
An Experimental Evaluation of Deliberate
Unsoundness in a Static Program Analyzer

Maria Christakis, Peter Müller, and Valentin Wüstholz

Department of Computer Science
ETH Zurich, Switzerland

{maria.christakis, peter.mueller, valentin.wuestholz}@inf.ethz.ch

Abstract. Many practical static analyzers are not completely sound by
design. Their designers trade soundness in order to increase automa-
tion, improve performance, and reduce the number of false positives or
the annotation overhead. However, the impact of such design decisions
on the effectiveness of an analyzer is not well understood. In this pa-
per, we report on the first systematic effort to document and evaluate
the sources of unsoundness in a static analyzer. We present a code in-
strumentation that reflects the sources of deliberate unsoundness in the
.NET static analyzer Clousot. We have instrumented code from several
open source projects to evaluate how often concrete executions violate
Clousot’s unsound assumptions. In our experiments, this was the case
in 8–29% of all analyzed methods. Our approach and findings can guide
users of static analyzers in using them fruitfully, and designers in finding
good trade-offs.

1 Introduction
Many practical static analyzers are not completely sound by design. Their de-
signers often trade soundness in order to increase automation, improve perfor-
mance, and reduce the number of false positives or the annotation overhead. As
a result, such static analyzers become precise and efficient in detecting software
bugs, but at the cost of making compromises, such as making implicit, unsound
assumptions about certain program properties. For example, consider a sound
static analyzer that determines all possible values of global variables. Such an
analyzer may implement a sophisticated, inter-procedural, and potentially in-
efficient pointer analysis that over-approximates the values of these variables.
On the other hand, an unsound analyzer may assume that the values of global
variables can only change through direct assignments (and not through point-
ers), which simply requires a linear scan of the program [10]. Note that we use
“compromise”, “unsoundness”, and “unsound assumption” interchangeably here.

Despite how common such design decisions are, their practical impact on
the effectiveness of static analyzers is not well understood. There are various
approaches in the literature that study the precision and efficiency of static an-
alyzers by measuring, for instance, their performance and determining whether
the number of false positives or lines of annotations is below a certain thresh-
old [3]. In this paper, however, we investigate the compromise of soundness for

2 Maria Christakis, Peter Müller, and Valentin Wüstholz

better precision and efficiency from a novel perspective, the perspective of the
unsoundness in a static analyzer. In particular, we report on the first system-
atic effort to document and evaluate the sources of deliberate unsoundness in a
static analyzer. We present a code instrumentation that reflects the sources of
unsoundness in the static analyzer Clousot [9], a modular abstract interpretation
tool for .NET and Code Contracts [8]. We subsequently use this instrumentation
to evaluate how often concrete runs of several open source applications violate
Clousot’s unsound assumptions.

For our purposes, we adapt a technique we recently proposed for collabora-
tive verification and testing [6] that aims at providing definite guarantees about
program correctness by making compromises of static analyzers explicit. To eval-
uate the unsoundness in Clousot, we automatically insert annotations that make
its assumptions explicit where they occur. We then attempt to evaluate whether
these assumptions reflect good design decisions. We do so by running the test
suites of open source projects and logging which of Clousot’s unsound assump-
tions are violated. Note that it is not our intention in this work to determine
whether bugs are missed by the tool. Instead, our goal is to evaluate Clousot’s
choice of compromises by discovering whether they can be empirically justified.
The contributions of this paper are the following:
- We report on the first systematic effort to document all sources of unsound-
ness in an industrial-strength static analyzer. We focus on Clousot, a widely
used, commercial static analyzer (at the time of this writing, more than 125K
external downloads since February 2009).

- We present a code instrumentation that reflects the unsoundness in Clousot
and discuss its precision. We over-approximate two sources of unsoundness,
under-approximate one, and do not handle four. All other sources of unsound-
ness in Clousot are precisely captured by our encoding.

- We perform an experimental evaluation that, for the first time, sheds light on
how often the unsound assumptions of a static analyzer are violated in prac-
tice. In our experiments, this was the case in 8–29% of all analyzed methods.
Moreover, three sources of unsoundness were never violated in our evaluation.
We expect our results to guide users of static analyzers in using them fruit-

fully, for instance, in deciding how to complement static analysis with testing,
and assist designers in finding good trade-offs. Our results can also facilitate
collaboration of static analyzers; new analyzers can now focus on advanced fea-
tures and rely on existing tools for those properties that are already handled in
a sound way.
Outline. Sect. 2 explains all sources of unsoundness in Clousot and how we
instrument most of them. Sect. 3 gives an overview of our implementation, and
Sect. 4 presents our experimental results. We review related work in Sect. 5 and
conclude in Sect. 6.

2 Unsoundness in Clousot
In this section, we present a complete list of Clousot’s sources of deliberate un-
soundness and demonstrate how most of these can be expressed through simple
annotations. We have determined this list of Clousot’s sources of unsoundness

An Experimental Evaluation of Unsoundness in a Static Program Analyzer 3

by trying the tool on numerous examples, reading the publications on Clousot’s
analyses, and confirming its unsound assumptions with the designers of the tool.

We make the unsoundness of a static analyzer explicit in its output via anno-
tations in the form of assumed statements, also called explicit assumptions. An
assumed statement is of the form assumed P , where P is a boolean property,
and denotes that a static analyzer unsoundly assumed property P at this point
in the code, that is, assumed P without checking that it actually holds. Note
that our assumed statements are different from the classical assume statements,
which express properties that the user intends the static analyzer to take for
granted.

In the rest of this section, we assume the program to be instrumented such
that function writtenObjects() returns the set of objects that were modified by
the most recent method call along the concrete execution, including any objects
that were modified indirectly through method calls. We refer to this set of objects
as the set of written objects.

We also assume a predicate invariant(o, t) that takes an object o and a type
t, which is o’s dynamic type or any of its super-types. This predicate returns true
if and only if o satisfies the object invariant defined in t in conjunction with all
invariants inherited from t’s super-types.

We now present all sources of unsoundness in Clousot divided into four cate-
gories: those related to (1) the heap, (2) properties local to a method, (3) static
state, and (4) those that we do not instrument.
2.1 Heap Unsoundness
We further categorize the sources of unsoundness in Clousot that are related
to the heap into those that refer to (1) object invariants, (2) aliasing, (3) write
effects, and (4) purity.
Object invariants. Object (or class) invariants express which instances of a
class are considered valid. Object invariants can be specified in .NET programs
using Code Contracts. A sound technique for checking object invariants never
assumes an invariant to hold without justifying this assumption. More specifi-
cally, sound techniques need to check that the invariant indeed holds along all
concrete executions reaching the point where the assumption is made.

class C {
bool b;

invariant !b;

void M() {

assumed invariant(this, typeof(C));

b = true ;
N();
assert !b;

}

void N() {

assumed invariant(this, typeof(C));

assert !b;
}

}

To reduce the number of false posi-
tives, Clousot does not reason about object
invariants in a sound way. In particular,
Clousot assumes that the invariant of the
receiver object holds in the pre-state of in-
stance methods without checking it at call
sites. Moreover, Clousot assumes that, af-
ter a call to an inherited method on the
current receiver (that is, on this), the in-
variant of the receiver holds without check-
ing it.

As an example of the first unsoundness,
consider the C# code on the right, in which

4 Maria Christakis, Peter Müller, and Valentin Wüstholz

method M violates the invariant of its receiver before calling N. (We use the special
invariant and assert keywords to denote Code Contracts’ object invariants
and assertions.) The gray boxes in the code should be ignored for now. Clousot
assumes the invariant of the receiver in the pre-state of method N, which is
unsound since it does not check this invariant at call sites of N, in particular, at
the call in M. Clousot also assumes the invariant of the receiver after the call to
N in method M, but this assumption is sound because the invariant is checked in
the post-state of N (N is not an inherited method). As a result, no warnings are
emitted.

We capture this unsoundness by introducing an assumed statement at the
beginning of each instance method in classes that declare or inherit object invari-
ants. The explicit assumption states that the invariant of the method’s receiver
holds. Our assumed statements are shown in the gray boxes in the code. Note
that this explicit assumption is expressed using the predicate invariant(o, t)
that we defined at the beginning of this section. Type t is, in this case, the type
of the class in which the method is defined; the corresponding type object is
retrieved with the typeof expression in C#. We label this kind of explicit as-
sumptions as “invariants at method entries” (IE). We will refer to such labels
in our experimental evaluation.

We precisely capture this unsoundness because (1) we introduce the assumed
statements exactly where Clousot’s assumptions occur, and (2) these assump-
tions are always unsound as the invariant of the receiver is never checked at call
sites.

class Super {
bool b;

void N() { b = true ; }
}

class Sub : Super {
invariant !b;

void M() {
N();

assumed invariant(this, typeof(Sub));

assert !b;
}

}

As an example of the second un-
soundness, consider the code on the right.
Method M of the sub-class calls the inher-
ited method N of the super-class on the
current receiver, and N violates the in-
variant declared in the sub-class. Clousot
assumes the invariant of the current re-
ceiver after the call to N in M, which is un-
sound since it does not check this invari-
ant in the post-state of N (in Clousot’s
modular analysis, Sub’s invariant is not
considered when analyzing Super). As a result, no warnings are emitted.

We precisely capture this unsoundness by introducing an assumed statement
after each call to an inherited method on the current receiver in classes that de-
clare or inherit object invariants. The explicit assumption states that the object
invariant of this holds for the enclosing class, here Sub. We label this kind of
explicit assumptions as “invariants at call sites” (IC).
Aliasing. To avoid the overhead of a precise heap analysis, Clousot uses an opti-
mistic heap abstraction that ignores certain side-effects due to aliasing. Namely,
for operations that may modify certain objects, such as field updates and method
calls, Clousot assumes that heap locations not explicitly aliased in the code are
non-aliasing and will, thus, not be affected.

An Experimental Evaluation of Unsoundness in a Static Program Analyzer 5

void M(int [] a, int [] b) {

assumed a == null || !object.ReferenceEquals(a, b);

assume a != null && b != null ;
assume 0 < a.Length && 0 < b.Length ;
a[0] = 0;
b[0] = 1;
assert a[0] == 0;

}

As an example of this un-
soundness, consider method M
on the right. (We use the spe-
cial assume keyword to denote
Code Contracts’ assumptions,
such as preconditions.) In this
case, Clousot assumes that array a is not modified by the update to array b,
although a and b might point to the same array in some calls to M. As a result,
no warning is emitted about the assertion.

Clousot abstracts the heap by a graph, the heap-graph, which maintains
equalities about access paths. More specifically, the nodes of the heap-graph
denote symbolic values, which in turn represent concrete values, such as object
references and primitive values. An edge of the heap-graph denotes how the sym-
bolic value of the target node is retrieved from the symbolic value of the source
node, for instance, by dereferencing a field or calling a pure method. (A method
is called pure when it makes no visible state changes.) Therefore, all access paths
in the heap-graph are rooted either in a local variable or a method parameter.
When two access paths lead to the same symbolic value, they must represent
the same concrete value along all executions, that is, must be aliases. However,
when two access paths lead to distinct symbolic values, they may represent the
same or different concrete values, that is, may or may not be aliases.

We conservatively introduce an assumed statement at the beginning of a
method body (since Clousot assumes that method parameters are non-aliasing)
and after every program statement that affects the aliasing information in the
heap-graph, for instance, by creating, merging, or splitting nodes. For simplic-
ity, we do not introduce assumed statements solely before operations that may
have differing side-effects depending on aliasing. Consequently, we may introduce
them at program points at which Clousot does not make any unsound assump-
tion, for instance, when the effect of a statement on the heap-graph precisely
reflects its concrete effect. Our explicit assumption has a conjunct for each pair
of distinct symbolic values of aliasing-compatible reference types. Each conjunct
states that the concrete values represented by the two distinct symbolic values
(and given by the access paths leading to the symbolic values) are non-aliasing.
In particular, the conjunct states that the concrete values are not equal unless
they are null, as shown in method M above. Note that we use reference equal-
ity since the == operator may be overloaded in C#. We ensure that all explicit
assumptions are well-defined, that is, insusceptible to runtime errors, such as
null dereferences in access paths. We label this kind of explicit assumptions as
“aliasing” (A).
Write effects. To avoid a non-modular, inter-procedural analysis or having to
provide explicit write effect specifications, Clousot uses unsound heuristics to
determine the set of heap locations that are modified by a method call. Clousot
then assumes that all other heap locations are not modified by the method call.
This assumption is unsound since Clousot does not check whether the heuristics
actually determine all heap locations that are modified by the call.

6 Maria Christakis, Peter Müller, and Valentin Wüstholz

class C {
int [] a;

void M() {
var b = new int [1];
a = b;
N();

assumed b == null || !writtenObjects().Contains(b));

assert b[0] == 0;
}

void N() {
if (a != null && 0 < a.Length) {

a[0] = 1;
}

}
}

As an example of this
unsoundness, consider the
code on the right. Clousot
assumes that the call to
method N in M modifies only
the current receiver (that
is, this), and, thus, as-
sumes that the elements of
array a cannot be modi-
fied by the call. As a result,
even though arrays a and
b are explicitly aliased in
the code (and in the heap-
graph) before the call to method N, Clousot does not expect that, after the call,
the elements of b have changed. No warning is, therefore, emitted about the
assertion at the end of method M. Note that Clousot does expect that a and b
might no longer be aliases since N is assumed to modify field a of the receiver.

Since Clousot reflects the write effects of method calls on the heap-graph, we
capture this unsoundness by inspecting the graph before and after each call. More
specifically, after a method call, we introduce an assumed statement stating that
all heap locations in the graph that remained unmodified by the call are indeed
not modified by the call. This is achieved by comparing all symbolic values in
the heap-graph before and after each call and using their access paths to retrieve
the concrete values they represent. The explicit assumption has a conjunct for
each unmodified concrete object reference declaring that, when the reference is
non-null, it is not contained in the actual write effect of the method for the last
call (that is, in the method’s set of written objects), as shown in method M above.
Note that the assumption is expressed using the function writtenObjects() that
we defined at the beginning of this section, which returns the set of objects that
were modified by the last method call. We label this kind of explicit assumptions
as “write effects” (W).

How precisely we capture this unsoundness depends on the definition of func-
tion writtenObjects(). If the function returns an over- or under-approximation
of the set of heap locations actually modified by the last call, then our assump-
tions also over- or under-approximate Clousot’s unsoundness. Otherwise, our as-
sumptions precisely express that Clousot assumes the write effects to be correct
without checking them. Note that, in our implementation, writtenObjects()
precisely captures the set of modified heap locations except in the case of calls
to uninstrumented (library) methods, as we discuss in Sect. 3.
Purity. Users may explicitly annotate a method with the Code Contracts’ at-
tribute Pure to denote that the method makes no visible state changes. To avoid
the overhead of a purity analysis, Clousot assumes that all methods annotated
with the Pure attribute as well as all property getters are indeed pure. (We will
refer to property getters and methods annotated with Pure simply as “pure
methods”.) Moreover, Clousot uses unsound heuristics to determine which heap

An Experimental Evaluation of Unsoundness in a Static Program Analyzer 7

locations affect the result of a pure method, the method’s read effect. Clousot
then assumes that all pure methods deterministically return the same value when
called in states that are equivalent with respect to their assumed read effects.

We capture the first unsoundness with the explicit assumptions about write
effects described above. After each call to a pure method, we introduce an
assumed statement stating that all heap locations (in the heap-graph) remained
unmodified. Here, we only discuss how we instrument the second unsoundness.

class C {
void M() {

var r = Random ();

assumed r == Random();

assert r == Random ();

assumed r == Random();

}

[Pure]
int Random () {

return (new object ()) .GetHashCode ();
}

}

class D {
int [] a;

void N() {
assume a != null && 0 < a.Length ;
var v = FirstOrZero ();

assumed v == FirstOrZero();

a[0] = v + 1;

assumed v == FirstOrZero();

assert v == FirstOrZero ();

assumed v == FirstOrZero();

}

[Pure]
int FirstOrZero () {

return a != null &&
0 < a.Length ? a[0] : 0;

}
}

As an example of the second
unsoundness, consider method M on
the right. Clousot assumes that both
calls to Random in M deterministically
return the same value, and no warn-
ing is emitted about the assertion at
the end of method M.

As another example of this
unsoundness, consider method N.
Clousot assumes that the result of
method FirstOrZero depends only
on the state of its receiver, but not
the state of array a. Therefore, no
warning is emitted about the asser-
tion in N even though a[0] is modi-
fied after the call.

As we previously mentioned,
Clousot’s heap-graph maintains in-
formation about which values may be
retrieved by calling a pure method.
For instance, after the first call to
method Random and FirstOrZero in
M and N, respectively, the heap-graph
maintains an equality of r to a call to
Random, and of v to a call to FirstOrZero. We, therefore, capture this unsound-
ness by determining whether, at any program point, the heap-graph assumes a
value previously returned by a pure method to still be retrievable via a call to
this method. We introduce an assumed statement after every program statement
for which this is the case. The explicit assumption has a conjunct for every such
assumption in the heap-graph, as shown in the code above. We label this kind
of explicit assumptions as “purity” (P).

These explicit assumptions under-approximate Clousot’s unsoundness due
to non-deterministic methods. For example, assume it was possible that method
Random in the example above returns the same value the first two times it is
called, and a different value the third time. (This is not possible with the im-
plementation of Random above.) In this case, our explicit assumption before the
assertion in method M evaluates to true, but the assertion fails. Consequently, this

8 Maria Christakis, Peter Müller, and Valentin Wüstholz

unsoundness is not precisely captured by our instrumentation since we cannot
express determinism of method calls.

2.2 Local Unsoundness

We now present the sources of unsoundness in Clousot that are related to prop-
erties local to a method. We divide them into two categories: (1) integral-type
arithmetic operations and conversions, and (2) exceptional control flow.
Integral-type arithmetic operations and conversions. To reduce the num-
ber of false positives, Clousot ignores overflow in integral-type arithmetic oper-
ations and conversions. In other words, Clousot treats bounded integral-type
expressions as unbounded. Note, however, that Clousot’s treatment of these op-
erations and conversions is sound within checked expressions, which raise an
exception when an overflow occurs.

a++;

assumed (long)((int)(a + 1)) == (long)a + (long)1;

assert int.MinValue < a;

As an example of this un-
soundness, consider the code on
the right, where a is of type int.
Although the assertion fails when an overflow occurs, no warnings are emitted.

We capture this unsoundness by introducing an assumed statement after
each bounded arithmetic operation that might overflow (and is not checked)
stating that the operation returns the same value as its unbounded counterpart.
More specifically, the explicit assumption states that the operation returns the
same value as if it were performed on operands with types for which no overflow
can occur, as shown in the code above. Note that primitive types with bounded
precision are sufficient to express this unsoundness except in the case of long
integers. For these, we use arbitrarily large integers (BigIntegers in C#) as the
type for which no overflow can occur. We label this kind of explicit assumptions
as “overflows” (O).

int a = int.MaxValue ;
short b = (short)a;

assumed a == (short)a;

assert b == int.MaxValue ;

As another example of this unsoundness, con-
sider the code on the right. Even though the asser-
tion fails due to an overflow that occurs when con-
verting a to a short integer, Clousot does not emit
any warnings.

We capture this unsoundness by introducing an assumed statement for each
integral-type conversion to a type with smaller value range stating that the value
before the conversion is equal to the value after the conversion, as shown in the
code above. We label this kind of explicit assumptions as “conversions” (CO).

Our explicit assumptions over-approximate this source of unsoundness in
Clousot only when the tool has enough information about the possible values of
an integral-type arithmetic operation or conversion in an abstract domain, like
an interval domain, to know that an overflow is impossible. When this is not the
case, our assumptions precisely capture this unsoundness.
Exceptional control flow. Reasoning about exceptions requires control-flow
transitions to exception-handling code at all program points where an exception
might be thrown. Consequently, to avoid losing efficiency and precision, static
analyzers typically ignore exceptional control flow. Clousot ignores catch blocks

An Experimental Evaluation of Unsoundness in a Static Program Analyzer 9

and assumes that the code in a finally block is executed only after a non-
exceptional exit point of the try block has been reached.

try {
throw new Exception ();

} catch (Exception) {

assumed false;

assert false ;
}

As an example of this unsoundness, consider the
code on the right. Since Clousot ignores the existence
of the catch block, no warning is emitted about the
assertion.

We precisely capture this unsoundness by intro-
ducing an assumed statement at the beginning of each catch block stating that
the block is unreachable, as shown in the code above. We label this kind of
explicit assumptions as “catch blocks” (C).

bool b = false ;

bool $noException$ = false;

try {
if (*) { throw new Exception (); }
b = true ;

$noException$ = true;

} finally {

assumed $noException$;

assert b;
}

As another example of this unsound-
ness, consider the code on the right. Since
Clousot assumes that the finally block
is only entered when the try block ex-
ecutes normally, no warning is emitted
about the assertion. (We use * to denote
any boolean condition.)

We precisely capture this unsoundness
by introducing an assumed statement at
the beginning of each finally block stating that the block is entered only when
the try block executes normally. This is expressed by introducing a fresh boolean
ghost variable before each try block, which we set to true at all non-exceptional
exit points of the try block, as shown in the code above. The assumed statement
in the finally block then states that this ghost variable is true. We label this
kind of explicit assumptions as “finally blocks” (F).
2.3 Static-State Unsoundness
Here, we describe the sources of unsoundness in Clousot that are related to static
fields and main methods.
Static fields. Users can specify properties about static fields only with method
pre- and postconditions; there are no static class invariants in Code Contracts.
To reduce the annotation overhead and the number of false positives, after a read
operation from a static field of reference type, Clousot assumes that the static
field is non-null.

static int [] a;

void M() {
int [] b = a;

assumed a != null;

assert b != null ;
}

As an example of this unsoundness, consider the code
on the right, for which no warnings are emitted.

We precisely capture this unsoundness by introducing
an assumed statement after each read operation from a
static field of reference type stating that the static field
is non-null, as shown in the code. We label this kind of
explicit assumptions as “static fields” (S).
Main methods. When a main method is invoked by the runtime system, the
array of strings that is passed as an argument to the method and the elements of
the array are never null. To spare its users from having to provide preconditions
to main methods and to avoid emitting false positives in case there are no such
preconditions, Clousot assumes that the string array passed to every main method

10 Maria Christakis, Peter Müller, and Valentin Wüstholz

(that takes a parameter) and its elements are non-null for all invocations of the
method.

void M() {
Main(null);

}

public static void Main(string [] args) {

assumed args != null && forall arg in args | arg != null;

assert args != null ;
assert args.Length == 0 || args [0] != null ;

}

As an example of
this unsoundness, con-
sider the code on the
right. Although method
M calls Main with a null
argument, no warnings
are emitted about the as-
sertions in Main.

We precisely capture this unsoundness by introducing an assumed statement
at the beginning of each main method stating that the parameter array and its
elements are non-null, as shown in the code above. (We use the special forall
keyword to denote Code Contracts’ universal quantifiers.) We label this kind of
explicit assumptions as “main methods” (M).
2.4 Uninstrumented Unsoundness
In the rest of this section, we give an overview of the remaining sources of
unsoundness in Clousot, which we do not instrument:
- Concurrency: Clousot does not reason about concurrency and assumes that
the analyzed code runs in a single thread.

- Static initialization: Clousot assumes that the execution of the analyzed code
is not interrupted by the execution of a static initializer.

- Floating-point numbers: Clousot may (occasionally) assume that operations on
floating-point numbers are commutative.

- Iterators: Clousot does not analyze iterator methods (indicated with the yield
keyword in C#).
Instrumenting the first two sources of unsoundness requires monitoring al-

most every program instruction, which is too expensive in practice. We do not
instrument the unsoundness about floating-point numbers because, without ac-
cess to Clousot’s source code, we cannot be certain about which operations are
assumed to be commutative and in which cases. At the beginning of each iter-
ator method, we introduce an assumed false statement, which means that we
consider all calls to iterators to be violating an unsound assumption made by
Clousot. We decided not to include these results in our experimental evaluation
since Clousot simply does not analyze iterators.

3 Implementation
To evaluate whether the sources of unsoundness of Sect. 2 are violated in practice,
we have implemented a tool chain consisting of two stages: instrumentation and
runtime checking. We describe these stages in this section.
Stage 1: Instrumentation. The instrumentation stage runs Clousot on a given
.NET program, which contains code and optionally specifications expressed in
Code Contracts, and instruments the sources of unsoundness of the tool as de-
scribed in the previous section. For this purpose, we have implemented a wrapper
around Clousot, which we call Inspector-Clousot, that inspects the debug output

An Experimental Evaluation of Unsoundness in a Static Program Analyzer 11

emitted during the analysis. Based on this output, Inspector-Clousot rewrites the
program (at the binary level) to instrument the unsoundness of the static ana-
lyzer. When Inspector-Clousot determines that the analyzer makes an unsound
assumption at a certain program point, it introduces an assumed statement at
that point in the code.
Stage 2: Runtime checking. In the runtime checking stage of the tool chain,
we first run the Code Contracts binary rewriter to transform any Code Contracts
specifications of the program into runtime checks. For example, postconditions
of a method, which are specified at the beginning of the method body, are
transformed into runtime checks occurring at every return point of the method.

We subsequently run a second rewriter, which we call Explicit-Assumption-
Rewriter, that transforms all assumed statements of the program into logging
operations. More specifically, the Explicit-Assumption-Rewriter replaces each
explicit assumption assumed P by an operation that logs the program point of
the assumed statement, which kind of unsoundness it expresses, and whether
the assumed property is violated. Since property P may contain method calls,
we take special care not to further log assumed properties in the callees.

The Explicit-Assumption-Rewriter also instruments each method to compute
its set of written objects by keeping track of all object allocations and updates to
instance fields and array elements. The set of written objects is then computed
by determining which objects have been modified but are not newly allocated.
Each method returns its set of written objects through static state, instead of
having an additional return value (that is, an out parameter in C#), so that the
method interface remains unmodified. This allows us to handle uninstrumented
(library) methods for which the interface cannot be changed. The set of written
objects for a call to an uninstrumented method is always empty. Our explicit
assumptions could state that calls to uninstrumented methods modify the entire
heap, but this would significantly over-approximate Clousot’s unsoundness about
write effects.

Predicate invariant(o, t) is implemented as a public, non-virtual instance
method that returns a boolean value. Each class is extended to define such a
method. In the method body, we first evaluate whether the receiver, that is,
object o, satisfies the object invariants inherited from its super-classes. If this is
the case, we evaluate whether the receiver satisfies the invariant of its own class,
otherwise we return false. Note that if a class does not declare an object invariant
and does not have any super-classes that do, the method simply returns true.

Rewriting the program with both the Code Contracts binary rewriter and
the Explicit-Assumption-Rewriter is necessary to transform all annotations into
executable code.

4 Experimental Evaluation
In this section, we present our experiments for evaluating whether Clousot’s
unsound assumptions are violated in practice. We present which kinds of as-
sumptions were violated in our evaluation and how often this was the case.

For our experiments, we used code from six open source C# projects of dif-
ferent application domains. We selected only applications that come with a test

12 Maria Christakis, Peter Müller, and Valentin Wüstholz

Application Description CC Methods
w/violations total

BCrypt.Net1 Password-hashing library no 1 (9.1%) 11
Boogie2 Verification language and engine yes 19 (15.7%) 121
ClueBuddy3 GUI application for board game yes 25 (28.7%) 87
Codekicker.BBCode4 BBCode-to-HTML translator no 9 (7.6%) 119
DSA5 Data structures and algorithms library no 46 (24.1%) 191
Scrabble (for WPF)6 GUI application for Scrabble yes 10 (13.9%) 72

Table 1: Summary of results. The first and second columns describe
the C# applications. The third column indicates whether the applica-
tions contain Code Contracts. The fourth column shows the number
of methods in which explicit assumptions were violated, their percent-
age over the total number of methods with explicit assumptions that
were hit at runtime, and the total number of methods with explicit
assumptions that were hit at runtime.

suite so that the experiments achieve good code coverage of the applications. We
chose three of these applications to contain specifications expressed with Code
Contracts in order to evaluate the impact of these specifications on our results.
To collect our results, we ran our tool chain on code from these applications
such that all our explicit assumptions were instrumented exactly as described
in Sect. 2. We subsequently ran tests from the test suite of each application.
With our runtime-checking stage, we were able to log which kinds of explicit
assumptions were hit at runtime and which of those were violated.

Tab. 1 describes the applications we used in our experiments, indicates which
of these applications contain Code Contracts, and shows the number of methods
in which explicit assumptions were violated out of the total number of methods
with explicit assumptions that were hit at runtime. In the applications with Code
Contracts, 19.29% of the total number of methods (shown in Tab. 1) contain
explicit assumptions that were violated at runtime. For the applications without
Code Contracts, this percentage is 17.45%. This small difference may be caused
by explicit assumptions about “invariants at method entries” and “invariants
at call sites”, which can be violated only in applications with Code Contracts.
Moreover, in applications without Code Contracts, explicit assumptions about
“purity” can be violated only for property getters since no methods are annotated
with the Pure attribute.

Tab. 2 shows the number and percentage of violated explicit assumptions per
application and kind of assumption. These numbers include all executions of a
single assumed P statement. That is, different executions in different method
executions or loop iterations are counted separately. Tab. 3 shows the corre-

1 http://bcrypt.codeplex.com, rev: d05159e21ce0
2 http://boogie.codeplex.com, rev: 8da19707fbf9
3 https://github.com/AArnott/ClueBuddy, rev: c1b64ae97c01fec249b2212018f589c2d8119b59
4 http://bbcode.codeplex.com, rev: 80132
5 http://dsa.codeplex.com, rev: 96133
6 http://wpfscrabble.codeplex.com, rev: 20226

http://bcrypt.codeplex.com
http://boogie.codeplex.com
https://github.com/AArnott/ClueBuddy
http://bbcode.codeplex.com
http://dsa.codeplex.com
http://wpfscrabble.codeplex.com

An Experimental Evaluation of Unsoundness in a Static Program Analyzer 13

BCrypt.Net Boogie ClueBuddy Codekicker.BBCode DSA Scrabble
IE - 0 (0%) 275 (0.06%) - - 0 (0%)
IC - 0 (0%) 0 (0%) - - 0 (0%)
A 0 (0%) 192,025 (14.97%) 671 (43.07%) 641 (11.64%) 629 (34.30%) 150 (12.03%)
W 0 (0%) 6,236 (1.45%) 35 (0.96%) 0 (0%) 0 (0%) 10 (0.13%)
P 0 (0%) 27 (0.03%) 12,198 (5.06%) 0 (0%) 0 (0%) 425 (2.89%)
O 102,508,372 (30.58%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
CO 0 (0%) - - - - 0 (0%)
C - - - - 1 (100%) -
F - 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
S 0 (0%) 1 (0%)7 - 0 (0%) 129 (20.16%) 0 (0%)
M - - - - - -

IE : invariants at method entries P : purity F : finally blocks
IC : invariants at call sites O : overflows S : static fields
A : aliasing CO : conversions M : main methods
W : write effects C : catch blocks

Table 2: The number and percentage of violated explicit assumptions
per application and kind of assumption. These numbers include all
executions of a single assumed P statement. The “-” indicates that no
explicit assumptions of a particular kind were hit at runtime.

sponding numbers when counting only per occurrence of an assumed statement
rather than per execution. For example, in BCrypt.Net, all assumption violations
shown in Tab. 2 occur in only four assumed statements (see Tab. 3), which are
all in the body of the same loop.

As shown in Tab. 2 and 3, three kinds of assumptions were not violated in our
experiments, namely, “invariants at call sites” (IC), “conversions” (CO), and “fi-
nally blocks” (F). Assumptions about “invariants at call sites” were not violated
because, in these applications, sub-classes do not strengthen the object invariants
of their super-classes such that the called inherited methods violate them. After
manually inspecting all assumptions about “conversions”, we realized that these
assumptions indeed cannot be violated in practice. Finally, our instrumentation
introduced only 21 assumptions about “finally blocks”. The majority of these 21
finally blocks were added by the compiler to desugar foreach statements. Our
results indicate that these three compromises of soundness reflect good design
decisions in Clousot. Note that assumptions about “main methods” (M) were
either not introduced (because there were no main methods in the portions of
the code we instrumented) or not hit during our experiments.

Here are our observations from manually inspecting the remaining kinds of
explicit assumptions that were introduced in the code of these applications:
- Assumptions about “invariants at method entries” (IE): All violations of these
assumptions were found in application ClueBuddy. These violations were all
caused by object constructors that call property setters in their body. The
object invariants are, therefore, violated on entry to the setters since the con-
structors have not yet established the invariants. This, perhaps, indicates a
need for a Code Contracts’ attribute for annotating methods that do not rely

7 We use two-decimal precision in this table. The exact percentage is 100
155428%.

14 Maria Christakis, Peter Müller, and Valentin Wüstholz

BCrypt.Net Boogie ClueBuddy Codekicker.BBCode DSA Scrabble
IE - 0 (0%) 7 (9.59%) - - 0 (0%)
IC - 0 (0%) 0 (0%) - - 0 (0%)
A 0 (0%) 26 (22.41%) 13 (46.49%) 18 (33.33%) 44 (38.94%) 4 (14.81%)
W 0 (0%) 1 (2.38%) 1 (2.22%) 0 (0%) 0 (0%) 2 (6.25%)
P 0 (0%) 1 (2.94%) 10 (12.99%) 0 (0%) 0 (0%) 11 (16.42%)
O 4 (8.16%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
CO 0 (0%) - - - - 0 (0%)
C - - - - 1 (100%) -
F - 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
S 0 (0%) 1 (3.23%) - 0 (0%) 16 (88.88%) 0 (0%)
M - - - - - -

IE : invariants at method entries P : purity F : finally blocks
IC : invariants at call sites O : overflows S : static fields
A : aliasing CO : conversions M : main methods
W : write effects C : catch blocks

Table 3: The number and percentage of violated explicit assumptions
per application and kind of assumption. These numbers are per oc-
currence of a single assumed P statement. The “-” indicates that no
explicit assumptions of a particular kind were hit at runtime.

on the invariant of their receiver (similarly to the NoDefaultContract at-
tribute in Spec# [2]).

- Assumptions about “aliasing” (A): These assumptions were violated in all
applications except for BCrypt.Net. This is because the code of BCrypt.Net
is written in a single class containing mostly static methods that manipulate
strings and arrays.

- Assumptions about “write effects” (W): Tab. 3 shows that these assumptions
were hardly ever violated. By inspecting assumptions of this kind that were
not violated, we confirmed that the method write effects assumed by Clousot
are usually conservative.

- Assumptions about “purity” (P): Most of these assumptions were violated in
methods that return newly-allocated objects. In applications without Code
Contracts, these assumptions were only introduced in property getters, but
were never violated.

- Assumptions about “overflows” (O): These assumptions were violated only in
BCrypt.Net. All violations occur in an unchecked block, which suppresses over-
flow exceptions. This indicates that, in this application, overflows are actually
expected to occur, or even intended.

- Assumptions about “catch blocks” (C): Only one assumption of this kind was
introduced (and violated) in a method that removes a node from an AVL tree
in application DSA. The method returns true when the node is successfully
removed from the tree. The body of the method is wrapped in a try block,
and, in case an exception is raised, the catch block returns false.

- Assumptions about “static fields” (S): The violations of these assumptions
were, in some cases, due to static fields being lazily initialized, that is, being
assigned non-null values after having first been read. In other cases, null static
fields were passed as arguments to library methods (that are designed to handle
null parameters).

An Experimental Evaluation of Unsoundness in a Static Program Analyzer 15

5 Related Work
To the best of our knowledge, there is no existing work on experimentally eval-
uating sources of deliberate unsoundness in static analyzers.

There are, however, several approaches for ensuring soundness of static ana-
lyzers and checkers, ranging from manual proofs (e.g., in [12]), over interactive
and automatic proofs (e.g., in [5] and [4]), to less formal techniques, such as
“smoke checking” in the Boogie verification engine [1].

Many static analyzers compromise soundness to improve on other qualities
(see [7] for an overview), such as precision or efficiency, and there is existing work
on evaluating these other qualities of static analyzers in practice. For instance,
Sridharan and Fink [13] evaluate the efficiency of Andersen’s pointer analysis,
and Liang et al. [11] evaluate the precision of different heap abstractions. In this
work, we show that such evaluations are also possible for the unsoundness in
static analyzers, and propose a practical approach for doing so.

6 Conclusion
In this paper, we report on the first systematic effort to document and evalu-
ate the sources of deliberate unsoundness in a widely used, commercial static
analyzer. Our technique is general and applicable to any analyzer whose un-
soundness is expressible using a code instrumentation. In particular, we have
explained how to derive the instrumentation by concretizing relevant portions of
the abstract state (in our case, the heap-graph). We believe that this approach
generalizes to a large class of assumptions made by static analyzers.

We consider our work to be an important first step in discovering good trade-
offs for the design of static analyzers. We encourage designers of static analyzers
to document all compromises of soundness they choose to make and to motivate
them empirically. Such a documentation facilitates tool integration since static
analyzers or test case generators could be applied to compensate for the explicit
assumptions. Moreover, analyzers could use runtime information about violated
explicit assumptions (for instance, collected during testing) to re-analyze parts
of the code under different assumptions.
Acknowledgments. We thank Mike Barnett, Manuel Fähndrich, Francesco
Logozzo, and Herman Venter for their valuable help and feedback.

References
1. M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. Boogie:

A modular reusable verifier for object-oriented programs. In FMCO, volume 4111
of LNCS, pages 364–387. Springer, 2005.

2. M. Barnett, M. Fähndrich, K. R. M. Leino, P. Müller, W. Schulte, and H. Venter.
Specification and verification: The Spec# experience. CACM, 54:81–91, 2011.

3. A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C.-H. Gros, A. Kam-
sky, S. McPeak, and D. R. Engler. A few billion lines of code later: Using static
analysis to find bugs in the real world. CACM, 53:66–75, 2010.

4. F. Besson, P.-E. Cornilleau, and T. P. Jensen. Result certification of static program
analysers with automated theorem provers. In VSTTE, volume 8164 of LNCS,
pages 304–325. Springer, 2013.

16 Maria Christakis, Peter Müller, and Valentin Wüstholz

5. S. Blazy, V. Laporte, A. Maroneze, and D. Pichardie. Formal verification of a C
value analysis based on abstract interpretation. In SAS, volume 7935 of LNCS,
pages 324–344. Springer, 2013.

6. M. Christakis, P. Müller, and V. Wüstholz. Collaborative verification and testing
with explicit assumptions. In FM, volume 7436 of LNCS, pages 132–146. Springer,
2012.

7. P. Cousot, R. Cousot, J. Feret, A. Miné, L. Mauborgne, D. Monniaux, and X. Rival.
Varieties of static analyzers: A comparison with ASTRÉE. In TASE, pages 3–20.
IEEE Computer Society, 2007.

8. M. Fähndrich, M. Barnett, and F. Logozzo. Embedded contract languages. In
SAC, pages 2103–2110. ACM, 2010.

9. M. Fähndrich and F. Logozzo. Static contract checking with abstract interpreta-
tion. In FoVeOOS, volume 6528 of LNCS, pages 10–30. Springer, 2010.

10. D. Jackson and M. C. Rinard. Software analysis: A roadmap. In ICSE, pages
133–145. ACM, 2000.

11. P. Liang, O. Tripp, M. Naik, and M. Sagiv. A dynamic evaluation of the precision
of static heap abstractions. In OOPSLA, pages 411–427. ACM, 2010.

12. J. Midtgaard, M. D. Adams, and M. Might. A structural soundness proof for
Shivers’s escape technique: A case for Galois connections. In SAS, volume 7460 of
LNCS, pages 352–369. Springer, 2012.

13. M. Sridharan and S. J. Fink. The complexity of Andersen’s analysis in practice.
In SAS, volume 5673 of LNCS, pages 205–221. Springer, 2009.

	An Experimental Evaluation of Deliberate Unsoundness in a Static Program Analyzer
	Introduction
	Unsoundness in Clousot
	Heap Unsoundness
	Local Unsoundness
	Static-State Unsoundness
	Uninstrumented Unsoundness

	Implementation
	Experimental Evaluation
	Related Work
	Conclusion

