNCS,
pages 131�146. Springer, 2010.

6. T. Bormer, M. Brockschmidt, D. Distefano, G. Ernst, J. Filliâtre, R. Grigore,
M. Huisman, V. Klebanov, C. Marché, R. Monahan, W. Mostowski, N. Polikarpova,
C. Scheben, G. Schellhorn, B. Tofan, J. Tschannen, and M. Ulbrich. The COST
IC0701 veri�cation competition 2011. In FoVeOOS, volume 7421 of LNCS, pages
3�21. Springer, 2011.

7. C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted and automatic genera-
tion of high-coverage tests for complex systems programs. In OSDI, pages 209�224.
USENIX, 2008.

8. C. Cadar and D. R. Engler. Execution generated test cases: How to make systems
code crash itself. In SPIN, volume 3639 of LNCS, pages 2�23. Springer, 2005.

9. C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler. EXE:
Automatically generating inputs of death. In CCS, pages 322�335. ACM, 2006.

10. M. Christakis. Narrowing the Gap between Veri�cation and Systematic Testing.
PhD thesis, ETH Zurich, 2015.

11. M. Christakis and P. Godefroid. Proving memory safety of the ANI Windows
image parser using compositional exhaustive testing. In VMCAI, volume 8931 of
LNCS, pages 373�392. Springer, 2015.

12. M. Christakis, P. Müller, and V. Wüstholz. Collaborative veri�cation and testing
with explicit assumptions. In FM, volume 7436 of LNCS, pages 132�146. Springer,
2012.

13. E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal, T. Santen,
W. Schulte, and S. Tobies. VCC: A practical system for verifying concurrent C.
In TPHOLs, volume 5674 of LNCS, pages 23�42. Springer, 2009.

14. D. R. Cok. OpenJML: Software veri�cation for Java 7 using JML, OpenJDK,
and Eclipse. In Formal-IDE, volume 149 of Electronic Proceedings in Theoretical
Computer Science, pages 79�92. Open Publishing Association, 2014.

15. L. Correnson, P. Cuoq, F. Kirchner, V. Prevosto, A. Puccetti, J. Signoles, and
B. Yakobowski. Frama-C User Manual, 2011. http://frama-c.com//support.html.

16. C. Csallner and Y. Smaragdakis. Check 'n' Crash: Combining static checking and
testing. In ICSE, pages 422�431. ACM, 2005.

17. C. Csallner, N. Tillmann, and Y. Smaragdakis. Dysy: Dynamic symbolic execution
for invariant inference. In ICSE, pages 281�290. ACM, 2008.

18. L. de Moura and N. Bjørner. Z3: An e�cient SMT solver. In TACAS, volume 4963
of LNCS, pages 337�340. Springer, 2008.

19. D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A theorem prover for program
checking. J. ACM, 52:365�473, 2005.

20. C. Dross, P. Efstathopoulos, D. Lesens, D. Mentré, and Y. Moy. Rail, space,
security: Three case studies for SPARK 2014. In ERTS, 2014.

21. M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S. Tschantz,
and C. Xiao. The Daikon system for dynamic detection of likely invariants. Sci.
Comput. Program., 69:35�45, 2007.

22. C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata.
Extended static checking for Java. In PLDI, pages 234�245. ACM, 2002.

23. P. Godefroid. Compositional dynamic test generation. In POPL, pages 47�54.
ACM, 2007.

24. P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated random test-
ing. In PLDI, pages 213�223. ACM, 2005.

Integrated Environment for Diagnosing Veri�cation Errors 17

25. P. Godefroid, M. Y. Levin, and D. A. Molnar. Automated whitebox fuzz testing.
In NDSS, pages 151�166. The Internet Society, 2008.

26. B. Jacobs and F. Piessens. The VeriFast program veri�er. Technical Report CW�
520, Department of Computer Science, Katholieke Universiteit Leuven, 2008.

27. V. Klebanov, P. Müller, N. Shankar, G. T. Leavens, V. Wüstholz, E. Alkassar,
R. Arthan, D. Bronish, R. Chapman, E. Cohen, M. Hillebrand, B. Jacobs, K. R. M.
Leino, R. Monahan, F. Piessens, N. Polikarpova, T. Ridge, J. Smans, S. Tobies,
T. Tuerk, M. Ulbrich, and B. Weiÿ. The 1st Veri�ed Software Competition: Expe-
rience report. In FM, volume 6664 of LNCS, pages 154�168. Springer, 2011.

28. C. Le Goues, K. R. M. Leino, and M. Moskal. The Boogie veri�cation debugger.
In SEFM, volume 7041 of LNCS, pages 407�414. Springer, 2011.

29. K. R. M. Leino. Dafny: An automatic program veri�er for functional correctness.
In LPAR, volume 6355 of LNCS, pages 348�370. Springer, 2010.

30. K. R. M. Leino, M. Moskal, and W. Schulte. Veri�cation condition splitting.
Technical report, Microsoft Research, 2008.

31. K. R. M. Leino and V. Wüstholz. The Dafny integrated development environment.
In Formal-IDE, volume 149 of Electronic Proceedings in Theoretical Computer Sci-
ence, pages 3�15. Open Publishing Association, 2014.

32. K. R. M. Leino and V. Wüstholz. Fine-grained caching of veri�cation results. In
CAV, volume 9206 of LNCS, pages 380�397. Springer, 2015.

33. P. Müller and J. N. Ruskiewicz. Using debuggers to understand failed veri�cation
attempts. In FM, volume 6664 of LNCS, pages 73�87. Springer, 2011.

34. K. Sen and G. Agha. CUTE and jCUTE: Concolic unit testing and explicit path
model-checking tools. In CAV, volume 4144 of LNCS, pages 419�423. Springer,
2006.

35. K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing engine for C. In
ESEC, pages 263�272. ACM, 2005.

36. R. Sharma, S. Gupta, B. Hariharan, A. Aiken, P. Liang, and A. V. Nori. A data
driven approach for algebraic loop invariants. In ESOP, volume 7792 of LNCS,
pages 574�592. Springer, 2013.

37. D. X. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang, Z. Liang,
J. Newsome, P. Poosankam, and P. Saxena. BitBlaze: A new approach to computer
security via binary analysis. In ICISS, volume 5352 of LNCS, pages 1�25. Springer,
2008.

38. N. Tillmann and J. de Halleux. Pex�White box test generation for .NET. In
TAP, volume 4966 of LNCS, pages 134�153. Springer, 2008.

39. J. Tschannen, C. A. Furia, M. Nordio, and B. Meyer. Program checking with less
hassle. In VSTTE, volume 8164 of LNCS, pages 149�169. Springer, 2013.

40. J. Tschannen, C. A. Furia, M. Nordio, and N. Polikarpova. AutoProof: Auto-
active functional veri�cation of object-oriented programs. In TACAS, volume 9035
of LNCS, pages 566�580. Springer, 2015.

41. B. W. Weide, M. Sitaraman, H. K. Harton, B. M. Adcock, P. Bucci, D. Bronish,
W. D. Heym, J. Kirschenbaum, and D. Frazier. Incremental benchmarks for soft-
ware veri�cation tools and techniques. In VSTTE, volume 5295 of LNCS, pages
84�98. Springer, 2008.

42. M. Wenzel. Isabelle/jEdit�a prover IDE within the PIDE framework. In AISC/-
Calculemus/DML/MKM/CICM, volume 7362 of LNCS, pages 468�471. Springer,
2012.

