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ABSTRACT
Most techniques to detect program errors, such as testing,
code reviews, and static program analysis, do not fully verify
all possible executions of a program. They leave executions
unverified when they do not check certain properties, fail to
verify properties, or check properties under certain unsound
assumptions such as the absence of arithmetic overflow.
In this paper, we present a technique to complement par-

tial verification results by automatic test case generation. In
contrast to existing work, our technique supports the com-
mon case that the verification results are based on unsound
assumptions. We annotate programs to reflect which exe-
cutions have been verified, and under which assumptions.
These annotations are then used to guide dynamic symbolic
execution toward unverified program executions. Our main
technical contribution is a code instrumentation that causes
dynamic symbolic execution to abort tests that lead to ver-
ified executions, to prune parts of the search space, and to
prioritize tests that cover more properties that are not fully
verified. We have implemented our technique for the .NET
static analyzer Clousot and the dynamic symbolic execution
tool Pex. It produces smaller test suites (by up to 19.2%),
covers more unverified executions (by up to 7.1%), and re-
duces testing time (by up to 52.4%) compared to combining
Clousot and Pex without our technique.

1. INTRODUCTION
Modern software projects use a variety of techniques to

detect program errors, such as testing, code reviews, and
static program analysis [31]. In practice, none of these tech-
niques check all possible executions of a program. They
often leave entire paths unverified (for instance, when a test
suite does not achieve full path coverage), fail to verify cer-
tain properties (such as complex assertions), or verify some
paths under assumptions (such as the absence of arithmetic
overflow) that might not hold on all executions of the path.
Making such assumptions is necessary in code reviews to re-
duce the complexity of the task; it is also customary in static
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1 void Deposit(int amount) {
2 if (amount <= 0 || amount > 50000) {
3 ReviewDeposit(amount);
4 } else {
5 balance = balance + amount;
6 if (balance > 10000) {
7 SuggestInvestment();
8 }
9 }

10 assert balance >= old(balance);
11 }

Figure 1: C# example illustrating partial verifica-
tion results. Techniques that assume that the addi-
tion on line 5 does not overflow might miss violations
of the assertion on line 10. We use the assertion
to make the intended behavior explicit; the old key-
word indicates that an expression is evaluated in the
pre-state of the method. balance is an integer field
declared in the enclosing class. We assume methods
ReviewDeposit and SuggestInvestment to be correct.

program analysis to improve the precision, performance, and
modularity of the analysis [13], and because some program
features elude static checking [36]. That is, most static anal-
yses sacrifice soundness in favor of other important qualities.
Automatic test case generation via dynamic symbolic ex-

ecution (DSE) [27, 9], also called concolic testing [38], sys-
tematically explores a large number of program executions
and, thus, effectively detects errors missed by other tech-
niques. However, simply applying DSE in addition to other
techniques leads to redundancy when executions covered by
DSE have already been verified. In this case, the available
testing time is wasted on executions that are known to be
correct rather than on exploring previously-unverified exe-
cutions. This redundancy is especially problematic when
DSE is used to complement static analyzers because static
techniques can check a large fraction of all possible program
executions and, thus, many or even most of the executions
covered by DSE are already verified.
Method Deposit in Fig. 1 illustrates this problem. A re-

viewer or static analyzer that checks the implementation
under the assumption that the addition on line 5 does not
overflow might miss violations of the assertion on line 10.
Applying DSE to the method tries to explore six different
paths through the method (there are three paths through
the conditionals, each combined with two possible outcomes
for the assertion), in addition to all the paths through the
called methods ReviewDeposit and SuggestInvestment. As-
suming that these two methods are correct, only one of all
these paths reveals an error, namely the path that is taken
when amount is between 0 and 50,000, and balance is large
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enough for the addition on line 5 to overflow. All other
generated test cases are redundant because they lead to ex-
ecutions that have already been verified. In particular, if
the called methods have complex control flow, DSE might
not detect the error because it reaches a timeout before gen-
erating the only relevant test case.
To reduce this redundancy, existing work [10, 17, 25] in-

tegrates static analyses and DSE; it uses the verification
results of a static analysis to prune verified executions from
testing. However, existing combinations of static analysis
and test case generation do not support analyses that make
unsound assumptions. They either require the static analy-
sis to be sound and are thus of limited use for most practical
analyses, or they ignore the unsoundness of the static anal-
ysis and may therefore prune executions during DSE that
contain errors. In particular, they would miss the error in
Fig. 1 if the static analysis ignores overflow.
In this paper, we present a novel technique to comple-

ment partial verification by automatic test case generation.
In contrast to existing work, our technique supports the im-
portant case that the verification results are obtained by an
unsound (manual or automatic) static analysis. Building on
our earlier work [12], we use program annotations to make
explicit which assertions in a program have already been
verified, and under which assumptions. These annotations
can be generated automatically by a static analysis [13] or
inserted manually, for instance, during a code review. We
consider a code reviewer as a human static analyzer, since
like tools, reviewers typically make simplifying assumptions.
The main technical contribution of this paper is a code in-
strumentation of the unit under test that (1) detects redun-
dant test cases early during their execution and aborts them,
(2) reduces the search space for DSE by pruning paths that
have been previously verified, and (3) prioritizes test cases
that cover more assertions that are not fully verified. This
instrumentation is based on an efficient static inference that
propagates information about unverified executions up in
the control flow, where it may prune the search space more
effectively. It does not require a specific DSE algorithm and,
thus, can be used with a wide range of existing tools.
This paper goes beyond our previous work [12] in three

important ways: (1) It leverages partial verification results,
whereas our previous work reduced the test effort mainly
for fully-verified methods. Practical analyses typically do
not achieve full verification for non-trivial methods. (2) It
demonstrates the effectiveness of our approach using an in-
dustrial analyzer and the sources of unsoundness it contains;
our previous work used an artificially-unsound variation of
Dafny [34]. (3) It provides a more substantial evaluation.
Our technique works for modular and whole-program ver-

ification, and can be used to generate unit or system tests.
We present it for modular verification and unit testing here.
In particular, we have implemented our approach for Mi-
crosoft’s .NET static checker Clousot [23], a modular static
analysis, and the DSE tool Pex [40], a test case generator for
unit tests. Our experiments demonstrate that, compared to
classical DSE, our approach produces smaller test suites, ex-
plores more unverified executions, and reduces testing time.
Outline. We give an overview of our approach in Sect. 2.
Sect. 3 explains how we infer the code instrumentation from
partial verification results. Our experimental results are pre-
sented in Sect. 4. We discuss related work in Sect. 5 and
conclude in Sect. 6.

1 void Deposit(int amount) {

2 var a = true;

3 if (amount <= 0 || 50000 < amount) {

4 assume !a;

5 ReviewDeposit(amount);
6 } else {

7 assumed noOverflowAdd(balance, amount) as a;

8 a = a && noOverflowAdd(balance, amount);

9 assume !a;

10 balance = balance + amount;
11 if (10000 < balance) {
12 SuggestInvestment();
13 }
14 }

15 assume !a || balance >= old(balance);

16 assert balance >= old(balance) verified a;

17 }

Figure 2: The instrumented version of the method
from Fig. 1. The dark boxes show the annotations
generated by the static analyzer. The assumed state-
ment makes explicit that the analyzer assumed that
the addition on line 10 does not overflow. The
verified annotation on the assertion on line 16 ex-
presses that the assertion was verified under this
unsound assumption. The two annotations are
connected via the assumption identifier a, which
uniquely identifies the assumed statement. The light
boxes show the instrumentation that we infer from
the annotations and that prunes redundant tests.

2. APPROACH
In this section, we summarize an annotation language that

we have developed in earlier work [12, 41] to express partial
verification results, and then illustrate how the instrumen-
tation proposed here uses these annotations to guide DSE
toward unverified executions. The details of the approach
are explained in the next section.

2.1 Verification annotations
In order to encode partial verification results, we introduce

two kinds of annotations: An assumed statement of the form
assumed P as a expresses that an analysis assumed property
P to hold at this point in the code without checking it. The
assumption identifier a uniquely identifies this statement.
In order to record verification results, we use assertions of
the form assert P verified A, which express that property
P has been verified under condition A. The premise A is a
boolean condition over assumption identifiers, each of which
is introduced in an assumed statement. Specifically, it is the
conjunction of the identifiers for the assumptions used to
verify P , or false if P was not verified. When several verifi-
cation results are combined (for instance, from a static anal-
ysis and a code review), A is the disjunction of the assump-
tions made during each individual verification. We record
verification results for all assertions in the code, including
implicit assertions such as a receiver being non-null or an
index being within the bounds of an array.
We assume here that a static analyzer records the as-

sumptions it made during the analysis, which assertions it
verified, and under which assumptions. We equipped Mi-
crosoft’s .NET static analyzer Clousot [23] with this func-
tionality [13]. Among other unsound assumptions, Clousot
ignores arithmetic overflow and, thus, misses the potential
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violation of the assertion on line 10 of Fig. 11. This par-
tial verification result is expressed by the annotations in
the dark boxes of Fig. 2 (the light boxes are discussed be-
low). The assumed statement makes explicit that the addi-
tion on line 10 was assumed not to overflow (the predicate
noOverflowAdd can be encoded as equality of an integer and
a long-integer addition); the verified annotation on the as-
sertion on line 16 expresses that the assertion was verified
under this (unsound) assumption.
The meaning of verification annotations is defined in terms

of assignments and standard assume statements, which makes
the annotations easy to support by a wide range of static
and dynamic tools. For each assumption identifier, we de-
clare a boolean variable, which is initialized to true. For
modular analyses, assumption identifiers are local variables
initialized at the beginning of the enclosing method (line 2
in Fig. 2); for whole-program analyses, assumption identi-
fiers are global variables initialized for instance during class
initialization. A statement assumed P as a is encoded as

a = a && P ;

as illustrated on line 8. That is, variable a accumulates the
assumed properties for each execution of the assumed state-
ment. Since assumptions typically depend on the current
execution state, this encoding ensures that an assumption
is evaluated in the state in which it is made rather than the
state in which it is used.
An assertion assert P verified A is encoded as

assume A⇒ P ;

assert P ;

as illustrated on line 15. The assume statement expresses
that, if condition A holds, then the asserted property P
holds as well, which reflects that P was verified under the
premise A. Consequently, an assertion is unverified if A is
false, the assertion is fully verified if A is true, and otherwise,
the assertion is partially verified.

2.2 Guiding dynamic symbolic execution
To reduce redundancies with prior analyses of the unit

under test, DSE should generate test cases that check each
assertion assert P verified A for the case that the premise
A does not hold, because P has been verified to hold other-
wise. We guide DSE toward such test cases by pruning test
cases that cover verified executions. Moreover, we prioritize
test cases that violate more assertion premises and, thus, are
more likely to reveal an assertion violation. Test prioritiza-
tion is important when DSE is applied until certain limits
(for instance, on the overall testing time) are reached.

Pruning redundant tests. A test is redundant if the
premise of each assertion in its execution holds; in this case,
all assertions have been statically verified. To prune redun-
dant tests, we compute statically for each program point a
sufficient condition for every execution from this program
point onward to be verified. If this condition holds during
the execution of a test case, all subsequent assertions are
definitely verified and, thus, the test can be aborted. More
importantly, all other test cases that share the prefix of the
execution path up to the abort and also satisfy the condition
1Clousot is modular, that is, reasons about a method
call using the method’s pre- and postcondition; we as-
sume here that the postconditions of ReviewDeposit and
SuggestInvestment state that balance is not decreased.

can be pruned from the search space for DSE. If all asser-
tions in the shared prefix are fully verified, then these test
cases are redundant. Otherwise, they are not redundant ac-
cording to the definition above, but nevertheless guaranteed
not to reveal an assertion violation. Assertions after the
shared prefix are definitely verified; violations of assertions
in the shared prefix would be detected before aborting the
former test case since DSE tools treat assertions as branches
and, thus, two executions of the same path satisfy or violate
the same assertions.
Both aborting and pruning of tests are achieved by instru-

menting the unit under test with assume statements. They
affect DSE in two ways. First, when the execution of a
test case encounters an assume statement whose condition is
false, the execution is aborted. Second, when an execution
encounters an assume statement, its condition is added to
the symbolic path condition, ensuring that subsequent test
cases that share the prefix of the execution path up to the
assume statement will satisfy the condition.
We instrument the unit under test by assuming at vari-

ous program points a condition under which there may be
an execution from this program point onward that is un-
verified. We call this condition a may-unverified condition;
it is the negation of the condition that all executions from
the point onward are verified. Note that this may-unverified
instrumentation is conservative. It retains any execution in
which the premise of at least one of the assertions might not
hold. Therefore, it does not abort or prune any tests that
may reveal an assertion violation.
The example in Fig. 2 has an assertion with premise a

at the very end. Consider the program points on lines 4
and 9. At both points, a is a sufficient condition for the
rest of the execution of Deposit to be verified. Since we are
interested in test cases that lead to unverified executions, we
instrument both program points by assuming the negation,
!a. With this instrumentation, any test case that enters the
outer then-branch is aborted since a is always true at this
point, which, in particular, prunes the entire exploration of
method ReviewDeposit. Similarly, any test case that does
not lead to an overflow on line 10 is aborted on line 9, which
prunes the entire exploration of method SuggestInvestment.
So, out of all the test cases generated by DSE for the un-
instrumented Deposit method, only the one that reveals the
error remains; all others are either aborted early or pruned.
Note that the instrumentation aborts and prunes redun-

dant tests more effectively if may-unverified conditions are
assumed earlier in the control flow, because early assump-
tions may abort test cases earlier and share the prefix with
more executions. For instance, if instead of the assump-
tions on lines 4 and 9 we assumed !a only right before
the assertion on line 16, tests would be aborted late and
no redundant tests would be pruned. DSE would gener-
ate the same test cases as if there were no prior verifica-
tion results. Our previous work [12] produces exactly this
result, which demonstrates that it provides only weak sup-
port for partially-verified methods. To address this problem,
we propagate constraints that characterize unverified execu-
tions higher up in the control flow, where they can be used
to effectively prune redundant test cases.
Prioritizing premise violations. Intuitively, test cases
that violate the premise of more than one assertion have a
higher chance to detect an assertion violation. To prioritize
such test cases, we devise a second instrumentation, called
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Verified
Unverified
May‐unverified
Must‐unverified

Figure 3: May-unverified and must-unverified con-
ditions. The set of all executions is depicted by the
large ellipse; the gray and white areas depict the ver-
ified and unverified executions, respectively. Execu-
tions that satisfy the may-unverified conditions are
ruled horizontally, while those satisfying the must-
unverified conditions are ruled vertically.

must-unverified instrumentation: We compute for each pro-
gram point a sufficient condition for every execution from
this program point onward to be definitely unverified. If the
condition holds then every execution from the program point
onward contains at least one assertion, and the premises of
all assertions in the execution are false.
When the must-unverified condition is violated, it does

not necessarily mean that the subsequent execution is ver-
ified and, thus, we cannot abort the test case. Therefore, we
instrument the program not by assuming the must-unverified
condition, but instead with a dedicated tryfirst statement.
This statement interrupts the execution of the test case
and instructs DSE to generate new inputs that satisfy the
must-unverified condition, that is, inputs that have a higher
chance to detect an assertion violation. The interrupted
test case is re-generated later, after the executions that sat-
isfy the must-unverified condition have been explored. This
exploration strategy prioritizes test cases that violate all
premises over those that violate only some.
Suppose that the Deposit method in Fig. 2 contained an-

other assertion at the very end that has not been veri-
fied, that is, whose premise is false. In this case, the may-
unverified instrumentation yields true for all prior program
points since every execution is unverified. In this case, this
instrumentation neither aborts nor prunes any test cases. In
contrast, the must-unverified instrumentation infers !a on
line 9. The corresponding tryfirst statement (not shown in
Fig. 2) gives priority to executions that lead to an overflow
on line 10. However, it does not prune the others since they
might detect a violation of the unverified second assertion
at the end of the method.

Summary. Fig. 3 illustrates the may-unverified and must-
unverified conditions. The set of executions that satisfy the
may-unverified conditions is a superset of the unverified exe-
cutions, whereas the set of executions that satisfy the must-
unverified conditions is a subset.
The may-unverified and must-unverified instrumentations

have complementary strengths. While the former effectively
aborts or prunes redundant tests, the latter prioritizes those
tests among the non-redundant ones that are more likely to
detect an assertion violation. Therefore, our experiments
show the best results for the combination of both.

3. CONDITION INFERENCE
Our may-unverified and must-unverified conditions reflect

whether the premises of assertions further down in the con-
trol flow hold. In that sense, they resemble weakest precon-
ditions [20]: a may-unverified condition is the negation of
the weakest condition that implies that all premises further

down hold; a must-unverified condition is the weakest con-
dition that implies that all premises do not hold. Precisely
computing such conditions, for instance via weakest precon-
dition calculi [33], abstract interpretation [15], or predicate
abstraction [30, 4], is too expensive for our purpose; the
overhead of computing the conditions precisely would efface
the benefits of pruning tests. Therefore, we use a rather
coarse over-approximation of may- and must-unverified con-
ditions that can be computed efficiently and is sufficiently
precise to prune and prioritize tests effectively.
We first abstract the unit under test to a non-deterministic

boolean program [5] where all variables are assumption iden-
tifiers. This step is an efficient syntactic program transfor-
mation. The abstraction is sound, that is, each execution of
the concrete program is included in the set of executions of
the abstract program. Therefore, a condition that guaran-
tees that all premises hold (or are violated) in the abstract
program provides the same guarantee for the concrete pro-
gram. The may-unverified and must-unverified conditions
can then be computed efficiently using abstract interpreta-
tion of the abstract program over a simple abstract domain.

3.1 Abstraction
We abstract a concrete program to a boolean program,

where all boolean variables are assumption identifiers. In
the abstract program, all expressions that do not include
assumption identifiers are replaced by non-deterministically
chosen values, which, in particular, replaces conditional con-
trol flow by non-determinism. Moreover, the abstraction re-
moves assertions that have been fully verified, that is, where
the premise is the literal true or includes true as a disjunct.
We present the abstraction for a simple concrete program-

ming language with the following statements: assumed state-
ments, assertions, method calls, conditionals, loops, and as-
signments. Besides conditional statements and loops with
non-deterministic guards, the abstract language provides the
following statements:
− initialization of assumption identifiers: var a := true,
− updates to assumption identifiers: a := a && *, where *

denotes a non-deterministic (boolean) value,
− assertions: assert * verified A, where A 6≡ true, and
− method calls: call Mf , where Mf is a fully-qualified

method name and the receiver and arguments have been
abstracted away.

Note that we desugar assumed statements into initializations
and updates of assumption identifiers, which allows us to
treat modular and whole-program analyses uniformly even
though they require a different encoding of assumed state-
ments (Sect. 2.1).
To abstract a program, we recursively apply the following

transformations to its statements:
− an assumption assumed P as a is rewritten to an assump-

tion identifier initialization var a := true (at the appro-
priate program point, as discussed above) and an update
a := a && *,

− an assertion assert P verified A is transformed into
assert * verified A, if A is not trivially true, and omit-
ted otherwise,

− a conditional statement if (b) S0 else S1 is rewritten to
if (*) S′

0 else S′
1, where S′

0 and S′
1 are the results of

recursively rewriting the statements S0 and S1,
− a loop while (b) S is rewritten to while (*) S′, where S′

is the result of recursively rewriting statement S,
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1 method Deposit() {

2 {true}

3 var a := true;

4 {true}

5 if (*) {

6 {!a}

7 call Account.ReviewDeposit;

8 {!a}

9 } else {

10 {true}

11 a := a && *;

12 {!a}

13 if (*) {

14 {!a}

15 call Account.SuggestInvestment;

16 {!a}

17 }

18 {!a}

19 }

20 {!a}

21 assert * verified a;

22 {false}

23 }

Figure 4: The abstraction of method Deposit from
Fig. 2. The gray boxes (light and dark) show the
inferred may-unverified conditions. The conditions
that are used for the may-unverified instrumenta-
tion are shown in dark gray boxes.

− a method call r.M(. . .) is rewritten to call Mf , where
Mf is the fully-qualified name of M , and

− assignments are omitted.
Fig. 4 shows the abstraction of method Deposit from Fig. 2.

The gray boxes (light and dark) show the inferred may-
unverified conditions, as we explain in the next subsection.

Soundness. The abstraction described above is sound,
that is, each execution of the concrete program is included
in the set of executions of the corresponding abstract pro-
gram. The abstraction preserves the control structure of
each method, but makes the control flow non-deterministic,
which enlarges the set of possible executions. All other oc-
currences of expressions (in assumed statements, assertions,
and calls) are replaced by non-deterministic values of the ap-
propriate type, which also enlarges the set of possible execu-
tions. Once all occurrences of variables have been replaced
by non-deterministic values, assignments do not affect pro-
gram execution and can, thus, be omitted.

3.2 May-unverified conditions
A may-unverified condition expresses that some execution

from the current program point onward may be unverified.
We compute this condition for each program point in two
steps. First, we compute the weakest condition at the cor-
responding program point in the abstract program that im-
plies that all executions are verified. Since the set of execu-
tions of the abstract program subsumes the set of concrete
executions, this condition also implies that all concrete ex-
ecutions are verified (although for the concrete execution,
the computed condition is not necessarily the weakest such
condition). Second, we negate the computed condition to
obtain a may-unverified condition.

Inference. To compute the weakest condition that implies
that all executions from a program point onward are veri-
fied, we define a predicate transformer WP on abstract pro-
grams. If WP(S, R) holds in a state, then the premise of
each assertion in each execution of statement S from that
state holds and, if the execution terminates, R holds in the
final state. For a modular analysis such as Clousot, calls are
encoded by asserting their precondition, reflecting their side
effects, and assuming their postcondition; since our abstract
programs omit all information about program variables, the
latter two do not occur in the abstract program. Defining
an inter-procedural WP is of course also possible. Thus, we
define WP as follows:
− WP(assert * verified A, R) ≡ A ∧R,
− WP(a := true, R) ≡ R[a := true], denoting the substitu-

tion of a by true in R, and
− WP(a := a && *, R) ≡ R ∧R[a := false].
The semantics of sequential composition, conditionals, and
loops is standard [20].
The may-unverified condition for a statement S is the

negation of the weakest precondition:

May(S) ≡ ¬WP(S, true)

In our implementation, we compute for each program point
the may-unverified condition for the program fragment from
this point onward. The computation is done using backward
abstract interpretation over a set of cubes (that is, conjunc-
tions of assumption identifiers or their negations). In the
presence of loops, we use a fixed-point computation.
The (light and dark) gray boxes in Fig. 4 show the may-

unverified conditions at each program point (assuming meth-
ods ReviewDeposit and SuggestInvestment have no precon-
ditions). The may-unverified inference propagates mean-
ingful information only up until the non-deterministic up-
date is reached, which corresponds to the assumed statement.
Specifically, on line 10, we infer true because the abstraction
loses the information that would be needed to compute a
stronger may-unverified condition. So, in return for an ef-
ficient condition inference, we miss some opportunities for
aborting and pruning redundant tests.
Instrumentation. Since each execution of the concrete
program corresponds to an execution of the abstract pro-
gram, we can instrument the concrete program by adding
an assume C statement at each program point, where C is
the may-unverified condition at the corresponding program
point in the abstract program. As we explained in Sect. 2.2,
these statements abort redundant test cases and contribute
constraints that guide DSE toward unverified executions.
To avoid redundant constraints that would slow down

DSE, we omit assume statements when the may-unverified
condition is trivially true or not different from the condition
at the previous program point, as well as the assume false

statement at the end of the unit under test. Therefore, out
of all the conditions inferred for the example in Fig. 4, we
use only the ones on lines 6 and 12 to instrument the pro-
gram, which leads to the assumptions on lines 4 and 9 of
Fig. 2 and guides DSE as described in Sect. 2.2.

3.3 Must-unverified conditions
A must-unverified condition expresses that (1) each ex-

ecution from the program point onward contains at least
one assertion and (2) on each execution, the premise of each
assertion evaluates to false.
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1 method Deposit() {

2 {false}

3 var a := true;

4 {!a}

5 if (*) {

6 {!a}

7 call Account.ReviewDeposit;

8 {!a}

9 } else {

10 {!a}

11 a := a && *;

12 {!a}

13 if (*) {

14 {!a}

15 call Account.SuggestInvestment;

16 {!a}

17 }

18 {!a}

19 }

20 {!a}

21 assert * verified a;

22 {true}

23 assert * verified false;

24 {false}

25 }

Figure 5: The abstraction of a variant of method
Deposit from Fig. 2 that contains an additional un-
verified assertion at the end of the method (see
Sect. 2.2). The gray boxes show the inferred must-
unverified conditions. The conditions that are used
for the must-unverified instrumentation are shown
in dark gray boxes.

Inference. We infer the two properties that are entailed
by a must-unverified condition separately via two predicate
transformers Mustassert and Mustall . If Mustassert(S, R)
holds in a state, then each execution of statement S from
that state encounters at least one assertion or terminates in
a state in which R holds. If Mustall(S, R) holds in a state,
then the premise of each assertion in each execution of state-
ment S from that state does not hold and, if S terminates, R
holds. Both transformers yield the weakest condition that
has these properties. Consequently, we obtain the weak-
est must-unverified condition for an abstract statement S as
follows:

Must(S) ≡Mustassert(S, false) ∧Mustall(S, true)

Mustassert and Mustall are defined analogously to WP
(see Sect. 3.2), except for the treatment of assertions:

Mustassert(assert * verified A, R) ≡ true

Mustall(assert * verified A, R) ≡ ¬A ∧R

The definition for Mustassert expresses that, at a program
point before an assertion, property (1) holds, that is, the
remaining execution (from that point on) contains at least
one assertion. The definition for Mustall expresses that the
premise A must evaluate to false, and that R must hold
to ensure that the premises of subsequent assertions do not
hold either.
Fig. 5 shows the abstraction of a variant of Deposit from

Fig. 2 that contains an additional unverified assertion at the

end of the method (see Sect. 2.2). The (light and dark) gray
boxes show the inferred must-unverified conditions. Com-
pared to the may-unverified conditions, the must-unverified
conditions are stronger, that is, information is usually prop-
agated further up in the control flow. Whereas the unver-
ified assertion at the end of this example causes the may-
unverified conditions to be trivially true, the must-unverified
inference obtains conditions that can be used to prioritize
test cases.

Instrumentation. To prioritize tests that satisfy their
must-unverified conditions, we instrument the concrete pro-
gram with tryfirst C statements, where C is the must-
unverified condition at the corresponding program point in
the abstract program. This statement causes DSE to pre-
fer test inputs that satisfy condition C. More specifically,
when a tryfirst C statement is executed for the first time,
it adds C to the path condition to force DSE to generate in-
puts that satisfy condition C. Note however, that unlike the
constraints added by assume statements, this constraint may
be dropped by the DSE to also explore executions where
the condition is violated. If during this first execution of
the statement condition C is violated, then the test case is
interrupted and will be re-generated later when condition C
can no longer be satisfied. So the tryfirst statement influ-
ences the order in which test cases are generated, but never
aborts or prunes tests. Nevertheless, the order is important
because DSE is typically applied until certain limits (for in-
stance, on the overall testing time or the number of test
cases) are reached. Therefore, exploring non-redundant test
cases early increases effectiveness.
Pex supports primitives for expressing tryfirst C state-

ments easily, as instrumentation. Alternatively, other tools
may encode them by placing additional branches into the
code and customizing the search strategy to prefer the branch
where C holds.
To avoid wasting time on interrupting tests that will be

re-generated later, our implementation enforces an upper
bound on the number of interrupts that are allowed per
unit under test. When this upper bound is exceeded, all
remaining tryfirst statements have no effect.
As illustrated by lines 4, 6, 8, and 10 in Fig. 5, the must-

unverified condition at some program points evaluates to
false for all executions. Instrumenting these program points
would lead to useless interruption and re-generation of test
cases. To detect such cases, we apply constant propagation
and do not instrument program points for which the must-
unverified conditions are trivially true or false. Moreover,
we omit the instrumentation for conditions that are not dif-
ferent from the condition at the previous program point.
Therefore, out of all the conditions inferred for the example
in Fig. 5, we use only the ones on lines 12 and 20 to instru-
ment the program, which prioritize test cases that lead to
an arithmetic overflow on line 10, as discussed in Sect. 2.2.

3.4 Combined instrumentation
As we explained in Sect. 2.2, the may-unverified instru-

mentation aborts and prunes redundant tests, while the
must-unverified instrumentation prioritizes test cases that
are more likely to detect an assertion violation. One can,
therefore, combine both instrumentations such that DSE
(1) attempts to first explore program executions that must
be unverified, and (2) falls back on executions that may be
unverified when the former is no longer feasible.
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The combined instrumentation includes both the assume

statements from the may-unverified instrumentation and the
tryfirst statements from the must-unverified instrumenta-
tion. The tryfirst statement comes first. Whenever we
can determine that the must-unverified and may-unverified
conditions at a particular program point are equivalent, we
omit the tryfirst statement, because any interrupted and
re-generated test case would be aborted by the subsequent
assume statement anyway.

4. EXPERIMENTS
In this section, we give an overview of our implementation

and present our experimental results. They show that, com-
pared to dynamic symbolic execution alone, our technique
produces smaller test suites, covers more unverified execu-
tions, and reduces testing time. They also show that the
combined instrumentation is more effective than the may-
unverified or the must-unverified instrumentation alone.

4.1 Implementation
We have implemented our technique for the .NET static

analyzer Clousot [23] and the DSE tool Pex [40]. Our tool
chain consists of four subsequent stages: (1) static anal-
ysis and verification-annotation instrumentation, (2) may-
unverified and must-unverified instrumentation, (3) runtime
checking, and (4) dynamic symbolic execution.
The first stage runs Clousot on a given .NET program,

which contains code and optionally specifications expressed
in Code Contracts [22], and instruments the sources of un-
soundness and partial verification results of the analyzer us-
ing our verification annotations. For this purpose, we have
implemented a wrapper around Clousot that uses the debug
output emitted during the static analysis to instrument the
program (at the binary level). Note that Clousot performs
a modular analysis, and thus, the verification annotations
are local to the containing methods.
We have elicited a complete list of Clousot’s unsound as-

sumptions by studying publications, extensively testing the
tool, and having numerous discussions with its designers.
We encoded most of these assumptions with our verification
annotations [13].
The second stage of the tool chain adds the may-unverified,

must-unverified instrumentation, or their combination to the
annotated program.
In the third stage, we run the existing Code Contracts

binary rewriter to transform any Code Contracts specifica-
tions into runtime checks. We then run a second rewriter
that transforms all the assumed statements and assertions of
the annotated program into assignments and assumptions,
as described in Sect. 2.1.
In the final stage, we run Pex on the instrumented code.

4.2 Experimental evaluation
In the rest of this section, we describe the setup for the

evaluation of our technique and present experiments that
evaluate its benefits.

Setup. For our experiments, we used 101 methods (written
in C#) from nine open-source projects and from solutions
to 13 programming tasks on the Rosetta Code repository.
A complete list of the methods used in our evaluation can
be found in Christakis’ Ph.D. thesis [11]. We selected only
methods for which Pex can automatically (that is, without

user-provided factories) produce at least one test case that
passes the method’s parameter validation (between 1 and 25
methods per project or task).
In Clousot, we enabled all checks, set the warning level to

the maximum, and disabled all inference options. In Pex, we
set the maximum number of branches, conditions, and exe-
cution tree nodes to 100,000, and the maximum number of
concrete runs to 30. Without any instrumentation, 61 meth-
ods reach this maximum number of runs, and 35 are tested
exhaustively, which gives an indication of the complexity of
the selected methods.
In our experiments, we allowed up to 4 test interrupts

per method under test when these are caused by tryfirst

statements (see Sect. 3.3). We experimented with different
such bounds (1, 2, 4, and 8) on 25 methods from the suite
of 101 methods. For an upper bound of 4 for the number of
allowed interrupts per method, DSE strikes a good balance
between testing time and the number of detected bugs.
We used a machine with a quad-core CPU (Intel Core i7-

4770, 3.4 GHz) and 16 GB of RAM for these experiments.

Performance of static analysis and instrumentation.
On average, Clousot analyzes each method from our suite
in 1.9 seconds. The may-unverified and must-unverified in-
strumentations are very efficient. On average, they need 22
milliseconds per method when combined.

Configurations. To evaluate our technique, we use the
following configurations:
− UV : unverified code.

Stages 1 and 2 of the tool chain are not run.
− PV : partially-verified code.

Stage 2 of the tool chain is not run.
− MAY : partially-verified code, instrumented with may-

unverified conditions.
All stages of the tool chain are run. Stage 2 adds only
the may-unverified instrumentation.

− MUST : partially-verified code, instrumented with must-
unverified conditions.
All stages of the tool chain are run. Stage 2 adds only
the must-unverified instrumentation.

− MAY×MUST : partially-verified code, instrumented with
may-unverified and must-unverified conditions.
All stages of the tool chain are run. Stage 2 adds the
combined may- and must-unverified instrumentation.
Fig. 6 shows the number of tests that each configura-

tion generated for the 101 methods, categorized as non-
redundant and failing, as non-redundant and successful, or
as redundant tests. A failing test is a test that terminates
abnormally, whereas a successful one terminates normally.
Tests that terminate on exceptions that are explicitly thrown
by the method under test, for instance, for parameter vali-
dation, are considered successful. To determine the redun-
dant tests, we counted the tests in which the premises of
all encountered assertions hold. Note that the figure does
not include tests that are interrupted when a condition in
a tryfirst statement is violated (since these tests are re-
generated—and counted—later).
The results of DSE alone, that is, of UV , do not signif-

icantly differ from those of PV in terms of the total num-
ber of tests and the number of non-redundant tests gener-
ated. This confirms that the instrumentation from stage 1
alone, without the may-unverified and must-unverified in-
strumentation, does not reduce the test effort significantly
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Figure 6: The tests generated by each configura-
tion, categorized as non-redundant and failing, as
non-redundant and successful, or as redundant tests.
MAY ×MUST generates 16.1% fewer tests, but 7.1%
more non-redundant tests than PV , including 5 ad-
ditional failing tests.

for partially-verified methods, as we explained in Sect. 2.2.
Note that this result does not contradict the results of our
previous work [12]. First, that work used a different static
analyzer whose (artificial) sources of unsoundness affected
fewer methods than Clousot’s, leading to a much larger por-
tion of fully-verified methods. Second, the improvements
observed in our earlier work were mostly caused by exempt-
ing fully-verified methods completely from the test stage,
whereas here, we apply stage 4 to all methods and rely on
our may-instrumentation to prune the entire search space.
For the following experiments, we use configuration PV as

the baseline to highlight the benefits of the may-unverified
and must-unverified inference over our earlier work [12].

Smaller test suites. The may-unverified instrumentation
causes DSE to abort tests leading to verified executions and
to prune verified parts of the search space. As a result,
DSE generates smaller test suites. Fig. 6 shows that, in
total, MAY generates 19.2% fewer tests and MAY ×MUST
generates 16.1% fewer tests than PV . The differences in the
total number of tests for configurations without the may-
unverified instrumentation are minor.
Fig. 7 compares the total number of generated tests (in-

cluding aborted tests) by PV and MAY per method. For
many methods, MAY produces fewer tests, as shown by the
negative values. However, for some methods, MAY gen-
erates more tests than PV . This happens when pruning
verified parts of the search space guides DSE toward execu-
tions that are easier to cover within the exploration bounds
of Pex (for instance, maximum number of branches).

More unverified executions. Although configurations
MAY and MAY×MUST generate smaller test suites in com-
parison to PV , they do not generate fewer non-redundant
tests, as shown in Fig. 6. In other words, they generate at
least as many non-redundant tests as PV , thus covering at
least as many unverified executions.
The must-unverified instrumentation prioritizes test in-

puts that lead to more premise violations. In comparison
to the may-unverified conditions, the must-unverified condi-
tions are stronger and their instrumentation is usually added
further up in the control flow. As a result, MUST and
MAY×MUST guide DSE to cover unverified executions ear-
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Figure 7: Change in total number of tests generated
for each of the 101 methods by configuration MAY in
comparison to PV (in percentage). Negative values
indicate that MAY produces fewer tests.

lier and may allow it to generate more non-redundant tests
within the exploration bounds. As shown in Fig. 6, con-
figuration MUST generates 6.3% more non-redundant tests
than PV and 5.6% more than MAY (MAY ×MUST pro-
duces 7.1% resp. 6.5% more non-redundant tests). By gener-
ating more such tests, we increase the chances of producing
more failing tests. In fact, MUST generates 4.8% more fail-
ing tests than PV and 4.1% more than MAY (MAY×MUST
produces 3.4% resp. 2.7% more failing tests).

MUST typically generates more non-redundant tests for
methods in which Clousot detects errors, that is, for meth-
ods with unverified assertions. In such methods, the may-
unverified instrumentation is added only after the unveri-
fied assertions in the control flow (if the conditions are non-
trivial), thus failing to guide DSE toward unverified execu-
tions early on, as discussed in Sect. 2.2.

Shorter testing time. To compare the testing time of
the different configurations, we considered only methods for
which all configurations generated the same number of non-
redundant tests. This is to ensure a fair comparison; for
these methods, all configurations achieved the same cover-
age of unverified executions. This experiment involved 72
out of the 101 methods, and the time it took for each con-
figuration to test these methods is shown in Fig. 8. As ex-
pected, pruning verified parts of the search space with the
may-unverified instrumentation is very effective. In partic-
ular, configuration MAY is 51.7% faster and configuration
MAY ×MUST is 52.4% faster than PV . The difference be-
tween PV and MUST is caused by a few outliers, for which
PV runs more than twice as long. The MUST instrumenta-
tion affects the order in which execution paths are explored.
Even though the same number of non-redundant tests is
generated, the generated tests could exercise different paths,
leading to different constraint solving times.
Note that Fig. 8 does not include the time of the static

analysis for two reasons. First, Clousot is just one way of
obtaining verification results. Second, the goal of our work
is to efficiently complement existing verification results with
test case generation; we assume that the static analysis is
run anyway to achieve a more thorough scrutiny of the code.
Recall that the overhead of the instrumentation is negligible.
Even though MAY is overall much faster than PV , there
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Figure 9: The exploration bounds reached by each
configuration. MAY and MAY ×MUST overall reach
fewer bounds than PV .

were methods for which the testing time for MAY was longer
in comparison to PV . This is the case when constraint solv-
ing becomes more difficult due to the inferred conditions. In
particular, it might take longer for the constraint solver to
prove that an inferred condition at a certain program point
is infeasible.

Fewer exploration bounds reached. During its explo-
ration, DSE may reach bounds that prevent it from cover-
ing certain, possibly failing, execution paths. There are four
kinds of bounds that were reached during our experiments:
− max-branches: maximum number of branches that may

be taken along a single execution path;
− max-stack: maximum number of active call frames on the

stack at any time during a single execution path;
− max-runs: maximum number of runs that will be tried

during an exploration (each run uses different inputs but
some runs are not added to the test suite if they do not
increase coverage);

− max-solver-time: maximum time that the constraint solver
has to find inputs that will cause an execution path to be
taken.
Fig. 9 shows the exploration bounds in Pex that were

reached by each configuration when testing all 101 meth-
ods. MAY , MUST , and MAY × MUST reach the max-
solver-time bound more often than PV . This is because our
instrumentation introduces additional conjuncts in the path
conditions, occasionally making constraint solving harder.
Nevertheless, configurations MAY and MAY ×MUST over-
all reach significantly fewer bounds than PV (for instance,
the max-stack bound is never reached) by pruning verified
parts of the search space. This helps in alleviating an inher-
ent limitation of symbolic execution by building on results
from tools that do not suffer from the same limitation.

Winner configuration. Configuration MAY×MUST gen-
erates the second smallest test suite containing the largest
number of non-redundant tests and the smallest number of
redundant tests (Fig. 6). This is achieved in the shortest
amount of time for methods with the same coverage of un-
verified executions across all configurations (Fig. 8) and by
reaching the smallest number of exploration bounds (Fig. 9).
Therefore, MAY ×MUST effectively combines the bene-

fits of both the may-unverified and must-unverified instru-
mentation to prune parts of the search space that lead only
to verified executions as well as to identify and prefer test
inputs that lead to unverified executions as soon as possible.
Note that, in practice, these benefits should be indepen-

dent of the exploration strategy in the underlying DSE. For
methods whose exploration does not reach any bounds, the
order in which the tests are generated is obviously not rel-
evant. For the remaining methods, we do not expect an
exploration strategy to significantly affect how often our
instrumentation is hit because Clousot makes unsound as-
sumptions for various expressions and statements and, thus,
assumed statements are spread across the method body. We
have confirmed this expectation by running the MAY ×
MUST configuration with different exploration strategies
on 20 methods for which exploration bounds were reached.
The differences between all strategies (breadth-first, random
search, and Pex’s default search strategy) were negligible.

Threats to validity. We identified the following threats
to the validity of our experiments:
− Sample size: We used 101 methods from nine C# projects

and from solutions to 13 programming tasks.
− Static analyzer : For our experiments, we used a modular

(as opposed to whole-program) static analyzer, namely,
Clousot. Moreover, our experimental results depend on
the deliberate sources of unsoundness and verification re-
sults of this particular analyzer. Note that there are a
few sources of unsoundness in Clousot that our tool chain
does not capture [13], for instance, about reflection or un-
managed code.

− Soundly-analyzed methods: 23 out of the 101 methods
contain no assumed statements. Clousot reports no warn-
ing for 16 of them, and thus, these methods are fully ver-
ified and our may-unverified instrumentation prunes the
entire search space. However, our results are not signifi-
cantly affected by including these methods: the difference
in running times with and without fully-verified methods
is minor (e.g., MAY ×MUST is still 50.3% faster than
PV ).

− Failing tests: The failing tests generated by each config-
uration do not necessarily reveal bugs in the containing
methods. This is inherent to unit testing since methods
are tested in isolation rather than in the context of the
entire program. However, 50 out of the 101 methods val-
idate their parameters (and for 10 methods no parameter
validation was necessary), which suggests that program-
mers did intend to prevent failures in these methods.

5. RELATED WORK
Many static analyzers for mainstream languages such as

HAVOC [3], Spec# [6], and ESC/Java [24] deliberately make
unsound assumptions to increase automation, improve per-
formance, and reduce the number of false positives and the
annotation overhead for the programmer [36]. Our tech-
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nique can effectively complement these analyzers by DSE.
Integration of static analysis and testing. Various ap-
proaches combine static analysis and automatic test case
generation to determine whether an error reported by the
static analysis is spurious and to reduce the search space for
the test case generator. For example, Check ’n’ Crash [17]
is an automated defect detection tool that integrates the
unsound ESC/Java static checker with the JCrasher [16]
test case generator. Check ’n’ Crash was later integrated
with Daikon [21] in the DSD-Crasher tool [18]. Similarly,
DyTa [25] integrates Clousot with Pex. Like our work, all
of these approaches use results from the static analysis to
guide test case generation toward the errors reported by the
static analysis and to prune parts of the search space dur-
ing testing. However, in contrast to our work, they ignore
the unsoundness of the static analysis: each assertion for
which the static analysis does not report an error is consid-
ered soundly verified, even if the analysis makes unsound
assumptions. Consequently, these approaches may prune
unverified executions, whereas our technique retains all exe-
cutions that are not fully verified and, therefore, may reveal
errors missed by the unsound static analysis.
SANTE [10] uses a sound value analysis (in combination

with program slicing) to prune those execution paths that
do not lead to unverified assertions. In contrast, our work
supports the common case that a static analysis is unsound.
Several analyses combine over- and under-approximations

of the set of program executions. Counterexample-guided
abstraction refinement (CEGAR) [14] exploits the abstract
counterexample trace of a failing proof attempt to suggest a
concrete trace that might reveal a real error. If, however, the
abstract trace refers to a spurious error, the abstraction is
refined in such a way that subsequent verification attempts
will not reproduce the infeasible abstract trace. YOGI [29,
37] switches between static analysis and DSE both to prove
properties and find bugs, without reporting false positives.
Specifically, YOGI uses two different abstract domains, one
(not-)may abstraction for proving a property and one must
abstraction for disproving a property. The two abstractions
are used simultaneously, communicate with each other, and
refine each other for either finding a proof or a bug. To ob-
tain an over-approximation of the set of program executions,
these approaches rely on a sound analysis. In contrast, our
work supports the common case that a static analysis is un-
sound, that is, neither over- nor under-approximates the set
of program executions (the analysis may have both false pos-
itives and false negatives). Soundly-verified executions and
executions for which the analysis reports an error are han-
dled similarly to work based on over-approximations: we
prune soundly-verified executions during test case genera-
tion, and use an under-approximation (testing) to find bugs
and identify spurious errors among the executions for which
the analysis reports an error. The novelty of our work is that
we also handle executions that are verified unsoundly, that
is, under unsound assumptions. Our annotations make these
assumptions explicit (in other words, they express which ex-
ecutions one would have to add to the set of analyzed execu-
tions for it to become a sound over-approximation). These
executions are then targeted by an under-approximation.
A recent approach [19] starts by running a conditional

model checker [7] on a program, and then tests those parts
of the state space that were not covered by the model checker
(for instance, due to timeouts). More specifically, the model

checker produces an output condition, which captures the
safe states and is used to produce a residual program that
can be subsequently tested. Unlike an instrumented pro-
gram in our technique, the residual program can be struc-
turally very different from the original program. As a result,
its construction can take a significant amount of time, as the
authors point out. Furthermore, this approach can charac-
terize assertions only as either fully verified or unverified on
a given execution path. It is not clear how to apply this
approach in a setting with static analysis tools that are not
fully sound [36, 13] without reducing its effectiveness.

Dynamic symbolic execution. Testing and symbolically
executing all feasible program paths is not possible in prac-
tice. The number of feasible paths can be exponential in
the program size, or even infinite in the presence of input-
dependent loops.
Existing DSE tools alleviate path explosion using search

strategies and heuristics that guide the search toward inter-
esting paths while pruning the search space. These strate-
gies typically optimize properties such as “deeper paths”
(in depth-first search), “less-traveled paths” [35], “number
of new instructions covered” (in breadth-first search), or
“paths specified by the programmer” [39]. For instance,
SAGE [28] uses a generational-search strategy in combina-
tion with simple heuristics, such as flip count limits and con-
straint subsumption. Other industrial-strength tools, like
Pex, also use similar techniques. As we explained in Sect. 4.2,
the benefits of our approach are independent of the explo-
ration strategy in the underlying DSE. Our technique re-
sembles a search strategy in that it optimizes unverified ex-
ecutions, prunes verified executions, and is guided by verifi-
cation annotations, instead of properties like the above.
Compositional symbolic execution [26, 1] has been shown

to alleviate path explosion. Dynamic state merging [32] and
veritesting [2] achieve this by merging sub-program searches,
while RWset [8] prunes searches by dynamically comput-
ing variable liveness. By guiding DSE toward unverified
program executions, our technique also alleviates path ex-
plosion. In particular, the may-unverified instrumentation
causes DSE to abort tests that lead to verified executions
and to prune parts of the search space. Moreover, since our
technique does not require a particular DSE algorithm, it
can be combined with any of the above approaches by run-
ning them on a program that contains our instrumentation.

6. CONCLUSION
We have presented a technique for complementing par-

tial verification results by automatic test case generation.
Our technique causes dynamic symbolic execution to abort
tests that lead to verified executions, consequently pruning
parts of the search space, and to prioritize tests that are
more likely to detect an assertion violation. It is applica-
ble to any program with verification annotations, either in-
serted automatically by a (possibly unsound) static analysis
or manually, for instance, during a code review. Our work
suggests a novel way to combine static analysis and testing
in order to maximize software quality, and investigates to
what extent unsound static analysis reduces the test effort.
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