
The Domain of Parametric Hypercubes for Static

Analysis of Computer Games Software

Giulia Costantini1, Pietro Ferrara2, Giuseppe Maggiore3, and Agostino
Cortesi1

1 University Ca' Foscari of Venice, Italy
{costantini,cortesi}@dsi.unive.it

2 ETH Zurich, Switzerland
pietro.ferrara@inf.ethz.ch

3 IGAD, NHTV University of Breda, The Netherlands
maggiore.g@nhtv.nl

Abstract. Computer Games Software deeply relies on physics simula-
tions, which are particularly demanding to analyze because they manip-
ulate a large amount of interleaving �oating point variables. Therefore,
this application domain is an interesting workbench to stress the trade-o�
between accuracy and e�ciency of abstract domains for static analysis.
In this paper, we introduce Parametric Hypercubes, a novel disjunctive
non-relational abstract domain. Its main features are: (i) it combines
the low computational cost of operations on (selected) multidimensional
intervals with the accuracy provided by lifting to a power-set disjunctive
domain, (ii) the compact representation of its elements allows to limit
the space complexity of the analysis, and (iii) the parametric nature of
the domain provides a way to tune the accuracy/e�ciency of the analysis
by just setting the widths of the hypercubes sides.
The �rst experimental results on a representative Computer Games case
study outline both the e�ciency and the precision of the proposal.

1 Introduction

Computer Games Software is a fast growing industry, with more than 200 million
units sold every year, and annual revenue of more than 10 billion dollars. Ac-
cording to the Entertainment Software Association (ESA), more than 25% of the
software played concerns sport, action, and strategy games, where physics simu-
lations are the core of the product, and compile-time veri�cation of behavioural
properties is particularly challenging for developers.

The di�culty arises because, usually, these programs feature (i) a while loop
which goes on endlessly, (ii) a complex state made up by multiple real-valued
variables, and (iii) strong dependencies among variables. Most of the times,
a simulation consists in the initialization of the state (i.e., the variables which
compose the simulated world) followed by an in�nite while loop which computes
the numerical integration over time (i.e., the inductive step of the simulation).
Such loop is executed until the game is stopped. In addition, the variables of

a physics simulation are real-valued, because they represent continuous values
that map directly to physical aspects of the real world, like positions, velocities
(speed plus direction), and accelerations. Finally, the variables of a simulation
are strongly interrelated, because the simulation often makes decisions based
on the values of particular variables. For example, the velocity of an object
changes abruptly when there is a collision, which depends on the object position.
Similarly, the position changes accordingly to the velocity, which in turn depends
on the acceleration which may derive from the position (for a gravitational �eld)
or from other parameters.

Interesting properties on physical programs are, for example, the insurance
that a rocket reaches a stable orbit, or that a bouncing ball arrives at a cer-
tain destination. To prove such properties statically, we need to precisely track
relationships between variables. However, traditional approaches are not best
suited to deal with these kind of properties. On the one hand, non-relational
domains are usually too approximate. On the other hand, the computational
cost of sophisticated relational domains like Polyhedra [10] or Parallelotopes [3]
is too high, and their practical use in this context becomes unfeasible.

In this paper, we introduce Parametric Hypercubes, a novel disjunctive non-
relational abstract domain. Its main features are: (i) it combines the low com-
putational cost of operations on (selected) multidimensional intervals with the
accuracy provided by lifting to a power-set domain, (ii) the compact represen-
tation of its elements allows to limit the space complexity of the analysis, and
(iii) the parametric nature of the domain provides a way to tune the trade-o�
between accuracy and e�ciency of the analysis by just setting the widths of
the hypercubes sides. The domain can be seen as the combination of a suite
of well-known techniques for numerical abstract domain design, like disjunctive
powerset, and conditional partitioning. The most interesting points of our work
are: (i) the approach: the design of the domain has as starting point the features
of the application domains, (ii) the self-adaptive parameterization: a recursive
algorithm is applied to re�ne the initial parameters in order to improve the ac-
curacy of the analysis without sacri�cing the performance, and (iii) the novel
notion of �o�set� to narrow the lack of precision due to the �xed width of in-
tervals. The analysis shows promising experimental results in terms of e�ciency
and precision on a representative case study of Computer Games Software.

The rest of the paper is structured as follows. Section 2 presents the language
syntax supported by our analysis, while Section 3 introduces the case study which
we use to experiment with our approach. Sections 4 and 5 formally de�ne the
abstract domain and semantics, respectively. Section 6 contains the experimental
results of our analysis applied to the case study of Section 3. Section 7 presents
the related work and Section 8 concludes.

2 Language syntax

Let V be a �nite set of variables, and I the set of all real-valued intervals. Figure
1 de�nes the language. We focus on programs dealing with mathematical com-

2

putations over real-valued variables. Therefore, we consider expressions built
through the most common mathematical operators (sum, subtraction, multipli-
cation, and division). An arithmetic expression can be a constant value (c ∈ R),
a non-deterministic value in an interval (I ∈ I), or a variable (V ∈ V). We
also consider boolean conditions built through the comparison of two arithmetic
expressions. Boolean conditions can be combined as usual with logical operators
(and, or, not). As for statements, we support the assignment of an expression to
a variable, if− then− else, while loops, and concatenation. Even though this
syntax is simple and limited, many physical simulations can be built through it
[6], since their complexity lies mostly in their logic and not in the used constructs.

V ∈ V, I ∈ I, c ∈ R
E := c|I|V |E < aop > E where < aop >∈ {+,−,×,÷}

B := E < bop > E|B and B|not B|B or B where < bop >∈ {≥, >,≤, <, 6=}
P := V = E|if(B) then P else P |while(B) P |P ;P

Fig. 1. Syntax

3 The case study of bouncing balls

Consider the program in Figure 2. It generates a bouncing ball that starts at the
left side of the screen (even though the exact initial position is not �xed), and
a random initial velocity. The horizontal direction of the ball is always towards
the right of the screen, since vx ≥ 0.Whenever the ball reaches the bottom of the
screen, it bounces (i.e., its vertical velocity is inverted). When the ball reaches
the right border of the screen, it disappears. We want to verify that T seconds
after the generation of the ball, such ball has already exited from the screen (we
call this Property 1).

The structure of this program respects the generic structure of a physics
simulation, as explained in Section 1. The meanings of the variables are as fol-
lows. (px, py) represents the current position of the ball in the screen, and its

let px = rand(0.0, 10.0), py = rand(0.0, 50.0)
let vx = rand(0.0, 60.0), vy = rand(−30.0, −25.0)
let dt = 0.05, g = −9.8, k = 0.8

while (true) do

if (py >= 0.0) then
(px, py) = (px + vx ∗ dt, py + vy ∗ dt)
(vx, vy) = (vx, vy + g ∗ dt)

else

(px, py) = (px + vx ∗ dt, 0.0)
(vx, vy) = (vx, −vy) ∗ k

Fig. 2. Case study: bouncing-ball code

3

initial values are generated randomly. (vx, vy) represents the current velocity of
the ball, and its initial values are generated randomly as well. dt represents the
time interval between iterations of the loop. This value is constant and known at
compile time (dt = 1/20 = 0.05 considering a simulation running at 20 frames
per second). g represents the force of gravity (−9.8). k represents how much the
impact with the ground decreases the velocity of the ball.

The while loop updates the ball position and velocity. To simulate the bounc-
ing, we update the horizontal position according to the rule of uniform linear
motion, while we force the vertical position to zero when the ball touches the
ground and we invert the vertical velocity. In addition, we decrease both the
horizontal and vertical velocity through the constant factor k, to consider the
force which is lost in the impact with the ground.

let balls = Set.empty
let dt = 0.05, creationInterval = 3.0, timeFromLastCreation = 0.0
while (true) do

foreach ball in balls
updateBall(ball)

if (timeFromLastCreation >= creationInterval)
generateNewBall()
timeFromLastCreation = 0.0

else

timeFromLastCreation += dt

Fig. 3. Bouncing ball generation

Verifying Property 1 on this program has a signi�cant practical interest,
since it is a basic physics simulation which can be used in many contexts [11].
For instance, consider the program in Figure 3, where updateBall(b) moves the
ball b (through the body of the while loop of Figure 2) and generateNewBall()
creates a new ball (with the values of the initialization of Figure 2). It discreetly
generates bouncing balls on the screen. The interval between the creation of two
balls (creationInterval) is constant and known at compile time.

Proving Property 1 on the program in Figure 2 means that a single ball will
have exited the screen after T seconds. In addition, in the program of Figure 3,
we generate one ball each creationInterval seconds. This means that, having
veri�ed Property 1, we can guarantee that a maximum of d T

creationInterval
e balls

will be on the screen at the same time. Such information may be useful for
performance reasons (crucial in a game), since each ball requires computations
for its rendering and updating.

Non-disjunctive or non-relational static analyses are not properly suited to
verify Property 1. Consider for example the Interval domain where every variable
of the program is associated to a single interval. After a few iterations, when the
vertical position possibly goes to zero, the analysis is not able to distinguish
which branch of the if− then− else to take anymore. In this case, the lub
operator makes the vertical velocity interval quite wide, since it will contain
both positive and negative values. After that, the precision gets completely lost,
since the velocity variable a�ects the position and vice-versa. On the other hand,

4

the accuracy that would be ensured by using existing disjunctive domains has a
computational cost that makes this approach unfeasible for practical use.

4 The Parametric Hypercubes domain

Intuitively, an abstract state of the Parametric Hypercubes domain Htracks dis-
junctive information relying on �oating-point intervals of �xed width. A state of
H is made by a set of hypercubes of dimension |Vars|. Each hypercube has |Vars|
sides, one for each variable, and each side contains an abstract non-relational
value for the corresponding variable. Each hypercube represents a set of ad-
missible combinations of values for all variables. The name Hypercubes comes
from the geometric interpretation of the elements of H. The concrete state of
a program with variables in Vars is an environment in Vars → R. This can be
isomorphically represented by a tuple of values where each item of the tuple
represents a program variable. Seen in this way, the concrete state corresponds,
geometrically, to a point in the |Vars|-dimensional space. The hypercubes of our
domain H are volumes in the same |Vars|-dimensional space.

4.1 Lattice structure

An abstract state of H tracks a set of hypercubes, and each hypercube is repre-
sented by a tuple of abstract values. The dimension of these tuples is equal to
the number of program variables. We abstract �oating-point variables through
intervals of real values. A set of hypercubes allows us to track disjunctive infor-
mation, and this is useful when the values of a variable are clustered in di�erent
ranges. The performance of this domain, though, becomes a crucial point, be-
cause the number of possible hypercubes in the space is potentially exponential
with respect to the number of partitions along each spatial axis.

First of all, the complexity is lightened by the use of a �xed width for each
variable, by partitioning the possible intervals, and by the e�ciency of set op-
erators on tuples. Then, another performance booster is the use of a smart
representation for intervals: in order to store the speci�c interval range we just
use a single integer representing it. This is possible because each variable xi is
associated to an interval width (speci�c only for that variable), which we call wi

and which is a parameter of the analysis. Each width wi represents the width of
all the possible abstract intervals associated to xi. More precisely, given a width
wi and an integer index m, the interval uniquely associated to the variable xi
is [m × wi..(m + 1) × wi]. Notice that the smaller the width associated to a
variable, the more granular and precise the analysis on that variable (and the
heavier computationally the analysis). Section 5.3 will discuss how to compute
and adjust automatically the widths.

Example: Consider the case study of Section 3 and in particular the two
variables px and py. Suppose that the widths associated to such variables are
w1 = 10.0, w2 = 25.0. The hypercubes in this case are 2D-rectangles that can
be represented on the Cartesian plane. Each side of a hypercube is identi�ed
by an integer index, and a 2D hypercube is then uniquely identi�ed by a pair

5

of integers. For instance, the hypercube h1 = (0, 1) represents px ∈ [0.0..10.0]
and py ∈ [25.0..50.0], while the hypercube h2 = (0, 0) associates px to [0.0..10.0]
and py to [0.0..25.0]. Figure 4a depicts the two hypercubes associated to the
initialization of the case study (i.e., h1 and h2). Instead, Figure 4b depicts the
six hypercubes obtained after executing the �rst iteration of the while loop.

(a) The abstract state after the initial-
ization of the variables px, py, when their
widths are, respectively, 10.0 and 25.0

(b) The abstract state of px, py after the
�rst iteration of the loop (widths are, re-
spectively, 10.0 and 25.0)

Fig. 4. Cartesian plans

We now formalize our abstract domain. Each abstract state is a set of hy-
percubes, where each hypercube is composed by |Vars| integer numbers. The
abstract domain is then de�ned by H = ℘(Zn) where n = |Vars|. The de�nition
of lattice operators relies on set operators. Formally, 〈℘(Zn),⊆,∪,∩, ∅,Zn〉.

4.2 Concretization function

We denote by A the non-relational abstract domain on which our analysis is
parameterized, and by n the number of variables of the program. Let σ ∈ Rn be
a tuple and σi ∈ R be the i-th element of such tuple. Also, let γA : A → ℘(R)
be the concretization function of abstract values of the non-relational abstract
domain A, and getAbsValuev : N → A be the function that, given an integer
index, returns the abstract value (in the domain A) which corresponds to that
index inside the tuple v. Then, the function γVal : ℘(An) → ℘(Rn) concretizes
a set of hypercubes to a set of vectors of n �oating point values. Formally,
γVal(V) = {σ : ∃v ∈ V : ∀i ∈ [1..n] : σi ∈ γA(getAbsValuev(i))} where V ∈ ℘(An)
is a set of hypercubes. We can now de�ne the function γH, which maps a subset
V of ℘(An) into an environment. The function γH : ℘(An) → ℘(Vars → R)
concretizes the hypercubes domain. Formally, γH(V) = {[x 7→ σvarIndex(x) : x ∈
Vars] : σ ∈ γVal(V)}. Then γH maps the vectors returned by γVal into concrete
environments relying on the function varIndex : Vars → N. The latter, given a
variable, returns its index in the tuples which compose the elements of H.

6

4.3 Convergence of the analysis

The number of hypercubes in an abstract state may increase inde�nitely. In
order to make the analysis convergent, we �x for each variable of the program a
maximum integer index ni such that ni represents the interval [ni × wi.. +∞].
The same happens symmetrically for negative values. In this way, the set of
indices of a given variable is �nite, the resulting domain has �nite height, and
the analysis is convergent.

This approach may seem too rough since we establish the bounds of intervals
before running the analysis. However, when analysing physics simulations we can
use the initialization of variables and the property to verify in order to establish
convenient bounds for the intervals. For instance, in the case study presented in
Section 3 we are interested in checking if a ball stays in the screen, that is, if px
is greater than zero and less than a given value w representing the width of the
screen. Since we are only interested in proving that, once a ball has exited the
screen, it does not come back, we can abstract together all the values that are
greater than w.

4.4 O�sets

A loss of precision may occur due to the fact that hypercubes proliferate too
much, even using small widths. Consider, for example, the statement x = x+ 0.01
(which is repeated at each iteration of the while loop) with 1.0 as the width as-
sociated to x. If [0.0..1.0] was the initial interval associated to x, the sequence of
abstract states would be: {[0.0..1.0]}, {[0.0..1.0], [1.0..2.0]}, {[0.0..1.0], [1.0..2.0],
[2.0..3.0]} and so on. At each iteration we would add one interval.

In order to overcome these situations, we further improve the de�nition of
our domain: in each hypercube, each variable vi (associated to width wi) is
related to (other than an integer index i representing the �xed-width interval
[i×wi..(i+ 1)×wi]) a speci�c o�set (om, oM) inside such interval. In this way,
we use a sub-interval (of arbitrary width) inside the �xed-interval width, thereby
restricting the possible values that the variable can assume. Both om and oM
must be smaller than wi, greater than or equal to 0 and om ≤ oM . Then, if i and
(om, oM) are associated to vi, this means that the possible values of vi belong
to the interval [(i× wi) + om..(i× wi) + oM].

An element of our abstract domain is then stored as a map from hypercubes
to tuples of o�sets. In this way, we can keep the original de�nition of a hypercube
as a tuple of integers, but we also map each hypercube to a tuple of o�sets (one for

each variable). Now an abstract state is de�ned byM : Z|V ars| → (R× R)|V ars|
,

i.e., a map where the domain is the set of hypercubes, and the codomain is the
set of tuples of o�sets.

The least upper bound between two abstract states (M =M1 tM2) is then
de�ned by dom(M) = dom(M1) ∪ dom(M2), and

∀h ∈ dom(M) :M(h) =


M1(h) if h ∈ dom(M1) ∧ h /∈ dom(M2)

M2(h) if h ∈ dom(M2) ∧ h /∈ dom(M1)

merge(M1(h),M2(h)) otherwise

7

where merge(o1, o2) creates a new tuple of o�sets by merging the two tuples of
o�sets in input: for each pair of corresponding o�sets (for example (m1,M1) and
(m2,M2)), the new o�set is the widest combination possible (i.e., (min(m1,m2)
andmax(M1,M2))). Note that this de�nition corresponds to the pointwise appli-
cation of the least upper bound operator over intervals. The widening operator
is extended in the same way: it applies the standard widening operators over
intervals pointwisely to the elements of the vector representing the o�sets.

5 Abstract semantics

For the most part, the abstract semantics applies existing semantic operators of
boxed Intervals [9]. In this section, we sketch how these operators are used to
de�ne the semantics on H.

First of all, I de�nes the semantics of arithmetic expressions on a single
hypercube by applying the well-known arithmetic operators on intervals.

We use the semantics I to de�ne the abstract semantics B of Boolean com-
parisons. Given a hypercube and a Boolean comparison E1 < bop > E2 where
< bop >∈ {≥, >,≤, <, 6=}, B returns an abstract value of the boolean domain

(namely, true, false, or >) comparing the intervals obtained from E1 and E2

through I. Therefore, given a Boolean condition and a set of hypercubes, we
partition this set into the hypercubes for which (i) the condition surely holds,
(ii) the condition surely does not hold, and (iii) the condition may or may not
hold. In this way, we can discard all the hypercubes for which a given Boolean
condition surely holds or does not hold. The semantics of the logical operators
not, and, or is de�ned in the standard way.

I is used to de�ne the semantics S of variable assignment as well. The standard
semantics of x = exp is to (i) obtain the interval representing the right part
(IJx = exp, σK = [m..M]), and (ii) assign it in the current state. This approach
does not necessarily produce a single hypercube, since the interval to assign could
have a greater width than the �xed width of the assigned variable (for example,
the interval [0..6] when w = 5). It could also happen that the resulting interval
width is smaller than the �xed width, but the interval spans over more than one
hypercube side, due to the �xed space partitioning (for example, the interval
[3..6] when w = 5, because the space is partitioned in [0..5], [5..10], etc.). In these
cases, we build up several hypercubes that cover the interval [m..M]. This can be
formalized by assign(h, Vi, [a..b]) = {h[i 7→ m] : [m×wi..(m+1)×wi]∩[a..b] 6= ∅},
where h is a hypercube, Vi is the assigned variable, and [a..b] is the interval we are
assigning (which depends on the hypercube h, since we use its variables values to
compute the result of the expression). We repeat this process for each hypercube
h in the abstract state by using it as input for the computation of assign. In
this way, we are able to over-approximate the assignment while also keeping the
�xed widths of the intervals, which are very important for performance issues.

O�sets O�sets allow us to recover some precision when computing the abstract
semantics of assignment. In particular, as the expression semantics I returns
intervals of arbitrary widths, we can use such exact result to update the o�sets

8

of the abstract state. Formally, the semantics of the assignment is de�ned as
follows:

assign(h, Vi, [a..b]) = {h[i 7→ (m, om, oM)] : [m× wi..(m+ 1)× wi] ∩ [a..b] 6= ∅}

where h is a hypercube, Vi is the assigned variable, [a..b] is the interval we are
assigning and om, oM are computed as:

om =

{
0 if a ≤ (m× wi)

a− (m× wi) otherwise
∧ oM =

{
wi if b ≥ ((m+ 1)× wi)

b− (m× wi) otherwise

Note that, when we extract from a hypercube the interval associated to a vari-
able, we use the interval delimited by the o�sets, so that abstract operations can
be much more precise.

Consider the evaluation of statement x = x+ 0.01 inside a while loop with
1.0 as width of x and [0..1] as initial value of x. After the �rst iteration, the
abstract semantics computes [0.0..1.0] and [1.0..2.0] with o�sets [0.01..1.0] and
[1.0..1.01], respectively. In this way, at the following iteration we would obtain
again the same two intervals with the o�sets changed to [0.02..1.0] and [1.0..1.02].
This results is strictly more precise than the one obtained without o�sets, and
it is an essential feature of our abstract domain. For instance, in the case study
of Figure 2 o�sets will allow us to discover if a bouncing ball exits the screen
after N iterations of the while loop.

5.1 Initialization of the analysis

Before starting the analysis we have to determine the number of sides each
hypercube will have. To do this, we must �nd all the variables (V ars) of the
program which are not constants (i.e., assigned only once at the beginning of the
program). We require the program to initialize all the variables at the beginning
of the program. The initialization of the analysis is made in two steps. First,
for each initialized variable, we compute its abstraction in the non-relational
domain chosen to represent the single variables. The resulting set of abstract
values could contain more than one element. Let us call α(V) the set of abstract
values associated to the initialization of the variable V ∈ V ars. Then we compute
the Cartesian product of all sets of abstracted values (one for each variable). The
resulting set of tuples (where each tuple has the same cardinality as V ars) is
the initial set of hypercubes of the analysis. Formally, H = XV ∈V ars α(V).

Consider the code of our case study in Figure 2. First of all, we must identify
the variables which are not constants: dt, g, k are assigned only during the ini-
tialization, so we do not include them in V ars. The set of not-constant variables
is then V ars = {V1 = px, V2 = py, V3 = vx, V4 = vy}, and so |V ars| = 4.

5.2 Tracking the origins

During the analysis of a program we also track, for each hypercube of the current
abstract state, the initial hypercubes (origins) from which it is derived. To store

9

such information, we proceed as follows. LetHi be the set of hypercubes obtained
for the i-th statement of the program. The data structure of a hypercube h
contains also an additional set of hypercubes, hor, which are its origins and are
always a subset of the initial set of hypercubes, i.e., ∀h : hor ⊆ H0. At the �rst
iteration, each hypercube contains only itself in its origins set: ∀h ∈ H0 : hor =
{h}. When we execute a statement of the program, each hypercube produces
some new hypercubes: at this stage, the origins set is simply propagated. For
example, if h generates h1, h2, then h

or
1 = hor2 = hor. When merging all the newly

produced hypercubes in a single set (the abstract state associated to the point
of the program just after the executed statement), we also merge through set
union the sets of origins of any repeated hypercube. For example, consider Hi =
{ha, hb} and let h1, h2 be the hypercubes produced by ha executing statement i-
th and h2, h3 be those produced by hb. Then, Hi+1 = {h1, h2, h3} and hor1 = hora ,
hor2 = hora ∪ horb and hor3 = horb .

5.3 Width choice

The choice of the interval widths in�uences both the precision and e�ciency of
the analysis. On the one hand, if we use smaller widths we certainly obtain more
precision, but the analysis risks to be too slow. On the other hand, with bigger
widths the analysis will be surely faster, but we could not be able to verify the
desired property. To deal with this trade-o�, we implemented a recursive algo-
rithm which adjusts the widths automatically. We start with wide intervals (i.e.,
coarse precision, but fast results) and we run the analysis for the �rst time. At
the end of the analysis, we check, for each hypercube of the �nal set, if it veri�es
the desired property. We then associate to each origin (i.e., initial hypercube) its
�nal result by merging the results of its derived �nal hypercubes (we know this
relationship because of the origins set stored in each hypercube): some origins
will certainly verify the property (i.e., they produce only �nal hypercubes which
satisfy the property), some will not, and some will not be able to give us a def-
inite answer (because they produce both hypercubes which verify the property
and hypercubes which do not verify it). We partition the starting hypercubes
set with respect to this criterion (obtaining, respectively, the yes set, the no set
and the maybe set), and then we run the analysis again with halved widths, but
only on the origins which did not give a de�nite answer (the maybe set). This
step is only performed until we reach a speci�c threshold, i.e., the minimum

width allowed for the analysis. The smaller this threshold is, the more precise
(but slower) the analysis becomes.

The analysis is then able to tell us which initial values of the variables bring
us to verify the property (the union of all the yes sets encountered during the
recursive algorithm) and which do not. Thanks to these results, the user can
modify the initial values of the program, and run the analysis again, until the
answer is that the property is veri�ed for all initial values. In our case study, for
example, we can adjust the possible initial positions and velocities until we are
sure that the ball will exit the screen in a certain time frame.

The formalization of this recursive algorithm is presented in Algorithm 1.

10

Algorithm 1 The width adjusting recursive algorithm

function Analysis(currWidth,minWidth, startingHypercubes)
return (yes ∪ yes′, no ∪ no′,maybe′)
where

(yes, no,maybe) = hypercubesAnalysis(currWidth, startingHypercubes)
if currWidth/2.0 ≥ minWidth then

(yes′, no′,maybe′) = Analysis(currWidth/2.0,minWidth,maybe)
else

(yes′, no′,maybe′) = (Set.empty, Set.empty,maybe)
end if

end function

6 Experimental results

In this Section we present some experimental results on the case study presented
in Section 3. We want to check if Property 1 is veri�ed on the program of Figure
2 and, in particular, we want to know which subset of starting values brings to
verify it. We implemented our analysis in the F# language with Visual Studio
2012. We ran the analysis on an Intel Core i5 CPU 1.60 GHz with 4 GB of RAM,
running Windows 8 and the F# runtime 4.0 under .NET 4.0.

We set the initial widths associated to all variables to 100.0 and the minimum
width allowed to 5.0. As for Property 1, we set T = 5, i.e., we want to verify if
the ball is surely out of the screen within 5 seconds from its generation. Since
dt = 0.05, a simulation during 5 seconds corresponds to 5/0.05 = 100 iterations
of the while loop. To verify this property, we apply trace partitioning [18] to
track one abstract state per loop iteration until the 100-th iteration (we do not
need to track precise information after the 100th iteration). The position which
corresponds to the exiting from the screen is 100.0: if after 100 iterations the
position px is surely greater than 100.0, then Property 1 is veri�ed. The whole
of these values (starting variables values and widths, minimum width allowed,
number of iterations, position to reach) make up our standard workbench data.
We will experiment to study how e�ciency and precision change when modifying
some parameters of the analysis.

For each test, the analysis returns three sets of starting hypercubes: the
initial values of the variables which satisfy the property (yes set), which surely
do not satisfy the property (no set), and which may or not satisfy the property
(maybe set). To make the results more immediate and clearer, we computed for
each yes and no set the corresponding volume covered in the space by their
hypercubes. We also consider the total volume of the variable space, i.e., the
volume covered by all possible values with which the program variables are
initialized. In the case of the standard workbench data, the total volume is
10.0 × 50.0 × 60.0 × 5.0 = 150000. Dividing the sum of yes and no volumes by
the total volume, we obtain the percentage of the cases for which the analysis
gives a de�nite answer. We will call this percentage the precision of the analysis.

11

Varying the minimum width allowed First of all, we run the analysis modi-
fying the minimum width allowed (MWA) parameter and we reported the results
of these tests in Table 1. We can clearly see the trade-o� between performance
and precision.

Table 1. Varying the minimum width allowed (MWA)

MWA Time (sec.) yes+no volume Precision
3 530 131934 88%
5 77 99219 66%
12 11 40625 27%
24 1 25000 17%
45 0.2 0 0%

Finding appropriate starting values In Table 2 we reported the results of
a series of successive tests obtained by changing the horizontal velocity of the
ball (vx). In particular, we made up a series of tests simulating the behavior
of a developer using our analysis to debug his code. Let us suppose that we
wrongly inserted a starting interval of negative values (between -120 and 0) for
the horizontal velocity. The �rst test (# 1) shows us that the program does
not work correctly, since the no volume is 100%. Also, to give this answer, the
analysis is very quick because a low MWA (45) su�ces. After that, we try (test
2) with very high positive velocities (between 60 and 120) and we obtain
(also very quickly) a 100% of positive answer: we know for sure that with these
velocities the program works correctly. Now it remains to verify what happens
with velocities between 0 and 60, and we try this in test # 3, where we decrease
the MWA because we need more precision (the results with greater MWA were
presented by the previous Section). Some values of vx (i.e., ≥ 31.25) ensure that
the property is veri�ed, some other values (i.e., ≤ 12.5) ensure that the property
is not veri�ed, but the ones in between are uncertain. Tests # 4 and # 5 are just
double checks. So we try with a smaller MWA (3) in test # 6 on the interval
[15..30]: about a quarter of the starting values produces yes and another quarter
produces no. The no derives from low values (smaller than 18) and we con�rm
this in test # 7. As for medium-high values, test # 6 shows that, with a velocity
greater than 25, the answer is almost always yes. It is not always yes because,
with this range of velocities, the values of other variables become important to
verify the property. Test # 8, in fact, shows us that velocities within 25 and 30
produce an 82% of yes, but a 18% of maybe remains. Finally, in test # 9 we
modify also other two variables (with values chosen looking at the results from
test # 6 and # 8) and, with such values, the answers are 100% yes.

After these tests, the developer of the case study is sure that horizontal
velocities below 18 will certainly not make the program work. On the other hand,
values greater than 30 certainly make the program work. For values between 25
and 30, other variable values must be changed (px and py) to make the program
work correctly. Making some other tests, we could also explore what happens
with values between 18 and 25.

12

Table 2. Varying the horizontal velocity (vx)

Test vx interval MWA Time (sec) Answer Comment
1 [-120 .. 0] 45 1 no = 100% With negative values the answer is always

no.
2 [60 .. 120] 45 0.2 yes = 100% With very high positive values the answer

is always yes.

3 [0 .. 60] 5 77
yes = 45%
no = 21%

Uncertainty. High values (≥ 31.25) imply
yes, low values (≤ 12.5) imply no.

4 [0 .. 15] 24 0.5 no = 100% Double check on low values: answer al-
ways no.

5 [30 .. 60] 5 30 yes = 100% Double check on medium-high values: an-
swer always yes.

6 [15 .. 30] 3 526
yes = 27%
no = 25%

Uncertainty. Low values (≤ 18) imply no,
for high values (≥ 25) depends also on
other variables.

7 [15 .. 18] 5 7 no = 100% Double check on medium-low values: an-
swer always no.

8 [25 .. 30] 3 164
yes = 82%
maybe = 18%

Double check on medium-high values: an-
swer almost always yes. In this case, also
values of other variables in�uence the re-
sult.

9 [25 .. 30] 5 1 yes = 100% Modi�ed also py ([40 .. 50]) and px ([5 ..
10]). Answer always yes.

Discussion In this scenario, we ran the analysis by manually changing the initial
values of program variables. Notice that this process could be automatized. This
process can be highly interactive, since the tool could show to the user even
partial results while it is automatically improving the precision by adopting
narrower intervals on the maybe portion as described by Algorithm 1. In this
way, the user could iterate the process until it �nds suitable initial values.

The execution times obtained so far underline that the analysis is e�cient
enough to be the basis of practical tools. Moreover, the analysis could be paral-
lelized by running in parallel the computation of the semantics for each initial
hypercube: exploiting several cores or even running the analysis in the cloud, we
could further improve the e�ciency of the overall analysis.

7 Related work

Various numerical domains have been studied in the literature, and they can
be classi�ed with respect to a number of di�erent dimensions: �nite (e.g., Sign)
versus in�nite (e.g., Intervals) height, relational (e.g., Octagons [19]) versus non-
relational (e.g., Intervals), convex (e.g., Polyhedra [10]) versus possibly non-
convex (e.g., donut-like domains [13]). Hypercubes track disjunctive information
relying on Intervals. Similarly, the powerset operator [12] allows one to track dis-
junctive information, but the complexity of the analysis grows up exponentially.
Instead, we designed a speci�c disjunctive domain that reduces the practical
complexity of the analysis by adopting indexes and o�sets.

Noticeable e�orts have been put both to reduce the loss of precision due
to the upper bound operation, and to accelerate the convergence of the Kleene
iterative algorithm [15, 22, 21, 4], but they do not track disjunctive information.

13

The trace partitioning technique designed by Mauborgne and Rival [18] pro-
vides automatic procedures to build suitable partitions of the traces yielding to
a re�nement that has great impact both on the accuracy and on the e�ciency
of the analysis. This approach tracks disjunctive information, and it works quite
well when the single partitions are carefully designed by an expert user. Unluck-
ily, given the high number of hypercubes tracked by our analysis, this approach
is de�nitely too slow for the scenario we are targeting.

Our spatial representation and width adjustment resembles the hierarchical
data-structure of quadtrees in [17]. However, this paper contains only a prelim-
inary discussion of the quadtree domain, and as far as we know it has not been
further developed nor applied. Moreover, their domain is targeted to analyse
only machine integers and the width is the same in each spatial axis.

Our self-adaptive parametrization of the width shares some common con-
cepts with the CounterExample Guided Abstraction Re�nement (CEGAR) [8].
CEGAR begins checking with a coarse (imprecise) abstraction of the system
and progressively re�nes it, based on spurious counterexamples seen in prior
model checking runs. The process continues until either an abstraction proves
the correctness of the system or a valid counterexample is generated.

[14] introduced the Boxes domain, a re�nement of the Interval domain with
�nite disjunctions: an element of Boxes is a �nite union of boxes. Each value of
Boxes is a propositional formula over interval constraints and it is represented
by the Linear Decision Diagrams data structure (LDDs). Note that the size of an
LDD is exponential in the number of variables. We use a �xed width and a �xed
partitioning on each hypercube dimension, while they do not employ constraints
of this kind. In addition, Boxes uses a speci�c abstract transformer for each
possible operation (for example, distinguishing x = x+ v, x = a× x, x = a× y
and also making assumptions on the sign of constants) while our de�nitions
are more generic. Finally, Boxes' implementation is based on the speci�c data
structure of LDDs and cannot be extended to other base domains.

If on the one hand Parametric Hypercubes have been tailored to Computer
Games Software applications, on the other hand some of their features may also
be applied to other contexts. In particular, our de�nition of Computer Games
Software applications (i.e., an in�nite reactive loop, a complex state space with
many real-valued variables, and strong dependencies among variables) exactly
matches that of real-time synchronous control-command software (found in many
industries such as aerospace and automotive industries). Hybrid systems and
hybrid automata have been widely applied to verify this software. The formal
analysis of large scale hybrid systems is known to be a very di�cult process [1].
In general, existing approaches su�er from performance issues or limitations on
the property to prove, on the shape of the program, etc. For instance, [7] deals
a simpler example than ours (a bouncing ball with only vertical motion) and
in their benchmarks the variable space is quite limited: the velocity is a �xed
constant, and the starting position varies only between 10 and 10.1. Instead, our
Hypercubes can deal with velocities and positions bound inside any intervals of
values. Also in [5] the variable space is more restricted than in our approach. In

14

addition, this analysis returns an abstraction of the �nal state of the program,
while we also give information about which starting values are responsible for the
property veri�cation and which not. [16] presents an application of the abstract
interpretation by means of convex polyhedra to hybrid systems. This work is
focused on a particular class of hybrid systems (linear ones), and it is able to
represent only convex regions of the space, since it employs the convex hull ap-
proximation of a set of values. [2] presents algorithms and tools for reachability
analysis of hybrid systems by relying on predicate abstraction and polyhedra.
However, this solution su�ers from the exponential growth of abstract states and
relies on expensive abstract domains. Finally, [20] concerns safety veri�cation of
non-linear hybrid systems, starting from a classical method that uses interval
arithmetic to check whether trajectories can move over the boundaries in a rect-
angular grid. This approach is similar to ours in the data representation (boxes).
However, they do not employ any concept of o�set, their space partitioning is
not �xed and the examples they experimented with cover a very limited variable
space.

8 Conclusions and future work

In this paper we presented Parametric Hypercubes, a disjunctive non-relational
abstract domain which can be used to analyse physics simulations. Experimental
results on a representative case study show the precision of the approach. The
performance of the analysis makes it feasible to apply it in practical settings.

Note that our approach o�ers plenty of venues in order to improve its results,
thanks to its �exible and parametric nature. In particular, we could: (i) increase
the precision by intersecting our hypercubes with arbitrary bounding volumes
which restrict the relationships between variables in a more complex way than
the o�sets presented in Section 5; (ii) increase the performance of Algorithm 1
by halving the widths only on some axes, chosen through an analysis of the dis-
tribution of hypercubes in the yes,no,maybe sets; and (iii) study the derivative
with respect to time of the iterations of the main loop in order to de�ne tempo-
ral trends to re�ne the widening operator. In addition, our domain is modular
w.r.t. the non-relational abstract domain adopted to represent the hypercube
dimensions. By using other abstract domains it is possible to track relationships
between variables which do not necessarily represent physical quantities.

Acknowledgments. This work was partially supported by the SNF project
�Veri�cation-Driven Inference of Contracts�.

References

1. R. Alur, T.A. Henzinger, G. La�erriere, and G.J. Pappas. Discrete abstractions of
hybrid systems. Proceedings of the IEEE, 88(7):971�984, 2000.

2. Rajeev Alur, Thao Dang, and Franjo Ivancic. Reachability analysis of hybrid
systems via predicate abstraction. In Proceedings of HSCC '02, LNCS. Springer,
2002.

15

3. Gianluca Amato and Francesca Scozzari. The abstract domain of parallelotopes.
In Proceedings of NSAD '12, volume 287 of ENTS, pages 17�28. Elsevier, 2012.

4. Roberto Bagnara, Patricia M. Hill, and Enea Za�anella. Widening operators for
powerset domains. Software Tools for Technology Transfer, 9(3-4):413�414, 2007.

5. Olivier Bouissou. Proving the correctness of the implementation of a control-
command algorithm. In Proceedings of SAS '09, LNCS. Springer, 2009.

6. Olivier Bouissou. From control-command synchronous programs to hybrid au-
tomata. In Proceedings of ADHS '12. Curran, 2012.

7. Olivier Bouissou, Samuel Mimram, and Alexandre Chapoutot. Hyson: Set-based
simulation of hybrid systems. In Proceedings of RSP '12. IEEE, 2012.

8. Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction re�nement. In Proceedings of CAV '00, LNCS.
Springer, 2000.

9. P. Cousot. The calculational design of a generic abstract interpreter. In Calcula-

tional System Design. NATO ASI Series F. IOS Press, 1999.
10. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among

variables of a program. In Proceedings of POPL '78. ACM Press, 1978.
11. D.H. Eberly. Game Physics. Interactive 3D technology series. Elsevier Science,

2010.
12. Gilberto Filé and Francesco Ranzato. The powerset operator on abstract interpre-

tations. Theoretical Computer Science, 222(1-2):77�111, 1999.
13. Khalil Ghorbal, Franjo Ivancic, Gogul Balakrishnan, Naoto Maeda, and Aarti

Gupta. Donut domains: E�cient non-convex domains for abstract interpretation.
In Proceedings of VMCAI '12, LNCS. Springer, 2012.

14. Arie Gur�nkel and Sagar Chaki. Boxes: A symbolic abstract domain of boxes. In
Proceedings of SAS '10, LNCS. Springer, 2010.

15. Nicolas Halbwachs, David Merchat, and Laure Gonnord. Some ways to reduce the
space dimension in polyhedra computations. Formal Methods in System Design,
29(1):79�95, 2006.

16. Nicolas Halbwachs, Pascal Raymond, and Yann eric Proy. Veri�cation of linear
hybrid systems by means of convex approximations. In Proceedings of SAS '94,
LNCS. Springer, 1994.

17. Jacob M. Howe, Andy King, and Charles Lawrence-Jones. Quadtrees as an abstract
domain. Electronic Notes in Theoretical Computer Science, 267(1):89�100, 2010.

18. Laurent Mauborgne and Xavier Rival. Trace partitioning in abstract interpretation
based static analyzers. In Proceedings of ESOP '05, LNCS. Springer, 2005.

19. A. Miné. The octagon abstract domain. Higher-Order and Symbolic Computation,
2006.

20. Stefan Ratschan and Zhikun She. Safety veri�cation of hybrid systems by con-
straint propagation based abstraction re�nement. In Proceedings of HSCC '05,
LNCS. Springer, 2005.

21. Sriram Sankaranarayanan, Franjo Ivancic, Ilya Shlyakhter, and Aarti Gupta. Static
analysis in disjunctive numerical domains. In Proceedings of SAS '06, LNCS.
Springer-Verlag, 2006.

22. Yassamine Seladji and Olivier Bouissou. Fixpoint computation in the polyhedra
abstract domain using convex and numerical analysis tools. In Proceedings of

VMCAI '08, LNCS. Springer, 2013.

16

