
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 0000; 00:1–41
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe

A Suite of Abstract Domains for Static Analysis of String Values

G. Costantini 1 ∗ P. Ferrara 2 and A. Cortesi 1

1 University Ca’ Foscari of Venice
2 ETH Zurich

SUMMARY

Strings are widely used in modern programming languages in various scenarios. For instance, strings are
used to build up SQL queries that are then executed. Malformed strings may lead to subtle bugs, as well as
non-sanitized strings may rise security issues in an application. For these reasons, the application of static
analysis to compute safety properties over string values at compile time is particularly appealing. In this
article we propose a generic approach for the static analysis of string values based on abstract interpretation.
In particular, we design a suite of abstract semantics for strings, where each abstract domain tracks a different
kind of information. We discuss the tradeoff between efficiency and accuracy when using such domains to
catch the properties of interest. In this way, the analysis can be tuned at different levels of precision and
efficiency, and it can address specific properties. Copyright c© 0000 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: static analysis; abstract interpretation; abstract domains; strings

1. INTRODUCTION

Strings are widely used in modern programming languages. Their applications vary from providing
an output to a user to the construction of programs executed through reflection. For instance, in
Java they are widely used to build up SQL queries, or to access information about the classes
through reflection. The properties of interest over string values are extremely wide. For instance,
the execution of str.substring(str.indexOf(′a′)) raises an exception if str does not contain an
′a′ character: in this case, it would be useful being able to track the characters surely contained
on the variable str. When dealing with SQL queries, what happens if we execute the query
“DELETE FROM Table WHERE ID = ” + id when id is equal to “10 OR TRUE”? The content of Table
would be permanently erased. It’s clear that a wrong manipulation of strings could lead not only to
subtle run-time errors, but to dramatic and permanent effects too [21].

The interest on approaches that automatically analyze and discover bugs on strings is constantly
raising. The state-of-the-art in this field is still limited: approaches that rely on automata and use
regular expressions are precise but slow, and they do not scale up [22, 23, 38, 41], while many
other approaches are focused on particular properties or classes of programs [1, 18, 20, 32, 34, 35].
As genericity and scalability are the main advantages of the abstract interpretation approach [8, 9]
(since it allows to define analyses at different levels of precision and efficiency), in this article we
investigate abstract interpretation as an alternative approach to string analysis.

The main contribution of this article is the formalization of a unifying generic abstract
interpretation based framework for string analysis, and its instantiations with five different domains

∗Correspondence to: via Torino 172, 30172, Mestre (Venice), Italy. E-mail: costantini@dsi.unive.it

Copyright c© 0000 John Wiley & Sons, Ltd.
Prepared using speauth.cls [Version: 2010/05/13 v3.00]

2 G. COSTANTINI ET AL.

1 var query = "SELECT $ ||
2 (RETAIL/100) FROM INVENTORY WHERE ";
3 if (l != null)
4 query = query + "WHOLESALE > " + l + " AND ";
5

6 var per = "SELECT TYPECODE, TYPEDESC FROM
7 TYPES WHERE NAME = ’fish’ OR NAME = ’meat’";
8 query = query + "TYPE IN (" + per + ");";
9 return query;

(a) The first running example, prog1

1 var x = "a";
2 while(cond)
3 x = "0" + x + "1";
4 return x;

(b) The second running example, prog2

Figure 1. The running examples

that track distinct types of information. In this way, we can tune the analysis at diversified levels of
accuracy, yielding to faster and rougher, or slower but more precise string analyses.

The methodology is inspired by the approach adopted for numerical domains for static analysis of
software [13, 19, 33]. The interface of a numerical domain is nowadays standard: each domain has
to define the semantics of arithmetic expressions and Boolean conditions. Similarly, we consider
a limited set of basic string operators supported by all the mainstream programming languages.
The concrete semantics of these operators is approximated in different ways by the five different
abstract domains. In addition, after 30 years of practice with numerical domains, it is clear that a
monolithic domain precise on any program and property (e.g., Polyhedra [13]) gives up in terms of
efficiency, while to achieve scalability we need specific approximations on a given property (e.g.,
Pentagons [31]) or class of programs (e.g., ASTRÉE [12]). With this scenario in mind, we develop
several domains inside the same framework to tune the analysis at different levels of precision and
efficiency w.r.t. the analyzed class of programs and property. Other abstractions are possible and
welcomed, and we expect our framework to be generic enough to support them.

This article † is structured as follows. In the rest of this Section we introduce two running
examples, and we recall some basic concepts of abstract interpretation. Section 2 defines the syntax
of the string operators we will consider in the rest of the article. Section 3 introduces their concrete
semantics, while in Section 4 the five abstract domains, the core of this work, are formalized and
used to analyze the running examples. In Section 5 more experimental results are presented. Finally,
Section 6 discusses the related work, and Section 7 concludes.

1.1. Running Examples

Throughout all the article, we will always refer to the two examples reported in Figures 1(a) and
1(b).

The first Java program, prog1, is taken from [18], and it dynamically builds a SQL query by
concatenating several strings. One of these concatenations applies only if a given input value,
unknown at compile time, is not null. We are interested in checking if the SQL query resulting
by the execution of such code is always well formed. For the sake of readability, we will use some
shortcuts to identify the string constants of this program, as reported in Table I.

†The article is a fully revised and extended version of [7]

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

A SUITE OF ABSTRACT DOMAINS FOR STATIC ANALYSIS OF STRING VALUES 3

Table I. Shortcuts of string constants in prog1

Name String constant
s1 “SELECT ′$′ || (RETAIL/100) FROM INVENTORY WHERE ”
s2 “WHOLESALE > ”
s3 “ AND ”
s4 “SELECT TYPECODE, TYPEDESC FROM TYPES

WHERE NAME = ′fish′ OR NAME = ′meat′”
s5 “TYPE IN (”
s6 “); ”

The second program, prog2, modifies a string inside a while loop whose condition cannot be
statically evaluated. Intuitively, this program produces strings of the form “0na1n”.

1.2. Abstract Interpretation

Abstract interpretation is a theory to define and soundly approximate the semantics of a program
[8, 9], focusing on some runtime properties of interest. Usually, each concrete state is composed by
a set of elements (e.g., all the possible computational states), that is approximated by a unique
element in the abstract domain. Formally, the concrete domain ℘(D) forms a complete lattice
〈℘(D),⊆, ∅,D,∪,∩〉. On this domain, a concrete semantics S is defined. In the same way, an
abstract semantics is defined, and it is aimed to approximate the concrete one in a computable
way. Formally, the abstract domain A has to form a complete lattice 〈A,≤A,⊥A,>A,tA,uA〉. The
concrete and abstract domains are related by a concretization γA and an abstraction αA functions,
and, in order to obtain a sound analysis, these have to form a Galois connection. Formally,
〈℘(D),⊆〉 −−−→←−−−αA

γA 〈A,≤A〉. One function univocally identifies the other, and in the rest of the paper
we will focus on concretization-based Galois connection, and in particular on the following theorem
(Proposition 7 of [10]).

Theorem 1.1 (Concretization-based Galois connection)
Let the concretization function γA : A→ ℘(D) be a complete meet preserving map. Define the
abstraction function by αA = λY. uA {z : γA(z) ⊆ Y}.

If αA is well-defined then 〈℘(D),⊆〉 −−−→←−−−αA

γA 〈A,≤A〉.

When abstract domains do not satisfy the ascending chain condition, a widening operator ∇A
is required in order to guarantee the convergence of the fixed point computation. This is an upper
bound operator such that for all increasing chains a0 ≤A . . . an ≤A . . . the increasing chain defined
as w0 = a0, . . . ,wi+1 = wi∇Aai+1 converges after a finite number of steps [5].

An abstract semantics S is a sound approximation of the concrete one if ∀a ∈ A : γA(SJaK) ⊇
SJγA(a)K.

2. SYNTAX

Different languages define different operators on strings, and usually each language supports a
huge set of such operators: in Java 1.6 the String class contains 65 methods and 15 constructors,
System.Text in .Net contains about 12 classes that work with Unicode strings, and PHP provides
111 string functions. Considering all these operators would be quite verbose, and in addition the
most part of them perform similar actions using slightly different data. We restrict our focus on a
small but representative set of common operators. We chose these operators analyzing some case
studies, and they are supported by all the mainstream programming languages. Other operators

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

4 G. COSTANTINI ET AL.

Table II. String operators in Java , C# and PHP

Operator Java C# PHP
new String(str) new String(str) or “str” new String(str) or “str” “str”
concat(s1, s2) s1.concat(s2) or s1 + s2 string.concat(s1,s2) or s1+s2 s1 . s2
substringeb(s) s.substring(b, e) s.substring(b, e) substr(s, b, e-b)
containsc(s) s.contains(c) s.contains(c) preg match(c, s)

can be easily added to our semantics. For each operator, this would mean to define its concrete
semantics, and its approximations on the different domains we will introduce.

Common operations or tests made by programs on string values are the following:

• new String(str) (where str is a sequence of characters) creates a new constant string;
• concat(s1, s2) (where s1 and s2 are strings) concatenates two strings. Note that the

concatenation operation can also be written with the + operator: concat(s1, s2) is the same
as s1+ s2.

• substringeb(s) (where s is a string, and b and e are integer values representing the first and
last index to use for the substring creation) extracts a substring from a given string;

• containsc(s) (where s is a string and c is a character) checks if a string contains a specific
character.

Another common operation is the reading of some input from the user with the readLine()
statement, but we do not include this operator because its abstract semantics is the same in any
abstract domain we could define, i.e. it simply returns the top element > of the considered domain.
Also, note that here we considered the operator containsc which checks if a certain character is
contained in a string, but in [6] we presented the semantics of the extended version of this operator,
i.e., containsseq which checks if a certain sequence of characters seq is contained in a string. In
[6] we also presented two additional operators, i.e. indexOfc and lastIndexOfc.

In Tables II we present the syntax of the corresponding string operations in three commonly used
programming languages, i.e. Java, C#, PHP.

2.1. Notation

We will omit the quotation marks (“ ”) when writing strings and the context is not ambiguous (e.g.,
abc instead of “abc”). Similarly, we will omit the apices (′) when writing characters (e.g., a instead
of ′a′). In addition, we define here some notation which we will use throughout the article.

Let char(s) be a function that returns the set of characters contained in the string s in input, while
charAt i(s) is a function that returns the character at index i in s.

Let trunc(s, n) be a function which, given a string s and a positive number n, returns the
truncation of s at index n, i.e. all characters from index n onwards are removed from the string.
Note that, after the application of trunc(s, n), the resulting string is made by n characters.

Given a finite set of elements A, A∗ is the set containing all ordered sequences of elements in A
(that is, A∗ = {a1 · · · an : ∀i ∈ [1..n] : ai ∈ A}).

Given a sequence of characters s, we use the notation s[i · · · j] to indicate the subsequence starting
at s[i] and ending at s[j] (extremes included).

Given two lists l1, l2 of any kind, let concatList(l1, l2) be the function that returns their
concatenation.

3. CONCRETE DOMAIN AND SEMANTICS

3.1. Concrete Domain

Our concrete domain is simply made of sets of strings. Given an alphabet K, that is a finite set of
characters, we define strings as sequences of characters. Formally, S = K∗

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

A SUITE OF ABSTRACT DOMAINS FOR STATIC ANALYSIS OF STRING VALUES 5

Table III. Concrete semantics

SJnew String(str)K() = {str}
SJconcatK(S1,S2) = {s1s2 : s1 ∈ S1 ∧ s2 ∈ S2}
SJsubstringebK(S1) = {cb..ce : c1..cn ∈ S1 ∧ n ≥ e ∧ b ≤ e}

BJcontainscK(S1) =

 true if ∀s ∈ S1 : c ∈ char(s)
false if ∀s ∈ S1 : c /∈ char(s)
>B otherwise

A string variable in our program could have different values in different executions, and our goal
is to approximate all these values (potentially infinite, e.g., when dealing with user input) in a finite,
computable, and efficient manner. Our concrete lattice, aimed at formalizing the run-time behaviors
of a program, is made of sets of strings: the powerset of S, that is the set containing all the subsets
of S, ℘(S). The partial order is then the set inclusion ⊆.

The other lattice operators are induced by ⊆. Therefore, the least upper bound (lub) corresponds
to set union ∪, and the greatest lower bound (glb) corresponds to set intersection ∩. Finally, the top
element > is the set S (a superset of any subset of S), while the bottom element ⊥ is ∅ (a subset of
any other set).

3.2. Concrete Semantics

The concrete semantics of the language introduced in Section 2 is formalized in Table III.
For the first three statements, we define the semantics S that, given the statement and eventually

some sets of concrete string values in S (containing the values of the arguments of the statement),
returns a set of concrete strings resulting from that operation. In particular, (i) new String(str)
returns a singleton containing str, (ii) concat returns all the possible concatenations of a string
taken from the first set and a string taken from the second set (we denote by s1s2 the concatenation
of strings s1 and s2), and (iii) substringeb returns all the substrings from the b-th to e-th character
of the given strings. Note that if one of the strings is too short, there is no substring for it in the
resulting set, since this would cause a runtime error.

For containsc we define a particular semantics B : ℘(S)→ {true, false,>B}. Given a set of
strings, the semantics of this operator returns true if all the strings contain the character c, false
if none contains this character, and >B otherwise. This special boolean value represents a situation
in which the boolean condition may be evaluated to true some times, and to false other times,
depending on the string in S1 we are considering. Therefore, we define a partial order ≥B over these
values such that (i) ∀b ∈ {true, false,>B} : >B ≥B b, (ii) true ≥B true, and (iii) false ≥B false.

4. ABSTRACT DOMAINS AND SEMANTICS

Before starting the construction of abstract domains for strings, we have to ask ourselves some
questions: what is a string made of? What is the relevant information contained in a string? How
can we approximate it in an efficient way? At the beginning of Section 3 we already answered the
first question. The other two questions arise from the fact that it is impossible to track both sound
and complete information about all possible executions at compile time. It is thus necessary to
introduce some kind of approximation. We want to track information precise enough to efficiently
analyze the behaviors of interest (considering the string operators we defined in Section 2). So
our purpose is to approximate strings as much as possible, while preserving information we deem
relevant. Therefore, we will have to make compromises. The first level of approximation we will
introduce is a representation in which we maintain all the information we have about characters
inclusion but nothing about order (Section 4.1). This approximation would behave well in programs
which use string operators like contains. The second kind of representation we will define keeps
some information about the order but not about inclusion in itself (e.g., a string which begins with

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

6 G. COSTANTINI ET AL.

an “a” and ends with a “b”, but nothing about other characters which the string could contain). This
representation (Section 4.2) could be particularly useful for programs which use the substring

operator. Finally, we will present abstractions that track information on both character inclusion and
order (Sections 4.3 and 4.4).

The domains introduced in Sections 4.3 and 4.4 are strictly more precise than the ones presented
in Sections 4.1 and 4.2, but they are less efficient as well. Nevertheless, in some contexts the less
precise domains would be precise enough to prove some properties of interest, while in other cases
we would need the more complex domains. Therefore, one can tune the analysis at different levels
of precision and efficiency by choosing different domains.

4.1. Character Inclusion

The first abstract domain approximates strings with the characters we know the strings surely
contain, and ones that they could contain. This information could be particularly useful if the indices
extrapolated from a string with operators like indexOf(c) could be used to cut the string (because
it is interesting to know if the index is invalid, i.e., −1).

In this domain, denoted by CI, a string will be represented by a pair of sets, the set of certainly
contained characters C and the set of maybe contained characters MC:

CI = {(C,MC) : C,MC ∈ ℘(K) ∧ C ⊆ MC} ∪ ⊥CI

Partial order The partial order≤CI on CI is defined by (C1,MC1) ≤CI (C2,MC2)⇔ (C1,MC1) =

⊥CI ∨ (C1 ⊇ C2 ∧MC1 ⊆ MC2). This is because the more information we have on the string (that
is, the more characters are certainly contained and the fewer characters are maybe contained), the
fewer strings we are representing. Consequently, the top element of the lattice is >CI = (∅,K),
while the bottom element of the lattice is defined as ⊥CI = {(C,MC) : C * MC}.

Least upper bound and greatest lower bound The definition of these two operators is induced by
the definition of the partial order. Formally, the least upper bound is defined by tCI(v1, v2) =
tCI((C1,MC1), (C2,MC2)) = (C1 ∩ C2,MC1 ∪MC2).

Similarly, the greatest lower bound, instead, is defined by:

uCI(v1, v2) = uCI((C1,MC1), (C2,MC2)) =

{
(C1 ∪ C2,MC1 ∩MC2) if C1 ⊆ MC2 ∧ C2 ⊆ MC1

⊥CI otherwise

The fact that tCI and uCI are the least upper bound and the greatest lower bound operator
respectively follows from basic properties of set union and intersection.

Lemma 4.1
The abstract domain CI is a complete lattice.

Proof
The proof follows straightforwardly from the fact that, for any set C, 〈℘(C),⊆〉 and 〈℘(C),⊇〉 are
both complete lattices.

Widening operator The widening operator ∇CI : (CI × CI)→ CI is defined by
(C1,MC1)∇CI(C2,MC2) = (C1,MC1) tCI (C2,MC2) because in domains with finite height
the least upper bound operator is also a widening operator since it converges in finite time. Our
domain has finite height, since the height of the powerset lattice of a set S based on ⊆ or ⊇ is
|S|+ 1, and we always consider only finite alphabets.

Abstraction and concretization functions The concretization function maps an abstract element to
a set of strings. Given an abstract element (C,MC), the resulting strings will have to (i) contain at
least all the characters in C, and (ii) contain at most the characters in MC. This is defined as follows:

γCI(C,MC) = {s : c1 ∈ C⇒ c1 ∈ s ∧ c2 ∈ s⇒ c2 ∈ MC}

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

A SUITE OF ABSTRACT DOMAINS FOR STATIC ANALYSIS OF STRING VALUES 7

Theorem 4.2
Let the abstraction function αCI be defined by αCI = λY. uCI {(C,MC) : γCI((C,MC)) ⊆ Y}.

Then 〈℘(S),⊆〉 −−−−→←−−−−
αCI

γCI 〈CI,≤CI〉.

Proof
By Theorem 1.1 we only need to prove that γCI is a complete meet morphism. Formally, we have
to prove that γCI(

d
CI

(C,MC)∈X
(C,MC)) =

⋂
(C,MC)∈X γCI(C,MC).

γCI(
d
CI

(C,MC)∈X
(C,MC))

by Definition of uCI
= γCI(

⋃
(C,MC)∈X C,

⋂
(C,MC)∈X MC)

by Definition of γCI
= {s : c1 ∈

⋃
(C,MC)∈X C⇒ c1 ∈ s ∧ c2 ∈ s⇒ c2 ∈

⋂
(C,MC)∈X MC}

by logic rules of set theory
= {s : ∀(C,MC) ∈ X : c1 ∈ C⇒ c1 ∈ s ∧ c2 ∈ s⇒ c2 ∈ MC}
by Definition of ∩
=
⋂

(C,MC)∈X{s : c1 ∈ C⇒ c1 ∈ s ∧ c2 ∈ s⇒ c2 ∈ MC}
by Definition of γCI
=
⋂

(C,MC)∈X γCI(C,MC)

Semantics Table IV defines the abstract semantics (in the abstract domain CI) of the operators
introduced in Section 2. We denote by SCI and BCI the abstract counterparts of S and B,
respectively.

When we evaluate a string constant (new String(str)), we know that the characters that are
surely or maybe included are exactly the ones that appear in the string str.

The concat operator takes in input two strings and concatenates them. If a character appears (or
could appear) in one of the two input strings, then it will appear (or it could appear) in the resulting
string too. For this reason, we employ set union.

The substring operator returns a new string that is a substring of the string s in input. The MC1

set remains the same, while the only sound approximation of the certainly contained characters is ∅,
because we do not know the position of the certainly contained characters inside s.

The contains operator returns true if and only if the string in input (let it be s) contains the
specified character (c). Its semantics is quite precise, as it checks if a character is surely contained
or not contained respectively through C1 and MC1.

Theorem 4.3 (Soundness of the abstract semantics)
SCI and BCI are sound over-approximations of S and B, respectively. Formally, γCI(SCIJsK(IC)) ⊇
{SJsK(c) : c ∈ γCI(IC)} and BCIJsK(IC) ≥B {BJsK(c) : c ∈ γCI(IC)}.

Proof
We prove the soundness separately for each operator.

Table IV. The abstract semantics of CI

SCIJnew String(str)K() = (char(str), char(str))

SCIJconcatK((C1,MC1), (C2,MC2)) = (C1 ∪ C2,MC1 ∪MC2)

SCIJsubstringebK((C1,MC1)) = (∅,MC1)

BCIJcontainscK((C1,MC1)) =

 true if c ∈ C1

false if c /∈ MC1

>B otherwise

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

8 G. COSTANTINI ET AL.

• γCI(SCIJnew String(str)K()) ⊇ {SJnew String(str)K()} follows immediately from the
definition of SCIJnew String(str)K() and of γCI .

• Consider the binary operator concat. Let a1 = (C1,MC1), a2 = (C2,MC2) be two
abstract states. We have to prove that γCI(SCIJconcatK(a1, a2)) ⊇ {SJconcatK(c1, c2) : c1 ∈
γCI(a1) ∧ c2 ∈ γCI(a2)}. A generic element c1 ∈ γCI(a1) is a string which contains at least
one occurrence of each character of C1 and which characters all belong to MC1; the same
goes for c2 ∈ γ(a2). The concatenation of c1 and c2 then, by definition of S, produces a
string which contains at least one occurrence of each character of C1 and of C2, and which
characters all belong to MC1 or MC2. Then, this string belongs to γCI(SCIJconcatK(a1, a2)),
because SCIJconcatK(a1, a2) = (C1 ∪ C2,MC1 ∪MC2) by definition of SCI . Then γCI(C1 ∪
C2,MC1 ∪MC2) contains, by definition of γCI , all strings which contain at least one
occurrence of each character of C1 ∪ C2, and which characters all belong to MC1 ∪MC2.

• Consider the unary operator substringeb. Our theorem trivially holds since the abstract
semantics returns the top element of CI, that concretizes to all the possible strings. This
trivially overapproximates any possible result of the concrete semantics.

• Consider the unary operator containsc and let a = (C,MC) be an abstract state. Considering
the character c, we have three cases:

– If c ∈ C, all the strings belonging to γCI(a) contain at least one occurrence of c by
definition of γCI . Then, the concrete semantics returns always true on this set. On the
other hand, the abstract semantics on a returns the true value of the boolean domain, so
it soundly approximates the concrete semantics.

– If c ∈ MC and c /∈ C, then the abstract semantics returns >B that trivially approximates
any possible result of the concrete semantics.

– If c /∈ C ∧ c /∈ MC, no string belonging to γ(a) will contain the character. The concrete
semantics will therefore return always false, and the abstract semantics on a returns the
false value of the boolean domain as well.

Running Example Consider now the examples introduced in Section 1.1.
The results of the analysis of prog1 using CI are depicted in Figure 2(a). At the beginning, the

variable query is related to a state that contains the abstraction of s1. The value of l is unknown,
so we must compute the least upper bound between the abstract values of query after instructions
1 and 4. The set C of query after instruction 4 contains all the character of s1, s2 and s3, because
they are all concatenated; the MC set instead is K because of the concatenation with l. Then, after
the if statement (line 5) the abstract value of query contains the abstraction of s1 in C, and K in
MC (because of l). The variable per is related (line 6) to a state that contains the abstraction of s4.
At line 8, query is concatenated to s4, s5 and s6. Then, at the end of the given code, query surely

#I Var CI
1 query αCI(s1)
3 l (∅,K)
4 query (π1(αCI(s1)) ∪ π1(αCI(s2))∪

π1(αCI(s3)),K)
5 query (π1(αCI(s1)),K)
6 per αCI(s4)
8 query (π1(αCI(s1)) ∪ π1(αCI(s4))∪

π1(αCI(s5)) ∪ π1(αCI(s6)),K)
(a) Analysis of prog1

#I Var CI
1 x ({a}, {a})
3 x ({0, a, 1}, {0, a, 1})
4 x ({a}, {0, a, 1})

(b) Analysis of prog2

Figure 2. The results of CI

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

A SUITE OF ABSTRACT DOMAINS FOR STATIC ANALYSIS OF STRING VALUES 9

contains the characters of s1, s4, s5, and s6, and it may contain any character, since we possibly
concatenated in query an input string (the l variable).

As for prog2, in Figure 2(b) we see that after instruction 1 x surely contains the character ‘a’.
After the first iteration of the loop (line 3), x surely contains ‘a’, ‘0’ and ‘1’. At line 4 we report
the least upper bound between the value of x before entering the loop (line 1) and the value after
the loop (line 4): variable x surely contains the character ‘a’, and it also may contain the characters
‘0’ and ‘1’. This is the final result of the program. In fact, we do not know the value of cond, so
we cannot know beforehand how many iterations will be done by the loop. In such cases, we have
to use the widening to reach the convergence. Here the analysis converges immediately after the
second iteration, since the abstract value obtained after two iterations (that is, ({0, a, 1}, {0, a, 1}))
is the same as the one obtained after one iteration.

4.2. Prefix and Suffix

First of all, we define a domain that abstracts strings through their prefix. We represent a prefix by
a sequence of characters followed by an asterisk ∗. The asterisk represents any string (the empty
string ε included). For example, abc∗ represents all the strings which begin with abc, including abc
itself. Since the asterisk ∗ at the end of the representation is always present, we do not include
it in the domain and consider abstract elements made only of sequence of characters. Formally,
PR = K∗ ∪ ⊥PR.

Partial order The partial order is defined by:

p1 ≤PR p2 ⇔ p1 = ⊥PR ∨ (len(p2) ≤ len(p1) ∧ (∀i ∈ [0, len(p2)− 1] : p2[i] = p1[i]))

An abstract string S is≤PR than another abstract string T if T is a prefix of S or if S is the bottom
⊥PR of the domain. The top element is ∗, since ∗ is the empty prefix, which is prefix of any other
prefix. Instead the bottom value is the special element ⊥PR.

Note that this domain has an infinite height. In fact, given any prefix, we can always add a
character at the end of it, thus obtaining a new prefix, longer (and smaller according to the order
≤PR) than the first one. However, the domain respects the ascending chain condition (ACC), and
we do not need to define a widening operator to ensure the convergence of the analysis. In fact,
given a certain prefix p, where len(p) = n, the ascending chain starting at p is p→ p1 → p2 →
· · · → pn where p1 = trunc(p, n− 1) (that is, p1 corresponds to p without its last character), p2 =
trunc(p1, n− 2), p3 = trunc(p2, n− 3), and so on, until we reach pn = trunc(pn−1, n− n) =
trunc(pn−1, 0) = ε. pn corresponds to an empty prefix: it is ∗, which represents any string, the top
of our domain. Thus, given any prefix p of length n (which is finite), the ascending chain starting at
p has finite length n+ 1.

Least upper bound and greatest lower bound Given two prefixes, their least upper bound tPR is
their longest common prefix. If the two prefixes do not have anything in common, the least upper
bound is ∗ (the prefix is empty). Instead, the greatest lower bound operator is defined by:

uPR(p1, p2) =

 p1 if p1 ≤PR p2
p2 if p2 ≤PR p1
⊥PR otherwise

Lemma 4.4
tPR is the least upper bound operator.

Proof
Let p = p1 tPR p2 be the least upper bound of p1 and p2. Then we have to prove the two following
conditions:

1. p1 ≤PR p ∧ p2 ≤PR p straightforwardly holds, since p is the longest common prefix between
p1 and p2 by definition of tPR, so it is a prefix of both. This implies p1 ≤PR p ∧ p2 ≤PR p
by definition of ≤PR.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

10 G. COSTANTINI ET AL.

2. p ≤PR p′ ∀ upper bound p′ of p1 and p2. By definition of the lattice structure of PR, p′ has
to be a prefix of both p1 and p2. Since p is the longest common prefix between p1 and p2 by
definition of tPR, we know for sure that p′ cannot be longer than p: p′ is then a prefix of p,
and so we proved p ≤PR p′ by definition of ≤PR.

Lemma 4.5
uPR is a greatest lower bound operator.

Proof
Let p = p1 uPR p2 be the greatest lower bound of p1 and p2. Then we have to prove the two
following conditions:

1. p ≤PR p1 ∧ p ≤PR p2 comes straightforwardly from the definition of uPR.
2. p′ ≤PR p ∀ lower bound p′ of p1 and p2. If p′ = ⊥PR, by definition of ≤PR it surely holds

that p′ ≤CI p. Otherwise, it must hold that both p1 and p2 are prefixes of p′ by definition of the
lattice structure of PR. Then, it holds that p1 and p2 are one the prefix of the other one (since
they are both prefixes of the same string p′). Suppose that p1 is the prefix of p2 (the other
case is symmetrical): then, p2 ≤PR p1 by definition of ≤PR. If this is the case, by definition
of uPR, we also know that p = p2. Since p′ ≤PR p2 by hypothesis and p = p2, we get that
p′ ≤PR p by definition of ≤PR.

Lemma 4.6
The abstract domain PR is a complete lattice.

Proof
The order based on prefixes is a partial order. Informally: (i) a string is always a prefix of itself
(reflexivity); (ii) if a string is prefix of another one and viceversa, then the two strings have to be
the same string (antisymmetry); (iii) if a string s1 is prefix of another string s2 and s2 is prefix of
another string s3, then s1 is also a prefix of s3 (transitivity).

The fact that tPR and uPR are the least upper bound and the greatest lower bound operators is
proved by the two previous Theorems.

Abstraction and concretization functions The concretization function is defined as follows:

γPR(p) =

{
∅ if p = ⊥PR
{s : s ∈ K∗ ∧ len(s) ≥ len(p) ∧ ∀i ∈ [0, len(p)− 1] : s[i] = p[i]} otherwise

The abstract value p maps to the set of the strings which begin with the sequence of characters
represented by p.

Theorem 4.7
Let the abstraction function αPR be defined by αPR = λY. uPR {p : γPR(p) ⊆ Y}.

Then 〈℘(S),⊆〉 −−−−−→←−−−−−
αPR

γPR 〈PR,≤PR〉.

Proof
By Theorem 1.1 we only need to prove that γPR is a complete meet morphism. Formally, we have
to prove that γPR(

d
PR

(p)∈X
p) =

⋂
p∈X γPR(p).

By definition of
d
PR, we can have only the two following cases:

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

A SUITE OF ABSTRACT DOMAINS FOR STATIC ANALYSIS OF STRING VALUES 11

Table V. The abstract semantics of PR and SU

Statement X = PR X = SU
SXJnew String(str)K() str str

SXJconcatK(p1, p2) p1 p2

SXJsubstringebK(p)

 p[b · · · e− 1] if e ≤ len(p)
p[b · · · len(p)− 1] if e > len(p) ∧ b < len(p)
ε otherwise

ε

SXJcontainscK(p)
{

true if c ∈ char(p)
>B otherwise

{
true if c ∈ char(p)
>B otherwise

1. ∃p′ ∈ X : ∀p ∈ X : p′ ≤PR p. Then we have the following inference chain:

γPR(
d
PR

(p)∈X
p)

by Definition of uPR
= γPR(p

′)
by Definition of γPR
= {s : s ∈ K∗ ∧ len(s) ≥ len(p′) ∧ ∀i ∈ [0, len(p′)− 1] : s[i] = p′[i]}
by Definition of ≤PR since ∀p ∈ X : p′ ≤PR p
=
⋂

p∈X{s : s ∈ K∗ ∧ len(s) ≥ len(p) ∧ ∀i ∈ [0, len(p)− 1] : s[i] = p[i]}
by Definition of γPR
=
⋂

p∈X γPR(p)

2. otherwise, γPR(
d
PR

(p)∈X
p) = γPR(⊥PR) = ∅. Then

⋂
p∈X γPR(a) = ∅, since there is no

concretized strings in common among abstract states that represent different prefixes.

Similarly, we can track information about the suffix of a string. We introduce another abstract
domain, SU , where a string is approximated by the end of a certain sequence of characters, while
we do not track anything about the string before such suffix. The notation and all the operators of
this domain are dual to those of PR domain.

The domain definition is: SU = K∗ ∪ ⊥SU . As for the partial order, s1 ≤SU s2 if s2 is a suffix of
s1 or if s1 is the bottom value of the domain, ⊥SU . The top element >SU is ∗, while the bottom
value is the special element ⊥SU . The least upper bound operator tSU , dually to tPR, is defined
as the longest common suffix between the two suffixes in input. As for the greatest lower bound,
if the two suffixes are not comparable with respect to the order ≤SU (e.g., ∗a and ∗b), then the
string sets they represent have nothing in common and their glb is thus⊥SU . If they are comparable,
the smaller element between the two is the greatest lower bound. SU is a domain with infinite
height, just like PR. In fact, given any suffix, we can always add a character at its beginning, thus
obtaining a new suffix, longer (therefore smaller, according to the order ≤SU) than the initial one.
As it happened with PR, though, this domain respects the ACC condition, and it does not need
a widening operator. The concretization function maps an abstract value a to the set of the strings
which end with the sequence of characters represented by a.

All the proofs for this domain are symmetrical to those presented for PR .

Semantics Table V defines the abstract semantics on PR and SU . Let us explain in detail the
semantics of each operator. When we evaluate a constant string value (new String(str)), the most
precise suffix and prefix are the string itself. When we concatenate two strings, we create a new
string which starts with the first one and ends with the second one. Then, we consider as prefix
and suffix of the resulting string the abstract value of the left and right operand, respectively. The
semantics of substringeb is>SU in SU , since we do not know how many characters there are before

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

12 G. COSTANTINI ET AL.

the suffix (b and e are relative to the beginning of the string). With PR, instead, we do know how
the string begins, so we can be more precise if b (and eventually e) are smaller than the length of
the prefix we have. We have to distinguish three different cases: (i) if e ≤ len(p), the substring is
completely included in the known prefix; (ii) if e > len(p) but b < len(p), only the first part of the
substring is in the prefix; (iii) if b ≥ len(p), the substring is completely further the prefix and we
return>PR. The semantics of containsc returns true iff c is contained in the prefix or in the suffix,
and >B otherwise, since we have no information at all about which characters are after the prefix or
before the suffix.

Theorem 4.8 (Soundness of the abstract semantics)
SPR and BPR are a sound overapproximation of S and B, respectively. Formally,
γPR(SPRJsK(p)) ⊇ {SJsK(c) : c ∈ γPR(p)} and γPR(BPRJsK(p)) ≥B {BJsK(c) : c ∈ γPR(p)}.

Proof
We prove the soundness separately for each operator. We only prove the soundness for the PR
domain: the proof for SU are simply their mirror image.

• γPR(SPRJnew String(str)K()) ⊇ {SJnew String(str)K()} follows immediately from the
definition of SPRJnew String(str)K() and of γPR.

• Consider the binary operator concat. Let p1 and p2 be two prefixes. We have to prove
that γPR(SPRJconcatK(p1, p2)) ⊇ {SJconcatK(c1, c2) : c1 ∈ γPR(p1) ∧ c2 ∈ γPR(p2)}. A
generic element c1 ∈ γPR(p1) is a string which starts with the prefix p1; the same goes for
c2 ∈ γPR(p2). The concatenation of c1 and c2 produces a string which starts with p1 and
afterwards contains p2 (in an unknown position) by definition of S. Then, this string belongs
to γPR(SPRJconcatK(p1, p2)), since SPRJconcatK(p1, p2) = p1 by definition of SPR, and
γPR(p1) returns all the strings which start with p1.

• Consider the unary operator substringeb and let p be an abstract state. A generic string
c ∈ γPR(p) is a string which starts with p by definition of γPR. We may have only the
following three cases:

– if e ≤ len(p), the substring of c from the b-th character to the e-th character is
completely known (since the prefix p is longer than e characters) and the result of the
concrete semantics applied to c is the substring from the bth to the e− 1th character.
SPRJsubstringebK(p) returns the prefix composed by the substring from p[b] to p[e− 1]
by definition of SPR. The concretization of this result returns all the strings starting
with the substring from p[b] to p[e− 1] by definition of γPR, thus it contains also such
substring that is the result of the concrete semantics.

– if e > len(p) ∧ b < len(p), since c starts with p by definition of γPR, we surely know
that the substring of c from the b-th character to the e-th character starts with the
characters from p[b] to p[len(p)− 1] by definition of S. SPRJsubstringebK(p) returns
the prefix made by the characters from p[b] to p[len(p)− 1], thus representing all strings
starting with such characters by definition of γPR. Therefore, it surely contains also the
resulting substring of c.

– otherwise, SPRJsubstringebK(p) returns ε, that is, the top element of PR, that trivially
overapproximates any possible result of the concrete semantics.

• Consider the unary operator containsc and let p be an abstract prefix. Regarding the character
c, we have two possible cases:

– If c ∈ char(p), all the strings belonging to γPR(p) contain at least one occurrence of
c, because they start with the prefix p by definition of γPR, and such prefix contains
the character c. Then, the concrete semantics returns always true, and the abstract
semantics returns the same result.

– Otherwise, c /∈ char(p), and the abstract semantics returns >B, that trivially
overapproximates any possible result of the concrete semantics.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

A SUITE OF ABSTRACT DOMAINS FOR STATIC ANALYSIS OF STRING VALUES 13

#I Var PR SU
1 query s1 s1
3 l ε ε
4 query s1 s3
5 query s1 “ ”
6 per s4 s4
8 query s1 s6

(a) Analysis of prog1

#I Var PR SU
1 x a a
3 x 0 1
4 x > >

(b) Analysis of prog2

Figure 3. The results of PR and SU

Running Example The results of the analysis using the prefix and suffix domains on the two running
examples are reported by Figure 3.

For prog1, at line 1, query contains the whole string s1 as both prefix and suffix. l is an input,
so its prefix and suffix are both empty. After the concatenation at line 4, the prefix will be equal to
s1, the suffix to s3 because we keep the prefix of the first string being concatenated and the suffix of
the last one. Since the value of l is unknown, we must compute the least upper bound between the
abstract values of query after lines 1 and 4. Then, at line 5, the prefix is s1 and the suffix is a space
character (the longest common suffix between s1 and s3). The variable per is associated at line 6 to
s4 for both the prefix and the suffix. At the end of the analysis, from the concatenation of line 8 we
get that the prefix of query is string s1 and its suffix is s6, although we lose information about what
there is in the middle.

For prog2, before entering the loop we know that the prefix and suffix of x are both an ‘a’
character. After the first iteration of the loop we get that the prefix of x is ‘0’ and its suffix is ‘1’.
The least upper bound of such state with the state before the loop (prefix and suffix are both an ‘a’
character), unfortunately goes to > (the longest common prefixes and suffixes are empty). Then, we
reached convergence after just one iteration (since the least upper bound of any element with the >
value returns always the > value), but we lost all the information.

4.3. Bricks

The domains already introduced do not track precise information about the order of characters. In
fact, in CI (Section 4.1) each character of the abstract representation was completely unrelated
with regard to the others, while in the PR and SU domains (Section 4.2) we also considered
order, but limited at the beginning (or at the end) of the string. Instead, the abstract domain
we will define in this Section will consider both inclusion and order among characters, but not
limited to the beginning or the end of the string. Therefore, the information tracked by this domain
could be adopted to prove more sophisticated properties than the previous domains (e.g., the well-
formedness of SQL queries). Obviously, this comes at a price: this abstract domain (called BR) is
more expressive than CI, PR, and SU . BR is based on the idea of identifying a string through a
regular expression, but full regular expressions are too much complex for our purposes, and thus we
will approximate them.

In BR, a string is approximated by a sequence of bricks. A single brick is defined by B =
[℘(S)]min,max, where min and max are two integer positive values and S is the set of all strings. A
brick represents all the strings which can be built through concatenation of the given strings (a subset
of S), taken between min and max times altogether. For instance, [{“mo”, “de”}]1,2 corresponds to
{mo, de,momo, dede,mode, demo}

Elements in BR represent strings as ordered lists of bricks. For instance,
[{“straw”}]0,1[{“berry”}]1,1 = {berry, strawberry} since [{“straw”}]0,1 concretizes to
{ε, “straw”} and [{“berry”}]1,1 to {“berry”}. Formally, concatenation between bricks is
defined as:

B1B2 = {αβ : α ∈ strings(B1) ∧ β ∈ strings(B2)}

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

14 G. COSTANTINI ET AL.

where strings(B) represents all the strings which can be built from the single brick B.
Since a particular set of strings could be represented by more than one combination of bricks

(for example, abc is represented by [{abc}]1,1 but also by [{a}]1,1[{b}]1,1[{c}]1,1, etc...), we adopted
a normalized form. The normalization algorithm is based on five normalizing rules. The normal
representation can be seen as the fixpoint of the application of the five rules to a given representation.
We call normBricks(L) the function which, given a list of bricks L, returns its normalized version.
The five normalization rules are as follows ‡:

Rule 1 remove unnecessary bricks, i.e., bricks of the form: [∅]0,0, since they represent only the empty
string, which is the neutral element of the concatenation operation.

Rule 2 merge successive bricks with the same indices, min = 1 and max = 1, in a new single brick
where the indices remain the same (min = max = 1), and the strings set is the concatenation
the two original strings sets (i.e., each string is made by the concatenation of one string
from the first set and one from the second set, in this order). For example, the two bricks
B0 = [{a, cd}](1,1) and B1 = [{b, ef}](1,1) become, after the application of the second rule,
the new single brick B′ = [{ab, aef, cdb, cdef}](1,1).

Rule 3 transform a brick in which the number of applications is constant (min = max) into one
in which the indices are 1 (min = max = 1). Formally, a brick of the form B0 = [S0]

(m,m)

becomes the brick B
′
= [S0

m](1,1), where S0
m represents the concatenation of S0 with itself

for m times. For example, B = [{a, b}](2,2) becomes B′ = [{aa, ab, ba, bb}](1,1).
Rule 4 merge two successive bricks in which the set of strings is the same (Si = Si+1) into a single one

modifying the indices. Formally, the bricks Bi = [Si]
(m1,M1) and Bi+1 = [Si]

(m2,M2) become
the new single bricks B = [Si]

(m1+m2,M1+M2).
Rule 5 break a single brick with min ≥ 1 ∧max 6= min into two simpler bricks. More precisely, a

brick of the form Bi = [Si]
(min,max), where min ≥ 1 ∧max 6= min, becomes the concatenation

of Bi1 = [Si
min](1,1) and Bi2 = [Si]

(0,max−min). A simple example is the following one:
the brick B = [{a}](2,5) becomes the concatenation of the two bricks B1 = [{aa}](1,1) and
B2 = [{a}](0,3).

Let us present an example of the normalization process. Consider the bricks list
[{a}](1,1)[{a, b}](2,3)[{a, b}](0,1). First, we can apply the fourth rule to the second and third
brick, merging them because their strings set is the same. We obtain the new bricks list
[{a}](1,1)[{a, b}](2,4). Now we can apply the fifth rule to the second brick ([{a, b}](2,4)), which
gets split into the concatenation of two bricks: [{aa, ab, ba, bb}](1,1) and [{a, b}](0,2). The resulting
bricks list is then: [{a}](1,1)[{aa, ab, ba, bb}](1,1)[{a, b}](0,2). Finally, we can apply the second rule
to the first two bricks, merging them because of their indices range (1, 1). The final bricks list is
then: [{aaa, aab, aba, abb}](1,1)[{a, b}](0,2). We cannot apply any more rules to such representation,
therefore we have reached a normal state.

Note that, in a normalized element of BR, there cannot be two successive bricks with both
min = max = 1. In fact, they would be merged into one single brick by the second rule. Moreover,
we cannot have a brick with min ≥ 1 ∧max ≥ min, since it would be simplified by the third
(if min = max) or fifth (if max > min) rule. In addition, we cannot have bricks with indices
min = max = 0, since they would be removed by the first rule. Thus, every brick of the normalized
list will be in the form [T]1,1 or [T]0,max>0 (where T is a set of strings).

The abstract domain of bricks is defined by BR = normBricks(B∗), that is, the set of all finite
normalized sequences of bricks.

Comparison between lists of bricks In the definition of lattice and semantics operators, we will often
need have to deal with various lists of bricks of different length. However, it is usually convenient
to deal with lists of the same size to define effective operators. When dealing with two abstract
elements, this means to augment the shorter list with some empty bricks (E = [∅](0,0)). In fact,

‡After presenting the concretization function, we will prove the soundness of these normalization rules

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

A SUITE OF ABSTRACT DOMAINS FOR STATIC ANALYSIS OF STRING VALUES 15

empty bricks represent the empty string, and adding empty bricks in any position of a bricks list
will not change the set of strings represented by such bricks list.

A crucial question is where to insert the empty bricks in the shorter list. Let L1 and L2 be two lists
of bricks, and let L1 be the shortest one. Let n1 be the number of bricks of L1, n2 the number of
bricks of L2, and n be their difference (n = n2 − n1). Then, we have to add n empty bricks to L1.
The simplest solution would be to insert all n bricks at the beginning (or end) of L1. However, this
method often induces loss of precision, because it does not consider possible “similarities” between
bricks from the two lists. Hence, we choose to adopt a different and more precise approach. The
idea is that, for each brick of the shorter list, we check if the same brick appears in the other list. If
so, we modify the shorter list by adding empty bricks such that the two equal bricks will appear in
the same position in the two lists. If no pair of equal bricks is found, the algorithm works in a way
that all n empty bricks are added at the beginning of the shorter list. More formally, the algorithm
used to pad the shorter list with empty bricks is as follows:

Algorithm 1 Algorithm for making two lists of bricks of the same size, by padding the shorter one
with empty bricks, where removeHead(L) is a helper function which removes the first value of the
list L in input and L.add(v) is a function which adds the value v at the end of the list L, and E
represents the empty brick

1: function padList(L1, L2)
2: n1 ← length(L1)
3: n2 ← length(L2)
4: n← n2 − n1
5: Lnew ← List.empty
6: emptyBricksAdded← 0
7: for i = 0→ n2 − 1 do
8: if emptyBricksAdded ≥ n then
9: Lnew ← Lnew.add(L1[0])

10: removeHead(L1)
11: else if empty(L1) ∨ L1[0]! = L2[i] then
12: Lnew ← Lnew.add(E)
13: emptyBricksAdded← emptyBricksAdded+ 1
14: else
15: Lnew ← Lnew.add(L1[0])
16: removeHead(L1)
17: end if
18: end for
19: return Lnew
20: end function

The purpose of Algorithm 1 is to build a new list Lnew which has the same length of L2 (assuming
it is the longest one) and contains all bricks of L1 plus some empty bricks E, trying to maximize the
positional correspondences of equal bricks in Lnew and L2. To do this, we process each brick b of L2
(for loop at line 7) and, in the same position of Lnew we put:

• an empty brick E if L1 is empty (i.e., we have already inserted all its bricks in Lnew) or if b
and the first brick of L1 are different (lines 11-13);

• b itself, if the first brick of L1 is equal to b. In this case, we also remove the first brick from
L1, to avoid inserting it multiple times in the new list. (lines 14-16)

When the empty bricks have all been added (i.e., emptyBricksAdded ≥ n), we proceed to insert in
Lnew all remaining bricks in L1, one at a time (lines 8-10).

This padding is particularly useful in order to maximize the number of bricks in the two lists
that are equals and at the same position. For instance, consider the case L1 = [b0; b1; b2] and
L2 = [b3; b0; b1; b4; b5]. The result of the padding is Lnew = [E; b0; b1;E; b2]. We managed to put

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

16 G. COSTANTINI ET AL.

b0 and b1 in the same position as they appear in L2. Thanks to this feature, the lattice and semantic
operator will be in position to obtain precise results traversing the list of bricks only once.

Partial order To define an order on lists of bricks, we have first to define a partial order on single
bricks. ≤B is defined as follows:

[C1]
m1,M1 ≤B [C2]

m2,M2

m
(C1 ⊆ C2 ∧m1 ≥ m2 ∧M1 ≤ M2) ∨ ([C2]

m2,M2 = >B) ∨ ([C1]
m1,M1 = ⊥B)

where >B and ⊥B are two special bricks, greater and smaller than any other brick, respectively.
Given two lists L1 and L2, we augment the shorter list using Algorithm 1 in order to have lists

of the same size. Then, we proceed by extracting one brick from each list and comparing the two
bricks, until we reach the end of the two lists.

Formally, given two lists L1 and L2, we make them have the same size n by applying Algorithm
1, thus obtaining L

′
1 and L

′
2. Then:

L1 ≤BR L2 ⇔ (L2 = >BR) ∨ (L1 = ⊥BR) ∨ (∀i ∈ [0, n− 1] : L
′
1[i] ≤B L

′
2[i])

Lemma 4.9 (≤BR is a partial order)
The order ≤BR is a partial order.

Proof
We refer to [6] for the proofs that ≤BR is reflexive and transitive, and here we prove that it is
antisymmetric. Formally, we must prove that, given two lists of bricks L1 and L2 of the same length
n (otherwise we add empty bricks inside the shorter one through Algorithm 1, without changing the
represented set of strings), it holds:

L1 ≤BR L2 ∧ L2 ≤BR L1 ⇒ L1 = L2

This trivially holds if one of the two abstract states is>BR or⊥BR by definition of≤BR. Otherwise,
since L1 ≤BR L2, we know that ∀i ∈ [0, n− 1] : L1[i] ≤B L2[i] by definition of ≤BR. But we also
know that L2 ≤BR L1, and this means that ∀i ∈ [0, n− 1] : L2[i] ≤B L1[i]. Consider then a generic
pair of bricks L1[i] and L2[i]. Neither of these two bricks can be equal to ⊥B, since otherwise the
abstract state to which it belongs would be equal to ⊥BR and we already excluded this case. If
one brick is equal to >B, then also the other one must be too, otherwise our hypothesis would
not hold. In this case, then, the two bricks are equal. Otherwise (neither brick is top nor bottom),
let L1[i] = [C1]

m1,M1 and L2[i] = [C2]
m2,M2 . Since L1[i] ≤B L2[i], it holds that (C1 ⊆ C2 ∧m1 ≥

m2 ∧M1 ≤ M2). Also, since L2[i] ≤B L1[i], it holds that (C2 ⊆ C1 ∧m2 ≥ m1 ∧M2 ≤ M1). Then:
(i) from C1 ⊆ C2 and C2 ⊆ C1 it follows C1 = C2; (ii) from m1 ≥ m2 and m2 ≥ m1 it follows
m1 = m2; (iii) from M1 ≤ M2 and M2 ≤ M1 it follows M1 = M2. This means that L1[i] = L2[i],
and this is valid for all i ∈ [0, n− 1]. This implies that L1 = L2.

Given an alphabet of characters K, we define the top element >B as the brick [K](0,+∞). Instead,
the bottom element is defined by ⊥B = [∅](m,M) 6=(0,0) ∨ ([S](m,M) ∧M < m) ∨ [S 6= ∅](0,0). The
three possible definitions are all bricks which do not represent any string. They are invalid bricks
and they correspond to ∅. Note that [∅](0,0) is a valid brick which corresponds only to the empty
string ε.

The top element of BR (>BR) is then a list containing only one brick, >B. Since >B represents
all the strings, >BR does too. The bottom element ⊥BR is an empty list (it does not represent any
string at all, not even the empty string) or any list which contains at least one invalid element (⊥B).

The lattice of BR is depicted in Figure 4. For visual clarity we only pictured lists of size one and
we considered the alphabet K = {a, b}.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

A SUITE OF ABSTRACT DOMAINS FOR STATIC ANALYSIS OF STRING VALUES 17

Figure 4. The abstract domain BR with K = {a, b}

Least upper bound and greatest lower bound As we did for the partial order, we define the least
upper bound operator on single bricks at first:⊔

B

([S1]
(m1,M1), [S2]

(m2,M2)) = [S1 ∪ S2]
(m,M)

where m = min(m1,m2) and M = max(M1,M2). For example, the least upper bound between
[{a, b}](1,3) and [{a, c}](0,2) is the brick [{a, b, c}](0,3).

To compute the least upper bound between elements of BR (lists of bricks), we proceed exactly
as we did to define the partial order ≤BR. Given two lists L1 and L2, we make them have the same
size n by using Algorithm 1, thus obtaining L

′
1 and L

′
2. Then, tBR is defined as follows:⊔

BR

(L1, L2) =
⊔
BR

(L
′
1, L
′
2) = LR[0]LR[1] . . . LR[n− 1]

where ∀i ∈ [0, n− 1] : LR[i] =
⊔
B(L
′
1[i], L

′
2[i]).

The greatest lower bound operator works very similarly to the least upper bound one. The glb
operator on single bricks is defined as follows:

l

B

([S1]
(m1,M1), [S2]

(m2,M2)) = [S1 ∩ S2]
(m,M)

where m = max(m1,m2) and M = min(M1,M2). For example, the greatest lower bound between
[{a, b}](1,3) and [{a, c}](0,2) is the brick [{a}](1,2). Note that sometimes the result of the glb is an
invalid brick (for example because the max index is smaller than the min one). To conclude the
description of the glb operator, we have to define how it works with lists of bricks (the elements of
BR). Given two lists L1 and L2, we make them have the same size n by using Algorithm 1, thus
obtaining L

′
1 and L

′
2. Then uBR is defined as follows:

l

BR

(L1, L2) =
l

BR

(L
′
1, L
′
2) = LR[0]LR[1] . . . LR[n− 1]

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

18 G. COSTANTINI ET AL.

where ∀i ∈ [0, n− 1] : LR[i] =
d
B(L
′
1[i], L

′
2[i]). If any element of the sequence LR corresponds to

⊥B, then the entire resulting list should be set to ⊥BR.

Lemma 4.10
tBR is the least upper bound operator.

Proof
Let L be L = L1 tBR L2. Then we have to prove the following two conditions:

1. L1 ≤BR L ∧ L2 ≤BR L. Let us suppose that L1, L2, L are lists of the same size (one of them
could be padded with empty bricks inside it, but empty bricks do not interfere with order
comparisons). Then, for L1 to be smaller than L, it must be that each brick of L1 is smaller (in
the single brick order) than the corresponding brick of L. Let [S1](m1,M1) be the brick of L1
in a generic position i, and [S2]

(m2,M2) be the brick of L2 in the same position. The brick of
L in such position will be, by definition of tBR, [S1 ∪ S2]

(min(m1,m2),max(M1,M2)). The brick
of L1 is smaller than the brick of L, because S1 ⊆ (S1 ∪ S2) ∧m1 ≥ min(m1,m2) ∧M1 ≤
max(M1,M2). The same goes for the brick of L2. Thus, L1 ≤BR L ∧ L2 ≤BR L.

2. L ≤BR L
′ ∀ upper bound L

′
of L1 and L2. As before, suppose that L, L1, L2, and L

′
have all

the same size (otherwise we pad them with empty bricks using Algorithm 1). Since L
′

is an
upper bound of L1 and L2, this means that each brick of L

′
is greater than the corresponding

brick of both L1 and L2. Let [S1]
(m1,M1) be the brick of L1 in a generic position i, and

[S2]
(m2,M2) be the brick of L2 in the same position. Then, the corresponding brick of L

′
(let it be

[S
′
](m

′,M′)) must satisfy (to be an upper bound) the following requirements: (i) S
′ ⊇ (S1 ∪ S2),

(ii) m′ ≤ min(m1,m2), (iii) M′ ≥ max(M1,M2). The brick of L in the same position is defined
as [S1 ∪ S2]

(min(m1,m2),max(M1,M2)) and it is certainly smaller (or equal) than the brick of L
′
,

for definition of ≤B. Since this happens for every brick of L
′

and L, it holds that L ≤BR L
′
.

Lemma 4.11
uBR is the greatest lower bound operator.

Proof
The reasoning is symmetrical to that of the least upper bound (set intersection instead of union, min
instead of max, and so on). In the special case where the glb corresponds to ⊥BR, it is immediate
to prove the two conditions (since ⊥BR is smaller than any other element of the domain, and if the
glb is ⊥BR it cannot exist any other valid lower bound).

Lemma 4.12
BR is a complete lattice.

Proof
A complete lattice is a partially ordered set in which all subsets have both a join and a meet. We
already proved that the order ≤BR is a partial order (Theorem 4.9). We just need to prove that
every subset of abstract elements of BR have both a meet and a join. Let L = {L1, . . . , LN} be a
set of abstract elements in BR . Their meet (greatest lower bound) is a list of bricks which has
the same size n as that of the longest list in L and which bricks Bi(∀i ∈ [1;n]) are defined as
Bi = [

⋂N
j=1 Sij]

(maxN
j=1mij ,minN

j=1Mij), where [Sij]
(mij ,Mij) is the i-th brick of the list Lj . If one of

the lists is shorter than n, it is augmented with empty bricks through Algorithm 1. If any of the
resulting bricks is invalid, the glb becomes bottom.

Their join (least upper bound) is a list of bricks which has the same size n as that of the longest
list in L (the other lists are padded with empty bricks through Algorithm 1 to have the same
size) and which bricks Bi(∀i ∈ [1;n]) are defined as Bi = [

⋃N
j=1 Sij]

(minN
j=1mij ,maxN

j=1Mij), where
[Sij]

(mij ,Mij) is the i-th brick of the list Lj . Theorems 4.10 and 4.11 proved that tBR and uBR are
the least upper bound and the greatest lower bound operators, respectively.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

A SUITE OF ABSTRACT DOMAINS FOR STATIC ANALYSIS OF STRING VALUES 19

Widening operator Let kL, kI and kS be three constant integer values which will bound,
respectively, the length of a bricks list, the indices range of a brick and the number of strings in
the set of a brick. The widening operator is defined as follows:

∇BR(L1, L2) =

 >BR if (L1 �BR L2 ∧ L2 �BR L1)∨
(∃i ∈ [1, 2] : len(Li) > kL)

w(L1, L2) otherwise

We return the >BR element of our domain in two cases: (i) if the two abstract values are not
comparable with respect to our order (L1 �BR L2 ∧ L2 �BR L1), or (ii) if the length of one of
the two lists is greater than the constant kL (∃i ∈ [1, 2] : len(Li) > kL). Otherwise, we return
w(L1, L2). Now we have to define what the function w does. Let us assume that L1 ≤BR L2 and
that len(L1) = len(L2) = n. If the two lists were not of the same length, we could always add a
proper number of empty bricks inside the shorter list using Algorithm 1. The definition of w is thus
the following one:

w(L1, L2) = [Bnew0 (L1[0], L2[0]);B
new

1 (L1[1], L2[1]); . . . ;B
new

n−1(L1[n− 1], L2[n− 1])]

where Bnewi (L1[i], L2[i]) is defined by:

Bnewi ([S1i]
m1i,M1i , [S2i]

m2i,M2i) =

>B if |S1i ∪ S2i| > kS

∨ L1[i] = >B ∨ L2[i] = >B
[S1i ∪ S2i]

(0,∞)
if (M−m) > kI

[S1i ∪ S2i]
(m,M)

otherwise

where m = min(m1i,m2i) and M = max(M1i,M2i).
Let us briefly explain why this widening operator is correct. First of all, the result of a widening

between two values must be greater or equal than both values. In our domain, the result of the
widening between L1 and L2 can be>BR or w(L1, L2). If it is>BR, L1 ≤BR >BR and L2 ≤BR >BR
follows from the fact that>BR is the top element of BR. In the other case, we know that L1 ≤BR L2
or viceversa (for argument’s sake, we assume that L1 is the smaller value). Thus, the result of
the widening is a new list in which each element Bnewi is the combination of L1[i] and L2[i]. By
definition of ≤BR, to prove that L1 ≤BR ∇BR(L1, L2) and L2 ≤BR ∇BR(L1, L2) we just need to
prove that L1[i] ≤B B

new

i and L2[i] ≤B B
new

i ∀i ∈ [0, n− 1], that is, that each brick of the result is
greater or equal to the two corresponding bricks in L1 and L2. By definition of Bnewi we have only
three cases: (i) Bnewi = >B, and so we have that L1[i] ≤B >B and L2[i] ≤B >B by definition of >B;

(ii) Bnewi = [S1i ∪ S2i]
(0,∞)

; in this case L1[i] = [S1i]
m1i,M1i ≤B [S1i ∪ S2i]

(0,∞)
since S1i ⊆ (S1i ∪

S2i) ∧ 0 ≤ m1i ∧M1i ≤ +∞. The same happens for L2[i]; (iii) Bnewi = [S1i ∪ S2i]
(m,M)

where m =

min(m1i,m2i) and M = max(M1i,M2i). In this case we have L1[i] = [S1i]
m1i,M1i ≤B [S1i ∪ S2i]

m,M

because S1i ⊆ (S1i ∪ S2i) ∧m = min(m1i,m2i) ≤ m1i ∧M1i ≤ M = max(M1i,M2i). The same
happens for L2[i].

Then, we need the widening operator to be convergent. In other words, given an ascending chain
sn, the sequence (tn+1 = ∇BR(tn, sn)) has to be ultimately stationary. In our case, a value of an
ascending chain can increase along three axes: (i) the length of the brick list, (ii) the indices range
of a certain brick, and (iii) the strings contained in a certain brick. The growth of an abstract value
is bounded along each axis with the help of the three constants kL,kS , and kI . After the list has
reached kL elements, the entire abstract value is approximated to >BR, stopping its possible growth
altogether. If the range of a certain brick becomes larger than kI , the range is approximated to
(0,+∞), stopping the indices possible growth. Finally, if the strings set of a certain brick reaches
kS elements, the brick is approximated to >B, stopping its possible growth altogether.

Concretization function The concretization function maps an abstract element (i.e., a list of bricks)
to a concrete element (i.e., a set of strings). Each brick represents a certain set of strings. The list

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

20 G. COSTANTINI ET AL.

of bricks thus represents all the strings built through the concatenation of strings which can be
made from the bricks of the list (taken in the correct order). More formally, we define the strings
represented by a single brick as:

γB(B) = γB([S]
(m,M)) =

M⋃
j=m

(SS . . . S︸ ︷︷ ︸
j times

)

where SS . . . S︸ ︷︷ ︸
j times

= S
j

stands for the concatenation between sets of strings (in particular, we

concatenate S to itself j times). To account for the case in which j = 0, we impose S
0
= {ε}.

Let us see an example to clarify this definition. Consider the brick [{a, b}](1,3) and let S = {a, b}.
Then, the concretization of such brick is the following one:

γB([{a, b}]
(1,3)) = S ∪ SS ∪ SSS =

= {a, b} ∪ {aa, ab, ba, bb} ∪ {aaa, aab, aba, abb, baa, bab, bba, bbb} =
= {a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb}

Note that, if min had been 0 instead of 1, the result would have been:

γB([{a, b}]
(0,3)) = S

0 ∪ S
1 ∪ S

2 ∪ S
3
= ε ∪ S ∪ SS ∪ SSS

The concretization function for lists of bricks is then the following one:

γBR(B0B1 . . .BN−1) = {s : s ∈ K∗ ∧ s = b0 + b1 + · · ·+ bN−1 ∧ ∀i ∈ [0, N − 1] : bi ∈ γB(Bi)}

where “+” represents the operator of string concatenation.

Theorem 4.13
Let the abstraction function αBR be defined by αBR = λY. uBR {B : γBR(B) ⊆ Y}.

Then 〈℘(S),⊆〉 −−−−→←−−−−
αBR

γBR 〈BR,≤BR〉.

Proof
By Theorem 1.1 we only need to prove that γBR is a complete meet morphism. Formally, we have
to prove that γBR(

d
BR

(B)∈X
B) =

⋂
B∈X γBR(B). For the sake of simplicity, we suppose that all list of

bricks in X contain n bricks.

γBR(
d
BR

(B)∈X
B) =

By definition of uBR
= γBR(B

′
) : ∀i ∈ [0..n− 1] : B

′
[i] = [

⋂
B∈X,B[i]=[S](m,M) S]

(max
B∈X,B[i]=[S](m,M) m,min

B∈X,B[i]=[S](m,M) M)

By definition of γBR
= {b0 + ..+ bn−1 : ∀i ∈ [0..n− 1] : i1 = maxB∈X,B[i]=[S](m,M) m, i2 = minB∈X,B[i]=[S](m,M) M,

bi ∈
⋃i2
j=i1

(
⋂

B∈X,B[i]=[S](m,M) S)j}
By definition of ∩,min,max

= {b0 + ..+ bn−1 : ∀i ∈ [0..n− 1] : ∀B ∈ X : B[i] = [S](m,M), bi ∈
⋃M
j=m S

j}
By definition of ∩
=
⋂

B∈X{b0 + ..+ bn−1 : ∀i ∈ [0..n− 1] : B[i] = [S](m,M), bi ∈
⋃M
j=m S

j}
By definition of γBR
=
⋂

B∈X γBR(B)

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

A SUITE OF ABSTRACT DOMAINS FOR STATIC ANALYSIS OF STRING VALUES 21

Now that we presented the concretization function, we can prove that the normalization of a list
of bricks does not change its concretization, i.e. the set of strings it represents.

Lemma 4.14 (Soundness of the normalization rules)
Given a normalization rule ri (i ∈ [1, 5]) and a list of bricks L, suppose that L

′
is the list of bricks

resulting from the application of ri to L. Then, γBR(L) = γBR(L
′
).

Proof
We will prove the theorem for one rule at a time.

• r1: trivial, since it just removes empty bricks which represent the empty string, i.e., the neutral
element of concatenation.

• r2: let B1 = [S1]
(1,1) and B2 = [S2]

(1,1) be the two bricks which Rule 2 merges. The first brick
represents the strings in S1 (since its indices are both 1), while the second represents, for the
same reasons, the strings in S2. The concatenation of these two bricks, then, represents the
strings set S1 S2 (remember that S T represents the concatenation between the two strings sets
S and T , i.e. the set containing all strings which can be obtained by concatenating a string from
S and a string from T , in this order). Rule 2 transforms these two bricks in B

′
= [S1 S2]

(1,1),
which represents exactly the same set of strings as the two original bricks, i.e. S1 S2.

• r3: let B = [S](m,m) be the brick which Rule 3 modifies. Its concretization is⋃m
j=m(SS . . . S︸ ︷︷ ︸

j times

) = (SS . . . S︸ ︷︷ ︸
m times

) = Sm. Rule 3 transforms such brick in B
′
= [Sm](1,1), which

concretization is Sm, exactly the same as the original one.
• r4: let B1 = [S](m1,M1) and B2 = [S](m2,M2) be the two bricks which Rule 4 merges. Their

concretization is, respectively,
⋃M1

j=m1
(SS . . . S︸ ︷︷ ︸

j times

) and
⋃M2

j=m2
(SS . . . S︸ ︷︷ ︸

j times

). The concatenation

of these two bricks represents the concatenation of their concretizations: C1 =
{(SS . . . S︸ ︷︷ ︸
m1 times

), . . . , (SS . . . S︸ ︷︷ ︸
M1 times

)} concatenated to C2 = {(SS . . . S︸ ︷︷ ︸
m2 times

), . . . , (SS . . . S︸ ︷︷ ︸
M2 times

)}. The result is

the set {S1S2 : S1 ∈ C1 ∧ S2 ∈ C2} = {SS . . . S︸ ︷︷ ︸
j1 times

SS . . . S︸ ︷︷ ︸
j2 times

: j1 ∈ [m1,M1] ∧ j2 ∈ [m2,M2]} =

{SS . . . S︸ ︷︷ ︸
j times

: j ∈ [m1 +m2,M1 +M2]}. Rule 4 merges these two bricks into the single brick

B = [S](m1+m2,M1+M2), which concretization is
⋃M1+M2

j=(m1+m2)
(SS . . . S︸ ︷︷ ︸

j times

), exactly the same of

the original one.
• r5: let B = [S](m,M) be the brick which is split by Rule 5, where m ≥ 1 ∧M 6= m. Its

concretization is
⋃M
j=m(SS . . . S︸ ︷︷ ︸

j times

). Rule 5 transforms such brick in the concatenation of

the two bricks B1 = [Sm](1,1) and B2 = [S](0,M−m). Their concretizations are, respectively,
C1 = Sm and C2 =

⋃M−m
j=0 (SS . . . S︸ ︷︷ ︸

j times

). The concatenation of these two bricks produces the

set of strings {S1S2 : S1 = Sm ∧ S2 ∈ C2} = {Sm SS . . . S︸ ︷︷ ︸
j times

: j ∈ [0,M −m]} = {SS . . . S︸ ︷︷ ︸
j times

:

j ∈ [0 +m,M −m+m]} =
⋃M
j=m(SS . . . S︸ ︷︷ ︸

j times

).

Gaining more precision Working with normalized values is important to guarantee the convergence
of operators like the least upper bound and the widening. However, normalizing values after each
operation is costly and, worse than that, it entails a big loss of precision (which we documented
while analysing our case studies). For example, the result of the BR domain on the second case study

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

22 G. COSTANTINI ET AL.

Table VI. The abstract semantics of BR

SBRJnew String(str)K() = [{str}]1,1
SBRJconcatK(b1, b2) = concatList(b1, b2)

SBRJsubstringebK(b) =
{

[T
′
]1,1 if b

′
[0] = [T]1,1 ∧ ∀t ∈ T : len(t) ≥ e

>BR otherwise
where T

′
= {t.substring(b, e) ∀t ∈ T} ∧ b

′
= normBricks(b)

BBRJcontainscK(b) =

 true if ∃B ∈ b : B = [T]m,M ∧ 1 ≤ m ≤M ∧ (∀t ∈ T : c ∈ char(t))
false if ∀[T]m,M ∈ b,∀t ∈ T : c /∈ char(t)
>B otherwise

(prog2), when normalizing values after each operation, is>BR: we are not able to track any kind of
information on the program. For these two reasons (performance and, most importantly, precision),
we choose to normalize abstract values only after executing the least upper bound operator or the
widening operator. Any other operation (regarding both the abstract semantics and the lattice) will
not be followed by a normalization step.

Semantics Table VI defines the abstract semantics on BR. Let us explain in detail the semantics of
each operator.

When a constant string value is evaluated (new String(str)), the semantics returns a single brick
containing exactly that string with [1, 1] as indices.

For the concatenation of two strings, we rely on the concatList function that concatenates two
lists of bricks.

To define the semantics of substringeb, we first normalize the abstract value in input (we can do
that since we know, by Lemma 4.14, that the normalization does not change the set of represented
strings). Remember that, in a normalized list of bricks, each brick is in the form [T](0,max>0) or
[T](1,1). If the first brick of the normalized abstract value b

′
has the form [T](0,max>0), then we have

too much uncertainty on how the string begins: we cannot compute a substring based on start and
end indices. Instead, if the first brick has the form [T](1,1) then we are sure that the string will begin
with any of the strings in T. If all the strings in T are long enough (len(t) ≥ e ∀t ∈ T) we can pack
all the possible substrings in a new abstract value, which we will return.

The semantics of containsc returns true iff the character c appears in all the strings of a certain
brick with minimal indexmin ≥ 1. It returns false iff we are sure that c does not appear in any string
of any brick of the abstract value. Otherwise, we have to return >B .

Theorem 4.15 (Soundness of the abstract semantics)
SBR and BBR are a sound overapproximation of S and B, respectively. Formally,
γBR(SBRJsK(L)) ⊇ {SJsK(c) : c ∈ γBR(L)} and γPR(BBRJsK(L)) ≥B {BJsK(c) : c ∈ γBR(L)}.

Proof
We prove the soundness separately for each operator.

• γBR(SBRJnew String(str)K()) ⊇ {SJnew String(str)K()} follows immediately from the
definition of SBRJnew String(str)K() and of γBR.

• Consider the binary operator concat. Let L1 and L2 be two lists of bricks. We
have to prove that γBR(SBRJconcatK(L1, L2)) ⊇ {SJconcatK(c1, c2) : c1 ∈ γBR(L1) ∧ c2 ∈
γBR(L2)}. Let s be an element in {SJconcatK(c1, c2) : c1 ∈ γBR(L1) ∧ c2 ∈ γBR(L2)}. By
definition of S, this means that there exist two strings c1, c2 such that s = c1 + c2 and that
c1 ∈ γ(L1) ∧ c2 ∈ γ(L2). On the other hand, SBRJconcatK(L1, L2) produces a new list of
bricks L which concatenates the two lists in input by definition of SBR By the definition
of γBR and the associative property of the concatenation between strings, we can say that the

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

A SUITE OF ABSTRACT DOMAINS FOR STATIC ANALYSIS OF STRING VALUES 23

strings belonging γBR(L) are all the strings obtained through the concatenation of one string
belonging to γBR(L1) and another belonging to γBR(L2). Then, surely s belongs to γBR(L).

• Consider the unary operator substringeb and let L be a (normalized) list of bricks. Consider
the following cases:

– if L[0] = [T]1,1 ∧ ∀t ∈ T : len(t) ≥ e, then we have that γB(L[0]) = T. Thus, all the
strings in γBR(L) have as prefix one of the strings of T, by definition of γBR. Moreover,
by hypothesis all strings of T are longer than e characters. Then, a string belonging
to {SJsubstringebK(c) : c ∈ γBR(L)} is certainly a substring of one string of T, from
the b-th character to the e-th character, by definition of S. This corresponds exactly to
γBR(SBRJsubstringebK(L)), since the abstract semantics applied to L produces a single
brick containing the substrings of all strings in T, from the b-th character to the e-th
character.

– otherwise, the abstract semantics returns >BR, that soundly approximates any possible
result of the concrete semantics.

• Consider the unary operator containsc and let L be a list of bricks. Regarding the character
c, we have three possible cases:

– if ∃b ∈ L : b = [T]m,M ∧ 1 ≤ m ≤M ∧ (∀t ∈ T : c ∈ char(t)), this means that there
exists at least one brick whose strings all contain the character c. Let b be this brick.
Then, all the strings belonging to γB(b) contain the character c, since its minimum index
is≥ 1. γBR(L) concatenates all the concretizations of its bricks, so each string belonging
to this concretization surely contains the character c. The result of the concrete semantics
is, then, always true. Since BBRJcontainscK(L) = true, the abstract semantics is a
sound approximation of the concrete semantics.

– if ∀[T]m,M ∈ L,∀t ∈ T : c /∈ char(t), this means that no brick in the list L has a
string containing the character c. Then, no concrete string in γBR(L) contains such
character, and for this reason the concrete semantics always returns false. Since
BBRJcontainscK(L) = false, this precisely approximates the results of the concrete
semantics.

– otherwise, the abstract semantics on L returns >B, and the property is immediately
proven, since >B is a superset of any set of boolean values.

Running Example The results of the analysis of the two running examples using BR are depicted
in Figures 5(a) and 5(b).

For prog1, at line 1 we represent query with a single brick with a singleton set (containing s1,
the string associated to query) and indices min = max = 1. The variable l has an unknown value,
so it is associated to>BR. At line 4 we concatenate the value of query to s2, l and s3 and we obtain
a list of four bricks: the first two are made up by a singleton set (containing, respectively, s1 and
s2) and indices min = max = 1, the third one is >BR (because of l), and the fourth one is made up
by a singleton set (containing s3) and indices min = max = 1. This means that we know that, just
after line 4, the string associated to query starts with s1 + s2, then it has an unknown part, and then
it ends with s3. Then, we have to compute the lub between the values of query after lines 1 and 4.
To do this, firstly we use Algorithm 1 to make the two lists have the same size: the algorithm adds
three empty bricks at the end of the bricks list of the abstract value at line 1, thus maintaining the
correspondence between [{s1}]1,1 in the two lists. The result of the lub is, again, a list of four bricks:
the first one is made up by a singleton set (containing s1) and indices min = max = 1, the second
one is made up by another singleton set (containing s2) and indices min = 0,max = 1, the third
one is >BR (because of l) and the last one is made up by a singleton set (containing s3) and indices
min = 0,max = 1. This means that we know that, just after line 5, the string associated to query

surely starts with s1, then it could continue with s2, then it has an unknown part and then it could
end with s3. At line 7, the abstract value of the variable per is composed by a single brick with
a singleton set (containing s4, the string associated to per) and indices min = max = 1. Finally,

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

24 G. COSTANTINI ET AL.

#I Var BR
1 query [{s1}]1,1
3 l >B
4 query [{s1}]1,1[{s2}]1,1>B[{s3}]1,1
5 query [{s1}]1,1[{s2}]0,1>B[{s3}]0,1
6 per [{s4}]1,1
8 query [{s1}]1,1[{s2}]0,1>B[{s3}]0,1

[{s5}]1,1[{s4}]1,1[{s6}]1,1
(a) Analysis of prog1

#I Var BR
1 x [{“a”}]1,1
3 x [{“0”}]0,n[{“a”}]1,1[{“1”}]0,n
4 x [{“0”}]0,+∞[{“a”}]1,1[{“1”}]0,+∞

(b) Analysis of prog2

Figure 5. The results of BR

at line 8 there is another concatenation. The bricks of the abstract value associated to query after
line 8 are seven: (i) the first brick represents the string s1, (ii) the second brick could be the empty
string ε or s2, (iii) the third brick corresponds to the (unknown) input l, (iv) the fourth brick could
be the empty string ε or s3, and (v) the last three bricks represent the concatenation of s5, s4, and s6.
We can see that the precision is higher than in the previous domains, but still not the best we aim
to get: amongst the concrete results we have, for example, s1 + s3 + s5 + s4 + s6, which cannot be
computed in any execution of the analyzed code.

For prog2, after line 1 the abstract value associated to x is a single brick with a singleton
set (containing “a”) and indices min = max = 1. After the first iteration of the loop, the result
of the concatenation is made up by three bricks, all of them with a singleton set (containing,
respectively, “0”, “a” and “1”) and indices min = max = 1. To compute the least upper bound
between this value and the value of x before the loop ([{“a”}]1,1) we first execute Algorithm
1, obtaining the new list E[{“a”}]1,1E instead of just [{“a”}]1,1. The result of the lub is
then the abstract value [{“0”}]0,1[{“a”}]1,1[{“1”}]0,1. The normalization step does not change
this abstract value. Starting from this value, we execute the second iteration, and we obtain
[{“0”}]1,1[{“0”}]0,1[{“a”}]1,1[{“1”}]0,1[{“1”}]1,1. To compute the least upper bound between the
values after the first and second iterations (we do not know how many iterations the loop will do), we
apply Algorithm 1 on the shorter list, obtaining the new list E[{“0”}]0,1[{“a”}]1,1[{“1”}]0,1E. The
result of the lub is then the abstract value [{“0”}]0,1[{“0”}]0,1[{“a”}]1,1[{“1”}]0,1[{“1”}]0,1, which,
after the normalization step, becomes [{“0”}]0,2[{“a”}]1,1[{“1”}]0,2. Following the same reasoning,
after the third iteration we obtain [{“0”}]1,1[{“0”}]0,2[{“a”}]1,1[{“1”}]0,2[{“1”}]1,1 which becomes
[{“0”}]0,3[{“a”}]1,1[{“1”}]0,3 after the lub with the value of the previous iteration and after the
normalization step. We can see that, after each iteration, we obtain an abstract value which first
and last bricks have an augmented range with respect to the value in the previous iteration: min
is always zero, but max increases by one at each iteration. The convergence of the analysis is
obtained through to the use of the widening operator, which, when a brick’s indices range reaches
the threshold kI , forces the range of the brick to min = 0,max = +∞. Since kI is a constant value,
we will certainly reach it after a finite number of iterations. Therefore, after the loop, we associate
x to [{“0”}]0,+∞[{“a”}]1,1[{“1”}]0,+∞. The result is almost optimal: the imprecision is due to the
fact the number of occurrences of 0s and 1s are not restricted to be the same. For example, 0a11 is
a concrete value represented by our resulting abstraction, but we know that this string can never be
produced by the program prog2.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

A SUITE OF ABSTRACT DOMAINS FOR STATIC ANALYSIS OF STRING VALUES 25

4.4. String Graphs

In the first domain (CI) the only focus of the approximation was character inclusion. In the next
two domains (PR and SU) we also considered order, but limited at the beginning (prefix) or at the
end (suffix) of the string. In the BR domain we considered (like in PR and SU) both inclusion and
order among characters, but this time it was not limited to the beginning or the end of the string. BR
approximates a string with a list of bricks, where each brick represents a set of strings. The precision
of this domain is definitely better than that of the previous ones, as it was made clear by the analysis
of prog1 and prog2. We obtained very good results analysing such programs, even though there is
still a little room for improvements. The new abstract domain we are going to present in this Section
tracks a kind of information similar to the one tracked by BR (inclusion and order), but equipped
with more precise lattice and semantics operators. This domain exploits type graphs [25], a data
structure which represents tree automata, and adapts them to represent set of strings. Type graphs
were introduced in 1992 by Janssens & Bruynooghe, when they developed a method for obtaining
descriptions of possible values of program variables (extended modes or a kind of type information).
Their method was based upon a framework for abstract interpretation. Many of the concepts we are
going to present about string graphs come from the original definition of type graphs, and we refer
the interested reader to [25] for more details about them.

Domain definition A string graph T is a triple (N,AF ,AB) where Tr = (N,AF) is a rooted tree
whose arcs in AF are called forward arcs, and AB is a restricted class of arcs, backward arcs,
superimposed on Tr. Ancestors and descendants are defined in the usual way. The backward arcs
(n,m) in AB , have the property that m belongs to the ancestors of n. A forward path is a path
composed of forward arcs. The depth of a node n, denoted by depth(n), is the length of the shortest
path from the root of the type graph to n. We use the convention that n/i denotes the i-th son of
node n, and the set of sons of a node n is then denoted as {n/1, . . . , n/k} with k = outdegree(n)
where outdegree is a function that, given a node, returns the number of its sons. We also define the
indegree function, which, given a node, returns the number of its predecessors. The root of the tree
(i.e., the only node with no incoming forward arcs) is called n0.

Each node n ∈ N of a string graph has a label, denoted by lb(n), indicating the kind of term it
describes. The nodes are divided into three classes:

• Simple nodes have a label from the set {max,⊥SG , ε} ∪ K. This means that the leaves of
string graphs trees can represent (i) all possible strings, K∗ (if the node has label max), (ii) no
strings, ∅ (if the node has label ⊥SG), (iii) the empty string (if the node has label ε), and (iv) a
string made by a single character taken from the alphabet K, respectively.

• Concat nodes are labelled with the functor concat/k (with the obvious meaning of string
concatenation) and have outdegree k with k > 0;

• OR nodes have the label OR and an outdegree k.

The graphical representation of string graphs is straightforward. The nodes of a string graph are
represented by their labels and every node is encircled. The direction of the arc is indicated by its
arrow: forward arcs are drawn downwards, backward arcs upwards. The root of the string graph is
the topmost node. An example is depicted in Figure 6. The root of the string graph is an OR-node
with two sons: (i) a simple node (b) , and (ii) a concat-node with two sons of its own (a simple node
(a), and the root (with the use of a backward arc)). This string graph represents an infinite set of
strings, that is the set of strings which start with an indefinite number of a (even zero) and surely
end with a b, that is, {b, ab, aab, aaab, . . . } = a∗b.

The structure of the string graph together with the labels of its nodes determines the set of
represented strings. The set of finite strings represented by a node n in the string graph T is said
to be the denotation of the node n, D(n).

Definition 4.1
The denotation D(n) of a node n in a string graph is defined as follows:

function D(n)

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

26 G. COSTANTINI ET AL.

Figure 6. An example of string graph

if lb(n) = max then
return K∗

else if lb(n) = ⊥ then
return ∅

else if lb(n) ∈ K ∨ lb(n) = ε then
return {lb(n)}

else if lb(n) = concat/k and n/1, . . . , n/k are its sons then
return {concat(t1, . . . , tk) : ti is finite ∧ ti ∈ D(n/i) ∀i ∈ [1, k]}

else
return

⋃k
i=1D(n/i), as lb(n) = OR and n/1, . . . , n/k are its sons

end if
end function

The order of the sons of a concat node is important because string concatenation is not
commutative, whereas the order of the sons of an OR-node is irrelevant. D(n) can be ∅ or a (finite
or infinite) set of finite strings. With n0 the root of string graph T, we use D(T) as a synonym for
D(n0).

Note that several distinct string graphs can have the same denotation. The existence of superfluous
nodes and arcs makes some operators, such as ≤, quite complex and inefficient. To reduce this
variety of string graphs, we impose some additional restrictions, which correspond to the definition
of compact type graphs in [25] (where you can also find a compaction algorithm). For example, one
of these restrictions is that an OR-node must have strictly more than one son and each son must not
be a max-node. The denotation of the string graph is preserved when carrying out a compaction,
i.e. the set of represented strings does not change.

Notice also that compact string graphs are not the most economical representation. Nodes in
different branches can have the same denotation. In particular, different sons of an OR node may
have overlapping, even identical denotations. This makes testing whether a particular string is in the
denotation of a compact string graph and the comparison of the denotations of two string graphs
inefficient, so we impose a further restriction which will result in the definition of normal string
graphs. Such restriction limits the expressive power of the string graphs but is necessary to achieve
efficient operations. First, we introduce two functions, prnd and prlb. The function prnd(n) denotes
the set of principal nodes of a node n, and prlb(n) its set of principal labels.

prnd(n) =

{⋃k
i=1 prnd(n/i) if lb(n) = OR ∧ k = outdegree(n)

n else

prlb(n) = {lb(nj) : nj ∈ prnd(n)}

Two sets of principal labels are overlapping if their intersection is not empty.

Definition 4.2 (Principal label restriction)
The principal label restriction states that each pair of sons of an OR-node must have non-
overlapping sets of principal labels.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

A SUITE OF ABSTRACT DOMAINS FOR STATIC ANALYSIS OF STRING VALUES 27

(a) Compact string graph before normalization (b) Normal string graph

Figure 7. An example of string graphs normalization

Normal string graphs are compact string graphs satisfying the principal label restriction. In [24]
you can find the definition of a normalization algorithm, normalize(T), which takes in input a
compact type graph and returns in output the corresponding normal type graph. Adapting it to
string graphs is straightforward. The principal label restriction limits the expressiveness of string
graphs: string graphs violating this restriction sometimes have to be replaced by a string graph
denoting a larger set of strings. An example of compact string graph before and after normalization
is depicted in Figure 7. The string graph in Fig. 7(a) does not satisfy the principal label restriction,
since the two sons of the root node have the same label concat/2; its denotation is {ab, cd}. The
string graph in Fig. 7(b) is normal; its denotation is {ab, ad, cb, cd}, a larger set than {ab, cd}. In
fact, the normalization process makes us lose the information that, when the first character of the
string is a, then the second is always b (and the same for c and d).

Normal string graphs must also satisfy, besides the principal label restriction, other four
restrictions (not present in the original definition of normal type graphs), which we are now going
to introduce.

Rule 1 Given a node n with label concat/1 and n/1 as successor, replace n with n′ = n/1. Any
backward arc (m, n) should be replaced with the arc (m, n′). This rule simplifies some naı̈ve
occurrences of the functor concat/k. In fact, when concat has only one son (k = 1), the result
of its application is the argument itself. We thus discard every concat/1 node, replacing it
with its argument.

Rule 2 Given a node n with label concat/k such that n/i = max ∀i ∈ [1, k], replace n with n′ = max.
This rule simplifies a node with label concat/k and which successors n/i all have the label
max. In fact, the concatenation of all possible strings with all possible strings gives us all
possible strings, again.

Rule 3 Given a node n with label concat/k such that ∃i : n/i = concat/k1 ∧ n/(i+ 1) = concat/k2,
indegree(n/i) = 1 and indegree(n/(i+ 1)) = 1, replace n/i and n/(i+ 1) with a single new
node n′ = concat/(k1 + k2) whose sons are

n′/j =

{
(n/i)/j if j ≤ k1
(n/(i+ 1))/(j − k1) otherwise

where j ∈ [1, k1 + k2]. This rule merges two successive sons of a concat-node, which labels
are both concat. In fact, if we concat some characters obtaining the string s1, then we concat
some other characters obtaining the string s2, and finally we concat s1 and s2, we obtain the
same result as concatenating all the characters in the first place.

Rule 4 Given a node n with label concat/k such that ∃i : n/i = concat/k1 ∧ indegree(n/i) = 1,
replace n/i with k1 nodes such that n/(i+ j − 1) = (n/i)/j ∀j ∈ [1, k1]. All the sons of
n with index > i change index, which gets augmented of k1 − 1 (i.e., the generic index k
becomes k + k1 − 1). This rule imposes that the sons of a concat-node must be simple nodes
(leaves), OR-nodes or concat-nodes with in-degree > 1. In fact, if a concat-node (T1) has a

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

28 G. COSTANTINI ET AL.

concat son (T2) with indegree = 1, we replace T2 with all its sons, thus increasing the arity of
T1.

We can prove that such normalization rules do not affect the expressiveness of the string graphs.
In fact, the denotation of a string graph does not change after the application of one of the four
normalization rules.

Lemma 4.16 (Soundness of the normalization rules)
Given a normalization rule ri (i ∈ [1, 4]) and a string graph T, suppose that T

′
is the string graph

resulting from the application of ri to T. Then, D(T′) = D(T).

Proof
We refer to [6] for the complete proof of this theorem.

In Figure 8 we can see an example of the normalization process. First of all we apply rule r3 to
T2 and its sons T5 and T6: since T5 and T6 are two consecutive sons of a concat-node and they are
both concat-node themselves, we merge them in a single concat-node with, as sons, all the sons
of T5 followed by all the sons of T6. Now we can apply rule r1 to T2: since it is a concat-node
with only one son (T7), we replace it with such son. Finally, we must apply the principal label
restriction because two sons (T3 and T4) of the root OR-node have the same label (concat/3). We
merge such sons in only one, moving the choice (represented by the OR) “downward” the tree
(i.e., instead of choosing between the two concat-nodes, we choose at the level of their sons, one
by one). The string graph in Figure 8(d) is the fixpoint of the application of the normalization
rules; in fact we cannot apply any more rules to it. Note that the denotation has increased, being
{ghil, abc, abf, aec, aef, dbc, dbf, dec, def} instead of the original {ghil, abc, def}; this is caused
by the application of the principal label restriction.

The abstract domain SG is then defined as SG = NSG, where NSG is the set of all normal string
graphs, i.e., compact string graphs which satisfy the principal label restriction and the additional
rules 1-4 stated above.

Partial order To define the partial order of the domain we can exploit the algorithm defined
in [25] for computing ≤ (n,m, ∅). The algorithm compares D(n) with D(m) and returns true if
D(n) ⊆ D(m), which is exactly what we need. In particular, the algorithm compares the two nodes
in input (n,m). In some cases the procedure is recursively called, for example if n and m are
both concat or OR nodes. Note that the recursive call adds a new edge ({n,m}) to the third input
parameter (a set of edges). If, at the next execution of the procedure (≤ (n′,m′,E)), the edge {n′,m′}
is contained in E, then the procedure immediately returns true.

The formal definition of the algorithm is the following:
function ≤(n,m,SC)

if (n,m) ∈ SC then
return true

else if lb(m) = max then
return true

else if lb(n) = lb(m) = concat/k ∧ k > 0 then
return ∀i ∈ [1, k] : ≤ (n/i,m/i,SC ∪ {(n,m)})

else if lb(n) = lb(m) = OR where k = outdegree(n) then
return ∀i ∈ [1, k] : ≤ (n/i,m,SC ∪ {(n,m)})

else if lb(m) = OR ∧ ∃md ∈ prnd(m) : lb(md) = lb(n) then
return ≤ (n,md,S

C ∪ {(n,m)})
else

return lb(n) = lb(m)
end if

end function

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

A SUITE OF ABSTRACT DOMAINS FOR STATIC ANALYSIS OF STRING VALUES 29

(a) String graph before the application of normalization rules

(b) Application of rule r3 to T2 and its sons, T5 and T6

(c) Application of rule r1 to T2 and its only son T7

(d) Application of principal label restriction to T3 and T4

Figure 8. A complete example of string graphs normalization

Given two string graphs T1 and T2, to check if T1 ≤SG T2 we will compute ≤ (n0,m0, ∅) where
n0 is the root of T1 and m0 is the root of T2. The order is then:

T1 ≤SG T2 ⇔ T1 = ⊥SG ∨ (≤ (n0,m0, ∅) : n0 = root(T1) ∧m0 = root(T2))

where root(T) is the root element of the tree defined in T.
The bottom element ⊥SG is a string graph made by one node, a ⊥-node that represents ∅. The top

element >SG is a string graph made by only one node, a max-node that represents K∗.

Least upper bound and greatest lower bound The least upper bound between two string graphs T1

and T2 can be computed by creating a new string graph T whose root is an OR-node whose sons

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

30 G. COSTANTINI ET AL.

(a) The two string graphs T1 and T2 (b) OR(T1,T2)

(c) Result of the least upper bound: normStringGraph(OR(T1,T2))

Figure 9. Computation of the lub

are T1 and T2. Then we apply the compaction plus normalization algorithm that will transform T
in a normal string graph: ⊔

SG

(T1,T2) = normStringGraph(OR(T1,T2))

An example is depicted in Figure 9.
The greatest lower bound operator behaves like the glb between type graphs, which is described

in the appendix of [25]. The authors present an algorithm, intersection(n1, n2), which computes the
type graph T

′
, whose denotation is the intersection of the denotations of the type graphs with roots

n1 and n2. Their strategy to deal with this kind of problem is to leave the old type graphs unchanged
and to construct the new type graph step by step. The initialization creates the root l0 of T

′
whose

required denotation is defined in terms of the nodes n1 and n2. At this point the root l0 is called an
unexpanded leaf. They define the function is which associates at every step in the construction of T

′

with each node in T
′

a set of nodes from the given type graphs such that the second function on the
nodes of T

′
, D-is, specifies for each node l of T

′
its intended denotation.

D− is(l) =
⋂

n∈is(l)

D(n)

Each step extends T
′

without decreasing the denotation of its nodes. This is done by transforming
one of the unexpanded leaves l of T

′
into a usual node (after the transformation, l is called a safe

node), and new unexpanded leaves may be added as sons of l. The nodes of T
′
, in each step of its

construction, belong either to Sul, the set of unexpanded leaves, or to Ssn, the set of safe nodes.

Lemma 4.17
The abstract domain SG is a complete lattice, tSG is the least upper bound operator and uSG is the
greatest lower bound operator.

Proof
Since string graphs are just a particular case of type graphs, we refer to [24, 25] for the complete
proof of this lemma.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

A SUITE OF ABSTRACT DOMAINS FOR STATIC ANALYSIS OF STRING VALUES 31

Table VII. The abstract semantics of SG

SSGJnew String(str)K() = concat/k{str[i] : i ∈ [0, k− 1]}
SSGJconcatK(t1, t2) = normStringGraph(concat/2{t1, t2})

SSGJsubstringebK(t) =
{

res if root(t) = concat/k ∧ ∀i ∈ [0, e− 1] : lb(root(t)/i) ∈ K
>SG otherwise

where res = concat/(e− b){(root(t)/i) : i ∈ [b, e− 1]}

BSGJcontainscK(t) =

true if ∃m ∈ t : m = concat/k ∧OR /∈ path(root,m)∧

∃i ∈ [0, k− 1] : lb(m/i) = c

false if @n ∈ t : lb(n) = max ∨ lb(n) = c

>B otherwise

Widening operator For the widening operator, we can exploit the one defined in [40]. The widening
operator is always applied to an old graph gold and a new graph gnew to produce a new graph gres.
The main idea behind the widening operator of [40] for type graphs is to consider two graphs:

g0 = gold and gn = (gold t gnew)

and exploit the topology of the graphs to guess where gn is growing compared to g0. The key
notion is the concept of topological clash which occurs in situations where: (i) an OR-node v0
in g0 corresponds to an OR-node vn in gn where prlb(v0) 6= prlb(vn), or (ii) an OR-node v0 in
g0 corresponds to an OR-node vn in gn where depth(v0) < depth(vn). In these cases the widening
operator tries to prevent the graph from growing by introducing a cycle in gn. Given a clash (v0, vn),
the widening searches for an ancestor va to vn such that prlb(vn) ⊆ prlb(va). If such an ancestor is
found and if va ≥ vn, a cycle can be introduced.

When no ancestor with a suitable prlb-set can be found, the widening operator simply allows the
graph to grow. Termination will be guaranteed because this growth necessarily adds along the branch
of a prlb-set which is not a subset of any existing prlb-set in the branch. This case happens frequently
in early iterations of the fixpoint. Letting the graph grow in this case is of great importance to recover
the structure of the type in its entirety.

The last case to consider appears when there is an ancestor va with a suitable prlb-set, but va ≥ vn
is false. In this case, introducing a cycle would produce a graph gres whose denotation may not
include the denotation of gn, and hence the widening cannot perform cycle introduction. Instead,
the operation replaces va by a new OR-node which is an upper bound to va and vn but decreases
the overall size of the graph. The widening is then applied again on the resulting graph.

In conclusion, such widening operator can be viewed as a sequence of transformations on gn
which are of two types: cycle introduction and node replacement, until no more topological clashes
can be resolved.

Concretization and abstraction functions The concretization function is simply defined by
γSG(T) = D(T). Let the abstraction function αSG be defined by αSG = λY. uSG {B : γSG(B) ⊆ Y}.
These two functions form a Galois connection, i.e. 〈℘(S),⊆〉 −−−−→←−−−−

αSG

γSG
〈SG,≤SG〉. See [24, 25] for

the proof of this assertion.

Semantics Table VII defines the abstract semantics on SG. Let us discuss in detail the semantics of
each operator.

The evaluation of a string (made by k characters) returns a concat-node with all the characters
that compose the string as sons.

When we concatenate two strings, we create a new string graph, whose root is a concat-node with
two sons. The two sons are the roots of the two input abstract values. Then we need to normalize
the result, to be sure that it is a normal string graph.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

32 G. COSTANTINI ET AL.

The semantics of substringeb returns a precise value only if the root is a concat-node whose first
e sons are characters. In fact, if the root of the string graph is a concat-node and its first endIndex
sons are simple nodes (leaves), then we can return the exact substring. Otherwise, we return >SG .

The semantics of containsc returns false iff we are sure that the character c does not appear in
the string, that is, there is no simple node labelled with such character and there is no max-node.
We can return true iff we find in the string graph a concat-node m containing a son with label c, and
the path from the root to m does not contain any OR-node. Otherwise, we will have to return >SG .

Theorem 4.18 (Soundness of the abstract semantics)
SSG and BSG are a sound overapproximation of S and B, respectively. Formally, γSG(SSGJsK(T)) ⊇
{SJsK(c) : c ∈ γSG(T)} and γSG(BSGJsK(T)) ≥B {BJsK(c) : c ∈ γSG(T)}.

Proof
We prove the soundness separately for each operator.

• γSG(SSGJnew String(str)K()) ⊇ {SJnew String(str)K()} follows immediately from the
definition of SSGJnew String(str)K() and of γSG .

• Consider the binary operator concat. Let T1 and T2 be two string graphs.
{SJconcatK(c1, c2) : c1 ∈ γSG(T1) ∧ c2 ∈ γSG(T2)} contains strings which are the concate-
nation of one string from γSG(T1) and one from γSG(T2) by definition of S. Let s be one of
these strings. s belongs to γSG(SSGJconcatK(T1,T2)), since SSGJconcatK(T1,T2) produces
a new string graph which has a concat-node as root and the two original string graphs
as sons §, and the concretization of such string graph is {concat(t1, t2) : ti is finite ∧ ti ∈
D(root/i) ∀i ∈ [1, 2]} by definition of γSG .

• Consider the unary operator substringeb and let T be a string graph. Consider the two
following cases:

– if root(T) = concat/k ∧ ∀i ∈ [0, e− 1] : lb(root(T)/i) ∈ K, then the root of T is a
concat-node and its first e sons are all simple characters. In this case, all strings
belonging to γSG(T) will start with the concatenation of these characters, by definition
of D(T). This prefix is also certainly longer than e characters. Then, a string belonging
to {SJsubstringebK(c) : c ∈ γSG(T)} is composed by the concatenation of all the
characters of the nodes from root(T)/b to root(T)/(e− 1) by definition of S. This
corresponds exactly to γSG(SSGJsubstringebK(T)), since the abstract semantics applied
to T produces a string graph whose root is a concat-node and which sons are the nodes
from root(T)/b to root(T)/(e− 1).

– otherwise, the abstract semantics returns >SG , that approximates any possible value of
the concrete semantics.

• Consider the unary operator containsc and let T be a string graph. Regarding the character
c, we have three cases:

– if ∃m ∈ T : m = concat/k ∧OR /∈ path(root,m) ∧ ∃i : lb(m/i) = c, this means that
there exists a concat-node in T that (i) has a son with the character c as label, and (ii)
the path from the root to such node does not contain OR nodes. Then, by definition of
D(T), the character c belongs to all strings in γSG(T), and then the result of the concrete
semantics is always true. Since BSGJcontainscK(T) = true by the definition of the
abstract semantics, the abstract semantics soundly approximates the concrete semantics.

– if @n ∈ T : lb(n) = max ∨ lb(n) = c, this means that no node of the string graph has
label c or max. Then, the character c cannot be contained in any of the concrete strings
corresponding to the abstract state T and for this reason the concrete semantics always

§The string graph is also normalized, but the normalization can only increase the concretization of an abstract state, thus
we can ignore it: if a string belongs to the concretization of a not-normal string graph, it will surely belong also to its
normalized version.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

A SUITE OF ABSTRACT DOMAINS FOR STATIC ANALYSIS OF STRING VALUES 33

#I Var SG
1 query concat[s1]
3 l max
4 query concat[s1 + s2;max; s3]
5 query SG1 = OR[concat[s1];

concat[s1 + s2;max; s3]]
6 per concat[s4]
8 query concat[SG1;

concat[s5 + s4 + s6]]
(a) Analysis of prog1

#I Var SG
1 x concat[“a”]
3 x OR[“a”; concat[“0”; “a”; “1”]]
4 x OR1[“a”; concat[“0”;OR1; “1”]]

(b) Analysis of prog2

Figure 10. The results of SG

returns false. Since BSGJcontainscK(T) = false by the definition of the abstract
semantics, the abstract semantics soundly approximates the concrete semantics.

– otherwise, the abstract semantics on T returns >B, and this soundly approximates any
possible result of the concrete semantics.

Running Example The results of the analysis of the two running examples through string graphs
are depicted in Figures 10(a) and 10(b). For sake of simplicity, we adopt the notation concat[s] to
indicate a string graph with a concat node whose sons are all the characters of the string s. The
symbol + represents, as usual, string concatenation, while ; is used to separate different sons of a
node.

For prog1, at line 1 we represent query with a string graph made by a concat-node with all the
characters of s1 as sons. The l variable (line 3) corresponds simply to a max-node, since we do not
know its value. At line 4 we concatenate the current value of query with s2, l and s3: the abstract
value of query then is a concat node with, as sons, all the characters of s1, followed by all the
characters of s2, followed by a max-node, followed by all the characters of s3. Since the value of l
is unknown, we must compute the least upper bound between the values of query after line 1 and
4. We obtain a string graph made by an OR-node with the two input string graphs as sons. Then, at
line 6 we associate the variable per to the abstraction of s4. Finally, at line 8 we concatenate query
to s5, per and s6: we obtain a string graph which is made by a concat node as root, and, as sons,
the string graph associated to query at line 5 and then all the characters of s5, s4 and s6, one after
the other. The resulting string graph for query represents exactly the two possible outcomes of the
procedure.

For prog2, after line 1 we represent x with a concat node with just one son, containing an a

character. After the first iteration of the loop, line 3, the abstract value associated to x is a concat
node with three sons, 0, a and 1. The least upper bound between the two abstract values (before
entering the loop and after the first iteration) is an OR-node with two sons: one is an a character,
the other is the value of x after the first iteration. Since we have not reached convergence, we must
compute the value of after the second iteration also. In this domain, though, computing the least
upper bound of the values of the first n iterations is not sufficient to reach convergence, since we
always add some new branch to the string graph. We need to use the widening operator and the
result (after reaching convergence) is as follows: OR1[“a”; concat[“0”;OR1; “1”]]. The string graph
root is an OR-node with two sons: an a character and a concat node with three sons. The first and
last sons are, respectively, a 0 character and a 1 character. The second son is, instead, the root OR-
node, thanks to the use of a backward arc. The resulting string graph for x represents exactly all the
concrete possible values of x. Note that the resulting string graph contains a backward arc to allow
the repetition of the pattern 0n . . . 1n.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

34 G. COSTANTINI ET AL.

Figure 11. The hierarchy of abstract domains

This abstract domain is the most precise domain for the analysis of both running examples: it
tracks information similarly to BR domain, but its lub and widening operators are slightly more
accurate.

4.5. Discussion: Relations Between the Five Domains

The abstract domains we introduced track different types of information. Let us discuss the relations
between the five domains.

Intuitively, there are two axes on which the analysis of string values can work: the characters
contained in a string, and their position inside the string. It is easy to see that CI, PR and SU are
less precise than BR and SG. In fact, CI domain considers only character inclusion and completely
disregards the order. PR and SU domains consider also the order, but limiting themselves to the
initial/final segment of the string, and in the same way they collect only partial information about
character inclusion. BR and SG, instead, track both inclusion and order along the string. In [6] we
studied these relationships in details: we defined pairs of functions (abstraction and concretization)
from domain to domain, and showed that CI, PR and SU are more abstract (i.e., less precise) than
both BR and SG.

In the case of BR versus SG, the comparison is more complex, since they exploit very different
data structures. For example, SG has OR-nodes, while BR can only trace alternatives inside bricks
but not outside (like: “these three bricks or these other two”). From this perspective, SG is more
precise than BR. Another important difference is that SG has backward arcs which allow repetitions
of patterns, but they can be traversed how many times we want (even infinite times). With BR,
instead, we can indicate exactly how many times a certain pattern should be repeated (through the
range of bricks). This makes BRmore expressive than SG in that respect. So, these domains are not
directly comparable.

Combining these results, we obtain the lattice depicted in Figure 11, where the upper domains are
more approximated. We denote by > the abstract domain that does not track any information about
string values, and by ℘(K∗) the (naı̈ve and uncomputable) domain that tracks all the possible values
of strings we can have.

In conclusion, the first three domains (CI, PR, SU) are not so precise but the complexity is
kept linear, whereas the other domains (BR and SG) are more demanding (though in the practice
complexity is still kept polynomial) but also more precise.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

A SUITE OF ABSTRACT DOMAINS FOR STATIC ANALYSIS OF STRING VALUES 35

Figure 12. The structure of Sample

Table VIII. Results of caseStudy1

Abstract domain Value of q
CI ({E, e, s, ∗, T, F, a,M, , L,C, r, R,O, S, d}, {E, e, s, ∗, n, T,=

, t, u, F, a,M, I, , L, C,H,W, r,R,O, S, d})
PR “SELECT * FROM ADDRESS”
SU >SU
BR [{“SELECT * FROM address”}](1,1)[{“WHERE studentId=”}](0,1)
SG OR [concat[“SELECT * FROM addressWHERE studentId=”] , concat[“SELECT * FROM

address”]]

5. EXPERIMENTAL RESULTS

We developed a preliminary implementation of all the abstract domains formalized in Section 4
in Sample ¶ (Static Analyzer of Multiple Programming LanguagEs) [15, 16, 17, 44]. Sample is a
generic analyzer of object-oriented programs that is parametric on a value (e.g., numerical) domain,
a heap abstraction, and on the property of interest or an engine to infer annotation (e.g., pre- and
post- conditions). Figure 12 depicts the structure of Sample. The string analyses are plugged as value
analyses.

Notice that the results we have reported on the two motivating examples introduced in Section
1.1 are obtained through this implementation.

We discuss now the application of our analysis to two other case studies. Figure 13 reports their
code. In particular, caseStudy1 is an interesting example cited in [4] as motivation for their work.
The code creates a SQL query by first assigning a constant value (“SELECT * FROM address”)
to the string q and then concatenating it with another constant string (“WHERE studentId=”), but
only if some condition (unknown at compile time) holds. In Table VIII we report the results of the
analysis of this case study with all our five domains. With CI we get that (i) all the characters of
the string “SELECT * FROM address” will certainly be contained in q at the end of the program,
and (ii) all the characters of the string “WHERE studentId=” (in addition to those of “SELECT *
FROM address”) could be contained in q at the end of the program. PR tells us that q will certainly
start with the string “SELECT * FROM address”, while SU is not able to give us any information,
since its result is >SU . BR and SG, instead, infer the same information (even though encoded in

¶http://www.pm.inf.ethz.ch/research/semper/Sample

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

36 G. COSTANTINI ET AL.

1 var q : String = "SELECT * FROM address";
2 if (i != 0)
3 q = q + "WHERE studentId="

(a) The first case study, caseStudy1

1 var sql1 : String = "";
2 var sql2 : String = "";
3 sql1 = "SELECT";
4 sql1 = sql1 + " " + l;
5 sql1 = sql1 + " " + "FROM";
6 sql1 = sql1 + " " + l;
7 sql2 = "UPDATE";
8 sql2 = sql2 + " " + l;
9 sql2 = sql2 + " " + "SET";

10 sql2 = sql2 + " " + l + " = " + l;

(b) The second case study, caseStudy2

Figure 13. Two additional case studies

Table IX. Results of caseStudy2

Abstract domain Value of sql1 Value of sql2
CI ({E, T, F,M,L, ′ ′, C,R,O, S},K) ({E, T,=, ′ ′, U,A, P,D, S},K)
PR “SELECT” “UPDATE”
SU >SU >SU
BR [{“SELECT”}](1,1)[{“ ”}](1,1)>B [{“UPDATE”}](1,1)[{“ ”}](1,1)>B[{“ ”}](1,1)[{“SET”}](1,1)

[{“ ”}](1,1)[{“FROM”}](1,1)[{“ ”}](1,1)>B [{“ ”}](1,1)>B[{“ = ”}](1,1)>B
SG concat[“SELECT ” ; max ; “ FROM ” ; max] concat[“UPDATE ” ; max ; “ SET ” ;

max ; “ = ” ; max]

different ways), which also corresponds exactly to the outcome of the program: q could have value
“SELECT * FROM addressWHERE studentId=” or “SELECT * FROM address”. From this result
we can discover the bug hidden in the program: there is a space missing between “address” and
“WHERE”, which will make the SQL query to sometimes fail at runtime (when i 6= 0). Note that
the resulting bricks list is made by just two bricks, while the resulting string graph is composed by
61 nodes (1 OR, 2 concat, 37+21 simple nodes).
caseStudy2 is inspired from an example in [2]. This program creates two strings sql1 and sql2

(which will be executed as SQL queries) by successive concatenations: each statement concatenates
the previous value of the string variable with some other string (sometimes coming from another
variable). The variable l is used in these concatenations, but we do not know the value of such
variable at compile time since it is an input. In Table IX we report the results of the analysis on
this case study with all our five domains. CI discovers that (i) the string sql1 surely contains all
the characters of “SELECT”, “ ” and “FROM”, but it could contain any character of the alphabet
K (because of the concatenation with l), and (ii) the string sql2 surely contains all the characters
of “UPDATE”, “ ”, “SET” and “ = ”, but it could contain any character of the alphabet K (because
of the concatenation with l). PR tells us that sql1 starts with “SELECT” and sql2 starts with
“UPDATE”, while, as in the previous example, SU is not able to track any information about the
resulting values of the two strings. As it happened in caseStudy1, BR and SG infer both the
same information, which also corresponds exactly to the outcome of the program: sql1 starts with
“SELECT ”, then there is an unknown part (due to l), then it continues with “ FROM ” and it finally
ends with another unknown part. This information is encoded through 7 bricks (in the resulting
bricks list) and 16 nodes (in the resulting string graph). Note that, if we normalized the result of

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

A SUITE OF ABSTRACT DOMAINS FOR STATIC ANALYSIS OF STRING VALUES 37

BR , we would reduce the number of bricks in the list to 4. The other string variable, sql2, starts
with “UPDATE ”, then there is an unknown part, then it continues with “ SET ” followed by another
unknown part, then “ = ” and finally the last unknown part. This information is encoded through 9
bricks (which could be reduced to 6 with a normalization step) and 19 nodes. Note that, on simple
programs, the BR and SG domains tend to produce the same results.

In order to check the scalability and performances of our analysis, we will exploit some Scala
standard libraries. The preliminary experimental results point out that CI and PR× SU are quite
efficient, BR is slightly slower but still fast, while SG’s is the slowest domain of the framework.
In fact, the analyses using CI and PR× SU lasted just a fraction of second, using BR a little
more (always remaining below the second, though), while with SG the analysis lasts some seconds,
especially when the code is not trivial (e.g., with string concatenations inside loops).

6. RELATED WORK

The static determination of approximated values of string expressions has many potential
applications. For instance, approximated string values may be used to check the validity and security
of generated strings, as well as to collect useful string properties. In fact, strings are used in many
applications to build SQL queries, construct semi-structured Web documents, create XPath and
JavaScript expressions, and so on. After being dynamically generated, often in combination with
user inputs, strings are sent to their respective processors. However, strings are usually not evaluated
for their validity or security despite the potential usefulness of such metrics. For these reasons, string
analysis has been widely studied.

Hosoya and Pierce [23] designed a statically typed processing language (called XDuce and based
on the theory of finite tree automata) for building XML documents. Its sound type system ensures
that dynamically generated documents conform to “templates” defined by the document types. This
work differs a lot from ours, since, first of all, they use type systems instead of abstract interpretation.
Moreover, they are focused on building XML documents, while our focus is on collecting possible
values of generic string variables. Lastly, they require to manually annotate the code through types
while our approach is completely automatic.

A more recent work was developed by Yu et al. [41]. They presented an automata-based approach
for the verification of string operations in PHP programs based on symbolic string analysis. They
encode the set of string values that string variables can take as deterministic finite automaton
(DFA): the language accepted by the DFA corresponds to the values that the corresponding string
variable can assume at that program point. Using this technique, it is possible to automatically
verify the sanitization of a string, showing that attacks are not possible. The information tracked
by this analysis is fixed, and it is specific for PHP programs. However, in 2011 they proposed a
unifying framework [43] of their previous works, i.e. an abstraction lattice which can be tuned
to provide various trade-offs between precision and performance. The framework is based on the
regular abstraction [42], a relational analysis in which values of string variables are represented as
multi-track DFA (each track corresponds to a specific string variable). As the number of variables
increases, such relational analysis becomes intractable, so they add two other string abstraction
(relation abstraction and alphabet abstraction) to improve the scalabity of their approach. They also
propose a heuristic to choose a particular point in their abstraction lattice, depending on the program
and property to be verified. The alphabet abstraction can be seen as a more complex version of CI,
since it also keeps track of the position of characters; such abstraction must be applied to automata,
thus obtaining more convoluted operations than in our domain CI.

Tabuchi et al. [38] presented a type system based on regular expressions. It is focused on a
minimal λ-calculus supporting concatenation and pattern matching. This calculus established a
theoretical foundation of using regular expressions as types of strings in text processing languages.
Also in this case (as in XDuce), the approach is very different from ours, since it employs type
system. The only resemblance regards the use of regular expressions, which we use in the BR
domain.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

38 G. COSTANTINI ET AL.

Thiemann [39] introduced another type system for string analysis (based on context-free
grammars) and presented a type inference algorithm based on Earley’s parsing algorithm. It was
not discussed how to deal with string operations other than concatenation (while in this article we
show the semantics of various other string operations). His analysis is more precise than those
based on regular expressions, but his type inference algorithm is incomplete (though sound). Also,
the analysis is tuned at a fixed level of precision.

Context-free grammars are also the basis of the analysis of Christensen, Møller and Schwartzbach
[4]. This analysis (implemented in a tool called JSA, Java String Analyzer) is tuned at a fixed level
of abstraction and it statically determines the values of string expressions in Java programs. This
work has considerable similarities with the SG domain because type graphs are closely related
to context free grammars. However, they generally obtain a regular grammar which contains the
reference grammar, but they are not the same grammar. In the second running example of this
article, prog2, SG domain reaches a better precision than theirs, being able to model precisely the
reference grammar (S → “a”|“0”S“1”) without the need of any kind of approximation. Moreover,
they precisely abstract only the concatenation operation, while for other string operators they use
less precise automata operations or character set approximations; our work deals precisely also with
other operators and can be easily extended to as many as needed. Møller published many other
papers concerning abstractions for string analysis, but every one of them is strictly focused on some
particular case ([34] on a set of HTML pages, [3, 29, 37] on XML documents, [35] on XSLT, [1]
on XHTML, [26, 30, 28, 36] on type checking), without producing a unifying framework, while we
aim at a higher generality.

To statically check the properties of Web pages generated dynamically by a server-side program,
Minamide [32] developed a static program analysis that approximates the string output of a program
with a context-free grammar. His analysis is based on the Java string analyzer (JSA) of [4], but
the novelty of his analysis is the application of finite-state-automata transducers to revise the flow
equations due to string-update operations embedded in the program, reaching a simpler and more
precise analyzer than [4]. This work is specific for HTML pages. Even though the obtained results
are similar to ours, his work suffers from some other limitations: after extracting from the program
the corresponding grammar with operation productions, such grammar must be transformed into a
context-free one. This restricts the string operations supported by the framework (to those which
transform a context-free grammar into another context-free grammar) and it imposes that no string
operation must occur in a cycle of production. Finally, the validity check between the reference
grammar and the context-free grammar is very costly and can be done only when the nesting depth
of the elements in the generated document is bounded.

A combination of grammars and abstract interpretation was studied by Cousot and Cousot in [11],
where they showed that set constraint solving of a particular program P could be understood as an
abstract interpretation over a finite domain of tree grammars, constructed from P. However, their
work is at a very high level and their concern is not the approximation of string variables, so no
string operators are considered in such article.

Abstract interpretation specifically focused on string analysis can be found in Choi et al. [2],
where they used standard abstract-interpretation techniques with heuristic widening to devise a
string analyzer that handles heap variables and context sensitivity. They selected a restricted subset
of regular expressions as abstract domain (which results in limited loss of expressibility). Our BR
domain is similar to this work, and, even though most of the lattice operators are different, we obtain
the same result on the second running example (0∗a1∗). SG domain, instead, is more precise than
their domain. In fact, on the second running example (prog2) the string graphs are able to produce
exactly the reference grammar (0na1n), while their result does not constrain the number of 0s and
1s to be the same.

Kim and Choe [27] introduced recently another approach to string analysis based on abstract
interpretation. They abstract strings with pushdown automata (PDA). The result of their analysis
is compared with a grammar to determine if all the strings generated by the PDA belong to the
grammar. This approach has a fixed precision, and in the worst case (not often encountered in
practice) it has exponential complexity.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

A SUITE OF ABSTRACT DOMAINS FOR STATIC ANALYSIS OF STRING VALUES 39

Doh et al. [14] reported the “abstract parsing” technique, which statically analyzes string values
from programs. They combine LR(k)-parsing technology and data-flow analysis to analyze, in
advance of execution, the documents dynamically generated by a program. Based on the document
languages context-free reference grammar and the programs control structure, the analysis predicts
how the documents will be generated and parses the predicted documents. Their technique is quite
precise, but the level of abstraction is fixed.

Given this context, our work is the first one (together with [43], published at the same time as [7])
that (i) is a generic, flexible, and extensible approach to the analysis of string values, and (ii) can be
tuned at different levels of precision and efficiency.

7. CONCLUSION AND FUTURE WORK

String analysis is a static analysis technique that determines the string values that a variable can hold
at specific points in a program. This information is often useful to help program understanding,
to detect and fix programming errors and security vulnerabilities, and to solve certain program
verification problems.

In this article we approached string analysis using the abstract interpretation framework. In
particular, we focused on the construction of various abstract domains. We chose some string
operators and we defined their concrete and abstract semantics. We created five domains: CI, PR,
SU , BR, SG. The first three domains (CI, PR, SU) are quite simple and the information we can
trace with them is limited. However, they are not computationally expensive (the prefix and suffix in
particular) and they do not need to define a widening operator. The last two domains (BR, SG) are
certainly more complex, and they let us trace more interesting patterns. The lattices of such domains
are infinite and do not satisfy ACC; thus, we define a widening operator. Even though these two
domains are both quite precise, SG seems to be the most precise domain of our framework (and, for
the usual trade-off between performance and precision, the most costly).

As a string can be seen also as an array of characters, as a future work we plan to generalize our
analysis in order to manage arrays of any base type (not only characters), combining it with domains
which abstract relevant properties of such base types.

REFERENCES

1. Brabrand C., Møller A., Schwartzbach M.I. 2001. Static Validation of Dynamically Generated HTML. In
Proceedings of the ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and
Engineering, PASTE ’01. Pages 221 - 231.

2. Choi T., Lee O., Kim H., and Doh K. 2006. A practical string analyzer by the widening approach. In Proceedings
of APLAS ’06. Pages 374-388. Springer.

3. Christensen A.S., Møller A, Schwartzbach M.I. 2002. Static Analysis for Dynamic XML. Technical Report RS-02-
24. Presented at Programming Language Technologies for XML (PLAN-X) 2002.

4. Christensen A., Moller A., and Schwartzbach M. 2003. Precise analysis of string expressions. In Proceedings of
SAS ’03. Pages 1-18. Springer-Verlag.

5. Cortesi A. and Zanioli M. 2011. Widening and narrowing operators for abstract interpretation. In Computer
Languages, Systems and Structures. Volume 37(1). Pages 2442. Elsevier.

6. Costantini G. 2010. Abstract domains for static analysis of strings. Master’s thesis, Ca’ Foscari University of
Venice.

7. Costantini G., Ferrara P., and Cortesi A. 2011. Static analysis of string values. In Proceedings of 13th International
Conference on Formal Engineering Methods, ICFEM ’11. Volume 6991 of LNCS. Pages 505-521. Springer.

8. Cousot P. and Cousot R. 1977. Abstract interpretation: a unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, POPL ’77. Pages 238-252. ACM.

9. Cousot P. and Cousot R. 1979. Systematic design of program analysis frameworks. In Proceedings of the 6th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages, POPL ’79. Pages 269-282. ACM.

10. Cousot P., Cousot R. 1992. Abstract interpretation and application to logic programs. Journal of Logic
Programming, 13(23):103179, 1992.

11. Cousot P., Cousot R. 1995. Formal Language, Grammar and Set-Constraint-Based Program Analysis by Abstract
Interpretation. In FPCA 1995. Pages 170 - 181.

12. Cousot P., Cousot R., Feret J., Mauborgne L., Mine A., Monniaux D., and Rival X. 2005. The ASTREE analyzer. In
Proceedings of the 14th European conference on Programming Languages and Systems, ESOP ’05. Pages 21-30.
Springer-Verlag.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

40 G. COSTANTINI ET AL.

13. Cousot P. and Halbwachs N. 1978. Automatic discovery of linear restraints among variables of a program. In
Proceedings of the 5th ACM SIGACT-SIGPLAN symposium on Principles of programming languages, POPL ’78.
Pages 84-96. ACM.

14. Doh K., Kim H., and Schmidt D. 2009. Abstract parsing: Static analysis of dynamically generated string output
using lr-parsing technology. In Proceedings of the 16th International Symposium on Static Analysis, SAS ’09.
Pages 256 - 272. Springer-Verlag.

15. Ferrara P. 2010. Static type analysis of pattern matching by abstract interpretation. In Proceedings of the 12th
IFIP WG 6.1 international conference and 30th IFIP WG 6.1 international conference on Formal Techniques for
Distributed Systems, FORTE/FMOODS ’10. Pages 186-200. Springer-Verlag.

16. Ferrara P., Fuchs R., and Juhasz U. 2012. TVAL+ : TVLA and Value Analyses Together. In Proceedings of the 10th
International Conference on Software Engineering and Formal Methods, SEFM ’12. Springer-Verlag.

17. Ferrara P. and Müller P. 2012. Automatic inference of access permissions. In Proceedings of the 13th international
conference on Verification, Model Checking, and Abstract Interpretation, VMCAI ’12. Pages 202-218. Springer-
Verlag.

18. Gould C., Su Z., and Devanbu P. 2004. Static checking of dynamically generated queries in database applications.
In Proceedings of the 26th International Conference on Software Engineering, ICSE ’04. Pages 645-654. IEEE
Computer Society.

19. Granger P. 1991. Static analysis of linear congruence equalities among variables of a program. In Proceedings of
the international joint conference on theory and practice of software development on Colloquium on trees in algebra
and programming (CAAP ’91): vol 1, TAPSOFT ’91. Pages 169 - 192. Springer-Verlag.

20. Gulwani S. 2011. Automating string processing in spreadsheets using input-output examples. In Proceedings of
the 38th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages, POPL ’11. Pages
317-330. ACM.

21. Halder R. and Cortesi A. 2010. Obfuscation-based analysis of sql injection attacks. In Proceedings of the The IEEE
symposium on Computers and Communications, ISCC ’10. Pages 931-938. IEEE Computer Society.

22. Hooimeijer P. and Veanes M. 2011. An evaluation of automata algorithms for string analysis. In Proceedings of
the 12th international conference on Verification, model checking, and abstract interpretation, VMCAI ’11. Pages
248-262. Springer-Verlag.

23. Hosoya H. and Pierce B. 2003. Xduce: A statically typed xml processing language. ACM Transactions on Internet
Technology (TOIT). Volume 3, Issue 2. Pages 117 - 148. ACM.

24. Janssens G. and Bruynooghe M. 1990. Deriving descriptions of possible values of program variables by means of
abstract interpretation: Definitions and proofs. Technical Report CW-107, Computer Science Dept., K.U. Leuven.

25. Janssens G. and Bruynooghe M. 1992. Deriving description of possible values of program variables by means of
abstract interpretation. Journal of Logic Programming. Volume 13, Issue 2-3. Pages 205 - 258. Elsevier.

26. Jensen S.H., Møller A., Thiemann P. 2009. Type Analysis for JavaScript. In Proceedings of the 16th International
Static Analysis Symposium, SAS ’09. Volume 5673. Springer-Verlag.

27. Kim S.-W. and Choe K.-M. 2011. String analysis as an abstract interpretation. In Proceedings of the 12th
international conference on Verification, model checking, and abstract interpretation, VMCAI ’11. Pages 294-308.
Springer-Verlag.

28. Kirkegaard C., Møller A. 2005. Type Checking with XML Schema in Xact. Technical Report RS-05-31. Presented
at Programming Language Technologies for XML (PLAN-X).

29. Kirkegaard C., Møller A. 2006. Static Analysis for Java Servlets and JSP. In Proceedings of the 13th International
Static Analysis Symposium, SAS ’06. Volume 4134. Springer-Verlag.

30. Kirkegaard C., Møller A., Schwartzbach M.I. 2004. Static Analysis of XML Transformations in Java. IEEE
Transactions on Software Engineering. Volume 30. Issue 3. Pages 181 - 192.

31. Logozzo F. and Fähndrich M. 2008. Pentagons: A weakly relational domain for the efficient validation of array
accesses. In Proceedings of the 2008 ACM symposium on Applied computing, SAC ’08. Pages 184-188. ACM.

32. Minamide Y. 2005. Static approximation of dynamically generated web pages. In Proceedings of the 14th
international conference on World Wide Web, WWW ’05. Pages 432-441. ACM.

33. Miné A. 2006. The octagon abstract domain. Higher-Order and Symbolic Computation. Volume 19, Issue 1. Pages
31-100. Kluwer Academic Publishers.

34. Møller A., Schwarz M. 2011. HTML Validation of Context-Free Languages. In Proceedings of the 14th International
Conference on Foundations of Software Science and Computation Structures, FoSSaCS ’11. Springer-Verlag.

35. Møller A., Olesen M.Ø., Schwartzbach M.I. 2007. Static Validation of XSL Transformations. ACM Transactions
on Programming Languages and Systems. Volume 29. Issue 4.

36. Møller A., Schwartzbach M.I. 2005. The Design Space of Type Checkers for XML Transformation Languages. In
Proceedings of the 10th International Conference on Database Theory, ICDT ’05. Volume 3363. Pages 17 - 36.
Springer-Verlag.

37. Møller A., Schwartzbach M.I. 2011. XML Graphs in Program Analysis. Science of Computer Programming.
Volume 76, Issue 6. Pages 492 - 515. Elsevier.

38. Tabuchi N., Sumii E., and Yonezawa A. 2002. Regular expression types for strings in a text processing language.
In Electronic Notes in Theoretical Computer Science, 75. Pages 95-113.

39. Thiemann P. 2005. Grammar-based analysis of string expressions. In Proceedings of the 2005 ACM SIGPLAN
international workshop on Types in languages design and implementation, TLDI ’05. Pages 59 - 70. ACM.

40. Van Hentenryck P., Cortesi A., and Le Charlier B. 1995. Type analysis of prolog using type graphs. In Journal of
Logic Programming. Volume 22, Issue 3. Pages 179209. Elsevier.

41. Yu F., Bultan T., Cova M., and Ibarra O. 2008. Symbolic string verification: An automata-based approach. In
Proceedings of the 15th international workshop on Model Checking Software, SPIN ’08. Pages 306 - 324. Springer-
Verlag.

42. Yu F., Bultan T., Ibarra O. 2010. Relational String Verification Using Multi-track Automata. In Proceedings of the
15th International Conference CIAA 2010. Volume 6482. Springer.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

A SUITE OF ABSTRACT DOMAINS FOR STATIC ANALYSIS OF STRING VALUES 41

43. Yu F., Bultan T., Hardekopf B. 2011. String Abstractions for String Verification. In Proceedings of the 18th
International SPIN Workshop. Pages 20 - 37. Springer.

44. Zanioli M., Ferrara P., and Cortesi A. 2012. SAILS: static analysis of information leakage with Sample. In
Proceedings of the 27th Annual ACM Symposium on Applied Computing, SAC ’12. Pages 1308-1313. ACM.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

