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We present a new approach to deductive program verification based on auxiliary programs called ghost
monitors. This technique is useful when the syntactic structure of the target program is not well suited for

verification, for example, when an essentially recursive algorithm is implemented in an iterative fashion.

Our approach consists in implementing, specifying, and verifying an auxiliary program that monitors the

execution of the target program, in such a way that the correctness of the monitor entails the correctness of

the target. The ghost monitor maintains the necessary data and invariants to facilitate the proof. It can be

implemented and verified in any suitable framework, which does not have to be related to the language of the

target programs. This technique is also applicable when we want to establish relational properties between

two target programs written in different languages and having different syntactic structure.

We then show how ghost monitors can be used to specify and prove fine-grained properties about the

infinite behaviors of target programs. Since this cannot be easily done using existing verification frameworks,

we introduce a dedicated language for ghost monitors, with an original construction to catch and handle

divergent executions. The soundness of the underlying program logic is established using a particular flavor

of transfinite games. This language and its soundness are formalized and mechanically checked.
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1 INTRODUCTION
The traditional approach to deductive program verification, as embodied by the Floyd-Hoare logic

and the weakest precondition calculus, ties the verification process to the syntactic structure of the

program under consideration: contracts are attached to subprogram boundaries, loop invariants

are placed at a fixed place in the loop body, the program state at previous loop iterations is

inaccessible, etc. Sometimes, however, the target program is not written in a way that makes its

proof straightforward. An algorithm implemented as a simple loop may be best explained through

a complex recursive scheme that establishes links between individual loop iterations. Various

optimizations may alter the control flow making the original loop invariants inadequate.

We propose a new method to handle such hard cases by introducing a level of indirection (nod

to David Wheeler’s aphorism intended). Instead of a frontal assault on the target program, we

write, specify, and verify an auxiliary program, called ghost monitor, whose control flow restores an
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algorithmic structure more appropriate to formal proof, allowing us to place the right invariants in

the right places. In this regard, a ghost monitor is a reimplementation of the target code in a way best

suited for verification. However, the monitor does not perform computations on its own (apart from

auxiliary computations needed purely for verification purposes). Instead, it follows—monitors—the

execution of the target program, from one breakpoint to another, so that the execution of the

monitor and the target advance in lockstep. The only observable side effect of the monitor is when

it commands the target program: “continue until the next breakpoint”. In other words, the monitor

program is akin to a debugger for the target program: the former maintains the auxiliary data

and the invariants needed for the proof, while the latter performs the actual computations and

synchronizes with the monitor at the breakpoints.

It is important to note that we do not imply any kind of run-time checking here. Ghost monitors

are subject to the standard static analysis and deductive verification procedures. Since the monitor

may observe the state of the target, we can express—as the monitor’s specification—all the properties

of the target code we may desire to prove. And since the monitor cannot alter the execution of the

target program in any way (it may only command the target to continue), proving the correctness

of the monitor ensures that the target program indeed satisfies the required properties.

It may seem that we do not make the user’s job any easier: after all, they have to write and verify

a whole new program. However, we are going to show on several examples that the monitor’s code

and specification, put together, may well be clearer and easier to come up with than the invariants

and assertions tied to the control flow of the target code.

Let us demonstrate the essence of our method on a simple example. Consider the following two

code fragments, one written in OCaml, and the other in C:

let rec mcc91 (n: int) : int =

if n > 100 then

n - 10

else

mcc91 (

mcc91 (

n + 11 ))

e = 1;

while (1) {

if (n > 100) {

n = n - 10; e = e - 1;

if (e == 0) break; }

else {

n = n + 11; e = e + 1; }}

The recursive function on the left is the famous “91 function” by John McCarthy [Manna and

McCarthy 1970]: mcc91 terminates on every input n and computes f91(n) = 91 if n ≤ 100 and n − 10
otherwise. To prove that function mcc91 terminates and computes f91 is a matter of milliseconds

using any modern automated program verifier, backed up by an SMT solver. The trickiest though

not difficult part here is the proof of termination, which requires finding an appropriate variant
(i.e., decreasing measure), for example 101 − n.

The iterative C code on the right computes the same function (leaving the result in n), and can

in fact be obtained from the recursive code by manual de-recursification, using an extra variable e
to represent the number of pending recursive calls. Verifying the iterative version, however, is a

little harder [Clochard et al. 2018a]: it requires discovering a significantly more complex variant

(lexicographic order on (101 − n + 10e, e)) and a non-trivial loop invariant (f e
91
(n) = f91(old n)).

Our method allows us to verify the code on the right by “observing” its execution from a ghost

monitor program whose control flow would be taken from the recursive code on the left. We start

by placing four breakpoints in the C code: breakpoint 0 at the beginning, breakpoint 1 before if
(n > 100). . . , breakpoint 2 before if (e = 0). . . , and breakpoint 3 at the end. We choose the

breakpoints in such a way that the evolution of the symbolic state of the target program between

two breakpoints can be computed statically, e.g., via symbolic execution. In particular, breakpoints
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let rec mcc91_monitor()

requires { pc = 1 ∧ e > 0 } (* start at breakpoint 1 *)

variant { 101 - n } (* same variant as in mcc91 *)

ensures { pc ′ = 2 ∧ e ′ = e - 1 } (* stop at breakpoint 2 *)

ensures { n′ = f91(n) }

= if n > 100 then

NEXT(); (* no recursive calls, move to breakpoint 2 *)

else begin

NEXT(); (* update n and e, move to breakpoint 1 *)

mcc91_monitor(); (* inner mcc91 call, stop at breakpoint 2 *)

NEXT(); (* e is non-zero, so move to breakpoint 1 *)

mcc91_monitor() (* outer mcc91 call, stop at breakpoint 2 *)

end

let main_monitor()

requires { pc = 0 } (* start at the beginning *)

ensures { pc ′ = 3 } (* stop at the end *)

ensures { n′ = f91(n) } (* main functional property *)

= NEXT(); (* initialize e, move to breakpoint 1 *)

mcc91_monitor(); (* compute mcc91 once, stop at breakpoint 2 *)

NEXT() (* exit the while loop *)

Fig. 1. Ghost monitor for the iterative McCarthy 91 function.

must break loops. Also, we need breakpoints at the beginning and at the end, so that we can express

and verify that the ghost monitor observes the entire execution of the target program.

The evolution of the symbolic state is translated into the following specification that establishes

the relation between the pre- and post-state of the slices of the C code (variables with primes

represent the post-state, the additional variable pc denotes the breakpoint number):

pc = 0→ pc ′ = 1 ∧ e ′ = 1 ∧ n′ = n

pc = 1 ∧ n > 100→ pc ′ = 2 ∧ e ′ = e − 1 ∧ n′ = n − 10

pc = 1 ∧ n ≤ 100→ pc ′ = 1 ∧ e ′ = e + 1 ∧ n′ = n + 11

pc = 2 ∧ e = 0→ pc ′ = 3 ∧ e ′ = e ∧ n′ = n

pc = 2 ∧ e , 0→ pc ′ = 1 ∧ e ′ = e ∧ n′ = n

We attach this specification (with an added precondition 0 ≤ pc ≤ 2) to a procedure named NEXT,
and define the ghost monitor as shown in Figure 1. In the monitor code, the variables that refer

to the state of the target C program are written in italic. The proof of this program is performed

automatically using any modern automated program verifier based on SMT solvers.

The control flow of mcc91_monitor follows that of mcc91. However, the actual computations are

performed as side effects of NEXT, which simulates the execution of the C program up to the next

breakpoint. Each call to mcc91_monitor starts at the beginning of the loop body (breakpoint 1),

and ends when variable e is decremented (breakpoint 2). Remember that e represents the number

of pending recursive calls to mcc91, and, indeed, at the end of a call to mcc91_monitor, the variable
n contains the result of the McCarthy 91 function applied to the pre-state value of n. The function
main_monitor initiates and finalizes the computation. Its contract ensures that the execution of
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the monitor begins and ends at the same time as the execution of the target code. Since the monitor

does not affect the target program state in any other way than by calling NEXT, we can conclude

that the iterative C program does indeed compute the 91 function.

Contributions and outline. The first contribution of our paper is a new method of deductive

program verification that relies on an external auxiliary program, a ghost monitor, to make explicit

the underlying algorithm of the target program. This liberty to choose a different syntactic structure

can significantly simplify the discovery of appropriate contracts and invariants, as shown in

Section 2 on a new proof of the Schorr-Waite in-place graph traversal algorithm [Schorr and Waite

1967]. Notably, this technique can be applied to verification of programs written in unstructured,

assembly-like languages. Our approach is very different from the traditional use of ghost data and

ghost code (as explored, e.g., in [Filliâtre et al. 2016]), where the auxiliary variables and computations

are implanted inside the target code, and the verification process still has to follow the original

control flow.

One advantage of our method is that the monitor does not need to be written in the language of

the target program. Whatever verification framework we use to prove the monitor’s correctness, it

never interacts with the target program’s code. All needed knowledge about the target’s behavior

and the semantics of the target’s language is stated in the specification of the NEXT operation. This

specification can be generated mechanically, for example, by means of symbolic execution of the

target code between the chosen breakpoints. More precisely, we build the control flow graph of

the target program and, assuming all cycles contain at least one breakpoint, each path from one

breakpoint to another gives us one case for the postcondition of NEXT. Note that specifying NEXT is

a separate effort, not related to the implementation or verification of the monitor.

This approach also works when we want to establish relational properties, like forward or back-

ward simulation, between two target programs. Indeed, we only need to provide the monitor with

two NEXT operations, one for each target, and make it follow the execution of both, in an appropriate

cadence. In the presence of non-determinism, the choices made by one target may be transferred to

the other (as arguments given to NEXT). Again, we can prove that verifying the monitor program

ensures the corresponding properties of the targets. We demonstrate our method applied to the

proof of relational properties in Section 3.

Going even further, we show in Section 3.2 how one can handle the properties of potentially

non-terminating programs. To do this, however, we need to provide the monitor program with the

means to catch and handle divergent executions. This motivates the second contribution of this

paper: a dedicated programming language for ghost monitors that allows us to specify and prove

properties of infinite executions of target programs, after a transfinite number of calls to NEXT.
This language, presented in Section 4, supports arbitrary recursion, continuations, and fine-

grained specification of non-terminating behaviors, both in the targets and in the monitor. In

Section 4.2, we define a program logic for this language in the form of an appropriate weakest

precondition calculus. The expected soundness properties of our approach are stated in Section 4.3.

In order to establish these properties, we develop an original theoretical framework based on

transfinite games; this constitutes the third contribution of our paper, presented in Section 5. Besides

being well suited for reasoning about infinite executions, this framework also allows us to adopt a

generalized approach with respect to the interpretation of non-determinism in target programs. A

universal interpretation of non-determinism, commonly termed demonic, is used to prove program

correctness for every possible behavior. On the other hand, an existential, angelic, interpretation is

used to prove the existence of specific behaviors, or the existence of valid implementation choices.

The game-theoretic framework allows us to mix both kinds of non-determinism when reasoning

about given target programs.
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typedef struct struct_node {

unsigned int m :1, c :1;

struct struct_node *l, *r;

} * node;

void schorr_waite(node root) {

/* breakpoint 0 */ node t = root, p = NULL;

while (/* breakpoint 1 */ p != NULL || (t != NULL && !t->m)) {

if (t == NULL || t->m) {

if (p->c) { /* pop */

node q = t; t = p; p = p->r; t->r = q }

else { /* swing */

node q = t; t = p->r; p->r = p->l; p->l = q; p->c = 1 } }

else { /* push */

node q = p; p = t; t = t->l; p->l = q; p->m = 1; p->c = 0 }

} /* breakpoint 2 */

}

Fig. 2. Schorr-Waite graph traversal in C, with breakpoints.

In order to increase confidence in our results, we mechanized the program logic underlying our

language for ghost monitors using the Why3 tool. This development is available online [Clochard

2018a].

2 EXTENDED EXAMPLE: SCHORR-WAITE IN-PLACE GRAPH TRAVERSAL
Since our approach does not exploit the syntactical structure of the target code, it works well for

programs written in a low-level or unstructured language, including assembly. A representative

example is the Schorr-Waite in-place graph traversal algorithm [Schorr andWaite 1967], a landmark

example for evaluating proofmethods dealingwith pointer aliasing [Bornat 2000]. To our knowledge,

Leino was the first to propose a proof using only automated theorem provers [Leino 2010].

Let us consider the implementation of this algorithm written in a low-level pointer-manipulating

C code, given in Figure 2. Our objective is to traverse the graph of nodes reachable from the given

root via the pointers l and r. The specificity is to avoid using extra memory by modifying l and r
to perform backtracking. All pointers are restored to their initial values at the end. The informal

specification contains three parts: (i) The graph structure induced by pointers l and r is restored at

the end of the procedure; (ii) Assuming all nodes in the graph are initially unmarked (m is 0), the
ones reachable from root get marked at the end; (iii) The nodes unreachable from root have their

mark unchanged. Figure 3 shows a formal specification, using Bornat-style component-as-array
model [Bornat 2000] to represent heap memory.

Proving directly that the low-level code meets this specification requires quite complex loop

invariants [Leino 2010]. With the ghost monitor approach, we write a new ghost code, shown in

Figure 4, following the standard structure of a recursive depth-first traversal. As for the McCarthy

function, we assume first a NEXT procedure is defined, with the breakpoints set as shown in the code

of Figure 2. Our monitor is annotated with the usual pre- and postconditions expected for a classical

depth-first traversal. This annotated code is fully proved with automated solvers [Clochard and

Marché 2018]. Unlike Leino [Leino 2010], we do not need complex loop invariants to make explicit

the hidden notion of backtracking stack behind Schorr-Waite algorithm. Among the existing proofs
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type loc (* abstract type for memory locations *)

constant null : loc

type memory = { (* component-as-array modeling of the heap *)

mutable l, r: loc → loc;

mutable m, c: loc → bool; }

(* paths *)

predicate edge (h : memory) (x y : loc) = x , null ∧ (h.l x = y ∨ h.r x = y)

inductive path memory loc loc =

| path_nil : ∀h,x . path h x x

| path_cons : ∀h,x ,y, z. edge h x y ∧ path h y z → path h x z

(* unchanged_structure only concerns the graph shape, not the marks *)

predicate unchanged_structure (h1 h2 : memory) =

∀x . x , null→ h2.l x = h1.l x ∧ h2.r x = h1.r x

(* global instance for the memory *)

val heap : memory

let schorr_waite (root : loc) (ghost дraph : set loc) : unit

requires { (* root belongs to the graph *)

root ∈ дraph }

requires { (* the graph is closed with respect to its edges *)

∀x . x ∈ дraph ∧ x , null→ (heap.l x) ∈ дraph ∧ (heap.r x) ∈ дraph }

requires { (* the graph starts fully unmarked *)

∀x . x ∈ дraph → ¬(heap.m x) }

ensures { (* the graph structure is left unchanged *)

unchanged_structure heap heap′ }

ensures { (* every location reachable from the root is marked *)

∀x . path heap root x ∧ x , null→ heap′.m x }

ensures { (* every other location keeps its previous marking *)

∀x . ¬(path heap root x) ∧ x , null→ heap′.m x = heap.m x }

Fig. 3. Schorr-Waite graph traversal, main specification.

of Schorr-Waite algorithm, the closest to ours might be the one proposed by Yang [Yang 2007],

based on a refinement approach. We argue however that our approach based on ghost monitors

goes significantly further than classical refinement. Quoting the last paragraph of page 20 of Yang’s

paper: “One evident shortcoming of our logic is that the proof rules assume that two commands have
similar control structures. When this assumption breaks, our new rules for quadruples do not help, and
we mostly have to reason about C and C’ individually in separation logic”. Indeed, our method does

not have this limitation. Notably, Yang’s proof relates two iterative versions of the Schorr-Waite

algorithm, while with our method we relate an iterative version to a more abstract recursive version,

in which the stack is implicit. Our proof is fully automated, and we argue that the extra annotations

we need to add, as postconditions to the monitor, are considerably simpler than Leino’s ones [Leino

2010].
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(* DFS invariant refers to different parts of heap at different time:

the graph structure is given via the initial heap memory h,

while the coloring is given via the current heap memory m *)

predicate well_colored (дraph дray : set loc) (h : memory) (m : loc→ bool) =

дray ⊆ дraph ∧ (∀x . x ∈ дray →m x) ∧

(∀x y. x ∈ дraph ∧ edge h x y ∧ y , null ∧m x → x ∈ дray ∨m y)

let schorr_waite (root : loc) (ghost дraph : set loc) : unit =

let ghost initial_heap = heap in (* ghost copy of the initial memory *)

let rec recursive_monitor (ghost дray_nodes : set loc) : unit

requires { pc = 1 ∧ t ∈ дraph }

requires { (* assume DFS invariant *)

well_colored дraph дray_nodes initial_heap heap.m }

requires { (* non-marked nodes have unchanged structure *)

∀x . x , null ∧ ¬(heap.m x) → heap.l x = initial_heap.l x ∧ heap.r x = initial_heap.r x }

ensures { pc ′ = 1 ∧ t ′ = t ∧ p′ = p }

ensures { (* pointer buffer is overall left unchanged *)

unchanged_structure heap heap′ }

ensures { (* maintain DFS invariant *)

well_colored дraph дray_nodes initial_heap heap.m }

ensures { (* the top node gets marked *)

t ′ , null→ heap.m t ′ }

ensures { (* cannot mark unreachable nodes or change marked nodes *)

∀x . x , null→ ¬(path initial_heap t ′ x) ∨ heap.m x →

heap′.m x = heap.m x ∧ heap′.c x = heap.c x }

variant { |дraph | − |дray_nodes | }

= if t = null || heap.m t then () else

let ghost new_дray = {t} ∪ дray_nodes in

NEXT (); (* push *)

recursive_monitor new_дray; (* traverse the left child *)

NEXT (); (* swing *)

recursive_monitor new_дray; (* traverse the right child *)

NEXT () (* pop *)

in

NEXT (); (* initialize *)

recursive_monitor ∅;

NEXT () (* exit *)

Fig. 4. Ghost monitor for Schorr-Waite graph traversal.

3 RELATIONAL PROPERTIES AND INFINITE BEHAVIORS
The ghost monitor method applies to relational properties like program equivalence. We illustrate

this aspect by proving the equivalence of two programs parsing well-parenthesized words (Dyck

language): they take an infinite stream of parentheses as input and stop upon finding an unmatched

closing parenthesis. The first program (C), written in C, uses a counter to keep track of the number

of currently opened parentheses:
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π monitors π •,π ◦,
π • is interpreted ∀-ly,
π ◦ is interpreted ∃-ly,
and {P} π {Q}

x0

∀(x0,y0) ∈ P

y0

x1

∃(x1,y1) ∈ Q

y1
π ◦

π •

Fig. 5. Transfer property yielding a simulation.

n = 0; while (n >= 0) if (getchar() == '(') n++; else n--;

The second program (M), written in ML, uses recursion:

let rec scan () = while getchar () = '(' do scan () done in scan ()

We prove that the two programs are equivalent under two simplifying hypotheses: unbounded

stack and mathematical integers.

To that end, we write a monitor calling one NEXT procedure for each program. Instead of

representing the input streams explicitly, as two global variables in the monitor, from which the

NEXT procedures would take the next character returned by getchar, we opt for a non-deterministic

semantics of getchar, in order to illustrate the handling of non-determinism in ghost monitors.

The challenge now consists in synchronizing the execution of the two programs, ensuring that

they actually process the same input.

3.1 Equivalence of Non-Deterministic Programs
The straightforward generalization of ghost monitors to non-determinism is to make NEXT perform
non-deterministic choices whenever the target program does. In order to ensure that (C) and (M)
read the same input values, the non-deterministic choices of one program must be transferred to

the other. We achieve this by adding arguments to one of the NEXT operations, endowing the ghost

monitor with the ability to drive the execution of the corresponding target program in the direction

that matches the behavior of the other target. In essence, we replace the demonic interpretation of

non-determinism for one of the two programs by an angelic one.
In this setting, contracts proved for the ghost monitor are transferred to simulation properties.

Definition 3.1 (Transfer Property). The transfer property (see Figure 5) states that for every

• ghost monitor π for target programs π • and π ◦, where non-determinism is interpreted as

demonic (universal) for π • and as angelic (existential) for π ◦,
• valid Hoare triple {P} π {Q} (total correctness contract),
• pair of states x0,y0 for π

•
and π ◦, respectively, that satisfy P ,

• complete (potentially infinite) execution trace of π • starting from x0,

there exists a pair of states (x1,y1) satisfying Q such that x1 belongs to the chosen execution trace

of π • and there exists an execution trace of π ◦ leading from y0 to y1.

In other words, once we prove the correctness of our monitor for a given specification, whenever

the execution of the monitored programs starts in a (combined) state that satisfies the precondition,

for every behaviour of the demonic program, there exists a behaviour of the angelic program such

that together they eventually satisfy the postcondition.

When P (resp.Q) expresses that states of π • and π ◦ are initial (resp. final) and equivalent to each
other, this simulation result means that all behaviors of the ‘demonic’ program can be translated
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/* breakpoint 0 */

n = 0;

while ( /* breakpoint 1 */

n >= 0 ) {

if (getchar() == '(') n++;

else n--;

} /* breakpoint 2 */

(* breakpoint 0 *)

let rec scan () =

while (* breakpoint 1 *)

getchar() = '('

do scan () done

(* breakpoint 2 *) in

scan() (* breakpoint 3 *)

Fig. 6. Programs (C) and (M) augmented with breakpoints.

anдelC → readC = toReadC
pcC = 0→ pc ′C = 1 ∧ n′C = 0 ∧ in′C = inC

pcC = 1 ∧ nC < 0→ pc ′C = 2 ∧ n′C = nC ∧ in′C = inC
pcC = 1 ∧ nC ≥ 0→ pc ′C = 1 ∧ in′C = inC + [readC ] ∧

(readC = ’(’ → n′C = nC + 1) ∧
(readC , ’(’ → n′C = nC − 1)

anдelM → readM = toReadM
pcM = 0→ pc ′M = 1 ∧ stack ′M = [3] + stackM ∧ in′M = inM
pcM = 1→ in′M = inM + [readM ] ∧

(readM = ’(’ → stack ′M = [1] + stackM ∧ pc ′M = 1) ∧

(readM , ’(’ → stack ′M = stackM ∧ pc ′M = 2)

pcM = 2→ in′M = inM ∧ stack ′M = tail stackM ∧ pc ′M = head stackM

Fig. 7. Specifications of NEXTC and NEXTM .

as behaviors of the ‘angelic’ program. By proving such translations in both directions, we obtain

equivalence. To avoid writing a separate ghost monitor for each direction, we write a single monitor,

parametric in the roles of the two programs. To represent these roles, we augment the state with

two immutable Boolean variables anдelC and anдelM that indicate whether non-determinism is

interpreted as angelic for the corresponding program.

Let us now build the monitor. First, we identify the relevant breakpoints in both programs, shown

in Figure 6. As these breakpoints break all execution cycles, we can obtain proper specifications

for NEXTC and NEXTM , shown in Figure 7. To describe the state of each target program, we use

variables pc and in that denote, respectively, the current location and the input log (the list of all

characters read up to this point). Since program (M) is recursive, we also have to model its stack.

We represent it as a sequence of stack frames, each containing the return address in the form of a

breakpoint number: 3 when scan is called from the main expression in (M), and 1 when scan is
called recursively.

To model the non-deterministic nature of getchar, each NEXT procedure receives an argument

toRead and returns a value read which represents the character that has just been read, if any.

When the program runs in the demonic mode (the corresponding anдel variable is false), this return
value is not specified in any way, reflecting the fact that read was picked in a non-deterministic

manner. When the program runs in the angelic mode (the corresponding anдel variable is true), read
assumes the value of the toRead argument, allowing the monitor to control the non-deterministic

choice.
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let monitor ()

requires { pcC = 0 ∧ pcM = 0 } (* both start at the beginning *)

requires { inM = inC } (* start with same initial reads *)

requires { anдelC , anдelM } (* one of the programs is angelic *)

ensures { pc ′C = 2 ∧ pc ′M = 3 } (* both stop at the end *)

ensures { in′M = in
′
C } (* after reading the same input *)

= let ign = '(' in (* used when the choice is ignored by NEXT *)

NEXTC (ign); NEXTM (ign);

let rec sync () : unit

requires { pcC = 1 ∧ pcM = 1 } (* at the entry of loop iteration *)

requires { inM = inC } (* same inputs so far *)

requires { nC ≥ 0 } (* program (C) enters the loop *)

ensures { pc ′C = 1 ∧ pc ′M = 2 } (* at the end of loop body / call *)

ensures { stack ′M = stackM } (* same recursive call *)

ensures { in′M = in
′
C } (* same inputs so far *)

ensures { n′C = nC − 1 } (* counter decremented *)

= if anдelM then NEXTM (NEXTC (ign)) else NEXTC (NEXTM (ign));

if pcM = 1 then begin sync (); NEXTM (ign); sync () end

in

sync (); NEXTC (ign); NEXTM (ign)

Fig. 8. Monitor for equivalence of (C) and (M).

We are now ready to write the monitor program. We could use the structure of (M), but to
reduce annotations we choose a slightly different structure, which fuses the iterations of the loop

in (M) in a single tail-recursive call. We give the monitor in Figure 8. The core of the monitor is the

recursive function sync, which relates, on one hand, the loop iterations in (C) until the counter
has decreased, and, on the other hand, one full recursive call of scan in (M).

While this monitor can be automatically proved without any trouble, there is a catch. Indeed, we

did not prove that this monitor terminates, as we do not have any measure to control execution time.

However, we can only use the transfer hypothesis to derive program equivalence when we have a

total correctness property for the ghost monitor. This means that we need additional ingredients to

deal with non-terminating behaviors.

3.2 Infinite Behaviors
The easiest way to recover the total correctness for the ghost monitor is to assume that the program

with demonic non-determinism terminates, e.g., by using a variable representing execution fuel.

While this would lead to a terminating monitor, we would not obtain the right simulation result.

Indeed, to exploit such a termination hypothesis, we need to weaken the transfer property by

restricting the universal execution range to terminating executions, i.e., finite maximal executions.

In particular, we would only obtain as a result that the two programs have the same terminating

behaviors, but may have different non-terminating behaviors.

To make the distinction clear, suppose that we change the semantics of (C) so that getchar()
may have a third possible behavior, starting an infinite loop. Then (C) and (M) still have the

same terminating behaviors (we may adjust a fuel-based monitor to prove this), but (C) now has

extra non-terminating behaviors in which it reads a finite number of inputs, while (M) must read

infinitely many ones.
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Hence we need a way to relate infinite executions of the two programs. To do so, we extend our

ghost monitors with means to handle divergence. We consider the program clock as a possibly

transfinite number and we treat the transition to a limit ordinal as an exceptional situation that can

be intercepted in the monitor code. Of course, this cannot be realized in a physically executable

code, but ghost monitors only serve for verification and are never executed. In this way, a ghost

monitor may call NEXT an infinite number of times and then proceed to an exit point, covered

by the monitor’s postcondition. This allows us to formulate and prove statements about infinite

executions of the targets, by considering them in a virtual “limit state” after an infinite number of

steps.

To be able to proceed with that plan, we have to augment the language of ghost monitors with

several ingredients (below, we focus on infinite recursion, but loops can be treated in a similar way

or simply encoded as recursion).

Representation of limit states. First, we first need a way to actually represent the aforementioned

limit program state. We achieve this using least upper bounds: the state of the program after an

infinite execution is considered to be the least upper bound of the states during said execution. This

perfectly matches the intuition for event traces like our input logs, as the least upper bound becomes

the (potentially infinite) trace of events during the entire infinite execution. For our example, we

want the limit state to contain only the observable effects of the program, i.e., the limits of inC /inM .

We augment the state with time counters tC and tM , which increase at each execution step. We then

remove program variables (only nC in the example) from states with infinite time counters, so that

least upper bounds of infinite executions represent faithfully observable effects of the execution.

By convention, we also set pcC and pcM to∞ in any state with infinite time counters.

Abstraction of caught infinite executions. Second, we need a way to describe infinite executions as
theywill be caught by divergence handling. For this, we replace decreasingwell-founded termination

measures with increasing progression measures, and represent a diverging behavior by its complete

trace. This trace is an infinite call stack for infinite recursion. Instead of representing a termination

argument, progression measures serve as non-local constraints over diverging execution traces.

For our running example, we need to force time counters to increase between recursive calls to

make sure that whenever sync diverges, so do the target programs. Similarly, we need to force

input logs to grow to rule out behaviors in which a program stops performing input. Note that

we do not impose any particular condition on the progression ordering, in particular no condition

closely related to well-foundedness.

Divergence handlers. Third, we equip recursive definitions with divergence handling (diverges)
clauses. These clauses introduce a statement intended to handle any form of divergence issuing from

recursion. Divergence handlers are entered with the target program state after an infinite recursive

descent, that is, the least upper bound of the states along the call stack leading to divergence. This

call stack is given to the divergence handling clause as a parameter, and is assumed to respect

the progression clause/the precondition, as well as being infinite. Divergence handlers should cut

the stack at some point of their choice, which corresponds to completing a leftover recursive call.

For verification purposes, this means that the handler should establish the postcondition of this

particular call from the assumptions on the diverging behavior. Note that this is more general than

simply recovering from an exception thrown by the recursive function, which is equivalent to

closing the bottom call. Indeed, the recursive function may continue executing even after divergence

has been caught (potentially infinitely many times through local recursive functions).

We can now use this framework to turn our earlier ghost monitor into a ghost monitor that proves

the equivalence of the two programs, taking into account non-terminating behavior. However, we
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rec monitor ( _ : U ) : ⟨P1 ↪→ _ : U. Q1⟩

progress { ∅ } (* function monitor is not recursive *)

= let ign = '(' in

let _ = NEXTC (ign) in

let _ = NEXTM (ign) in

rec sync ( _ : U ) : ⟨P2 ↪→ _ : U. Q2⟩

(* progression order compares states at the entry of recursive calls *)

progress { { (s1, s2) | s1.tC < s2.tC ∧ s1.tM < s2.tM ∧ |s1.inC | < |s2.inC | } }

= let _ = switch

case _ : U. anдelM in

let ch = NEXTC(ign) in NEXTM(ch)

case _ : U. ¬anдelM in

let ch = NEXTM(ign) in NEXTC(ch)

end-switch

in

switch

case _ : U. pcM = 1 in

let _ = sync ( ♢ ) in

switch

case _ : U. pcM , ∞ in

let _ = NEXTM (ign) in sync ( ♢ )

case _ : U. pcM = ∞ in ♢
end-switch

case _ : U. pcM , 1 in ♢
end-switch

diverges ( unbounded_stack ) ->

switch

case c:call. c ∈ unbounded_stack in (c, ♢)
end-switch

in

let _ = sync ( ♢ ) in

switch

case _ : U. pcC , ∞ in

let _ = NEXTC (ign) in NEXTM (ign)

case _ : U. pcC = ∞ in ♢
end-switch

diverges ( _ ) ->

switch end-switch (* unreachable code *)

where P1 ≡ pcC = 0 ∧ pcM = 0 ∧ inM = inC ∧ anдelC , anдelM

Q1 ≡ ((pc ′C = 2 ∧ pc ′M = 3) ∨ (pc ′C = ∞∧ pc
′
M = ∞)) ∧ in

′
M = in

′
C

P2 ≡ pcC = 1 ∧ pcM = 1 ∧ inM = inC ∧ nC ≥ 0

Q2 ≡ ((pc ′C = 1 ∧ pc ′M = 2) ∨ (pc ′C = ∞∧ pc
′
M = ∞)) ∧

(pc ′C , ∞→ stack ′M = stackM ∧ n
′
C = nC − 1) ∧ in

′
M = in

′
C

Fig. 9. Monitor for equivalence, with divergence handling.
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cannot write the monitor using an existing verification language as we need divergence handlers.

We use our own minimalist language of ghost monitors, which will be covered in detail in Section 4.

We show the monitor adapted to divergence handling in Figure 9. Except for minor syntactic details

due to the language change (most notably, expressing conditionals with variable-binding guarded

commands), this is the monitor from Figure 8 equipped with divergence-handling code. We denote

the unit type with U and the single inhabitant of this type with ♢. We equip recursive function

sync with a progression clause that requires the clocks of both target programs to advance and

the length of the input log to increase with each recursive call. We also add to sync a divergence
handler that completes some arbitrary unfinished call in the infinite call stack. To account for the

extra behaviors, we also add a few tests after calls to sync to treat infinite states appropriately.

Design choices for divergence handlers. So far, we have not explained how the call stack leading

to divergence was represented in the divergence handler, in the sense of which mathematical values

were used. There are several choices, and not all of them are equivalent from the perspective of

mechanized proofs, nor are they equally powerful. In Section 4, we make the choice of the most

general construction available, by representing this stack as a non-empty set of call parameters/state

pairs. We constrain this stack to be totally ordered by the chosen progression order, as well as

having no maximum. As this set-based representation does not limit the stack to countable sets,

we are able to allow recursive calls inside the divergence handler itself, as long as the progression

order increases with respect to the elements of the stack.

However, this general choice is typically not themost practical. Inmost examples, wewould prefer

to sacrifice the power of making recursive calls inside the divergence handler, as well as the power

to return from the handler at any suspended recursive call, in return for consequent advantages for

mechanized proof. First, this lets us represent the stack as a sequence of call parameters/state pairs

instead of a set. Second, as the divergence handler cannot return at intermediate recursive calls

anymore, we may exclude alternative cases arising due to divergence from the post-condition of

recursive calls (as well as extra monitor code to handle those cases, like the extra test in Figure 9).

Third, with handlers exiting the entire recursion scheme directly, it is easier to link aforesaid

alternative cases to the initial parameters and states of the recursion stack. Fourth, the use of

a sequence for the stack allows us to generalize the progression order to any relation between

recursive calls occurring in immediate succession.

Of course, this more practical divergence handler construction can be derived as syntactic sugar

from the more general one, by turning the sequence of successive recursive states into a parameter

of the monitor and using prefix order as the progression order. Other intermediate schemes may be

derived as well in a similar way. Thus we focus on the more general construction in Section 4.

4 A VERIFICATION LANGUAGE SUPPORTING INFINITE BEHAVIORS
While we believe that pretty much any method or tool for deductive verification can be used to

develop and verify ghost monitors (with some extensions if divergence handlers are desired), a

formal foundation is still needed to describe the conditions under which our approach is applicable,

ensuring that the proof of the monitor implies the desired properties of the target program or

programs. To that end, we define a language, denotedM, that can serve as an underlying semantics

for ghost monitors, and we state and prove the transfer properties for programs expressed in

this language. We consider an almost purely functional language, where functions are first-order

and equipped with contracts. The only non-functional feature ofM is a global mutable variable

now, which represents the combined current state of the target programs. Each target program

P is assigned an associated predefined procedure NEXTP which lets P advance until the next

breakpoint; and only these procedures are allowed to update now. To handle angelic and demonic
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pдm ::= fun(expr ) function call

| let var = pдm in pдm program sequence

| switch case∗ end-switch guarded choice

| cont fun in pдm end-cont continuation capture

| rec fun (var : typ) : contract
progress(expr )
= pдm
diverges(var ) : pдm

in pдm

function definition

case ::= case var : typ. formula in pдm guarded command

contract ::= ⟨formula ↪→ var : typ. formula⟩ function contract

Fig. 10. Syntax ofM.

non-determinism, we allow these procedures to take arguments and return values, respectively, as

shown in the previous section.

4.1 Syntax and Typing
The syntax of M is given in Figure 10. Syntactic categories var , fun, and typ correspond to

variable names, function names, and data types, respectively. Non-terminals expr and formula
refer respectively to arbitrary mathematical expressions and formulas in some logical language,

whose exact nature is irrelevant here. Expressions and formulas can access any variable (provided

they occur in the variable’s lexical scope), including the global variable now. Formulas in contract

postconditions (to the right of the arrow ↪→) can also access the special variable old, which refers

to the state of now before the execution of a function. All variables except now are immutable.

We deliberately keep the number of language constructs as small as possible. We exploit the fact

that most usual programming constructions (like loops, conditional, assertions, escape mechanisms,

and others) with their usual verification rules can be defined as syntactic sugar in terms of the core

constructions. For example, we define anM program e that returns the value of expression e using
continuation capture and a function call: cont k in k(e) end-cont. The same continuation-binding

mechanism can be used to implement constructions like break, continue or return. As for loops,
they can be easily implemented as tail-recursive functions.

In the guarded choice construction, each case introduces a variable that can be used both in

the guard formula and the guarded command. This represents an arbitrary and non-deterministic

choice: the variable can be bound to any value that satisfies the guard formula (if there is no such

value, the guarded command will not be selected). This generalization of guarded choice is useful

when we want to use an existentially quantified guard and also give the guarded command the

access to the witness value. An empty guarded choice (switch end-switch) corresponds to an “assert
false” statement that must never be reachable in an execution.

We treat the data types assigned to variables and return values as sets and denote them with

letters A, B, and C . The type of now and old is denoted G. Tuples of data values and relations over

them are typed as elements of Cartesian products A × B and power sets P(A × B), respectively.
Logical formulas have type {⊤,⊥}. Functions ofM, denoted f , д, and h, are necessarily first-order,

and their types are of the form A→ B, where A is the type of the function parameter and B is the

type of its return value. Functions with empty return type ∅ do not return a value. We denote such

functions with letter k and call them continuations.
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Σ | Γ ⊢ π0 : A Σ | Γ,v : A ⊢ π1 : B

Σ | Γ ⊢ let v = π0 in π1 : B

Σ,k : B → ∅ | Γ ⊢ π : B

Σ | Γ ⊢ cont k in π end-cont : B

Σ | Γ,v : A ⊢ π : B Γ,v : A, now : G ⊢◦ φ : {⊤,⊥}

Σ | Γ ⊢ case v : A. φ in π : B

Γ, now : G ⊢◦ e : A

Σ, f : A→ B | Γ ⊢ f (e) : B

Σ | Γ ⊢ c1 : B · · · Σ | Γ ⊢ cn : B

Σ | Γ ⊢ switch c1 . . . cn end-switch : B

Γ, now : G ⊢◦ e : A

Σ,k : A→ ∅ | Γ ⊢ k(e) : B

Σ, f : A→ B | Γ,v : A ⊢ π0 : B Σ, f : A→ B | Γ, S : P(A ×G) ⊢ π1 : (A ×G) × B
Σ, f : A→ B | Γ ⊢ π2 : C Γ ⊢◦ r : P((A ×G) × (A ×G))
Γ,v : A, now : G ⊢◦ φ0 : {⊤,⊥} Γ,v : A,u : B, old : G, now : G ⊢◦ φ1 : {⊤,⊥}

Σ | Γ ⊢ rec f (v : A) : ⟨φ0 ↪→ u : B. φ1⟩ progress(r ) = π0 diverges(S) : π1 in π2 : C

Fig. 11. Typing rules forM.

In order to characterize the behavior of target programs across infinite executions, we require

the set G to be equipped with a partial order ≼ such that every non-empty chain X ⊆ G admits a

least upper bound
1
. We shall require that the target program state now can only grow with respect

to ≼ during the execution. This can be achieved, e.g., by including the wall clock in now, as in the

example in Section 3.2, or by treatingG as the set of execution traces, as we do below in Section 4.3.

The typing system for languageM is defined using a standard relation Σ | Γ ⊢ π : B, where
π is the program being typed, B is the type of its return value, and the contexts Γ and Σ assign

types to variables and functions, respectively. We assume that mathematical expressions and logical

formulas are typed according to some preexisting typing relation ⊢◦. The typing rules forM are

shown in Figure 11. Notice that we do not provide any special rules for the NEXT functions. As far

as typing is concerned, these functions are just ordinary inhabitants of Σ. Also notice the special

rule for continuation calls, which allows the call k(e) to assume arbitrary types.

Let us now discuss the most intricate construction in our verification language: the function

definition, which introduces a (possibly recursive) function equipped with a handler to process

the result of diverging behavior. The function f receives a parameter v of type A and produces a

return value of type B. During its execution, f may modify the state of the target program(s) stored

in the global variable now, by calling, directly or indirectly, one of the NEXT functions in Σ. The
behavior of f is specified by its contract, which consists of a precondition φ0 and a postcondition

φ1, in which the returned value is named u. Function f is implemented using a program π0 which
may recursively call f .
The progress clause specifies a strict progression order r , with respect to which the parameter

of f and the target program state must increase with each recursive call. Recursion behaves in a

special way in case of infinite execution, as presented in Section 3. If the recursion stack grows up

to a limit state, the divergence handler π1 is called. The recursion stack is passed to the handler

in the form of a set S of parameter/state pairs at the entry of uncompleted calls to f . This set is
totally ordered with respect to r . The target program state now is set at the entry of the divergence

handler to the least upper bound (w.r.t. ≼) of the earlier states registered in S .

1
We do not require a least upper bound for the empty chain, as it is irrelevant for our formalism. Thus ≼ does not have to

be a chain-complete order for G .
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The divergence handler is allowed to make recursive calls of f , on condition that the parame-

ter/state pair at the entry of the new call is r -greater than any pair in S . It is thus possible for the
recursion stack to reach the next limit state, so that the divergence handler will be called again.

Upon returning, the divergence handler chooses some unfinished recursive call on the stack,

characterized by a parameter/state pair (v, old) ∈ S , and completes this call, returning a value u of

type B, such that v , old, and u satisfy the postcondition φ1. In this way, the divergence handler

cuts out an infinite suffix of the call stack and restores the normal execution flow.

4.2 Predicate Transformer Semantics
We give a predicate transformer semantics forM, using weakest precondition transformers in the

style of Dijkstra [Dijkstra 1975]. Indeed, since ghost monitors are not intended for execution but

only for verification, such proof-oriented semantics is better suited for our purposes. First of all, we

need to provide interpretations for the variables and functions in the execution context. As noted

earlier, we transparently treat data types as sets.

Definition 4.1. A Γ-valuation is a mapping σ that maps each variable v : A in Γ to a value in A.
Given a variable valuation σ , we write JeKσ and JφKσ to denote the standard interpretation of a

mathematical expression e and a logical formula φ, respectively.

Definition 4.2. A Σ-specification context is a mapping Φ that maps each function f : A→ B in Σ
to a pair (P ,Q), where P ⊆ A×G andQ ⊆ (A×G) × (B ×G). The set P represents the precondition

of f , that is, the set of parameter/state pairs allowed at the entry of f . The set Q represents the

postcondition of f which relates the entry parameter/state pairs to the exit result/state pairs.

Informally speaking, functions are interpreted as contracts. Notice that the relation Q does not

need to be functional, that is, f may have multiple outcomes for the same entry parameter/state

pair. Also, f may have admissible entry parameter/state pairs in P that do not correspond to any

outcome in Q , e.g., when f escapes by calling a continuation.

We define the semantics ofM as an operatorWP⟨Φ,σ ⟩(π ,Q), parameterized by a Γ-valuation σ ,
a Σ-specification context Φ, a well-typed program π with type derivation Σ | Γ ⊢ π : B, and a set

Q ⊆ B ×G (the postcondition); the result of WP is a subset of G (the weakest precondition). To

simplify notation, we treat the type derivation Σ | Γ ⊢ π : B as an implicit, rather than explicit,

parameter of WP. Intuitively, WP returns a set P of target program states such that for every

possible execution of π starting with now in P , the final result and target state will be in Q .
To handle function definitions, we also define a predicate PC⟨(Φx )x ∈G ,σ ⟩(π : ⟨φ0 ↪→ u : B. φ1⟩),

expressing the correctness of π with respect to the contract ⟨φ0 ↪→ u : B. φ1⟩. Unlike WP, this

correctness predicate is parameterized by a family of specification contexts (Φx )x ∈G ; this allows

us to handle the progression preconditions for recursive function calls. We also use the following

definition to describe non-terminating executions:

Definition 4.3. For a given type A and a strict ordering relation R on A ×G, a set H ⊆ A ×G is

called a limit stack with respect to R, if the following conditions hold:

(a) H is totally ordered by R,
(b) H is non-empty and does not have a maximum element,

(c) for any two pairs (a0,x0), (a1,x1) in H , if ((a0,x0), (a1,x1)) ∈ R then x0 ≼ x1.

The top state of H , denoted top(H ), is then defined as the least upper bound of {x | (a,x) ∈ H }.

The full definitions of WP and PC are given in Figure 12. Let us provide some informal explana-

tions about these rules.
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WP⟨Φ,σ ⟩(f (e), Q) ≜ { x ∈ G | (ax ,x) ∈ Pf ∧ ∀b,y. ((ax ,x), (b,y)) ∈ Qf ⇒ (b,y) ∈ Q }
where (Pf ,Qf ) = Φ(f ) and ax = JeKσ [now←x ]

WP⟨Φ,σ ⟩(let v = π0 in π1, Q) ≜
WP⟨Φ,σ ⟩(π0, { (a,x) ∈ A ×G | x ∈ WP⟨Φ,σ [v ← a]⟩(π1,Q) })
where Σ | Γ ⊢ π0 : A

WP⟨Φ,σ ⟩(cont k in π end-cont, Q) ≜ WP⟨Φ[k ← (Q, ∅)],σ ⟩(π ,Q)

WP⟨Φ,σ ⟩(case v : A. φ in π , Q) ≜
{ x ∈ G | ∀a ∈ A. JφKσ [v←a,now←x ] ⇒ x ∈ WP⟨Φ,σ [v ← a]⟩(π ,Q) }

Guard⟨σ ⟩(case v : A. φ in π ) ≜ { x ∈ G | ∃a ∈ A. JφKσ [v←a,now←x ] }

WP⟨Φ,σ ⟩(switch c1 . . . cn end-switch, Q) ≜
( n⋃
i=1

Guard⟨σ ⟩(ci )
)
∩

( n⋂
i=1

WP⟨Φ,σ ⟩(ci ,Q)
)

PC⟨(Φx )x ∈G ,σ ⟩(π : ⟨φ0 ↪→ u : B. φ1⟩) ≜
∀x ∈ G . Jφ0Kσ [now←x ] ⇒ x ∈ WP⟨Φx ,σ ⟩(π ,Qx )

where Qx = { (b,y) ∈ B ×G | Jφ1Kσ [u←b,now←y,old←x ] }

WP⟨Φ,σ ⟩(rec f (v : A) : ⟨φ0 ↪→ u : B. φ1⟩ progress(r ) = π0 diverges(S) : π1 in π2, Q) ≜{
WP⟨Φrec

∅
,σ ⟩(π2,Q) if the conditions (a)-(c) below hold,

∅ otherwise

(a) JrKσ is a strict order on A ×G
(b) ∀a ∈ A. PC⟨(Φrec

{(a,x )})x ∈G ,σ [v ← a]⟩(π0 : ⟨φ0 ↪→ u : B. φ1⟩)

(c) for all H ⊆ A ×G such that H is a limit stack w.r.t. JrKσ ,(∀(a,x) ∈ H . Jφ0Kσ [v←a,now←x ]
)
⇒ top(H ) ∈ WP⟨Φrec

H ,σ [S ← H ]⟩
(
π1,Q

lim

H

)
where Φrec

H = Φ[f ← (P rec

H ,Q
rec)]

P rec

H = { (a,x) ∈ A ×G | Jφ0Kσ [v←a,now←x ] ∧ ∀p ∈ H . (p, (a,x)) ∈ JrKσ }
Qrec = { ((a,x), (b,y)) ∈ (A ×G) × (B ×G) | Jφ1Kσ [v←a,u←b,now←y,old←x ] }

Q lim

H = { (((a,x),b),y) ∈ ((A ×G) × B) ×G | (a,x) ∈ H ∧
Jφ1Kσ [v←a,u←b,now←y,old←x ] }

Fig. 12. Predicate transformer semantics forM.

In the rule for function call f (e), the WP operator returns the set of states x such that the value

of expression e in state x (denoted ax ) satisfies the precondition of function f and all possible

outcomes of f applied to ax in state x (according to the postcondition of f ) satisfy the desired

postcondition Q . This matches well the treatment of function calls in standard definitions of a

weakest precondition transformer.

Similarly, our rule for program sequence (let-in) is a straightforward set-based rendition of a

standard weakest precondition rule.
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The rule for continuation capture simply binds continuation k to a contract whose precondition

is the desired postcondition Q and whose postcondition is empty, meaning that k cannot return to

the caller. This rule adapts in a natural way the typing scheme of the call/cc operator.
The semantics of the guarded choice requires that, first, at least one case is eligible, and, second,

for every possible realization of each guard (that is, for every possible witness that satisfies the

guard’s condition), the execution of the selected branch leads to an outcome in Q . The first part
is expressed as the disjunction of the guard conditions, and the second part is expressed as the

conjunction of the weakest preconditions for each case.

The program correctness operator PC is a straightforward adaptation of a Hoare triple: any

execution of program π starting in a state that satisfies precondition φ0 will lead to an outcome that

satisfies postcondition φ1. Since we also capture divergent executions, this is a statement of total

correctness. The only peculiarity of our definition is that the specification context Φ is parametrized

by the starting state.

Finally, in the rule for recursive function definitions, the definition itself is admitted under three

conditions (a)-(c):

(a) The progression relation r is indeed a strict order.

(b) The main body of function f , denoted π0, is correct with respect to the given specification.

Notice that for every parameter/state pair (a,x), we verify π0 under a dedicated specification

context Φrec

{(a,x )} , which enforces an additional precondition for each recursive call of f ,

namely, that the parameter/state pair at the call entry is strictly greater than (a,x) with
respect to the progression order r .

(c) The divergence handler of f , denoted π1, is correct for every limit stack H in which every

parameter/state pair satisfiesφ0, and the corresponding postconditionQ
lim

H . This postcondition

requires π1 to return a pair (a,x) ∈ H together with a value b. The pair (a,x) indicates an
unfinished call in the stack that the handler will complete (thus cutting out the infinite

sequence of unfinished recursive calls after (a,x) in the stack), and the return value b must

satisfy the postcondition of the completed call. The state in which π1 starts its execution
is the least upper bound of states in H , denoted top(H ). If function f is called during the

execution of π1, the specification context Φrec

H will ensure progression with respect to every

unfinished call in H .

4.3 Linking a Monitor to Target Programs
For a ghost monitor, each target program is presented as a transition system that corresponds to a

small-step
2
operational semantics of this program. Under this view, each NEXT procedure amounts

to one step in the transition system. In order to ensure the existence of least upper bounds for

infinite behaviors, it is convenient to consider now as a combination of traces (rather than individual

states) in these transition systems.

Definition 4.4. For a transition system S = (S,→), we define the ordered set of traces (GS,≼S)
as the set of potentially infinite sequences of transitions in S , ordered by the prefix order:

• GS = { (sn)n∈I | I ⩽ ω ∧ ∀n ∈ I . (n + 1) ∈ I ⇒ sn → sn+1 }
• (sn)n∈I ≼S (s ′n)n∈J if and only if I ⩽ J ⩽ ω and ∀n ∈ I . sn = s ′n .

We denote traces with t and we write juxtaposition ty to denote the extension of trace t with a

state y ∈ S (which implies that both t and ty are finite).

Notice the difference with the example in Fig. 9, where the values of now are the target programs’

states augmented with wall clocks tC and tM . The advantage of treating now as a combination of

2
Or rather “medium-step”, as we progress from one breakpoint to another, and not instruction by instruction.
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traces, rather than states, is that we obtain, in a systematic way, an appropriate order relation and

meaningful least upper bounds for G. At the same time, ghost monitors that manipulate traces

are more difficult to write and to understand: traces provide a good theoretical framework but

a less than convenient practical language. We may have the best of both worlds by projecting

traces (finite or infinite) to clock-augmented states: then a ghost monitor working with individual

states as in Fig. 9 can be implicitly converted to one formulated in terms of traces. In the finite

case, the representative state is simply the last state in the execution trace, and the wall clock in

the length of the trace. In the limit case, we use the approach described in Section 3.2, paragraph

“Representation of limit states”, which defines the representative state as the least upper bound of

the infinite trace, restricted to the components of the state that are observable at the limit point of

execution. However, we cannot infer which parts of the state must be accumulated and preserved

in the limit state from the transition system alone; additional information is required. A generic

framework for passing from traces to clock-augmented states via game simulation (in presence of

said additional information) is described in the technical report [Clochard et al. 2018b, Definitions

4.1 and 4.2]. This framework is also implemented in our mechanization [Clochard 2018a, File

ordered_transition.mlw].
We can now state the desired transfer properties, which express the soundness of the ghost

monitor approach. These are presented in the following three theorems which will be proved in

the next section.

The next theorem translates the axiomatic semantics ofM to the total correctness statement for

transition systems, and thus justifies the earlier proofs of the Schorr-Waite algorithm and of the

iterative implementation of McCarthy’s 91 function. As in Figure 9, U stands for the unit type, and

♢ for its unique inhabitant.

Theorem 4.5 (Transfer property, demonic case). Let S = (S,→) be a transition system. Let
Σ be a single-element typing context that binds the procedure name NEXT to the type U → S . Let
specification context Φ bind NEXT to the contract

{(♢, t) | ∃y.ty ∈ GS}, {((♢, t), (y, ty)) | ty ∈ GS}.
Let π be a well-typed program with type derivation Σ | Γ ⊢ π : U. Let σ be a Γ-valuation andQ ⊆ GS ,
a postcondition set. Suppose that the weakest precondition set WP⟨Φ,σ ⟩(π ,U ×Q) is not empty and
let t0 be a trace in this set. Let t be an arbitrary maximal trace inGS that extends t0, that is, t0 ≼S t
and ∀y.ty < GS . Then there exists a trace t1 ∈ GS such that t0 ≼S t1 ≼S t and t1 ∈ Q .

Informally, if the target program starts from a trace t0 generated by WP for postcondition Q ,
then it will eventually produce a trace inQ , either after a finite number of transitions or in the limit

state. The contract of NEXT signifies that it can only be called upon a trace that can be extended,

i.e., either an empty trace or a finite trace s0s1 . . . sn , whose last element sn is in the domain of→,

and for every such trace and every possible transition sn → sn+1, NEXT may proceed by setting now
to s0s1 . . . snsn+1 and returning sn+1.

In the setting of Theorem 4.5, we consider a demonic interpretation of non-determinism, where

the monitor does not choose the next transition. If we consider an angelic interpretation instead,

we obtain a transfer property that translates the semantics ofM to the properties of trace existence,

in accordance with the intuition that the monitor fully drives the execution of the target code.

Theorem 4.6 (Transfer property, angelic case). Let S = (S,→) be a transition system. Let
Σ be a single-element typing context that binds the procedure name NEXT to the type S → U. Let
specification context Φ bind NEXT to the contract

{(y, t) | ty ∈ GS}, {((y, t), (♢, ty)) | ty ∈ GS}.
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Let π be a well-typed program with type derivation Σ | Γ ⊢ π : U. Let σ be a Γ-valuation andQ ⊆ GS ,
a postcondition set. Suppose that WP⟨Φ,σ ⟩(π ,U ×Q) is not empty and let t0 be a trace in this set.
Then there exists a trace t1 ∈ GS such that t0 ≼S t1 and t1 ∈ Q .

We can also state a transfer property that mixes the two kinds of non-determinism, justifying

the simulation diagram in Section 3. Here, we need to handle the state of two target programs.

Theorem 4.7 (Transfer property, mixed case). Let S• = (S•,→•) and S◦ = (S◦,→◦) be a
pair of transition systems. Let G be the set of trace pairs GS• × GS◦ ordered by the product order
(t•
0
, t◦
0
) ≼ (t•

1
, t◦
1
) ≡ (t•

0
≼S• t•1 ∧ t

◦
0
≼S◦ t◦1 ). Let Σ be a two-element typing context that binds NEXT•

to the type U→ S• and NEXT◦ to S◦ → U. Let specification context Φ bind NEXT• to the contract

{(♢, (t•, t◦)) | ∃y.t•y ∈ GS• ∧ t◦ ∈ GS◦ }, {((♢, (t•, t◦)), (y, (t•y, t◦))) | t•y ∈ GS• ∧ t◦ ∈ GS◦ }
and NEXT◦ to the contract

{(y, (t•, t◦)) | t• ∈ GS• ∧ t
◦y ∈ GS◦ }, {((y, (t

•, t◦)), (♢, (t•, t◦y))) | t• ∈ GS• ∧ t
◦y ∈ GS◦ }.

Let π be a well-typed program with type derivation Σ | Γ ⊢ π : U. Let σ be a Γ-valuation and Q ⊆
GS• ×GS◦ , a postcondition set. Suppose that WP⟨Φ,σ ⟩(π ,U ×Q) is not empty and let (t•

0
, t◦
0
) be a

pair of traces in this set. Let t• be an arbitrary maximal trace inGS• that extends t•0 , that is, t
•
0
≼S• t•

and ∀y.t•y < GS• . Then there exists a pair of traces (t•
1
, t◦
1
) such that t•

0
≼S• t•1 ≼S• t•, t◦0 ≼S◦ t◦1 ,

and (t•
1
, t◦
1
) ∈ Q .

Here, S• represents the demonic target program and S◦, the angelic one. Notice that Theorem 4.7

admits a straightforward generalization to an arbitrary number of transition systems in demonic

and angelic modes. In particular, for a single transition system, this reduces to Theorems 4.5 and 4.6.

For two transition systems in demonic mode, the axiomatic semantics of M translates to the

systematic correlation of behaviors, which includes determinism properties.

Another slight generalization is shown in the example in Section 3, where the choice of the

demonic or angelic role is not fixed in the monitor but determined by a special flag added to the

target program state.

5 UNIFYING TRANSFER PROPERTIES USING GAMES
In order to model the various transfer properties in a single framework, we use the formal model of

games, which can be thought as a natural generalization of transition systems in presence of both

angelic and demonic non-determinism. In this setting, the validity of a Hoare triple corresponds to

the existence of a winning strategy for the angelic player. In particular, this turns ghost monitors into

tools to prove the existence of such a winning strategy. Indeed, the generalized transfer property,

which we state in this section, translates valid contracts for monitors to winning strategies in the

underlying game. For games that encode transition systems presented above, this general result

implies Theorems 4.5-4.7.

5.1 Games and Strategies
As we solely focus on tools to prove the existence of a winning strategy for the angelic player, our

definition of games is asymmetric between the two players. The domain of the game corresponds

to angelic states, while a demonic state is implicitly defined as a set of angelic states. This set

represents the angelic states that can be chosen by the demon after the angel has played his turn.

We define the transition function according to this intuition, as a function mapping angelic states

to sets of such implicit demonic states, hence sets of sets of angelic states. The angel chooses the

demonic state S in the outer set, and the demon chooses the next angelic state in S .
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These definitions match the behavior of the NEXT routines of Section 3. Angelic choice (controlled

by the monitor) selects the argument passed to NEXT, while demonic choice (not controlled by

the monitor) selects the effective updates performed by the target program. From the verification

perspective, the postcondition formula of NEXT represents a family of postcondition sets (sets of

outcome states), parameterized by the parameter of NEXT. Thus, by fixing this parameter, the angel

selects a particular postcondition set, and the demon chooses, non-deterministically, a particular

behavior within that postcondition.

As required earlier forM, we also equip our games with an appropriate order on states, so the

state only grows during a play, and the limit states correspond to the least upper bounds.

Definition 5.1 (Game). A game G = (G,≼,∆) is a partially ordered set (G,≼) such that every

non-empty chain in G admits a least upper bound, equipped with a function ∆ fromG to P(P(G))
such that

∀x ∈ G . ∀X ∈ ∆(x). ∀y ∈ X . x ≺ y.
We call G, ≼, and ∆, respectively, the domain, the order, and the transitions of the game.

Note that the current state of a play may contain insufficient information for a winning strategy

to drive the play in the right direction. Indeed, a monitor keeping track of auxiliary data naturally

translates into a strategy that uses memory. Thus we introduce the notion of history to represent

the complete memory of a play.

Definition 5.2 (History, Prefix Order). Given a game G = (G,≼,∆), a history of G is a non-empty

chain in G that admits a maximum. Given two histories H1,H2, we say that H1 is a prefix of H2, if

H1 ⊆ H2 and for all x ∈ H2\H1, x is an upper bound of H1.

One might wonder why we define histories via totally ordered sets instead of regular natural-

indexed sequences, which we used for traces in Section 4.3. While a single target program cannot

indeed continue after an infinite amount of steps, a game may need to encode several target

programs combined in order to verify relational properties (cf. Section 3). Since our framework

does not require the target programs to advance in lock-step, it is perfectly possible for one target

program to diverge (i.e., to reach a limit state), while another target program is still able to advance,

leading to plays of ordinal length up to ω · k , where k is the number of target programs.

Definition 5.3 (Strategies). Given a game G = (G,≼,∆), an existential strategy for G is a function

σ∃ that maps histories of G to the subsets of G. It makes a valid choice at H if σ∃(H ) ∈ ∆(maxH ).
A universal strategy for G is a function σ∀ that maps subsets of G to the elements of G. It makes a

valid choice at X if σ∀(X ) ∈ X .

While existential strategies (employed by the angelic player) have access to the full history of

the play, universal strategies (employed by the demonic player) get to choose based only on the

current demonic state. This asymmetry comes from the fact that we only care about the existence

of winning strategies for the existential side. Indeed, while memory may be necessary to create a

winning strategy, it is not necessary to prevent a particular strategy from winning. In this situation,

we may assume that the demonic player has complete knowledge both of the existential strategy

and of the initial state before picking his own universal strategy. Together with the current state

and knowledge of his past choices, the demonic player can rebuild the complete history of the play,

and choose accordingly.

Definition 5.4 (Play). Given a game G = (G,≼,∆), an existential/universal strategy pair (σ∃,σ∀),
and an element x ∈ G, the play from x for (σ∃,σ∀) is the smallest set of histories P such that:

(a) {x} ∈ P,
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(b) for all H ∈ P, if σ∃ makes a valid choice at H , and σ∀ makes a valid choice at σ∃(H ), then
H ∪ {σ∀(σ∃(H ))} ∈ P,

(c) for all non-emptyH ⊆ P totally ordered by the prefix order,

⋃
H ∪ {sup (

⋃
H)} ∈ P.

The three propagation rules above correspond precisely to the rules to build the history of a play

incrementally, including the divergent behaviors: initialization, regular step, and limit step.

Definition 5.5 (Winning strategy). An existential strategy σ∃ for a game G = (G,≼,∆) is winning
for an initial set P ⊆ G and a target set Q ⊆ G, if for any universal strategy σ∀, every play for

(σ∃,σ∀) starting within P contains a history H such that maxH ∈ Q , or such that σ∃(H ) is a valid
choice but σ∀(σ∃(H )) is not.

We cannot only consider strategies that always make valid choices, since a particular game may

put either of the players in a situation where they have no valid choice: no suitable transition for

the angelic player or an empty set of angelic states to choose from for the demonic one. Thus we

have to include the invalid choices by the demon as a winning condition for the angel.

5.2 Encoding Transition Systems as Games
We show how the transition systems from Section 4.3 can be encoded as games, so that the properties

over traces in Theorems 4.5-4.7 can be uniformly expressed in terms of winning strategies.

Definition 5.6 (Universal game). The universal game for a transition system S = (S,→) is the
game GS,∀ = (GS,≼S,∆S,∀) with transitions defined by

∆S,∀(t) = { { ty | ty ∈ GS } } \ { ∅ }.

In this game, the angelic player always gets at most one choice, and the demonic player may

choose any admissible extension for the current trace. Moreover, if the current trace does not admit

an extension (e.g., when it is infinite), the angelic player cannot make his move at all: eliminating ∅

from the set of demonic states corresponds to the precondition ∃y.ty ∈ GS of NEXT in Theorem 4.5.

Definition 5.7 (Existential game). The existential game for a transition system S = (S,→) is the
game GS,∃ = (GS,≼S,∆S,∃) with transitions defined by

∆S,∃(t) = { {ty} | ty ∈ GS }.

Here, the choice of the next transition belongs to the angelic player, and the move of the demonic

player is enforced by the angel’s choice.

Definition 5.8 (Simulation game). Given two transition systemsS•,S◦, the simulation game from
S• to S◦ is the game GS•→S◦ = (GS• ×GS◦ ,≼S• × ≼S◦ ,∆S•→S◦ ) with transitions defined by

∆S•→S◦ ((t
•, t◦)) = {X × {t◦} | X ∈ ∆S•,∀(t•) } ∪ { {t•} × Y | Y ∈ ∆S◦,∃(t◦) }.

Note that the transitions of the simulation game correspond to the union of possible transitions

represented by the two NEXT functions in Theorem 4.7: the angelic player, i.e., the ghost monitor

itself, decides which one of the two target programs moves to the next breakpoint.

The following lemmas link the properties over traces in Theorems 4.5-4.7 to thewinning strategies

in these three games.

Lemma 5.9. For all S = (S,→) and P ,Q ⊆ GS , there exists a winning strategy for game GS,∀ for
initial set P and target setQ if and only if, for any maximal trace t ∈ GS that extends a trace t0 ∈ P ,
there exists a trace t1 ∈ GS such that t0 ≼S t1 ≼S t and t1 ∈ Q .
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Lemma 5.10. For all S = (S,→) and P ,Q ⊆ GS , there exists a winning strategy for game GS,∃
for initial set P and target set Q if and only if, for all t0 ∈ P , there exists a trace t1 ∈ GS such that
t0 ≼S t1 and t1 ∈ Q .

Lemma 5.11. For all transition systems S• = (S•,→•), S◦ = (S◦,→◦) and all P ,Q ⊆ GS• ×GS◦ ,
there exists a winning strategy for the simulation game GS•→S◦ for initial set P and target set Q if
and only if, for every pair of traces (t•

0
, t◦
0
) ∈ P and every maximal trace t• ∈ GS• that extends t•0 ,

there exists a pair of traces (t•
1
, t◦
1
) such that t•

0
≼S• t•1 ≼S• t•, t◦0 ≼S◦ t◦1 , and (t

•
1
, t◦
1
) ∈ Q .

5.3 FromWeakest Preconditions to Winning Strategies
We now state the main soundness result for our verification language, as a transfer property from

languageM to games. Essentially, we claim that weakest preconditions forM induce the existence

of winning strategies.

Definition 5.12. A contract (P ,Q) where P ⊆ A×G andQ ⊆ (A×G) × (B ×G), is said to be valid
with respect to game G = (G,≼,∆) if for all (a,x) ∈ P , there exists a winning strategy for the initial
set {x} and the target set {y ∈ G | ∃b ∈ B. ((a,x), (b,y)) ∈ Q }. By extension, a Σ-specification
context Φ is valid with respect to G if all contracts in Φ are valid with respect to G.

Theorem 5.13. Consider a game G, a well-typedM program Σ | Γ ⊢ π : B, a Γ-valuation σ , and
a Σ-specification context Φ valid with respect to G. Then for all Q ⊆ B × G, there exists a winning
strategy for the initial set WP⟨Φ,σ ⟩(π ,Q) and the target set {y ∈ G | ∃b ∈ B. (b,y) ∈ Q }.
The proof is presented in the technical report [Clochard et al. 2018b]. One peculiar feature of

the proof is that it handles recursive definitions and continuation bindings by constructing new

games with extra transitions representing the additional function calls. In the case of recursion, this

produces games with an arbitrary interleaving of angelic and demonic non-determinism. These

games do not retain the simple structure inherited from transition systems (as shown in Section 5.2),

which justifies a posteriori our choice of the generic game-based framework.

In order to derive Theorems 4.5-4.7 as corollaries of Theorem 5.13, we only need to show that

the contracts of functions NEXT are indeed valid with respect to a game that appropriately encodes

the original transition systems, as shown in Definitions 5.6-5.8. In fact, the functions NEXT from
Section 4.3 can all be seen as special cases (and even implemented as wrappers) of a single generic

transition function, described by the following definition.

Definition 5.14. We define the transition contract (PG,QG) associated to game G = (G,≼,∆) as

PG = { (X ,x) ∈ P(G) ×G | X ∈ ∆(x) }
QG = { ((X ,x), (♢,y)) ∈ P(G) ×G × U ×G | y ∈ X }.

We define the base specification context ΦG as a single-element specification context that binds

function NEXT of type P(G) → U to the transition contract (PG,QG).

When a ghost monitor calls the function NEXT from ΦG, it selects a particular demonic state (a set

of possible behaviors for the demon to choose from) to pass to NEXT as an argument. This selection

determines, in particular, which target program is going to be executed and whatever choices the

monitor can make for that target program.

Lemma 5.15. Given a game G, the base specification context ΦG is valid with respect to G.

Theorem 5.16. Consider a game G = (G,≼,∆), a well-typedM program π with type derivation
NEXT : P(G) → U | Γ ⊢ π : U, and a Γ-valuation σ . Then for all Q ⊆ G, there exists a winning
strategy for the initial set WP⟨ΦG,σ ⟩(π ,U ×Q) and the target set Q .
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Finally, we derive from Theorem 5.16 an immediate corollary that states the existence of a

winning strategy relative to a specification written as a pair of logical formulas, provided that we

can write a ghost monitor that satisfies this specification.

Corollary 5.17. Consider a gameG = (G,≼,∆), a well-typedM program π with type derivation
NEXT : P(G) → U | Γ ⊢ π : U, and a Γ-valuation σ . Consider a pair of logical formulas φ0, φ1 such
that Γ, now : G ⊢◦ φ0 and Γ, now : G, old : G ⊢◦ φ1. Suppose that the program correctness property
PC⟨(ΦG)x ∈G ,σ ⟩(π : ⟨φ0 ↪→ u : U. φ1⟩) holds. Then for all x ∈ G such that Jφ0Kσ [now←x ], there exists
a winning strategy for the initial set {x} and the target set {y ∈ G | Jφ1Kσ [now←y,old←x ] }.

5.4 Relative Completeness
For the purposes of program verification, we only need our methodology to be sound. It turns

out, however, that it is also relatively complete, in the sense that if we can prove the existence of

a winning strategy for given initial and target sets in the meta-logic, then we can also prove its

existence by finding a ghost monitor that satisfies the corresponding contract. The proof amounts to

creating a program inM that follows the explicit winning strategy. This requires a few hypotheses

about the meta-logic, notably that it can reason about winning strategies for the considered game

in a manner compatible with our definition.

Lemma 5.18. Consider a game G = (G,≼,∆), a typing context Γ, a Γ-valuation σ , and two logical
formulas φ0, φ1 such that Γ, now : G ⊢◦ φ0 and Γ, now : G ⊢◦ φ1. Suppose that the existence of a
winning strategy for the initial set { x ∈ G | Jφ0Kσ [now←x ] } and the target set {y ∈ G | Jφ1Kσ [now←y] }

is provable in the meta-logic. Then there is anM program π such that NEXT : P(G) → U | Γ ⊢ π : U
and the program correctness property PC⟨(ΦG)x ∈G ,σ ⟩(π : ⟨φ0 ↪→ u : U. φ1⟩) holds.

6 RELATED AND FUTUREWORK
Hoare logic, games, and dual non-determinism. Games were introduced as a model for weakest

precondition transformers by Back and von Wright in 1990 [Back and Wright 1990]. A related

Hoare logic is studied by Mamouras in 2016 [Mamouras 2016]. In both cases, the goal is to model

and verify programming languages containing dual non-determinism. Our work differs in the sense

that games are used as a model of small-step semantics, and that the nature of non-determinism is

only chosen to obtain the transfer property we are interested in. In particular, we may obtain games

with both types of non-determinism when considering relational properties, and also internally

since our proof of soundness constructs such hybrid games for the recursion rule.

Hoare logics for machine code. Hoare logics defined for machine code in proof assistants are

typically defined by proof rules which are mostly unrelated to the syntax of the underlying program.

Such logics are closely related to our work, as proof rules match the syntactic constructs of ghost

monitors. Moreover, automation by tactics may simulate a weakest precondition calculus. A typical

example is the work of Myreen [Myreen and Gordon 2007], which corresponds to a While language
extended by well-founded recursion for the auxiliary language. Note that well-founded recursion

is inherently tied to the meta-logic induction. In contrast, we support non-terminating recursion

and proof of diverging behaviors.

Step-indexed logics like Iris [Krebbers et al. 2017] support non-terminating recursion by the

means of Löb’s rule, as well as arbitrary higher-order programs. However, this rule, in its standard

form, precludes us from proving total correctness. There are variants of Iris [Tassarotti et al. 2017]

that remove Löb’s rule or restrict its application in order to handle termination proofs. There are

also works that allow us to prove the program complexity bounds in Iris using time credits [Mével

et al. 2019]. Such proof entails termination, of course, but proving complexity is generally a more
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difficult task and is not always feasible. It seems that no consensus has been reached so far on how

to combine proof of total correctness with proof of diverging programs in the same step-indexed

framework.

Non-standard rules for Hoare logic. Some basic cases of our approach can be covered by alternative

proof rules for Hoare logic. Within the context of separation logic, Tuerk proposed an alternative

postcondition-based proof rule for while loops [Tuerk 2010], with the intent of making specification

and proofs simpler by exploiting local reasoning within loops. From the perspective of our work,

this proof rule can be directly derived by defining a tail-recursive ghost monitor for the while loop.

Relational properties of programs. Traditional approaches consist in considering a product of

target programs. This requires matching their control structure [Banerjee et al. 2016], possibly

modulo various program transformations [Kiefer et al. 2018] (loop unrolling, function inlining)

and refinement [Barthe et al. 2011]. Our approach improves on that by using an external monitor

program that controls the execution of the target programs, keeping their states in sync even if

their control structure is completely different.

The approach proposed by Ulbrich [Ulbrich 2013] is more similar to ours in that it does not make

assumptions over the control structures of the target programs. The framework of Unstructured
Dynamic Logic (UDL) used for program specification and verification in this work is sufficiently

expressive to encode the control structure of a simple monitor, allowing essentially the same kind of

proof as we do here. While this may lead one to think that there is a Curry-Howard correspondence

between monitors and UDL proofs, not all monitors can be conveniently expressed in this approach.

Of course, one cannot embed general monitors that use divergence handlers within UDL. Also, loop

rules for UDL require that all target programs progress during an iteration. In contrast, a single

iteration for our monitors may result in no changes for some (or any) target programs. We expect

that a similar issue would arise when adding recursion to UDL.

Future work. Our approach can be extended in several directions. A first direction is towards

separation logic. We believe that adding a separation logic layer a posteriori in a similar fashion

as the first-order fragment of Iris should not be difficult. Another direction is to generalize our

approach to a higher-order setting. This is reasonably easy if we enforce certain restrictions of

the higher-order features: either by limiting the rank of the allowed functions, or by limiting the

usage of recursive calls so that they do not occur under closures that are passed to recursive calls as

arguments. It is an open question whether it is possible to remove both limitations. A last possible

direction is to consider concurrency: while our approach obviously supports sequential consistency

in target programs, it is not clear that it is usable for this purpose in practice. In particular, our

auxiliary language has no support for parallel program composition.

One application we have already started to investigate is verified compilation [Clochard 2018b,

Chapter 6]. The idea is that a compiler can generate, alongside each compiled fragment, a ghost

monitor that proves the simulation property between the source code and the compiled code. We

expect our approach to be particularly effective in the presence of compiler optimizations that

modify the control structure of the source code, e.g., loop permutations. In this way, we can make

verification of compilers more amenable to automated proof, in comparison to existing projects

that mostly rely on interactive proof assistants.

At this stage, constructing a ghost monitor is a manual, creative process: just as creative as

instrumenting a programwith assertions and invariants sufficient to complete its proof. A major line

of further research would be combining methods for invariant generation and program synthesis

to mechanize the discovery of ghost monitors.
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