
Linear Approximation of Continuous Systems
with Trapezoid Step Functions

Giulia Costantini1, Pietro Ferrara2, and Agostino Cortesi1

1 University Ca’ Foscari of Venice, Italy
{costantini,cortesi}@dsi.unive.it

2 ETH Zurich, Switzerland
{pietro.ferrara}@inf.ethz.ch

Abstract. We introduce a novel abstract domain for the safe approxi-
mation of continuous functions in the context of abstract interpretation-
based static analysis. The key-idea is to represent C2+ functions by a
finite sequence of trapezoids. In this way, we get a strictly more precise
approximation of the actual values with respect to existing approaches
in the literature. Experimental results underline the effectiveness of the
approach in terms of both precision and efficiency.

1 Introduction

Embedded software is composed by discrete (that is, the program) and con-
tinuous (that is, the physical environment) components. The program receives
inputs from the physical environment through sensors that are usually modelled
by volatile variables. The reliability of these systems is crucial: a single bug can
produce catastrophic effects, and this is a relevant challenge for formal verifica-
tion methods. On the one hand, there is a large literature on the static analysis
of discrete programs. On the other hand, these approaches do not perform well
when they are applied to continuous environments. For instance, in the context
of the abstract interpretation framework [11, 12], the Interval domain [11] ab-
stracts continuous systems with the minimal and maximal values a sensor can
return at any time. To refine this approach, Bouissou and Martel [5] proposed
the Interval Valued Step Functions (IVSF) domain, for approximating the be-
havior of a function in a given interval of time (i.e, a step) with the minimal and
maximal values the function could achieve during that period of time.

In this paper, we go one step further by introducing the Trapezoid Step
Functions (TSF) domain. TSF abstracts the values of a function in a given slot
of time with two linear functions, tracking linear relationships between the time
and the output value. The two linear functions, together with the two vertical
lines that delimit the time slot, form a trapezoid. We approximate the function
with a finite number of trapezoids, one for each step.

Consider, for instance, Figure 1. It compares the 4-steps abstraction of f =
sin(x) by TSF (on the left) and by IVSF (on the right) in the interval [0, 2π].
On the one hand, these plots make clear that TSF better approximates the

shape of the function. On the other hand, IVSF gives more precise bounds on
the maximum and minimum values assumed by the function. Therefore, TSF
could be used in combination with IVSF to improve the precision of the overall
analysis, and in particular to precisely bound the minimal and maximal values
of the function. For instance, we could combine TSF and IVSF in a Cartesian
product [11]. In the example of Figure 1, this combination discovers that, when
x = π

2 , the abstracted function has exactly value 1, since (i) TSF tracks that its
minimal value is 1, and (ii) IVSF tracks that its maximal value is 1.

The main contributions of this paper are (i) the formal definition of TSF and
its lattice operators, (ii) the introduction of a sound abstraction function that,
given a continuous and derivable function, builds up its abstraction in TSF, and
(iii) the discussion of some experimental results and the comparison with the
ones obtained by IVSF.

The paper is structured as follows. The rest of this Section introduces a
motivating example and recalls some basic concepts of abstract interpretation.
Sections 2 and 3 formalize the domain and the abstraction function. In Section
4 we present some experimental results when applying TSF to the abstraction
of different functions, and show how our results compare with IVSF. Section 5
discusses the related work and Section 6 concludes.

1.1 Motivating Example

Our motivating example regards a special case of hybrid system, where we have
a discrete system (an embedded program) which takes a continuous environment
as input.

Consider the program in Figure 2. This is the code of an integrator, a quite
common component of embedded programs. It has been inspired by [15], and it
is the example used in [5] in order to show the main features of IVSF. This code
integrates a function (whose values are provided through the volatile vari-
able x) using the rectangle method on a sampling step h. We assume that the
function we integrate is sin(2πt), and that the input data are given by a sensor

Fig. 1. TSF (left) and IVSF (right) abstractions of sin(x), with 4 steps, on the domain
[0, 2π]

1 volatile float x;
2 static float intgrx=0.0, h=1.0/8;
3 void main() {
4 while(true) { // assume frequency = 8 KHz
5 float xi=x;
6 intgrx+=xi∗h;
7 }
8 }

Fig. 2. Simple integrator

(hence the volatile variable x) at a frequency of 8KHz. This scenario is par-
ticularly interesting for the analysis of numerical precision, since the sensor will

produce the sequence of values [0,
√
2
2 , 1,

√
2
2 , 0,−

√
2
2 ,−1,−

√
2
2] on x. Therefore,

in a perfect arithmetic computation the summation of these values multiplied by
h will be equal to zero after 8 × i iterations ∀i ∈ N. Nevertheless, in a real sys-
tem this summation would produce some approximate values because of floating
point approximation. This code is particularly interesting to test the precision
of abstract domains since it propagates the approximation error of our abstract
domain at each iteration of the while loop, and therefore it is a good candidate
to test the precision of TSF.

1.2 Abstract Interpretation

Abstract interpretation is a framework to define and prove the soundness of
approximations. The concrete domain formalizes the information we want to
approximate, while the abstract domain specifies which approximated informa-
tion we track. Usually, concrete states are composed by sets of elements (e.g., all
the possible computational states), that are approximated by a unique element
(also referred to as an abstract state) in the abstract domain. Formally, the con-
crete domain ℘(D) forms a complete lattice 〈℘(D),⊆, ∅,D,∪,∩〉. Similarly, the
abstract domain A has to form a complete lattice 〈A,≤A,⊥A,>A,tA,uA〉 as well.
The concrete and abstract domains are related by a concretization γA and an
abstraction αA functions. The abstract domain is a sound approximation of the
concrete domain if γA and αA form a Galois connection [11]. When abstract do-
mains do not satisfy the ascending chain condition, a widening operator ∇A is
required in order to guarantee the convergence of the fixed point computation.

2 The Trapezoid Step Functions Domain (TSF)

In this Section, we first present the concrete domain. Then, we introduce TSF,
with the partial order and the least upper bound operator, to show its lattice
structure. Finally, we introduce a widening operator that is crucial to ensure the
convergence of the analysis on this domain. In this way, we provide a complete

definition of an abstract domain that can be used not only to abstract single
functions (as we did in the experimental results), but also to abstract set of
functions (e.g., to take into account some rounding approximations).

2.1 Concrete Domain

The concrete domain is defined as the powerset of continuous functions in R+ →
R which have two continuous derivatives (i.e., the set C2+). We focus our attention
to a scenario in which the input variable represents the time, so the functions
domain is R+ instead of R.

2.2 Abstract Domain Elements

Fig. 3. Example of a
trapezoid defined on [0, 3]

Let us first formalize the key-idea behind our do-
main. Given a function f and a set of ordered in-
dices {ti}0≤i≤N , we approximate the values of f
in a step [ti, ti+1] by a trapezoid whose (i) two
parallel sides are vertical, in correspondence of ti
and ti+1, and (ii) the two other sides are in the
form f−(t) = m−t + q− and f+(t) = m+t + q+

and approximate lower and upper values of f in-
side [ti, ti+1]. Figure 3 depicts a trapezoid defined
on the step [0, 3] and having f−(t) = 0.33t+ 1 and
f+(t) = −0.17t+ 3.5 as, respectively, lower and up-
per sides.

Formally, given a step [ti, ti+1], a single trape-
zoid is defined by two linear functions, and each of
these two functions is defined by two real numbers
(representing the slope and the intercept). There-
fore, the pair of sides of each trapezoid is defined by
a tuple v = (m−, q−,m+, q+), where m−, q−,m+, q+ ∈ R represent the two lines
f−(t) = m−t + q− and f+(t) = m+t + q+. We denote by f− and f+ the lower
and the upper side, respectively. TSF can be seen as a generalization of IVSF,
whose lower and upper sides are parallel and horizontal, i.e., with m− = m+ = 0.

Following the standard notation [5], given a set V of values, we represent
a step function from time to V as a conjunction of constraints of the form
“ti : vi” such that ti ∈ R+ ∧vi ∈ V . This means that the step function switches
to vi at time ti. The sequence of constraints can be finite or infinite but we only
consider finite ones, otherwise the abstract operations of our domain would not
be computable. A finite sequence of constraints f = t0 : v0∧t1 : v1∧· · ·∧tN : vN

represents the step function f such that ∀t ∈ R+ : f(t) = vi with i = max({j ∈
[0, N] : tj ≤ t}). We use the compact notation f =

∧
0≤i≤N ti : vi, with N ∈ N∧

ti ∈ R+ ∧vi ∈ V ∀i. V is the set of tuples {(m−, q−,m+, q+) : m−, q−,m+, q+ ∈
R}. We will alternatively denote the value in a step as vi = (m−i , q

−
i ,m

+
i , q

+
i) or

vi = (f−i , f
+
i) where f−i (t) = m−i t+ q−i and f+i (t) = m+

i t+ q+i .

Normal form and equivalence relation: This notation is not unique. For
example, the conjunctions (0 : [0, 0, 1, 1]) ∧ (4 : [0, 0, 1, 1]) and (0 : [0, 0, 1, 1]) ∧
(7 : [0, 0, 1, 1]) define the same step function which, for every input t ∈ [0,+∞),
returns as output value the interval [0, t + 1]. For this reason, we use the same
notion of normal form defined in [5]: the switching times ti of a conjunction are
sorted and different; moreover two consecutive constraints cannot have equal
values (each vi must be different from vi+1). With these conditions, the rep-
resentation is unique. We will denote by Norm the normalization procedure.
In our previous example, we would obtain a representation with a single con-
straint 0 : [0, 0, 1, 1]. The normalization process induces an equivalence relation
(f ≡ g ⇔ Norm(f) = Norm(g)).

Constraints: We impose two constraints on abstract elements:

1. inside each step [ti, ti+1], the two lines f−i and f+i do not intersect. This
assumption is not restrictive: we can always split the invalid step with in-
tersecting sides into two smaller and valid steps with non-intersecting sides
through the refine operator that will be defined in Section 2.5;

2. two consecutive steps [ti, ti+1] and [ti+1, ti+2] must have at least one point
in common at ti+1. This constraint is needed because otherwise the concrete
functions represented by the abstract element would not be continuous. Ob-
serve that an abstract state which violates this constraint is equivalent to
bottom.

Formally, these constraints can be stated as follows:

∀i ∈ [0, N] : f−i (ti) ≤ f+i (ti) ∧ f−i (ti+1) ≤ f+i (ti+1) (1)

∀i ∈ [0, N − 1] : [f−i (ti+1), f+i (ti+1)] ∩ [f−i+1(ti+1), f+i+1(ti+1)] 6= ∅ (2)

Note that we do not require that the intervals of two consecutive steps are
exactly the same at the border between them (i.e., neither the upper nor the
lower sides have to link exactly the upper or the lower sides of the following
step). We want our approach to be generic and for this reason we give as much
freedom as we can to the abstract element definition.

The elements of our abstract domain, denoted by D], are normalized finite
conjunctions of constraints f =

∧
0≤i≤N ti : vi (with N ∈ N∧ti ∈ R+∧vi ∈ V ∀i)

which satisfy the equations (1) and (2).

2.3 Concretization Function

The abstract step function f =
∧

0≤i≤N{ti : vi}, where vi = (f−i , f
+
i) =

(m−i , q
−
i ,m

+
i , q

+
i), represents the set of continuous, differentiable functions that

are bounded by the lines f−i (t) = m−i t+ q−i and f+i (t) = m+
i t+ q+i for any time

t ∈ [ti, ti+1]. The concretization function γ is thus defined by:

γ(
∧

0≤i≤N{ti : vi}) = {g ∈ C2+|∀i ∈ [0, N],∀t ∈ [ti, ti+1], g(t) ∈ [f−i (t), f+i (t)]}

where tN+1 is either +∞ if dom(f) = R+, or k if dom(f) = [0, k], with k
constant.

Fig. 4. Concretization function

Figure 4 depicts an example of an abstract state defined on the domain [0, 5]
with 4 steps (note that here tN+1 = 5). In the Figure we can see three possible
concrete functions (f1 = x3 − 7x2 + 12x − 2, f2 = ln(x + 1) and f3 = sin(x))
that are all approximated by such abstract state.

2.4 Partial Order

The partial order ⊆] on two functions f, g ∈ D] is defined point-wisely, that is,
for all possible inputs t we check that the set of values assumed by f in that
point is a subset of the set of values assumed by g at the same point. Formally,
f ⊆] g ⇔ ∀t ∈ R+ : f(t) ⊆ g(t), where f(t) = {v : f−i (t) ≤ v ≤ f+i (t) ∧ t ∈
[ti, ti+1]} and the same holds for g(t).

To define the partial order on step functions, we first define a partial order
on single steps. Let vi = (f−i , f

+
i) and wj = (g−j , g

+
j) be the values of two steps

on the same domain [a, b]. Then:

vi v[a,b] wj ⇔ ∀t ∈ [a, b] : f−i (t) ≥ g−j (t) ∧ f+i (t) ≤ g+j (t)

⇔ ∀t ∈ [a, b] : [f−i (t), f+i (t)] ⊆ [g−j (t), g+j (t)]

⇔ [f−i (a), f+i (a)] ⊆ [g−j (a), g+j (a)] ∧ [f−i (b), f+i (b)] ⊆ [g−j (b), g+j (b)]

In other words, vi is smaller than wj if the area of the trapezoid identified by
vi (in the domain [a, b]) is contained in the area of the trapezoid identified by
wj (in [a, b] as well). We have to compare only the upper and lower sides of the
trapezoids. To do this, we check that f−i ≥ g

−
j ∧f

+
i ≤ g

+
j for all inputs t ∈ [a, b].

Since the sides are defined by straight lines, it is sufficient to check only the
values of such lines at the left and right extremes of the trapezoid.

Now we can give a computable condition for testing whether f ⊆] g. Let
f =

∧
0≤i≤N{ti : vi} and g =

∧
0≤j≤M{uj : wj}, then:

f ⊆] g
m

∀(i, j) ∈ [0, N]× [0,M] : [a, b] = [ti, ti+1] ∩ [uj , uj+1] 6= ∅ ⇒ vi v[a,b] wj

(3)

Observe that in (3) we compare the values of pairs of steps which have a part
of their domain in common. If each step value of f is smaller than the value of
every intersected step of g (with respect to their intersection on the domain),
then f ⊆] g. To check if two steps have an intersection ([ti, ti+1]∩ [uj , uj+1] 6= ∅),
we can use the condition (uj ≤ ti+1 ∧ uj+1 ≥ ti). Moreover, if uj ≤ ti we have
[a, b] = [ti, uj+1] else [a, b] = [uj , ti+1].

Lemma 1. If f, g ∈ D] are normalized, then f ⊆] g ⇔ ∀t ∈ R+, f(t) ⊆ g(t).

The top element of the domain is defined by >] = 0 : [0,−∞, 0,∞] (that is,
the step function with only one step with value R), while ⊥] is a special element
such that γ(⊥]) = ∅ ∧ ∀f ∈ D],⊥] ⊆] f . D] ∪ {⊥]} is a lattice.

2.5 Refine Operator

We define a refine operator, which, given an abstract state of TSF and a set
of indices, adds these indices to the step list of the state, thus augmenting its
number of steps. This operation has no impact on the concretization of the
abstract state, since the values vi are not modified. This operator will be useful
to make two abstract states directly comparable, by making them defined on the
same set of steps.

Consider an abstract state f =
∧

0≤i≤N{ti : vi} where T = {ti : 0 ≤ i ≤ N}
and a set of indices U = {uj : 0 ≤ j ≤ M}. Let S = {sk : sk ∈ (T ∪ U) ∧ sk <
sk+1 ∀k ∈ [0, P]} be the set of all the indices contained in T and U , ordered and
without repetitions (therefore P = N+M−|T ∩U |). The refine operator on this
state is defined by Refine(f, U) =

∧
0≤k≤P {sk : v̂k} where v̂k = vmax{i:ti≤sk}.

2.6 Compact Operator

The opposite operator with respect to refine is compact. This operator reduces
the number of steps contained in an abstract state, and it will be useful in order
to keep such number below a given threshold. The compact function works by
merging a pair of steps, and repeating this procedure until a given threshold is
reached. While refine leaves the precision of an abstract state unchanged, the
compact operator induces some loss of precision.

Let f =
∧

0≤i≤N{ti : vi} be an abstract state, composed by N + 1 steps, and
let M be a given threshold, with M < (N + 1). The algorithm: (i) chooses the

step with the minimum width (wi = ti+1− ti), (ii) merges it with the successive
one, and (iii) repeats (i) and (ii) iteratively until the threshold M is reached.
We arbitrarily choose the step to be merged as the one with smallest width, but
alternative solutions are possible and can be supported by our approach as well.

Let Ai and Bi be the two extremes (the left and right one, respectively) of
f+i in [ti, ti+1], and let Ai+1 and Bi+1 be the two extremes of f+i+1 in [ti+1, ti+2].
Then, the upper side f ′+ of the merged step will have the slope of the side
linking Ai and Bi+1. If the point P = max(Bi, Ai+1) is greater than such side,
the intercept will be such that the side covers exactly P , otherwise we keep the
original intercept of the side linking Ai and Bi+1. Figure 5 depicts this situation.
The same applies symmetrically for the lower side. A slightly different process
is required if the selected step is next to the last one (that is, i = N − 1), since
in such case we cannot rely on ti+2. For the upper side, we consider f+N and we
simply increase its intercept if one of the extremes of f+N−1 in [tN−1, tN] is higher
than such side. The same procedure applies for the lower side.

Note that this is not the only possible way to merge two steps. For example,
in Figure 5, it could have been chosen the line passing through P and parallel to
f+i+1 or others as well, but our method is the one which we found (empirically)
to work best in most cases (i.e., it does not introduce too much approximation).

In addition, we can specify a list of steps which we do not want to remove
from the state. Let T be the set of steps of the abstract state f , and let X ⊆ T
be the set of steps of f that have to be preserved. Then, g = CompactX(f,M)
is an abstract state obtained by compacting f to M steps, while discarding only
steps coming from T \X.

Lemma 2. Let f ∈ D] and M ∈ N+. If g = Compact(f,M), then f ⊆] g.

2.7 Least Upper Bound

Given two elements x and y of the abstract domain, the least upper bound
operator t] defines the least element z that overapproximates both x and y.
In TSF, this means that we have to create a sequence of trapezoids that are as
narrow as possible and that, at the same time, contain the two given sequences
of trapezoids.

Fig. 5. Merging of two steps within the compact operation

(a) No intersections, the
step remains unsplit.
The grey area represents
the resulting trapezoid

(b) One intersection be-
tween f−

i and g−i , result-
ing in two sub-steps and,
thus, two trapezoids (col-
ored in grey)

(c) Two intersections,
one between f−

i , g
−
i and

one between f+
i , g

+
i ,

resulting in three sub-
steps and, thus, three
trapezoids (colored in
grey)

Fig. 6. Examples of the LUB computation

Let f ′ =
∧

0≤k≤N{xk : vk} and g′ =
∧

0≤j≤M{uj : wj} be two abstract
states. In order to define the least upper bound of f ′ and g′, we use the following
algorithm. First, we refine f ′ and g′ on the same set of steps, obtaining f =
Refine(f ′, U) and g = Refine(g′, X), where X and U are the steps sets of f ′ and
g′, respectively. Then, for each step ti of f and g, we look at the two trapezoids
and check if there are intersections either between the two lower sides (f−i , g

−
i)

or between the two upper sides (f+i , g
+
i). We split the step with respect to such

intersections. In each of these new steps, we are sure that nor the upper sides
nor the lower sides of f, g intersect each other. So, the resulting trapezoid for
each new step is made by the greatest of the two upper sides and the lowest of
the two lower sides. See Figure 6 for some representative examples.

Lemma 3. t] is the least upper bound operator.

Lemma 4. Let f and g be two TSF elements that satisfy the validity conditions
stated in Section 2.2. Then, f t] g satisfies the same conditions too.

Similarly, we can also define the greatest lower bound operator.

2.8 Widening

The widening operator ∇D] is parameterized on (i) kS , the maximum number
of steps allowed in an abstract state, (ii) kM and kQ, the maximum values
allowed for the slope and intercept of trapezoid sides, respectively, (iii) kI and
kL, the increment constants for the slope and intercept, respectively. All these
parameters have to be ≥ 0. ∇D] is then defined as follows.

f∇D]g =

>] if |U | > kS

f if g ⊆] f
Norm(CompactU (hMQ, kS)) otherwise

where U is the set of steps of the abstract state f .
We distinguish three cases: a) |U | > kS ; b) g ⊆] f ; c) otherwise. In case a), f

exceeds the maximum number of steps allowed in an abstract state, kS , and we
return >]. In case b), we do not have an ascending chain and we simply return
f , which is already normalized, being an element of D]. In case c), we return the
normalized and compacted version of hMQ, keeping all the steps U of f . In this
way, we are sure that U will be a subset of the steps set of f∇D]g and this is
important for proving the convergence of ∇D] . The abstract state hMQ is built
as follows. Let g be defined on the indices set V . Let f ′ = Refine(f, V) be the
refined version of f with the addition of the indices of g and let g′ = Refine(g, U)
be the refined version of g with the addition of the indices of f . Then f ′ and g′

are defined on the same set of steps T = U ∪V . Calling ti the elements of T , we
have: f ′ =

∧
0≤i≤N{ti : vi = (f−i , f

+
i)} and g′ =

∧
0≤i≤N{ti : wi = (g−i , g

+
i)}.

We define hMQ =
∧

0≤i≤N{ti : zi = (h−i , h
+
i)} where (h−i , h

+
i) are as follows:

h−i (t) =

g−i (t) if f−i = g−i
−∞ if (mg−i

≤ −kM) ∨ (qg−i
≤ −kQ)

∨(mf−
i
≤ −kM) ∨ (qf−

i
≤ −kQ)

(g−i)•(t) otherwise

h+i (t) =

g+i (t) if f+i = g+i
+∞ if (mg+i

≥ kM) ∨ (qg+i
≥ kQ) ∨ (mf+

i
≥ kM) ∨ (qf+

i
≥ kQ)

(g+i)◦(t) otherwise

and

(g−i)•(t) = (mMIN−
i
− kI)× t+ (qMIN−

i
− kL)

(g+i)◦(t) = (mMAX+
i

+ kI)× t+ (qMAX+
i

+ kL)

mMIN−
i

= min(mf−
i
,mg−i

), qMIN−
i

= min(qf−
i
, qg−i

)

mMAX+
i

= max(mf+
i
,mg+i

), qMAX+
i

= max(qf+
i
, qg+i

)

The computation is symmetric for the lower and the upper side, so let us
focus on h+i (t). For each step ti of f ′ and g′ we consider three distinct cases: 1)
f+i = g+i , 2) (mg+i

≥ kM)∨(qg+i
≥ kQ)∨(mf+

i
≥ kM)∨(qf+

i
≥ kQ), 3) otherwise.

In case 1) the side is the same in f ′ and g′, so we keep it unchanged. In case 2)
the slope (or the intercept) of the side of one abstract state (g′ or f ′) exceeds
the threshold kM (or kQ), so we move the side to +∞. Otherwise (in case 3), we
keep the maximum slope and intercept between their values in f+i and g+i and
then we increase them both by a predefined constant quantity (kI for the slope,
kL for the intercept). This last case is needed to ensure the convergence of the
operator. For the soundness of this operator we refer to the definition in [10].

3 Abstraction of a Continuous Function

In this Section we show how to compute the approximation of C2+ functions,
both in IVSF and in TSF. We consider both domains, as in [5] the abstraction
function was not defined, since the authors relied on a particular type of ODE
solver [4]. For TSF, we also consider two different approaches: when the step
width is constant and fixed, and when we automatically determine the steps
distribution. For IVSF, we consider only the case where the step list is fixed. Note
that we abstract only one concrete function; this approach can be generalized
to the abstraction of a discrete (or countable) set of concrete functions C by
computing the abstraction of each function in the set and then returning the
least upper bound of all the resulting abstract states.

In the following subsections, we will denote by (i) f ∈ C2+ the continuous
function we want to abstract, (ii) f ′ and f ′′ its first and second derivatives,
respectively, (iii) F ′0 the set containing the points of the domain where f ′(t) = 0
(stationary points), that is F ′0 = {t : f ′(t) = 0} (iv) F ′′0 the same for f ′′

(inflection points), (v) F ′
[a,b]
0 = {f(t) : t ∈ ([a, b]∩F ′0)}, that is, F ′

[a,b]
0 is the set

containing the stationary points of f restricted to the domain interval [a, b], (vi)

F ′′
[a,b]
0 the same as F ′

[a,b]
0 but for the inflection points.

Note that the IVSF abstraction function needs to know only the first deriva-
tive of f (other than, obviously, f itself), while TSF requires also the second
derivative.

3.1 IVSF Abstraction Function, Fixed Step Width

Given a step width w, suppose that [a, b] is a generic interval (b− a = w ∧ a =

k × w ∧ b = (k + 1) × w ∧ k,w ≥ 0). M = max({f(a), f(b)} ∪ F ′[a,b]0) is the
maximum point of the function in the interval [a, b], extremes included, and

m = min({f(a), f(b)} ∪ F ′[a,b]0) is the minimum point of the function in the
interval [a, b], extremes included. The best abstraction in IVSF of this step is
the interval [m,M]. To build the abstraction of the function f , we repeat this
procedure for each step of the abstract state.

3.2 TSF Basic Abstraction Function, Arbitrary Step Width

In TSF we can get a better representation by choosing a step distribution using
(i) the inflection points F ′′0, and (ii) the stationary points F ′0. Assume that
[a, b] is a generic interval obtained using this schema. Then, the two sides which
compose the value of such step are as follows (see Figure 7):

1. the side l1 linking the points P = (a, f(a)) and Q = (b, f(b));
2. the side l2 which has the same slope as l1 and is tangent to f inside [a, b].

Since we already know the slope of this side, we just need to compute its
intercept. The procedure to do this is the following one:

Fig. 7. The abstraction on the step [a, b]

(a) find the point xR ∈ [a, b] where the first derivative of f is equal to the
slope of l1: f ′(xR) = ml1 . This point can be computed by bisection in
[a, b].

(b) let R = (xR, f(xR)). Then, l2 is the side that goes through the point R
and with slope equal to ml1 , i.e., the slope of l1.

Note that the resulting sides l1 and l2 are parallel, as they have the same slope.
Moreover, l2 is a tangent of the function f .

3.3 TSF Basic Abstraction Function, Fixed Step Width

Of course, also in the case of TSF we can define the abstraction on a fixed step
width. Suppose that [a, b] is a generic interval determined by the fixed width w.
First of all, we split the interval in sub-intervals, following the schema introduced
in Section 3.2. Then, for each sub-interval, we compute the upper and lower sides
as specified in Section 3.2. Finally, we have to merge together these sub-intervals
through the compact operator defined in Section 2.6. Notice that we lose some
precision with this method, but we could achieve better results by adopting a
more complex schema.

3.4 Dealing with Floating Point Precision Issues

Unfortunately, the abstraction technique presented in Section 3.2 is theoreti-
cally sound but it is not computable on a finite precision machine, due to the
well-known problems concerning floating point representation. The abstraction
function depends on various values: the points x at which f ′(x) = 0, the points
x at which f ′′(x) = 0, the point xr ∈ [a, b] such that f ′(xR) = ml1 . Even know-
ing exactly all the points in F ′0 and F ′′0 by mathematical analysis, we could
not be able to precisely represent them in a machine (e.g.,

√
2). Therefore, we

can only compute an approximation of such points and not their exact value. In
this Section, we introduce some restrictions on the functions we can manipulate
and a refinement of the basic abstraction function. In this way, we enforce the

soundness of the resulting abstraction function, not only theoretically but in a
practical setting as well.

We assume that f respects the following property. If x0 is a stationary or
inflection point, then, for each interval [x, x + ε] such that x0 ∈ [x, x + ε], we
have: ∀x ∈ [x, x+ ε] : f(x) ∈ [f(x)− τ, f(x) + τ] where τ, ε are parameters of the
analysis. Intuitively, we ask that the function values change at most of τ around
stationary and inflection points. Note that the value of ε can be set based on
the standard in use on the machine (e.g., the IEEE 754 standard for floating
points), while τ has to be set by the user: the smaller the value, the more precise
the abstraction.

As in Section 3.2, we split the domain in steps with respect to the stationary
and inflection points. If we cannot pinpoint those points exactly, we introduce
an additional step of width ε in correspondence of them. The exact location
of the step ([ti, ti+1] = [x, x + ε]) depends on the numerical representation of
the machine and it obviously must contain the exact value of the considered
stationary or inflection point. The value of such additional step is vi = (0, f(x)−
τ, 0, f(x) + τ). For the condition imposed above, we are sure that this trapezoid
(which is a rectangle, since the two sides are horizontal) soundly contains the
abstracted function in the considered step.

For the steps which do not contain stationary/inflection points, the compu-
tational schema of Section 3.2 is refined as follows. The side l1 (the one which
links the extremes of f in the step) is moved up (or down, depending on the
concavity of f in the step) of ε. This compensates for potential errors in the
evaluation of the function values at the extremes. The other side l2 goes through
the point xR

′ such that f ′(xR
′) is the closest value to ml1 that we can reach

(given the precision of the machine). The slope of l2 is f ′(xR
′) so that l2 is tan-

gent to the function. Since we know that the function is concave (or convex) in
the sub-interval considered, we are sure that a tangent of it leaves the function
always above (or below), resulting in a safe approximation.

4 Experimental Results

We present some experimental results about the use of TSF, and we compare
them with the ones obtained by IVSF. First of all, we explore how the preci-
sion varies with the number of steps of the representation when analyzing some
representative functions. Then, we consider a standard example of embedded
software (introduced in Section 1.1) as a test-bench.

4.1 Varying the Number of Steps

Let us first compare the precision of TSF and IVSF. We apply the abstraction
function to a set of representative functions (namely, sin(x), x3, ex, and ln(x+
1)3) in the interval [0, 10] varying the number of steps. We measure the precision

3 Note that, since ln(x) is not continuous in x = 0, we apply it to x + 1 in order to
have a continuous function in [0, 10]

Table 1. Precision of TSF and IVSF varying the number of steps

#s sin(x) x3 ex ln(x+ 1)
TSF IVSF Ratio TSF IVSF Ratio TSF IVSF Ratio TSF IVSF Ratio

4 4.14 15.10 27.4% 235.04 2500.00 9.4% 15894.07 55063.66 28.9% 0.63 5.99 10.5%
8 1.15 7.99 14.4% 58.64 1250.00 4.7% 4211.62 27531.83 15.3% 0.17 3.00 5.7%

16 0.30 4.01 7.6% 14.65 625.00 2.3% 1069.68 13765.92 7.8% 0.04 1.50 2.9%
32 0.08 2.04 3.7% 3.66 312.50 1.2% 268.50 6882.96 3.9% 0.01 0.75 1.5%
64 0.02 1.02 1.8% 0.92 156.25 0.6% 67.19 3441.48 2.0% 2.77E-03 0.37 0.7%

128 4.70E-03 0.51 0.9% 0.23 78.13 0.3% 16.80 1720.74 1.0% 6.93E-04 0.19 0.4%

of a representation by computing the area covered by the abstract states in the
Cartesian plan: the bigger the area, the rougher the abstraction. We implemented
the computation of TSF in Java and we ran it on an Intel Core 2 Quad CPU
2.83 GHz with 4 GB of RAM, running Windows 7, and the Java SE Runtime
Environment 1.6.0 16-b01. The execution is always extremely fast: in the worst
case (function ex), TSF requires 40 msec to compute the approximation and
the area of the function for all the different numbers of steps. This result is
not particularly surprising since the computation mainly performs arithmetic
operators for whom modern processors are quite efficient. Since the execution
times are very short, we could not notice any significant difference between TSF
and IVSF even if we would expect that IVSF is faster. In addition, we did not
notice any relevant memory consumption by the computation since it does not
need to allocate memory. Table 1 reports the results of this computation. The
first column reports the number of steps. Then, for each analyzed function, we
report the area of the TSF and IVSF abstractions, and the ratio between the
two areas. For instance, if the ratio is 50%, it means that the TSF area is half
the IVSF one (i.e., twice more precise). In all cases, TSF is more precise than
IVSF. In the worst case, TSF is almost 3.5 times more precise (ratio ≈ 28.9%).
In the best case, it is approximately 330 times more precise (ratio ≈ 0.3%).
IVSF uses rectangles to approximate portions of the curve, so its precision is
greater when the curve is “flat” (i.e., similar to a horizontal line), while it is
lower when the slope of the curve is high. So the amount of precision depends
more on the kind of function than on the steps width. The precision of TSF,
instead, does not depend on the curve slope, since the trapezoids are able to
well approximate various kinds of slope. The precision of TSF depends only on
how much the curve differs from a straight line within a single step. If in a single
step the curve is similar to a straight line, then the error is near to zero; if in a
single step the curve is very concave or convex, then there is a lack of precision.
When increasing the number of steps in a given domain, each step has a smaller
width: for this reason, the bigger the number of steps, the more the function
resembles to a straight line in each single step (instead that a convex or concave
curve) and the more the TSF precision increases.

Table 2. Values computed by TSF and IVSF on intgrx

Num. steps TSF IVSF Ratio (%)

4 [-1.0263, 1.7367] [-4.8750, 4.8750] 28

8 [-0.2772, 0.3778] [-0.4760, 0.4760] 69

16 [-0.0740, 0.0870] [-0.1237, 0.1237] 65

32 [-0.0188, 0.0204] [-0.0312, 0.0312] 63

64 [-0.0047, 0.0049] [-0.0078, 0.0078] 62

128 [-0.0012, 0.0012] [-0.0020, 0.0020] 61

4.2 An Integrator

Consider the motivating example presented in Section 1.1. Table 2 reports the
intervals of the values of intgrx computed by TSF and IVSF after 104 iterations
of the while loop. The smaller the interval, the more precise the analysis. The
last column reports the ratio between the widths of the two intervals. TSF obtains
more precise results in all the cases. Note that augmenting the numbers of steps
in the abstraction improves the precision of both domains, and the error ratio of
TSF vs. IVSF stabilizes around 60% even if it is slightly better when augmenting
the number of steps.

4.3 Combination of TSF with IVSF

We have seen that the TSF domain is able to approximate more closely the shape
of the abstracted function than IVSF. Moreover, we noticed that our abstraction
gets more and more precise (with respect to IVSF) every time we increase the
number of steps in the representation. On the other hand, IVSF has the advantage
to preserve the minimum and maximum values assumed by the function, while,
unfortunately, TSF does not preserve such information, since the trapezoids ver-
tices might exceed these values. Then, it could be useful in some applications,
especially the ones where the stationary points of the function are relevant (e.g.,
sin(x)), to consider the product of these two domains, by using the Cartesian
or the reduced product of the two [11]. For instance, in the analysis of the in-
tegrator code presented in Section 1.1 we can precisely abstract the values of
sin(x) when it is at its maximum (or minimum) by taking the intersection of the
values approximated by TSF (that computes that the values are greater or equal
to 1 in the maximum, and less or equal than -1 in the minimum) and IVSF (that
computes that the values are less or equal to 1 in the maximum, and greater or
equal than -1 in the minimum).

5 Related Work

To the best of our knowledge, IVSF is the first formalism that allows the integra-
tion of the continuous environment in an abstract interpretation of embedded

software. The static analyzer HybridFluctuat, based on IVSF, has been imple-
mented [3] in order to consider the interactions between the program and the
physical environments on which it acts. In Section 4 we compared extensively
the precision of our approach with respect to IVSF.

A useful domain theoretical characterization of continuous function can be
found in [13], but this work only describes the continuous functions at the con-
crete level, and there is nothing involving the abstract interpretation theory.

Feret [14] introduced domain-specific abstract domains for digital filters, in
the context of ASTREE [2], but did not provide a generic treatment of continuous
functions and their abstraction.

As for hybrid systems, previous work in the context of abstract interpretation
is mainly related to the analysis of hybrid automata [16, 18].

Regarding continuity analysis of programs, Hamlet [17] was the first one to
argue for a testing methodology for Lipschitz-continuity of software. Chaud-
huri et al. recently proposed a qualitative program analysis to automatically
determine if a program implements a continuous function [6]. Their practical
motivation is the verification of robustness properties of programs whose inputs
are uncertain. This work was further extended [7] to quantify the robustness of
a program. Our treatment of continuous functions should be applicable to this
particular setting (continuity of programs) as well.

A Trapezoid Step Function is a sequence of trapezoids, one for each step. But
a TSF element can be seen as a pair of piecewise linear (PWL) functions as well,
where one PWL function bounds the approximated continuous functions from
above and the other one bounds them from below. There exists an extensive
literature about PWL functions, since they played an important role in approxi-
mation, regression and classification. One of the biggest problems concerns their
explicit representation in a closed form [9, 20]. Another important issue is to find
a PWL approximation of a certain function in order to minimize or bound the
overall area (or the distance in each point) between the original function and
the approximation [8, 19, 21]. Our approach, rather than bounding the error of
the representation of a function, provides a sound approximation of it.

6 Conclusion and Future Work

Given the encouraging experimental results, we are planning to apply TSF to
other case studies. First of all, we want to apply TSF to the approximation of the
solutions of Ordinary Differential Equations (as done by IVSF). Then, we aim at
exploring the use of TSF to approximate the values produced by a program, e.g.,
a simulator of the results given by sensors in embedded systems. In addition, we
plan to develop some semantic operators over TSF necessary for cost analysis [1].
Also, it could be interesting to do a formal complexity analysis on the domain
operations.

Acknowledgments. Work partially supported by RAS project “TESLA -
Tecniche di enforcement per la sicurezza dei linguaggi e delle applicazioni”.

References

1. E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost analysis of
java bytecode. In Proceedings of ESOP ’07, LNCS. Springer-Verlag, 2007.

2. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. A static analyzer for large safety-critical software. In Proceedings of
PLDI ’03. ACM, 2003.

3. O. Bouissou, E. Goubault, S. Putot, K. Tekkal, and F. Védrine. Hybridfluctuat:
A static analyzer of numerical programs within a continuous environment. In
Proceedings of CAV ’09, LNCS. Springer, 2009.

4. O. Bouissou and M. Martel. GRKLib: a guaranteed runge-kutta library. In Pro-
ceedings of SCAN ’07. IEEE Press, 2007.

5. O. Bouissou and M. Martel. Abstract interpretation of the physical inputs of
embedded programs. In Proceedings of VMCAI ’08, LNCS. Springer, 2008.

6. S. Chaudhuri, S. Gulwani, and R. Lublinerman. Continuity analysis of programs.
In Proceedings of POPL ’10. ACM, 2010.

7. S. Chaudhuri, S. Gulwani, R. Lublinerman, and S. NavidPour. Proving programs
robust. In Proceedings of FSE ’11. ACM, 2011.

8. F. Chou, C. M. Wang, and G. D. Cheng. Optimal bounding of curves by continuous
piecewise linear functions. Engineering Optimization, 21(4):307–317, 1993.

9. L. Chua and S. M. Kang. Section-wise piecewise-linear functions: Canonical rep-
resentation, properties, and applications. Proceedings of the IEEE, 65(6):915–929,
1977.

10. A. Cortesi. Widening operators for abstract interpretation. In Proceedings of
SEFM ’08. IEEE Press, 2008.

11. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings
of POPL ’77. ACM, 1977.

12. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
Proceedings of POPL ’79. ACM, 1979.

13. A. Edalat and A. Lieutier. Domain theory and differential calculus (functions of
one variable). Mathematical. Structures in Comp. Sci., 14(6), 2004.

14. J. Feret. Static analysis of digital filters. In Proceedings of ESOP ’04, LNCS.
Springer, 2004.

15. E. Goubault, M. Martel, and S. Putot. Some future challenges in the validation of
control systems. In Proceedings of ERTS ’06, 2006.

16. N. Halbwachs, Y.-E. Proy, and P. Raymond. Verification of linear hybrid systems
by means of convex approximations. In Proceedings of SAS ’94, LNCS. Springer,
1994.

17. D. Hamlet. Continuity in software systems. In Proceedings of ISSTA ’02. ACM,
2002.

18. T. A. Henzinger and P.-H. Ho. A note on abstract interpretation strategies for
hybrid automata. In Proceedings of Hybrid Systems II, LNCS. Springer, 1995.

19. H. Imai and M. Iri. An optimal algorithm for approximating a piecewise linear
function. Journal of information processing, 9(3):159–162, 1987.

20. C. Kahlert and L. Chua. A generalized canonical piecewise-linear representation.
IEEE Transactions on Circuits and Systems, 37(3):373–383, 1990.

21. I. Tomek. Two algorithms for piecewise-linear continuous approximation of func-
tions of one variable. IEEE Trans. Comput., 23(4):445–448, 1974.

